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TRANSLATORS' PREFACE.

'TVHE translators feel that no apology is necessary for any rea-

* sonable effort to encourage the study of the history of mathe-

matics. The clearer view of the science thus afforded the teacher,

the inspiration to improve his methods of presenting it, the in-

creased interest in the class-work, the tendency of the subject to

combat stagnation of curricula, these are a few of the reasons for

approving the present renaissance of the study.

This phase of scientific history which Montucla brought into

such repute it must be confessed rather by his literary style than

by his exactness and which writers like De Morgan in England,

Chasles in France, Quetelet in Belgium, Hankel and Baltzer in

Germany, and Boncompagni in Italy encouraged as the century

wore on, is seeing a great revival in our day. This new movement

is headed by such scholars as Gunther, Enestrom, Loria, Paul

Tannery, and Zeuthen, but especially by Moritz Cantor, whose

Vorlesungen fiber Geschichte der Mathematik must long remain

the world's standard.

In any movement of this kind compendia are always necessary

for those who lack either the time or the linguistic power to read

the leading treatises. Several such works have recently appeared

in various languages. But the most systematic attempt in this

direction is the work here translated. The writers of most hand-

books of this kind feel called upon to collect a store of anecdotes,

to incorporate tales of no historic value, and to minimize the real

history of the science. Fink, on the other hand, omits biography

entirely, referring the reader to a brief table in the appendix or to

the encyclopedias. He systematically considers the growth of
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arithmetic, algebra, geometry, and trigonometry, carrying the his-

toric development, as should be done, somewhat beyond the limits

of the ordinary course.

At the best, the work of the translator is a rather thankless

task. It is a target for critics of style and for critics of matter.

For the style of the German work the translators will hardly be

held responsible. It is not a fluent one, leaning too much to the

scientific side to make it always easy reading. Were the work

less scientific, it would lend itself more readily to a better English

form, but the translators have preferred to err on the side of a

rather strict adherence to the original.

As to the matter, it has seemed unwise to make any consider-

able changes. The attempt has been made to correct a number of

unquestionable errors, occasional references have been added, and

the biographical notes have been rewritten. It has not seemed

advisable, however, to insert a large number of bibliographical

notes. Readers who are interested in the subject will naturally

place upon their shelves the works of De Morgan, Allman, Gow,

Ball, Heath, and other English writers, and, as far as may be,

works in other languages. The leading German authorities are

mentioned in the footnotes, and the French language offers little

at present beyond the works of Chasles and Paul Tannery.

The translators desire to express their obligations to Professor

Markley for valuable assistance in the translation.

Inasmuch as the original title of the work, Geschichte der

Elementar-Mathematik, is misleading, at least to English read-

ers, the work going considerably beyond the limits of the elements,

it has been thought best to use as the English title, A Brief His

tory of Mathematics.

W. W. BEMAN, Ann Arbor, Mich

D. E. SMITH, Brockport. N. Y.

March, 1900.



PREFACE.

TF the history of a science possesses value for every one whom
*

calling or inclination brings into closer relations to it, if the

knowledge of this history is imperative for all who have influence

in the further development of scientific principles or the methods

of employing them to advantage, then acquaintance with the rise

and growth of a branch of science is especially important to the

man who wishes to teach the elements of this science or to pene-

trate as a student into its higher realms.

The following history of elementary mathematics is intended

to give students of mathematics an historical survey of the ele-

mentary parts of this science and to furnish the teacher of the ele-

ments opportunity, with little expenditure of time, to review con-

nectedly points for the most part long familiar to him and to utilise

them in his teaching in suitable comments. The enlivening in-

fluence of historical remarks upon this elementary instruction has

never been disputed. Indeed there are text-books for the elements

of mathematics (among the more recent those of Baltzer and Schu-

bert) which devote considerable space to the history of the science

in the way of special notes. It is certainly desirable that instead

of scattered historical references there should be offered a con-

nected presentation of the history of elementary mathematics, not

one intended for the use of scholars, not as an equivalent for the

great works upon the history of mathematics, but only as a first

picture, with fundamental tones clearly sustained, of the principal

results of the investigation of mathematical history.

In this book the attempt has been made to differentiate the

histories of the separate branches of mathematical science. There
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GENERAL SURVEY.

/rTAHE beginnings of the development of mathemat-
-*- ical truths date back to the earliest civilizations

of which any literary remains have come down to us,

namely the Egyptian and the Babylonian. On the

one hand, brought about by the demands of practical

life, on the other springing from the real scientific

spirit of separate groups of men, especially of the

priestly caste, arithmetic and geometric notions came

into being. Rarely, however, was this knowledge

transmitted through writing, so that of the Babylo-

nian civilization we possess only a few traces. From

the ancient Egyptian, however, we have at least one

manual, that of Ahmes, which in all probability ap-

peared nearly two thousand years before Christ.

The real development of mathematical knowledge,

obviously stimulated by Egyptian and Babylonian in-

fluences, begins in Greece. This development shows

itself predominantly in the realm of geometry, and

enters upon its first classic period, a period of no

great duration, during the era of Euclid, Archimedes,

Eratosthenes, and Apollonius. Subsequently it in-

clines more toward the arithmetic side
;
but it soon

becomes so completely engulfed by the heavy waves
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of stormy periods that only after long centuries and

in a foreign soil, out of Greek works which had es-

caped the general destruction, could a seed, new and

full of promise, take root.

One would naturally expect to find the Romans

entering with eagerness upon the rich intellectual

inheritance which came to them from the conquered

Greeks, and to find their sons, who so willingly re-

sorted to Hellenic masters, showing an enthusiasm

for Greek mathematics. Of this, however, we have

scarcely any evidence. The Romans understood very

well the practical value to the statesman of Greek

geometry and surveying a thing which shows itself

also in the later Greek schools but no real mathe-

matical advance is to be found anywhere in Roman

history. Indeed, the Romans often had so mistaken

an idea of Greek learning that not infrequently they

handed it down to later generations in a form entirely

distorted.

More important for the further development of

mathematics are the relations of the Greek teachings

to the investigations of the Hindus and the Arabs.

The Hindus distinguished themselves by a pronounced

talent for numerical calculation. What especially dis-

tinguishes them is their susceptibility to the influence

of Western science, the Babylonian and especially

the Greek, so that they incorporated into their own

system what they received from outside sources and

then worked out independent results.
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The Arabs, however, in general do not show this

same independence of apprehension and of judgment.

Their chief merit, none the less a real one however,

lies in the untiring industry which they showed in

translating into their own language the literary treas-

ures of the Hindus, Persians and Greeks. The courts

of the Mohammedan princes from the ninth to the

thirteenth centuries were the seats of a remarkable

scientific activity, and to this circumstance alone do

we owe it that after a period of long and dense dark-

ness Western Europe was in a comparatively short

time opened up to the mathematical sciences.

The learning of the cloisters in the earlier part

of the Middle Ages was not by nature adapted to

enter seriously into matters mathematical or to search

for trustworthy sources of such knowledge. It was

the Italian merchants whose practical turn and easy

adaptability first found, in their commercial relations

with Mohammedan West Africa and Southern Spain,

abundant use for the common calculations of arith-

metic. Nor was it long after that there developed

among them a real spirit of discovery, and the first

great triumph of the newly revived science was the

solution of the cubic equation by Tartaglia. It should

be said, however, that the later cloister cult labored

zealously to extend the Western Arab learning by

means of translations into the Latin.

In the fifteenth century, in the persons of Peur-

bach and Regiomontanus, Germany first took position
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in the great rivalry for the advancement of mathemat-

ics. From that time until the middle of the seven-

teenth century the German mathematicians were

chiefly calculators, that is teachers in the reckoning

schools (Rechenschuleri). Others, however, were alge-

braists, and the fact is deserving of emphasis that

there were intellects striving to reach still loftier

heights. Among them Kepler stands forth pre-emi-

nent, but with him are associated Stifel, Rudolff, and

Biirgi. Certain is it that at this time and on Ger-

man soil elementary arithmetic and common algebra,

vitally influenced by the Italian school, attained a

standing very conducive to subsequent progress.

The modern period in the history of mathematics

begins about the middle of the seventeenth century.

Descartes projects the foundation theory of the ana-

lytic geometry. Leibnitz and Newton appear as the

discoverers of the differential calculus. The time has

now come when geometry, a science only rarely, and

even then but imperfectly, appreciated after its ban-

ishment from Greece, enters along with analysis upon
a period of prosperous advance, and takes full advan-

tage of this latter sister science in attaining its results.

Thus there were periods in which geometry was able

through its brilliant discoveries to cast analysis, tem-

porarily at least, into the shade.

The unprecedented activity of the great Gauss

divides the modern period into two parts : before

Gauss the establishment of the methods of the dif-
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ferential and integral calculus and of analytic geom-

etry as well as more restricted preparations for later

advance ; with Gauss and after him the magnificent

development of modern mathematics with its special

regions of grandeur and depth previously undreamed

of. The mathematicians of the nineteenth century

are devoting themselves to the theory of numbers,

modern algebra, the theory of functions and projec-

tive geometry, and in obedience to the impulse of

human knowledge are endeavoring to carry their light

into remote realms which till now have remained in

darkness.



I. NUMBER-SYSTEMS AND NUMBER-
SYMBOLS.

AN inexhaustible profusion of external influences

** upon the human mind has found its legitimate

expression in the formation of speech and writing

in numbers and number-symbols. It is true that a

counting of a certain kind is found among peoples of

a low grade of civilization and even among the lower

animals. "Even ducks can count their young."* But

where the nature and the condition of the objects

have been of no consequence in the formation of the

number itself, there human counting has first begun.

The oldest counting was even in its origin a pro-

cess of reckoning, an adjoining, possibly also in special

elementary cases a multiplication, performed upon

the objects counted or upon other objects easily em-

ployed, such as pebbles, shells, fingers. Hence arose

number-names. The most common of these undoubt-

edly belong to the primitive domain of language ;
with

the advancing development of language their aggre-

gate was gradually enlarged, the legitimate combina-

*Hankel, Zur Geschichte der Mathentatik fm Altertunt und Mittelalter

1874, p. 7. Hereafter referred to as Hankel. Tyler's Primitive Culture alsc

has a valuable chapter upon counting.
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tion of single terms permitting and favoring the crea-

tion of new numbers. Hence arose number-systems.

The explanation of the fact that 10 is almost every-

where found as the base of the system of counting is

seen in the common use of the fingers in elementary

calculations. In all ancient civilizations finger-reckon-

ing was known and even to-day it is carried on to a

remarkable extent among many savage peoples. Cer-

tain South African races use three persons for num-

bers which run above 100, the first counting the units

on his fingers, the second the tens, and the third the

hundreds. They always begin with the little finger of

the left hand and count to the little finger of the right.

The first counts continuously, the others raising a

finger every time a ten or a hundred is reached.*

Some languages contain words belonging funda-

mentally to the scale of 5 or 20 without these systems

having been completely elaborated
; only in certain

places do they burst the bounds of the decimal sys-

tem. In other cases, answering to special needs, 12

and 60 appear as bases. The New Zealanders have

a scale of 11, their language possessing words for the

first few powers of 11, and consequently 12 is repre-

sented as 11 and 1, 13 as 11 and 2, 22 as two ll's,

and so on.f

* Cantor, M., Vorlcsungen uber Geschichte der Mathematik. Vol. I, 1880;

2nd ed., 1894, p. 6. Hereafter referred to as Cantor. Conant, L. L., The Num-
ber Concept, N.Y. 1896. Gow, J., History of Greek Geometry, Cambridge, 1884,

Chap. I.

t Cantor, I., p. 10.
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In the verbal formation of a number-system addi-

tion and multiplication stand out prominently as defin-

itive operations for the composition of numbers
; very

rarely does subtraction come into use and still more

rarely division. For example, 18 is called in Latin

10 + 8 (decem et octo), in Greek 8+ 10 (oKTw-xai-ScKa),

in French 10 8 (dix-huif), in German 8 10 (acht-zehti),

in Latin also 20 2 (duo-de-viginti*), in Lower Breton

3-6 (tri-omc'h'), in Welsh 2-9 (dew-naw), in Aztec

15 -\- 3 (caxtulli-om-ey}, while 50 is called in the Basque

half-hundred, in Danish two-and-a-half times twenty.*

In spite of the greatest diversity of forms, the written

representation of numbers, when not confined to the

mere rudiments, shows a general law according to

which the higher order precedes the lower in the di-

rection of the writing."}" Thus in a four-figure number

the thousands are written by the Phoenicians at the

right, by the Chinese above, the former writing from

right to left, the latter from above downward. A

striking exception to this law is seen in the sub

tractive principle of the Romans in IV, IX, XL,

etc., where the smaller number is written before the

larger.

Among the Egyptians we have numbers running

from right to left in the hieratic writing, with varying

direction in the hieroglyphics. In the latter the num-

bers were either written out in words or represented

by symbols for each unit, repeated as often as neces-

* Hankel. p. 22. tHankel, p. 32.
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sary. In one of the tombs near the pyramids of Gizeh

have been found hieroglyphic numerals in which 1 is

represented by a vertical line, 10 by a kind of horse-

shoe, 100 by a short spiral, 10 000 by a pointing finger,

100 000 by a frog, 1 000 000 by a man in the attitude

of astonishment. In the hieratic symbols the figure

for the unit of higher order stands to the right of the

one of lower order in accordance with the law of se-

quence already mentioned. The repetition of sym-

bols for a unit of any particular order does not obtain,

because there are special characters for all nine units,

all the tens, all the hundreds, and all the thousands.*

We give below a few characteristic specimens of the

hieratic symbols :

I II III
- 1 AAV-13 3 4 5 10 20 80 40

The Babylonian cuneiform inscriptionsf proceed

from left to right, which must be looked upon as ex-

ceptional in a Semitic language. In accordance with

the law of sequence the units of higher order stand on

the left of those of lower order. The symbols used

in writing are chiefly the horizontal wedge >-, the ver-

tical wedge Y, and the combination of the two at an

angle .4.
The symbols were written beside one another,

or, for ease of reading and to save space, over one

another. The symbols for 1, 4, 10, 100, 14, 400, re-

spectively, are as follows :

* Cantor, I., pp. 43, 44. t Cantor, I., pp. 77, 78.
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%

.vvv.

1 4 10 100 14 400

For numbers exceeding 100 there was also, besides

the mere juxtaposition, a multiplicative principle ;

the symbol representing the number of hundreds was

placed at the left of the symbol for hundreds as in the

case of 400 already shown. The Babylonians probably

had no symbol for zero.* The sexagesimal system

(i. e., with the base 60), which played such a part in

the writings of the Babylonian scholars (astronomers

and mathematicians), will be mentioned later.

The Phoenicians, whose twenty-two letters were

derived from the hieratic characters of the Egyptians,

either wrote the numbers out in words or used special

numerical symbols for the units vertical marks, for

the tens horizontal, f Somewhat later the Syrians used

the twenty-two letters of their alphabet to represent

the numbers 1, 2, . . 9, 10, 20, ... 90, 100, ... 400
;

500 was 400 -f 100, etc. The thousands were repre

sented by the symbols for units with a subscript

comma at the right. J The Hebrew notation follows

the same plan.

The oldest Greek numerals (aside from the written

words) were, in general, the initial letters of the funda

mental numbers. I for 1, n for 5 (irore), A for 10

(Se'Ka), and these were repeated as often as necessary.

Cantor, I., p. 84. t Cantor, I., p. 113. t Cantor. I., pp. 113-114.

{Cantor, I., p. no.
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These numerals are described by the Byzantine gram-

marian Herodianus (A. D. 200) and hence are spoken

of as Herodianic numbers. Shortly after 500 B. C.

two new systems appeared. One used the 24 letters

of the Ionic alphabet in their natural order for the

numbers from 1 to 24. The other arranged these

letters apparently at random but actually in an order

fixed arbitrarily; thus, o= l, ft
= 2, . . . . , t= 10, K=

20, . . . .
, p= 100, o-^200, etc. Here too there is

no special symbol for the zero.

The Roman numerals* were probably inherited

from the Etruscans. The noteworthy peculiarities

are the lack of the zero, the subtractive principle

whereby the value of a symbol was diminished by

placing before it one of lower order (IV= 4, IX= 9,

XL= 40, XC= 90), even in cases where the language

itself did not signify such a subtraction
;
and finally

the multiplicative effect of a bar over the numerals

(x3E?==30 000, = 100000). Also for certain frac-

tions there were special symbols and names. Accord-

ing to Mommsen the Roman number-symbols I, V,

X represent the finger, the hand, and the double

hand. Zangemeister proceeds from the standpoint

that decem is related to decussare which means a

perpendicular or oblique crossing, and argues that

every straight or curved line drawn across the symbol

of a number in the decimal system multiplies that

number by ten. In fact, there are on monuments

* Cantor, I., p. 486.
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representations of 1, 10, and 1000, as well as of 5 and

500, to prove his assertion.*

Of especial interest in elementary arithmetic is the

number-system of the Hindus, because it is to these

Aryans that we undoubtedly owe the valuable position-

system now in use. Their oldest symbols for 1 to 9

were merely abridged number-words, and the use of

letters as figures is said to have been prevalent from

the second century A. D.f The zero is of later origin ;

its introduction is not proven with certainty till after

400 A. D. The writing of numbers was carried on,

chiefly according to the position-system, in various

ways. One plan, which Aryabhatta records, repre-

sented the numbers from 1 to 25 by the twenty-five

consonants of the Sanskrit alphabet, and the succeed-

ing tens (30, 40 .... 100) by the semi-vowels and

sibilants. A series of vowels and diphthongs formed

multipliers consisting of powers of ten, ga meaning

3, gi 300, gu 30 000, gau 3-10 16
.J In this there is no

application of the position-system, although it ap-

pears in two other methods of writing numbers in

use among the arithmeticians of Southern India.

Both of these plans are distinguished by the fact that

*SitnungsbericJite der Berliner Akademie vain 10, November 1887 . Words-
worth, in his Fragments and Specimens of Early Latin, 1874, derives C for

centum, M for mille, and L for quinquaginta from three letters of the Chal-
cidian alphabet, corresponding to 9, #, and x- He says: "The origin of this

notation is, I believe, quite uncertain, or rather purely arbitrary, though, of

course, we observe that the initials of mille and centum determined the final

shape taken by the signs, which at first were very different in form."

tSee Encyclopedia Britannica, under "Numerals "

J Cantor, I., p. 566.
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the same number can be made up in various ways.

Rules of calculation were clothed in simple verse easy

to hold in mind and to recall. For the Hindu mathe-

maticians this was all the more important since they

sought to avoid written calculation as far as possible.

One method of representation consisted in allowing

the alphabet, in groups of 9 symbols, to denote the

numbers from 1 to 9 repeatedly, while certain vowels

represented the zeros. If in the English alphabet ac-

cording to this method we were to denote the num-

bers from 1 to 9 by the consonants b, c, . . . z so that

after two countings one finally has z= 2, and were to

denote zero by every vowel or combination of vowels,

the number 60502 might be indicated by siren or heron,

and might be introduced by some other words in the

text. A second method employed type-words and

combined them according to the law of position.

Thus abdhi (one of the 4 seas) = 4, surya (the sun

with its 12 houses)=12, apvin (the two sons of the

sun)=2. The combination abdhisurya$vina$ denoted

the number 2124.*

Peculiar to the Sanskrit number-language are spe-

cial words for the multiplication of very large num-

bers. Arbuda signifies 100 millions, padma 10000

millions; from these are derived maharbuda= 1000

millions, mahapadma=\W 000 millions. Specially-

formed words for large numbers run up to 10 17 and

even further. This extraordinary extension of the

* Cantor, I., p. 567.
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decimal system in Sanskrit resembles a number-game,

a mania to grasp the infinitely great. Of this endeavor

to bring the infinite into the realm of number-percep-

tion and representation, traces are found also among

the Babylonians and Greeks. This appearance may
find its explanation in mystic-religious conceptions or

philosophic speculations.

The ancient Chinese number-symbols are confined

to a comparatively few fundamental elements arranged

in a perfectly developed decimal system. Here the

combination takes place sometimes by multiplica-

tion, sometimes by addition. Thus san= 3, c/ie= lQ;

che san denotes 13, but san che 30.* Later, as a result

of foreign influence, there arose two new kinds of no-

tation whose figures show some resemblance to the

ancient Chinese symbols. Numbers formed from

them were not written from above downward but

after the Hindu fashion from left to right beginning

with the highest order. The one kind comprising the

merchants' figures is never printed but is found only

in writings of a business character. Ordinarily the

ordinal and cardinal numbers are arranged in two

lines one above another, with zeros when necessary,

in the form of small circles. In this notation

||=2,X= 4, j_= 6, -|.= 10, 77
= 10000, O= ,

" X
and hence ft O O -f-j_ =20046.

* Cantor. I., p. 630.
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Among the Arabs, those skilful transmitters of

Oriental and Greek arithmetic to the nations of the

West, the custom of writing out number-words con-

tinued till the beginning of the eleventh century.

Yet at a comparatively early period they had already

formed abbreviations of the number-words, the Divani

figures. In the eighth century the Arabs became ac-

quainted with the Hindu number-system and its fig-

ures, including zero. From these figures there arose

among the Western Arabs, who in their whole litera-

ture presented a decided contrast to their Eastern re-

latives, the Gubar numerals (dust-numerals) as vari-

ants. These Gubar numerals, almost entirely forgotten

to-day among the Arabs themselves, are the ancestors

of our modern numerals,* which are immediately de-

rived from the apices of the early Middle Ages. These

primitive Western forms used in the abacus-calcula-

tions are found in the West European MSS. of the

eleventh and twelfth centuries and owe much of their

prominence to Gerbert, afterwards Pope Sylvester II.

(consecrated 999 A. D.).

The arithmetic of the Western nations, cultivated

to a considerable extent in the cloister-schools from

the ninth century on, employed besides the abacus the

Roman numerals, and consequently made no use of a

symbol for zero. In Germany up to the year 1500 the

Roman symbols were called German numerals in dis-

tinction from the symbols then seldom employed

"Hankel, p.255-



1 6 HISTORY OF MATHEMATICS.

of Arab-Hindu origin, which included a zero (Arabic

as-sifr, Sanskrit sunya, the void). The latter were

called ciphers (Zifferri). From the fifteenth century on

these Arab-Hindu numerals appear more frequently in

Germany on monuments and in churches, but at that

time they had not become common property.* The

oldest monument with Arabic figures (in Katharein

near Troppau) is said to date from 1007. Monuments

of this kind are found in Pforzheim (1371), and in Ulm

(1388). A frequent and free use of the zero in the

thirteenth century is shown in tables for the calcula-

tion of the tides at London and of the duration of

moonlight. f In the year 1471 there appeared in Co-

logne a work of Petrarch with page-numbers in Hindu

figures at the top. In 1482 the first German arith-

metic with similar page-numbering was published in

Bamberg. Besides the ordinary forms of numerals

everywhere used to-day, which appeared exclusively

in an arithmetic of 1489, the following forms for 4, 5,

7 were used in Germany at the time of the struggle

between the Roman and Hindu notations :

The derivation of the modern numerals is illustrated

by the examples below which are taken in succession

from the Sanskrit, the apices, the Eastern Arab, the

* linger, Die Methodik der praktischen Ariihmetik, 1888, p. 70. Hereafter

referred to as Unger.

tGunther, Geschichte des mathematischen Unterrichts im deutschen Mittel-

alter bis zum Jahr 1525, 1887, p. 175. Hereafter referred to as Gunther.
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Western Arab Gubar numerals, the numerals of the

eleventh, thirteenth, and sixteenth centuries.*

dUH H

erq'v 8

5 <^ V A

76 A 8

8
In the sixteenth century the Hindu position-arith-

metic and its notation first found complete introduc-

tion among all the civilized peoples of the West. By
this means was fulfilled one of the indispensable con-

ditions for the development of common arithmetic in

the schools and in the service of trade and commerce.

* Cantor, table appended to Vol. I, and Hankel, p. 325.



II. ARITHMETIC.

A. GENERAL SURVEY.

'T^HE simplest number-words and elementary count

*-
ing have always been the common property of

the people. Quite otherwise is it, however, with the

different methods of calculation which are derived

from simple counting, and with their application to

complicated problems. As the centuries passed, that

part of ordinary arithmetic which to-day every child

knows, descended from the closed circle of particular

castes or smaller communities to the common people,

so as to form an important part of general culture.

Among the ancients the education of the youth had to

do almost wholly with bodily exercises. Only a riper

age sought a higher cultivation through intercourse

with priests and philosophers, and this consisted in

part in the common knowledge of to-day : people

learned to read, to write, to cipher.

At the beginning of the first period in the historic

development of common arithmetic stand the Egyp-
tians. To them the Greek writers ascribe the inven-

tion of surveying, of astronomy, and of arithmetic. To

their literature belongs also the most ancient book on
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arithmetic, that of Ahmes, which teaches operations

with whole numbers and fractions. The Babylonians

employed a sexagesimal system in their position-arith-

metic, which latter must also have served the pur-

poses of a religious number-symbolism. The common

arithmetic of the Greeks, particularly in most ancient

times, was moderate in extent until by the activity of

the scholars of philosophy there was developed a real

mathematical science of predominantly geometric

character. In spite of this, skill in calculation was

not esteemed lightly. Of this we have evidence when

Plato demands for his ideal state that the youth should

be instructed in reading, writing, and arithmetic.

The arithmetic of the Romans had a purely prac-

tical turn
;
to it belonged a mass of quite complicated

problems arising from controversies regarding ques-

tions of inheritance, of private property and of reim-

bursement of interest. The Romans used duodecimal

fractions. Concerning the most ancient arithmetic of

the Hindus only conjectures can be made ; on the con-

trary, the Hindu elementary arithmetic after the in-

troduction of the position-system is known with toler-

able accuracy from the works of native authors. The

Hindu mathematicians laid the foundations for the

ordinary arithmetic processes of to-day. The influ-

ence of their learning is perceptible in the Chinese

arithmetic which likewise depends on the decimal sys-

tem ; in still greater measure, however, among the
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Arabs who besides the Hindu numeral-reckoning also

employed a calculation by columns.

The time from the eighth to the beginning of the

fifteenth century forms the second period. This is a

noteworthy period of transition, an epoch of the trans-

planting of old methods into new and fruitful soil,

but also one of combat between the well-tried Hindu

methods and the clumsy and detailed arithmetic ope-

rations handed down from the Middle Ages. At

first only in cloisters and cloister-schools could any

arithmetic knowledge be found, and that derived from

Roman sources. But finally there came new sugges

tions from the Arabs, so that from the eleventh to the

thirteenth centuries there was opposed to the group of

abacists, with their singular complementary methods,

a school of algorists as partisans of the Hindu arith-

metic.

Not until the fifteenth century, the period of in-

vestigation of the original Greek writings, of the

rapid development of astronomy, of the rise of the

arts and of commercial relations, does the third pe-

riod in the history of arithmetic begin. As early

as the thirteenth century besides the cathedral and

cloister-schools which provided for their own religious

and ecclesiastical wants, there were, properly speak-

ing, schools for arithmetic. Their foundation is to be

ascribed to the needs of the brisk trade of German

towns with Italian merchants who were likewise skilled

computers. In the fifteenth and sixteenth centuries
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school affairs were essentially advanced by the human-

istic tendency and by the reformation. Latin schools,

writing schools, German schools (in Germany) for boys

and even for girls, were established. In the Latin

schools only the upper classes received instruction in

arithmetic, in a weekly exercise : they studied the four

fundamental rules, the theory of fractions, and at most

the rule of three, which may not seem so very little

when we consider that frequently in the universities

of that time arithmetic was not carried much further.

In the writing schools and German boys' schools the

pupils learned something of calculation, numeration,

and notation, especially the difference between the

German numerals (in Roman writing) and the ciphers

(after the Hindu fashion). In the girls' schools, which

were intended only for the higher classes of people, no

arithmetic was taught. Considerable attainments in

computation could be secured only in the schools for

arithmetic. The most celebrated of these institutions

was located at Nuremberg. In the commercial towns

there were accountants' guilds which provided for the

extension of arithmetic knowledge. But real mathe-

maticians and astronomers also labored together in de-

veloping the methods of arithmetic. In spite of this

assistance from men of prominence, no theory of arith-

metic instruction had been established even as late as

in the sixteenth century. What had been done be-

fore had to be copied. In the books on arithmetic
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were found only rules and examples, almost never

proofs or deductions.

The seventeenth century brought no essential

change in these conditions. Schools existed as before

where they had not been swallowed up by the horrors

of the Thirty-Years' War. The arithmeticians wrote

their books on arithmetic, perhaps contrived calculat-

ing machines to make the work easier for their pupils,

or composed arithmetic conversations and poems. A

specimen of this is given in the following extracts

from Tobias Beutel's Arithmetica, the seventh edition

of which appeared in 1693.*

" Numerieren lehrt im Rechen

Zahlen schreiben und aussprechen."

"In Summen bringen heisst addieren

Dies muss das Wdrtlein Und vollfiihren."

" Wie eine Hand an uns die andre waschet rein

Kann eine Species der andern Probe seyn."

" We are taught in numeration

Number writing and expression,"

etc., etc.

Commercial arithmetic was improved by the cultiva

tion of the study of exchange and discount, and the

abbreviated method of multiplication. The form of

instruction remained the same, i. e., the pupil reck-

oned according to rules without any attempt being
made to explain their nature.

The eighteenth century brought as its first and

* UnRer, p. 124.



ARITHMETIC. 23

most important innovation the statutory regulation of

school matters by special school laws, and the estab-

lishment of normal schools (the first in 1732 at Stet-

tin in connection with the orphan asylum). As reor-

ganizers of the higher schools appeared the pietists

and philanthropinists. The former established Real-

schulen (the oldest founded 1738 in Halle) and higher

Biirgerschulen; the latter in their Schulen derAufkldrung

sought by an improvement of methods to educate

cultured men of the world. The arithmetic exercise-

books of this period contain a simplification of divi-

sion (the downwards or under-itself division) as well

as a more fruitful application of the chain rule and

decimal fractions. By their side also appear manuals

of method whose number is rapidly increasing in the

nineteenth century. In these, elementary teaching

receives especial attention. According to Pestalozzi

(1803) the foundation of calculation is sense percep-

tion, according to Grube (1842), the comprehensive

treatment of each number before taking up the next,

according to Tanck and Knilling (1884), counting.

In Pestalozzi's method "the decimal structure of our

number-system, which includes so many advantages

in the way of calculation, is not touched upon at all,

addition, subtraction, and division do not appear as

separate processes, the accompanying explanations

smother the principal matter in the propositions, that

is the arithmetic truth."* Grube has simply drawn

* Unger, p. 179.
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from Pestalozzi's principles the most extreme conclu

sions. His sequence "is in many respects faulty; his

processes unsuitable."* The historical development

of arithmetic speaks in favor of the counting-prin-

ciple : the first reckoning in every age has been an

observing and counting.

B. FIRST PERIOD.

THE ARITHMETIC OF THE OLDEST NATIONS TO THE TIME

OF THE ARABS.

I. The Arithmetic of Whole Numbers.

If we leave out of account finger-reckoning, which

cannot be shown with absolute certainty, then accord-

ing to a statement of Herodotus the ancient Egyptian

computation consisted of an operating with pebbleson

a reckoning-board whose lines were at right angles to

the computer. Possibly the Babylonians also used a

similar device. In the ordinary arithmetic of the latter,

as among the Egyptians, the decimal system prevails,

but by its side we also find, especially in dealing with

fractions, a sexagesimal system. This arose without

doubt in the working out of the astronomical observa-

tions of the Babylonian priests, f The length of the

year of 360 days furnished the occasion for the divi-

sion of the circle into 360 equal parts, one of which

was to represent the apparent daily path of the sun

upon the celestial sphere. If in addition the construc-

*Unger, pp. 192, 193. t Cantor, I., p. 80.
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tion of the regular hexagon was known, then it was

natural to take every 60 of these parts again as units.

The number 60 was called soss. Numbers of the

sexagesimal system were again multiplied in accord-

ance with the rules of the decimal system : thus a ner

= 600, a jar= 3600. The sexagesimal system estab-

lished by the Babylonian priests also entered into

their religious speculations, where each of their divin-

ities was designated by one of the numbers from 1 to

60 corresponding to his rank. Perhaps the Babyloni-

ans also divided their days into 60 equal parts as has

been shown for the Veda calendars of the ancient

Hindus.

The Greek elementary mathematics, at any rate

as early as the time of Aristophanes (420 B. C.),* used

finger-reckoning and reckoning-boards for ordinary

computation. An explanation of the finger-reckoning

is given by Nicholas Rhabdaf of Smyrna (in the four-

teenth century). Moving from the little finger of the

left hand to the little finger of the right, three fingers

were used to represent units, the next two, tens, the

next two, hundreds, and the last three, thousands.

On the reckoning board, the abax (5/?o, dust board),

whose columns were at right angles to the user, the

operations were carried on with pebbles which had a

different place-value in different lines. Multiplication

was performed by beginning with the highest order in

each factor and forming the sum of the partial pro-

* Cantor, I .. pp. 120, 479. t Gow, History of Greek Mathematics, p. 24.
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ducts. Thus the calculation was effected (in modern

form) as follows:

126 237= (100 + 20 + 6) (200 + 30+ 7)

= 20000+ 3000 +700
+ 4000+ 600 +140
+ 1200+ 180 + 42

= 29 862

According to Pliny, the finger-reckoning of the

Romans goes back to King Numa
;

* the latter had

made a statue of Janus whose fingers represented the

number of the days of a year (355). Consistently with

this Boethius calls the numbers from 1 to 9 finger-

numbers, 10, 20, 30, ... joint-numbers, 11, 12, ...

19, 21, 22, ... 29, ... composite numbers. In ele

f n 1 1 n 1 1

[Xl * C X I 9 |

\

mentary teaching the Romans used the abacus, a

board usually covered with dust on which one could

* Cantor, I., p. 491.
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trace figures, draw columns, and work with pebbles.

Or if the abacus was to be used for computing only,

it was made of metal and provided with grooves (the

vertical lines in the schematic drawing on the pre-

ceding page) in which arbitrary marks (the cross-

lines) could be shifted.

The columns a\ . . . aj, b\ . . . bi form a system

from 1 to 1 000 000
; upon a column a are found four

marks, upon a column b only one mark. Each of the

four marks represents a unit, but the upper single

mark five units of the order under consideration.

Further a mark upon fi=^y, upon *=&, upon 4
= A> uPon f*= ^s> upon cs= -fa (relative to the di-

vision of the a's). The abacus of the figure represents

the number 782 192 +^+^+^= 782 192 1 1. This"

abacus served for the reckoning of results of simple

problems. Along with this the multiplication-table

was also employed. For larger multiplications there

were special tables. Such a one is mentioned by Vic-

torius (about 450 A. D.).* From Boethius, who calls

the abacus marks apices, we learn something about

multiplication and division. Of these operations the

former probably, the latter certainly, was performed

by the use of complements. In Boethius the term

differentia is applied to the complement of the divisor

to the next complete ten or hundred. Thus for the

divisors 7, 84, 213 the differentiae are 3, 6, 87 f respec-

tively. The essential characteristics of this comple-

* Cantor, I., p. 495. t Cantor, I , p. 544.
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mentary division are seen from the following example

put in modern form :

257

The swanpan of the Chinese somewhat resembles

the abacus of the Romans. This calculating machine

consists of a frame ordinarily with ten wires inserted.

A cross wire separates each of the ten wires into two

unequal p^arts ;
on each smaller part two and on each

larger five balls are strung. The Chinese arithmetics

give no rules for addition and subtraction, but do for

multiplication, which, as with the Greeks, begins

with the highest order, and fordivision, which appears

in the form of a repeated subtraction.

The calculation of the Hindus, after the introduc-

tion of the arithmetic of position, possessed a series

of suitable rules for performing the fundamental ope-

rations. In the case of a smaller figure in the minu-

end subtraction is performed by borrowing and by

addition (as in the so-called Austrian subtraction).*

*The Austrian subtraction corresponds in part to the usual method of

"making change."
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In multiplication, for which several processes are

available, the product is obtained in some cases

by separating the multipliers into factors and subse-

quently adding the partial products. In other cases

a schematic process is introduced whose peculiarities

are shown in the example 315-37= 11 655.

1 6

The result of the multiplication is obtained by the

addition of the figures found within the rectangle in

the direction of the oblique lines. With regard to

division we have only a few notices. Probably, how-

ever, complementary methods were not used.

The earliest writer giving us information on the

arithmetic of the Arabs is Al Khowarazmi. The bor-

rowing from Hindu arithmetic stands out very clearly.

Six operations were taught. Addition and subtraction

begin with the units of highest order, therefore on

the left
; halving begins on the right, doubling again

on the left. Multiplication is effected by the process

which the Hindus called Tatstha (it remains stand-

ing).* The partial products, beginning with the high-

est order in the multiplicand, are written above the

corresponding figures of the latter and each figure

* Cantor, I., p. 674, 571.
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of the product to which other units from a later par-

tial product are added (in sand or dust), rubbed out

and corrected, so that at the end of the computation

the result stands above the multiplicand. In divi-

sion, which is never performed in the complementary

fashion, the divisor stands below the dividend and

advances toward the right as the calculation goes on.

Quotient and remainder appear above the divisor in

^L= 28f, somewhat as follows:*

13

14

28

461

16

16

Al Nasawif also computes after the same fashion as

Al Khowarazmi. Their methods characterise the ele-

mentary arithmetic of the Eastern Arabs.

In essentially the same manner, but with more or

less deviation in the actual work, the Western Arabs

computed. Besides the Hindu figure-computation

Ibn al Banna teaches a sort of reckoning by columns. J

Proceeding from right to left, the columns are com-

bined in groups of three; such a group is called ta-

karrur\ the number of all the columns necessary to

record a number is the mukarrar. Thus for the num-

ber 3 849 922 the takarrur or number of complete

groups is 2, the mukarrar -=1 . Al Kalsadi wrote a

* Cantor, I., p. 674. t Cantor, I., p. 716. t Cantor, I., p. 757.
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work Raising of the Veil of the Science of Gubar. * The

original meaning of Gubar (dust) has here passed

over into that of the written calculation with figures.

Especially characteristic is it that in addition, sub-

traction (=tarh, taraha= to throw away) and multi-

plication the results are written above the numbers

operated upon, as in the following examples :

1 93 + 45 = 238 and 238 193= 45

is written, is written,

238 45

193 ;
238'

45 193

1 1

Several rules for multiplication are found in Al Kal-

sadi, among them one with an advancing multiplier.

In division the result stands below.

FIRST EXAMPLE. SECOND EXAMPLE.

7-143= 1001 1001 _
is written, 1001 7

21 is written, 32

28 1001

7 777

~T43 143

777

2. Calculation With Fractions.

In his arithmetic Ahmes gives a large number of

examples which show how the Egyptians dealt with

fractions. They made exclusive use of unit-fractions,

* Cantor, I., p. 762.
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i. e., fractions with numerator 1. For this numerator,

therefore, a special symbol is found, in the hiero-

glyphic writing o, in the hieratic a point, so that in

the latter a unit fraction is represented by its denomi-

nator with a point placed above it. Besides these

there are found for and f the hieroglyphs I and

jj

)

;

* in the hieratic writing there are likewise special

symbols corresponding to the fractions
, f, ^, and i.

The first problem which Ahmes solves is this, to sep-

arate a fraction into unit fractions. E. g., he finds

l= i+ T^' inr
=

TrV + Tmr + i>7ir This separation,

really an indeterminate problem, is not solved by

Ahmes in general form, but only for special cases.

The fractions of the Babylonians being entirely

in the sexagesimal system, had at the outset a com-

mon denominator, and could be dealt with like whole

numbers. In the written form only the numerator

was given with a special sign attached. The Greeks

wrote a fraction so that the numerator came first with

a single stroke at the right and above, followed in the

same line by the denominator with two strokes, writ-

ten twice, thus i'ica"Ka"= ^J. In unit fractions the

numerator was omitted and the denominator written

only once: 8"= . The unit fractions to be added

follow immediately one after another, f
"

107" pip" o-xS"

= $H-*V+ Tiir +A=s4sV In arithmetic proper,

extensive use was made of unit-fractions, later also of

*For carefully drawn symbols see Cantor, I. p. 45.

t Cantor, I., p. 118.
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sexagesimal fractions (in the computation of angles).

Of the use of a bar between the terms of a fraction

there is nowhere any mention. Indeed, where such

use appears to occur, it marks only the result of an

addition, but not a division.*

The fractional calculations of the Romans furnish

an example of the use of the duodecimal system.

The fractions (minutice) -fa, ^, . . . \$ had special

names and symbols. The exclusive use of these duo-

decimal fractions f was due to the fact that the as,

a mass of copper weighing one pound, was divided

into twelve uncice. The uncia had four sicilici and

twenty- four scripuli. I=as, %= semis, = trfcns, =
quadrans, etc. Besides the twelfths special names

were given to the fractions fa -fa, ^, j^, ^. The

addition and subtraction of such fractions was com-

paratively simple, but their multiplication very de-

tailed. The greatest disadvantage of this system con-

sisted in the fact that all divisions which did not fit

into this duodecimal system could be represented by

minutiae either with extreme difficulty or only approxi-

mately.

In the computations of the Hindus both unit frac-

tions and derived fractions likewise appear. The de-

nominator stands under the numerator but is not sep-

arated from it by a bar. The Hindu astronomers

preferred to calculate with sexagesimal fractions. In

the computations of the Arabs Al Khowarazmi gives

*Tmnnery in Bibl. Math. 1886. tHankel, p. 57.
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special words for half, third, . . . ninth (expressible

fractions).* All fractions with denominators non-divis-

ible by 2, 3, ... 9, are called mute fractions ; they

were expressed by a circumlocution, e. g., ^ as 2

parts of 17 parts. Al Nasawi writes mixed numbers

in three lines, one under another, at the top the whole

number, below this the numerator, below this the de-

nominator. For astronomical calculations fractions

of the sexagesimal system were used exclusively.

3. Applied Arithmetic.

The practical arithmetic of the ancients included

besides the common cases of daily life, astronomical

and geometrical problems. The latter will be passed

over here because they are mentioned elsewhere. In

Ahmes problems in partnership are developed and

also the sums of some of the simplest series deter-

mined. Theon of Alexandria showed how to obtain

approximately the square root of a number of angle

degrees by the use of sexagesimal fractions and the

gnomon. The Romans were concerned principally

with problems of interest and inheritance. The Hin-

dus had already developed the method of false posi-

tion (Regula falsi') and the rule of three, and made

a study of problems of alligation, cistern-filling, and

series, which were still further developed by the Arabs.

Along with the practical arithmetic appear frequent

Cantor, I., p. 675.
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traces of observations on the theory of numbers. The

Egyptians knew the test of divisibility of a number by

2. The Pythagoreans distinguished numbers as odd

and even, amicable, perfect, redundant and defective.*

Of two amicable numbers each was equal to the sum

of the aliquot parts of the other (220 gives 1 + 2 + 4

+ 5 + 10+11 + 20 + 22 + 44 + 55 + 110= 284 and

284 gives 1 + 2+ 4+ 71 + 142= 220). A perfect num-

ber was equal to the sum of its aliquot parts (6= 1 +
2+ 3). If the sum of the aliquot parts was greater or

less than the number itself, then the latter was called

redundant or defective respectively (8> 1 + 2+ 4
;
12

<l + 2 + 3 + 4+6). Besides this, Euclid starting

from his geometric standpoint commenced some fun-

damental investigations on divisibility, the greatest

common measure and the least common multiple.

The Hindus were familiar with casting out the nines

and with continued fractions, and from them this

knowledge went over to the Arabs. However insig-

nificant may be these beginnings in their ancient

form, they contain the germ of that vast development

in the theory of numbers which the nineteenth cen-

tury has brought about.

* Cantor, I., p. 156.
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C. SECOND PERIOD.

FROM THE EIGHTH TO THE FOURTEENTH CENTURY.

I. The Arithmetic of Whole Numbers.

In the cloister schools, the episcopal schools, and

the private schools of the Merovingian and Carloving-

ian period it was the monks almost exclusively who

gave instruction. The cloister schools proper were of

only slight importance in the advancement of mathe-

matical knowledge : on the contrary, the episcopal

and private schools, the latter based on Italian meth-

ods, seem to have brought very beneficial results.

The first to foreshadow something of the mathemat-

ical knowledge of the monks is Isidorus of Seville.

This cloister scholar confined himself to making con-

jectures regarding the derivation of the Roman nu-

merals, and says nothing at all about the method of

computation of his contemporaries. The Venerable

Bede likewise published only some extended observa-

tions on finger-reckoning. He shows how to repre

sent numbers by the aid of the fingers, proceeding

from left to right, and thereby assumes a certain ac-

quaintance with finger-reckoning, mentioning as his

predecessors Macrobius and Isidorus.* This calculus

digitalis, appearing in both the East and the West in

* Cantor, I., p. 778.
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exactly the same fashion, played an important part in

fixing the dates of church feasts by the priests of that

time
; at least computus digitalis and computus ecclesias-

ticus were frequently used in the same sense.*

With regard to the fundamental operations proper

Bede does not express himself. Alcuin makes much

of number-mysticism and reckons in a very cumbrous

manner with the Roman numerals, f Gerbert was the

first to give in his Regula de abaco computi actual rules,

in which he depended upon the arithmetic part of

Boethius's work. What he teaches is a pure abacus-

reckoning, which was widely spread by reason of his

reputation. Gerbert's abacus, of which we have an

accurate description by his pupil Bernelinus, was a

table which for the drawing of geometric figures was

sprinkled with blue sand, but for calculation was di-

vided into thirty columns of which three were reserved

for fractional computations. The remaining twenty-

seven columns were separated from right to left into

groups of three. At the head of each group stood like-

wise from right to left S (singularis} ,
D (decent), C (cen-

tum). The number-symbols used, the so-called apices,

are symbols for 1 to 9, but without zero. In calcu-

lating with this abacus the intermediate operations

could be rubbed out, so that finally only the result re-

mained
;
or the operation was made with counters.

The fundamental operations were performed princi-

pally by the use of complements, and in this respect

* Giinther. t Camber.
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division is especially characteristic. The formation

of the quotient if^= 33^ will explain this comple-

mentary division.

In the example given the complete performance of the com-

plementary division stands on the left ; the figures to be rubbed

out as the calculation goes on are indicated by a period on the

right. On the right is found the abacus-division without the for-

mation of the difference in the divisor, below it the explanation of

the complementary division in modern notation.



ARITHMETIC. 39

In the tenth and eleventh centuries there appeared

a large number of authors belonging chiefly to the

clergy who wrote on abacus-reckoning with apices

but without the zero and without the Hindu-Arab

methods. In the latter the apices were connected with

the abacus itself or with the representation of num-

bers of one figure, while in the running text the Roman

numeral symbols stood for numbers of several figures.

The contrast between the apices-plan and the Roman

is so striking that Oddo, for example, writes : "If one

takes 5 times 7, or 7 times 5, he gets XXXV" (the 5

and 7 written in apices).*

At the time of the abacus-reckoning there arose the peculiar

custom of representing by special signs certain numbers which do

not appear in the Roman system of symbols, and this use contin-

ued far into the Middle Ages. Thus, for example, in the town-

books of Greifswald 250 is continually represented by

The abacists with their remarkable methods of di-

vision completely dominated Western reckoning up
to the beginning of the twelfth century. But then a

complete revolution was effected. The abacus, the

heir of the computus, i. e., the old Roman method of

calculation and number-writing, was destined to give

way to the algorism with its sensible use of zero and

its simpler processes of reckoning, but not without a

further struggle. J People became pupils of the Wes-

tern Arabs. Among the names of those who extended

* Cantor, I., p. 846. t Gunther, p. 175. t Giinther, p. 107.
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Arab methods of calculation stands forth especially

pre-eminent that of Gerhard of Cremona, because he

translated into Latin a series of writings of Greek

and Arab authors.* Then was formed the school of

algorists who in contrast to the abacists possessed no

complementary division but did possess the Hindu

place-system with zero. The most lasting material

for the extension of Hindu methods was furnished by

Fibonacci in his Liber abaci. This book "has been

the mine from which arithmeticians and algebraists

have drawn their wisdom
;
on this account it has be-

come in general the foundation of modern science."!

Among other things it contains the four rules for

whole numbers and fractions in detailed form. It is

worthy of especial notice that besides ordinary sub-

traction with borrowing he teaches subtraction by in-

creasing the next figure of the subtrahend by one,

and that therefore Fibonacci is to be regarded as the

creator of this elegant method.

2. Arithmetic of Fractions.

Here, also, after Roman duodecimal fractions had

been exclusively cultivated by the abacists Beda, Ger-

bert and Bernelinus, Fibonacci laid a new foundation

in his exercises preliminary to division. He showed

how to separate a fraction into unit fractions. Espe-

cially advantageous in dealing with small numbers

* Hankel, p. 336. t Hankel, p. 343.
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is his method of determining the common denomina-

tor: the greatest denominator is multiplied by each

following denominator and the greatest common meas-

ure of each pair of factors rejected. (Example : the

least common multiple of 24, 18, 15, 9, 8, 5 is 24-3-5

= 360.)

j. Applied Arithmetic.

The arithmetic of the abacists had for its main

purpose the determination of the date of Easter. Be-

sides this are found, apparently written by Alcuin,

Problems for Quickening the Mind which suggest Ro-

man models. In this department also Leonardo Fibo-

nacci furnishes the most prominent rule (the regula

falsi), but his problems belong more to the domain of

algebra than to that of lower arithmetic.

Investigations in the theory of numbers could

hardly be expected from the school of abacists. On
the other hand, the algorist Leonardo was familiar

with casting out the nines, for which he furnished an

independent proof.

D. THIRD PERIOD.

FROM THE FIFTEENTH TO THE NINETEENTH CENTURY.

I. The Arithmetic of Whole Numbers.

While on the whole the fourteenth century had

only reproductions to show, a new period of brisk ac-
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tivity begins with the fifteenth century, marked by

Peurbach and Regiomontanus in Germany, and by

Luca Pacioli in Italy. As far as the individual pro-

cesses are concerned, in addition the sum sometimes

stands above the addends, sometimes below; subtrac-

tion recognizes "carrying" and "borrowing"; in

multiplication various methods prevail ;
in division no

settled method is yet developed. The algorism of

Peurbach names the following arithmetic operations :

Numeratio, additio, subtractio, mediatio, duplatio, multi-

plicatio, divisio, progressio (arithmetic and geometric

series), besides the extraction of roots which before the

invention of decimal fractions was performed by the

aid of sexagesimal fractions. His upwards-division

still used the arrangement of the advancing divisor
;

it was performed in the manner following (on the left

the explanation of the process, on the right Peurbach's

division, where figures to be erased in the course of

the reckoning are indicated by a period to the right

and below): The oral statement would be somewhat

like this: 36 in 84 twice, 2-3= 6, 8 6= 2, written

above 8; 2-6= 12, 24 12= 12, write above, strike

out 2, etc. The proof of the accuracy of the result is

obtained as in the other operations by casting out the

nines. This method of upwards-division which is not

difficult in oral presentation is still found in arith-

metics which appeared shortly before the beginning

of the nineteenth century.
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In the sixteenth century work in arithmetic had

entered the Latin schools to a considerable extent
;
but

to the great mass of children of the common people

neither school men nor statesmen gave any thought

before 1525. The first regulation of any value in this

line is the Bavarian Schuelordnungk de anno 1348 which

introduced arithmetic as a required study into the vil-

lage schools. Aside from an occasional use of finger-

reckoning, this computation was either a computation

upon lines with counters or a figure- computation. In

both cases the work began with practice in numeration

in figures. To perform an operation with counters a

series of horizontal parallels was drawn upon a suit-

able base. Reckoned from below upward each counter

upon the 1st, 2d, 3d, . . . line represented the value

1, 10, 100, . . ., but between the lines they represented

5, 50, 500, . . . The following figure shows the rep-
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resentation of 41 096. In subtraction the minuend,

in multiplication the multiplicand was put upon the

lines. Division was treated as repeated subtractions.

This line-reckoning was completely lost in the seven-

O O O O

Q fN f^N /^
yr-v \J vy \~/

~0
teenth century when it gave place to real written

arithmetic or figure-reckoning by which it had been

accompanied in the better schools almost from the

first.

In the ordinary business and trade of the Middle

Ages use was also made of the widely-extended score-

reckoning. At the beginning of the fifteenth century

this method was quite usual in Frankfort on the Main,

and in England it held its own even into the nine-

teenth century. Whenever goods were bought of a

merchant on credit the amount was represented by

notches cut upon a stick which was split in two length-

wise so that of the two parts which matched, the debtor

kept one and the creditor one so that both were se

cured against fraud.*

In the cipher-reckoning the computers of the six-

teenth century generally distinguished more than 4

operations; some counted 9, i. e., the 8 named by

* Cantor, M. Mathem. Beitr. turn Kulturleben der VSlker. Halle, 1863.
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Peurbach and besides, as a ninth operation, evolution,

the extraction of the square root by the formula (a-\-b}*

= a? -\-Zab -\-P, and the extraction of the cube root

by the formula (a+ )
8= a8 + (a+ ) Zab + P. Defi-

nitions appeared, but these were only repeated circum-

locutions. Thus Grammateus says : "Multiplication

shows how to multiply one number by the other.

Subtraction explains how to subtract one number

from the other so that the remainder shall be seen."*

Addition was performed just as is done to-day. In

subtraction for the case of a larger figure in the sub-

trahend, it was the custom in Germany to complete

this figure to 10, to add this complement to the min-

uend figure, but at the same time to increase the figure

of next higher order in the subtrahend by 1 (Fibo-

nacci's counting-on method). In more comprehen-

sive books, borrowing for this case was also taught.

Multiplication, which presupposed practice in the mul-

tiplication table, was performed in a variety of ways.

Most frequently it was effected as to-day with a des-

cent in steps by movement toward the left. Luca

Pacioli describes eight different kinds of multiplica-

tion, among them those above mentioned, with two

old Hindu methods, one represented on p. 29, the

other cross-multiplication or the lightning method.

In the latter method there were grouped all the pro-

ducts involving units, all those involving tens, all

those involving hundreds. The multiplication

* Unger, p. 72.
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243-139= 9 -3+ 10(9-4+ 3-3)+ 100(9 -2 + 3-4+ 1-3)

+ 1000(2-3 + 1-4)+ 10000-2-1

was represented as follows :

4 3

189
In German books are found, besides these, two note-

worthy methods of multiplication, of which one be-

gins on the left (as with the Greeks), the partial pro-

ducts being written in succession in the proper place,

as shown by the following example 243 839 :

839

243

166867 839 243= 2 8 1 4 + 2 3 108 + 2 9 1 2

3129 +4-8-108 + 4-3-102 + 4-9-10

232 +3-8-102 + 3-3-10 +3-9.
14

2

203877

In division the upwards-division prevailed ;
it was

used extensively, although Luca Pacioli in 1494 taught

the downwards-division in modern form.

After the completion of the computation, in con-

formity to historical tradition, a proof was demanded.

At first this was secured by casting out the nines.

On account of the untrustworthiness of this method,

which Pacioli perfectly realised, the performance of
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the inverse operation was recommended. In course

of time the use of a proof was entirely given up.

Signs of operation properly so called were not

yet in use
;

in the eighteenth century they passed

from algebra into elementary arithmetic. Widmann,

however, in his arithmetic has the signs -j- and ,

which had probably been in use some time among the

merchants, since they appear also in a Vienna MS. of

the fifteenth century.* At a later time Wolf has the

sign -4- for minus. In numeration the first use of the

word "million" in print is due to Pacioli (Summa de

Arithmetica, 1494). Among the Italians the word "mil-

lion" is said originally to have represented a concrete

mass, viz., ten tons of gold. Strangely enough, the

words "byllion, tryllion, quadrillion, quyllion, sixlion,

septyllion, ottyllion, nonyllion," as well as "million,''

are found as early as 1484 in Chuquet, while the word

"miliars" (equal to 1000 millions) is to be traced

back to Jean Trenchant of Lyons (1588).f

The seventeenth century was especially inventive

in instrumental appliances for the mechanical per-

formance of the fundamental processes of arithmetic.

Napier's rods sought to make the learning of the mul-

tiplication-table superfluous. These rods were quad-

rangular prisms which bore on each side the small

multiplication-table for one of the numbers 1, 2, ... 9.

*Gerhardt, Geschichte der Mathematik in Deutsckland, 1877. Hereafter
referred to as Gerhardt.

tMuller. Historisch-ftymologitcht Studien S6er mathematiscke Termino-

logie. Hereafter referred to as Muller.
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For extracting square and cube roots rods were used

with the squares and cubes of one-figure numbers in-

scribed upon them. Real calculating machines which

gave results by the simple turning of a handle, but on

that account must have proved elaborate and expen-

sive, were devised by Pascal, Leibnitz, and Matthftus

Hahn (1778).

A simplification of another kind was effected by

calculating-tables. These were tables for solving

problems, accompanied also by very extended multi-

plication-tables, such as those of Herwart von Hohen-

burg, from which the product of any two numbers

from 1 to 999 could be read immediately.

For the methods of computation of the eighteenth

century the arithmetic writings of the two Sturms,

and of Wolf and Kastner, are of importance. In the

interest of commercial arithmetic the endeavor was

made to abbreviate multiplication and division by

various expedients. Nothing essentially new was

gained, however, unless it be the so-called mental

arithmetic or oral reckoning which in the later decades

of this period appears as an independent branch.

The nineteenth century has brought as a novelty

in elementary arithmetic only the introduction of the

so-called Austrian subtraction (by counting on) and

division, methods for which Fibonacci had paved the

way. The difference 323187= 136 is computed

by saying, 7 and 6, 9 and 3, 2 and 1
;
and 43083 : 185

is arranged as in the first of the following examples :
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(185

43083232"

"608~

533

163

With sufficient practice this process certainly secured

a considerable saving of time, especially in the case

of the determination of the greatest common divisor

of two or more numbers as shown by the second of

the above examples

1679 23 73

2737 ~Tl9*

2. Arithmetic of Fractions.

At the beginning of this period reckoning with

fractions was regarded as very difficult. The pupil

was first taught how to read fractions: "It is to be

noticed that every fraction has two figures with a line

between. The upper is called the numerator, the

lower the denominator. The expression of fractions is

then: name first the upper figure, then the lower, with

the little word part as f part" (Grammateus, 1518).*

Then came rules for the reduction of fractions to a

common denominator, for reduction to lowest terms,

for multiplication and division
;
in the last the fractions

were first made to have a common denominator. Still

more is found in Tartaglia who knew how to find the

least common denominator
;
in Stifel who performed

' Unger, p. 84.
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division by a fraction by the use of its reciprocal, and

in the works of other writers.

The way for the introduction of decimal fractions

was prepared by the systems of sexagesimal and duo-

decimal fractions, since by their employment opera-

tions with fractions can readily be performed by the

corresponding operations with whole numbers. A no-

tation such as has become usual in decimal fractions

was already known to Rudolff,* who, in the division

of integers by powers of 10, cuts off the requisite

number of places with a comma. The complete knowl-

edge of decimal fractions originated with Simon Stevin

who extended the position-system below unity to any

extent desired. Tenths, hundredths, thousandths, . . .

were called primes, sekonties, terzes . . .; 4.628 is writ-

ten 4
(0 ) 6(i) 2(2) 8(3). Joost Burgi, in his tables of sines,

perhaps independently of Stevin, used decimal frac-

tions in the form 0.32 and 3.2. The introduction of

the comma as a decimal point is to be assigned to

Kepler. f In practical arithmetic, aside from logarith-

mic computations, decimal fractions were used only

in computing interest and in reduction-tables. They
were brought into ordinary arithmetic at the begin-

ning of the nineteenth century in connection with the

introduction of systems of decimal standards.

* Gerhardt.

tThe first use of the decimal point is found in the trigonometric tables

of Pitiscus, 1612. Cantor, II., p. 555.
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3. Applied Arithmetic.

During the transition period of the Middle Ages

applied arithmetic had absorbed much from the Latin

treatises in a superficial and incomplete manner
;
the

fifteenth and sixteenth centuries show evidences of

progress in this direction also. Even the Bamberger

Arithmetic of 1483 bears an exclusively practical stamp

and aims only at facility of computation in mercan-

tile affairs. That method of solution which in the

books on arithmetic everywhere occupied the first

place was the "regeldetri" (regula de tri, rule of

three), known also as the "merchant's rule," or

"golden rule."* The statement of the rule of three

was purely mechanical
;
so little thought was bestowed

upon the accompanying proportion that even master

accountants were content to write 4 fl 12 ft 20 fl? in-

stead of 4 fl : 20 fl = 12 ft : x ft.f There can indeed

be found examples of the rule of three with indirect

ratios, but with no explanations of any kind whatever.

Problems involving the compound rule of three (regula

de quinque, etc.
)
were solved merely by successive ap-

plications of the simple rule of three. In Tartaglia

and Widmann we find equation of payments treated

according to the method still in use to-day. Other-

wise, Widmann's Arithmetic of 1489 shows great ob-

scurity and lack of scope in rules and nomenclature,

so that not infrequently the same matter appears un-

* Cantor, II., p. 205 : Unger, p. 86. t Cantor, II., p. 368; Unger, p. 87.
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der different names. He introduces "Regula Residui,

Reciprocationis, Excessus, Divisionis, Quadrata, In-

ventionis, Fusti, Transversa, Ligar, Equalitatis, Legis,

Augmenti, Augmenti et Decrementi, Sententiarum,

Suppositionis, Collectionis, Cubica, Lucri, Pagamenti,

Alligationis, Falsi," so that in later years Stifel did not

hesitate to declare these things simply laughable.*

Problems of proportional parts and alligation were

solved by the use of as many proportions as corre-

sponded to the number of groups to be separated.

For the computation of compound interest Tartaglia

gave four methods, among them computation by steps

from year to year, or computation with the aid of

the formula b= aq
n

, although he does not give this

formula. Computing of exchange was taught in its

most simple form. It is said that bills of exchange

were first used by the Jews who migrated into Lom-

bardy after being driven from France in the seventh

century. The Ghibellines who fled from Lombardy
introduced exchange into Amsterdam, and from this

city its use spread. f In 1445 letters of exchange were

brought to Nuremberg.

The chain rule {Kettensatz}, essentially an Indian

method which is described by Brahmagupta, was de-

veloped during the sixteenth century, but did not

come into common use until two centuries later. The

methods of notation differed. Pacioli and Tartaglia

Treutlein, Die deutsche Coss, Schlomilch's Zeitschrift, Bd. 24, HI. A.

t Unger, p. 90.
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wrote all numbers in a horizontal line and multiplied

terms of even and of odd order into separate products.

Stifel proceeded in the same manner, only he placed

all terms vertically beneath one another. In the

work of Rudolff, who also saw the advantage of can-

cellation, we find the modern method of representing

the chain rule, but the answer comes at the end.*

About this time a new method of reckoning was

introduced from Italy into Germany by the merchants,

which came to occupy an important place in the six-

teenth century, and still more so in the seventeenth.

This Welsh (i. e., foreign) practice, as it soon came

to be called, found its application in the development

of the product of two terms of a proportion, especially

when these were unlike quantities. The multiplier,

together with the fraction belonging to it, was sepa-

rated into its addends, to be derived successively one

from another in the simplest possible manner. How
well Stifel understood the real significance and appli-

cability of the Welsh practice, the following statement

shows :f "The Welsh practice is nothing more than

a clever and entertaining discovery in the rule of three.

But let him who is not acquainted with the Welsh

practice rely upon the simple rule of three, and he

will arrive at the same result which another obtains

through the Welsh practice." At this time, too, we

find tables of prices and tables of interest in use,

their introduction being also ascribable to the Italians.

* Unger, p. 92. 1 Unger, p. 94.
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In the sixteenth century we also come upon examples

for the regula virginum and the regula falsi in writings

intended for elementary instruction in arithmetic,

writings into which, ordinarily, was introduced all the

learning of the author. The significance of these

rules, however, does not lie in the realm of elemen-

tary arithmetic, but in that of equations. In the

same way, a few arithmetic writings contained direc-

tions for the construction of magic squares, and most

of them also contained, as a side-issue, certain arith-

metic puzzles and humorous questions (Rudolff calls

them Schimpfrechnung). The latter are often mere

disguises of algebraic equations (the problem of the

hound and the hares, of the keg with three taps, of

obtaining a number which has been changed by cer-

tain operations, etc.).

The seventeenth century brought essential innova-

tions only in the province of commercial computation.

While the sixteenth century was in possession of cor-

rect methods in all computations of interest when

the amount at the end of a given time was sought,

there were usually grave blunders when the principal

was to be obtained, that is, in computing the discount

on a given sum. The discount in 100 was computed
somewhat in this manner:* 100 dollars gives after

two years 10 dollars in interest
;

if one is to pay the

100 dollars immediately, deduct 10 dollars." No less

a man than Leibnitz pointed out that the discount

*Unger, p. 132.
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must be reckoned upon 100. Among the majority of

arithmeticians his method met with the misunder-

standing that if the discount at 5% for one year is ^
the discount for two years must be 7

2
T . It was not

until the eighteenth century, after long and sharp

controversy, that mathematicians and jurists united

upon the correct formula.

In the computation of exchange the Dutch were

essentially in advance of other peoples. They pos-

sessed special treatises in this line of commercial arith-

metic and through them they were well acquainted

with the fundamental principles of the arbitration of

exchange. In the way of commercial arithmetic many

expedients were discovered in the eighteenth century

to aid in the performance of the fundamental opera-

tions and in solving concrete problems. Calculation

of exchange and arbitration of exchange were firmly

established and thoroughly discussed by Clausberg.

Especial consideration was given to what was called

the Reesic rule, which was looked upon as differing

from the well-known chain-rule. Rees's book, which

was written in Dutch, was translated into French in

1737, and from this language into German in 1739.

In the construction of his series Rees began with the

required term
;
in the computation the elimination of

fractions and cancellation came first, and then fol-

lowed the remaining operations, multiplication and

division.

Computation of capital and interest was extended,
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through the establishment of insurance associations,

to a so-called political arithmetic, in which calcula-

tion of contingencies and annuities held an important

place.

The first traces of conditions for the evolution of

a political arithmetic* date back to the Roman prefect

Ulpian, who about the opening of the third century

A.D. projected a mortality table for Roman subjects, f

But there are no traces among the Romans of life in-

surance institutions proper. It is not until the Middle

Ages that a few traces appear in the legal regulations

of endowments and guild finances. From the four-

teenth century there existed travel and accident in-

surance companies which bound themselves, in con-

sideration of the payment of a certain sum, to ransom

the insured from captivity among the Turks or Moors.

Among the guilds of the Middle Ages the idea of

association for mutual assistance in fires, loss of cattle

and similar losses had already assumed definite shape.

To a still more marked degree was this the case among
the guilds of artisans which arose after the Reforma-

tion guilds which established regular sick and burial

funds.

We must consider tontines as the forerunner of

annuity insurance. In the middle of the seventeenth

century an Italian physician, Lorenzo Tonti, induced

a number of persons in Paris to contribute sums of

*Karup, Theoretisches Handbuch der Ltbenrversicherung. 1871.

t Cantor, I., p. 522.



ARITHMETIC. 57

money the interest of which should be divided annu-

ally among the surviving members. The French gov-

ernment regarded this procedure as an easy method

of obtaining money and established from 1689 to 1759

ten state tontines which, however, were all given up
in 1770, as it had been proved that this kind of state

loan was not lucrative.

In the meantime two steps had been taken which,

by using the results of mathematical science, provided

a secure foundation for the business of insurance.

Pascal and Fermat had outlined the calculation of

contingencies, and the Dutch statesman De Witt had

made use of their methods to lay down in a separate

treatise the principles of annuity insurance based upon

the birth and death lists of several cities of Holland.

On the other hand, Sir William Petty, in 1662, in a

work on political arithmetic* contributed the first val-

uable investigations concerning general mortality a

work which induced John Graunt to construct mor-

tality tables. Mortality tables were also published by

Kaspar Neumann, a Breslau clergyman, in 1692, and

these attracted such attention that the Royal Society

of London commissioned the astronomer Halley to

verify these tables. With the aid of Neumann's ma-

terial Halley constructed the first complete tables of

mortality for the various ages. Although these tables

did not obtain the recognition they merited until half

a century later, they furnished the foundation for all

* Recently republished in inexpensive form in Cassell's National Library.
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later works of this kind, and hence Halley is justly

called the inventor of mortality tables.

The first modern life-insurance institutions were

products of English enterprise. In the years 1698 and

1699 there arose two unimportant companies whose

field of operations remained limited. In the year

1705, however, there appeared in London the "Amic-

able" which continued its corporate existence until

1866. The "Royal Exchange" and "London Assur-

ance Corporation," two older associations for fire and

marine insurance, included life insurance in their busi-

ness in 1721, and are still in existence. There was soon

felt among the managers of such institutions the im-

perative need for reliable mortality tables, a fact which

resulted in Halley's work being rescued from oblivion

by Thomas Simpson, and in James Dodson's project-

ing the first table of premiums, on a rising scale, after

Halley's method. The oldest company which used

as a basis these scientific innovations was the "
Society

for Equitable Assurances on Lives and Survivorships,"

founded in 1765.

While at the beginning of the nineteenth century

eight life insurance companies were already carrying

on their beneficent work in England, there was at the

same time not a single institution of this kind upon
the Continent, in spite of the progress which had been

made in the science of insurance by Leibnitz, the Ber-

noullis, Euler and others. In France there appeared in

1819 "La compagnie d' assurances generates sur la
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vie." In Bremen the founding of a life insurance com-

pany was frustrated by the disturbances of the war in

1806. It was not until 1828 that the two oldest Ger-

man companies were formed, the one in Lubeck, the

other in Gotha under the management of Ernst Wil-

helm Arnoldi, the "Father of German Insurance."

The nineteenth century has substantially enriched

the literature of mortality tables, in such tables as

those compiled by the Englishmen Arthur Morgan

(in the eighteenth century) and Farr, by the Belgian

Quetelet, and by the Germans, Brune, Heym, Fischer,

Wittstein, and Scheffler. A recent acquisition in this

field is the table of deaths compiled in accordance

with the vote of the international statistical congress

at Budapest in 1876, which gives the mortality of the

population of the German Empire for the ten years

1871-1881. Further development and advancement

of the science of insurance is provided for by the

" Institute of Actuaries " founded in London in 1849

an academic school with examinations in all branches

of the subject. There has also been in Berlin since

1868 a "College of the Science of Insurance," but

it offers no opportunity for study and no examina-

tions.

The following compilations furnish a survey of the

conditions of insurance in the year 1890 and of its

development in Germany.* There were in Germany:

*Karnp, Theoretisches Handbuch der Lebensversickerung, 1871. Johnson,
Universal Cyclopedia, under " Life-insurance."
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1852

1858

1866

1890

There were in 1890 :

INSURANCE CO'S.

Germany 49

Great Britain and Ireland 75

France 17

Rest of Europe 58

United States of America 48

NUMBER OF LIFE AMOUNT OF INSURANCE
IN FORCE

4250 million marks

900 ' '

pounds
3250 " francs

3200 " francs

4000 " dollars

All that the eighteenth century developed or dis-

covered has been further advanced in the nineteenth.

The center of gravity of practical calculation lies in

commercial arithmetic. This is also finding expres-

sion in an exceedingly rich literature which has been

extended in an exhaustive manner in all its details,

but which contains nothing essentially new except the

methods of calculating interest in accounts current.



III. ALGEBRA.

A. GENERAL SURVEY.

THE beginnings of general mathematical science

are the first important outcome of special studies

of number and magnitude ; they can be traced back

to the earliest times, and their circle has only gradu-

ally been expanded and completed. The first period

reaches up to and includes the learning of the Arabs
;

its contributions culminate in the complete solution

of the quadratic equation of one unknown quantity,

and in the trial method, chiefly by means of geometry,

of solving equations of the third and fourth degrees.

The second period includes the beginning of the

development of the mathematical sciences among the

peoples of the West from the eighth century to the

middle of the seventeenth. The time of Gerbert forms

the beginning and the time of Kepler the end of this

period. Calculations with abstract quantities receive

a material simplification in form through the use of

abbreviated expressions for the development of for-

mulae
;
the most important achievement lies in the

purely algebraic solution of equations of the third and

fourth degrees by means of radicals.
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The third period begins with Leibnitz and Newton

and extends from the middle of the seventeenth cen-

tury to the present time. In the first and larger part

of this period a new light was diffused over fields

which up to that time had been only partially ex-

plored, by the discovery of the methods of higher

analysis. At the end of this first epoch there appeared

certain mathematicians who devoted themselves to

the study of combinations but failed to reach the

lofty points of view of a Leibnitz. Euler and La-

grange, thereupon, assumed the leadership in the field

of pure analysis. Euler led the way with more than

seven hundred dissertations treating all branches of

mathematics. The name of the great Gauss, who

drew from the works of Newton and Euler the first

nourishment for his creative genius, adorns the be-

ginning of the second epoch of the third period.

Through the publication of more than fifty large

memoirs and a number of smaller ones, not alone on

mathematical subjects but also on physics and astron-

omy, he set in motion a multitude of impulses in the

most varied directions. At this time, too, there opened

new fields in which men like Abel, Jacobi, Cauchy,

Dirichlet, Riemann, Weierstrass and others have made

a series of most beautiful discoveries.



B. FIRST PERIOD.

FROM THE EARLIEST TIMES TO THE ARABS.

I. General Arithmetic.

However meagre the information which describes

the evolution of mathematical knowledge among the

earliest peoples, still we find isolated attempts among
the Egyptians to express the fundamental processes

by means of signs. In the earliest mathematical pa-

pyrus
* we find as the sign of addition a pair of walk-

ing legs travelling in the direction toward which the

birds pictured are looking. The sign for subtraction

consists of three parallel horizontal arrows. The sign

for equality is
<^. Computations are also to be found

which show that the Egyptians were able to solve sim-

ple problems in the field of arithmetic and geometric

progressions. The last remark is true also of the

Babylonians. They assumed that during the first five

of the fifteen days between new moon and full moon,

the gain in the lighted portion of its disc (which was

divided into 240 parts) could be represented by a geo

metric progression, during the ten following days by

an arithmetic progression. Of the 240 parts there

were visible on the first, second, third . . . fifteenth

day

* Cantor, I., p. 37.
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5 10 20 40 1.20

1.36 1.52 2.08 2.24 2.40

2.56 3.12 3.28 3.44 4.

The system of notation is sexagesimal, so that we are

to take 3.28=3x60 + 28= 208.* Besides this there

have been found on ancient Babylonian monuments

the first sixty squares and the first thirty-two cubes

in the sexagesimal system of notation.

The spoils of Greek treasures are far richer. Even

the name of the entire science y [jia6r)tM.TiKTJ comes from

the Greek language. In the time of Plato the word

(ia.Oijfw.Ta. included all that was considered worthy of

scientific instruction. It was not until the time of the

Peripatetics, when the art of computation (logistic^

and arithmetic, plane and solid geometry, astronomy

and music were enumerated in the list of mathemat-

ical sciences, that the word received its special signifi-

cance. Especially with Heron of Alexandria logistic

appears as elementary arithmetic, while arithmetic so

called is a science involving the theory of numbers.

Greek arithmetic and algebra appeared almost

always under the guise of geometry, although the

purely arithmetic and algebraic method of thinking

was not altogether lacking, especially in later times.

Aristotlef is familiar with the representation of quan-

tities by letters of the alphabet, even when those

quantities do not represent line-segments ;
he says in

Cantor, I., p. 81. t Cantor, I., p. 240.
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one place :
" If A is the moving force, B that which is

moved, F the distance, and A the time, etc." By the

time of Pappus there had already been developed a

kind of reckoning with capital letters, since he was

able to distinguish as many general quantities as there

were such letters in the alphabet. (The small letters

a, ft, y, stood for the numbers 1, 2, 3, . . .) Aristotle

has a special word for "continuous" and a definition

for continuous quantities. Diophantus went farther

than any of the other Greek writers. With him there

already appear expressions for known and unknown

quantities. Hippocrates calls the square of a number

Swa/us (power), a word which was transferred to the

Latin as potentia and obtained later its special mathe-

matical significance. Diophantus gives particular

names to all powers of unknown quantities up to the

sixth, and introduces them in abbreviated forms, so

that x2
,
x3

, x*, x6
, x*, appear as 8s, K, 8S, SK, KKS .

The sign for known numbers is p?. In subtraction

Diophantus makes use of the sign /p (an inverted and

abridged if/) ; i, an abbreviation for Zo-oi, equal, appears

as the sign of equality. A term of an expression is

called etSos; this word went into Latin as species and

was used in forming the title arithmetica speciosa=.3\-

gebra.* The formulae are usually given in words and

are represented geometrically, as long as they have to

do only with expressions of the second dimension. The

first ten propositions in the second book of Euclid,

* Cantor, I., p. 442.
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for example, are enunciations in words and geometric

figures, and correspond among others to the expres-

sions a(b+c + d. . ,}ab+ ac -\-ad-\- , (a -f)2

= a2
-f 2a& -f t>* =(a -f )

a+ (a+ V)b.

Geometry was with the Greeks also a means for in-

vestigations in the theory of numbers. This is seen,

for instance, in the remarks concerning gnomon-num-

bers. Among the Pythagoreans a square out of which

a corner was cut in the shape of a square was called a

gnomon. Euclid also used this expression for the

figure ABCDEF which is obtained from the parallelo-

gram ABCB' by cutting out the parallelogram DB'FE.

The gnomon-number of the Pythagoreans is 20+ 1
;

for when ABCB' is a square, the square upon DE= n

can be made equal to the square onC=n-\-l by

adding the square BE=l X 1 and the rectangles AE
= C =lXn, since we have 2

-j- 2-j- 1 =(+ I)
2

.

Expressions like plane and solid numbers used for

the contents of spatial magnitudes of two and three

dimensions also serve to indicate the constant tend-
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ency to objectify mathematical thought by means of

geometry.

All that was known concerning numbers up to the

third century B. C. , Euclid comprehended in a general

survey. In his Elements he speaks of magnitudes, with-

out, however, explaining this concept, and he under-

stands by this term, besides lines, angles, surfaces

and solids, the natural numbers.* The difference be-

tween even and odd, between prime and composite

numbers, the method for finding the least common

multiple and the greatest common divisor, the con-

struction of rational right angled triangles according

to Plato and the Pythagoreans all these are familiar

to him. A method (the "sieve") for sorting out

prime numbers originated with Eratosthenes. It con-

sists in writing down all the odd numbers from 3

on, and then striking out all multiples of 3, 5, 7 ...

Diophantus stated that numbers of the form a2
-)- 2ab

-f- &* represent a square and also that numbers of the

form (a
2
-f- <

2
) (V

2
-|- </

2
) can represent a sum of two

squares in two ways ;
for (ac -\- bd}* -J- (ad bcf=

(ac bd^ + (ad+ bcf= (a
2
-f

2
) (V

2
-f </

2
).

The knowledge of the Greeks in the field of ele-

mentary series was quite comprehensive. The Pythag-

oreans began with the series of even and odd num-

bers. The sum of the natural numbers gives the

triangular number, the sum of the odd numbers the

square, the sum of the even numbers gives the hetero-

*Treutlein.
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mecic (oblong) number of the form n(n-\- 1). Square

numbers they also recognised as the sum of two suc-

cessive triangular numbers. The Neo-Pythagoreans

and the Neo-Platonists made a study not only of po-

lygonal but also of pyramidal numbers. Euclid treated

geometrical progressions in his Elements. He ob-

tained the sum of the series l + 2-(-4-|-8. . . and

noticed that when the sum of this series is a prime

number, a "perfect number" results from multiply-

ing it by the last term of the series (l-j-2-j- 4= 7;

7X4= 28; 28= 1 + 2 + 4+ 7+ 14; cf. p. 35). In-

finite convergent series appear frequently in the works

of Archimedes in the form of geometric series whose

ratios are proper fractions
;
for example, in calculating

the area of the segment of a parabola, where the value

of the series 1 + J + iV+ is found to be . He
also performs a number of calculations for obtaining

the sum of an infinite series for the purpose of esti-

mating areas and volumes. His methods are a sub-

stitute for the modern methods of integration, which

are used in cases of this kind, so that expressions like

rx dx= $*, Cx* dx=^3

and other similar expressions are in their import and

essence quite familiar to him.*

The introduction of the irrational is to be traced

back to Pythagoras, since he recognised that the hy-

*Zeuthen, Die Lehre von den KegeUchnitten im Altertttm. Deutsch von
v. Fischer-Benzon. 1886.
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potenuse of a right-angled isosceles triangle is in-

commensurable with its sides. The Pythagorean

Theodorus of Cyrene proved the irrationality of the

square roots of 3, 5, 7, ... 17.*

Archytas classified numbers in general as rational

and irrational. Euclid devoted to irrational quantities

a particularly exhaustive investigation in his Ele-

ments, a work which belongs to the domain of Arith-

metic as much as to that of Geometry. Three books

among the thirteen, the seventh, eighth and ninth,

are of purely arithmetic contents, and in the tenth

book there appears a carefully wrought-out theory of

"Incommensurable Quantities," that is, of irrational

quantities, as well as a consideration of geometric

ratios. At the end of this book Euclid shows in a

very ingenious manner that the side of a square and

its diagonal are incommensurable
;
the demonstration

culminates in the assertion that in the case of a ra-

tional relationship between these two quantities a

number must have at the same time the properties of

an even and an odd number, f In his measurement

of the circle Archimedes calculated quite a number of

approximate values for square roots
;
for example,

1351 /!r 265

T8ir >1/3> T53-

Nothing definite, however, is known concerning the

* Cantor, I., p. 170.

t Montucla, I., p. 208. Montucla says that he knew an architect who lived

in the firm conviction that the square root of 2 could be represented as a

ratio of finite integers, and who assured him that by this method he had

already reached the looth decimal.
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method he used. Heron also was acquainted with

such approximate values ( instead of 1/2, f| instead

of 1/3);* and although he did not shrink from the

labor of obtaining approximate values for square

roots, in the majority of cases he contented himself

with the well-known approximation V
/at -^b=a-^-,

e. g., 1/63 = I/ 82 1=8 ^. Incase greater ex-

actness was necessary, Heron f used the formula

l/+T= + T+ y+ T+--- Incidentally he used

the identity ~\/a
2
t>= al/J and asserted, for example,

that 1/108"= 1/6^3 = 6i/3 = 6- $ = 10 + + ^.
Moreover, we find in Heron's Stereometrica the first

example of the square root of a negative number,

namely 1/81 144, which, however, without further

consideration, is put down by the computer as 8 less

jJ^,
which shows that negative quantities were un-

known among the Greeks. It is true that Diophantus

employed differences, but only those in which the

minuend was greater than the subtrahend. Through
Theon we are made acquainted with another method

of extracting the square root; it corresponds with the

method in use at present, with the exception that the

Babylonian sexagesimal fractions are used, as was

customary until the introduction of decimal fractions.

Furthermore, we find in Aristotle traces of the

theory of combinations, and in Archimedes an at-

tempt at the representation of a quantity which in-

* Cantor, I., p. 368. t Tannery in Bordeaux Mtm., IV., 1881.
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creases beyond all limits, first in his extension of the

number-system, and then in his work entitled \l/afi-

lump (Latin arenarius, the sand-reckoner). Archi-

medes arranges the first eight orders of the decimal

system together in an octad
;
108 octads constitute a

period, and then these periods are arranged again

according to the same law. In the sand-reckoning,

Archimedes solves the problem of estimating the

number of grains of sand that can be contained in a

sphere which includes the whole universe. He as-

sumes that 10,000 grains of sand take up the space of

a poppy-seed, and he finds the sum of all the grains

to be 10 000 000 units of the eighth period of his sys-

tem, or 10 63
. It is possible that Archimedes in these

observations intended to create a counterpart to the

domain of infinitesimal quantities which appeared in

his summations of series, a counterpart not accessible

to the ordinary arithmetic.

In the fragments with which we are acquainted

from the writings of Roman surveyors (agrimensores)

there are but few arithmetic portions, these having

to do with polygonal and pyramidal numbers. Ob-

viously they are of Greek origin, and the faulty style

in parts proves that there was among the Romans no

adequate comprehension of matters of this kind.

The writings of the Hindu mathematicians are ex-

ceedingly rich in matters of arithmetic. Their sym-

bolism was quite highly developed at an early date.*

* Cantor, I., p. 558.
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Aryabhatta calls the unknown quantity gulika ("little

ball"), later yavattavat, or abbreviated 70 ("as much

as"). The known quantity is called rupaka or ru

("coin"). If one quantity is to be added to another,

it is placed after it without any particular sign. The

same method is followed in subtraction, only in this

case a dot is placed over the coefficient of the subtra-

hend so that positive (dhana, assets) and negative quan-

tities (kshaya, liabilities) can be distinguished. The

powers of a quantity also receive special designations.

The second power is varga or va, the third ghana or

gha, the fourth va va, the fifth va gha ghata, the sixth

va gha, the seventh va va gha ghata {ghata signifies

addition). The irrational square root is called karana

or ka. In the ulvasutras, which are classed among
the religious books of the Hindus, but which in addi-

tion contain certain arithmetic and geometric deduc-

tions, the word karana appears in conjunction with

numerals; dvikarani=-V^, trikarani=V&, da$akarani

= 1/10. If several unknown quantities are to be dis-

tinguished, the first is called ya ; the others are named

after the colors: kalaka or ka (black), nilaka or ni

(blue), pitaka or// (yellow); for example, by ya kabha

is meant the quantity x-y, since bhavita or bha indi-

cates multiplication. There is also a word for ' '

equal
"

;

but as a rule it is not used, since the mere placing of

a number under another denotes their equality.

In the extension of the domain of numbers to in-

clude negative quantities the Hindus were certainly
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successful. They used them in their calculations,

and obtained them as roots of equations, but never

regarded them as proper solutions. Bhaskara was

even aware that a square root can be both positive

and negative, and also that V a does not exist for

the ordinary number-system. He says : "The square

of a positive as well as of a negative number is posi-

tive, and the square root of a positive number is

double, positive, and negative. There can be no

square root of a negative number, for this is no

square."*

The fundamental operations of the Hindus, of

which there were six, included raising to powers and

extracting roots. In the extraction of square and cube

roots Aryabhatta used the formulas for (a-{-)
2 and

(a -\- )
3

,
and he was aware of the advantage of sepa-

rating the number into periods of two and three fig-

ures each, respectively. Aryabhatta called the square

root varga mula, and the cube root ghana mula (mula,

root, used also of plants). Transformations of ex-

pressions involving square roots were also known.

Bhaskara applied the formulaf

= V\ (a+ VcP b) -f I/I (a i/a2 b ) ,

and was also able to reduce fractions with square roots

in the denominator to forms having a rational denomi-

nator. In some cases the approximation methods for

square root closely resemble those of the Greeks.

* Cantor, I., p. 585. t Cantor, I., p. 586.
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Problems in transpositions, of which only a few

traces are found among the Greeks, occupy consider-

able attention among the Indians. Bhaskara made

use of formulae for permutations and combinations*

with and without repetitions, and he was acquainted

with quite a number of propositions involving the

theory of numbers, which have reference to quadratic

and cubic remainders as well as to rational right-

angled triangles. But it is noticeable that we discover

among the Indians nothing concerning perfect, ami-

cable, defective, or redundant numbers. The knowl-

edge of figurate numbers, which certain of the Greek

schools cultivated with especial zeal, is likewise want-

ing. On the contrary, we find in Aryabhatta, Brah-

magupta and Bhaskara summations of arithmetic

series, as well as of the series I 2 + 22 + 32 + . . ., 1 s

-J- 2
8

-f- 3
3
-{- . . . The geometric series also appears in

the works of Bhaskara. As regards calculation with

zero, Bhaskara was aware that
-^-
= 00.

The Chinese also show in their literature some

traces of arithmetic investigations ;
for example, the

binomial coefficients for the first eight powers are

given by Chu shi kih in the year 1303 as an "old

method." There is more to be found among the

Arabs. Here we come at the outset upon the name of

Al Khowarazmi, whose Algebra, which was probably

translated into Latin by ^Ethelhard of Bath, opens

'Cantor, I., p. 579.
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with the words* "Al Khowarazmi has spoken." In

the Latin translation this name appears as Algoritmi,

and to-day appears as algorism or algorithm, a word

completely separated from all remembrance of Al Kho-

warazmi, and much used for any method of computa-

tion commonly employed and proceeding according

to definite rules. In the beginning of the sixteenth

century there appears in a published mathematical

work a tl
philosophus nomine Algorithmic',

" a sufficient

proof that the author knew the real meaning of the

word algorism. But after this, all knowledge of the

fact seems to disappear, and it was not until our own

century that it was rediscovered by Reinaud and Bon-

compagni.f

Al Khowarazmi increased his knowledge by study-

ing the Greek and Indian models. A known quantity

he calls a number, the unknown quantity jidr (root)

and its square mal (power). In Al Karkhi we find the

expression kab (cube) for the third power, and there

are formed from these expressions mal mal=x*, mal

kab'= x5
,
kab kab= x*, mal mal kab= x"1

,
etc. He also

treats simple expressions with square roots, but with-

out arriving at the results of the Hindus. There is a

passage in Omar Khayyam from which it is to be in-

ferred that the extraction of roots was always per-

formed by the help of the formula for (a-}-b}
n

. Al

Kalsadi J contributed something new by the introduc-

* Cantor, I., p. 671.

t Jahrbuch fiber die Fortschrttte der Mathematik, 1887, p. 23.

t Cantor, I., p. 765.
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tion of a radical sign. Instead of placing the word

jidr before the number of which the square root was

to be extracted, as was the custom, Al Kalsadi makes

use only of the initial letter ^ of this word and places

it over the number, as,

2= 1/2, i2= i/2, 5 =
Among the Eastern Arabs the mathematicians

who investigated the theory of numbers occupied

themselves particularly with the attempt to discover

rational right-angled triangles and with the problem

of finding a square which, if increased or diminished

by a given number, still gives a square. An anony-

mous writer, for example, gave a portion of the the-

ory of quadratic remainders, and Al Khojandi also

demonstrated the proposition that upon the hypoth-

esis of rational numbers the sum of two cubes cannot

be another third power. There was also some knowl-

edge of cubic remainders, as is seen in the applica-

tion by Avicenna of the proof by excess of nines in

the formation of powers. This mathematician gives

propositions which can be briefly represented in the

form*

etc.

Ibn al Banna has deductions of a similar kind which

form the basis of a proof by eights and sevens,
"f

In the domain of series the Arabs were acquainted

* Cantor, I., p. 712. t Cantor, I., p. 759.
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at least with arithmetic and geometric progressions

and also with the series of squares and cubes. In

this field Greek influence is unmistakable.

2. Algebra.

The work of Ahmes shows that the Egyptians

were possessed of equations of the first degree, and

used in their solution methods systematically chosen.

The unknown x is called hau (heap); an equation*

appears in the following form : heap, its f, its \, its

i, its whole, gives 37, that is \x+ \x-\- ^x-\-x= 37.

The ancient Greeks were acquainted with the so-

lution of equations only in geometrical form. No-

where, save in proportions, do we find developed ex-

amples of equations of the first degree which would

show unmistakably that the root of a linear equation

with one unknown was ever determined by the inter-

section of two straight lines
; but in the cases of equa-

tions of the second and third degrees there is an

abundance of material. In the matter of notation

Diophantus makes the greatest advance. He calls

the coefficients of the unknown quantity TrA^os. If

there are several unknowns to be distinguished, he

makes use of the ordinal numbers : 6 Trpwros d/3i0/*os, 6

Sevrepos, 6 rpiros. An equation f appears in his works

in the abbreviated form :

* Matthiessen, Grundzuge der antiken iind modernen Algebra der littera-

len Gleichungen, 1878, p. 269. Hereafter referred to as Matthiessen.

t Matthiessen, p. 269.
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Diophantus classifies equations not according to the

degree, but according to the number of essentially

distinct terms. For this purpose he gives definite

rules as to how equations can be brought to their sim-

plest form, that is, the form in which both members

of the equation have only positive terms. Practical

problems which lead to equations of the first degree

can be found in the works of Archimedes and Heron
;

the latter gives some of the so-called "fountain prob-

lems," which remind one of certain passages in the

work of Ahmes. Equations of the se,cond degree

were mostly in the form of proportions, and this

method of operation in the domain of a geometric

algebra was well known to the Greeks. They un-

doubtedly understood how to represent by geometric

figures equations of the form

v.,.' y v_
a?'*''

' ~^
x
^"V'y ^

~ m'

where all quantities are linear. Every calculation of

means in two equal ratios, i. e., in a proportion, was

really nothing more than the solution of an equation.

The Pythagorean school was acquainted with the

arithmetic, the geometric and the harmonic means of

two quantities ; that is, they were able to solve geo-

metrically the equations

a+ b 2at-*= ab, x= .

2

According to Nicomachus, Philolaus called the cube
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with its six surfaces, its eight corners, and its twelve

edges, the geometric harmony, because it presented

equal measurements in all directions
;
from this fact,

it is said, the terms "harmonic mean" and "harmo-

nic proportion" were derived, the relationship being:

= -=-, whence 8= 2-6-12 .

i. e., X-.
6 + 12'

The number of distinct proportions was later in-

creased to ten, although nothing essentially new was

gained thereby. Euclid gives thorough analyses of

proportions, that is, of the geometric solution of equa-

tions of the first degree and of incomplete quadratics ;

these, however, are not given as his own work, but as

the result of the labors of Eudoxus.

The solution of the equation of the second degree

by the geometric method of applying areas, largely

employed by the ancients, especially by Euclid, de-

serves particular attention.

In order to solve the equation

*2+ 0*=
by Euclid's method, the problem must first be put in

the following form :

A E B ff

D C

K G
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"To the segment AB a apply the rectangle DH
of known area= 2

,
in such a way that CH shall be a

square." The figure shows that for CK=^, FH=
xi

_|_ 2x f. -f (f )

2=P + (f-)
2

;
but by the Pythagorean

proposition, P -f- (^-)
2= c*, whence EH=.c= ^-\- x,

from which we have x= c
y.

The solution obtained

by applying areas, in which case the square root is

always regarded as positive, is accordingly nothing

more than a constructive representation of the value

In the same manner Euclid solves all equations of

the form

and he remarks in passing that where Vft* (y)
2

according to our notation, appears, the condition for

a possible solution is >^-. Negative quantities are

nowhere considered
;
but there is ground for inferring

that in the case of two positive solutions the Greeks

regarded both and that they also applied their method

of solution to quadratic equations with numerical co-

efficients.* By applying their knowledge of propor-

tion, they were able to solve not only equations of the

form x1 ax b= 0, but also of the more general

form

for a as the ratio of two line-segments. Apollonius

*Zenthen, Die Lehre von den Kegelschnitten im Altertum. Dentsch von
v. Fischer-Benzon. 1886.



accomplished this with the aid of a conic, having the

equation

The Greeks were accordingly able to solve every gen-

eral equation of the second degree having two essen-

tially different coefficients, which might also contain

numerical quantities, and to represent their positive

roots geometrically.

The three principal forms of equations of the sec-

ond degree first to be freed from geometric statement

and completely solved, are

The solution consisted in applying an area, the prob-

lem being to apply to a given line a rectangle in such

a manner that it would either contain a given area or

be greater or less than this given area by a constant.

For these three conditions there arose the technical

expressions Trapa^oAiy, vTrep/JoAiy, e\Aeu/ns, which after

Archimedes came to refer to conies.*

In later times, with Heron and Diophantus, the

solution of equations of the second degree was partly

freed from the geometric representation, and passed

into the form of an arithmetic computation proper

(while disregarding the second sign in the square

root).

The equation of the third degree, owing to its

dependence on geometric problems, played an im-

* Tannery in Bordeaux Mem., IV.
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portant part among the Greeks. The problem of the

duplication (and also the multiplication) of the cube

attained especial celebrity. This problem demands

nothing more than the solution of the continued pro-

portion a:x= x:y=y:2a, that is, of the equation

x*= 2a? (in general xz = ^a?). This problem is very

old and was considered an especially important one

by the leading Greek mathematicians. Of this we

have evidence in a passage of Euripides in which he

makes King Minos say concerning the tomb of Glau-

cus which is to be rebuilt*: " The enclosure is too

small for a royal tomb : double it, but fail not in the

cubical form." The numerous solutions of the equa-

tion x3= 2as obtained by Hippocrates, Plato, Me-

naechmus, Archytas and others, followed the geomet-

ric form, and in time the horizon was so considerably

extended in this direction that Archimedes in the

study of sections of a sphere solved equations of the

form

by the intersection of two lines of the second degree,

and in doing so also investigated the conditions to be

fulfilled in order that there should be no root or two

or three roots between and a. Since the method

of reduction by means of which Archimedes obtains

the equation x8 axi --flc= Q can be applied with

considerable ease to all forms of equations of the third

degree, the merit of having set forth these equations

* Cantor, I., p. 199.



ALGEBRA. 83

in a comprehensive manner and of having solved one

of their principal groups by geometric methods be-

longs without question to the Greeks.*

We find the first trace of indeterminate equations

in the cattle problem {Problema bovinutn) of Archi-

medes.

This problem, which was published in the year 1773 by Les-

sing, from a codex in the library at Wolfenbiittel, as the first of

four unprinted fragments of Greek anthology, is given in twenty-

two distichs. In all probability it originated directly with Archi-

medes who desired to show by means of this example how, pro-

ceeding from simple numerical quantities, one could easily arrive

at very large numbers by the interweaving of conditions. The

problem runs something as follows : f

The sun had a herd of bulls and cows of different colors, (i)

Of Bulls the white
( IV) were in number (\ -f ) of the black (X)

and the yellow (F); the black (X) were ( + ) of the dappled (Z)

and the yellow '(F); the dappled (Z) were (J+f) of the white

( IV} and the yellow ( Y). (2) Of Cows which had the same colors

(vt.x.y.z), /= (4 + J) (*+ *), *= (i+ J)(-Z+ *), *= (*+ i)

(Y+y), *= (i + *)(
r
+'). W+^is to be a square; F+Z

a triangular number.

The problem presents nine equations with ten unknowns :

*Zeuthen, Die Lehre von den Kegelschnitten im Alterturn. Deutsch von
. Fischer-Benzon 1886.

t Krumbiegel und Amthor, Das Problema bovinum des Archimedes. Schlo-

'Mi's Zeitschrift, Bd. 25, HI. A.; Gow, p. 99.
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According to Amthor the solution is obtained by Pell's equation

P 2 '3 '7 '11 '29 '353 2 = 1, assuming the condition w= (mod.

2 '4657), in which process there arises a continued fraction with a

period of ninety-one convergents. If we omit the last two condi-

tions, we get as the total number of cattle 5916837175686, a

number which is nevertheless much smaller than that involved in

the sand-reckoning of Archimedes.

But the name of Diophantus is most closely con-

nected with systems of equations of this kind. He

endeavors to satisfy his indeterminate equations not

by means of whole numbers, but merely by means of

rational numbers (always excluding negative quanti-

ties) of the form where p and a must be positive in-

q

tegers. It appears that Diophantus did not proceed

in this field according to general methods, but rather

by ingeniously following out special cases. At least

those of his solutions of indeterminate equations of

the first and second degrees with which we are ac-

quainted permit of no other inference. Diophantus

seems to have been not a little influenced by earlier

works, such as those of Heron and Hypsicles. It may
therefore be assumed that even before the Christian

era there existed an indeterminate analysis upon

which Diophantus could build.*

The Hindu algebra reminds us in many respects

of Diophantus and Heron. As in the case of Dio-

phantus, the negative roots of an equation are not

admitted as solutions, but they are consciously set

*P. Tannery, in Mtmoires de Bordeaux, 1880. This view of Tannery's is

controverted by Heath, T. L., Diofhantos ofAlexandria^ 1885, p. 135.
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aside, which marks an advance upon Diophantus.

The transformation of equations, the combination of

terms containing the same powers of the unknown, is

also performed as in the works of Diophantus. The

following is the representation of an equation accord-

ing to Bhaskara :*

va va 2 I va 1 I ru 30
,

i. e.,
va va

|

va
|

ru 8

Equations of the first degree appear not only with

one, but also with several unknowns. The Hindu

method of treating equations of the second degree

shows material advance. In the first place, ax^ -f bx

= c is considered the only typef instead of the three

Greek forms ax*-{-bx= c
) bx-\-c=ax^, ax"2 -f c= bx.

From this is easily derived 4a2^2
-{- 4al>x= 4ac, and

then (2ax -\- 3)
2= kac -f ^2

,
whence it follows that

Bhaskara goes still further. He considers both signs

of the square root and also knows when it cannot be

extracted. The two values of the root are, however,

admitted by him as solutions only when both are posi-

tive, evidently because his quadratic equations ap-

pear exclusively in connection with practical problems

of geometric form. Bhaskara also solves equations

of the third and fourth degrees in cases where these

*Matthiessen, p. 269. t Cantor, I., p. 585.
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equations can be reduced to equations of the second

degree by means of advantageous transformations and

the introduction of auxiliary quantities.

The indeterminate analysis of the Hindus is espe-

cially prominent. Here in contrast to Diophantus

only solutions in positive integers are admitted. In-

determinate equations of the first degree with two or

more unknowns had already been solved by Arya-

bhatta, and after him by Bhaskara, by a method in

which the Euclidean algorism for finding the greatest

common divisor is used
;
so that the method of solu-

tion corresponds at least in its fundamentals with the

method of continued fractions. Indeterminate equa-

tions of the second degree, for example those of the

form xy= ax -f- by -f- c, are solved by arbitrarily as-

signing a value to y and then obtaining x, or geo-

metrically by the application of areas, or by a cyclic

method.* This cyclic method does not necessarily

lead to the desired end, but may nevertheless, by a

skilful selection of auxiliary quantities, give integ-

ral values. It consists in solving in the first place,

instead of the equation ax* -\- b= cy*, the equation

ax2
-j- 1 =y*. This is done by the aid of the empiri-

cally assumed equation a^3 + ^=(72
,
from which

other equations of the same form, aA n̂ -\-
= C%, can

be deduced by the solution of indeterminate equations

of the first degree. By means of skilful combinations

Cantor, I., p. 591.



the equations aA 2

n -{- =(% furnish a solution of

ax*-\-l=y'**

The algebra of the Chinese, at least in the earliest

period, has this in common with the Greek, that equa-

tions of the second degree are solved geometrically.

In later times there appears to have been developed

a method of approximation for determining the roots

of higher algebraic equations. For the solution of in-

determinate equations of the first degree the Chinese

developed an independent method. It bears the name

of the "great expansion" and its discovery is ascribed

to Sun tse, who lived in the third century A. D. This

method can best be briefly characterised by the fol-

lowing example : Required a number x which when

divided by 7, 11, 15 gives respectively the remainders

2, 5, 7. Let k\, ki, k%. be found so that

11-15-*! 15-7-,*2

ir- = ?i + i-
- = V* + TT>

15

we have, for example, k\= Z, &2= 2, *8= 8, and ob-

tain the further results

11-15-2=330, 330-2= 660,

15- 7-2= 210, 210-5= 1050,

7-11-8= 616, 616-7= 4312,

660 + 1050 + 4312= 6022; ~~^ =5+ -^^ >

^= 247 is then a solution of the given equation, f

Cantor, I., p. 593. tL. MatlhiesseninSMomzIcA'sZeztscAnyt, XXVI.
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In the writing of their equations the Chinese make

as little use as the Hindus of a sign of equality. The

positive coefficients were written in red, the negative

in black. As a rule tde is placed beside the absolute

term of the equation and yuen beside the coefficient of

the first power ;
the rest can be inferred from the ex-

ample 14.x3 27#= 17,* where r and b indicate the

color of the coefficient :

r!4 or r!4 or r!4

roo roo roo

,27 621yuen

r\1tae r!7.

The Arabs were pupils of both the Hindus and

the Greeks. They made use of the methods of their

Greek and Hindu predecessors and developed them,

especially in the direction of methods of calculation.

Here we find the origin of the word algebra in the

writings of Al Khowarazmi who, in the title of his

work, speaks of "al-jabr wo 1

1 muqabalah" i. e., the

science of redintegration and equation. This expres-

sion denotes two of the principal operations used by

the Arabs in the arrangement of equations. When
from the equation Xs

-\- r= x* -{-px -{- r the new equa-

tion x3= x2
-\-px is formed, this is called al nmqabalah;

the transformation which gives from the equation

px g=x* the equation px=x"*-\-g, a transforma-

tion which was considered of great importance by the

* Cantor, I., p. 643.
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ancients, was called al-jabr, and this name was ex-

tended to the science which deals in general with

equations.

The earlier Arabs wrote out their equations in

words, as for example, Al Khowarazmi* (in the Latin

translation) :

Census et quinque radices equantur viginti quatuor

x> + 5* = 24;

and Omar Khayyam,

Cubus, latera et numerus aequales sunt quadratis

xs + bx -f c ace*.

In later times there arose among the Arabs quite an

extended symbolism. This notation made the most

marked progress among the Western Arabs. The

unknown x was called jidr, its square mal; from the

initials of these words they obtained the abbrevia-

tions x=:(J&, x2= -o. Quantities which follow di-

rectly one after another are added, but a special sign

is used to denote subtraction. "
Equals

"
is denoted

by the final letter of adala (equality), namely, by means

of a final lam. In Al Kalsadif 3#2 =12# + 63 and

^x^-\-x= 1^ are represented by

and the proportion 7 : 12= 84 : x is given the form

^.-.84. -.12. -.7.

*Matthiessen, p. 269. t Cantor, I., p. 767.
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Diophantus had already classified equations, not

according to their degree, but according to the num-

ber of their terms. This principle of classification we

find completely developed among the Arabs. Ac-

cording to this principle Al Khowarazmi* forms the

following six groups for equations of the first and

second degrees :

x2= ax ("a square is equal to roots"),

x2= a ("a square is equal to a constant"),

ax= b, x* -\- ax = b, x^ + a = bx, ax -f b = x2
,

("roots and a constant are equal to a square").

The Arabs knew how to solve equations of the first

degree by four different methods, only one of which

has particular interest, and that because in modern

algebra it has been developed as a method of approx-

imation for equations of higher degree. This method

of solution, Hindu in its origin, is found in particular

in Ibn al Banna and Al Kalsadi and is there called

the method of the scales. It went over into the Latin

translations as the regula falsorum and regula falsi. To

illustrate, let the. equation ax-}- 6= be givenf and

let z\ and z% be any numerical quantities ;
then if we

place az\ -\- b =y\, az^

y\ yi

as can readily be seen. Ibn al Banna makes use of

the following graphic plan for the calculation of the

value of x :

* Matthiessen, p. 270. t Matthiessen, p. 277.



The geometric representation, which with y as a neg-

ative quantity somewhat resembles a pair of scales,

would be as follows, letting O#1 =z1 , 0^= 2^, B\C\

y9 ,
OA=x:

Gz

B,

From this there results directly

x~
x

that is, that the errors in the substitutions bear to

each other the same ratio as the errors in the results,

the method apparently being discovered through geo-

metric considerations.

In the case of equations of the second degree Al

Khowarazmi gives in the first place a purely mechan-

ical solution (negative roots being recognised but not

admitted), and then a proof by means of a geometric

figure. He also undertakes an investigation of the

number of solutions. In the case of

x* + c= bx
y
from which x= =fc 1/(|)

2 *

Al Khowarazmi obtains two solutions, one or none

according as
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(!)
2 >'> (*)'=<. &<<

He gives the geometric proof for the correctness of

the solution of an equation like x* -\-2x= ~L5, where

he takes x= 3, in two forms, either by means of a

perfectly symmetric figure, or by the gnomon. In

the first case, for A = x, BC=%, BD= \, we have

A

G

*2 + 4-i-* + 4-()
2= 15 + l, O-fl) 2= 16; in the

second we have #2
-f 2-1- x + I 2= 15 -f 1. In the

treatment of equations of the form ax*" bxn d= c= 0,

the theory of quadratic equations receives still further

development at the hands of Al Kalsadi.

Equations of higher degree than the second, in

the form in which they presented themselves to the

Arabs in the geometric or stereometric problems of

the Greek type, were not solved by them arithmeti-

cally, but only by geometric methods with the aid

of conies. Here Omar Khayyam* proceeded most

systematically. He solved the following equations

of the third degree geometrically :

'Matthiessen, pp 367, 894, 945.
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r=qx,

The following is the method of expression which he

employs in these cases :

"A cube and square are equal to roots;"

"a cube is equal to roots, squares and one number,"

when the equations

x3 +PX*= qx, xs =px* -\-qx-\-r

are to be expressed. Omar calls all binomial forms

simple equations ;
trinomial and quadrinomial forms

he calls composite equations. He was unable to solve

the latter, even by geometric methods, in case they

reached the fourth degree.

The indeterminate analysis of the Arabs must be

traced back to Diophantus. In the solution of inde-

terminate equations of the first and second degree

Al Karkhi gives integral and fractional numbers, like

Diophantus, and excludes only irrational quantities.

The Arabs were familiar with a number of proposi-

tions in regard to Pythagorean triangles without hav-

ing investigated this field in a thoroughly systematic

manner.

C. THE SECOND PERIOD.

TO THE MIDDLE OF THE SEVENTEENTH CENTURY.

As long as the cultivation of the sciences among
the Western peoples was almost entirely confined to
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the monasteries, during a period lasting from the

eighth century to the twelfth, no evidence appeared

of any progress in the general theory of numbers.

As in the learned Roman world after the end of the

fifth century, so now men recognised seven liberal

arts, the trivium, embracing grammar, rhetoric and

dialectics, and the quadriviwn, embracing arithmetic,

geometry, music and astronomy.* But through Arab

influence, operating in part directly and in part

through writings, there followed in Italy and later also

in France and Germany a golden age of mathemat-

ical activity whose influence is prominent in all the

literature of that time. Thus Dante, in the fourth

canto of the Divina Commedia mentions among the

personages
"... who slow their eyes around

Majestically moved, and in their port

Bore eminent authority,"

a Euclid, a Ptolemy, a Hippocrates and an Avicenna.

There also arose, as a further development of cer-

tain famous cloister, cathedral and chapter schools,

and in rare instances, independent of them, the first

universities, at Paris, Oxford, Bologna, and Cam-

bridge, which in the course of the twelfth century

associated the separate faculties, and from the begin-

ning of the thirteenth century became famous as Stu-

dia generalia."\ Before long universities were also es-

*Muller, Historisch-ttymologische Studien Vber mathtntatische Tertnino-

logie, 1887.

t Suter, Die Mathematik an/den Universitiiten des Mittelalters, 1887.
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tablished in Germany (Prague, 1348; Vienna, 1365;

Heidelberg, 1386
; Cologne, 1388

; Erfurt, 1392
; Leip-

zig, 1409; Rostock, 1419; Greifswalde, 1456; Basel,

1459; Ingolstadt, 1472; Tubingen and Mainz, 1477),

in which for a long while mathematical instruction

constituted merely an appendage to philosophical re-

search. We must look upon Johann von Gmunden as

the first professor in a German university to devote

himself exclusively to the department of mathematics.

From the year 1420 he lectured in Vienna upon mathe-

matical branches only, and no longer upon all depart-

ments of philosophy, a practice which was then uni-

versal.

I. General Arithmetic.

Even Fibonacci made use of words to express

mathematical rules, or represented them by means of

line-segments. On the other hand, we find that Luca

Pacioli, who was far inferior to his predecessor in

arithmetic inventiveness, used the abbreviations ./.,

.m., J?. for plus, minus, and radix (root). As early as

1484, ten years before Pacioli, Nicolas Chuquet had

written a work, in all probability based upon the re-

searches of Oresme, in which there appear not only

thfc signs p and m (for plus and minus), but also ex-

pressions like

I
4
.10, $ 2 .17 for V\, 1/17.

He also used the Cartesian exponent-notation, and
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the expressions equipolence, equipolent, for equivalence

and equivalent.*

Distinctively symbolic arithmetic was developed

upon German soil. In German general arithmetic

and algebra, in the Deutsche Coss, the symbols -f- and

for plus and minus are characteristic, f They were

in common use while the Italian school was still writ-

ing / and m. The earliest known appearance of these

signs is in a manuscript {Regula Cose vel Algebre} of

the Vienna library, dating from the middle of the fif-

teenth century. In the beginning of the seventeenth

century Reymers and Faulhaber used the sign -j-,|

and Peter Roth the sign -H- as minus signs.

Among the Italians of the thirteenth and four-

teenth centuries, in imitation of the Arabs, the course

of an arithmetic operation was expressed entirely in

words. Nevertheless, abbreviations were gradually in-

troduced and Luca Pacioli was acquainted with such

abbreviations to express the first twenty-nine powers

of the unknown quantity. In his treatise the absolute

term and x, x2
, x3 , x*, x5

, x6
, . . . are always respec-

tively represented by numero or n", cosa or co, censo or

ce, cube or cu, censo de censo or ce.ce, primo relate or

p.'r", censo de cuba or ce.cu . . .

The Germans made use of symbols of their o.wn

*A. Marre in Boncompagni
's Bulletino, XIII. Jahrbuch uber die Fort-

tchritte der Math., 1881, p. 8.

tTreutlein, "Die deutsche Coss," Schliimilch's Zeitschrift, Bd. 24, HI. A.

Hereafter referred to as Treutlein.

tThe sign -s- is first used as a sign of division in Rahn's Teutsche Algebra.

Zurich, 1659.
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invention. Rudolff and Riese represented the abso-

lute term and the powers of the unknown quantity in

the following manner : Dragma, abbreviated in writ-

ing, <f>; radix (or coss, i. e., root of the equation) is

expressed by a sign resembling an r with a little flour-

ish
;
zensus by 5 ;

cubus by c with a long flourish on

top in the shape of an / (in the following pages this

will be represented merely by c); zensus de zensu (zens-

dezens) by 33,
sursolidum by (3 or

j| ; zensikubus by $c ;

bissursolidum by bif or 3f ;
zensus zensui de zensu (zens-

zensdezens) by 553 ;
cubus de cubo by cc.

There are two opinions concerning the origin of

the x of mathematicians. According to the one, it was

originally an r (radix) written with a flourish which

gradually came to resemble an x, while the original

meaning was forgotten, so that half a century after

Stifel it was read by all mathematician^ as x.* The

other explanation depends upon the fact that it is cus-

tomary in Spain to represent an Arabic s by a Latin

x where whole words and sentences are in question ;

for instance the quantity I2x, in Arabic G" is repre-

sented by 12 xai, more correctly by 12 sat. Accord-

ing to this view, the x of the mathematicians would

be an abbreviation of the Arabic sai=xat, an expres-

sion for the unknown quantity.

By the older cossistsf these abbreviations are in-

troduced without any explanation ; Stifel, however,

*Treutlein. G. Wertheim in Schlomilch's Zeitschri/t, Bd. 44, HI. A.

tTreutlein.
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considers it necessary to give his readers suitable ex-

planations. The word "root," used for the first power

of an unknown quantity he explains by means of

the geometric progression, "because all successive

members of the series develop from the first as from

a root"
;
he puts for #, xl

,
x1

,
Xs

, x*, . . . the signs 1,

Ix, lj, lc, 155, . . . and calls these " cossic numbers,"

which can be continued to infinity, while to each is

assigned a definite order-number, that is, an expo-

nent. In the German edition of Rudolff' s Coss, Stifel

at first writes the "cossic series" to the seventeenth

power in the manner already indicated, but also later

as follows:

1 . ik 12UI. laaut UOnUt etc.

He also makes use of the letters 3 and ( in writing

this expression. The nearest approach to our present

notation is to be found in Burgi and Reymers, where

with the aid of "exponents" or "characteristics" the

polynomial 8* + I2x5 9**+ 10.*3 + 3*2 + 1x 4 is

represented in the following manner :

VI V IV III II I O

8 + 12 9 + 10+ 3 + 7 4

In Scheubel we find for x, x*, xs
, x*, x6

. . . , pri, ,

sec., ter.
t quar., quin., and in Ramus /, q, c, bq, s as

abbreviations for latus, quadratus, cubus, biquadratits,

solidus.

The product <7* 3* + 2) (5* 3)= 85*8 36*2

+ 19# 6 is represented in its development by Gram-

mateus, Stifel, and Ramus in the following manner :



9 r

J

GKAMMATEUS : STIFEL :

lx. __ %pri. + 2N 7
5

3* -f 2

by $pri. ZN 5* 3

35^153 + 10*

21*.+ 9pri. QN 215+ 9* 6

35 /^. 36*. -j- 19/r/. 6^V 35<r 363 + 19# 6

RAMUS :

2

3

9/ 6

6.

x\s early as the fifteenth century the German Coss

made use of a special symbol to indicate the extrac-

tion of the root. At first .4 was used for 1/4 ;
this

period placed before the number was soon extended

by means of a stroke appended to it. Riese and

Rudolff write merely j/4 for T/4. Stifel takes the

first step towards a more general comprehension of

radical quantities in his Arithmetica Integra, where the

second, third, fourth, fifth, roots of six are represented

, yV6, 1/336, |/f6, while elsewhere the symbols

V.
are used as radical signs. These symbols, of which

the first two occur in Rudolff and the other three in a

work of Stifel, indicate respectively the third, fourth,

second, third, and fourth roots of the numbers which

they precede.
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Rudolff gives a few rules for operations with rad-

ical quantities, but without demonstrations. Like

Fibonacci he calls an irrational number a numerus

surdus. Such expressions as the following are intro-

duced :

I/a Vb=
I/O+ )

2

_ _
Va.Vb a b

Stifel enters upon the subject of irrational numbers

with especial zeal and even refers to the speculations

of Euclid, but preserves in all his developments a

well-grounded independence. Stifel distinguishes two

classes of irrational numbers : principal and subordi-

nate (Haupt- und Nebenarteri). In the first class are

included (1) simple irrational numbers of the form

v/iz, (2) binomial irrationals with the positive sign, as

l/SS^ + l/SSfi, 4+ ^6, J/J12 + JA12,

(3) square roots of such binomial irrationals as

V* 1/36 + 1/38=

(4) binomial irrationals with the negative sign, as

1/5510 1/536 and (5) square roots of such binomial

irrationals, as

^3 1/36 1/38= 1/6 1/8.

The subordinate class of irrational quantities, accord-

ing to Stifel, includes expressions like
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Fibonacci evidently obtained his knowledge of

negative quantities from the Arabs, and like them he

does not admit negative quantities as the roots of an

equation. Pacioli enunciates the rule, minus times

minus gives always plus, but he makes use of it only

for the expansion of expressions of the form (/ ^)

(r j). Cardan proceeds in the same way; he recog-

nises negative roots of an equation, but he calls them

aestimationes falsae or fictae,* and attaches to them no

independent significance. Stifel calls negative quan-

tities numeri absurdi. Harriot is the first to consider

negative quantities in themselves, allowing them to

form one side of an equation. Calculations involving

negative quantities consequently do not begin until

the seventeenth century. It is the same with irratio-

nal numbers
;
Stifel is the first to include them among

numbers proper.

Imaginary quantities are scarcely mentioned. Car-

dan incidentally proves that

(5 4. i/^T5) -

(5 1/^15) =40.

Bombelli goes considerably farther. Although not

entering into the nature of imaginary quantities, of

which he calls -f- V 1 piu di meno, and l/ 1

meno di meno, he gives rules for the treatment of ex-

*Ars mag-tia, 1545. Cap. I., 6.
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pressions of the form a-\-bV 1, as they occur in

the solution of the cubic equation.

The Italian school early made considerable ad-

vancement in calculations involving powers. Nicole

Oresme* had long since instituted calculations with

fractional exponents. In his notation

it appears that he was familiar with the formulae

i i A- JL

In the transformation of roots Cardan made the first

important advance by writing

and therefore ta2 b=p* g= c, a* b= cz . Bom-

bellif enlarged upon this observation and wrote

Va +V bp-\-V g,
V a V b=p I/ q,

from which follows ^cP + b =p'i -\- q. With reference

to the equation x3= 15.*+ 4 he discovered that

For in this case

become through addition /* 3/^= 2, and with q=
5 /*, 4/3 15/= 2, and consequently (by trial)/= 2

and = 1.

Hankel, p. 350. t Cantor, II., p. 572.
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The extraction of square and cube roots accord-

ing to the Arab, or rather the Indian, method, was set

forth by Grammateus. In the process of extracting

the square root, for the purpose of dividing the num-

ber into periods, points are placed over the first, third,

fifth, etc., figures, counting from right to left. Stifel*

developed the extracting of roots to a considerable

extent; it is undoubtedly for this purpose that he

worked out a table of binomial coefficients as far as

O + )
17

, in which, for example, the line for (a+)4

reads :

15S . 4 6 4 1 .

The theory of series in this period made no ad-

vance upon the knowledge of the Arabs. Peurbach

found the sum of the arithmetic and the geometric

progressions. Stifel examined the series of natural

numbers, of even and of odd numbers and deduced

from them certain power series. In regard to these

series he was familiar, through Cardan, with the the-

orem that l+ 2 + 22+ 2 + . . + 2'-1= 2 1. With

Stifel geometric progressions appear in an application

which is not found in Euclid's treatment of means, f

As is well known, n geometric means are inserted be-

tween the two quantities a and b by means of the

equations

== = XH~* = -f = a
xi

~~
*2

~
*s

~~
xn

~~
b
~

Cantor, II., pp. 397, 409. tTrentlein.
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where ^= "+
t/Jl. Stifel inserts five geometric means

between the numbers 6 and 18 in the following man-

ner :

1 3 9 27 81 243 729

6 18

in which the last line is obtained from the preceding

by multiplying by 6. Stifel makes use of this solution

for the purpose of duplicating the cube. He selects 6

for the edge of the given cube ;
three geometric means

are to be inserted between 6 and 12, and as q= i/
/
%,

the edge of the required cube will be x= 6f
/
2=

l/<:432. This length is constructed geometrically by

Stifel in the following manner :

In the right angled triangle ACJ3, with the hypotenuse

BC, let A = Q, AC=12; make AD= DC, AE=-

ED, AF=FE, FJ=JE, JK=JC=JL. Then AK
is the first, AL the second geometric mean between

6 and 12. This construction, which Stifel regards as

entirely correct, is only an approximation, since

AK=1. instead of 6 ^2= 7.56, AL= 3l/TO= 9 .487

instead of 6^4= 9. 524.
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Simple facts involving the theory of numbers were

also known to Stifel, such as theorems relating to

perfect and diametral numbers and to magic squares.

A diametral number is the product of two numbers

the sum of whose squares is a rational square, the

square of the diameter, e. g., 652= 252 + 602= 392
-f

522
,
and hence 25.60= 1500 and 39.52= 2028 are

diametral numbers of equal diameter.

Magic squares are figures resembling a chess

board, in which the terms of an arithmetic progres-

sion are so arranged that their sum, whether taken

diagonally or by rows or columns, is always the same.

A magic square containing an odd number of cells,

which is easier to construct than one containing an

even number, can be obtained in the following man-

ner : Place 1 in the cell beneath the central one, and

the other numbers, in their natural order, in the empty

cells in a diagonal direction. Upon coming to a cell
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already occupied, pass vertically downwards over two

cells.* Possibly magic squares were known to the Hin-

dus
;
but of this there is no certain evidence, f Manuel

MoschopulusJ (probably in the fourteenth century)

touched upon the subject of magic squares. He gave

definite rules for the construction of these figures,

which long after found a wider diffusion through La-

hire and Mollweide. During the Middle Ages magic

squares formed a part of the wide-spread number-

mysticism. Stifel was the first to investigate them in

a scientific way, although Adam Riese had already in-

troduced the subject into Germany, but neither he nor

Riese was able to give a simple rule for their con-

struction. We may nevertheless assume that towards

the end of the sixteenth century such rules were known

to a few German mathematicians, as for instance, to

the Rechenmeister of Nuremberg, Peter Roth. In the

year 1612 Bachet published in his Problemes plaisants ||

a general rule for squares containing an odd number

of cells, but acknowledged that he had not succeeded

in finding a solution for squares containing an even

number. Fre"nicle was the first to make a real ad-

vance beyond Bachet. He gave rules (1693) for both

classes of squares, and even discovered squares that

maintain their characteristics after striking off th

* Unger, p. 109.

t Montucla, Histoire des MatMmatiques, 1799-1802.

J Cantor, I., p. 480.

Giesing, Leben und Schriftcn Leonardo's da Pisa, 1886.

| This work is now accessible in a new edition published in 1884, Paris.

Gauthier-Villars.
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outer rows and columns. In 1816 Mollweide collected

the scattered rules into a book, De quadratis magicis,

which is distinguished by its simplicity and scientific

form. More modern works are due to Hugel (Ans-

bach, 1859), to Pessl (Amberg, 1872), who also con-

siders a magic cylinder, and to Thompson {Quarterly

Journal of Mathematics, Vol. X.), by whose rules the

magic square with the side pn is deduced from the

square with the side #.*

2. Algebra.

Towards the end of the Middle Ages the Ars major,

Arte maggiore, Algebra or the Coss is opposed to the

ordinary arithmetic (Ars minor). The Italians called

the theory of equations either simply Algebra, like the

Arabs, or Ars magna, Ars rei et census (very common

after the time of Leonardo and fully settled in Regio-

montanus), La regola della cosa (cosa-=res, thing),

Ars cossica or Regula cosae. The German algebraists

of the fifteenth and sixteenth centuries called it Coss,

Regula Coss, Algebra, or, like the Greeks, Logistic.

Vieta used the term Arithmetica speciosa, and Reymers

Arithmetica analytica, giving the section treating of

equations the special title von der Aequation. The

method of representing equations gradually took on

the modern form. Equality was generally, even by

the cossists, expressed by words
;

it was not until the

middle of the seventeenth century that a special sym-

*Gnnther, "Ueber magische Quadrate," Grunert's Arch., Bd. 57.
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bol came into common use. The following are exam-

ples of the different methods of representing equa-

tions :*

Cardan :

Cubus / 6 rebus aequalis 20, x* + 6#= 20
;

Vieta :

1C8Q + 1QN aequ.40, * 8.x2 + 16*= 40
;

Regiomontanus :

16 census et 2000 aequ. 680 rebus, 16#2 + 2000=
680*;

Reymers :

XXVIII XII X VI III I O

1^65532 +18 -=-30 -5- 18 +12 -4-8;

*28 := 65532^2+ 18* 10 30*6

Descartes :

0, / 8/
^.6 * * * * _ bx x0 , x* bx

X5 * * * * _ b x0> ^5_^
Hudde :

xsx> qx .r, xz= qx+ r.

In Euler's time the last transformation in the develop-

ment of the modern form had already been accom-

plished.

Equations of the first degree offer no occasion for

remark. We may nevertheless call attention to the

peculiar form of the proportion which is found in

Grammateus and Apian, f The former writes : "Wie
* Matthiessen, GrttndzKge der antiken und modernen Algebra, 2 ed., 1896,

p. 270, etc.

t Gerhardt, Geschichte der Mathematik in Dewtschland, 1877.
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sich hadt a zum b, also hat sich c zum d," and the

latter places

4-12-9-0 for A = A.

Leonardo of Pisa solved equations of the second de-

gree in identically the same way as the Arabs.* Car-

dan recognized two roots of a quadratic equation, even

when one of them was negative; but he did not regard

such a root as forming an actual solution. Rudolff

recognized only positive roots, and Stifel stated ex-

plicitly that, with the exception of the case of quad-

ratic equations with two positive roots, no equation

can have more than one root. In general, the solu-

tion was affected in the manner laid down by Gram-

mateusf in the example 12.x -f 24= 2i*2
: "Proceed

thus: divide 2>N by 21. sec., which gives 10f<z

(10f= a). Also divide 12 pri. by 2io sec., which

gives the result 5|(5|= ). Square the half of b,

which gives &, to which add a= 10f, giving -6
5
9^,

of which the square root is
-J^.

Add this to of b, or

if , and 7 is the number represented by 1 pfi. Proof :

12X1N=%N; add 24^, = 108^. 2J sec . multi-

plied by 49 must also give 108 A"."

This "German Coss " was certainly cultivated by

Hans Bernecker in Leipzig and by Hans Conrad in

EislebenJ (about 1525), yet no memoranda by either

of these mathematicians have been found. The Uni-

versity of Vienna encouraged Gramrnateus to publish,

* Cantor, II., p. 31. t Gerhardt. J Cantor, II., p. 387.
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in the year 1523, the first German treatise on Algebra

under the title,
" Eyn new kunstlich behend vnd geiviss

Rechenbilchlin
\ vff alle Kauffmannschafft. Nach Ge-

meynen Regeln de tre. Welschen practic. Regeln

falsi. Etlichen Regeln Cosse . . Buchhalten . . Visier

Ruthen zu machen." Adam Riese, who had pub-

lished his Arithmetic in 1518, completed in 1524 the

manuscript of the Coss
;
but it remained in manu-

script and was not found until 1855 in Marienberg.

The Coss published by Christoff Rudolff in 1525 in

Strassburg met with universal favor. This work,

which is provided with many examples, all completely

solved, is described in the following words :

1 ' Behend vnd Hiibsch Rechnung durch die kunstreichen re-

geln Algebre |
so gemeinicklich die Coss genennt werden. Darinnen

alles so treulich an Tag geben |
das auch allein ausz vleissigem

Lesen on alien miindtliche vnterricht mag begriffen werden. Hind-

angesetzt die meinung aller dere
|
so bisher vil vngegriindten regeln

angehangen. Einem jeden liebhaber diser kunst lustig vnd ergetz-

lich Zusamen bracht durch Christoffen Rudolff von Jawer."*

The principal work of the German Coss is Michael

Stifel's Arithmetica Integra, published in Nuremberg in

1544. In this book, besides the more common opera-

tions of arithmetic, not only are irrational quantities

treated at length, but there are also to be found appli-

*A translation would read somewhat as follows: "Rapid and neat com-

putation by means of the ingenious rules of algebra, commonly designated
the Coss. Wherein are faithfully elucidated all things in such wise that they

may be comprehended from diligent reading alone, without any oral instruc-

tion whatsoever. In disregard of the opinions of all those who hitherto have

adhered to numerous unfounded rules. Happily and divertingly collected

'or lovers of this art, by Christoff Rudolff, of Jauer."



cations of algebra to geometry. Stifel also published

in 1553 Die Cosz Christoffs Rudolfs mil schonen Ex-

empeln der Cosz Gebessert vnd sehr gemehrt, with copi-

ous appendices of his own, giving compendia of the

Coss. With pardonable self-appreciation Stifel as-

serts, "It is my purpose in such matters (as far as I

am able) from complexity to produce simplicity.

Therefore from many rules of the Coss I have formed

a single rule and from the many methods for roots

have also established one uniform method for the in-

numerable cases."

Stifel's writings were laid under great contribu-

tion by later writers on mathematics in widely distant

lands, usually with no mention of his name. This

was done in the second half of the sixteenth century

by the Germans Christoph Clavius and Scheubel, by

the Frenchmen Ramus, Peletier, and Salignac, by

the Dutchman Menher, and by the Spaniard Nunez.

It can, therefore, be said that by the end of the six-

teenth century or the beginning of the seventeenth

the spirit of the German Coss dominated the Algebra

of all the European lands, with the single exception

of Italy.

The history of the purely arithmetical solution of

equations of the third and fourth degrees which was

successfully worked out upon Italian soil demands

marked attention. Fibonacci (Leonardo of Pisa)*

made the first advance in this direction in connection

* Cantor, II., p. 43.
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with the equation x* + 2*2 + 10*= 20. Although he

succeeded in solving this only approximately, it fur-

nished him with the opportunity of proving that the

value of x cannot be represented by square roots

alone, even when the latter are chosen in compound

form, like

The first complete solution of the equation x*-{-mx=n

is due to Scipione del Ferro, but it is lost.* The

second discoverer is not Cardan, but Tartaglia. On

the twelfth of February, 1535, he gave the formula

for the solution of the equation x3
-\-mx= n, which

has since become so famous under the name of his

rival. By 1541 Tartaglia was able to solve any equa-

tion whatsoever of the third degree. In 1539 Cardan

enticed his opponent Tartaglia to his house in Milan

and importuned him until the latter finally confided

his method under the pledge of secrecy. Cardan broke

his word, publishing Tartaglia's solution in 1545 in

his Ars magna, although not without some mention of

the name of the discoverer. Cardan also had the satis-

faction of giving to his contemporaries, in his Ars

magna, the solution of the biquadratic equation which

his pupil Ferrari had succeeded in obtaining. Bom-

belli is to be credited with representing the roots of

the equation of the third degree in the simplest form,

in the so-called irreducible case, by means of a trans-

formation of the irrational quantities. Of the German

*Hankel, p. 360.
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mathematicians, Rudolff also solved a few equations

of the third degree, but without explaining the method

which he followed. Stifel by this time was able to

give a brief account of the "cubicoss," that is, the

theory of equations of the third degree as given in

Cardan's work. The first complete exposition of the

Tartaglian solution of equations of the third degree

comes from the pen of Faulhaber (1604).

The older cossists* had arranged equations of the

first, second, third, and fourth degrees (in so far as

they allow of a solution by means of square roots

alone) in a table containing twenty-four different

forms. The peculiar form of these rules, that is, of

the equations with their solutions, can be seen in the

following examples taken from Riese :

"The first rule is when the root [of the equation]

is equal to a number, or dragma so called. Divide

by the number of roots ; the result of this division

must answer the question." (I. e., if ax= b, then

b
x = ,

a

"The sixteenth rule is when squares equal cubes

and fourth powers. Divide through by the number

of fourth powers [the coefficient of #4
], then take half

the number of cubes and multiply this by itself, add

this product to the number of squares, extract the

square root, and from the result take half the number

of cubes. Then you have the answer."

*Treutlein.



114 HISTORY OF MATHEMATICS.

Taking this step by step we have,

ax* + by?= ex*, x* -I-- x*= x2
,
or

a a

The twenty-four forms of the older cossists are re-

duced by Riese to "acht equationes" (eight equa-

tions, as his combination of German and Latin means),

but as to the fact that the square root is two-valued

he is not at all clear. Stifel was the first to let a single

equation stand for these eight, and he expressly as

serts that a quadratic can have only two roots ; this

he asserts, however, only for the equation x2 =ax b.

In order to reduce the equations above mentioned to

one of Riese's eight forms, Rudolff availed himself of

" four precautions (Cautelen)," from which it is clearly

seen what labor it cost to develop the coss step by

step. For example, here is his

'* First precaution. When in equating two num-

bers, in the one is found a quantity, and in the other

is found one of the same name, then (considering the

signs -f- and ) must one of these quantities be added

to or subtracted from the other, one at a time, care

being had to make up for the defect in the equated

numbers by subtracting the + and adding the ."

(I. e., from 5*8 3* + 4= 2#8+ 5#, we derive 3#2
-f

4= 8*.)

The first examples of this period, of equations

with more than one unknown quantity, are met with
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in Rudolff,* who treats them only incidentally. Here

also Stifel went decidedly beyond his predecessors.

Besides the first unknown, Ix, he introduced 1A, l,
1C, ... as secundae radices or additional unknowns

and indicated the new notation made necessary in the

performance of the fundamental operations, as 8xA

(=8xy}, lA$(=y*), and several others.

Cardan, over whose name a shadow has been cast

by his selfishness in his intercourse with Tartaglia, is

still deserving of credit, particularly for his approxi-

mate solution of equations of higher degrees by means

of the regula falsi which he calls regula aurea. Vieta

went farther in this direction and evolved a method

of approximating the solution of algebraic equations

of any degree whatsoever, the method improved by

Newton and commonly ascribed to him. Reymers and

Biirgi also contributed to these methods of approxi-

mation, using the regula falsi. We can therefore say

that by the beginning of the seventeenth century there

were practical methods at hand for calculating the

positive real roots of algebraic equations to any de-

sired degree of exactness.

The real theory of algebraic equations is especially

due to Vieta. He understood (admitting only posi-

tive roots) the relation of the coefficients of equations

of the second and third degree to their roots, and also

made the surprising discovery that a certain equation

of the forty-fifth degree, which had arisen in trig-

* Cantor, II., p. 392.
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onometric work, possessed twenty-three roots (in this

enumeration he neglected the negative sine). In Ger-

man writings there are also found isolated statements

concerning the analytic theory of equations ;
for ex-

ample, Burgi recognized the connection of a change

of sign with a root of the equation. However unim-

portant these first approaches to modern theories may

appear, they prepared the way for ideas which be-

came dominant in later times.

D. THIRD PERIOD.

FROM THE MIDDLE OF THE SEVENTEENTH CENTURY TO

THE PRESENT TIME.

The founding of academies and of royal societies

characterizes the opening of this period, and is the

external sign of an increasing activity in the field of

mathematical sciences. The oldest learned society,

the Accademia dei Lincei, was organized upon the

suggestion of a Roman gentleman, the Duke of Cesi.

as early as 1603, and numbered, among other famous

members, Galileo. The Royal Society of London was

founded in 1660, the Paris Academy in 1666, and the

Academy of Berlin in 1700.*

With the progressive development of pure mathe-

matics the contrast between arithmetic, which has to

do with discrete quantities, and algebra, which relates

rather to continuous quantities, grew more and more

* Cantor, III., pp. 7, 29.
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marked. Investigations in' algebra as well as in the

theory of numbers attained in the course of time great

proportions.

The mighty impulse which Vieta's investigations

had given influenced particularly the works of Har-

riot. Building upon Vieta's discoveries, he gave in

his Artis analyticae praxis, published posthumously in

the year 1631, a theory of equations, in which the sys-

tem of notation was also materially improved. The

signs > and < for "greater than" and "less than"

originated with Harriot, and he always wrote x* for

xx and xz for xxx, etc. The sign X for "times"

is found almost simultaneously in both Harriot and

Oughtred, though due to the latter
;
Descartes used

a period to indicate multiplication, while Leibnitz in

1686 indicated multiplication by ^-N and division by "

',

although already in the writings of the Arabs the quo-

tient of a divided by b had appeared in the forms

a b, a/b, or. The form a\b is used for the first

time by Clairaut in a work which was published post-

humously in the year 1760. Wallis made use in 1655

of the sign oo to indicate infinity. Descartes made ex-

tensive use of the the form a" (for positive integral ex-

ponents). Wallis explained the expressions x~" and

x* as indicating the same thing as l:x* and v^x re-

spectively j but Leibnitz and Newton were the first to

recognize the great importance of, and to suggest, a

consistent system of notation.
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The powers of a binomial engaged the attention

of Pascal in his correspondence with Fermat in 1654,*

which contains the "arithmetic triangle," although,

in its essential nature at least, it had been suggested

by Stifel more than a hundred years before. This

arithmetic triangle is a table of binomial coefficients

arranged in the following form :

so that the nth diagonal, extending upwards from left

to right contains the coefficients of the expansion of

(a _j_ ). Pascal used this table for developing figurate

numbers and the combinations of a given number of

elements. Newton generalized the binomial formula

in 1669, Vandermonde gave an elementary proof in

1764, and Euler in 1770 in his Anleitung zur Algebra

gave a proof for any desired exponent.

A series of interesting investigations, for the most

part belonging to the second half of the nineteenth

century, relates to the nature of number and the ex-

tension of the number- concept. While among the an-

cients a "number" meant one of the series of natural

* Cantor, II., p. 684.
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numbers only, in the course of time the fundamental

operations of arithmetic have been extended from

whole to fractional, from positive to negative, from

rational and real to irrational and imaginary numbers.

For the addition of natural, or integral absolute,

numbers, which by Newton and Cauchy are often

termed merely "numbers," the associative and com-

mutative laws hold true, that is,

Their multiplication obeys the associative, commuta-

tive, and distributive laws, so that

abc^=(ab)c\ ab= ba; (a -f- b) c= ac+ be.

To these direct operations correspond, as inverses,

subtraction and division. The application of these

operations to all natural numbers necessitates the in-

troduction of the zero and of negative and fractional

numbers, thus forming the great domain of rational

numbers, within which these operations are always

valid, if we except the one case of division by zero.

This extension of the number-system showed itself

in the sixteenth century in the introduction of negative

quantities. Vieta distinguished affirmative (positive)

and negative quantities. But Descartes was the first

to venture, in his geometry, to use the same letter for

both positive and negative quantities.

The irrational had been incorporated by Euclid

into the mathematical system upon a geometric basis,

this plan being followed for many centuries. Indeed
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it was not until the most modern times* that a purely

arithmetic theory of irrational numbers was produced

through the researches of Weierstrass, Dedekind, G.

Cantor, and Heine.

Weierstrass proceeds f from the concept of the

whole number. A numerical quantity consists of a

series of objects of the same kind; a number is there-

fore nothing more than the "combined representation

of one and one and one, etc. "I By means of subtrac-

tion and division we arrive at negative and fractional

numbers. Among the latter there are certain numbers

which, if referred to one particular system, for exam-

ple to our decimal system, consist of an infinite num-

ber of elements, but by transformation can be made

equal to others arising from the combination of a finite

number of elements (e. g., 0.1333...=^). These

numbers are capable of still another interpretation.

But it can be proved that every number formed from

an infinite number of elements of a known species,

and which contains a known finite number of those

elements, possesses a very definite meaning, whether

it is capable of actual expression or not. When a

number of this kind can only be represented by the

infinite number of its elements, and in no other way,

it is an irrational number.

Dedekind arranges all positive and negative, in-

*Stolr, yorlesungen iiber allgctncine Arithmetik, 1885-1886.

+ Kossak, Die Elemente der Aritkmetik, 1872.

t Rosier, Die neueren Definitionsformen der irrationalen Zahlen, 1886.

Dedekind. Stttigkett und irrationale Zaklen, 1872.
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tegral and fractional numbers, according to their mag-

nitude, in a system or in a body of numbers (Zahlcn

korper}, R. A given number, a, divides this system

into the two classes, A\ and A%, each containing in-

finitely many numbers, so that every number in A\ is

less than every number in A%. Then a is either the

greatest number in A\ or the least in A$. These ra-

tional numbers can be put into a one-to-one corre-

spondence with the points of a straight line. It is

then evident that this straight line contains an infinite

number of other points than those which correspond

to rational numbers, that is, the system of rational

numbers does not possess the same continuity as the

straight line, a continuity possible only by the intro-

duction of new numbers. According to Dedekind the

essence of continuity is contained in the following

axiom : "If all the points of a straight line are divided

into two classes such that every point of the first class

lies to the left of every point of the second, then there

exists one point and only one which effects this divi-

sion of all points into two classes, this separation of

the straight line into two parts." With this assump-

tion it becomes possible to create irrational numbers.

A rational number, a, produces a Schnitt or section

(Ai\Aj), with respect to A\ and AS, with the charac-

teristic property that there is 'in A\ a greatest, or in

AI a least number, a. To every one of the infinitely

many points of the straight line which are not covered

by rational numbers, or in which the straight line is
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not cut by a rational number, there corresponds one

and only one section (Ai\A^), and each one of these

sections defines one and only one irrational number a.

In consequence of these distinctions ' ' the system R constitutes

an organized domain of all real numbers of one dimension; by this

no more is meant to be said than that the following laws govern :
*

I. If a> Si, and /3> y, then a is also > y ; that is, the number

/3 lies between the numbers a, y.

II. If a, y are two distinct numbers, then there are infinitely

many distinct numbers /? which lie between a and y.

III. If a is a definite number, then all numbers of the system

R fall into two classes, A l and A 2 , each of which contains infinitely

many distinct numbers; the first class A
t contains all numbers

a
l
which are <a; the second class A 2 contains all numbers a

2

which are > a
; the number a itself can be assigned indifferently

to either the first or the second class and it is then respectively

either the greatest number of the first class, or the least of the sec-

ond. In every case, the separation of the system R into the two

classes A^ and A 2 is such that every number of the first class A
,

is less than every number of the second class A t , and we affirm

that this separation is effected by the number a.

IV. If the system R of all real numbers is separated into two

classes, A lt
A 2 , such that every number a

lt of the class A\ is less

than every number a
2 of the class A 2 ,

then there exists one and

only one number a by which this separation is effected (the domain

R possesses the property of continuity)."

According to the assertion of J. Tanneryf the fundamental

ideas of Dedekind's theory had already appeared in J. Bertrand'F

text-books of arithmetic and algebra, a statement denied by Dede

kind.J

* Dedekind, Stetigkeit *nd irrationale Zahbn, 1872.

t Stolz, Vorleiungen uber allgemeine Arithmetik, 1885-1886.

t Dedekind, Was sind und was sallen die Zahlenf 1888.
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G. Cantor and Heine* introduce irrational num-

bers through the concept of a fundamental series.

Such a series consists of infinitely many rational num-

bers, a\, a?, as ,
. . . . an+r,

. . ., and it possesses the

property that for an assumed positive number e, how-

ever small, there is an index n, so that for >i the

absolute value of the difference between the term an

and any following term is smaller than e (condition of

the convergency of the series of the a's). Any two

fundamental series can be compared with each other

to determine whether they are equal or which is the

greater or the less
; they thus acquire the definiteness

of a number in the ordinary sense. A number defined

by a fundamental series is called a ''series number."

A series number is either identical with a rational

number, or not identical
;
in the latter case it defines

an irrational number. The domain of series numbers

consists of the totality of all rational and irrational

numbers, that is to say, of all real numbers, and of

these only. In this case the domain of real numbers

can be associated with a straight line, as G. Cantor

has shown.

The extension of the number-domain by the addi-

tion of imaginary quantities is closely connected with

the solution of equations, especially those of the third

degree. The Italian algebraists of the sixteenth cen-

tury called them "impossible numbers." As proper

solutions of an equation, imaginary quantities first

* Rosier, Die neueren Definitionsformen der irrationalen Zahlen, 1886.
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appear in the writings of Albert Girard* (1629). The

expressions "real" and "imaginary" as characteristic

terms for the difference in nature of the roots of an

equation are due to Descartes. f De Moivre and Lam-

bert introduced imaginary quantities into trigonom-

etry, the former by means of his famous proposition

concerning the power (cos <f>+ /sin <)", first given in

its present form by Euler. J

Gauss added to his great fame by explaining the

nature of imaginary quantities. He brought into gen-

eral use the sign /for J/ 1 first suggested by Euler :
|i

he calls a-\-bi a complex number with the norm

a2 -|-<
2

. The term ' ' modulus "
for the quantity I/a

2
-f- //-

conies from Argand (1814), the term "reduced form"

for r(cos<-|- /sin <), which equals a-\-bt t is due to

Cauchy, and the name "direction coefficient" for the

factor cos
<f> -f- /sin <f>

first appeared in print in an essay

of Hankel's (1861), although it was in use somewhat

earlier. Gauss, to whom in 1799 it seemed simply

advisable to retain complex numbers,^" by his expla-

nations in the advertisement to the second treatise on

biquadratic residues gained for them a triumphant

introduction into arithmetic operations.

The way for the geometric representation of com

plex quantities was prepared by the observations of

* Cantor, II., p. 718. t Cantor, II., p. 724. J Cantor, HI., p. 68;.

Hankel, Die komplexen Zahh-n, 1867, p. 71.

| Beman. "Euler's Use of i to Represent an Imaginary," Bull Ai,->-

Math. Sac., March, 1898, p. 274.

^Treutlein.
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various mathematicians of the seventeenth and eight-

eenth centuries, among them especially Wallis,* who

in solving geometric problems algebraically became

aware of the fact that when certain assumptions give

two real solutions to a problem as points of a straight

line, other assumptions give two "impossible" roots

as the points of a straight line perpendicular to the first

one. The first satisfactory representation of complex

quantities in a plane was devised by Caspar Wessel

in 1797, without attracting the attention it deserved.

A similar treatment, but wholly independent, was given

by Argand in 1806.f But his publication was not ap-

preciated even in France. In the year 1813 there ap-

peared in Gergonne's Annales by an artillery officer

Francais in the city of Metz the outlines of a theory

of imaginary quantities the main ideas of which can

be traced back to Argand. Although Argand im-

proved his theory by his later work, yet it did not

gain recognition until Cauchy entered the lists as its

champion. It was, however, Gauss who (1831), by

means of his great reputation, made the representa-

tion of imaginary quantities in the "Gaussian plane"

the common property of all mathematicians. J

Gauss and Dirichlet introduced general complex

numbers into arithmetic. The primary investigations

* Hankel, Die komplexen Zaklen, 1867, p. 81.

t Hankel, Die komplexen Zahlen, 1867, p. 82.

JFor a rfsumf of the history of the geometric representation of the im-

aginary, see Beman, "A Chapter in the History of Mathematics," Proc.

Amer. Assn. Adv. Science, 1897, pp. 33-50
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of Dirichlet in regard to complex numbers, which, to-

gether with indications of the proof, are contained in

the Berichte der Berliner Akademie for 1841, 1842, and

1846, received material amplifications through Eisen-

stein, Kummer, and Dedekind. Gauss, in the devel-

opment of the real theory of biquadratic residues,

introduced complex numbers of the form a+ bi, and

Lejeune Dirichlet introduced into the new theory of

complex numbers the notions of prime numbers,

congruences, residue-theorems, reciprocity, etc ,
the

propositions, however, showing greater complexity

and variety and offering greater difficulties in the way
of proof.* Instead of the equation x* 1= 0, which

gives as roots the Gaussian units, + 1, 1, + /, /,

Eisenstein made use of the equation x* 1= and

considered the complex numbers a + bp (p being a

complex cube root of unity) the theory resembling that

of the Gaussian numbers a-\-bi, but yet possessing

certain marked differences. Kummer generalized the

theory still further, using the equation x" 1= as

the basis, so that numbers of the form

arise where the a's are real integers and the A's are

roots of the equation x" 1= 0. Kummer also set

forth the concept of ideal numbers, that is, of such

numbers as are factors of prime numbers and possess

the property that there is always a power of these ideal

numbers which gives a real number. For example,

*Cyley, Address to the British Association, etc., 1883.
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there exists for the prime number/ no rational factor-

ization so that/
3 A-B (where A is different from /

and /2
); but in the theory of numbers formed from

the twenty-third roots of unity there are prime num-

bers / which satisfy the condition named above. In

this case / is the product of two ideal numbers, of

which the third powers are the real numbers A and

S, so that/
3= ^-^. In the later development given

by Dedekind the units are the roots of any irreducible

equation with integral numerical coefficients. In the

case of the equation x* x+ 1=0, (l + /i/3), that

is to say, the p of Eisenstein, is to be regarded as in-

tegral.

In tracing out the nature of complex numbers,

H. Grassmann, Hamilton, and Scheffler have arrived

at peculiar discoveries. Grassmann, who also mate-

rially developed the theory of determinants, investi-

gated in his treatise on directional calculus (Ausdeh-

nungslehre) the addition and multiplication of complex

numbers. In like manner, Hamilton originated the

calculus of quaternions, a method of calculation re-

garded with especial favor in England and America

and justified by its relatively simple applicability to

spherics, to the theory of curvature, and to mechanics.

The complete double title* of H. Grassmann's

chief work which appeared in the year 1844, as

translated, is: "The Science of Extensive Quantities

or Directional Calculus (Ausdchnungslehre). A New

*V. Schlegel, Grassmann, sein Lebeii und seine Werke.
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Mathematical Theory, Set Forth and Elucidated by

Applications. Part First, Containing the Theory of

Lineal Directional Calculus. The Theory of Lineal

Directional Calculus, A New Branch of Mathematics,

Set Forth and Elucidated by Applications to the

Remaining Branches of Mathematics, as well as to

Statics, Mechanics, the Theory of Magnetism and

Crystallography." The favorable criticisms of this

wonderful work by Gauss, who discovered that "the

tendencies of the book partly coincided with the paths

upon which he had himself been travelling for half a

century," by Grunert, and by Mobius who recognised

in Grassmann "a congenial spirit with respect to

mathematics, though not to philosophy," and who

congratulated Grassmann upon his "excellent work,"

were not able to secure for it a large circle of readers.

As late as 1853 Mobius stated that "Bretschneider

was the only mathematician in Gotha who had assured

him that he had read the Ausdehnungslehre through.
1

'

Grassmann received the suggestion for his re-

searches from geometry, where A
t B, C, being points

of a straight line, A + C=AC.* With this he

combined the propositions which regard the parallel

gram as the product of two adjacent sides, thus intro

ducing new products for which the ordinary rules of

multiplication hold so long as there is no permutation

of factors, this latter case requiring the change of

* Grassmann, Die Ausdehnungslehre von 1844 oder die lineale Avsdeh-

ngslehre, ein nruer Ziveig tier Matltematik. Zweite Auflage, 1878.
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signs. More exhaustive researches led Grassmann to

regard as the sum of several points their center of

gravity, as the product of two points the finite line-

segment between them, as the product of three points

the area of their triangle, and as the product of four

points the volume of their pyramid. Through the

study of the Barycentrischer Calciil of Mobius, Grass-

mann was led still further. The product of two line-

segments which form a parallelogram was called the

"external product" (the factors can be permuted only

by a change of sign), the product of one line-segment

and the perpendicular projection of another upon it

formed the "internal product" (the factors can here

be permuted without change of sign). The introduc-

tion of the exponential quantity led to the enlarge-

ment of the system, of which Grassmann permitted a

brief survey to appear in Grunerfs Archiv (1845).*

Hamiltonf gave for the first time, in a communi-

cation to the Academy of Dublin in 1844, the values

/', j, k, so characteristic of his theory. The Lectures

on Quaternions appeared in 1853, the Elements of Qua-

ternions in 1866. From a fixed point O let a linej be

drawn to the point P having the rectangular co-ordi-

nates x, y, z. Now if /, j, k represent fixed coefficients

(unit distances on the axes), then

* Translated by Beman, Analyst, 1881, pp. 96, 114.

t Unverzagt, Theorie der goniotnetrischcn und longimetrischen Quater-

nionen, 1876.

*Cayley, A., "On Multiple Algebra," in Quarterly Journal of Mathe-

matics, 1887.



130 HISTORY OF MATHEMATICS.

is a vector, and this additively joined to the "pure

quantity" or "scalar" w produces the quaternion

The addition of two quaternions follows from the

usual formula

But in the case of multiplication we must place

i* ==/ =&=!, i=jk= kj, j= ki= ik,

k= ij=ji,
so that we obtain

Q-Q'= ww' xx' yy' zz'

-\- i(wx' -\- xw' -\- yz' z/)

+ J(i*>y + yu/ + *x' xz)

-\-k(wz' -\- zw' -{- xy' yx'\

On this same subject Scheffler published in 184G

his first work, Ueber die Verhdltnisse der Arithmetik zur

Geometric, in 1852 the Situationscalcul, and in 1880 the

Polydimensionalen Grossen. For him * the vector r in

three dimensions is represented by

r= a-e*y=T'SyTi , or

r= x+y V T+ z V 1 1/TT, or

r=x-\-yi-\-Z'i'i\ where i=|X 1 and /j^i/n-l

are turning factors of an angle of 90 in the plane of xy

and xz. In Scheffler's theory the distributive law does

not always hold true for multiplication, that is to say,

a(b-\-c) is not always equivalent to ab-\- ac.

Investigations as to the extent of the domain in

*Unverzagt, Ueber die Grundlagen der Kfchnung tnit Quaterniontn, 1881.



which with certain assumptions the laws of the ele-

mentary operations of arithmetic are valid have led

to the establishment of a calculus of logic.* To this

class of investigations there belong, besides Grass-

mann's Formenlehre (1872), notes by Cayley and Ellis,

and in particular the works of Boole, SchrOder, and

Charles Peirce.

A minor portion of the modern theory of numbers

or higher arithmetic, which concerns the theories of

congruences and of forms, is made up of continued

fractions. The algorism leading to the formation of

such fractions, which is also used in calculating the

greatest common measure of two numbers, reaches

back to the time of Euclid. The combination of the

partial quotients in a continued fraction originated

with Cataldi,f who in the year 1613 approximated the

value of square roots by this method, but failed to

examine closely the properties of the new fractions.

Daniel Schwenter was the first to make any ma-

terial contribution (1625) towards determining the

convergents of continued fractions. He devoted his

attention to the reduction of fractions involving large

numbers, and determined the rules now in use for cal-

culating the successive convergents. Huygens and

Wallis also labored in this field, the latter discover-

ing the general rule, together with a demonstration,

.vhich combines the terms of the convergents

* SchrSder, Der Operationskreis des Logikcalculs, 1877.

t Cantor, II., p. 695.
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fn A-l A-2
?' ? 1* ?S

in the following manner :

A _ "P~-\ + ^.A-a

4n an <?-! + &n Qn-a

The theory of continued fractions received its greatest

development in the eighteenth century with Euler,*

who introduced the name fractio continua (the Ger-

man term Kettenbruch has been used only since the

beginning of the nineteenth century). He devoted

his attention chiefly to the reduction of continued

fractions to the form of infinite products and series,

and doubtless in this way was led to the attempt to

give the convergents independent form, that is to dis-

cover a general law by means of which it would be

possible to calculate any required convergent without

first obtaining the preceding ones. Although Euler

did not succeed in discovering such a law, he created

an algorism of some value. This, however, did not

bring him essentially nearer the goal because, in spite

of the example of Cramer, he neglected to make use

of determinants and thus to identify himself the more

closely with the pure theory of combinations. From

this latter point of view the problem was attacked by

Hindenburg and his pupils Burckhardt and Rothe.

Still, those who proceed from the theory of combina

tions alone know continued fractions only from one

side; the method of independent presentation allows

* Cantor, III., p. 670.
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the calculation of the desired convergent from both

sides, forward as well as backward, to the practical

value of which Dirichlet has testified.

Only in modern times has the calculus of determi-

nants been employed in this field, together with a

combinatory symbol, and the first impulse in this di-

rection dates from the Danish mathematician Ramus

(1855). Similar investigations were begun, however,

by Heine, MObius, and S. Gunther, leading to the

formation of "continued fractional determinants.'
1

The irrationality of certain infinite continued frac-

tions* had been investigated before this by Legendre,

who, like Gauss, gave the quotient of two power se-

ries in the form of a continued fraction. By means of

the application of continued fractions it can be shown

that the quantities c* (for rational values of x), e, ,

and ir
2 cannot be rational (Lambert, Legendre, Stern).

It was not until very recent times that the transcen-

dental nature of e was established by Hermite, and

that of it by F. Lindemann.

In the theory of numbers strictly speaking, quite

difficult problems concerning the properties of num-

bers were solved by the first exponents of that study,

Euclid and Diophantus. Any considerable advance

was impossible, however, as long as investigations had

to be conducted f without an adequate numerical nota-

tion, and almost exclusively with the aid of an algebra

*Treutlein.

+ Legendre, Thtorie des nombres, ist ed. 1798, 3rd ed. 1830.
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just developing under the guise of geometry. Until

the time of Vieta and Bachet there is no essential ad-

vance to be noted in the theory of numbers. The

former solved many problems in this field, and the

latter gave in his work Problemes plaisants et dtlectables

a satisfactory treatment of indeterminate equations

of the first degree. Still later the first stones for the

foundation of a theory of numbers were laid by Fer-

mat, who had carefully studied Diophantus and into

whose works as elaborated by Bachet he incorporated

valuable additional propositions. The great mass of

propositions which can be traced back to him he gave

for the most part without demonstration, as for ex-

ample the following statement :

"Every prime number of the form 4-j-l is the

sum of two squares; a prime number of the form

8-fl has at the same time the three forms j'-f-z
2

,

y*-\-2z*, y* 2z*
; every prime number of the form

Sn+ 3 appears as y* -f- 2s
3
, every one of the form 8-f 7

appears as y1 2zV Further, "Any number can be

formed by the addition of three cubes, of four squares,

of five fifth powers, etc."

Fermat proved that the area of a Pythagorean

right-angled triangle, for example a triangle with the

sides 3, 4, and 5, cannot be a square. He was also

the first to obtain the solution of the equation ax* -f

1 =y*, where a is not a square ; at all events, he

brought this problem to the attention of English

mathematicians, among whom Lord Brouncker dis-
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covered a solution which found its way into the

works of Wallis. Many of Fermat's theorems belong

to "the finest propositions of higher mathematics,"*

and possess the peculiarity that they can easily be

discovered by induction, but that their demonstrations

are extremely difficult and yield only to the most

searching investigation. It is just this which imparts

to higher arithmetic that magic charm which made it

a favorite with the early geometers, not to speak of

its inexhaustible treasure-house in which it far ex-

ceeds all other branches of pure mathematics.

After Fermat, Euler was the first again to attempt

any serious investigations in the theory of numbers.

To him we owe, among other things, the first scien-

tific solution of the chess board problem, which re-

quires that the knight, starting from a certain square,

shall in turn occupy all sixty-four squares, and the

further proposition that the sum of four squares mul-

tiplied into another similar sum also gives the sum of

four squares. He also discovered demonstrations of

various propositions of Fermat, as well as the general

solution of indeterminate equations of the second de-

gree with two unknowns on the hypothesis that a spe-

cial solution is known, and he treated a large number

of other indeterminate equations, for which he dis-

covered numerous ingenious solutions.

Euler (as well as Krafft) also occupied himself

* Gauss, Werke, II., p. 152.
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with amicable numbers.* These numbers, which are

mentioned by lamblichus as being known to the

Pythagoreans, and which are mentioned by the Arab

Tabit ibn Kurra, suggested to Descartes the discovery

of a law of formation, which is given again by Van

Schooten. Euler made additions to this law and de-

duced from it the proposition that two amicable num

bers must possess the same number of prime factors.

The formation of amicable numbers depends either

upon the solution of the equation xy -f ax -f- by -\- c= 0,

or upon the factoring of the quadratic form ax* -f- bxy

Following Euler, Lagrange was able to publish

many interesting results in the theory of numbers.

He showed that any number can be represented as

the sum of four or less squares, and that a real root

of an algebraic equation of any degree can be con-

verted into a continued fraction. He was also the

first to prove that the equation x* Ay*= \ is always

soluble in integers, and he discovered a general method

for the derivation of propositions concerning prime

numbers.

Now the development of the theory of numbers

bounds forward in two mighty leaps to Legendre and

Gauss. The valuable treatise of the former, Essai sur

la thtorie des nombres, which appeared but a few years

before Gauss's Disquisitiones arithmeticae, contains an

epitome of all results that had been published up to

*Seelhoff,
" Befreundete Zahlen," Hoppe Arch., Bd. 70.
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that time, besides certain original investigations, the

most brilliant being the law of quadratic reciprocity,

or, as Gauss called it, the Theorema fundamentale in

doctrina de rcsiduis quadratis. This law gives a rela-

tionship between two odd and unequal prime numbers

and can be enunciated in the following words :

"Let ( )
be the remainder which is left after divid-

\*J

ing m **

by n, and let
)
be the remainder left after

>*-i \mJ

dividing n 2
by m. These remainders are always

-f- 1 or 1. Whatever then the prime numbers m

and n may be, we always obtain () = ( )
in case the

\mj \*j
numbers are not both of the form 4* -\- 3. But if both

are of the form 4*+ 3, then we have f
J
=

( )"
These two cases are contained in the formula

,

Bachet having exhausted the theory of the indetermi-

nate equation of the first degree with two unknowns,

an equation which in Gauss's notation appears in the

form x= a (mod ),
identical with

-j-
=y-\-a, mathe-

maticians began the study of the congruence x*= m

(mod n). Fermat was aware of a few special cases of

the complete solution ;
he knew under what conditions

1, 2, 3, 5 are quadratic residues or non-residues

of the odd prime number /.* For the cases 1 and

*Baumgart,
" Ueber das quadratische Reciprocitatsgesetz," in SchlS-

milch'tZtitschrifl, Bd. 30, HI. Abt.
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3 the demonstrations originate with Euler, for 2

and 5 with Lagrange. It was Euler, too, who gave

the propositions which embrace the law of quadratic

reciprocity in the most general terms, although he

did not offer a complete demonstration of it. The

famous demonstration of Legendre (in Essai sur la

theorie des nombres, 1798) is also, as yet, incomplete.

In the year 1796 Gauss submitted, without knowing

of Euler's work, the first unquestionable demonstra-

tion a demonstration which possesses at the same

time the peculiarity that it embraces the principles

which were used later. In the course of time Gauss

adduced no less than eight proofs for this important

law, of which the sixth (chronologically the last) was

simplified almost simultaneously by Cauchy, Jacobi.

and Eisenstein. Eisenstein demonstrated in partic

ular that the quadratic, the cubic and the biquadratic

laws are all derived from a common source. In the

year 1861 Kummer worked out with the aid of the

theory of forms two demonstrations for the law of

quadratic reciprocity, which were capable of gene-

ralization for the #th-power residue. Up to 1890

twenty-five distinct demonstrations of the law of

quadratic reciprocity had been published ; they make

use of induction and reduction, of the partition of the

perigon, of the theory of functions, and of the theory

of forms. In addition to the eight demonstrations by

Gauss which have already been mentioned, there are

four by Eisenstein, two by Kummer, and one each
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by Jacobi, Cauchy, Liouville, Lebesgue, Genocchi,

Stern, Zeller, Kronecker, Bouniakowsky, Schering,

Petersen, Voigt, Busche, and Pepin.

However much is due to the co-operation of math-

ematicians of different periods, yet to Gauss unques-

tionably belongs the merit of having contributed in

his Disquisitiones arithmeticae of 1801 the most impor-

tant part of the elementary development of the theory

of numbers. Later investigations in this branch have

their root in the soil which Gauss prepared. Of such

investigations, which were not pursued until after the

introduction of the theory of elliptic transcendents,

may be mentioned the propositions of Jacobi in regard

to the number of decompositions of a number into

two, four, six, and eight squares,* as well as the in-

vestigations of Dirichlet in regard to the equation

His work in the theory of numbers was Dirichlet's

favorite pursuit, f He was the first to deliver lectures

on the theory of numbers in a German university and

was able to boast of having made the Disquisitiones

arithmeticae of Gauss transparent and intelligible a

task in which a Legendre, according to his own

avowal, was unsuccessful.

Dirichlet's earliest treatise, Mtmoire sur rimpossi-

bilitc' de quelques equations indttermine's du cinquieme

degrc" (submitted to the French Academy in 1825),

* Dirichlet,
" Gdachtnisrede auf Jacobi," Crellt't Journal, Bd. 52.

t Kummer, " Gedachtnisrede auf Lejeune-Dirichlet," in Berl. Abh. 1860.
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deals with the proposition, stated by Fermat without

demonstration, that "the sum of two powers having

the same exponent can never be equal to a power of

the same exponent, when these powers are of a degree

higher than the second." Euler and Legendre had

proved this proposition for the third and fourth pow-

ers ;
Dirichlet discusses the sum of two fifth powers

and proves that for integral numbers x 5
-}-y

& cannot

be equal to az6
. The importance of this work lies in

its intimate relationship to the theory of forms of

higher degree. Dirichlet's further contributions in the

field of the theory of numbers contain elegant demon-

strations of certain propositions of Gauss in regard

to biquadratic residues and the law of reciprocity,

which were published in 1825 in the Gottingen Ge-

lehrte Anzeigen, as well as with the determination of

the class-number of the quadratic form for any given

determinant. His "applications of analysis to the

theory of numbers are as noteworthy in their way as

Descartes's applications of analysis to geometry. They
would also, like the analytic geometry, be recognized

as a new mathematical discipline if they had been ex-

tended not to certain portions only of the theory of

number, but to all its problems uniformly.*

The numerous investigations into the properties

and laws of numbers had led in the seventeenth cen

turyt to the study of numbers in regard to their divis-

*Knmmer, "Gedachtnisrede auf Lejeune-Dirichlet." Berl. Abh. 1860.

tSeelhoff, "Geschichte der Faktorentafeln," in Hoppe Arch., Bd. 70.
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ors. For almost two thousand years Eratosthenes's

"sieve" remained the only method of determining

prime numbers. In the year 1657 Franz van Schooten

published a table of prime numbers up to ten thou-

sand. Eleven years later Pell constructed a table of

the least prime factors (with the exception of 2 and 5)

of all numbers up to 100000. In Germany these

tables remained almost unknown, and in the year

1728 Poetius published independently a table of fac-

tors for numbers up to 100 000, an example which

was repeatedly imitated. Kriiger's table of 1746 in-

cludes numbers up to 100000; that of Lambert of

1770, which is the first to show the arrangement

used in more modern tables, includes numbers up to

102000. Of the six tables which were prepared be-

tween the years 1770 and 1811 that of Felkel is inter-

esting because of its singular fate
;

its publication by

the Kaiserlich konigliches Aerarium in Vienna was

completed as far as 408 000
;
the remainder of the

manuscript was then withheld and the portion already

printed was used for manufacturing cartridges for the

last Turkish war of the eighteenth century. In the

year 1817 there appeared in Paris Burckhardt's Table

des diviseurs pour tons les nombres du /"", .2', j* million.

Between 1840 and 1850 Crelle communicated to the

Berlin Academy tables of factors for the fourth, fifth,

and sixth million, which, however, were not pub-

lished. Dase, who is known for his arithmetic gen-

ius, was to make the calculations for the seventh to
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the tenth million, having been designated for that

work by Gauss, but he died in 1861 before its com-

pletion. Since 1877 the British Association has been

having these tables continued by Glaisher with the

assistance of two computers. The publication of

tables of factors for the fourth million was completed

in 1879.

In the year 1856 K. G. Reuschle published his

tables for use in the theory of numbers, having been

encouraged to undertake the work by his correspond-

ence with Jacobi. They contain the resolution of

numbers of the form 10* 1 into prime factors, up to

= 242, and numerous similar results for numbers of

the form a" 1, and a table of the resolution of prime

numbers /= Qn -f 1 into the forms

and 4=
as they occur in the treatment of cubic residues and

in the partition of the perigon.

Of greatest importance for the advance of the sci-

ence of algebra as well as that of geometry was the

development of the theories of symmetric functions,

of elimination, and of invariants of algebraic forms,

as they were perfected through the application of pro-

jective geometry to the theory of equations.*

The first formulas for calculating symmetric func-

tions (sums of powers) of the roots of an algebraic

equation in terms of its coefficients are due to Newton.

*A. Brill. Antrittsrecie in Tubingen, 1884. Manuscript.
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Waring also worked in this field (1770) and developed

a theorem, which Gauss independently discovered

(1816), by means of which any symmetric function

may be expressed in terms of the elementary sym-

metric functions. This is accomplished directly by a

method devised by Cayley and Sylvester, through laws

due to the former in regard to the weight of sym
metric functions. The oldest tables of symmetric

functions (extending to the tenth degree) were pub-

lished by Meyer-Hirsch in his collection of problems

(1809). The calculation of these functions, which was

very tedious, was essentially simplified by Cayley and

Brioschi.

The resultant of two equations with one unknown,

or, what is the same, of two forms with two homo-

geneous variables, was given by Euler (1748) and by

Bezout (1764). To both belongs the merit of having

reduced the determination of the resultant to the so-

lution of a system of linear equations.* Bezout intro-

duced the name "resultant" (De Morgan suggested

"eliminant") and determined the degree of this func-

tion. Lagrange and Poisson also investigated ques-

tions of elimination
;
the former stated the condition

for common multiple-roots; the latter furnished a

method of forming symmetric functions of the com-

mon values of the roots of a system of equations. The

further advancement of the theory of elimination was

made by Jacobi, Hesse, Sylvester, Cayley, Cauchy,

* Salmon, Higher Algtbra.
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Brioschi, and Gordan. Jacobi's memoir,* which rep-

resented the resultant as a determinant, threw light

at the same time on the aggregate of coefficients be-

longing to the resultant and on the equations in which

the resultant and its product by another partially ar-

bitrary function are represented as functions of the

two given forms. This notion of Jacobi gave Hesse

the impulse to pursue numerous important investiga-

tions, especially on the resultant of two equations,

which he again developed in 1843 after Sylvester's

dialytic method (1840); then in 1844, "on the elimi-

nation of the variables from three algebraic equations

with two variables"; and shortly after "on the points

of inflexion of plane curves." Hesse placed the main

value of these investigations, not in the form of the

final equation, but in the insight into the composition

of the same from known functions. Thus he came

upon the functional determinant of three quadratic

prime forms, and further upon the determinant of the

second partial differential coefficients of the cubic

form, and upon its Hessian determinant, whose geo-

metric interpretation furnished the interesting result

that in the general case the points of inflexion of a

plane curve of the th order are given by its complete

intersection with a curve of order 3( 2). This re-

sult was previously known for curves of the third

order, having been discovered by Pliicker. To Hesse

is further due the first important example of the re-

*O. H. Noether, Schlomilc/t's Zeitschrift, Bd. ao.
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moval of factors from resultants, in so far as these

factors are foreign to the real problem to be solved.

Hesse, always extending the theory of elimination,

in 1849 succeeded in producing, free from all super-

fluous factors, the long-sought equation of the 14th

degree upon which the double tangents of a curve of

the 4th order depend.

The method of elimination used by Hesse* in 1843

is the dialytic method published by Sylvester in 1840
;

it gives the resultant of two functions of the mth and

nth orders as a determinant, in which the coefficients

of the first enter into n rows, and those of the second

into m rows. It was Sylvester also, who in 1851 in-

troduced the name "discriminant" for the function

which expresses the condition for the existence of

two equal roots of an algebraic equation ; up to this

time, it was customary, after the example of Gauss,

to say "determinant of the function."

The notion of invariance, so important for all

branches of mathematics to-day, dates back in its

beginnings to Lagrangef, who in 1773 remarked

that the discriminant of the quadratic form ax2
-(-

Zbxy -\- cy
1 remains unaltered by the substitution of

x-\-\y for x. This unchangeability of the discrim-

inant by linear transformation, for binar)' and ternary

quadratic forms, was completely proved by Gauss

(1801) ;
but that the discriminant in general and in

every case remains invariant by linear transformation,

* Matthiessen, p. 99. t Salmon, Higher Algebra.
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G. Boole (1841) recognized and first demonstrated.

In 1845, Cayley, adding to the treatment of Boole,

found that there are still other functions which possess

invariant properties in linear transformation, showed

how to determine such functions and named them

"hyperdeterminants." This discovery of Cayley de-

veloped rapidly into the important theory of invari-

ants, particularly through the writings of Cayley,

Aronhold, Boole, Sylvester, Hermite, and Brioschi,

and then through those of Clebsch, Gordan, and

others. After the appearance of Cayley's first paper,

Aronhold made an important contribution by deter-

mining the invariants S and T of a ternary form, and

by developing their relation to the discriminant of

the same form. From 1851 on, there appeared a se-

ries of important articles by Cayley and Sylvester.

The latter created in these a large part of the termin

ology of to-day, especially the name "invariant"

(1851). In the year 1854, Hermite discovered his law

of reciprocity, which states that to every covariant or

invariant of degree p and order r of a form of the mtli

order, corresponds also a covariant or invariant of

degree m and of order r of a form of the pth order.

Clebsch and Gordan used the abbreviation ", intro-

duced for binary forms by Aronhold, in their funda-

mental developments, e. g., in the systematic ex-

tension of the process of transvection in forming

invariants and covariants, already known to Cayley

in his preliminary investigations, in the folding-pro-
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cess of forming elementary covariants, and in the for-

mation of simultaneous invariants and covariants, in

particular the combinants. Gordan's theorem on the

finiteness of the form-system constitutes the most im-

portant recent advance in this theory ;
this theorem

states that there is only a finite number of invariants

and covariants of a binary form or of a system of such

forms. Gordan has also given a method for the for-

mation of the complete form-system, and has carried

out the same for the case of binary forms of the fifth

and sixth orders. Hilbert (1890) showed the finite-

ness of the complete systems for forms of n variables.*

To refer in a word to the great significance of the theory of

invariants for other branches of mathematics, let it suffice to

mention that the theory of binary forms has been transferred by

Clebsch to that of ternary forms (in particular for equations in

line co-ordinates) ; that the form of the third order finds its repre-

sentation in a space-curve of the third order, while binary forms

of the fourth order play a great part in the theory of plane curves

of the third order, and assist in the solution of the equation of

the fourth degree as well as in the transformation of the elliptic

integral of the first class into Hermite's normal form ; finally that

combinants can be effectively introduced in the transformation of

equations of the fifth and sixth degrees. The results of investiga-

tions by Clebsch, Weierstrass, Klein, Bianchi, and Burckhardt,

have shown the great significance of the theory of invariants for

the theory of the hyperelliptic and Abelian functions. This theory

has been further used by Christoffel and Lipschitz in the represen-

tation of the line-element, by Sylvester, Halphen, and Lie in the

case of reciprocants or differential invariants in the theory of dif-

* Meyer, W. F.,
" Bericht iiber den gegenwartigen Stand der Invarianten-

theorie." Jahresbericht der deutschen Mathemaliker-Vereinigung, Bd. I.
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ferential equations, and by Beltrami in his differential parameter

in the theory of curvature of surfaces. Irrational invariants also

have been proposed in various articles by Hilbert.

The theory of probabilities assumed form under

the hands of Pascal and Fermat* In the year 1654,

a gambler, the Chevalier de Mere, had addressed two

inquiries to Pascal as follows :
" In how many throws

with dice can one hope to throw a double six," and

"In what ratio should the stakes be divided if the

game is broken up at a given moment?" These two

questions, whose solution was for Pascal very easy,

were the occasion of his laying the foundation of a

new science which was named by him " Geometric du

hasard." At Pascal's invitation, Fermat also turned

his attention to such questions, using the theory of

combinations. Huygens soon followed the example

of the two French mathematicians, and wrote in 1656f

a small treatise on games of chance. The first to

apply the new theory to economic sciences was the

"grand pensioner" Jean de Witt, the celebrated pupil

of Descartes. He made a report in 1671 on the man-

ner of determining the rate of annuities on the basis

of a table of mortality. Hudde also published in-

vestigations on the same subject. "Calculation of

chances" {Rechnung iibcr den Zufall} received compre-

hensive treatment at the hand of Jacob Bernoulli in

his Ars conjectandi (1713), printed eight years after the

death of the author, a book which remained forgotten

* Cantor, II., p. 688. t Cantor, II., p. 692.
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until Condorcet called attention to it. Since Ber-

noulli, there has scarcely been a distinguished alge-

braist who has not found time for some work in the

theory of probabilities.

To the method of least squares Legendre gave the

name in a paper on this subject which appeared in

1805.* The first publication by Gauss on the same

subject appeared in 1809, although he was in posses-

sion of the method as early as 1795. The honor is

therefore due to Gauss for the reason that he first set

forth the method in its present form and turned it to

practical account on a large scale. The apparent in-

spiration for this investigation was the discovery of

the first planetoid Ceres on the first of January, 1801,

by Piazzi. Gauss calculated by new methods the

orbit of this heavenly body so accurately that the

same planetoid could be again found towards the end

of the year 1801 near the position given by him. The

investigations connected with this calculation ap-

peared in 1809 as Theoria motus corporum coelestium,

etc. The work contained the determination of the

position of a heavenly body for any given time by

means of the known orbit, besides the solution of the

difficult problem to find the orbit from three observa-

tions. In order to make the orbit thus determined

agree as closely as possible with that of a greater

number of observations, Gauss applied the process

*Merriman, M., "List of Writings relating to the Method of Least

Squares." Trans. Conn. Acad., Vol. IV.
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discovered by him in 1795. The object of this was

"so to combine observations which serve the purpose

of determining unknown quantities, that the unavoid-

able errors of observation affect as little as possible

the values of the numbers sought." For this purpose

Gauss gave the following rule*: "Attribute to each

error a moment depending upon its value, multiply

the moment of each possible error by its probability

and add the products. The error whose moment is

equal to this sum will have to be designated as the

mean." As the simplest arbitrary function of the

error which shall be the moment of the latter, Gauss

chose the square. Laplace published in the year 1812

a detailed proof of the correctness of Gauss's method.

Elementary presentations of the theory of combi-

nations are found in the sixteenth century, e. g., by

Cardan, but the first great work is due to Pascal. In

this he uses his arithmetic triangle, in order to de-

termine the number of combinations of m elements of

the nth class. Leibnitz and Jacob Bernoulli produced

much new material by their investigations. Towards

the end of the eighteenth century, the field was cul-

tivated by a number of German scholars, and there

arose under the leadership of Hindenburg the "com-

binatory school,"f whose followers added to the de-

velopment of the binomial theorem. Superior to them

all in systematic proof is Hindenburg, who separated

*Gerhardt, Geschichte der Mathematik in Deutschland, 1877.

tGerhardt, Geschichtt tier Mathematik in Deutschland, 1877.



polynomials into a first class of the form a -\- b -f- c -j-

d-\- . . . and into a second, a-\- bx-\- ex* -|- dx* -f- . . . .

He perfected what was already known, and gave the

lacking proofs to a number of theorems, thus earning

the title of "founder of the theory of combinatory

analysis."

The combinatory school, which included Eschenbach, Rothe,

and especially Pfaff, in addition to its distinguished founder, pro-

duced a varied literature, and commanded respect because of its

elegant formal results. But, in its aims, it stood so far outside the

domain of the new and fruitful theories cultivated especially by

such French mathematicians as Lagrange and Laplace, that it re-

mained without influence in the further development of mathemat-

ics, at least at the beginning of the nineteenth century.

In the domain of infinite series,* many cases which

reduce for the most part to geometric series, were

treated by Euclid, and to a greater degree by Apol-

lonius. The Middle Ages added nothing essential,

and it remained for more recent generations to make

important contributions to this branch of mathemat-

ical knowledge. Saint-Vincent and Mercator devel-

oped independently the series for log(l + *), Gregory

those for tan"1*, sin AT, cos#, sec#, cosec^r. In the

writings of the latter are also found, in the treatment

of infinite series, the expressions "convergent" and

"divergent." Leibnitz was led to infinite series,

through consideration of finite arithmetic series. He

realized at the same time the necessity of examining

* Reiff, R., Gcschichte der unendlichcn Reihen, Tubingen, 1889.
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more closely into the convergence and divergence of

series. This necessity was also felt by Newton, who

used infinite series in a manner similar to that of

Apollonius in the solution of algebraic and geometric

problems, especially in the determination of areas,

and consequently as equivalent to integration.

The new ideas introduced by Leibnitz were further

developed by Jacob and John Bernoulli. The former

found the sums of series with constant terms, the lat-

ter gave a general rule for the development of a func-

tion into an infinite series. At this time there were

no exact criteria for convergence, except those sug-

gested by Leibnitz for alternating series.

During the years immediately following, essential

advances in the formal treatment of infinite series

were made. De Moivre wrote on recurrent series and

exhausted almost completely their essential proper-

ties. Taylor's and Maclaurin's closely related series

appeared, Maclaurin developing a rigorous proof of

Taylor's theorem, giving numerous applications of it,

and stating new formulas of summation. Euler dis-

played the greatest skill in the handling of infinite

series, but troubled himself little about convergence

and divergence. He deduced the exponential from

the binomial series, and was the first to develop ra-

tional functions into series of sines and cosines of

integral multiple arguments.* In this manner he

defined the coefficients of a trigonometric series by

*
Reiff, Geschickte der unenJlichen Reihen, 1889, pp. 105, 127.
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definite integrals without applying these important

formulas to the development of arbitrary functions

into trigonometric series. This was first accomplished

by Fourier (1822), whose investigations were com-

pleted by Riemann and Cauchy. The investigation

was brought to a temporary termination by Dirichlet

(1829), in so far as by rigid methods he gave it a sci-

entific foundation and introduced general and com-

plex investigations on the convergence of series.*

From Laplace date the developments into series of

two variables, especially into recurrent series. Le-

gendre furnished a valuable extension of the theory

of series by the introduction of spherical functions.

With Gauss begin more exact methods of treat-

ment in this as in nearly all branches of mathematics,

the establishment of the simplest criteria of conver-

gence, the investigation of the remainder, and the

continuation of series beyond the region of conver-

gence. The introduction to this was the celebrated

series of Gauss :

which Euler had already handled but whose great

value he had not appreciated, f The generally ac-

cepted naming of this series as "hypergeometric" is

due to J. F. Pfaff, who proposed it for the general

series in which the quotient of any term divided by the

* Kuimner,
" Gedachtnissrede auf Lejeune-Dirichlet." Berliner Abhand-

lungen, 1860.

t Reiff, Geschichtt der unendlicken Reihen, 1889, p. 161.
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preceding is a function of the index. Euler, follow

ing Wallis, used the same name for the series in which

that quotient is an integral linear function of the

index.* Gauss, probably influenced by astronomical

applications, stated that his series, by assuming cer-

tain special values of a, /?, y, could take the place

of nearly all the series then known; he also investi

gated the essential properties of the function repre-

sented by this series and gave for series in general an

important criterion of convergence. We are indebted

to Abel (1826) for important investigations on the con-

tinuity of series.

The idea of uniform convergence arose from the

study of the behavior of series in the neighborhood of

their discontinuities, and was expressed almost simul-

taneously by Stokes and Seidel (1847-1848). The

latter calls a series uniformly convergent when it rep-

resents a discontinuous function of a quantity x, the

separate terms of which are continuous, but in the

vicinity of the discontinuities is of such a nature that

values of x exist for which the series converges as

slowly as desired, f

On account of the lack of immediate appreciation

of Gauss's memoir of 1812, the period of the discovery

of effective criteria of convergence and divergence |

may be said to begin with Cauchy (1821). His meth-

*Riemann, Werke, p. 78.

tReiff, Geschichte der unendlichen Reihen, 1889, p. 207.

JPringsheim, "Allgemeine Theorie der Divergenz und Konvergenz von

Reihen mil positiven Gliedern," Math. Annalen, XXXV.
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ods of investigation, as well as the theorems on in-

finite series with positive terms published between

1832 and 1851 by Raabe, Duhamel, De Morgan, Ber-

trand, Bonnet, and Paucker, set forth special criteria,

for they compare generally the nth term with particu-

lar functions of the form a", n*, (log)* and others.

Criteria of essentially more general nature were first

discovered by Kummer (1835), and were generalized

by Dini (1867). Dini's researches remained for a

time, at least in Germany, completely unknown. Six

years later Paul du Bois-Reymond, starting with the

same fundamental ideas as Dini, discovered anew the

chief results of the Italian mathematician, worked

them out more thoroughly and enlarged them essen-

tially to a system of convergence and divergence cri-

teria of the first and second kind, according as the

general term of the series an or the quotient an+I :an is

the basis of investigation. Du Bois-Reymond's re-

sults were completed and in part verified somewhat

later by A. Pringsheim.

After the solution of the algebraic equations of the

third and fourth degrees was accomplished, work on

the structure of the system of algebraic equations in

general could be undertaken. Tartaglia, Cardan, and

Ferrari laid the keystone of the bridge which led from

the solution of equations of the second degree to the

complete solution of equations of the third and fourth

degrees. But centuries elapsed before an Abel threw

a flood of light upon the solution of higher equations.
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Vieta had found a means of solving equations allied

to evolution, and this was further developed by Harriot

and Oughtred, but without making the process less

tiresome.* Harriot's name is connected with another

theorem which contains the law of formation of the

coefficients of an algebraic equation from its roots,

although the theorem was first stated in full by Des-

cartes (1683) and proved general by Gauss.

Since there was lacking a sure method of deter-

mining the roots of equations of higher degree, the

attempt was made to include these roots within as

narrow limits as possible. De Beaune and Van

Schooten tried to do this, but the first usable methods

date from Maclaurin {Algebra, published posthum-

ously in 1748) and Newton (1722) who fixed the real

roots of an algebraic equation between given limit?.

In order to effect the general solution of an algebraic

equation, the effort was made either to represent the

given equation as the product of several equations of

lower degree, a method further developed by Hudde,

or to reduce, through extraction of the square root,

an equation of even degree to one whose degree is

half that of the given equation ;
this method was used

by Newton, but he accomplished little in this direc-

tion.

Leibnitz had exerted himself as strenuously as

Newton to make advances in the theory of algebraic

equations. In one of his letters he states that he has

* Montucla, Histoire des Mathimatiques, 1799-1802.
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been engaged for a long time in attempting to find

the irrational roots of an equation of any degree, by

eliminating the intermediate terms and reducing it to

the form x"= A, and that he was, persuaded that in

this manner the complete solution of the general equa-

tion of the nth degree could be effected. This method

of transformation of the general equation dates back

to Tschirnhausen and is found as "Nova methodus

etc." in the Leipziger Ada eruditorum of the year 1683.

In the equation

x" + Ax"'1 + BX"-* +
Tschirnhausen places

the elimination of x from these two equations gives

likewise an equation of the th degree in y, in which

the undetermined coefficients a, ft, y, . . . can so be

taken as to give the equation in y certain special char-

acteristics, for example, to make some of the terms

vanish. From the values of y, the values of x are de-

termined. By this method the solution of equations

of the 3rd and 4th degrees is made to depend respec-

tively upon those of the 2nd and 3rd degrees ;
but the

application of this method to the equation of the 5th

degree, leads to one of the 24th degree, upon whose

solution the complete solution of the equation of the

5th degree depends.

Afterwards, also, toward the end of the seventeenth

and the beginning of the eighteenth century, De Lagny,
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Rolle, Laloubere, and Leseur made futile attempts to

advance with rigorous proofs beyond the equation of

the fourth degree. Euler* took the problem in hand

in 1749. He attempted first to resolve by means of

undetermined coefficients the equation of degree 2

into two equations each of degree n, but the results

obtained by him were not more satisfactory than those

of his predecessors, in that an equation of the eighth

degree by this treatment led to an equation of the 70th

degree. These investigations were not valueless, how-

ever, since through them Euler discovered the proof

of the theorem that every rational integral algebraic

function of even degree can be resolved into real fac

tors of the second degree.

In a work of the date 1762 Euler attacked the so-

lution of the equation of the nth degree directly. Judg-

ing from equations of the 2nd and 3rd degrees, he sur-

mised that a root of the general equation of the wth

degree might be composed of (n 1) radicals of the

th degree with subordinate square roots. He formed

expressions of this sort and sought through compari-

son of coefficients to accomplish his purpose. This

method presented no difficulty up to the fourth de-

gree, but in the case of the fifth degree Euler was

compelled to limit himself to particular cases. For

example, he obtained from

x <>_ 40*3 _ 72*8 _j_ 50^ _j_ 98=
the following value :

* Cantor, III., p. 582.
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7 + _31 3i 7

_(- l/_l8-flOi/^7 + v/L-18 101/H7.

Analogous to this attempt of Euler is that of War-

ing (1779). In order to solve the equation /(*)=
of degree n, he places

After clearing of radicals, he gets an equation of the

//th degree, J?(x)= Q, and by equating coefficients

finds the necessary equations for determining a, b, c,

. . . q and p, but is unable to complete the solution.

Bdzout also proposed a method. He eliminated jy

from the equations y" 1=0, ay"~
l
-}- by

n~*
-f- . . .

-j-^c= 0, and obtained an equation of the th degree,

/(#)= (), and then equated coefficients. B6zout was

no more able to solve the general equation of the 5th

degree than Waring, but the problem gave him the

impulse to perfect methods of elimination.

Tschirnhausen had begun, with his transforma-

tion, to study the roots of the general equation as func-

tions of the coefficients. The same result can be

reached by another method not different in principle,

namely the formation of resolvents. In this way,

Lagrange, Malfatti and Vandermonde independently

reached results which were published in the year 1771.

Lagrange's work, rich in matter, gave an analysis of

all the then known methods of solving equations, and

explained the difficulties which present themselves in
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passing beyond the fourth degree. Besides this he

gave methods for determining the limits of the roots

and the number of imaginary roots, as well as meth-

ods of approximation.

Thus all expedients for solving the general equa-

tion, made prior to the beginning of the nineteenth

century yielded poor results, and especially with ref-

erence to Lagrange's work Montucla* says "all this

is well calculated to cool the ardor of those who are

inclined to tread this new way. Must one entirely

despair of the solution of this problem?"

Since the general problem proved insoluble, at-

tempts were made with special cases, and many ele-

gant results were obtained in this way. De Moivre

brought the solution of the equation

2-3.4.5
-

for odd integral values of n, into the form

Euler investigated symmetric equations and Be"zout

deduced the relation between the coefficients of an

equation of the th degree which must exist in order

that the same may be transformed intoy-|-a= 0.

Gauss made an especially significant step in ad-

vance in the solution of the cyclotomic equation x" 1

= 0, where n is a prime number. Equations of this

sort are closely related to the division of the circum-

"Hittaire del Sciences Mathimatiques, 1799-1802.



ference into n equal parts. If y is the side of an in-

scribed -gon in a circle of radius 1, and z the diago-

nal connecting the first and third vertices, then

. 7T

y= 2sm , z
n

If however

27r . 2 / 2
x= cos --f-/sm ,

cos
n n \ n

then the equation x" 1= is to be considered as the

algebraic expression of the problem of the construc-

tion of the regular -gon.

The following very general theorem was proved

by Gauss.* "If n is a prime number, and if n 1 be

resolved into prime factors a, b, c, . . . so that n 1=
a - b& c*t . . ., then it is always possible to make the so-

lution of xn 1= depend upon that of several equa-

tions of lower degree, namely upon a equations of

degree a, /? equations of degree b, etc." Thus for

example, the solution of x7S 1= (the division of

the circumference into 73 equal parts) can be effected,

since n 1=72=32 .23
, by solving three quadratic

and two cubic equations. Similarly x11 1=0 leads

to four equations of the second degree, since n 1=
16= 2*; therefore the regular 17-gon can be con-

structed by elementary geometry, a fact which before

the time of Gauss no one had anticipated.

Detailed constructions of the regular 17-gon by

elementary geometry were first given by Pauker and

* Legendre, Theorie tics Nombres.



1 62 HISTORY OF MATHEMATICS.

Erchinger.* A noteworthy construction of the same

figure is due to von Staudt.

For the case that the prime number has the form 2m + 1,

the solution of the equation x" 1 = depends upon the solution

of m quadratic equations of which only m 1 are necessary in the

construction of the regular w-gon. It should be observed that for

m= 2* (k a positive integer), the number 2"1

-)-! may be prime,

but, as R. Baltzerf has pointed out, is not necessarily prime. If

m is given successively the values

1, 2, 8. 4, 5, 6. 7, 8, 16. 2 12
. 2",

n = 2** -f- 1 will take the respective values

3, 5, 9, 17, 33, 65, 129, 257. 65537. 2*
12 + 1, 2**

8
-f 1,

of which only 3, 5, 17, 257, 65537 are prime. The remaining num-

bers are composite ; in particular, the last two values of n have

respectively the factors 114689 and 167772161. The circle there-

fore can be divided into 257 or 65537 equal parts by solving re-

spectively 7 or 15 quadratic equations, which is possible by ele-

mentary geometric construction.

From the equalities

255= 28 1 = (2* 1)(2* + 1) = 15-17, 256 = 28
,

65535= 216 1 = (2
8

1) (2
8 + 1)= 255 257, 65536 = 216

,

it is easily seen that, by elementary geometry, that is, by use of

only straight edge and compasses, the circle can be divided respec

tively into 255, 256, 257 ; 65535, 65536, 65537 equal parts. The

process cannot be continued without a break, since n =232 + 1 is

not prime.

The possibility of an elementary geometric construction of the

regular 65535-gon is evident from the following :

65535 = 255 257 = 15-17 257.

If the circumference of the circle is 1, then since

* Gauss, Werkt, II., p. 187.

t Netto, Substitutionentheorie, 1882
; English by Cole, iSga, p. 187.
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it follows that gsiro f tne circumference can be obtained by ele-

mentary geometric operations.

After Gauss had given in his earliest scientific

work, his doctor's dissertation, the first of his proofs

of the important theorem that every algebraic equa-

tion has a real or an imaginary root, he made in his

great memoir of 1801 on the theory of numbers, the

conjecture that it might be impossible to solve gen-

eral equations of degree higher than the fourth by

radicals. Ruffini and Abel gave a rigid proof of this

fact, and it is due to these investigations that the

fruitless efforts to reach the solution of the general

equation by the algebraic method were brought to an

end. In their stead the question formulated by Abel

came to the front, "What are the equations of given

degree which admit of algebraic solution?"

The cyclotomic equations of Gauss form such a

group. But Abel made an important generalization

by the theorem that an irreducible equation is always

soluble by radicals when of two roots one can be ra-

tionally expressed in terms of the other, provided at

the same time the degree of the equation is prime ;
if

this is not the case, the solution depends upon the

solution of equations of lower degree.

A further great group of algebraically soluble equa-

tions is therefore comprised in the Abelian equations.

But the question as to the necessary and sufficient

conditions for the algebraic solubility of an equation
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was first answered by the youthful Galois, the crown

of whose investigations is the theorem, "If the degree

of an irreducible equation is a prime number, the

equation is soluble by radicals alone, provided the

roots of this equation can be expressed rationally in

terms of any two of them."

Abel's investigations fall between the years 1824

and 1829, those of Galois in the years 1830 and 1831.

Their fundamental significance for all further labors

in this direction is an undisputed fact
;
the question

concerning the general type of algebraically soluble

equations alone awaits an answer.

Galois, who also earned special honors in the field

of modular equations which enter into the theory of

elliptic functions, introduced the idea of a group of

substitutions.* The importance of this innovation,

and its development into a formal theory of substitu-

tions, as Cauchy has first given it in the Exercices

d }

analyse, etc., when he speaks of "systems of con-

jugate substitutions," became manifest through geo-

metric considerations. The first example of this was

furnished by Hesse f in his investigation on the nine

points of inflexion of a curve of the third degree. The

equation of the ninth degree upon which they depend

belongs to the class of algebraically soluble equations.

In this equation there exists between any two of the

roots and a third determined by them an algebraic re-

*Netto, Subititutionentheorie, 1882. English by Cole, 1892.

+ Noether, O. H., Schlomilch's Zeitschrift, Band 20.
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lation expressing the geometric fact that the nine

points of inflexion lie by threes on twelve straight

lines. To the development of the substitution theory

in later times, Kronecker, Klein, Noether, Hermite,

Betti, Serret, Poincar6, Jordan, Capelli, and Sylow

especially have contributed.

Most of the algebraists of recent times have par-

ticipated in the attempt to solve the equation of the

fifth degree. Before the impossibility of the algebraic

solution was known, Jacobi at the age of 16 had made

an attempt in this direction
;
but an essential advance

is to be noted from the time when the solution of the

equation of the fifth degree was linked with the theory

of elliptic functions.* By the help of transformations

as given on the one hand by Tschirnhausen and on

the other by E. S. Bring (1786), the roots of the equa-

tion of the fifth degree can be made to depend upon

a single quantity only, and therefore the equation, as

shown by Hermite, can be put into the form t* / A
= 0. By Riemann's methods, the dependence of the

roots of the equation upon the parameter A is illus-

trated; on the other hand, it is possible by power-

series to calculate these five roots to any degree of ap-

proximation. In 1858, Hermite and Kronecker solved

the equation of the fifth degree by elliptic functions,

but without reference to the algebraic theory of this

equation, while Klein gave the simplest possible solu-

* Klein, F., Vergleichende Betrachtvitgcn uber neuere geomeirische For-

scliunScn, 1872.
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tion by transcendental functions by using the theory

of the icosahedron.

The solution of general equations of the nth degree for >4
by transcendental functions has therefore become possible, and

the operations entering into the solution are the following : Solu-

tion of equations of lower degree ; solution of linear differential

equations with known singular points ; determination of constants

of integration, by calculating the moduli of periodicity of hyper-

elliptic integrals for which the branch-points of the function to be

integrated are known ; finally the calculation of theta-functions of

several variables for special values of the argument.

The methods leading to the complete solution of

an algebraic equation are in many cases tedious ;
on

this account the methods of approximation of real

roots are very important, especially where they can

be applied to transcendental equations. The most

general method of approximation is due to Newton

(communicated to Barrow in 1669), but was also

reached by Halley and Raphson in another way.*

For the solution of equations of the third and fourth

degrees, John Bernoulli worked out a valuable method

of approximation in his Lectiones calculi integralis.

Further methods of approximation are due to Daniel

Bernoulli, Taylor, Thomas Simpson, Lagrange, Le-

gendre, Homer, and others.

By graphic and mechanical means also, the roots of an equa-

tion can be approximated. C. V. Boysf made use of a machine

for this purpose, which consisted of a system of levers and ful-

crums ; Cunynghamef used a cubic parabola with a tangent scale

*Montucla. t Nature, XXXIII., p. 166
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on a straight edge ; C. Reuschle* used an hyperbola with an ac-

companying gelatine-sheet, so that the roots could be read as in-

tersections of an hyperbola with a parabola. Similar methods,

suited especially to equations of the third and fourth degrees are

due to Bartl, R. Hoppe, and Oekinghausf ; Lalanne and Mehmke

also deserve mention in this connection.

For the solution of equations, there had been in-

vented in the seventeenth century an algorism which

since then has gained a place in all branches of mathe-

matics, the algorism of determinants. | The first sug-

gestion of computation with those regularly formed

aggregates, which are now called determinants (after

Cauchy), was given by Leibnitz in the year 1693.

He used the aggregate

an, a\i, a\*

<*2i, #22, a**

in forming the resultant of linear equations with

1 unknowns, and that of two algebraic equations

with one unknown. Cramer (1750) is considered as

a second inventor, because he began to develop a sys-

tem of computation with determinants. Further the-

orems are due to Bezout (1764), Vandermonde (1771),

Laplace (1772), and Lagrange (1773). Gauss's Dis-

quisitiones arithmeticae (1801) formed an essential ad-

* BBklen, O., Math. Mittheilwngen, 1886, p. IO3.

t Fortschritte, 1883; 1884.

t Muir, T., Theory ofDeterminant* in the Historical Order of its Develop-

ment, Parti, 1890; Baltzer. R., Theorie und Antvendungen der Determinanten,
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vance, and this gave Cauchy the impulse to many
new investigations, especially the development of the

general law (1812) of the multiplication of two deter-

minants.

Jacobi by his "masterful skill in technique," also

rendered conspicuous service in the theory of determi-

nants, having developed a theory of expressions which

he designated as "functional determinants." The

analogy of these determinants with differential quo-

tients led him to the general "principle of the last

multiplier
" which plays a part in nearly all problems

of integration.* Hesse considered in an especially

thorough manner symmetric determinants whose ele-

ments are linear functions of the co-ordinates of a

geometric figure. He observed their behavior by lin-

ear transformation of the variables, and their rela-

tions to such determinants as are formed from them

by a single bordering."!' Later discussions are due to

Cayley on skew determinants, and to Nachreiner and

S. Giinther on relations between determinants and

continued fractions.

The appearance of the differential calculus forms

one of the most magnificent discoveries of this period.

The preparatory ideas for this discovery appear in

manifest outline in Cavalieri,J who in a work Metho-

dus indivisibilium (1635) considers a space-element as

* Dirichlet,
" Gedachtnissrede auf Jacobi." Crelle's Journal, Band 52.

tNoether, O. H., Schlomilch's Zeittchrift, Band 20.

tl.iiroth, Rektoratsrede, Freiburg, 1889; Cantor, II., p. 759.
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the sum of an infinite number of simplest space-ele-

ments of the next lower dimension, e. g., a^solid as

the sum of an infinite number of planes. The danger

of this conception was fully appreciated by the inven-

tor of the method, but it was improved first by Pascal

who considers a surface as composed of an infinite

number of infinitely small rectangles, then by Fermat

and Roberval
;
in all these methods, however, there

appeared the drawback that the sum of the resulting

series could seldom be determined. Kepler remarked

that a function can vary only slightly in the vicinity

of a greatest or least value. Fermat, led by this

thought, made an attempt to determine the maximum

or minimum of a function. Roberval investigated the

problem of drawing a tangent to a curve, and solved

it by generating the curved line by the composition of

two motions, and applied the parallelogram of veloci-

ties to the construction of the tangents. Barrow,

Newton's teacher, used this preparatory work with

reference to Cartesian co-ordinate geometry. He

chose the rectangle as the velocity- parallelogram, and

at the same time introduced like Fermat infinitely

small quantities as increments of the dependent and

independent variables, with special symbols. He gave

also the rule, that, without affecting the validity of the

result of computation, higher powers of infinitely small

quantities may be neglected in comparison with the

first power. But Barrow was not able to handle frac-

tions and radicals involving infinitely small quantities,
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and was compelled to resort to transformations to re-

move them. Like his predecessors, he was able to

determine in the simpler cases the value of the quo-

tient of two, or the sum of an infinite number of in-

finitesimals. The general solution of such questions

was reached by Leibnitz and Newton, the founders of

the differential calculus.

Leibnitz gave for the calculus of infinitesimals, the

notion of which had been already introduced, further

examples and also rules for more complicated cases.

By summation according to the old methods,* he de-

duced the simplest theorems of the integral calculus,

which he, by prefixing a long S as the sign of summa-

tion wrote,

/ /*= /<+=/-+/'
From the fact that the sign of summation C raised

the dimension, he drew the conclusion that by differ-

ence-forming the dimension must be diminished so

that, therefore, as he wrote in a manuscript of Oct.

29, 1675, from Cl=ya, follows immediately 1=-^.O a
Leibnitz tested the power of his new method by

geometric problems ; he sought, for example, to de-

termine the curve "for which the intercepts on the

axis to the feet of the normals vary as the ordinates."

In this he let the abscissas x increase in arithmetic

ratio and designated the constant difference of the

Gerhardt, Geschichte der Mathematik in Devttckland, 1877; Cantor, III.,

p. 160.



abscissas first by and later by dx, without explain-

ing in detail the meaning of this new symbol. In

1676 Leibnitz had developed his new calculus so far

as to be able to solve geometric problems which could

not be reduced by other methods. Not before 1686,

however, did he publish anything about his method,

its great importance being then immediately recog-

nized by Jacob Bernoulli.

What Leibnitz failed to explain in the develop-

ment of his methods, namely what is understood by

his infinitely small quantities, was clearly expressed

by Newton, and secured for him a theoretical superi-

ority. Of a quotient of two infinitely small quantities

Newton speaks as of a limiting value* which the ratio

of the vanishing quantities approaches, the smaller

they become. Similar considerations hold for the sum

of an infinite number of such quantities. For the de-

termination of limiting values, Newton devised an

especial algorism, the calculus of fluxions, which is

essentially identical with Leibnitz's differential calcu-

lus. Newton considered the change in the variable

as a flowing ; he sought to determine the velocity of

the variation of the function when the variable changes

with a given velocity. The velocities were called

fluxions and were designated by x, y, z (instead of

dx, dy, dz, as in Leibnitz's writings). The quantities

themselves were called fluents, and the calculus of

fluxions determines therefore the velocities of given
*
Liiroth, Rektoratsrede, Freiburg, 1889.
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motions, or seeks conversely to find the motions when

the law of their velocities is known. Newton's paper

on this subject was finished in 1671 under the name

of Methodus fluxionum, but was first published in 1736,

after his death. Newton is thought by some to have

borrowed the idea of fluxions from a work of Napier.*

According to Gauss, Newton deserved much more

credit than Leibnitz, although he attributes to the

latter great talent, which, however, was too much dis-

sipated. It appears that this judgment, looked at

from both sides, is hardly warranted. Leibnitz failed

to give satisfactory explanation of that which led

Newton to one of his most important innovations, the

idea of limits. On the other hand, Newton is not

always entirely clear in the purely analytic proo .

Leibnitz, too, deserves very high praise for the intro-

duction of the appropriate symbols C and dx, as well

as for stating the rules of operating with them. To-

day the opinion might safely be expressed that the

differential and integral calculus was independently

discovered by Newton and by Leibnitz
; that Newton

is without doubt the first inventor; that Leibnitz, on

the other hand, stimulated by the results communi-

cated to him by Newton, but without the knowledge

of Newton's methods, invented independently the

calculus; and that finally to Leibnitz belongs the

priority of publication, "f
* Cohen, Dot Frinnip der lufinitesimalmethodc und seine Getckichte, 1889:

Cantor, III., p. 163.

+ Lfiroth. A very good summary of the discussion is also given in Balls
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The systematic development of the new calculus

made necessary a clearer understanding of the idea of

the infinite. Investigations on the infinitely great are

of course of only passing interest for the explanation

of natural phenomena,* but it is entirely different

with the question of the infinitely small. The infini-

tesimal f appears in the writings of Kepler as well as

in those of Cavalieri and Wallis under varying forms,

essentially as "infinitely small null-value," that is, as

a quantity which is smaller than any given quantity,

and which forms the limit of a given finite quantity.

Euler's indivisibilia lead systematically in the same

direction. Fermat, Roberval, Pascal, and especially

Leibnitz and Newton operated with the "unlimitedly

small," yet in such a way that frequently an abbrevi-

ated method of expression concealed or at least ob-

scured the true sense of the development. In the

writings of John Bernoulli, De 1'Hospital, and Pois-

son, the infinitesimal appears as a quantity different

from zero, but which must become less than an assign-

able value, i. e., as a "
pseudo-infinitesimal

"
quantity.

By the formation of derivatives, which in the main

are identical with Newton's fluxions, LagrangeJ at-

tempted entirely to avoid the infinitesimal, but his

attempts only served the purpose of bringing into

Short History ofMathematics, London, 1888. The best summary is that given
in Cantor, Vol. III.

* Riemann, Werke, p. 267.

t R. Hoppe, Differentialrechnung, 1865.

tLiiroth, Rekioratsrede, Freiburg, 1889.
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prominence the urgent need for a deeper foundation

for the theory of the infinitesimal for which Tacquet

and Pascal in the seventeenth century, and Maclaurin

and Carnot in the eighteenth had made preparation.

We are indebted to Cauchy for this contribution. In

his investigations there is clearly established the mean-

ing of propositions which contain the expression "in-

finitesimal," and a safe foundation for the differential

calculus is thereby laid.

The integral calculus was first further extended

by Cotes, who showed how to integrate rational alge-

braic functions. Legendre applied himself to the in-

tegration of series, Gauss to the approximate deter-

mination of integrals, and Jacobi to the reduction and

evaluation of multiple integrals. Dirichlet is espe-

cially to be credited with generalizations on definite

integrals, his lectures showing his great fondness for

this theory.* He it was who welded the scattered

results of his predecessors into a connected whole,

and enriched them by a new and original method of

integration. The introduction of a discontinuous fac-

tor allowed him to replace the given limits of integra-

tion by different ones, often by infinite limits, without

changing the value of the integral. In the more re

cent investigations the integral has become the means

of defining functions or of generating others.

In the realm of differential equations f the works

*Knmmer, " Gedachtnissrede auf Lejeune-Dirichlet." Berliner Abh., 1860

t Cantor, III., p. 429; Schiesinger, L., Handbuch dtr Tkeorie der linearen
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worthy of mention date back to Jacob and John Ber-

noulli and to Riccati. Riccati's merit consists mainly

in having introduced Newton's philosophy into Italy.

He also integrated for special cases the differential

equation named in his honor an equation completely

solved by Daniel Bernoulli and discussed the ques-

tion of the possibility of lowering the order of a given

differential equation. The theory first received a de-

tailed scientific treatment at the hands of Lagrange,

especially as far as concerns partial differential equa-

tions, of which D'Alembert and Kuler had handled
d"*u d^u

the equation ^ =
r^- Laplace also wrote on this

differential equation and on the reduction of the solu-

tion of linear differential equations to definite integ-

rals.

On German soil, J. F. Pfaff, the friend of Gauss

and next to him the most eminent mathematician

of that time, presented certain elegant investigations

(1814, 1815) on differential equations,* which led

Jacobi to introduce the name "Pfaffian problem."

Pfaff found in an original way the general integration

of partial differential equations of the first degree for

any number of variable quantities. Beginning with

the theory of ordinary differential equations of the

first degree with n variables, for which integrations

Differentialgleichnngen, Bd. I., 1895, an excellent historical review; Mansion,

P., Theorie der partiellen Dlfferentialgleichungen erster Ordnung, deutsch

von Maser, Leipzig, 1892, also excellent on history.

*A. Brill, "Das mathematisch-physikalische Seminar in Tubingen."
Aus der Festschrift der Uni-versitat turn KSnigs-JMliium, 1889.
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were given by Monge (1809) in special simple cases,

Pfaff gave their general integration and considered

the integration of partial differential equations as a

particular case of the general integration. In this the

general integration of differential equations of every

degree between two variables is assumed as known.*

Jacobi (1827, 1836) also advanced the theory of differ-

ential equations of the first order. The treatment

was so to determine unknown functions that an integ-

ral which contains these functions and the differential

coefficient in a prescribed way reaches a maximum or

minimum. The condition therefor is the vanishing of.

the first variation of the integral, which again finds its

expression in differential equations, from which the

unknown functions are determined. In order to be

able to distinguish whether a real maximum or mini-

mum appears, it is necessary to bring the second va-

riation into a form suitable for investigating its sign.

This leads to new differential equations which La-

grange was not able to solve, but of which Jacobi was

able to show that their integration can be deduced

from the integration of differential equations belong-

ing to the first variation. Jacobi also investigated

the special case of a simple integral with one unknown

function, his statements being completely proved by

Hesse. Clebsch undertook the general investigation

of the second variation, and he was successful in

showing for the case of multiple integrals that new

* Gauss, Wtrke, III., p. 232.
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integrals are not necessary for the reduction of the

second variation. Clebsch (1861, 1862), following the

suggestions of Jacobi, also reached the solution of the

Pfaffian problem by making it depend upon a system

of simultaneous linear partial differential equations,

the statement of which is possible without integration.

Of other investigations, one of the most important is

the theory of the equation

^!l' +^ +^ = o,

which Dirichlet encountered in his work on the po-

tential, but which had been known since Laplace

(1789). Recent investigations on differential equa-

tions, especially on the linear by Fuchs, Klein, and

Poincare, stand in close connection with the theories

of functions and groups, as well as with those of equa-

tions and series.

"Within a half century the theory of ordinary differential

equations has come to be one of the most important branches of

analysis, the theory of partial differential equations remaining as

one still to be perfected. The difficulties of the general problem

of integration are so manifest that all classes of investigators have

confined themselves to the properties of the integrals in the neigh-

borhood of certain given points. The new departure took its

greatest inspiration from two memoirs by Fuchs (1866, 1868), a

work elaborated by Thome" and Frobenius. . . .

"Since 1870 Lie's labors have put the entire theory of differ-

ential equations on a more satisfactory foundation. He has shown

that the integration theories of the older mathematicians, which

had been looked upon as isolated, can by the introduction of the

concept of continuous groups of transformations be referred to a
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common source, and that ordinary differential equations which

admit the same infinitesimal transformations present like difficul-

ties of integration He has also emphasized the subject of trans-

formations of contact (Beriihrungs-Transformationen) which

underlies so much of the recent theory. . . . Recent writers have

shown the same tendency noticeable in the works of Monge and

Cauchy, the tendency to separate into two schools, the one inclin-

ing to use the geometric diagram and represented by Schwarz,

Klein, and Goursat, the other adhering to pure analysis, of which

Weierstrass, Fuchs, and Frobenius are types."*

A short time after the discovery of the differential

and integral calculus, namely in the year 1696, John
Bernoulli proposed this problem to the mathemati-

cians of his time : To find the curve described by a

body falling from a given point A to another given

point B in the shortest time.f The problem came from

a case in optics, and requires a function to be found

whose integral is a minimum. Huygens had devel-

oped the wave-theory of light, and John Bernoulli

had found under definite assumptions the differential

equation of the path of the ray of light. Of such mo-

tion he sought another example, and came upon the

cycloid as the brachistochrone, that is, upon the above

statement of the problem, for which up to Easter

1697, solutions from the Marquis de 1'Hospital, from

Tschirnhausen, Newton, Jacob Bernoulli and Leib-

nitz were received. Only the two latter treated the

* Smith, D. E., "History of Modern Mathematics," in Merriman and
Woodward's Higher Mathematics, New York, 1896, with authorities cited.

t Reiff
, R.,

" Die Anfange der Variationsrechnung," Math. Mittheilungen
von Boklen, 1887. Cantor, III., p. 225. Woodhonse, A Treatise on Isoferimet-
rical Problems (Cambridge, 1810). The last named work is rare.
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problem as one of maxima and minima. Jacob Ber-

noulli's method remained the common one for the

treatment of similar cases up to the time of Lagrange,

and he is therefore to be regarded as one of the found-

ers of the calculus of variations. At that time* all

problems which demanded the statement of a maxi-

mum or minimum property of functions were called

isoperimetric problems. To the oldest problems of

this kind belong especially those in which one curve

with a maximum or minimum property was to be found

from a class of curves of equal perimeters. That the

circle, of all isoperimetric figures, gives the maximum

area, is said to have been known to Pythagoras. In

the writings of Pappus a series of propositions on fig-

ures of equal perimeters are found. Also in the four-

teenth century the Italian mathematicians had worked

on problems of this kind. But "the calculus of varia-

tions may be said to begin with . . . John Bernoulli

(1696). It immediately occupied the attention of

Jacob Bernoulli and the Marquis de PHospital, but

Euler first elaborated the subject, "f He| investigated

the isoperimetric problem first in the analytic-geo-

metric manner of Jacob Bernoulli, but after he had

worked on the subject eight years, he came in 1744

upon a new and general solution by a purely analytic

method (in his celebrated work : Methodus inveniendi

* Anton, Geschichte des isoperimetrischen Problems, 1888.

t Smith, D. E., History ofModern Mathematics, p. 533.

$ Cantor, III., pp. 243, 819, 830.
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lineas curvas, etc.); this solution shows how those or-

dinates of the function which are to assume a greatest

or least value can be derived from the variation of the

curve-ordinate. Lagrange (ssai d'une nouvelle m^

thode, etc., 1760 and 1761) made the last essential step

from the pointwise variation of Euler and his prede-

cessors to the simultaneous variation of all ordinates

of the required curve by the assumption of variable

limits of the integral. His methods, which contained

the new feature of introducing 8 for the change of the

function, were later taken up in Eider's Integral Cal-

culus. Since then the calculus of variations has been

of valuable service in the solution of problems in the-

ory of curvature.

The beginnings of a real theory of functions*, espe-

cially that of the elliptic and Abelian functions lead

back to Fagnano, Maclaurin, D'Alembert, and Landen.

Integrals of irrational algebraic functions were treated,

especially those involving square roots of polynomials

of the third and fourth degrees ;
but none of these

works hinted at containing the beginnings of a science

dominating the whole subject of algebra. The matter

assumed more definite form under the hands of Euler,

Lagrange, and Legendre. For a long time the only

transcendental functions known were the circular func-

* Brill, A., and Noether, M., "Die Entwickelnng der Theorie der alge-

braischen Functionen in atterer und neuerer Zeit, Bericht erstattet der Deut-

schen Mathematiker-Vereinigung, Jakresbertcht, Bd. II., pp. 107-566, Berlin,

1894 ; KOnigsberger, L., Zur Geschichte der Theorie der elliptischen Transcen-

denten in den Jahren 1826-1829, Leipzig, 1879.
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tions (sin x, cos x, . . .), the common logarithm, and,

especially for analytic purposes, the hyperbolic log-

arithm with base e, and (contained in this) the ex-

ponential function e*. But with the opening of the

nineteenth century mathematicians began on the one

hand thoroughly to study special transcendental func-

tions, as was done by Legendre, Jacobi, and Abel,

and on the other hand to develop the general theory

of functions of a complex variable, in which field

Gauss, Cauchy, Dirichlet, Riemann, Liouville, Fuchs,

and Weierstrass obtained valuable results.

The first signs of an interest in elliptic functions*

are connected with the determination of the arc of the

lemniscate, as this was carried out in the middle of

the eighteenth century. In this Fagnano made the

discovery that between the limits of two integrals ex-

pressing the arc of the curve, one of which has twice

the value of the other, there exists an algebraic rela-

tion of simple nature. By this means, the arc of the

lemniscate, though a transcendent of higher order,

can be doubled or bisected by geometric construc-

tion like an arc of a circle, f Euler gave the ex-

planation of this remarkable phenomenon. He pro-

duced a more general integral than Fagnano (the

so-called elliptic integral of the first class) and showed

that two such integrals can be combined into a third

of the same kind, so that between the limits of these

*Enneper, A., Elliptische Function, Theorie und Geschichtc, Halle, 1890.

t Dirichlet,
" Gedachtnissrede auf Jacobi." Crelle's Journal, Bd. 52.
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integrals there exists a simple algebraic relation, just

as the sine of the sum of two arcs can be composed of

the same functions of the separate arcs (addition-the-

orem). The elliptic integral, however, depends not

merely upon the limits but upon another quantity be-

longing to the function, the modulus. While Euler

placed only integrals with the same modulus in rela-

tion, Landen and Lagrange considered those with

different moduli, and showed that it is possible by

simple algebraic substitution to change one elliptic

integral into another of the same class. The estab-

lishment of the addition-theorem will always remain

at least as important a service of Euler as his trans-

formation of the theory of circular functions by the

introduction of imaginary exponential quantities.

The origin* of the real theory of elliptic functions

and the theta-functions falls between 1811 and 1829.

To Legendre are due two systematic works, the Exer-

cices de calcul integral (1811-1816) and the Thtorie des

functions elliptiques (1825-1828), neither of which was

known to Jacobi and Abel. Jacobi published in 1829

the Fundamenta nova theoriae functionum ellipticarum,

certain of the results of which had been simultane-

ously discovered by Abel. Legendre had recognised

that a new branch of analysis was involved in those

investigations, and he devoted decades of earnest

work to its development. Beginning with the integral

which depends upon a square root of an expression of

* Cayley, Address to the British Association, etc., 1883.



ALGEBRA. 183

the fourth degree in x, Legendre noticed that such

integrals can be reduced to canonical forms. At/r
=

I/I <

2 sin2
i/r

was substituted for the radical, and

three essentially different classes of elliptic integrals

were distinguished and represented by Fty), ($},

II(</r). These classes depend upon the amplitude i/r

and the modulus k, the last class also upon a para-

meter n.

In spite of the elegant investigations of Legendre

on elliptic integrals, their theory still presented sev

eral enigmatic phenomena. It was noticed that the

degree of the equation conditioning the division of

the elliptic integral is not equal to the number of the

parts, as in the division of the circle, but to its square.

The solution of this and similar problems was re-

served for Jacobi and Abel. Of the many productive

ideas of these two eminent mathematicians there are

especially two which belong to both and have greatly

advanced the theory.

In the first place, Abel and Jacobi independently of

each other observed that it is not expedient to inves-

tigate the elliptic integral of the first class as a func-

tion of its limits, but that the method of consideration

must be reversed, and the limit introduced as a func-

tion of two quantities dependent upon it. Expressed

in other words, Abel and Jacobi introduced the direct

functions instead of the inverse. Abel called them

<, /, F, and Jacobi named them sin am, cos am, A am,

or, as they are written by Gudermann, sn, en, dn.
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A second ingenious idea, which belongs to Jacobi

as well as to Abel, is the introduction of the imagi-

nary into this theory. As Jacobi himself affirmed, it

was just this innovation which rendered possible the

solution of the enigma of the earlier theory. It turned

out that the new functions partake of the nature of

the trigonometric and exponential functions. While

the former are periodic only for real values of the ar-

gument, and the latter only for imaginary values, the

elliptic functions have two periods. It can safely be

said that Gauss as early as the beginning of the nine-

teenth century had recognised the principle of the

double period, a fact which was first made plain in

the writings of Abel.

Beginning with these two fundamental ideas, Ja-

cobi and Abel, each in his own way, made further

important contributions to the theory of elliptic func-

tions. Legendre had given a transformation of one

elliptic integral into another of the same form, but a

second transformation discovered by him was un-

known to Jacobi, as the latter after serious difficulties

reached the important result that a multiplication in

the theory of such functions can be composed of two

transformations. Abel applied himself to problems

concerning the division and multiplication of elliptic

integrals. A thorough study of double periodicity led

him to the discovery that the general division of the

elliptic integral with a given limit is always algebraic-

ally possible as soon as the division of the complete
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integrals is assumed as accomplished. The solution

of the problem was applied by Abel to the lemniscate,

and in this connection it was proved that the division

of the whole lemniscate is altogether analogous to

that of the circle, and can be performed algebraically

in the same case. Another important discovery of

Abel's occurred in his allowing, for elliptic functions

of multiple argument, the multiplier to become infinite

in formulas deduced from functions with a single ar-

gument. From this resulted the remarkable expres-

sions which represent elliptic functions by infinite

series or quotients of infinite products.

Jacobi had assumed in his investigations on trans-

formations that the original variable is rationally ex-

pressible in terms of the new. Abel, however, entered

this field with the more general assumption that be-

tween these two quantities an algebraic equation ex-

ists, and the result of his labor was that this more

general problem can be solved by the help of the

special problem completely treated by Jacobi.

Jacobi carried still further many of the investiga-

tions of Abel. Abel had given the theory of the gen-

eral division, but the actual application demanded

the formation of certain symmetric functions of the

roots which could be obtained only in special cases.

Jacobi gave the solution of the problem so that the

required functions of the roots could be obtained at

once and in a manner simpler than Abel's. When

Jacobi had reached this goal, he stood alone on the
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broad expanse of the new science, for Abel a short

time before had found an early grave at the age of 27.

The later efforts of Jacobi culminate in the in-

troduction of the theta-function. Abel had already

represented elliptic functions as quotients of infinite

products. Jacobi could represent these products as

special cases of a single transcendent, a fact which

the French mathematicians had come upon in physical

researches but had neglected to investigate. Jacobi

examined their analytic nature, brought them into

connection with the integrals of the second and third

class, and noticed especially that integrals of the third

class, though dependent upon three elements, can be

represented by means of the new transcendent involv-

ing only two elements. The execution of this process

gave to the whole theory a high degree of comprehen-

siveness and clearness, allowing the elliptic functions

sn, en, dn to be represented with the new Jacobian

transcendents i, 2, 3, 4 as fractions having a com-

mon denominator.

What Abel accomplished in the theory of elliptic

functions is conspicuous, although it was not his

greatest achievement. There is high authority for

saying that the achievements of Abel were as great in

the algebraic field as in that of elliptic functions. But

his most brilliant results were obtained in the theory

of the Abelian functions named in his honor, their

first development falling in the years 1826-1829.

"Abel's Theorem" has been presented by its discov-
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erer in different forms. The paper, Mtmoire sur une

proprittt gtntrale d'une classe tres-ttendue de fonetions

transcendentes, which after the death of the author re-

ceived the prize from the French academy, contained

the most general expression. In form it is a theorem

of the integral calculus, the integrals depending upon

an irrational function y, which is connected with x by

an algebraic equation F(x, ^)=0. Abel's fundamental

theorem states that a sum of such integrals can be

expressed by a definite number / of similar integrals

where p depends only upon the properties of the equa-

tion F(x, j>)=0. (This/ is the deficiency of the curve

F(x, ^)=0 ;
the notion of deficiency, however, dates

first from the year 1857.) For the case that

y=VAx*> + Bx* + Cx* + Dx+E,
Abel's theorem leads to Legendre's proposition on

the sum of two elliptic integrals. Here/= l. If

. . + P,

where A can also be 0, then p is 2, and so on. For

/>
= S, or > 3, the hyperelliptic integrals are only spe-

cial cases of the Abelian integrals of like class.

After Abel's death (1829) Jacobi carried the theory

further in his Considerationes generales de transcendenti-

bus Abelianis (1832), and showed for hyperelliptic in-

tegrals of a given class that the direct functions to

which Abel's proposition applies are not functions of

a single variable, as the elliptic functions sn, en, dn,

but are functions of / variables. Separate papers of
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essential significance for the case /= 2, are due to

Rosenhain (1846, published 1851) and Goepel (1847).

Two articles of Riemann, founded upon the writ-

ings of Gauss and Cauchy, have become significant

in the development of the complete theory of func-

tions. Cauchy had by rigorous methods and by the

introduction of the imaginary variable "laid the foun-

dation for an essential improvement and transforma-

tion of the whole of analysis."* Riemann built upon

this foundation and wrote the Grundlagefur eine all-

gemeine Theorie der Funktionen einer veranderlichen

komplexen Grosse in the year 1851, and the Theorie der

AbeVschen Funktionen which appeared six years later.

For the treatment of the Abelian functions, Riemann

used theta-functions with several arguments, the the-

ory of which is based upon the general principle of

the theory of functions of a complex variable. He

begins with integrals of algebraic functions of the

most general form and considers their inverse func-

tions, that is, the Abelian functions of p variables.

Then a theta function of / variables is defined as the

sum of a /-tuply infinite exponential series whose

general term depends, in addition to p variables, upon

certain - constants which must be reducible

to 3/> 3 moduli, but the theory has not yet been com-

pleted.

Starting from the works of Gauss and Abel as well

* Kummer, " Gedachtnissrede auf Lejeune-Dirichlet," Berliner Abhand-

lungen, 1860.
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as the developments of Cauchy on integrations in the

imaginary plane, a strong movement appears in which

occur the names of Weierstrass, G. Cantor, Heine,

Dedekind, P. Du Bois-Reymond, Dini, Scheeffer,

Pringsheim, Holder, Pincherle, and others. This

tendency aims at freeing from criticism the founda-

tions of arithmetic, especially by a new treatment of

irrationals based upon the theory of functions with its

considerations of continuity and discontinuity. It

likewise considers the bases of the theory of series by

investigations on convergence and divergence, and

gives to the differential calculus greater preciseness

through the introduction of mean-value theorems.

After Riemann valuable contributions to the theory

of the theta-functions were made by Weierstrass,

Weber, Nother, H. Stahl, Schottky, and Frobenius.

Since Riemann a theory of algebraic functions and

point-groups has been detached from the theory of

Abelian functions, a theory which was founded through

the writings of Brill, Nother, and Lindemann upon

the remainder-theorem and the Riemann-Roch theo-

rem, while recently Weber and Dedekind have allied

themselves with the theory of ideal numbers, set forth

in the first appendix to Dirichlet. The extremely

rich development of the general theory of functions

in recent years has borne fruit in different branches of

mathematical science, and undoubtedly is to be rec-

ognised as having furnished a solid foundation for the

work of the future.



IV. GEOMETRY.

A. GENERAL SURVEY.

THE
oldest traces of geometry are found among

the Egyptians and Babylonians. In this first

period geometry was made to serve practical purposes

almost exclusively. From the Egyptian and Baby-

lonian priesthood and learned classes geometry was

transplanted to Grecian soil. Here begins the second

period, a classic era of philosophic conception of geo-

metric notions as the embodiment of a general science

of mathematics, connected with the names of Pythag-

oras, Eratosthenes, Euclid, Apollonius, and Archi-

medes. The works of the last two indeed, touch upon

lines not clearly defined until modern times. Apollo

nius in his Conic Sections gives the first real example

of a geometry of position, while Archimedes for the

most part concerns himself with the geometry of meas-

urement.

The golden age of Greek geometry was brief and

yet it was not wholly extinct until the memory of the

great men of Alexandria was lost in the insignificance

of their successors. Then followed more than a thou-
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sand years of a cheerless epoch which at best was re-

stricted to borrowing from the Greeks such geometric

knowledge as could be understood. History might

pass over these many centuries in silence were it not

compelled to give attention to these obscure and un-

productive periods in their relation to the past and

future. In this third period come first the Romans,

Hindus, and Chinese, turning the Greek geometry to

use after their own fashion
;
then the Arabs as skilled

intermediaries between the ancient classic and a mod-

ern era.

The fourth period comprises the early develop-

ment of geometry among the nations of the West.

By the labors of Arab authors the treasures of a time

long past were brought within the walls of monasteries

and into the hands of teachers in newly established

schools and universities, without as yet forming a

subject for general instruction. The most prominent

intellects of this period are Vieta and Kepler. In

their methods they suggest the fifth period which be-

gins with Descartes. The powerful methods of analy-

sis are now introduced into geometry. Analytic geom-

etry comes into being. The application of its seductive

methods received the almost exclusive attention of

the mathematicians of the seventeenth and eighteenth

centuries. Then in the so-called modern or projective

geometry and the geometry of curved surfaces there

arose theories which, like analytic geometry, far tran-

scended the geometry of the ancients, especially in
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the way of leading to the almost unlimited generaliza-

tion of truths already known.

B. FIRST PERIOD.

EGYPTIANS AND BABYLONIANS.

In the same book of Ahmes which has disclosed to

us the elementary arithmetic of the Egyptians are

also found sections on geometry, the determination

of areas of simple surfaces, with figures appended.

These figures are either rectilinear or circular. Among
them are found isosceles triangles, rectangles, isos-

celes trapezoids and circles.* The area of the rect-

angle is correctly determined
;
as the measure of the

area of the isosceles triangle with base a and side b,

however, \ab is found, and for the area of the isosceles

trapezoid with parallel sides a' and a" and oblique side

b, the expression ^(a'-f-a") is given. These approx-

imate formulae are used throughout and are evidently

considered perfectly correct. The area of the circle

follows, with the exceptionally accurate value ir=
=3.1605.

Among the problems of geometric construction

one stands forth preeminent by reason of its practical

importance, viz., to lay off a right angle. The solflv

tion of this problem, so vital in the construction of

temples and palaces, belonged to the profession of

Cantor, I., p. 52.
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rope- stretchers or harpedonaptae. They used a rope

divided by knots into three segments (perhaps corre-

sponding to the numbers 3, 4, 5) forming a Pythago-

ean triangle.*

Among the Babylonians the construction of figures

of religious significance led up to a formal geometry of

divination which recognized triangles, quadrilaterals,

right angles, circles with the inscribed regular hex-

agon and the division of the circumference into three

hundred and sixty degrees as well as a value ir= 3.

Stereometric problems, such as finding the con-

tents of granaries, are found in Ahmes; but not much

is to be learned from his statements since no account

is given of the shape of the storehouses.

As for projective representations, the Egyptian

wall-sculptures show no evidence of any knowledge

of perspective. For example a square pond is pic-

tured in the ground-plan but the trees and the water-

drawers standing on the bank are added to the picture

in the elevation, as it were from the outside, f

C. SECOND PERIOD.

THE GREEKS.

In a survey of Greek geometry it will here and

there appear as if investigations connected in a very

* Cantor, I., p. 62.

t Wiener, Lehrbuch der darstellenden Geometric, 1884. Hereafter referred

to as Wiener.
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simple manner with well-known theorems were not

known to the Greeks. At least it seems as if they

could not have been established satisfactorily, since

they are thrown in among other matters evidently

without connection. Doubtless the principal reason

for this is that a number of the important writings of

the ancient mathematicians are lost. Another no less

weighty reason might be that much was handed down

simply by oral tradition, and the latter, by reason of

the stiff and repulsive way in which most of the Greek

demonstrations were worked out, did not always ren-

der the truths set forth indisputable.

In Thales are found traces of Egyptian geometry,

but one must not expect to discover there all that was

known to the Egyptians. Thales mentions the theo-

rems regarding vertical angles, the angles at the base

of an isosceles triangle, the determination of a triangle

from a side and two adjacent angles, and the angle in-

scribed in a semi-circle. He knew how to determine

the height of an object by comparing its shadow with

the shadow of a staff placed at the extremity of the

shadow of the object, so that here may be found the

beginnings of the theory of similarity. In Thales the

proofs of the theorems are either not given at all or

are given without the rigor demanded in later times.

In this direction an important advance was made

by Pythagoras and his school. To him without ques-

tion is to be ascribed the theorem known to the Egyp-
tian "rope-stretchers" concerning the right-angled
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triangle, which they knew in the case of the tri-

angle with sides 3, 4, 5, without giving a rigorous

proof. Euclid's is the earliest of the extant proofs of

this theorem. Of other matters, what is to be ascribed

to Pythagoras himself, and what to his pupils, it is

difficult to decide. The Pythagoreans proved that the

sum of the angles of a plane triangle is two right an-

gles. They knew the golden section, and also the

regular polygons so far as they make up the bound-

aries of the five regular bodies. Also regular star-

polygons were known, at least the star-pentagon. In

the Pythagorean theorems of area the gnomon played

an important part. This word originally signified the

vertical staff which by its shadow indicated the hours,

and later the right angle mechanically represented.

Among the Pythagoreans the gnomon is the figure

left after a square has been taken from the corner of

another square. Later, in Euclid, the gnomon is a

parallelogram after similar treatment (see page 66).

The Pythagoreans called the perpendicular to a straight

line "a line directed according to the gnomon."*

But geometric knowledge extended beyond the

school of Pythagoras. Anaxagoras is said to have been

the first to try to determine a square of area equal

to that of a given circle. It is to be noticed that like

most of his successors he believed in the possibility

of solving this problem. OEnopides showed how to

draw a perpendicular from a point to a line and how

* Cantor, I., p. 150.
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to lay off a given angle at a given point of a given

line. Hippias of Elis likewise sought the quadrature

of the circle, and later he attempted the trisection of

an angle, for which he constructed the quadratrix.

B

This curve is described as follows : Upon a quadrant of a cir-

cumference cut off by two perpendicular radii, OA and OB, lie

the points A, ... 1C, L, ... B. The radius r= OA revolves with

uniform velocity about O from the position OA to the position OB.

At the same time a straight line g always parallel to OA moves

with uniform velocity from the position OA to that of a tangent to

the circle at B. If K' is the intersection of g with OB at the time

when the moving radius falls upon OJTtben the parallel to OA

through K' meets the radius OJf'm a point K" belonging to the

quadratrix. If P is the intersection of OA with the quadratrix, it

follows in part directly and in part from simple considerations, that

arc AK= OK'
arc AL

~
OL'

'

a. relation which solves any problem of angle sections. Further-

more,
1r OP OA

-~
w ' OA

~
arc Aff

whence it is obvious that the quadrature of the circle depends upon
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the ratio in which the radius OA is divided by the point P of the

quadratrix. If this ratio could be constructed by elementary geom-

etry, the quadrature of the circle would be effected.* It appears

that the quadratrix was first invented for the trisection of an angle

and that its relation to the quadrature of the circle was discovered

later, f as is shown by Dinostratus.

The problem of the quadrature of the circle is also

found in Hippocrates. He endeavored to accomplish

his purpose by'the consideration of crescent-shaped

figures bounded by arcs of circles. It is of especial

importance to note that Hippocrates wrote an ele-

mentary book of mathematics (the first of the kind)

in which he represented a point by a single capital

letter and a segment by tuo, although we are unable

to determine who was the first to introduce this sym-

bolism.

Geometry was strengthened on the philosophic

side by Plato, who felt the need of establishing defini-

tions and axioms and simplifying the work of the in-

vestigator by the introduction of the analytic method.

A systematic representation of the results of all

the earlier investigations in the domain of elementary

geometry, enriched by the fruits of his own abundant

labor, is given by Euclid in the thirteen books of his

Elements which deal not only with plane figures but

also with figures in space and algebraic investiga-

*The equation of the quadratrix in polar co-ordinates is r= . ," ,

where a = OA. Putting <=o, r= ra , we have ir= .
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tions. "Whatever has been said in praise of mathe-

matics, of the strength, perspicuity and rigor of its

presentation, all is especially true of this work of the

great Alexandrian. Definitions, axioms, and conclu-

sions are joined together link by link as into a chain,

firm and inflexible, of binding force but also cold and

hard, repellent to a productive mind and affording no

room for independent activity. A ripened understand-

ing is needed to appreciate the classic beauties of this

greatest monument of Greek ingenuity. It is not the

arena for the youth eager for enterprise ;
to captivate

him a field of action is better suited where he may

hope to discover something new, unexpected."*

The first book of the Elements deals with the the-

ory of triangles and quadrilaterals, the second book

with the application of the Pythagorean theorem to

a large number of constructions, really of arithmetic

nature. The third book introduces circles, the fourth

book inscribed and circumscribed polygons. Propor-

tions explained by the aid of line-segments occupy

the fifth book, and in the sixth book find their appli-

cation to the proof of theorems involving the similar-

ity of figures. The seventh, eighth, ninth and tenth

books have especially to do with the theory of num-

bers. These books contain respectively the measure-

ment and division of numbers, the algorism for de-

termining the least common multiple and the greatest

common divisor, prime numbers, geometric series,

*A. Brill, Antrittsrede in Tubingen, 1884.
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and incommensurable (irrational) numbers. Then

follows stereometry : in the eleventh book the straight

line, the plane, the prism ;
in the twelfth, the discus-

sion of the prism, pyramid, cone, cylinder, sphere;

and in the thirteenth, regular polygons with the regu-

lar solids formed from them, the number of which

Euclid gives definitely as five. Without detracting in

the least from the glory due to Euclid for the compo-
sition of this imperishable work, it may be assumed

that individual portions grew out of the well grounded

preparatory work of others. This is almost certainly

true of the fifth book, of which Eudoxus seems to

have been the real author.

Not by reason of a great compilation like Euclid,

but through a series of valuable single treatises, Archi-

medes is justly entitled to have a more detailed de-

scription of his geometric productions. In his inves-

tigations of the sphere and cylinder he assumes that

the straight line is the shortest distance between two

points. From the Arabic we have a small geometric

work of Archimedes consisting of fifteen so-called

lemmas, some of which have value in connection with

the comparison of figures bounded by straight lines

and arcs of circles, the trisection of the angle, and

the determination of cross-ratios. Of especial impor-

tance is his mensuration of the circle, in which he

shows IT to lie between 3^ and 3|. This as well as

many other results Archimedes obtains by the method

of exhaustions which among the ancients usually took
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the place of the modern integration.* The quantity

sought, the area bounded by a curve, for example,

may be considered as the limit of the areas of the in-

scribed and circumscribed polygons the number of

whose sides is continually increased by the bisection

of the arcs, and it is shown that the difference between

two associated polygons, by an indefinite continuance

of this process, must become less than an arbitrarily

small given magnitude. This difference was thus, as

it were, exhausted, and the result obtained by exhaus-

tion.

The field of the constructions of elementary geom-

etry received at the hands of Apollonius an extension

in the solution of the problem to construct a circle

tangent to three given circles, and in the systematic

introduction of the diorismus (determination or limi-

tation). This also appears in more difficult problems

in his Conic Sections, from which we see that Apollo-

nius gives not simply the conditions for the possibility

of the solution in general, but especially desires to

determine the limits of the solutions.

From Zenodorus several theorems regarding iso-

perimetric figures are still extant
;

for example, he

states that the circle has a greater area than any iso-

perimetric regular polygon, that among all isoperi-

metric polygons of the same number of sides the reg-

ular has the greatest area, and so on. Hypsicles gives

*Chasles, Afersu historigue sur I'orfgine et It dtveloppement des mtthode

en giomltrie, 1875. Hereafter referred to as Chasles.
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as something new the division of the circumference

into three hundred and sixty degrees. From Heron

we have a book on geometry (according to Tannery

still another, a commentary on Euclid's Elements)

which deals in an extended manner with the mensu-

ration of plane figures. Here we find deduced for the

area A of the triangle whose sides are a, b, and c,

where 2s=a-\-b -\- c, the formula

In the measurement of the circle we usually find %f. as

an approximation for ir; but still in the Book of Meas-

urements we also find TT= 3.

In the period after the commencement of the

Christian era the output becomes still more meager.

Only occasionally do we find anything noteworthy.

Serenus, however, gives a theorem on transversals

which expresses the fact that a harmonic pencil is cut

by an arbitrary transversal in a harmonic range. In

the Almagest occurs the theorem regarding the in-

scribed quadrilateral, ordinarily known as Ptolemy's

Theorem, and a value written in sexagesimal form

7r= 3.8.30, i. e.,

*= " + TO + 60-60
= 3Jl = 3.14166....*

In a special treatise on geometry Ptolemy shows that

he does not regard Euclid's theory of parallels as in-

disputable.

* Cantor, I., p. 394.
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To the last supporters of Greek geometry belong

Sextus Julius Africanus, who determined the width of

a stream by the use of similar right-angled triangles,

and Pappus, whose name has become very well known

by reason of his Collection. This work consisting orig-

inally of eight books, of which the first is wholly

lost and the second in great part, presents the sub-

stance of the mathematical writings of special repute

in the time of the author, and in some places adds

corollaries. Since his work was evidently composed

with great conscientiousness, it has become one of

the most trustworthy sources for the study of the

mathematical history of ancient times. The geomet-

ric part of the Collection contains among other things

discussions of the three different means between two

line-segments, isoperimetric figures, and tangency of

circles. It also discusses similarity in the case of cir-

cles ; so far at least as to show that all lines which

join the ends of parallel radii of two circles, drawn in

the same or in opposite directions, intersect in a fixed

point of the line of centers.

The Greeks rendered important service not simply

in the field of elementary geometry : they are also the

creators of the theory of conic sections. And as in

the one the name of Euclid, so in the other the name

of Apollonius of Perga has been the signal for con-

troversy. The theory of the curves of second order

does not begin with Apollonius any more than does

Euclidean geometry begin with Euclid
;
but what the
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Elements signify for elementary geometry, the eight

books of the Conies signify for the theory of lines of

the second order. Only the first four books of the

Conic Sections of Apollonius are preserved in the

Greek text : the next three are known through Arabic

translations : the eighth book has never been found

and is given up for lost, though its contents have been

restored by Halley from references in Pappus. The

first book deals with the formation of conies by plane

sections of circular cones, with conjugate diameters,

and with axes and tangents. The second has espe-

cially to do with asymptotes. These Apollonius ob-

tains by laying off on a tangent from the point of con-

tact the half-length of the parallel diameter and joining

its extremity to the center of the curve. The third

book contains theorems on foci and secants, and the

fourth upon the intersection of circles with conies and

of conies with one another. With this the elementary

treatment of conies by Apollonius closes. The fol-

lowing books contain special investigations in applica-

tion of the methods developed in the first four books.

Thus the fifth book deals with the maximum and min-

imum lines which can be drawn from a point to the

conic, and also with the normals from a given point

in the plane of the curve of the second order; the sixth

with equal and similar conies
;
the seventh in a re-

markable manner with the parallelograms having con-

jugate diameters as sides and the theorem upon the

sum of the squares of conjugate diameters. The eighth
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book contained, according to Halley, a series of prob-

lems connected in the closest manner with lemmas of

the seventh book.

The first effort toward the development of the the-

ory of conic sections is ascribed to Hippocrates.* He

reduced the duplication of the cube to the construc-

tion of two mean proportionals x and ^ between two

given line-segments a and b
; thusf

= = y gives x
1*= ay, y*= bx, whence

Xs= a^b= a3 = m a3
.

a

Archytas and Eudoxus seem to have found, by plane

construction, curves satisfying the above equations

but different from straight lines and circles. Menaech-

mus sought for the new curves, already known by

plane constructions, a representation by sections of

cones of revolution, and became the discoverer of

conic sections in this sense. He employed only sec-

tions perpendicular to an element of a right circular

cone; thus the parabola was designated as the "sec-

tion of a right-angled cone" (whose generating angle

is 45) ;
the ellipse, the " section of an acute-angled

cone"; the hyperbola, the "section of an obtuse-

angled cone." These names are also used by Archi-

medes, although he was aware that the three curves

can be formed as sections of any circular cone. Apol-

"Zeuthen, Die Lehre von den Kegelschnitten im Alterturn. Deutsch von

v. Fischer-Benzon, 1886. P. 459. Hereafter referred to as Zeuthen.

t Cantor, I., p. 200.
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lonius first introduced the names "ellipse,' "para-

bola," "hyperbola." Possibly Menaechmus, but in

any case Archimedes, determined conies by a linear

equation between areas, of the form y*= kxxi. The

semi-parameter, with Archimedes and possibly some

of his predecessors, was known as "the segment to

the axis," i. e., the segment of the axis of the circle

from the vertex of the curve to its intersection with

the axis of the cone. The designation "parameter"

is due to Desargues (1639).*

It has been shown f that Apollonius represented the conies by

equations of the form y2
=px-^-ax

2
, where x and y are regarded

as parallel coordinates and every term is represented as an area.

From this other linear equations involving areas were derived, and

so equations belonging to analytic geometry were obtained by the

use of a system of parallel coordinates whose origin could, for

geometric reasons, be shifted simultaneously with an interchange

of axes. Hence we already find certain fundamental ideas of the

analytic geometry which appeared almost two thousand years later.

The study of conic sections was continued upon the

cone itself only till the time when a single fundamen-

tal plane property rendered it possible to undertake

the further investigation in the plane. J In this way
there had become known, up to the time of Archi-

medes, a number of important theorems on conjugate

diameters, and the relations of the lines to these di-

ameters as axes, by the aid of linear equations be-

*Baltzer, R., Analytische Geometrfe, 1882.

tZeuthen, p. 32. tZeuthen, p. 43.
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tween areas. There were also known the so-called

Newton's power-theorem, the theorem that the rect-

angles of the segments of two secants of a conic drawn

through an arbitrary point in given direction are in a

constant ratio, theorems upon the generation of a

conic by aid of its tangents or as the locus related to

four straight lines, and the theorem regarding pole

and polar. But these theorems were always applied

to only one branch of the hyperbola. One of the valu-

able services of Apollonius was to extend his own

theorems, and consequently those already known, to

both branches of the hyperbola. His whole method

justifies us in regarding him the most prominent rep-

resentative of the Greek theory of conic sections, and

so much the more when we can see from his principal

work that the foundations for the theory of projective

ranges and pencils had virtually been laid by the an-

cients in different theorems and applications.

With Apollonius the period of new discoveries in

the realm of the theory of conies comes to an end. In

later times we find only applications of long known

theorems to problems of no great difficulty. Indeed,

the solution of problems already played an important

part in the oldest times of Greek geometry and fur-

nished the occasion for the exposition not only of

conies but also of curves of higher order than the sec-

ond. In the number of problems, which on account

of their classic value have been transmitted from gen-

eration to generation and have continually furnished
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occasion for further investigation, three, by reason of

their importance, stand forth preeminent : the duplica-

tion of the cube, or more generally the multiplication

of the cube, the trisection of the angle and the quad-

rature of the circle. The appearance of these three

problems has been of the greatest significance in the

development of the whole of mathematics. The first

requires the solution of an equation of the third de-

gree ; the second (for certain angles at least) leads to

an important section of the theory of numbers, i. e.,

to the cyclotomic equations, and Gauss (see p. 160)

was the first to show that by a finite number of ope-

rations with straight edge and compasses we can con-

struct a regular polygon of n sides only when n 1

= 2a/ (p an arbitrary integer). The third problem

reaches over into the province of algebra, for Linde-

mann* in the year 1882 showed that ir cannot be the

root of an algebraic equation with integral coefficients.

The multiplication of the cube, algebraically the

determination of x from the equation

x3 = a*=m-a*,
a

is also called the Delian problem, because the Delians

were required to double their cubical altar, f The so-

lution of this problem was specially studied by Plato,

Archytas, and Menaechmus; the latter solved it by

*Mathem. Annalen, XX., p. 215. See also Mathem. Annalen, XLIII., and

Klein, Famous Problems of Elementary Geometry, 1895, translated by Beman
and Smith, Boston, 1897.

t Cantor, I., p. 219.
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the use of conies (hyperbolas and parabolas). Era-

tosthenes constructed a mechanical apparatus for the

same purpose.

Among the solutions of the problem of the trisec-

tion of an angle, the method of Archimedes is note-

worthy. It furnishes an example of the so-called

"insertions" of which the Greeks made use when a

solution by straight edge and compasses was impos-

sible. His process was as follows : Required to divide

the arc AB of the circle with center M into three

equal parts. Draw the diameter AE, and through B
a secant cutting the circumference in C and the di-

ameter AE in D, so that CD equals the radius r of

the circle. Then arc CE= \AB.

According to the rules of insertion the process con-

sists in laying off upon a ruler a length r, causing it

to pass through B while one extremity D of the seg-

ment r slides along the diameter AE. By moving

the ruler we get a certain position in which the other

extremity of the segment r falls upon the circumfer-

ence, and thus the point C is determined.

This problem Pappus claims to have solved after

the manner of the ancients by the use of conic sec-
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tions. Since in the writings of Apollonius, so largely

lost, lines of the second order find an extended appli-

cation to the solution of problems, the conies were

frequently called solid loci in opposition to plane loci,

i. e., the straight line and circle. Following these

came linear loci, a term including all other curves, of

which a large number were investigated.

This designation of the loci is found, for example,

in Pappus, who says in his seventh book* that a prob-

lem is called plane, solid, or linear, according as its

solution requires plane, solid, or linear loci. It is,

however, highly probable that the loci received their

names from problems, and that therefore the division

of problems into plane, solid, and linear preceded the

designation of the corresponding loci. First it is to

be noticed that we do not hear of "linear problems

and loci" till after the terms "plane and solid prob-

lems and loci" were in use. Plane problems were

those which in the geometric treatment proved to be

dependent upon equations of the first or second de-

gree between segments, and hence could be solved

by the simple application of areas, the Greek method

for the solution of quadratic equations. Problems de-

pending upon the solution of equations of the third

degree between segments led to the use of forms of

three dimensions, as, e. g., the duplication of the

cube, and were termed solid problems; the loci used

in their solution (the conies) were solid loci. At a

*Zeuthen, p. 203.
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time when the significance of "plane" and "solid"

was forgotten, the term "linear problem" was first

applied to those problems whose treatment (by "lin-

ear loci") no longer led to equations of the first, sec-

ond, and third degrees, and which therefore could no

longer be represented as linear relations between seg-

ments, areas, or volumes.

Of linear loci Hippias applied the quadratrix (to

which the name of Dinostratus was later attached

through his attempt at the quadrature of the circle)*

to the trisection of the angle. Eudoxus was acquainted

with the sections of the torus made by planes parallel

to the axis of the surface, especially the hippopede or

figure-of-eight curve,f The spirals of Archimedes

attained special celebrity. His exposition of their

properties compares favorably with his elegant inves-

tigations of the quadrature of the parabola.

Conon had already generated the spiral of Archi-

medes J by the motion of a point which recedes with

uniform velocity along the radius OA of a circle k

from the center O, while OA likewise revolves uni-

formly about O. But Archimedes was the first to dis-

cover certain of the beautiful properties of this curve;

he found that if, after one revolution, the spiral meets

the circle k of radius OA in B (where BO is tangent

to the spiral at O), the area bounded by BO and the

* Cantor, I., pp. 184, 233.

t Majer, Proklo* iiber die Petita und Axiomata bet Evklid, 1875.

t Cantor, I., p. 291.



GEOMETRY. 211

spiral is one-third of the area of the circle k\ further

that the tangent to the spiral at B cuts off from a per-

pendicular to OB at O a segment equal to the circum-

ference of the circle k.*

The only noteworthy discovery of Nicomedes is

the construction of the conchoid which he employed

to solve the problem of the two mean proportionals,

or, what amounts to the same thing, the multiplica-

tion of the cube. The curve is the geometric locus of

the point X upon a moving straight line g which con-

stantly passes through a fixed point P and cuts a fixed

straight line h in Fso that XY has a constant length.

Nicomedes also investigated the properties of this

curve and constructed an apparatus made of rulers

for its mechanical description.

The cissoid of Diocles is also of use in the multi-

plication of the cube. It may be constructed as fol-

lows : Through the extremity A of the radius OA of

a circle k passes the secant AC which cuts k in C and

the radius OB perpendicular to OA in D\ X, upon

AC, is a point of the cissoid when DX=DC.\ Gemi-

nus proves that besides the straight line and the circle

the common helix invented by Archytas possesses the

insertion property.

Along with the geometry of the plane was devel-

oped the geometry of space, first as elementary stere-

*Montucla.

+ Klein, Y., Famous Problems ofElementary Geometry, translated by Beman
ind Smith, Boston, 1897, p. 44.
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ometry and then in theorems dealing with surfaces of

the second order. The knowledge of the five regular

bodies and the related circumscribed sphere certainly

goes back to Pythagoras. According to the statement

of Timaeus of Locri,* fire is made up-of tetrahedra,

air of octahedra, water of icosahedra, earth of cubes,

while the dodecahedron forms the boundary of the

universe. Of these five cosmic or Platonic bodies

Theaetetus seems to have been the first to publish a

connected treatment. Eudoxus states that a pyramid

(or cone) is of a prism of equal base and altitude.

The eleventh, twelfth and thirteenth books of Euclid's

Elements offer a summary discussion of the ordinary

stereometry. (See p. 199.) Archimedes introduces

thirteen semi-regular solids, i. e., solids whose bound-

aries are regular polygons of two or three different

kinds. Besides this he compares the surface and vol-

ume of the sphere with the corresponding expressions

for the circumscribed cylinder and deduces theorems

which he esteems so highly that he expresses the de-

sire to have the sphere and circumscribed cylinder

cut upon his tomb-stone. Among later mathemati-

cians Hypsicles and Heron give exercises in the men-

suration of regular and irregular solids. Pappus also

furnishes certain stereometric investigations of which

we specially mention as new only the determination

of the volume of a solid of revolution by means of the

meridian section and the path of its center of gravity.

* Cantor, I., p. 163.
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He thus shows familiarity with a part of the theorem

later known as Guldin's rule.

Of surfaces of the second order the Greeks knew

the elementary surfaces of revolution, i. e., the sphere,

the right circular cylinder and circular cone. Euclid

deals only with cones of revolution, Archimedes on the

contrary with circular cones in general. In addition,

Archimedes investigates the "right-angled conoids"

(paraboloids of revolution), the "obtuse-angled co-

noids" (hyperboloids of revolution of one sheet), and

"long and flat spheroids" (ellipsoids of revolution

about the major and minor axes). He determines the

character of plane sections and the volume of seg-

ments of such surfaces. Probably Archimedes also

knew that these surfaces form the geometric locus of

a point whose distances from a fixed point and a given

plane are in a constant ratio. According to Proclus,*

who is of importance as a commentator upon Euclid,

the torus was also known a surface generated by a

circle of radius r revolving about an axis in its plane

so that its center describes a circle of radius <?. The

cases ^= ^, > e, <<? were discussed.

With methods of projection, also, the Greeks were

not unacquainted.f Anaxagoras and Democritus are

said to have known the laws of the vanishing point

and of reduction, at least for the simplest cases. Hip-

parchus projects the celestial sphere from a pole upon

*Majer, Proklos iiber die Petita und Axiomata bet Euklid, 1875.

t Wiener.
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the plane of the equator; he is therefore the inventor

of the stereographic projection which has come to be

known by the name of Ptolemy.

D. THIRD PERIOD.

ROMANS, HINDUS, CHINESE, ARABS.

Among no other people of antiquity did geometry

reach so high an eminence as among the Greeks.

Their acquisitions in this domain were in part trans-

planted to foreign soil, yet not so that (with the

possible exception of arithmetic calculation) anything

essentially new resulted. Frequently what was in-

herited from the Greeks was not even fully under-

stood, and therefore remained buried in the literature

of the foreign nation. From the time of the Renais-

sance, however, but especially from that of Descartes,

an entirely new epoch with more powerful resources

investigated the ancient treasures and laid them under

contribution.

Among the Romans independent investigation of

mathematical truths almost wholly disappeared. What

they obtained from the Greeks was made to serve

practical ends exclusively. For this purpose parts of

Euclid and Heron were translated. To simplify the

work of the surveyors or agrimensores, important geo-

metric theorems were collected into a larger work of

which fragments are preserved in the Codex Arceri-
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anus. In the work of Vitruvius on architecture

(c. 14) is found the value 7r= 3 which, though less

accurate than Heron's value ir= 3^, was more easily

employed in the duodecimal system.* Boethius has

left a special treatise on geometry, but the contents

are so paltry that it is safe to assume that he made

use of an earlier imperfect treatment of Greek geom-

etry.

Although the Hindu geometry is dependent upon
the Greek, yet it has its own peculiarities due to the

arithmetical modes of thought of the people. Certain

parts of the Culvasutras are geometric. These teach

the rope-stretching already known to the Egyptians,

i. e., they require the construction of a right angle by

means of a rope divided by a knot into segments 15

and 39 respectively, the ends being fastened to a seg-

ment 36 (15
2 + 363= 392

). They also use the gnomon
and deal with the transformation of figures and the

application of the Pythagorean theorem to the multi-

plication of a given square. Instead of the quadrature

of the circle appears the circulature of the square,f

i. e., the construction of a circle equal to a given

square. Here the diameter is put equal to $ of the

diagonal of the square, whence follows r= 3 (the

value used among the Romans). In other cases a

process is carried on which yields the value w= 3.

The writings of Aryabhatta contain certain incor-

rect formulae for the mensuration of the pyramid and

*Cantor, I., p. 508. t Cantor, I., p. 6ot.
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sphere (for the pyramid V=%Bh}, but also a number

of perfectly accurate geometric theorems. Aryabhatta

gives the approximate value ir = fff = 3.1416.

Brahmagupta teaches mensurational or Heronic ge-

ometry and is familiar with the formula for the area

of the triangle,

and the formula for the area of the inscribed quadri-

lateral,

which he applies incorrectly to any quadrilateral. In

his work besides TT 3 we also find the value Tr= l/10,

but without any indication as to how it was obtained.

Bhaskara likewise devotes himself only to algebraic

geometry. For ir he gives not only the Greek value

Zf- and that of Aryabhatta ff$f, but also a value

ir= || = 3.14166 ... Of geometric demonstrations

Bhaskara knows nothing. He states the theorem,

adds the figure and writes "Behold !"*

In Bhaskara a transfer of geometry from Alexan-

dria to India is undoubtedly demonstrable, and per-

haps this influence extended still further eastward to

the Chinese. In a Chinese work upon mathematics,

composed perhaps several centuries after Christ, the

Pythagorean theorem is applied to the triangle with

sides 3, 4, 5
; rope-stretching is indicated

;
the ver

*Cantor, I., p. 614.
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tices of a figure are designated by letters after the

Greek fashion
; IT is put equal to 3, and toward the

end of the sixth century to ^-.

Greek geometry reached the Arabs in part directly

and in part through the Hindus. The esteem, how-

ever, in which the classic works of Greek origin were

held could not make up for the lack of real produc-

tive power, and so the Arabs did not succeed in a

single point in carrying theoretic geometry, even in

the subject of conic sections, beyond what had been

reached in the golden age of Greek geometry. Only

a few particulars may be mentioned. In Al Khowa-

razmi is found a proof of the Pythagorean theorem

consisting only of the separation of a square into

eight isosceles right-angled triangles. On the whole

Al Khowarazmi draws more from Greek than from

Hindu sources. The classification of quadrilaterals

is that of Euclid
;

the calculations are made after

Heron's fashion. Besides the Greek value TT= ^- we

find the Hindu values -= .J${$2 and ir= V/
10. Abul

Wafa wrote a book upon geometric constructions.

In this are found combinations of several squares into

a single one, as well as the construction of polyhedra

after the methods of Pappus. After the Greek fash-

ion the trisection of the angle occupied the attention

of Tabit ibn Kurra, Al Kuhi, and Al Sagani. Among
later mathematicians the custom of reducing a geo-

metric problem to the solution of an equation is com-

mon. It was thus that the Arabs by geometric solu-
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tions attained some excellent results, but results of no

theoretic importance.

E. FOURTH PERIOD.

FROM GERBERT TO DESCARTES.

Among the Western nations we find the first traces

of geometry in the works of Gerbert, afterward known

as Pope Sylvester II. Gerbert, as it seems, depends

upon the Codex Arcerianus, but also mentions Pyth-

agoras and Eratosthenes.* We find scarcely anything

here besides field surveying as in Boethius. Some-

thing more worthy first appears in Leonardo's (Fibo-

nacci's) Practica geometriae\ of 1220, in which work

reference is made to Euclid, Archimedes, Heron, and

Ptolemy. The working over of the material handed

down from the ancients, in Leonardo's book, is fairly

independent. Thus the rectification of the circle

shows where this mathematician, without making use

of Archimedes, determines from the regular polygon

of 96 sides the value *=
|||5

= 3.1418.

Since among the ancients no proper theory of star

polygons can be established, it is not to be wondered

at that the early Middle Ages have little to show in

this direction. Star-polygons had first a mystic sig

nificance only ; they were used in the black art as the

pentacle, and also in architecture and heraldry. Adel-

* Cantor, I., p. 810. tHankel, p. 344.
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ard of Bath went with more detail into the study of

star-polygons in his commentary on Euclidean geom-

etry ; the theory of these figures is first begun by Re-

giomontanus.

The first German mathematical work is the Deut

sche Sphara written in Middle High German by Conrad

of Megenberg, probably in Vienna in the first half of

the fourteenth century. The first popular introduc-

tion to geometry appeared anonymously in the fif-

teenth century, in six leaves of simple rules of con-

struction for geometric drawing. The beginning, con-

taining the construction of BC perpendicular to AB
by the aid of the right-angled triangle ABC in which

BE bisects the hypotenuse AC, runs as follows:*

"From geometry some useful bits which are written

after this. 1. First to make a right angle quickly.

Draw two lines across each other just about as you

wish and where the lines cross each other there put

an e. Then place the compasses with one foot upon

the point e, and open them out as far as you wish,

and make upon each line a point. Let these be the

letters a, b, c, all at one distance. Then make a line

from a to b and from b to c. So you have a right angle

of which here is an example."

This construction of a right angle, not given in

Euclid but first in Proclus, appears about the year

1500 to be in much more extensive use than the

method of Euclid by the aid of the angle inscribed in

* Gunther, p. 347.
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a semi-circle. By his knowledge of this last construc-

tion Adam Riese is said to have humiliated an archi-

tect who knew how to draw a right angle only by the

method of Proclus.

Very old printed works on geometry in German are Dz Puech-

len der fialen gerechtikait by Mathias Roriczer (1486) and Al-

brecht Diirer's Underiveysung der messung mit dem zirckel

und richtscheyt (Nuremberg, 1525). The former gives in rather

unscientific manner rules for a special problem of Gothic architec-

ture ; the latter, however, is a far more original work and on that

account possesses more interest.*

With the extension of geometric knowledge in

Germany Widmann and Stifel were especially con-

cerned. Widmann's geometry, like the elements of

Euclid, begins with explanations :
" Punctus is a small

thing that cannot be divided. Angulus is a corner

which is made there b)' two lines, "f Quadrilaterals

have Arab names, a striking evidence that the ancient

Greek science was brought into the West by Arab in

fluence. Nevertheless, by Roman writers (Boethius)

Widmann is led into many errors, as, e. g., when he

gives the area of the isosceles triangle of side a as \a^.

In Rudolff's Coss, in the theory of powers, Stifel

has occasion to speak of a subject which first receives

proper estimation in the modern geometry, viz., the

right to admit more than three dimensions. "Since,

however, we are in arithmetic where it is permitted

to invent many things that otherwise have no form,

*Gvat\MmSMomilch'sZeitschrJ/t, XX., HI. 2.

+ Gerhardt. Geschichte der Mathematik in Deutschland, 1877.
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this also is permitted which geometry does not allow,

namely to assume solid lines and surfaces and go be-

yond the cube just as if there were more than three

dimensions, which is, of course, against nature. . . .

But we have such good indulgence on account of the

charming and wonderful usage of Coss."*

Stifel after the manner of Ptolemy extends the

study of regular polygons and after the manner of

Euclid the construction of regular solids. He dis-

cusses the quadrature of the circle, considering the

latter as a polygon of infinitely many sides, and de-

clares the quadrature impossible. According to Al-

brecht Durer's Underweysung, etc., the quadrature of

the circle is obtained when the diagonal of the square

contains ten parts of which the diameter of the circle

contains eight, i. e., Tr= 3. It is expressly stated,

however, that this is only an approximate construc-

tion. "We should need to know quadrature, circuit,

that is the making equal a circle and a square, so that

the one should contain as much as the other, but this

has not yet been demonstrated mechanically by schol-

ars
;
but that is merely incidental

;
therefore so that

in practice it may fail only slightly, if at all, they may
be made equal as follows, f

*
Stifel, Die Coss Christoffs Rudolffs. Mit schCnen Exempeln der Coss.

Durch Michael Stifel Gebessert vnd sehr gemehrt. . . . Gegeben zum Haber-

sten
|

bei Konigsberg in Preussen
|
den letzten tag dess Herbstmonds

|
im

Jar 1552. . . . Zn Amsterdam Getruckt bey Wilhem Janson. Im Jar 1615.

tDurer, Underweysung der messung mit dent zirckel vnd richttcheyt in

Linien ebnen vnd gantzen corporen. Durch Albrecht Diirer zusamen getzogn

vnd zu nutz alln kunstlieb habenden mit zu gehorigen figuren in truck

gebracht im jar MDXXV. (Consists of vier Biichlein.)
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Upon the mensuration of the circle* there appeared in 1584 a

work by Simon van der Eycke in which the value IT= was
4o4

given. By calculating the side of the regular polygon of 192 sides

Ludolph van Ceulen found (probably in 1585) that 7r<3.14205<

. In his reply Simon v. d. Eycke determined IT= 3. 1446055,

whereupon L. v. Ceulen in 1586 computed TT between 3.142732

and 3.14103. Ludolph van Ceulen's papers contain a value of TT

to 35 places, and this value of the Ludolphian number was put

upon his tombstone (no longer known) in St. Peter's Church in

Leyden. Ceulen's investigations led Snellius, Huygens, and others

to further studies. By the theory of rapidly converging series it

was first made possible to compute TT to 500 and more decimals. f

A revival of geometry accompanied the activity of

Vieta and Kepler. With these investigators begins a

period in which the mathematical spirit commences

to reach out beyond the works of the ancients. J Vieta

completes the analytic method of Plato; in an ingeni

ous way he discusses the geometric construction of

roots of equations of the second and third degrees ;

he also solves in an elementary manner the problem

of the circle tangent to three given circles. Still

more important results are secured by Kepler. For

him geometry furnishes the key to the secrets of the

world. With sure step he follows the path of indue

tion and in his geometric investigations freely con-

forms to Euclid. Kepler established the symbolism

of the "golden section," that problem of Eudoxus

*Rudio, F., Das Problem von der Quadratur des ZirkeU, Zurich, 1890

tD. Bierens de Haan in Memo. Arch., I.; Cantor, II., p. 551.

tChasles.
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stated in the sixth book of Euclid's Elements : "To

divide a limited straight line in extreme and mean

ratio."* This problem, for which Kepler introduced

the designation sectio divina as well as proportio divina,

is in his eyes of so great importance that he expresses

himself: "Geometry has two great treasures: one is

the theorem of Pythagoras, the other the division of

a line in extreme and mean ratio. The first we may

compare to a mass of gold, the second we may call a

precious jewel."

The expression "golden section" is of more modern origin.

It occurs in none of the text-books of the eighteenth century and

appears to have been formed by a transfer from ordinary arithme-

tic. In the arithmetic of the sixteenth and seventeenth centuries

the rule of three is frequently called the "golden rule." Since the

beginning of the nineteenth century this golden rule has given way
more and more before the so-called Schlussrechnen (analysis) of

the Pestalozzi school. Consequently in place of the "golden rule,"

which is no longer known to the arithmetics, there appeared in the

elementary geometries about the middle of the nineteenth century

the "golden section," probably in connection with contemporary

endeavors to attribute to this geometric construction the impor-

tance of a natural law.

Led on by his astronomical speculations, Kepler

made a special study of regular polygons and star-

polygons. He considered groups of regular polygons

capable of elementary construction, viz.
,
the series of

polygons with the number of sides given by 4*2",

3-2", 5-2", 15-2" (from = on), and remarked that

* Sonnenburg, Der goldene Schnitt, 1881.
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a regular heptagon cannot be constructed by the help

of the straight line and circle alone. Further there is

no doubt that Kepler well understood the Conies of

Apollonius and had experience in the solution of prob-

lems by the aid of these curves. In his works we

first find the term "foci" for those points of conic

sections which in earlier usage are known as puncta

ex comparatione, puncta ex applicatione facta, umbilici,

or "poles";* also the term "eccentricity" for the

distance from a focus to the center divided by the

semi-major axis, of the curve of the second order, and

the name "eccentric anomaly" for the angle P'OA,
where OA is the semi-major axis of an ellipse and F
the point in which the ordinate of a point P on the

curve intersects the circle upon the major axis.f

Also in stereometric investigations, which had been

cultivated to a decided extent by Diirer and Stifel,

Kepler is preeminent among his contemporaries. In

his Harmonice Mundi he deals not simply with the

five regular Platonic and thirteen semi-regular Archi-

medean solids, but also with star-polygons and star-

dodecahedra of twelve and twenty vertices. Besides

this we find the determination of the volumes of solids

obtained by the revolution of conies about diameters,

tangents, or secants. Similar determinations of vol-

umes were effected by Cavalieri and Guldin. The

former employed a happy modification of the method

*C. Taylor, in Cambr. Proc., IV.

t Baltzer, R., Analytische Geometrie, 1882.



GEOMETRY. 225

of exhaustions, the latter used a rule already known

to Pappus but not accurately established by him.

To this period belong the oldest known attempts

to solve geometric problems with only one opening of

the compasses, an endeavor which first found accurate

scientific expression in Steiner's Geometrische Con-

struktionen, ausgefiihrt mittels der geraden Linie und

eines festen Kreises (1833). The first traces of such

constructions go back to Abul Wafa.* From the Arabs

they were transmitted to the Italian school where they

appear in the works of Leonardo da Vinci and Cardan.

The latter received his impulse from Tartaglia who

used processes of this sort in his problem-duel with

Cardan and Ferrari. They also occur in the Resolutio

omnium Euclidis problematum (Venice, 1553) of Bene-

dictis, a pupil of Cardan, in the Geometria deutsch and

in the construction of a regular pentagon by Durer.

In his Underweysung, etc., Durer gives a geometrically

accurate construction of the regular pentagon but also

an approximate construction of the same figure to be

made with a circle of fixed radius.

This method of constructing a regular pentagon on AB is as

follows : About A and B as centers, with radius AB, construct cir-

cles intersecting in C and D. The circle about D as a center with

the same radius cuts the circles with centers at A and B in E and

F and the common chord CD in G. The same circles are cut by

FG and EG in / and H. AJ and BH are sides of the regular

pentagon. (The calculation of this symmetric pentagon shows

* Gunther in Schlomilck's Zeitschrift, XX. Cantor, I., p. 700.
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= W820', while the corresponding angle of the regular

pentagon is 103.)

In Dtirer and all his successors who write upon rules of geo-

metric construction, we find an approximate construction of the

regular heptagon :

' ' The side of the regular heptagon is half that

of the equilateral triangle," while from calculation the half side

of the equilateral triangle =0.998 of the side of the heptagon.

Daniel Schwenter likewise gave constructions with a single opening

of the compasses in his Geometria practica nova et aitcla (1625).

BUrer, as is manifest from his work Underweysung der messung,

etc., already cited several times, also rendered decided service in

the theory of higher curves. He gave a general conception of the

notion of asymptotes and found as new forms of higher curves cer-

tain cyclic curves and mussel-shaped lines.

From the fifteenth century on, the methods of pro-

jection make a further advance. Jan van Eyck* in

the great altar painting in Ghent makes use of the

laws of perspective, e. g., in the application of the
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vanishing point, but without a mathematical grasp of

these laws. This is first accomplished by Albrecht

Diirer who in his Underweysung der messung mit dem

zirckel und richtscheyt makes use of the point of sight

and distance-point and shows how to construct the

perspective picture from the ground plan and eleva-

tion. In Italy perspective was developed by the archi-

tect Brunelleschi and the sculptor Donatello. The

first work upon this new theory is due to the architect

Leo Battista Alberti. In this he explains the perspec-

tive image as the intersection of the pyramid of visual

rays with the picture-plane. He also mentions an in-

strument for constructing it, which consists of a frame

with a quadratic net-work of threads and a similar

net-work of lines upon the drawing surface. He also

gives the method of the distance-point as invented by

him, by means of which he then pictures the ground

divided into quadratic figures.* This process received

a further extension at the hands of Piero della Fran-

cesca who employed the vanishing points of arbitrary

horizontal lines.

In German territory perspective was cultivated

with special zeal in Nuremberg where the goldsmith

Lencker, some decades after Durer, extended the lat-

ter's methods. The first French study of perspective

is due to the artist J. Cousin (1560) who in his Livre

de la perspective made use of the point of sight and the

distance-point, besides the vanishing points of hori-
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zontal lines, after the manner of Piero. Guido Ubaldi

goes noticeably further when he introduces the van-

ishing point of series of parallel lines of arbitrary di-

rection. What Ubaldi simply foreshadows, Simon

Stevin clearly grasps in its principal features, and in

an important theorem he lays the foundation for the

development of the theory of collineation.

F. FIFTH PERIOD.

FROM DESCARTES TO THE PRESENT.

Since the time of Apollonius many centuries had

elapsed and yet no one had succeeded in reaching the

full height of Greek geometry. This was partly be

cause the sources of information were relatively few,

and attainable indirectly and with difficulty, and partly

because men, unfamiliar with Greek methods of in-

vestigation, looked upon them with devout astonish-

ment. From this condition of partial paralysis, and

of helpless endeavor longing for relief, geometry was

delivered by Descartes. This was not by a simple ad-

dition of related ideas to the old geometry, but merely

by the union of algebra with geometry, thus giving

rise to analytic geometry.

By way of preparation many mathematicians, first

of all Apollonius, had referred the most important ele-

mentary curves, namely the conies, to their diameters

and tangents and had expressed this relation by equa-
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tions of the first degree between areas, so that cer-

tain relations were obtained between line-segments

identical with abscissas and ordinates.

In the conies of Apollonius we find expressions

which have been translated "ordinatim applicatae"

and "abscissae." For the former expression Fermat

used "applicate" while others wrote "ordinate."

Since the time of Leibnitz (1692) abscissas and ordi-

nates have been called "co-ordinates."*

Even in the fourteenth century we find as an ob-

ject of study in the universities a kind of co-ordinate

geometry, the "latitudines formarum." "Latitudo"f

signified the ordinate, "longitude" the abscissa of a

variable point referred to a system of rectangular co-

ordinates, and the different positions of this point

formed the "figura." The technical words longitude

and latitude had evidently been borrowed from the

language of astronomy. In practice of this art Oresme

confined himself to the first quadrant in which he

dealt with straight lines, circles, and even the para-

bola, but always so that only a positive value of a co-

ordinate was considered.

Among the predecessors of Descartes we reckon,

besides Apollonius, especially, Vieta, Oresme, Cava-

lieri, Roberval, and Fermat, the last the most distin-

guished in this field ;
but nowhere, even by Fermat,

had any attempt been made to refer several curves of

*Baltzer, R., Analytische Geometric, 1882.

t Giinther, p. 181.
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different orders simultaneously to one system of co-

ordinates, which at most possessed special significance

for one of the curves. It is exactly this thing which

Descartes systematically accomplished.

The thought with which Descartes made the laws

of arithmetic subservient to geometry is set forth by

himself in the following manner :
*

"All problems of geometry may be reduced to such

terms that for their construction we need only to know

the length of certain right lines. And just as arith-

metic as a whole comprises only four or five opera-

tions, viz., addition, subtraction, multiplication, divi-

sion, and evolution, which may be considered as a

kind of division, so in geometry to prepare the lines

sought to be known we have only to add other lines

to them or subtract others from them
; or, having one

which I call unity (so as better to refer it to numbers),

which can ordinarily be taken at pleasure, having two

others to find a fourth which shall be to one of these

as the other is to unity, which is the same as multi-

plication ;f or to find a fourth which shall be to one

of the two as unity is to the other which is the same

as division ;J or finally to find one or two or several

mean proportionals between unity and any other line,

which is the same as to extract the square, cube, . . .

root. I shall not hesitate to introduce these terms

* Marie, M., Histoire ties Sciences Mathematiques et Physiques, 1883-1887.

1'C :a = b: i, c ab.
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of arithmetic into geometry in order to render myself

more intelligible. It should be observed that, by a2
,

b*, and similar quantities, I understand as usual sim-

ple lines, and that I call them square or cube only so

as to employ the ordinary terms of algebra." (a
2 is

the third proportional to unity and a, or 1 : a= a : #2
,

and similarly b : &= t>* : P. )

This method of considering arithmetical expres-

sions was especially influenced by the geometric dis-

coveries of Descartes. As Apollonius had already de-

termined points of a conic section by parallel chords,

together with the distances from a tangent belonging

to the same system, measured in the direction of the

conjugate diameter, so with Descartes every point of

a curve is the intersection of two straight lines. Apol-

lonius and all his successors, however, apply such

systems of parallel lines only occasionally and that for

the sole purpose of presenting some definite property

of the conies with especial distinctness. Descartes,

on the contrary, separates these systems of parallel

lines from the curves, assigns them an independent

existence and so obtains for every point on the curve

a relation between two segments of given direction,

which is nothing else than an equation. The geo-

metric study of the properties of this curve can then

be replaced by the discussion of the equation after the

methods of algebra. The fundamental elements for

the determination of a point of a curve are its co-or-

dinates, and from long known theorems it was evident
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that a point of the plane can be fixed by two co-ordi-

nates, a point of space by three.

Descartes's Geometry is not, perhaps, a treatise

on analytic geometry, but only a brief sketch which

sets forth the foundations of this theory in outline.

Of the three books which constitute the whole work

only the first two deal with geometry ;
the third is of

algebraic nature and contains the celebrated rule of

signs illustrated by a simple example, as well as the

solution of equations of the third and fourth degrees

with the construction of their roots by the use of

conies.

The first impulse to his geometric reflections was

due, as Descartes himself says, to a problem which

according to Pappus had already occupied the atten-

tion of Euclid and Apollonius. It is the problem to

find a certain locus related to three, four, or several

lines. Denoting the distances, measured in given di-

rections, of a point P from the straight lines g\, gi . . .

gH by ei, <?a . . . en , respectively, we shall have

for three straight lines :

aes

for four straight lines :

l 2 = k,

for five straight lines :

l * = k,ae4 e6

and so on. The Greeks originated the solution of the

first two cases, which furnish conic sections. No ex-

ample could have shown better the advantage of the
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new method. For the case of three lines Descartes

denotes a distance by y, the segment of the corres-

ponding line between the foot of this perpendicular

and a fixed point by x, and shows that every other

segment involved in the problem can be easily con-

structed. Further he states "that if we allow y to

grow gradually by infinitesimal increments, x will

grow in the same way and thus we may get infinitely

many points of the locus in question."

The curves with which Descartes makes us gradu-

ally familiar he classifies so that lines of the first and

second orders form a first group, those of the third

and fourth orders a second, those of the fifth and

sixth orders a third, and so on. Newton was the first

to call a curve, which is defined by an algebraic equa-

tion of the th degree between parallel co-ordinates, a

line of the th order, or a curve of the (n l)th class.

The division into algebraic and transcendental curves

was introduced by Leibnitz
; previously, after the

Greek fashion, the former had been called geometric,

the latter mechanical lines.*

Among the applications which Descartes makes,

the problem of tangents is prominent. This he treats

in a peculiar way : Having drawn a normal to a curve

at the point P, he describes a circle through P with

the center at the intersection of this normal with the

*Baltzer, R., Analytitche Geometrie, 1882. Up to the time of Descartes

all lines except straight lines and conies were called mechanical. He was
the first to apply the term geometric lines to curves of degree higher than

the second.
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A"- axis, and asserts that this circle cuts the curve at P
in two consecutive points; i. e., he states the condi-

tion that after the elimination of x the equation in y

shall have a double root.

A natural consequence of the acceptance of the

Cartesian co-ordinate system was the admission of

negative roots of algebraic equations. These negative

roots had now a real significance ; they could be rep-

resented, and hence were entitled to the same rights

as positive roots.

In the period immediately following Descartes,

geometry was enriched by the labors of Cavalieri,

Fermat, Roberval, Wallis, Pascal, and Newton, not

at first by a simple application of the co-ordinate ge-

ometry, but often after the manner of the ancient

Greek geometry, though with some of the methods

essentially improved. The latter is especially true of

Cavalieri, the inventor of the method of indivisibles,*

which a little later was displaced by the integral ca'-

culus, but may find a place here since it rendered ser-

vice to geometry exclusively. Cavalieri enjoyed work-

ing with the geometry of the ancients. For example,

he was the first to give a satisfactory proof of the so-

called Guldin's rule already stated by Pappus. His

chief endeavor was to find a general process for the

determination of areas and volumes as well as centers

of gravity,' and for this purpose he remodelled the

*In French works Mtthode des indivisibles, originally in the work Geo-

metria indivisibilibus continuorum nova quadam rations fromota, Bologna,

1635.
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method of exhaustions. Inasmuch as Cavalieri's

method, of which he was master as early as 1629, may
even to-day replace to advantage ordinary integration

in elementary cases, its essential character may be set

forth in brief outline.*

If y=f(x} is the equation of a curve in rectangu-

lar co-ordinates, and he wishes to determine the area

bounded by the axis of x, a portion of the curve, and

the ordinates corresponding to XQ and x\, Cavalieri

divides the difference x\ XQ into n equal parts. Let

h represent such a part and let n be taken very large.

An element of the surface is then =hy= hf(x}, and

the whole surface becomes

For = oo we evidently get exactly

But this is not the quantity which Cavalieri seeks to

determine. He forms only the ratios of portions of

the area sought, to the rectangle with base xi x

and altitude yi, so that the quantity to be determined

is the following :

Cavalieri applies this formula, which he derives in
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complete generality from grounds of analogy, only to

the case where /(jf) is of the form Ax?" (m= 2, 3, 4).

The extension to further cases was made by Rober

val, Wallis, and Pascal.

In the simplest cases the method of indivisibles gives the fol-

lowing results.* For a parallelogram the indivisible quantity or

element of surface is a parallel to the base ; the number of indi-

visible quantities is proportional to the altitude
; hence we have

as the measure of the area of the parallelogram the product of the

measures of the base and altitude. The corresponding conclusion

holds for the prism. In order to compare the area of a triangle

with that of the parallelogram of the same base and altitude, we

decompose each into elements by equidistant parallels to the base.

The elements of the triangle are then, beginning with the least, 1,

2, 3, . . . n ; those of the parallelogram, ,,.... Hence the

ratio

Triangle _l-f2 + ...-fw = jn(n-|-l)_l/l\
Parallelogram n~n 2 t \ /

'

whence for n = oo we get the value $. For the corresponding solids

we get likewise

Pyramid _ l-f22 + .. . +n2 _ %n (n + 1) (2n -f 1)

Prism
~

8

After the lapse of a few decades this analytic-

geometric method of Cavalieri's was forced into the

background by the integral calculus, which could be

directly applied in all cases. At first, however, Rober-

val, known by his method of tangents, trod in the

footsteps of Cavalieri. Wallis used the works of Des-

* Marie.
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cartes and CaValieri simultaneously, and considered

especially curves whose equations were of the form

y= ^", m integral or fractional, positive or negative.

His chief service consists in this, that in his brilliant

work he put a proper estimate upon Descartes's dis-

covery and rendered it more accessible. In this work

Wallis also defines the conies as curves of the second

degree, a thing never before done in this definite

manner.

Pascal proved to be a talented disciple of Cavalieri

and Desargues. In his work on conies, composed

about 1639 but now lost (save for a fragment),* we

find Pascal's theorem of the inscribed hexagon or

Hexagramma mysticum as he termed it, which Bessel

rediscovered in 1820 without being aware of Pascal's

earlier work, f also the theorem due to Desargues that

if a straight line cuts a conic in P and Q, and the

sides of an inscribed quadrilateral in A, B, C, D, we

have the following equation :

PA-PC _ QA-QC
PB-PD

~
QC- QD'

Pascal's last work deals with a curve called by him

the roulette, by Roberval the trochoid, and generally

known later as the cycloid. Bouvelles (1503) already

knew the construction of this curve, as did Cardinal

von Cusa in the preceding century. J Galileo, as is

shown by a letter to Torricelli in 1639, had made (be

* Cantor, II., p. 622. t Bianco in Torino Att., XXI.

t Cantor, II., pp. 186, 351.
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ginning in 1590) an exhaustive study of rolling curves

in connection with the construction of bridge arches.

The quadrature of the cycloid and the determination

of the volume obtained by revolution about its axis

had been effected by Roberval, and the construction

of the tangent by Descartes. In the year 1658 Pascal

was able to determine the length of an arc of a cy-

cloidal segment, the center of gravity of this surface,

and the corresponding solid of revolution. Later the

cycloid appears in physics as the brachistochrone and

tautochrone, since it permits a body sliding upon it to

pass from one fixed point to another in the shortest

time, while it brings a material point oscillating upon

it to its lowest position always in the same time.

Jacob and John Bernoulli, among others, gave atten-

tion to isoperimetric problems ; but only the former

secured any results of value, by furnishing a rigid

method for their solution which received merely an

unimportant simplification from John Bernoulli. (See

pages 178-179.)

The decades following Pascal's activity were in

large part devoted to the study of tangent problems

and the allied normal problems, but at the same time

the general theory of plane curves was constantly

developing. Barrow gave a new method of determin

ing tangents, and Huygens studied evolutes of curves

and indicated the way of determining radii of curva

ture. From the consideration of caustics, Tschirn

hausen was led to involutes and Maclaurin constructed
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the circle of curvature at any point of an algebraic

curve. The most important extension of this theory

was made in Newton's Enumeratio linearum tertii or-

dinis (1706). This treatise establishes the distinction

between algebraic and transcendental curves. It then

makes an exhaustive study of the equation of a curve

of the third order, and thus finds numerous such curves

which may be represented as "shadows " of five types,

a result which involves an analytic theory of perspec-

tive. Newton knew how to construct conies from five

tangents. He came upon this discovery in his en-

deavor to investigate "after the manner of the an-

cients" without analytic geometry. Further he con-

sidered multiple points of a curve at a finite distance

and at infinity, and gave rules for investigating the

course of a curve in the neighborhood of one of its

points ("Newton's parallelogram" or "analytic tri-

angle "), as also for the determination of the order of

contact of two curves at one of their common points.

(Leibnitz and Jacob Bernoulli had also written upon

osculations
;
Plucker (1831) called the situation where

two curves have k consecutive points in common "a

-pointic contact"; in the same case Lagrange (1779)

had spoken of a "contact of (k l)th order. ")f

Additional work was done by Newton's disciples,

Cotes and Maclaurin, as well as by Waring. Mac-

laurin made interesting investigations upon corre-

* Baltzer.

tCayley, A., Address to the British Association, etc., 1883.
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spending points of a curve of the third order, and

thus showed that the theory of these curves was much

more comprehensive than that of conies. Euler like-

wise entered upon these investigations in his paper

Sur une contradiction apparente dans la thtorie des courbes

planes (Berlin, 1748), where it is shown that by eight in-

tersections of two curves of the third order the ninth is

completely determined. This theorem, which includes

Pascal's theorem for conies, introduced point groups,

or systems of points of intersection of two curves, into

geometry. This theorem of Euler's was noticed in

1750 by Cramer who gave special attention to the sin-

gularities of curves in his works upon the intersection

of two algebraic curves of higher order; hence the

obvious contradiction between the number of points

determining a plane curve and the number of inde-

pendent intersections of two curves of the same order

bears the name of "Cramer's paradox." This contra-

diction was solved by Lame1

in 1818 by the principle

which bears his name.* Partly in connection with

known results of the Greek geometry, and partly in-

dependently, the properties of certain algebraic and

transcendental curves were investigated. A curve

which is formed like the conchoid of Nicomedes, if

we replace the straight line by a circle, is called by

*Loria, G., Die hauptsachlichsten Theorien der Geometrie in ihrerfrvhe
ren undjetxigen Entivicklung. Deutsch von Schiitte, 1888. For a more accu-

rate account of Cramer's paradox, in which proper credit is given to Mac-
laurin's discovery, see Scott, C. A.,

" On the Intersections of Plane Curves,"
Bull. Am. Math. Soc., March, 1898.
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Roberval the limason of Pascal. The cardioid of the

eighteenth century is a special case of this spiral. If,

with reference to two fixed points A, J3, a point P
satisfies the condition that a linear function of the

distances PA, PB has a constant value, then is the

locus of P a Cartesian oval. This curve was found by

Descartes in his studies in dioptrics. For PA-PB=
constant, we have Cassini's oval, which the astronomer

of Louis XIV. wished to regard as the orbit of a planet

instead of Kepler's ellipse. In special cases Cassini's

oval contains a loop, and this form received from

Jacob Bernoulli (1694) the name lemniscate. With

the investigation of the logarithmic curve y= a* was

connected the study made by Jacob and John Ber-

noulli, Leibnitz, Huygens, and others, of the curve of

equilibrium of an inextensible, flexible thread. This

furnished the catenary (catenaria, 1691), the idea of

which had already occurred to Galileo.* The group

of spirals found by Archimedes was enlarged in the

seventeenth and eighteenth centuries by the addition

of the hyperbolic, parabolic, and logarithmic spirals,

and Cotes's lituus (1722). In 1687 Tschirnhausen de-

fined a quadratrix, differing from that of the Greeks,

as the locus of a point P, lying at the same time upon

LQ\\BO and upon MP\\OA (OAB is a quadrant),

where L moves over the quadrant and M over the

radius OB uniformly. Whole systems of curves and

surfaces were considered. Here belong the investiga-

* Cantor, III., p. an.
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tions of involutes and evolutes, envelopes in general,

due to Huygens, Tschirnhausen, John Bernoulli,

Leibnitz, and others. The consideration of the pen-

cil of rays through a point in the plane, and of the

pencil of planes through a straight line in space, was

introduced by Desargues, 1639.*

The extension of the Cartesian co-ordinate method

to space of three dimensions was effected by the labors

of Van Schooten, Parent, and Clairaut.f Parent rep-

resented a surface by an equation involving the three

co-ordinates of a point in space, and Clairaut per-

fected this new procedure in a most essential manner

by a classic work upon curves of double curvature.

Scarcely thirty years later Euler established the ana-

lytic theory of the curvature of surfaces, and the clas-

sification of surfaces in accordance with theorems

analogous to those used in plane geometry. He gives

formulae of transformation of space co-ordinates and

a discussion of the general equation of surfaces of the

second order, with their classification. Instead of

Euler's names : "elliptoid, elliptic-hyperbolic, hyper-

bolic-hyperbolic, elliptic- parabolic, parabolic- hyper-

bolic surface," the terms now in use,
"
ellipsoid, hyper-

boloid, paraboloid," were naturalized by Biot and

Lacroix.|

Certain special investigations are worthy of men-

tion. In 1663 Wallis studied plane sections and

effected the cubature, of a conoid with horizontal di-
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recting plane whose generatrix intersects a vertical

directing straight line and vertical directing circle

(cono-cuneus}. To Wren we owe an investigation of

the hyperboloid of revolution of two sheets (1669)

which he called "cylindroid." The domain of gauche

curves, of which the Greeks knew the common helix

of Archytas and the spherical spiral corresponding in

formation to the plane spiral of Archimedes, found an

extension in the line which cuts under a constant an-

gle the meridians of a sphere. Nunez (1546) had

recognized this curve as not plane, and Snellius (1624)

had given it the name loxodromia sphaerica. The prob-

lem of the shortest line between two points of a sur-

face, leading to gauche curves which the nineteenth

century has termed "geodetic lines," was stated by

John Bernoulli (1698) and taken in hand by him with

good results. In a work of Pitot in 1724 (printed in

1726)* upon the helix, we find for the first time the

expression ligne d double courbure, line of double curva-

ture, for a gauche curve. In 1776 and 1780 Meusnier

gave theorems upon the tangent planes to ruled sur-

faces, and upon the curvature of a surface at one of

its points, as a preparation for the powerful develop-

ment of the theory of surfaces soon to begin, f

There are still some minor investigations belong-

ing to this period deserving of mention. The alge-

braic expression for the distance between the centers

of the inscribed and circumscribed circles of a triangle

"Cantor, III., p. .428. t Baltzer.
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was determined by William Chappie (about 1746),

afterwards by Landen (1755) and Euler (1765).* In

1769 Meister calculated the areas of polygons whose

sides, limited by every two consecutive vertices, inter-

sect so that the perimeter contains a certain number

of double points and the polygon breaks up into cells

with simple or multiple positive or negative areas.

Upon the areas of such singular polygons Mobius pub-

lished later investigations (1827 and 1865).* Saurin

considered the tangents of a curve at multiple points

and Ceva starting from static theorems studied the

transversals of geometric figures. Stewart still further

extended the theorems of Ceva, while Cotes deter-

mined the harmonic mean between the segments of a

secant to a curve of the nth order reckoned from a

fixed point. Carnot also extended the theory of trans-

versals. Lhuilier solved the problem : In a circle to

inscribe a polygon of n sides passing through n fixed

points. Brianchon gave the theorem concerning the

hexagon circumscribed about a conic dualistically re-

lated to Pascal's theorem upon the inscribed hexagon.

The application of these two theorems to the surface

of the sphere was effected by Hesse and Thieme. In

the work of Hesse a Pascal hexagon is formed upon

the sphere by six points which lie upon the intersec-

tion of the sphere with a cone of the second order

having its vertex at the center of the sphere. Thieme

selects a right circular cone. The material usually

*Fortschritte, 1887, p. 32. tBaltzer.
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taken for the elementary geometry of the schools has

among other things received an extension through

numerous theorems upon the circle named after K.

W. Feuerbach (1822), upon symmedian lines of a

triangle, upon the Grebe point and the Brocard fig-

ures (discovered in part by Crelle, 1816; again intro-

duced by Brocard, 1875).*

The theory of regular geometric figures received

its most important extension at the hands of Gauss,

who discovered noteworthy theorems upon the possi-

bility or impossibility of elementary constructions of

regular polygons. (See p. 160.) Poinsot elaborated

the theory of the regular polyhedra by publishing his

views on the five Platonic bodies and especially upon

the "
Kepler-Poinsot regular solids of higher class,"

viz., the four star-polyhedra which are formed from

the icosahedron and dodecahedron. These studies

were continued by Wiener, Hessel, and Hess, with

the removal of certain restrictions, so that a whole

series of solids, which in an extended sense may be

regarded as regular, may be added to those named

above. Corresponding studies for four-dimensional

space have been undertaken by Scheffler, Rudel,

Stringham, Hoppe, and Schlegel. They have deter-

mined that in such a space there exist six regular fig-

ures of which the simplest has as its boundary five

tetrahedra. The boundaries of the remaining five fig-

*Lieber, Ueber die Gegenmittellinie,den Grebe'schen Punkt und den Bro-

card'schen Kreis, 1886-1888.
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ures require 16 or 600 tetrahedra, 8 hexahedra, 24 oc-

tahedra, 120 dodecahedra.* It may be mentioned

further that in 1849 the prismatoid was introduced

into stereometry by E. F. August, and that Schubert

and Stoll so generalised the Apollonian contact prob-

lem as to be able to give the construction of the six-

teen spheres tangent to four given spheres.

Projective geometry, called less precisely modern

geometry or geometry of position, is essentially a

creation of the nineteenth century. The analytic ge-

ometry of Descartes, in connection with the higher

analysis created by Leibnitz and Newton, had regis-

tered a series of important discoveries in the domain

of the geometry of space, but it had not succeeded in

obtaining a satisfactory proof for theorems of pure

geometry. Relations of a specific geometric character

had, however, been discovered in constructive draw-

ing. Newton's establishment of his five principal

types of curves of the third order, of which the sixty-

four remaining types may be regarded as projections,

had also given an impulse in the same direction. Still

more important were the preliminary works of Carnot,

which paved the way for the development of the new

theory by Poncelet, Chasles, Steiner, and von Staudt.

They it was who discovered "the overflowing spring

of deep and elegant theorems which with astonishing

facility united into an organic whole, into the graceful

edifice of projective geometry, which, especially with

*Serret, Essai d'une nouvelle mfthode, etc., 1873.
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reference to the theory of curves of the second order,

may be regarded as the ideal of a scientific organism."*

Projective geometry found its earliest unfolding on

French soil in the Geometric descriptive of Monge whose

astonishing power of imagination, supported by the

methods of descriptive geometry, discovered a host of

properties of surfaces and curves applicable to the

classification of figures in space. His work created

"for geometry the hitherto unknown idea of geomet-

ric generality and geometric elegance, "f and the im-

portance of his works is fundamental not only for the

theory of projectivity but also for the theory of the

curvature of surfaces. To the introduction of the

imaginary into the considerations of pure geometry

Monge likewise gave the first impulse, while his pupil

Gaultier extended these investigations by defining the

radical axis of two circles as a secant of the same

passing through their intersections, whether real or

imaginary.

The results of Monge's school thus derived, which

were more closely related to pure geometry than to

the analytic geometry of Descartes, consisted chiefly

in a series of new and interesting theorems upon sur-

faces of the second order, and thus belonged to the

same field that had been entered upon before Monge's

time by Wren (1669), Parent and Euler. That Monge

* Brill, A.. Antrittsrede in Tubingen, 1884.

t Hankel, Die Elemente der projektivischen Geometrie in synthetischer Be-

kandlung, 1875.
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did not hold analytic methods in light esteem is shown

by his Application de I'algebre a la ge'ome'trie (1805) in

which, as Plucker says, "he introduced the equation

of the straight line into analytic geometry, thus laying

the foundation for the banishment of all constructions

from it, and gave it that new form which rendered

further extension possible."

While Monge was working by preference in the

space of three dimensions, Carnot was making a spe-

cial study of ratios of magnitudes in figures cut by

transversals, and thus, by the introduction of the nega-

tive, was laying the foundation for a ge'ome'trie de posi-

tion which, however, is not identical with the Geometric

der Lage of to-day. Not the most important, but the

most noteworthy contribution for elementary school

geometry is that of Carnot's upon the complete quadri-

lateral and quadrangle.

Monge and Carnot having removed the obstacles

which stood in the way of a natural development of

geometry upon its own territory, these new ideas could

now be certain of a rapid development in well-pre-

pared soil. Poncelet furnished the seed. His work,

Traiti des proprie'te's projectives des figures, which ap-

peared in 1822, investigates those properties of figures

which remain unchanged in projection, i. e., their in-

variant properties. The projection is not made here,

as in Monge, by parallel rays in a given direction, but

by central projection, and so after the manner of per-

spective. In this way Poncelet came to introduce
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the axis of perspective and center of perspective (ac-

cording to Chasles, axis and center of homology) in

the consideration of plane figures for which Desargues

had already established the fundamental theorems.

In 1811 Servois had used the expression "pole of a

straight line," and in 1813 Gergonne the terms "polar

of a point" and "duality," but in 1818 Poncelet de-

veloped some observations made by Lahire in 1685.

upon the mutual correspondence of pole and polar in

the case of conies, into a method of transforming fig-

ures into their reciprocal polars. Gergonne recog-

nized in this theory of reciprocal polars a principle

whose beginnings were known to Vieta, Lansberg,

and Snellius, from spherical geometry. He called it

the "principle of duality" (1826). In 1827 Gergonne

associated dualistically with the notion of order of a

plane curve that of its class. The line is of the th

order when a straight line of the plane cuts it in

points, of the nth class when from a point in the plane

11 tangents can be drawn to it.*

While in France Chasles alone interested himself

thoroughly in its advancement, this new theory found

its richest development in the third decade of the

nineteenth century upon German soil, where almost

at the same time the three great investigators, Mobius,

Plucker, and Steiner entered the field. From this

time on the synthetic and more constructive tendency

followed by Steiner, von Staudt, and Mobius diverges!

*Baltzer. t Brill, A., AntrittsreeU in Tubingen, 1884.
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from the analytic side of the modern geometry which

Plucker, Hesse, Aronhold, and Clebsch had especially

developed.

The Barycentrischer Calciil in the year 1827 fur-

nished the first example of homogeneous co-ordinates,

and along with them a symmetry in the developed

formulae hitherto unknown to analytic geometry. In

this calculus Mobius started with the assumption that

every point in the plane of a triangle ABC may be re-

garded as the center of gravity of the triangle. In

this case there belong to the points corresponding

weights which are exactly the homogeneous co-ordi-

nates of the point P with respect to the vertices of

the fundamental triangle ABC. By means of this

algorism Mobius found by algebraic methods a series

of geometric theorems, for example those expressing

invariant properties like the theorems on cross-ratios.

These theorems, found analytically, Mobius sought to

demonstrate geometrically also, and for this purpose

he introduced with all its consequences the "law of

signs
" which expresses that for A, B, C, points of a

straight line, AB= BA, AB+ BA= Q, AB+ BC

Independently of M6bius, but starting from the same prin-

ciples, Bellavitis came upon his new geometric method of equi-

pollences.* Two equal and parallel lines drawn in the same direc-

tion, AB and CD, are called equipollent (in Cayley's notation AB
^ CD). By this assumption the whole theory is reduced to the

* Bellavitis,
"
Saggio di Applicazioni di un Nuovo Metodo di Geometria

Analitica (Calcolo delle Equipollenze)," in Ann. Lonib. Veneto, t. 5, 1835.
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consideration of segments proceeding from a ff xed point. Further

it is assumed that AB+BC=AC (Addition). Finally for the seg-

ments a, b, c, d, with inclinations a, ft, y, 6 to a fixed axis, the

equation a= must not only be a relation between lengths but

must also show that <*= + y & (Proportion). For d=l and

a= this becomes a=bc, i. e., the product of the absolute values

of the lengths is a= bc and at the same time o= /3-f y (Multipli-

cation). Equipollence is therefore only a special case of the equal-

ity of two objects, applied to segments.*

MObius further introduced the consideration of

correspondences of two geometric figures. The one-

to-one correspondence, in which to every point of a

first figure there corresponds one and only one point

of a second figure and to every point of the second

one and only one point of the first, Mobius called col-

lineation. He constructed not only a collinear image

of the plane but also of ordinary space.

These new and fundamental ideas which Mobius

had laid down in the barycentric calculus remained

for a long time almost unheeded and hence did not at

once enter into the formation of geometric concep-

tions. The works of Plucker and Steiner found a

more favorable soil. The latter "had recognized in

immediate geometric perception the sufficient means

and the only object of his knowledge. Plucker, on

the other hand,f sought his proofs in the identity of

the analytic operation and the geometric construc-

*Stolz, O., Vorlesvngen uber allgemeine Arithmetik, 1885-1886.

f'Clebsch, Versuch einer Darlegung und Wiirdigung seiner wissenschaft-

lichen Leistungen von einigen seiner Freunde (Brill, Gordan, Klein, Luroth,

A. Mayer, Nether, Von der Miihll)," in Math. Ann., Bd. 7.
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tion, and regarded geometric truth only as one of the

many conceivable antitypes of analytic relation."

At a later period (1855) Mobius engaged in the

study of involutions of higher degree. Such an invo-

lution of the tnth degree consists of two groups each

of m points : A\, A$, A s ,
. . . Am ; B\, B^, Bz ,

. . . Bni ,

which form two figures in such a way that to the 1st,

2d, 3d, . . . mih points of one group, as points of the

first figure, there correspond in succession the 2d, 3d,

4th . . . 1st points of the same group as points of the

second figure, with the same determinate relation. In-

volutions of higher degree had been previously studied

by Poncelet (1843). He started from the theorem

given by Sturm (1826), that by the conic sections of

the surfaces of the second order = 0, v= Q, u-\-Xv

= 0, there are determined upon a straight line six

points, A, A', B, B', C, C' in involution, i. e., so that

in the systems ABCA'B'C' and A'B'C'ABC not only

A and A', B and B', C and C', but also A' and A, B'

and B, C' and C are corresponding point-pairs. This

mutual correspondence of three point-pairs of a line

Desargues had already (in 1639) designated by the

term "involution."*

Pliicker is the real founder of the modern analytic

tendency, and he attained this distinction by "formu-

lating analytically the principle of duality and follow-

ing out its consequences. ""}" His Aiialytisch-geometri-

sche Untersuchungen appeared in 1828. By this work

*Baltzer. t Brill, A., Antrittsrede in Tubingen, 1884.
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was created for geometry the method of symbolic no-

tation and of undetermined coefficients, whereby one

is freed from the necessity, in the consideration of the

mutual relations of two figures, of referring to the

system of co-ordinates, so that he can deal with the

figures themselves. The System der analytischen Geo-

metric of 1835 furnishes, besides the abundant appli-

cation of the abbreviated notation, a complete classi-

fication of plane curves of the third order. In the

Theorie der algebraischen Kurven of 1839, in addition

to an investigation of plane curves of the fourth order

there appeared those analytic relations between the

ordinary singularities of plane curves which are gen-

erally known as "Plucker's equations."

These Plucker equations which at first are applied

only to the four dualistically corresponding singulari-

ties (point of inflexion, double point, inflexional tan-

gent, double tangent) were extended by Cayley to

curves with higher singularities. By the aid of devel-

opments in series he derived four "equivalence num-

bers" which enable us to determine how many singu-

larities are absorbed into a singular point of higher

order, and how the expression for the deficiency of

the curve is modified thereby. Cayley's results were

confirmed, extended, and completed as to proofs by

the works of Nother, Zeuthen, Halphen, and Smith.

The fundamental question arising from the Cayley

method of considering the subject, whether and by

what change of parameters a curve with correspond-
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ing elementary singularities can be derived from a

curve with higher singularity, for which the Pliicker

and deficiency equations are the same, has been

studied by A. Brill.

Plucker's greatest service consisted in the intro-

duction of the straight line as a space element. The

principle of duality had led him to introduce, besides

the point in the plane, the straight line, and in space

the plane as a determining element. Pliicker also

used in space the straight line for the systematic gen-

eration of geometric figures. His first works in this

direction were laid before the Royal Society in Lon-

don in 1865. They contained theorems on complexes,

congruences, and ruled surfaces with some indications

of the method of proof. The further development

appeared in 1868 as Neue Geometric des Raumes, ge-

griindet auf die Betrachtung der geraden Linie als Raum-

element. Pliicker had himself made a study of linear

complexes but his completion of the theory of com-

plexes of the second degree was interrupted by death.

Further extension of the theory of complexes was

made by F. Klein.

The results contained in Plucker's last work have

thrown a flood of light upon the difference between

plane and solid geometry. The curved line of the

plane appears as a simply infinite system either of

points or of straight lines
;
in space the curve may be

regarded as a simply infinite system of points, straight

lines or planes ;
but from another point of view this
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curve in space may be replaced by the developable

surface of which it is the edge of regression. Special

cases of the curve in space and the developable sur-

face are the plane curve and the cone. A further

space figure, the general surface, is on the one side a

doubly infinite system of points or planes, but on the

other, as a special case of a complex, a triply infinite

system of straight lines, the tangents to the surface.

As a special case we have the skew surface or ruled

surface. Besides this the congruence appears as a

doubly, the complex as a triply, infinite system of

straight lines. The geometry of space involves a num-

ber of theories to which plane geometry offers no anal-

ogy. Here belong the relations of a space curve to

the surfaces which may be passed through it, or of a

surface to the gauche curves lying upon it. To the

lines of curvature upon a surface there is nothing

corresponding in the plane, and in contrast to the

consideration of the straight line as the shortest line

between two points of a plane, there stand in space

two comprehensive and difficult theories, that of the

geodetic line upon a given surface and that of the

minimal surface with a given boundary. The ques-

tion of the analytic representation of a gauche curve

involves peculiar difficulties, since such a figure can

be represented by two equations between the co-ordi-

nates x, y, z only when the curve is the complete in-

tersection of two surfaces. In just this direction tend
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the modern investigations of Nother, Halphen, and

Valentiner.

Four years after the Analytisch-geometrische Unter-

suchungen of Plucker, in the year 1832, Steiner pub-

lished his Systematische Entwicklung der Abhdngigkeit

geometrischer Gestalten. Steiner found the whole the-

ory of conic sections concentrated in the single theo-

rem (with its dualistic analogue) that a curve of the

second order is produced as the intersection of two

collinear or projective pencils, and hence the theory

of curves and surfaces of the second order was essen-

tially completed by him, so that attention could be

turned to algebraic curves and surfaces of higher or-

der. Steiner himself followed this course with good

results. This is shown by the "Steiner surface," and

by a paper which appeared in 1848 in the Berliner

Abhandlungen. In this the theory of the polar of a

point with respect to a curved line was treated ex-

haustively and thus a more geometric theory of plane

curves developed, which was further extended by the

labors of Grassmann, Chasles, Jonquieres, and Cre-

mona.*

The names of Steiner and Plucker are also united in connec-

tion with a problem which in its simplest form belongs to elemen-

tary geometry, but in its generalization passes into higher fields.

It is the Malfatti Problem. f In 1803 Malfatti gave out the following

problem: From a right triangular prism to cut out three cylinders

which shall have the same altitude as the prism, whose volumes

shall be the greatest possible, and consequently the mass remain-

Loria. t Wittstein, Geschichte des Malfatti 'schen Problems, 1871 .
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ing after their removal shall be a minimum. This problem he re-

duced to what is now generally known as Malfatti's problem : In a

given triangle to inscribe three circles so that each circle shall be

tangent to two sides of the triangle and to the other two circles. He

calculates the radii x
lt
xz ,

x3 of the circles sought in terms of the

semi perimeter 5 of the triangle, th'e radius p of the inscribed cir-

cle, the distances a
lt
a2 , a8 ; bl>

bz ,
b a of the vertices of the tri-

angle from the center of the inscribed circle and its points of tan-

gency to the sides, and gets :

X 1
=~

*3
= -

(
s + s P i a ).

without giving the calculation in full
;
but he adds a simple con-

struction. Steiner also studied this problem. He gave (without

proof) a construction, showed that there are thirty-two solutions

and generalized the problem, replacing the three straight lines by

three circles. Pliicker also considered this same generalization.

But besides this Steiner studied the same problem for space : In

connection with three given conies upon a surface of the second

order to determine three others which shall each touch two of the

given conies and two of the required. This general problem re-

ceived an analytic solution from Schellbach and Cayley, and also

from Clebsch with the aid of the addition theorem of elliptic func-

tions, while the more simple problem in the plane was attacked in

the greatest variety of ways by Gergonne, Lehmus, Crelle, Grunert,

Scheffler, Schellbach (who gave a specially elegant trigonometric

solution) and Zorer. The first perfectly satisfactory proof of Stei-

ner's construction was given by Binder.*

After Steiner came von Staudt and Chasles who

rendered excellent service in the development of pro-

*Programm Schonthal, 1868.
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jective geometry. In 1837 Michel Chasles published

his Aper$u historique sur Vorigine et le dtveloppement

des mtthodes en ge'ome'trie, a work in which both ancient

and modern methods are employed in the derivation

of many interesting results, of which several of the

most important, among them the introduction of the

cross-ratio (Chasles's "anharmonic ratio") and the

reciprocal and collinear relation (Chasles's "duality"

and "homography"), are to be assigned in part to

Steiner and in part to Mobius.

Von Staudt's Geometric der Lage appeared in 1847,

his Beitrdge zur Geometric der Lage, 1856-1860. These

works form a marked contrast to those of Steiner and

Chasles who deal continually with metric relations

and cross-ratios, while von Staudt seeks to solve the

problem of "making the geometry of position an in-

dependent science not standing in need of measure-

ment." Starting from relations of position purely,

von Staudt develops all theorems that do not deal

immediately with the magnitude of geometric forms,

completely solving, for example, the problem of the

introduction of the imaginary into geometry. The

earlier works of Poncelet, Chasles, and others had,

to be sure, made use of complex elements but had

denned the same in a manner more or less vague and,

for example, had not separated conjugate complex

elements from each other. Von Staudt determined

the complex elements as double elements of involu-

tion-relations. Each double element is characterized
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by the sense in which, by this relation, we pass from

the one to the other. This suggestion of von Staudt's,

however, did not become generally fruitful, and it

was reserved for later works to make it more widely

known by the extension of the originally narrow con-

ception.

In the Beitrdge von Staudt has also shown how

the cross-ratios of any four elements of a prime form

of the first class (von Staudt's Wiirfe) may be used to

derive absolute numbers from pure geometry.*

With the projective geometry is most closely con-

nected the modern descriptive geometry. The former

in its development drew its first strength from the

considerations of perspective, the latter enriches itself

later with the fruits matured by the cultivation of pro-

jective geometry.

The perspective of the Renaissance f was devel-

oped especially by French mathematicians, first by

Desargues who used co-ordinates in his pictorial rep-

resentation of objects in such a way that two axes lay

in the picture plane, while the third axis was normal

to this plane. The results of Desargues were more

important, however, for theory than for practice.

More valuable results were secured by Taylor with a

"linear perspective" (1715). In this a straight line

is determined by its trace and vanishing point, a plane

by its trace and vanishing line. This method was

* Stolz, O., Vorlesungen iiber allgemeinc Arzthmetik, 1885-1886.

t Wiener.
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used by Lambert in an ingenious manner for different

c instructions, so that by the middle of the eighteenth

century even space-forms in general position could be

pictured in perspective.

Out of the perspective of the eighteenth century

grew "descriptive geometry," first in a work of Fre"-

zier's, which besides practical methods contained a

special theoretical section furnishing proofs for all

cases of the graphic methods considered. Even in

the "description," or representation, Fre"zier replaces

the central projection by the perpendicular parallel-

projection, "which may be illustrated by falling drops

of ink."* The picture of the plane of projection is

called the ground plane or elevation according as the

picture plane is horizontal or vertical. With the aid

of this "description" Frezier represents planes, poly-

hedra, surfaces of the second degree as well as inter-

sections and developments.

Since the time of Monge descriptive geometry has

taken rank as a distinct science. The Lemons de geo-

mttrie descriptive (1795) form the foundation-pillars of

descriptive geometry, since they introduce horizontal

and vertical planes with the ground-line and show

how to represent points and straight lines by two pro-

jections, and planes by two traces. This is followed

in the Lemons by the great number of problems of in-

tersection, contact and penetration which arise from

combinations of planes with polyhedra and surface =
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of the second order. Monge's successors, Lacroix,

Hachette, Olivier, and J. de la Gournerie applied

these methods to surfaces of the second order, ruled

surfaces, and the relations of curvature of curves and

surfaces.

Just at this time, when the development of descriptive geom-

etry in France had borne its first remarkable results, the technical

high schools came into existence. In the year 1794 was established

in Paris the cole Centrale des Travaux Publics from which in

1795 the cole Polytechnique was an outgrowth. Further techni-

cal schools, which in course of time attained to university rank,

were founded in Prague in 1806, in Vienna in 1815, in Berlin in

1820, in Karlsruhe in 1825, in Munich in 1827, in Dresden in 1828,

in Hanover in 1831, in Stuttgart 1832, in Zurich in 1860, in

Braunschweig in 1862, in Darmstadt in 1869, and in Aix-la-Chapelle

in 1870. In these institutions the results of projective geometry

were used to the greatest advantage in the advancement of descrip-

tive geometry, and were set forth in the most logical manner by

Fiedler, whose text-books and manuals, in part original and in

part translations from the English, take a conspicuous place in the

literature of the science.

With the technical significance of descriptive geometry there

has been closely related for some years an artistic side, and it is

this especially which has marked an advance in works on axonom-

etry (Weisbach, 1844), relief-perspective, photogrammetry, and

theory of lighting.

The second quarter of our century marks the time

when developments in form-theory in connection with

geometric constructions have led to the discovery of

of new and important results. Stimulated on the one

side by Jacobi, on the other by Poncelet and Steiner,



262 HISTORY OF MATHEMATICS.

Hesse (1837-1842) by an application of the transfor-

mation of homogeneous forms treated the theory of

surfaces of the second order and constructed their

principal axes.* By him the notions of "polar tri-

angles" and "polar tetrahedra" and of "systems of

conjugate points" were introduced as the geometric

expression of analytic relations. To these were added

the linear construction of the eighth intersection of

three surfaces of the second degree, when seven of

them are given, and also by the use of Steiner's theo-

rems, the linear construction of a surface of the sec

ond degree from nine given points. Clebsch, follow

ing the English mathematicians, Sylvester, Cayley,

and Salmon, went in his works essentially further than

Hesse. His vast contributions to the theory of in-

variants, his introduction of the notion of the defi-

ciency of a curve, his applications of the theory of

elliptic and Abelian functions to geometry and to the

study of rational and elliptic curves, secure for him a

pre-eminent place among those who have advanced

the science of extension. As an algebraic instrument

Clebsch, like Hesse, had a fondness for the theorem

upon the multiplication of determinants in its appli-

cation to bordered determinants. His worksf upon
the general theory of algebraic curves and surfaces

* N8ther, "Otto Hesse," Schlomilch's Zeitschrift, Bd. 20, HI. A.

t" Clebsch, Versuch einer Darlegung und Wurdigung seiner wissen-

schaftlichen Leistungen von einigen seiner Freunde "
(Brill, Gordan, Klein,

Liiroth, A. Mayer, Nother, Von der Miihll) Math. Ann., Bd. 7.
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began with the determination of those points upon an

algebraic surface at which a straight line has four-

point contact, a problem also treated by Salmon but

not so thoroughly. While now the theory of surfaces

of the third order with their systems of twenty-seven

straight lines was making headway on English soil,

Clebsch undertook to render the notion of "defi-

ciency" fruitful for geometry. This notion, whose

analytic properties were not unknown to Abel, is found

first in Riemann's Theorie der Abel'schen Funktionen

(1857). Clebsch speaks also of the deficiency of an

algebraic curve of the th order with d double points

and r points of inflexion, and determines the number

p= %(n !)( 2) d r. To one class of plane

or gauche curves characterized by a definite value of

p belong all those that can be made to pass over into

one another by a rational transformation or which

possess the property that any two have a one-to-one

correspondence. Hence follows the theorem that only

those curves that possess the same 3/ 3 parameters

(for curves of the third order, the same one parame-

ter) can be rationally transformed into one another.

The difficult theory of gauche curves* owes its first

general results to Cayley, who obtained formulae cor-

responding to Plucker's equations for plane curves.

Works on gauche curves of the third and fourth orders

had already been published by Mobius, Chasles, and

Von Staudt. General observations on gauche curves
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in more recent times are found in theorems of Nether

and Halphen.

The foundations of enumerative geometry* are

found in Chasles's method of characteristics (1864).

Chasles determined for rational configurations of one

dimension a correspondence-formula which in the

simplest case may be stated as follows : If two ranges

of points R\ and RI lie upon a straight line so that to

every point x of R\ there correspond in general a

points y in RI, and again to every point y of RI there

always correspond ft points x in J?i, the configuration

formed from R\ and R^ has (a-|-/3) coincidences or

there are (a+ /?) times in which a point x coincides

with a corresponding point y. The Chasles corre

spondence-principle was extended inductively by Cay-

ley in 1866 to point-systems of a curve of higher

deficiency and this extension was proved by Brill, f

Important extensions of these enumerative formulae

(correspondence-formulae), relating to general alge-

braic curves, have been given by Brill, Zeuthen, and

Hurwitz, and set forth in elegant form by the intro-

duction of the notion of deficiency. An extended

treatment of the fundamental problem of enumerative

geometry, to determine how many geometric config-

urations of given definition satisfy a sufficient number

of conditions, is contained in the Kalkiil der abzdhlen-

den Geometric by H. Schubert (1879).

The simplest cases of one-to-one correspondence

*Loria. t Mathcm . Annalen, VI.
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or uniform representation, are furnished by two planes

superimposed one upon the other. These are the

similarity studied by Poncelet and the collineation

treated by Mobius, Magnus, and Chasles.* In both

cases to a point corresponds a point, to a straight line

a straight line. From these linear transformations

Poncelet, Plucker, Magnus, Steiner passed to the

quadratic where they first investigated one-to-one cor-

respondences between two separate planes. The

"Steiner projection" (1832) employed two planes JE\

and EI together with two straight lines gi and gi not

co-planar. If we draw through a point P\ or /*2 of E\

or EI the straight line #1 or x% which cuts g\ as well

as g%, and determines the intersection X% or X\, with

E% or JSi, then are P\ and X%, and PI and X\ corre-

sponding points. In this manner to every straight

line of the one plane corresponds a conic section in

the other. In 1847 Plucker had determined a point

upon the hyperboloid of one sheet, like fixing a point

in the plane, by the segments cut off upon the two

generators passing through the point by two fixed

generators. This was an example of a uniform rep-

resentation of a surface of the second order upon the

plane.

The one-to-one relation of an arbitrary surface of

the second order to the plane was investigated by

Chasles in 1863, and this work marks the beginning

of the proper theory of surface representation which
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found its further development when Clebsch and Cre

mona independently succeeded in the representation

of surfaces of the third order. Cremona's important

results were extended by Cayley, Clebsch, Rosanes,

and Nother, to the last of whom we owe the impor-

tant theorem that every Cremona transformation which

as such is uniform forward and backward can be

effected by the repetition of a number of quadratic

transformations. In the plane only is the aggregate

of all rational or Cremona transformations known ;

for the space of three dimensions, merely a beginning

of the development of this theory has been made.*

A specially important case of one-to-one corre-

spondence is that of a conformal representation of a

surface upon the plane, because here similarity in the

smallest parts exists between original and image. The

simplest case, the stereographic projection, was known

to Hipparchus and Ptolemy. The representation by

reciprocal radii characterized by the fact that any two

corresponding points P\ and P* lie upon a ray through

the fixed point O so that OP\ OP9= constant, is also

conformal. Here every sphere in space is in general

transformed into a sphere. This transformation, stud-

ied by Bellavitis 1836 and Stubbs 1843, is especially

useful in dealing with questions of mathematical phys-

ics. Sir Wm. Thomson calls it "the principle of elec-

tric images." The investigations upon representa-

* Klein, F., Vergleichende Betrachtungen &ber neuere geometrische Forsch-

ngen, 1872.
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tions, made by Lambert and Lagrange, but more

especially those by Gauss, lead to the theory of curva-

ture.

A further branch of geometry, the differential ge-

ometry (theory of curvature of surfaces), considers in

general not first the surface in its totality but the

properties of the same in the neighborhood of an or-

dinary point of the surface, and with the aid of the

differential calculus seeks to characterize it by ana-

lytic formulae.

The first attempts to enter this domain were made

by Lagrange (1761), Euler (1766), and Meusnier(1776).

The former determined the differential equation of

minimal surfaces
;
the two latter discovered certain

theorems upon radii of curvature and surfaces of cen-

ters. But of fundamental importance for this rich do-

main have been the investigations of Monge, Dupin,

and especially of Gauss. In the Application de I'ana-

lyse a la gtomttrie (1795), Monge discusses families

of surfaces (cylindrical surfaces, conical surfaces, and

surfaces of revolution, envelopes with the new no-

tions of characteristic and edge of regression) and de-

termines the partial differential equations distinguish-

ing each. In the year 1813 appeared the Dtveloppements

de gtomttrie by Dupin. It introduced the indicatrix

at a point of a surface, as well as extensions of the

theory of lines of curvature (introduced by Monge)
and of asymptotic curves.

Gauss devoted to differential geometry three trea-
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tises : the most celebrated, Disquisitiones generates circa

superficies curvas, appeared in 1827, the other two

Untersuchungen iiber Gegenstdnde der hoheren Geoddsie

were published in 1843 and 1846. In the Disquisi-

tiones, to the preparation of which he was led by his

own astronomical and geodetic investigations,* the

spherical representation of a surface is introduced.

The one-to-one correspondence between the surface

and the sphere is established by regarding as corre-

sponding points the feet of parallel normals, where

obviously we must restrict ourselves to a portion of

the given surface, if the correspondence is to be main-

tained. Thence follows the introduction of the curvi-

linear co-ordinates of a surface, and the definition of

the measure of curvature as the reciprocal of the pro-

duct of the two radii of principal curvature at the

point under consideration. The measure of curvature

is first determined in ordinary rectangular co-ordinates

and afterwards also in curvilinear co-ordinates of the

surface. Of the latter expression it is shown that it is

not changed by any bending of the surface without

stretching or folding (that it is an invariant of curva-

ture). Here belong the consideration of geodetic

lines, the definition and a fundamental theorem upon

the total curvature (curvatura Integra) of a triangle

bounded by geodetic lines.

The broad views set forth in the Disquisitiones of

1827 sent out fruitful suggestions in the most vari-

* Brill, A., Antrittsrede in Tubingen, 1884.
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ous directions. Jacobi determined the geodetic lines

of the general ellipsoid. With the aid of elliptic co-

ordinates (the parameters of three surfaces of a sys-

tem of confocal surfaces of the second order passing

through the point to be determined) he succeeded in

integrating the partial differential equation so that the

equation of the geodetic line appeared as a relation

between two Abelian integrals. The properties of the

geodetic lines of the ellipsoid are derived with espe-

cial ease from the elegant formulae given by Liou-

ville. By Lame* the theory of curvilinear co-ordinates,

of which he had investigated a special case in 1837,

was developed in 1859 into a theory for space in his

Lemons sur la thtorie des coordonntes turvilignes.

The expression for the Gaussian measure of curva-

ture as a function of curvilinear co-ordinates has given

an impetus to the study of the so-called differential

invariants or differential parameters. These are cer-

tain functions of the partial derivatives of the coeffi-

cients in the expression for the square of the line- ele-

ment which in the transformation of variables behave

like the invariants of modern algebra. Here Sauc6,

Jacobi, C. Neumann, and Halphen laid the founda-

tions, and a general theory has been developed by

Beltrami.* This theory, as well as the contact-trans-

formations of Lie, moves along the border line be-

tween geometry and the theory of differential equa-

tions, f

Mem. di Bologna, VIII. t Loria.
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With problems of the mathematical theory of light are con-

nected certain investigations upon systems of rays and the prop-

erties of infinitely thin bundles of rays, as first carried on by Du-

pin, Malus, Ch. Sturm, Bertrand, Transon, and Hamilton. The

celebrated works of Kummer (1857 and 1866) perfect Hamilton's

results upon bundles of rays and consider the number of singular-

ities of a system of rays and its focal surface. An interesting ap-

plication to the investigation of the bundles of rays between the

lens and the retina, founded on the study of the infinitely thin

bundles of normals of the ellipsoid, was given by O. Boklen.*

Non- Euclidean Geometry. Though the respect

which century after century had paid to the Elements

of Euclid was unbounded, yet mathematical acuteness

had discovered a vulnerable point; and this point f

forms the eleventh axiom (according to Hankel, reck-

oned by Euclid himself among the postulates) which

affirms that two straight lines intersect on that side of

a transversal on which the sum of the interior angles

is less than two right angles. Toward the end of the

last century Legendre had tried to do away with this

axiom by making its proof depend upon the others, but

his conclusions were invalid. This effort of Legendre's

was an indication of the search now beginning after a

geometry free from contradictions, a hyper-Euclidean

geometry or pangeometry. Here also Gauss was

among the first who recognized that this axiom could

not be proved. Although from his correspondence

with Wolfgang Bolyai and Schumacher it can easily

* Knmecker't Journal, Band 46. Forischritte, 1884.

t Lori a.
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be seen that he had obtained some definite results in

this field at an early period, he was unable to decide

upon any further publication. The real pioneers in

the Non-Euclidean geometry were Lobachevski and

the two Bolyais. Reports of the investigations of

Lobachevski first appeared in the Courier of Kasan,

1829-1830, then in the transactions of the Univer-

sity of Kasan, 1835-1839, and finally as Geometrische

Untcrsuchungen iiber die Theorie der Parallellinien, 1840,

in Berlin. By Wolfgang Bolyai was published (1832-

1833*) a two-volume work, Tentamen Juventutem stu-

diosam in elementa Matheseos purae, etc. Both works

were for the mathematical world a long time as good

as non-existent till first Riemann, and then (in 1866)

R. Baltzer in his Elemente, referred to Bolyai. Almost

at the same time there followed a sudden mighty ad-

vance toward the exploration of this "new world" by

Riemann, Helmholtz, and Beltrami. It was recog-

nized that of the twelve Euclidean axioms f nine are

of essentially arithmetic character and therefore hold

for every kind of geometry ;
also to every geometry is

applicable the tenth axiom upon the equality of all

right angles. The twelfth axiom (two straight lines,

or more generally two geodetic lines, include no

space) does not hold for geometry on the sphere.

The eleventh axiom (two straight lines, geodetic

* Schmidt, "Aus dem Leben zweier nngarischen Mathematiker," Grunert

Arch., Bd. 48.

t Brill, A., Ueber das elfte Axiom des Euclid, 1883.
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lines, intersect when the sum of the interior angles is

less than two right angles) does not hold for geometry

on a pseudo-sphere, but only for that in the plane.

Riemann, in his paper "Ueber die Hypothesen,

welche der Geometrie zu Grunde liegen,"* seeks to

penetrate the subject by forming the notion of a mul-

tiply extended manifoldness
;
and according to these

investigations the essential characteristics of an -ply

extended manifoldness of constant measure of curva-

ture are the following :

1. "Every point in it may be determined by n

variable magnitudes (co-ordinates).

2. "The length of a line is independent of posi-

tion and direction, so that ever)' line is measurable

by every other.

3. "To investigate the measure-relations in such

a manifoldness, we must for every point represent the

line-elements proceeding from it by the corresponding

differentials of the co-ordinates. This is done by virtue

of the hypothesis that the length-element of the line

is equal to the square root of a homogeneous function

of the second degree of the differentials of the co-

ordinates."

At the same time Helmholtzf published in the

"Thatsachen, welche der Geometrie zu Grunde lie

gen," the following postulates :

* GSttinger Abhandlungen, XIII., 1868. Fortschritte, 1868.

tFortschriite, 1868.
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1. "A point of an n-tuple manifoldness is deter-

mined by n co-ordinates.

2. "Between the 2n co-ordinates of a point-pair

there exists an equation, independent of the move-

ment of the latter, which is the same for all congruent

point-pairs.

3. "Perfect mobility of rigid bodies is assumed.

4. " If a rigid body of n dimensions revolves about

n 1 fixed points, then revolution without reversal

will bring it back to its original position."

Here spatial geometry has satisfactory foundations

for a development free from contradictions, if it is fur-

ther assumed that space has three dimensions and is

of unlimited extent.

One of the most surprising results of modern geo-

metric investigations was the proof of the applicabil-

ity of the non-Euclidean geometry to pseudo-spheres

or surfaces of constant negative curvature.* On a

pseudo-sphere, for example, it is true that a geodetic

line (corresponding to the straight line in the plane,

the great circle on the sphere) has two separate points

at infinity; that through a point P, to a given geodetic

line g, there are two parallel geodetic lines, of which,

however, only one branch beginning at P cuts g at in-

finity while the other branch does not meet g at all
;

that the sum of the angles of a geodetic triangle is

less than two right angles. Thus we have a geometry

upon the pseudo-sphere which with the spherical ge-

* Cayley, Address to the British Association, etc., 1883.
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ometry has a common limiting case in the ordinary

or Euclidean geometry. These three geometries have

this in common that they hold for surfaces of constant

curvature. According as the constant value of the

curvature is positive, zero, or negative, we have to do

with spherical, Euclidean, or pseudo-spherical geom-

etry.

A new presentation of the same theory is due to

F. Klein. After projective geometry had shown that

in projection or linear transformation all descriptive

properties and also some metric relations of the fig-

ures remain unaltered, the endeavor was made to find

for the metric properties an expression which should

remain invariant after a linear transformation. After

a preparatory work of Laguerre which made the "no-

tion of the angle projective," Cayley, in 1859, found the

general solution of this problem by considering "every

metric property of a plane figure as contained in a

projective relation between it and a fixed conic."

Starting from the Cayley theory, on the basis of the

consideration of measurements in space, Klein suc-

ceeded in showing that from the projective geometry

with special determination of measurements in the

plane there could be derived an elliptic, parabolic,

or hyperbolic geometry,* the same fundamentally as

the spherical, Euclidean, or pseudo-spherical geom-

etry respectively.

The need of the greatest possible generalization

* Fortsckritte, 1871.
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and the continued perfection of the analytic apparatus

have led to the attempt to build up a geometry of n

dimensions; in this, however, only individual relations

have been considered. Lagrange* observes that "me-

chanics may be regarded as a geometry of four dimen-

sions." Plucker endeavored to clothe the notion of

arbitrarily extended space in a form easily understood.

He showed that for the point, the straight line or the

sphere, the surface of the second order, as a space

element, the space chosen must have three, four, or

nine dimensions respectively. The first investigation,

giving a different conception from Pliicker's and "con-

sidering the element of the arbitrarily extended mani-

foldness as an analogue of the point of space," is

foundf in H. Grassmann's principal work, Die Wissen-

schaft der extensiven Grosse oder die lineale Ausdehnungs-

lehre (1844), which remained almost wholly unno-

ticed, as did his Geometrische Analyse (1847). Then

followed Riemann's studies in multiply extended mani-

foldnesses in his paper Ueber die Hypothesen, etc., and

they again furnished the starting point for a series of

modern works by Veronese, H. Schubert, F. Meyer,

Segre, Castelnuovo, etc.

A Geometria situs in the broader sense was created

by Gauss, at least in name; but of it we know scarcely

more than certain experimental truths. \ The Analysis

* Loria.

t F. Klein, Vergleichende Betrachtungeu iiber neuere geometrische For-

s hungen, 1872.

t Brill, A., Antrittsrede in Tubingen, 1884.
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situs, suggested by Riemann, seeks what remains fixed"

after transformations consisting of the combination of

infinitesimal distortions.* This aids in the solution

of problems in the theory of functions. The contact

transformations already considered by Jacobi have

been developed by Lie. A contact-transformation is

defined analytically by every substitution which ex-

presses the values of the co-ordinates x, y, z, and the

partial derivatives -7- =p, r =<?> in terms of quan-
go: dy

tities of the same kind, x', y', z', p', tf. In such a

transformation contacts of two figures are replaced by

similar contacts.

Also a "geometric theory of probability" has been

created by Sylvester and Woolhousejf Crofton uses

it for the theory of lines drawn at random in space.

In a history of elementary mathematics there pos-

sibly calls for attention a related field, which certainly

cannot be regarded as a branch of science, but yet

which to a certain extent reflects the development of

geometric science, the history of geometric illustrative

material.J Good diagrams or models of systems of

space-elements assist in teaching and have frequently

led to the rapid spread of new ideas. In fact in the

geometric works of Euler, Newton, and Cramer are

found numerous plates of figures. Interest in the

* F.Klein. 1 Fortschritte, 1868.

% Brill, A., Utber die Modcllsammlung des mathematischen Seminars der

Unrversriat Tubingen, 1886. Mathtmatisch-naturwissenschaftliche Mitthei-

lungen von O. Boklen. 1887.
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construction of models seems to have been manifested

first in France in consequence of the example and ac-

tivity of Monge. In the year 1830 the Conservatoire

des arts et metiers in Paris possessed a whole series of

thread models of surfaces of the second degree, con-

oids and screw surfaces. A further advance was made

by Bardin (1855). He had plaster and thread mod-

els constructed for the explanation of stone-cutting,

toothed gears and other matters. His collection was

considerably enlarged by Muret. These works of

French technologists met with little acceptance from

the mathematicians of that country, but, on the con-

trary, in England Cayley and Henrici put on exhibi-

tion in London in 1876 independently constructed

models together with other scientific apparatus of the

universities of London and Cambridge.

In Germany the construction of models experi-

enced an advance from the time when the methods of

projective geometry were introduced into descriptive

geometry. Plucker, who in his drawings of curves of

the third order had in 1835 showed his interest in re

lations of form, brought together in 1868 the first

large collection of models. This consisted of models

of complex surfaces of the fourth order and was con-

siderably enlarged by Klein in the same field. A

special surface of the fourth order, the wave-surface

for optical bi-axial crystals was constructed in 1840

by Magnus in Berlin, and by Soleil in Paris. In the

year 1868 appeared the first model of a surface of the
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third order with its twenty-seven straight lines, by

Chr. Wiener. In the sixties, Kummer constructed

models of surfaces of the fourth order and of certain

focal surfaces. His pupil Schwarz likewise constructed

a series of models, among them minimal surfaces and

the surfaces of centers of the ellipsoid. At a meeting

of mathematicians in Gottingen there was made a

notable exhibition of models which stimulated further

work in this direction.

In wider circles the works suggested by A. Brill,

F. Klein, and W. Dyck in the mathematical seminar

of the Munich polytechnic school have found recogni-

tion. There appeared from 1877 to 1890 over a hun-

dred models of the most various kinds, of value not

only in mathematical teaching but also in lectures on

perspective, mechanics and mathematical physics.

In other directions also has illustrative material of

this sort been multiplied, such as surfaces of the third

order by Rodenberg, thread models of surfaces and

gauche curves of the fourth order by Rohn, H.Wiener,

and others.
*

* *

If one considers geometric science as a whole, it

cannot be denied that in its field no essential differ-

ence between modern analytic and modern synthetic

geometry any longer exists. The subject matter and

the methods of proof in both directions have gradu-

ally taken almost the same form. Not only does the

synthetic method make use of space intuition; the
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analytic representations also are nothing less than a

clear expression of space relations. And since metric

properties of figures may be regarded as relations of

the same to a fundamental form of the second order,

to the great circle at infinity, and thus can be brought

into the aggregate of projective properties, instead of

analytic and synthetic geometry, we have only a pro-

jective geometry which takes the first place in the

science of space.*

The last decades, especially of the development of

German mathematics, have secured for the science a

leading place. In general two groups of allied works

may be recognized, f In the treatises of the one ten-

dency "after the fashion of a Gauss or a Dirichlet,

the inquiry is concentrated upon the exactest possible

limitation of the fundamental notions" in the theory

of functions, theory of numbers, and mathematical

physics. The investigations of the other tendency,

as is to be seen in Jacobi and Clebsch, start "from a

small circle of already recognized fundamental con-

cepts and aim at the relations and consequences which

spring from them," so as to serve modern algebra and

geometry.

On the whole, then, we may say that| "mathe-

matics have steadily advanced from the time of the

Greek geometers. The achievements of Euclid, Archi-

medes, and Apollonius are as admirable now as they

* F.Klein, t Clebsch.

tCayley, A., Address to the British Association, etc., 1883.
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were in their own days. Descartes's method of co-

ordinates is a possession forever. But mathematics

have never been cultivated more zealously and dili-

gently, or with greater success, than in this century

in the last half of it, or at the present time : the ad-

vances made have been enormous, the actual field is

boundless, the future is full of hope."



V. TRIGONOMETRY.

A. GENERAL SURVEY.

^TRIGONOMETRY was developed by the ancients

-*- for purposes of astronomy. In the first period a

number of fundamental formulae of trigonometry were

established, though not in modern form, by the Greeks

and Arabs, and employed in calculations. The second

period, which extends from the time of the gradual

rise of mathematical sciences in the earliest Middle

Ages to the middle of the seventeenth century, estab-

lishes the science of calculation with angular func-

tions and produces tables in which the sexagesimal

division is replaced by decimal fractions, which marks

a great advance for the purely numerical calculation.

During the third period, plane and spherical trigo-

nometry develop, especially polygonometry and poly-

hedrometry which are almost wholly new additions to

the general whole. Further additions are the projec-

tive formulae which have furnished a series of inter-

esting results in the closest relation to projective ge-

ometry.
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B. FIRST PERIOD.

FROM THE MOST ANCIENT TIMES TO THE ARABS.

The Papyrus of Ahmes* speaks of a quotient

called seqt. After observing that the great p3'ramids

all possess approximately equal angles of inclination,

the assumption is rendered probable that this seqt is

identical with the cosine of the angle which the edge

of the pyramid forms with the diagonal of the square

base. This angle is usually 52. In the Egyptian

monuments which have steeper sides, the seqt ap-

pears to be equal to the trigonometric tangent of the

angle of inclination of one of the faces to the base.

Trigonometric investigations proper appear first

among the Greeks. Hypsicles gives the division of

the circumference into three hundred sixty degrees,

which, indeed, is of Babylonian origin but was first

turned to advantage by the Greeks. After the intro-

duction of this division of the circle, sexagesimal

fractions were to be found in all the astronomical cal-

culations of antiquity (with the single exception of

Heron), till finally Peurbach and Regiomontanus pre-

pared the way for the decimal reckoning. Hipparchus

was the first to complete a table of chords, but of this

we have left only the knowledge of its former exist-

* Cantor, I., p. 58.
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ence. In Heron are found actual trigonometric for-

mulae with numerical ratios for the calculation of the

areas of regular polygons and in fact all the values of

cotf
jfor

= 3, 4, ... 11, 12 are actually computed.
*

Menelaus wrote six books on the calculation of chords,

but these, like the tables of Hipparchus, are lost. On
the contrary, three books of the Spherics of Menelaus

are known in Arabic and Hebrew translations. These

contain theorems on transversals and on the congru-

ence of spherical as well as plane triangles, and for

the spherical triangle the theorem that a -\- b -\- c< R,

The most important work of Ptolemy consists in

the introduction of a formal spherical trigonometry

for astronomical purposes. The thirteen books of the

Great Collection which contain the Ptolemaic astron-

omy and trigonometry were translated into Arabic,

then into Latin, and in the latter by a blending of the

Arabic article al with a Greek word arose the word

Almagest, now generally applied to the great work of

Ptolemy. Like Hypsicles, Ptolemy also, after the

ancient Babylonian fashion, divides the circumfer-

ence into three hundred sixty degrees, but he, in ad-

dition to this, bisects every degree. As something

new we find in Ptolemy the division of the diameter

of the circle into one hundred twenty equal parts,

from which were formed after the sexagesimal fashion

* Tannery in Mlm. Bord., 1881.
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two classes of subdivisions. In the later Latin trans-

lations these sixtieths of the first and second kind

were called respectively paries minutae primae and

paries minutae secundae. Hence came the later terms

"minutes" and "seconds." Starting from his theo-

rem upon the inscribed quadrilateral, Ptolemy calcu-

lates the chords of arcs at intervals of half a degree.

But he develops also some theorems of plane and

especially of spherical trigonometry, as for example

theorems regarding the right angled spherical tri-

angle.

A further not unimportant advance in trigonom-

etry is to be noted in the works of the Hindus. The

division of the circumference is the same as that of

the Babylonians and Greeks
;
but beyond that there

is an essential deviation. The radius is not divided

sexagesimally after the Greek fashion, but the arc of

the same length as the radius is expressed in min-

utes
;
thus for the Hindus r= 3438 minutes. Instead

of the whole chords (^jiva), the half chords (ardhajya^

are put into relation with the arc. In this relation of

the half-chord to the arc we must recognize the most

important advance of trigonometry among the Hindus.

In accordance with this notion they were therefore

familiar with what we now call the sine of an angle.

Besides this they calculated the ratios corresponding

to the versed sine and the cosine and gave them spe-

cial names, calling the versed sine utkramajya, the

cosine kotijya. They also knew the formula sin2
*/
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-\-cos
2a= l. They did not, however, apply their

trigonometric knowledge to the solution of plane tri-

angles, but with them trigonometry was inseparably

connected with astronomical calculations.

As in the rest of mathematical science, so in trig-

onometry, were the Arabs pupils of the Hindus, and

still more of the Greeks, but not without important

devices of their own. To Al Battani it was well known

that the introduction of half chords instead of whole

chords, as these latter appear in the Almagest, and

therefore reckoning with the sine of an angle, is of

essential advantage in the applications. In addition

to the formulae found in the Almagest, Al Battani

gives the relation, true for the spherical triangle,

In the considera-

tion of right-angled triangles in connection with

shadow-measuring, we find the quotients - and

These were reckoned for each degreee by Al
sin a

Battani and arranged in a small table. Here we find

the beginnings of calculation with tangents and co-

tangents. These names, however, were introduced

much later. The origin of the term "sine" is due to

Al Battani. His work upon the motion of the stars*

was translated into Latin by Plato of Tivoli, and this

translation contains the word sinus for half chord.

In Hindu the half chord was called ardhajya or also

jiva (which was used originally only for the whole

* Cantor, I., p. 693, where this account is considered somewhat doubtful.
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chord); the latter word the Arabs adopted, simply

by reason of its sound, as jiba. The consonants of

this word, which in Arabic has no meaning of its

own, might be read jaib= bosom, or incision, and

this pronunciation, which apparently was naturalized

comparatively soon by the Arabs, Plato of Tivoli

translated properly enough into sinus. Thus was in-

troduced the first of the modern names of the trigo-

nometric functions.

Of astronomical tables there was no lack at that

time. Abul Wafa, by whom the ratio was called
cos a

the "shadow" belonging to the angle a, calculated a

table of sines at intervals of half a degree and also a

table of tangents, which however was used only for

determining the altitude of the sun. About the same

time appeared the hakimitic table of sines which Ibn

Yunus of Cairo was required to construct by direction

of the Egyptian ruler Al Hakim.*

Among the Western Arabs the celebrated astron-

omer Jabir ibn Aflah, or Geber, wrote a complete trigo-

nometry (principally spherical) after a method of his

own, and this work, rigorous throughout in its proofs,

was published in the Latin edition of his Astronomy

by Gerhard of Cremona. This work contains a col-

lection of formulae upon the right-angled spherical

triangle. In the plane trigonometry he does not go

* Cantor, I., p. 743.
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beyond the Almagest, and hence he here deals only

with whole chords, just as Ptolemy had taught.

C. SECOND PERIOD.

FROM THE MIDDLE AGES TO THE MIDDLE OF THE SEVEN-

TEENTH CENTURY.

Of the mathematicians outside of Germany in this

period, Vieta made a most important advance by his

introduction of the reciprocal triangle of a spherical

triangle. In Germany the science was advanced by

Regiomontanus and in its elements was presented with

such skill and thorough knowledge that the plan laid

out by him has remained in great part up to the pres-

ent day. Peurbach had already formed the plan of

writing a trigonometry but was prevented by death.

Regiomontanus was able to carry out Peurbach's idea

by writing a complete plane and spherical trigonom-

etry. After a brief geometric introduction Regiomon-

tanus's trigonometry begins with the right-angled tri-

angle, the formulae needed for its computation being

derived in terms of the sine alone and illustrated by

numerical examples. The theorems on the right-

angled triangle are used for the calculation of the

equilateral and isosceles triangles. Then follow the

principal cases of the oblique angled triangle of which

the first (a from a, b, c) is treated with much detail.

The second book contains the sine theorem and a
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series of problems relating to triangles. The third,

fourth, and fifth books bring in spherical trigonometry

with many resemblances to Menelaus
;

in particular

the angles are found from the sides. The case of the

plane triangle (a from a, b, c~} t
treated with consider

able prolixity by Regiomontanus, received a shorter

treatment from Rhaeticus, who established the for-

mula cot^a= , where p is the radius of the in-

scribed circle.

In this period were also published Napier's equa-

tions, or analogies. They express a relation between

the sum or difference of two sides (angles) and the

third side (angle) and the sum or difference of the two

opposite angles (sides).

Of modern terms, as already stated, the word

"sine" is the oldest. About the end of the sixteenth

century, or the beginning of the seventeenth, the ab-

breviation cosine for complementi sinus was introduced

by the Knglishman Gunter (died 1626). The terms

tangent and secant were first used by Thomas Finck

(1583); the term versed sine was used still earlier.*

By some writers of the sixteenth century, e. g., by

Apian, sinus rectus secundus was written instead of co-

sine. Rhaeticus and Vieta have perpendiculum and

basis for sine and cosine. f The natural values of the

cosine, whose logarithms were called by Kepler "anti-

*Baltzer, R., Die Elemente der Mathematik, 1885.

tPfleiderer, Trigonometrie, 1802.
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logarithms," are first found calculated in the trigo-

nometry of Copernicus as published by Rhaeticus.*

The increasing skill in practical computation, and

the need of more accurate values for astronomical

purposes, led in the sixteenth century to a strife after

the most complete trigonometric tables possible. The

preparation of these tables, inasmuch as the calcula-

tions were made without logarithms, was very tedious.

Rhaeticus alone had to employ for this purpose a

number of computers for twelve years and spent

thereby thousands of gulden, f

The first table of sines of German origin is due to

Peurbach. He put the radius equal to 600 000 and

computed at intervals of 10' (in Ptolemy r= 6Q, with

some of the Arabs r= 150). Regiomontanus com-

puted two new tables of sines, one for r=6 000 000,

the other, of which no remains are left, for r=
10 000 000. Besides these we have from Regiomon-

tanus a table of tangents for every degree, r= 100 000.

The last two tables evidently show a transition from

the sexagesimal system to the decimal. A table of

sines for every minute, with r= 100 000, was pre-

pared by Apian.

In this field should also be mentioned the indefat-

igable perseverance of Joachim Rhaeticus. He did

not associate the trigonometric functions with the

arcs of circles, but started with the right-angled tri-

*M. Curtze, in Schlomilch' s Zeitschrift, Bd. XX.

1 Gerhardt, Geschichte der Mathematik in Deutschland 1877.
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angle and used the terms perpendiculum for sine, basis

for cosine. He calculated (partly himself and partly

by the help of others) the first table of secants ; later,

tables of sines, tangents, and secants for every 10",

for radius =10000 millions, and later still, for r

10 16
. After his death the whole work was published

by Valentin Otho in the year 1596 in a volume of 1468

pages.*

To the calculation of natural trigonometric func

tions Bartholomaeus Pitiscus also devoted himself.

Tn the second book of his Trigonometry he sets forth

his views on computations of this kind. His tables

contain values of the sines, tangents, and secants on

the left, and of the complements of the sines, tangents

and secants (for so he designated the cosines, cotan-

gents, and cosecants) on the right. There are added

proportional parts for 1', and even for 10". In the

whole calculation r is assumed equal to 1026 . The

work of Pitiscus appeared at the beginning of the

seventeenth century.

The tables of the numerical values of the trigono-

metric functions had now attained a high degree of

accuracy, but their real significance and usefulness

were first shown by the introduction of logarithms.

Napier is usually regarded as the inventor of log-

arithms, although Cantor's review of the evidencef

leaves no room for doubt that Biirgi was an indepen-

dent discoverer. His Progress Tabulen, computed be-

* Gerhardt. t Cantor, II., pp. 662 et seq.
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tween 1603 and 1611 but not published until 1620 is

really a table of antilogarithms. Biirgi's more gen-

eral point of view should also be mentioned. He de-

sired to simplify all calculations by means of loga-

rithms while Napier used only the logarithms of the

trigonometric functions.

Biirgi was led to this method of procedure by

comparison of the two series 0, 1, 2, 3, ... and 1, 2,

4, 8, ... or 2, 2 1
,
2 2

, 2, . . . He observed that for

purposes of calculation it was most convenient to se-

lect 10 as the base of the second series, and from this

standpoint he computed the logarithms of ordinary

numbers, though he first decided on publication when

Napier's renown began to spread in Germany by rea-

son of Kepler's favorable reports. Biirgi's Geometri-

sche Progress Tabulen appeared at Prague in 1620,*

and contained the logarithms of numbers from 108 to

109
by tens. Burgi did not use the term logarithmus,

but by reason of the way in which they were printed

he called the logarithms "red numbers," the numbers

corresponding, "black numbers."

Napier started with the observation that if in a

circle with two perpendicular radii OA and OA\

(r= l), the sine S Si ||
OA moves from O to A Q at

intervals forming an arithmetic progression, its value

decreases in geometrical progression. The segment

OS
, Napier originally called numerus artificialis and

later the direction number or logarithmus. The first

*Gerhardt.
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publication of this new method of calculation, in which

r=107
, log sin 60 = 0, log sin = oo, so that the log-

arithms increased as the sines decreased, appeared in

1614 and produced a great sensation. Henry Briggs

had studied Napier's work thoroughly and made the

important observation that it would be more suitable

for computation if the logarithms were allowed to in-

crease with the numbers. He proposed to put log 1

= 0, log 10= 1, and Napier gave his assent. The ta-

bles of logarithms calculated by Briggs, on the basis

of this proposed change, for the natural numbers from

1 to 20 000 and from 90 000 to 100 000 were reckoned

to 14 decimal places. The remaining gap was filled by

the Dutch bookseller Adrian Vlacq. His tables which

appeared in the year 1628 contained the logarithms of

numbers from 1 to 100 000 to 10 decimal places. In

these tables, under the name of his friend De Decker,

Vlacq introduced logarithms upon the continent. As-

sisted by Vlacq and Gellibrand, Briggs computed a

table of sines to fourteen places and a table of tan-

gents and secants to ten places, at intervals of 36".

These tables appeared in 1633. Towards the close of

the seventeenth century Claas Vooght published a

table of sines, tangents, and secants with their loga-

rithms, and, what was especially remarkable, they

were engraved on copper.

Thus was produced a collection of tables for logarithmic com-

putation valuable for all time. This was extended by the intro-

duction of the addition and subtraction logarithms always named
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after Gauss, but whose inventor, according to Gauss's own testi

mony, is Leonelli. The latter had proposed calculating a table

with fourteen decimals ; Gauss thought this impracticable, and

calculated for his own use a table with five decimals.*

In the year 1875 there were in existence 553 logarithmic tables

with decimal places ranging in number from 3 to 102. Arranged

according to frequency, the 7 -place tables stand at the head, then

follow those with 5 places, 6-places, 4-places, and 10-places. The

only table with 102 places is found in a work by H. M. Parkhurst

(Astronomical Tables, New York, 1871).

Investigations of the errors occurring in logarithmic tables

have been made by J. W. L. Glaisher. f It was there shown that

every complete table had been transcribed, directly or indirectly

after a more or less careful revision, from the table published in

1628 which contains the results of Briggs's Arithmetica logarith-

mica of 1624 for numbers from 1 to 100000 to ten places. In the

first seven places Glaisher found 171 errors of which 48 occur in

the interval from 1 to 10000. These errors, due to Vlacq, have

gradually disappeared. Of the mistakes in Vlacq, 98 still appear

in Newton (1658), 19 in Gardiner (1742), 5 in Vega (1797), 2 in

Callet (1855), 2 in Sang (1871). Of the tables tested by Glaisher,

four turned out to be free from error, viz., those of Bremiker

(1857), Schron (I860), Callet (1862), and Bruhns (1870). Contribu-

tions to the rapid calculation of common logarithms have been

made by Koralek (1851) and R. Hoppe (1876) ; the work of the

latter is based upon the theorem that every positive number may

be transformed into an infinite product.:):

* Gauss, Werke, III., p. 244. Porro in Bone. Bull., XVIII.

t Fortschritte, 1873.

$ Stolz, Vorlesungen uber allgemeine Arithmetik, 1885-1886.
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D. THIRD PERIOD.

FROM THE MIDDLE OF THE SEVENTEENTH CENTURY

TO THE PRESENT.

After Regiomontanus had laid the foundations of

plane and spherical trigonometry, and his successors

had made easier the work of computation by the com-

putation of the numerical values of the trigonomet-

ric functions and the creation of a serviceable sys-

tem of logarithms, the inner structure of the science

was ready to be improved in details during this third

period. Important innovations are especially due to

EuLer, who derived the whole of spherical trigonom-

etry from a few simple theorems. Euler denned the

trigonometric functions as mere numbers, so as to be

able to substitute them for series in whose terms ap-

pear arcs of circles from which the trigonometric func-

tions proceed according to definite laws. From him

we have a number of trigonometric formulae, in part

entirely new, and in part perfected in expression.

These were made especially clear when Euler denoted

the elements of the triangle by a, b, c, a, ft, y. Then

such expressions as sin a, tana could be introduced

where formerly special letters had been used for the

same purpose.* Lagrange and Gauss restricted them-

selves to a single theorem in the derivation of spheri-

cal trigonometry. The system of equations

*Baltzer, R., Die Elemente der Mathematik, 1885.
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a . b -4- c
sm
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with the corresponding relations, is ordinarily ascribed

to Gauss, though the equations were first published

by Delambre in 1807 (by Mollweide 1808, by Gauss

1809).* The case of the Pothenot problem is similar:

it was discussed by Snellius 1614, by Pothenot 1692,

by Lambert 1765.f

The principal theorems of polygonometry and

polyhedrometry were established in the eighteenth

century. To Euler we owe the theorem on the area

of the orthogonal projection of a plane figure upon
another plane ;

to Lexell the theorem upon the pro-

jection of a polygonal line. Lagrange, Legendre,

Carnot and others stated trigonometric theorems for

polyhedra (especially the tetrahedra), Gauss for the

spherical quadrilateral.

The nineteenth century has given to trigonometry

a series of new formulae, the so-called projective for-

mulae. Besides Poncelet, Steiner, and Gudermann,

Mobius deserves special mention for having devised

a generalization of spherical trigonometry, such that

sides or angles of a triangle may exceed 180. The im-

portant improvements which in modern times trigono-

metric developments have contributed to other mathe-

matical sciences, may be indicated in this one sentence:

their extended description would considerably en-

croach upon the province of other branches of science.

* Hammer, Lehrbuck der ebetten vnd sphdrischen TrigoMometrie, 1897.

t Baltzer, R., Die Elemente der Mathematik, 1885.





BIOGRAPHICAL NOTES.*

Abel, Niels Henrik. Born at Findoe, Norway, August 5, 1802 ;

. died April 6, 1829. Studied in Christiania, and for a short

time in Berlin and Paris. Proved the impossibility of the

algebraic solution of the quintic equation ; elaborated the the-

ory of elliptic functions ; founded the theory of Abelian func-

tions.

Abul Jud, Mohammed ibn al Lait al Shanni. Lived about 1050.

Devoted much attention to geometric problems not soluble

with compasses and straight edge alone.

Abul Wafa al Buzjani. Born at Buzjan, Persia, June 10, 940;
died at Bagdad, July i, 998. Arab astronomer. Translated

works of several Greek mathematicians ; improved trigonom-

etry and computed some tables ; interested in geometric con-

structions requiring a single opening of the compasses.

Adelard. About 1120. English monk who journeyed through Asia

Minor, Spain, Egypt, and Arabia. Made the first translation

of Euclid from Arabic into Latin. Translated part of Al

Khowarazmi's works.

Al Battani (Albategnius). Mohammed ibn Jabir ibn Sinan Abu
Abdallah al Battani. Born in Battan, Mesopotamia, c. 850;

died in Damascus, 929. Arab prince, governor of Syria ; great-

*The translators feel that these notes will be of greater value to the

reader by being arranged alphabetically than, as in the original, by periods,

especially as this latter arrangement is already given in the body of the

work. They also feel that they will make the book more serviceable by

changing the notes as set forth in the original, occasionally eliminating mat-

ter of little consequence, and frequently adding to the meagre information

given. They have, for this purpose, freely used such standard works as Can-

tor, Hankel, Giinther, Zeuthen, et al., and especially the valuable little Zeit-

tafeln zur Geschichte der Mathematik, Physik und Astronomic bis zum Jahre

1500, by Felix Miiller, Leipzig, 1893. Dates are A. D., except when prefixed

by the negative sign.
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est Arab astronomer and mathematician. Improved trigonom-

etry and computed the first table of cotangents.

Alberti, Leo Battista. 1404-1472. Architect, painter, sculptor.

Albertus Magnus. Count Albrecht von Bollstadt. Born at Lau-

ingen in Bavaria, 1193 or 1205 ; died at Cologne, Nov. 15,

1280. Celebrated theologian, chemist, physicist, and mathe-

matician.

.11 Biruni, Abul Rihan Mohammed ibn Ahmed. From Birun,

valley of the Indus ; died 1038. Arab, but lived and travelled

in India and wrote on Hindu mathematics. Promoted spheri-

cal trigonometry.

Alcuin. Born at York, 736; died at Hersfeld, Hesse, May 19

804. At first a teacher in the cloister school at York ; then

assisted Charlemagne in his efforts to establish schools in

France.

Alhazen, Ibn al Haitam. Born at Bassora, 950 ; died at Cairo

1038. The most important Arab writer on optics.

Al Kalsadi, Abul Hasan AH ibn Mohammed. Died 1486 or 1477.

From Andalusia or Granada. Arithmetician.

Al fCarkhi, Abu Bekr Mohammed ibn al Hosain. Lived about

1010. Arab mathematician at Bagdad. Wrote on arithmetic,

algebra and geometry.

Al Khojandi, Abu Mohammed. From Khojand, in Khorassan
;

was living in 992. Arab astronomer.

Al Khorvarazmi, Abu Jafar Mohammed ibn Musa. First part of

ninth century. Native of Khwarazm (Khiva). Arab mathe-

matician and astronomer. The title of his work gave the name
to algebra. Translated certain Greek works.

Al Kindi, Jacob ibn Ishak, Abu Yusuf . Born c. 813; died 873.

Arab philosopher, physician, astronomer and astrologer.

Al Kuhi, Vaijan ibn Rustam Abu Sahl. Lived about 975. Arab

astronomer and geometrician at Bagdad.

Al Nasauui, Abul Hasan Ali ibn Ahmed. Lived about 1000

From Nasa in Khorassan. Arithmetician.

Al Sag-ant. Ahmed ibn Mohammed al Sagani Abu Hamid al Us-

turlabi. From Sagan, Khorassan ; died 990. Bagdad astron-

omer
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Anaxagoras. Born at Clazomene, Ionia, 499; died at Lamp-
sacus, 428. Last and most famous philosopher of the Ionian

school. Taught at Athens. Teacher of Euripides and Pe-

ricles.

Apianus (Apian), Petrus. Born at Leisnig, Saxony, 1495 ; died in

1552. Wrote on arithmetic and trigonometry.

Afollonius of Perga, in Pamphylia. Taught at Alexandria be-

tween 250 and 200, in the reign of Ptolemy Philopator.
His eight books on conies gave him the name of "the great

geometer." Wrote numerous other works. Solved the gene-

ral quadratic with the help of conies.

Arbogast, Louis Franois Antoine. Born at Mutzig, 1759 ; died

1803. Writer on calculus of derivations, series, gamma func-

tion, differential equations.

Archimedes. Born at Syracuse, 287(7) ;
killed there by Roman

soldiers in 212. Engineer, architect, geometer, physicist.

Spent some time in Spain and Egypt. Friend of King Hiero.

Greatly developed the knowledge of mensuration of geometric

solids and of certain curvilinear areas. In physics he is known

for his work in center of gravity, levers, pulley and screw,

specific gravity, etc.

Archytas. Born at Tarentum 430; died 365. Friend of Plato,

a Pythagorean, a statesman and a general. Wrote on propor-

tion, rational and irrational numbers, tore surfaces and sec-

tions, and mechanics.

Argand, Jean Robert. Born at Geneva, 1768 ; died c. 1825. Pri-

vate life unknown. One of the inventors of the present method

of geometrically representing complex numbers (1806).

Aristotle. Born at Stageira, Macedonia, 384 ; died at Chalcis,

Euboea, 322. Founder of the peripatetic school of philoso-

phy ; teacher of Alexander the Great. Represented unknown

quantities by letters ; distinguished between geometry and

geodesy ; wrote on physics ; suggested the theory of combina-

tions.

Arydbhatta. Born at Pataliputra on the Upper Ganges, 476.

Hindu mathematician. Wrote chiefly on algebra, including

quadratic equations, permutations, indeterminate equations,

and magic squares.
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August, Ernst Ferdinand. Born at Prenzlau, 1795 ; died 1870 as

director of the Kolnisch Realgymnasium in Berlin.

Autolykus of Pitane, Asia Minor. Lived about 330. Greek

astronomer ; author of the oldest work on spherics.

Avicenna. Abu AH Hosain ibn Sina. Born at Charmatin, near

Bokhara, 978 ; died at Hamadam, in Persia, 1036. Arab phy-
sician and naturalist. Edited several mathematical and phys-
ical works of Aristotle, Euclid, etc. Wrote on arithmetic and

geometry.

Babbage, Charles. Born at Totnes, Dec. 26, 1792 ; died at Lon-

don, Oct. 18, 1871. Lucasian professor of mathematics at

Cambridge. Popularly known for his calculating machine.

Did much to raise the standard of mathematics in England.

Bachet. See Me*ziriac.

Bacon, Roger. Born at Ilchester, Somersetshire, 1214; died at

Oxford, June u, 1294. Studied at Oxford and Paris; profes-

sor at Oxford ; mathematician and physicist.

Balbus. Lived about 100. Roman surveyor.

Baldi, Bernardino. Born at Urbino, 1553; died there, 1617.

Mathematician and general scholar. Contributed to the his-

tory of mathematics.

Baltzer, Heinrich Richard. Born at Meissen in 1818; died at

Giessen in 1887. Professor of mathematics at Giessen.

Barlaam, Bernard. Beginning of fourteenth century. A mcnk
who wrote on astronomy and geometry.

Barozzi, Francesco. Italian mathematician. 1537-1604.

Barrozu, Isaac. Born at London, 1630; died at Cambridge, May
4, 1677. Professor of Greek and mathematics at Cambridge.
Scholar, mathematician, scientist, preacher. Newton was his

pupil and successor.

Beda, the Venerable. Born at Monkton, near Yarrow, Northum-

berland, in 672; died at Yarrow, May 26, 735. Wrote on chro-

nology and arithmetic.

Btttavitis, Giusto. Born at Bassano, near Padua, Nov. 22, 1803;

died Nov. 6, 1880. Known for his work in projective geom
etry and his method of equipollences.
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Berndinus. Lived about 1020. Pupil of Gerbert at Paris. Wrote
on arithmetic.

Bernoulli. Famous mathematical family.

Jacob (often called James, by the English), born at Basel, Dec.

27, 1654 ; died there Aug. 16, 1705. Among the first to recog-
nize the value of the calculus. His De Arte Conjectandi is a

classic on probabilities. Prominent in the study of curves, the

logarithmic spiral being engraved on his monument at Basel.

John (Johann), his brother
; born at Basel, Aug. 7, 1667 ; died

there Jan. i, 1748. Made the first attempt to construct an

integral and an exponential calculus. Also prominent as a

physicist, but his abilities were chiefly as a teacher.

Nicholas (Nikolaus), his nephew ; born at Basel, Oct. 10, 1687 ;

died there Nov. 29, 1759. Professor at St. Petersburg, Basel,

and Padua. Contributed to the study of differential equations.

Daniel, son of John ; born at Groningen, Feb. 9, 1700 ; died at

Basel in 1782. Professor of mathematics at St. Petersburg.
His chief work was on hydrodynamics.

John the younger, son of John. 1710-1790. Professor at Basel.

Bezout, Etienne. Born at Namours in 1730 ; died at Paris in

1783. Algebraist, prominent in the study of symmetric func-

tions and determinants.

Bhaskara Acharya. Born in 1114. Hindu mathematician and

astronomer. Author of the Lilavati and the Vijaganita, con-

taining the elements of arithmetic and algebra. One of the

most prominent mathematicians of his time.

Biot, Jean Baptiste. Born at Paris, Apr. 21, 1774 ; died same

place Feb. 3, 1862. Professor of physics, mathematics, as-

tronomy. Voluminous writer.

Boethius, Anicius Manlius Torquatus Severinus. Born at Rome,

480 ; executed at Pavia, 524. Founder of medieval scholasti

cism. Translated and revised many Greek writings on math-

ematics, mechanics, and physics. Wrote on arithmetic. While

in prison he composed his Consolations of Philosophy.

Bolyai: Wolfgang Bolyai de Bolya. Born at Bolya, 1775 ; died

in 1856. Friend of Gauss.

Johann Bolyai de Bolya, his son. Born at Klausenburg, 1802 ;

died at Maros-Vasarhely, 1860. One of the discoverers (see

Lobachevsky) of the so-called non-Euclidean geometry.
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Bolzano, Bernhard. 1781-1848. Contributed to the study of

series.

Bonibelli, Rafaele. Italian. Born c. 1530. His algebra (1572)

summarized all then known on the subject. Contributed to

the study of the cubic.

Boncomfagni, Baldassare. Wealthy Italian prince. Born at Rome.

May 10, 1821 ; died at same place, April 12, 1894. Publisher

of Boncompagni's Bulletino.

Boole, George. Born at Lincoln, 1815 ;
died at Cork, 1864. Pro-

fessor of mathematics in Queen's College, Cork The theory

of invariants and covariants may be said to start with his con-

tributions (1841).

Booth, James. 1806-1878. Clergyman and writer on elliptic in-

tegrals.

Borchardt, Karl Wilhelm. Born in 1817; died at Berlin, 1880

Professor at Berlin.

Boschi, Pietro. Born at Rome, 1833 ; died in 1887. Professor

at Bologna.

Bouquet, Jean Claude. Born at Morteau in 1819; died at Paris,

1885.

Bour, Jacques Edmond fimile. Born in 1832; died at Paris, 1866

Professor in the ficole Polytechnique.

Bradzvardine, Thomas de. Born at Hard field, near Chichester.

1290 ; died at Lambeth, Aug. 26, 1349. Professor of theolog\

at Oxford and later Archbishop of Canterbury. Wrote upo::

arithmetic and geometry.

Brahmagtifta. Born in 598. Hindu mathematician. Contrib

uted to geometry and trigonometry.

Brasseur, Jean Baptiste. 1802-1868. Professor at Liege.

Bretschneider; Carl Anton. Born at Schneeberg, May 27, 1808
,

died at Gotha, November 6, 1878.

Brianchon, Charles Julien. Born at Sevres, 1785 ; died in 1864.

Celebrated for his reciprocal (1806) to Pascal's mystic hexa-

gram

Briggs, Henry. Born at Warley Wood, near Halifax, Yorkshire,

Feb. 1560-1 ;
died at Oxford Jan. 26, 1630-1. Savilian Pro-
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fessor of geometry at Oxford. Among the first to recognize
the value of logarithms; those with decimal base bear his

name.

Briot, Charles August Albert. Born at Sainte-Hippolyte, 1817;
died in 1882. Professor at the Sorbonne, Paris.

Brouncker, William, Lord. Born in 1620 (?) ; died at Westminster,

1684. First president of the Royal Society. Contributed to

the theory of series.

Brunetteschi, Filippo. Born at Florence, 1379; died there April

16, 1446. Noted Italian architect.

Btirgi, Joost (Jobst). Born at Lichtensteig, St. Gall, Switzerland,

1552 ; died at Cassel in 1632. One of the first to suggest a

system of logarithms. The first to recognize the value of mak-

ing the second member of an equation zero.

Caporali, Ettore. Born at Perugia, 1855 ; died at Naples, 1886.

Professor of mathematics and writer on geometry.

Cardan, Jerome (Hieronymus, Girolamo). Born at Pavia, 1501 ;

died at Rome, 1576. Professor of mathematics at Bologna and

Padua. Mathematician, physician, astrologer. Chief contri-

butions to algebra and theory of epicycloids.

Carnot, Lazare Nicolas Marguerite. Born at Nolay, Cote d'Or,

1753 ; died in exile at Magdeburg, 1823. Contributed to mod-

ern geometry.

Cassini, Giovanni Domenico. Born at Perinaldo, near Nice, 1625;

died at Paris, 1712. Professor of astronomy at Bologna, and

first of the family which for four generations held the post of

director of the observatory at Paris.

Castigliano, Carlo Alberto. 1847-1884. Italian engineer.

Catalan, Eugene Charles. Born at Bruges, Belgium, May 30,

1814; died Feb. 14, 1894. Professor of mathematics at Paris

and Liege.

~ataldi, Pietro Antonio. Italian mathematician, born 1548 ; died

at Bologna, 1626. Professor of mathematics at Florence,

Perugia and Bologna. Pioneer in the use of continued frac-

tions.

Cattaneo, Francesco. 1811-1875. Professor of physics and me-

chanics in the University of Pavia.
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Cauchy, Augustin Louis. Born at Paris, 1789 ; died at Sceaux,

1857. Professor of mathematics at Paris. One of the most

prominent mathematicians of his time. Contributed to the

theory of functions, determinants, differential equations, the-

ory of residues, elliptic functions, convergent series, etc.

Cavalieri, Bonaventura. Born at Milan, 1598 ; died at Bologna,

1647. Paved the way for the differential calculus by his

method of indivisibles (1629).

Cayley, Arthur. Born at Richmond, Surrey, Aug. 16, 1821 ; died

at Cambridge, Jan. 26, 1895. Sadlerian professor of mathe-

matics, University of Cambridge. Prolific writer on mathe-

matics.

Ceva, Giovanni. i6^-c. 1737. Contributed to the theory of trans-

versals.

Chasles, Michel. Born at Chartres, Nov. 15, 1793 ; died at Paris,

Dec. 12, 1880. Contributed extensively to the theory of mod-

ern geometry.

Chelini, Domenico. Born 1802; died Nov. 16, 1878. Italian mathe-

matician ; contributed to analytic geometry and mechanics.

Chuguet, Nicolas. From Lyons ; died about 1500. Lived in Paris

and contributed to algebra and arithmetic.

Clairaiit, Alexis Claude. Born at Paris, 1713 ; died there, 1765.

Physicist, astronomer, mathematician. Prominent in the study

of curves.

Clausberg, Christlieb von. Born at Danzig, 1689 ; died at Copen-

hagen, 1751.

Clebsch, Rudolf Friedrich Alfred. Born January 19, 1833 ; died

Nov. 7, 1872. Professor of mathematics at Carlsruhe, Giessen

and Gottingen.

Condorcet, Marie Jean Antoine Nicolas. Born at Ribemont, near

St. Quentin, Aisne. 1743; died at Bourg-la Reine, 1794. Sec-

retary of the Academic des Sciences. Contributed to the the-

ory of probabilities.

Cotes, Roger. Born at Burbage, near Leicester, July 10, 1682 ;

died at Cambridge, June 5, 1716. Professor of astronomy at

Cambridge. His name attaches to a number of theorems in

geometry, algebra and analysis. Newton remarked,
' '

If Cotes

had lived we should have learnt something."
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Cramer, Gabriel. Born at Geneva, 1704 ; difid at Bagnols, 1752.

Added to the theory of equations and revived the study of de-

terminants (begun by Leibnitz). Wrote a treatise on curves.

Crette, August Leopold. Born at Eichwerder (Wriezen a. d. Oder),

1780 ; died in 1855. Founder of the Journal filr reine und

angeivandte Mathematik (1826).

D' Alembert, Jean le Rond. Born at Paris, 1717 ; died there, 1783.

Physicist, mathematician, astronomer. Contributed to the

theory of equations.

DC Beaune, Florimond. 1601-1652. Commentator on Descartes's

Geometry.

DC la Gournerie, Jules Antoine Rene" Maillard. Born in 1814 ;

died at Paris, 1833. Contributed to descriptive geometry.

Del Monte, Guidobaldo. 1545-1607. Wrote on mechanics and

perspective.

Democritus. Born at Abdera, Thrace, 460 ; died c. 370. Stud-

ied in Egypt and Persia. Wrote on the theory of numbers and

on geometry. Suggested the idea of the infinitesimal.

De Moivre, Abraham. Born at Vitry, Champagne, 1667 ; died at

London, 1754. Contributed to the theory of complex num-

bers and of probabilities

De Morgan, Augustus. Born at Madura, Madras, June 1806
;

died March 18, 1871. First professor of mathematics in Uni-

versity of London (1828). Celebrated teacher, but also con-

tributed to algebra and the theory of probabilities.

Dcsargues, Gerard. Born at Lyons, 1593 ; died in 1662. One of

the founders of modern geometry.

Descartes, Rene, du Perron. Born at La Haye, Touraine, 1596 ;

died at Stockholm, 1650. Discoverer of analytic geometry.
Contributed extensively to algebra.

Dinostratus. Lived about 335. Greek geometer. Brother of

Menaechmus. His name is connected with the quadratrix.

Diodes. Lived about 180. Greek geometer. Discovered the

cissoid which he used in solving the Delian problem.

Diophantus of Alexandria. Lived about 275. Most prominent of

Greek algebraists, contributing especially to indeterminate

equations.
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Dirichlet, Peter Gustav Lejeune. Born at Diiren, 1805 ; died at

Gottingen, 1859. Succeeded Gauss as professor at Gottingen

Prominent contributor to the theory of numbers.

Dodson, James. Died Nov. 23, 1757. Great grandfather of De

Morgan. Known chiefly for his extensive table of anti-log-

arithms (1742).

Donatella, 1386-1468. Italian sculptor.

Du Bois-Reymond, Paul David Gustav. Born at Berlin, Dec. 2,

1831 ; died at Freiburg, April 7, 1889. Professor of mathe-

matics in Heidelberg, Freiburg, and Tubingen.

Duhamel, Jean Marie Constant. Born at Saint-Malo, 1797 ; died

at Paris, 1872. One of the first to write upon method in math-

ematics.

Dupin, Frangois Pierre Charles. Born at Varzy, 1784 ; died at

Paris, 1873.

Dttrer, Albrecht. Born at Nuremberg, 1471 ; died there, 1528.

Famous artist. One of the founders of the modern theory of

curves.

Eisenstein, Ferdinand Gotthold Max. Born at Berlin, 1823 ; died

there, 1852. One of the earliest workers in the field of invari

ants and covariants.

Enneper, Alfred. 1830-1885. Professor at Gottingen.

Epaphroditus. Lived about 200. Roman surveyor. Wrote on

surveying, theory of numbers, and mensuration.

Eratosthenes. Born at Cyrene, Africa, 276 ; died at Alexan-

dria, 194. Prominent geographer. Known for his "sieve "

for finding primes.

Euclid. Lived about 300. Taught at Alexandria in the reign

of Ptolemy Soter. The author or compiler of the most famous

text-book of Geometry ever written, the Elements, in thirteen

books.

Eudoxus of Cnidus. 408, 355. Pupil of Archytas and Plato.

Prominent geometer, contributing especially to the theories of

proportion, similarity, and " the golden section."

Euler, Leonhard. Born at Basel, 1707 ; died at St. Petersburg,

1783. One of the greatest physicists, astronomers and math-

ematicians of the i8th century. "In his voluminous . .
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writings will be found a perfect storehouse of investigations
on every branch of algebraical and mechanical science."

Kelland.

Eutocius. Born at Ascalon, 480. Geometer. Wrote commen-
taries on the works of Archimedes, Apollonius, and Ptolemy.

Fagnano, Giulio Carlo, Count de. Born at Sinigaglia, 1682 ; died

in 1766. Contributed to the study of curves. Euler credits

him with the first work in elliptic functions.

Faulhaber, Johann. 1580-1635. Contributed to the theory of

series.

Fermat, Pierre de. Born at Beaumont-de-Lomagne, near Mon-

tauban, 1601 ; died at Castres, Jan. 12, 1665. One of the most

versatile mathematicians of his time ; his work on the theory
of numbers has never been equalled.

Ferrari, Ludovico. Born at Bologna, 1522 ; died in 1562. Solved

the biquadratic.

Ferro, Scipione del. Born at Bologna, c. 1465 ; died between

Oct. 29 and Nov. 16, 1526. Professor of mathematics at Bo-

logna. Investigated the geometry based on a single setting of

the compasses, and was the first to solve the special cubic

x*+jX= q.

Feuerbach, Karl Wilhelm. Born at Jena, 1800 ; died in 1834.

Contributed to modern elementary geometry.

Fibonacci. See Leonardo of Pisa.

Fourier, Jean Baptiste Joseph, Baron. Born at Auxerre, 1768 ;

died at Paris, 1830. Physicist and mathematician. Contrib-

uted to the theories of equations and of series.

Frenicle. Bernard Frenide de Bessy. 1605-1675. Friend of

Fermat.

Frezier, Amede'e Fra^ois. Born at Chambe'ry, 1682 ; died at

Brest, 1773. One of the founders of descriptive geometry.

Friedlein, Johann Gottfried. Born at Regensburg, 1828 ; died in

i875.

Frontinus, Sextus Julius. 40-103. Roman surveyor and engineer.

Galois, Evariste. Born at Paris, 1811 ; died there, 1832. Founder

of the theory of groups.
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Gauss, Karl Friedrich. Born at Brunswick, 1777; died at Got-

tingen, 1855. The greatest mathematician of modern times.

Prominent as a physicist and astronomer. The theories of

numbers, of functions, of equations, of determinants, of com-

plex numbers, of hyperbolic geometry, are all largely indebted

to his great genius.

Geber. Jabir ben Aflah. Lived about 1085. Astronomer at Se-

ville ; wrote on spherical trigonometry.

Gettibrand, Henry. 1597-1637. Professor of astronomy at Gresham

College.

Geminus. Born at Rhodes, 100 ; died at Rome, 40. Wrote

on astronomy and (probably) on the history of pre-Euclidean
mathematics.

Gerbert, Pope Sylvester II. Born at Auvergne, 940 ; died at

Rome, May 13, 1003. Celebrated teacher ; elected pope in

999. Wrote upon arithmetic.

Gerhard of Cremona. From Cremona (or, according to others,

Carmona in Andalusia). Born in 1114 ; died at Toledo in

1187. Physician, mathematician, and astrologer. Translated

several works of the Greek and Arab mathematicians from

Arabic into Latin.

Germain, Sophie. 1776-1831. Wrote on elastic surfaces.

Girard, Albert, c. 1590-1633. Contributed to the theory of equa-

tions, general polygons, and symbolism.

Gopel, Gustav Adolf. 1812-1847. Known for his researches on

hyperelliptic functions.

Grammateus, Henricus. (German name, Heinrich Schreiber.)

Born at Erfurt, c. 1476. Arithmetician.

Grassmann, Hermann Gunther. Born at Stettin, April 15, 1809 :

died there Sept. 26, 1877. Chiefly known for his Aiisdehmui.ifx-

lehre (1844). Also wrote on arithmetic, trigonometry, and

physics.

Grebe, Ernst Wilhelm. Born near Marbach, Oberhesse, Aug. 30.

1804 ; died at Cassel, Jan. 14, 1874. Contributed to modern

elementary geometry.

Gregory, James. Born at Drumoak, Aberdeenshire, Nov. 1638 ;

died at Edinburgh, 1675. Professor of mathematics at St. An-
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drews and Edinburgh. Proved the incommensurability of rr
;

contributed to the theory of series.

Grunert, Johann August. Born at Halle a. S., 1797; died in 1872
Professor at Greifswalde, and editor of Grunert's Archiv.

Gua. Jean Paul de Gua de Malves. Born at Carcassonne, 1713 ;

died at Paris, June 2, 1785. Gave the first rigid proof of Des-

cartes's rule of signs.

Gudermann, Christoph. Born at Winneburg, March 28, 1798 ;

died at Miinster, Sept. 25, 1852. To him is largely due the

introduction of hyperbolic functions into modern analysis.

Guldin, Habakkuk (Paul). Born at St. Gall, 1577; died at Gratz,

1643. Known chiefly for his theorem on a solid of revolution,

pilfered from Pappus.

Hachette, Jean Nicolas Pierre. Born at Me'zieres, 1769 ; died at

Paris, 1834. Algebraist and geometer.

Hattey, Edmund. Born at Haggerston, near London, Nov. 8,

1656 ;
died at Greenwich, Jan. 14, 1742. Chiefly known for

his valuable contributions to physics and astronomy.

Halfhen, George Henri. Born at Rouen, Oct. 30, 1844 ; died at

Versailles in 1889. Professor in the Ecole Polytechnique at

Paris. Contributed to the theories of differential equations

and of elliptic functions.

Hamilton, Sir William Rowan. Born at Dublin, Aug. 3-4, 1805 ;

died there, Sept. 2, 1865. Professor of astronomy at Dublin.

Contributed extensively to the theory of light and to dynamics,

but known generally for his discovery of quaternions.

Hankel, Hermann. Born at Halle, Feb. 14, 1839 ; died at Schram-

berg, Aug. 29, 1873. Contributed chiefly to the theory of com-

plex numbers and to the history of mathematics.

Ifarnack, Karl Gustav Axel. Born at Dorpat, 1851; died at Dres-

den in 1888. Professor in the polytechnic school at Dresden.

Harriot, Thomas. Born at Oxford, 1560 ; died at Sion House,

near Isleworth, July 2, 1621. The most celebrated English

algebraist of his time.

Heron of Alexandria. Lived about no. Celebrated surveyor

and mechanician. Contributed to mensuration.
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Hesse, Ludwig Otto. Born at KOnigsberg, April 22, 1811 ; died

at Munich, Aug. 4, 1874. Contributed to the theories of curves

and of determinants.

Hipparchus. Born at Nicaea, Bithynia, 180 ; died at Rhodes,

125. Celebrated astronomer. One of the earliest writers

on spherical trigonometry.

Hippias of Elis. Born c. 460. Mathematician, astronomer,

natural scientist. Discovered the quadratrix.

Hippocrates of Chios. Lived about 440. Wrote the first Greek

elementary text-book on mathematics.

Homer, William George. Born in 1786 ;
died at Bath, Sept. 22,

1837. Chiefly known for his method of approximating the real

roots of a numerical equation (1819).

Hrabanus Maurus. 788-856. Teacher of mathematics. Arch

bishop of Mainz.

Hudde, Johann. Born at Amsterdam, 1633; died there, 1704

Contributed to the theories of equations and of series.

Honein ibn Ishak. Died in 873. Arab physician. Translated

several Greek scientific works.

Huygens, Christiaan, van Zuylichem. Born at the Hague, 1629 ;

died there, 1695. Famous physicist and astronomer. In math-

ematics he contributed to the study of curves.

Hyginus. Lived about 100. Roman surveyor.

Hypatia, daughter of Theon of Alexandria. 375-415. Composed
several mathematical works. See Charles Kingsley's Hypatia.

Hypsicles of Alexandria. Lived about 190. Wrote on solid

geometry and theory of numbers, and solved certain indeter-

minate equations.

lamblichus. Lived about 325. From Chalcis. Wrote on various

branches of mathematics.

Ibn al Banna. Abul Abbas Ahmed ibn Mohammed ibn Otman al

Azdi al Marrakushi ibn al Banna Algarnati. Born 1252 or

1257 in Morocco. West Arab algebraist; prolific writer.

7bn Yunus, Abul Hasan Ali ibn Abi Said Abderrahman. 960

1008. Arab astronomer ; prepared the Hakimitic Tables.
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Isidorus Hispalensis. Born at Carthagena, 570 ; died at Seville,

636. Bishop of Seville. His Origines contained dissertations

on mathematics.

Ivory, James. Born at Dundee, 1765 ; died at London, Sept. 21,

1842. Chiefly known as a physicist.

Jacobi, Karl Gustav Jacob. Born at Potsdam, Dec. 10, 1804;
died at Berlin, Feb. 18, 1851. Important contributor to the

theory of elliptic and theta functions and to that of functional

determinants.

Jamin, Jules Ce"lestm. Born in 1818 ; died at Paris, 1886. Pro-

fessor of physics.

Joannes de Praga (Johannes Schindel). Born at KSniggratz, 1370
or 1375 ; died at Prag c. 1450. Astronomer and mathema-

tician.

Johannes of Seville (Johannes von Luna, Johannes Hispalensis).

Lived about 1140. A Spanish Jew; wrote on arithmetic and

algebra.

Johann von Gmttnden. Born at Gmtinden am Traunsee, between

1375 and 1385 ; died at Vienna, Feb. 23, 1442. Professor of

mathematics and astronomy at Vienna ; the first full professor

of mathematics in a Teutonic university.

Kdstner, Abraham Gotthelf. Born at Leipzig, 1719; died at G6t-

tingen, 1800. Wrote on the history of mathematics.

Kepler, Johann. Born in Wtirtemberg, near Stuttgart, 1571 ; died

at Regensburg, 1630. Astronomer (assistant of Tycho Brahe,

as a young man); "may be said to have constructed the edi-

fice of the universe," Proctor. Prominent in introducing the

use of logarithms. Laid down the "principle of continuity"

(1604); helped to lay the foundation of the infinitesimal cal-

culus.

Khayyam, Omar. Died at Nishapur, 1123. Astronomer, geometer,

algebraist. Popularly known for his famous collection of

quatrains, the Rubaiyat.

KSbel, Jacob. Born at Heidelberg, 1470 ; died at Oppenheim, in

1533. Prominent writer on arithmetic (1514, 1520).

Lacroix, Sylvestre Franjois. Born at Paris, 1765 ; died there,

May 25, 1843. Author of an elaborate course of mathematics.
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Laguerre, Edmond Nicolas. Born at Bar-le-Duc, April 9, 1834 ;

died there Aug. 14, 1886. Contributed to higher analysis.

Lagrange, Joseph Louis, Comte. Born at Turin, Jan. 25, 1736;

died at Paris, April 10, 1813. One of the foremost mathe-

maticians of his time. Contributed extensively to the calculus

of variations, theory of numbers, determinants, differential

equations, calculus of finite differences, theory of equations,

and elliptic functions. Author of the Mgcanique analytique.

Also celebrated as an astronomer.

Lahire, Philippe de. Born at Paris, March 18, 1640; died there

April 21, 1718. Contributed to the study of curves and magic

squares.

Laloubere, Antoine de. Born in Languedoc, 1600; died at Tou-

louse, 1664. Contributed to the study of curves.

Lambert, Johann Heinrich. Born at Mulhausen, Upper Alsace,

1728 ; died at Berlin, 1777. Founder of the hyperbolic trigo-

nometry.

Lame, Gabriel. Born at Tours, 1795 ; died at Paris, 1870. Writer

on elasticity ,
and orthogonal surfaces.

Landen, John. Born at Peakirk, near Peterborough, 1719 ; died

at Milton, 1790. A theorem of his (1755) suggested to Euler

and Lagrange their study of elliptic integrals.

Laplace, Pierre Simon, Marquis de. Born at Beaumont-en-Auge,

Normandy, March 23, 1749; died at Paris, March 5, 1827.

Celebrated astronomer, physicist, and mathematician. Added

to the theories of least squares, determinants, equations, se-

ries, probabilities, and differential equations.

Legendre, Adrien Marie. Born at Toulouse, Sept. 18, 1752 ; died

at Paris, Jan. 10, 1833. Celebrated mathematician, contribut-

ing especially to the theory of elliptic functions, theory of

numbers, least squares, and geometry. Discovered the "law

of quadratic reciprocity," "the gem of arithmetic" (Gauss).

Leibnitz, Gottfried Wilhelm. Born at Leipzig, 1646; died at

Hanover in 1716. One of the broadest scholars of modern

times; equally eminent as a philosopher and mathematician.

One of the discoverers of the infinitesimal calculus, and the

inventor of its accepted symbolism.
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Leonardo of Pisa, Fibonacci (filius Bonacii, son of Bonacius).
Born at Pisa, 1180; died in 1250. Travelled extensively and

brought back to Italy a knowledge of the Hindu numerals and
the general learning of the Arabs, which he set forth in his

Liber Abaci, Practica geometriae, and Flos.

[.'Hospital, Guillaume Fran9ois Antoine de, Marquis de St.

Mesme. Born at Paris, 1661 ; died there 1704. One of the

first to recognise the value of the infinitesimal calculus.

Lhuilier, Simon Antoine Jean. Born at Geneva, 1750; died in

1840. Geometer.

Libri, Carucci dalla Sommaja, Guglielmo Brutus Icilius Timoleon.

Born at Florence, Jan. 2, 1803 ; died at Villa Fiesole, Sept.

28, 1869. Wrote on the history of mathematics in Italy.

Lie, Marius Sophus. Born Dec. 12, 1842; died eb. 18, 1899.

Professor of mathematics in Christiania and Leipzig. Spe-

cially celebrated for his theory of continuous groups of trans-

formations as applied to differential equations.

Liouville, Joseph. Born at St. Omer, 1809 ; died in 1882. Founder

of the journal that bears his name.

Lobachevsky, Nicolai Ivanovich. Born at Makarief, 1793; died

at Kasan, Feb. 12-24, 1856. One of the founders of the so-

called non-Euclidean geometry.

Ludolph van Ceulen. See Van Ceulen.

MacCullagh, James. Born near Strabane, 1809; died at Dublin,

1846. Professor of mathematics and physics in Trinity Col-

lege, Dublin.

Maclaurin, Colin. Born at Kilmodan, Argyllshire, 1698 ; died at

York, June 14, 1746. Professor of mathematics at Edinburgh.
Contributed to the study of conies and series

Malfatti, Giovanni Francesco Giuseppe. Born at Ala, Sept. 26,

1731 ; died at Ferrara, Oct. 9, 1807. Known for the geomet-

ric problem which bears his name,

Malus, Etienne Louis. Born at Paris, June 23, 1775 ; died there,

Feb. 24, 1812. Physicist.

\h\sfheroni, Lorenzo. Born at Castagneta, 1750; died at Paris,

r8oo. First to elaborate the geometry of the compasses only

(1795).



314 HISTORY OF MATHEMATICS.

Maurolico, Francesco. Born at Messina, Sept. 16, 1494; died

July 21, 1575. The leading geometer of bis time. Wrote also

on trigonometry.

Maximus Planudes. Lived about 1330. From Nicomedia. Greek

mathematician at Constantinople. \ rote a commentary on

Diophantus ; also on arithmetic.

Menaechmus. Lived about 350. Pupil of Plato. Discoverer

of the conic sections.

Menelaus of Alexandria. Lived about 100. Greek mathematician

and astronomer. Wrote on geometry and trigonometry.

Mercator, Gerhard. Born at Rupelmonde, Flanders, 1512 : died

at Duisburg, 1594. Geographer.

Mercator, Nicholas. (German name Kaufmann.) Born near

Cismar, Holstein, c. 1620; died at Paris, 1687. Discovered

the series for log (1 +*).

Metius, Adriaan. Born at Alkmaar, 1571 ; died at Franeker, 1635

Suggested an approximation for TT, really due to his father.

Meusnier de la Place, Jean Baptiste Marie Charles. Born at

Paris, 1754 ; died at Cassel, 1793. Contributed a theorem on

the curvature of surfaces.

Mgziriac, Claude Gaspard Bachet de. Born at Bourg-en-Bresse,

1581 ; died in 1638. Known for his Problemes plaisants, etc.

(1624) and his translation of Diophantus.

Mobius, August Ferdinand. Born at Schulpforta, Nov. 17, 1790 ;

died at Leipzig, Sept. 26, 1868. One of the leaders in modern

geometry. Author of Der Barycentrische Calciil (1827) .

Mohammed ibn Musa. See Al Khowarazmi.

Moivre. See DeMoivre.

Moll-weide, Karl Brandan. Born at Wolfenbtittel, Feb. 3, 1774 ;

died at Leipzig, March 10, 1825. Wrote on astronomy and

mathematics.

Monge, Gaspard, Comte de Peluse. Born at Beaune, 1746 ; died

at Paris, 1818. Discoverer of descriptive geometry; contrib-

uted to the study of curves and surfaces, and to differential

equations.
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Montmort, Pierre Esmond de. Born at Paris, 1678 ; died there,

1719. Contributed to the theory of probabilities and to the

summation of series.

Moschopulus, Manuel. Lived about 1300. Byzantine mathemati-

cian. Known for his work on magic squares.

Mydorge, Claude. Born at Paris, 1585 ; died there in 1647. Author

of the first French treatise on conies.

Napier, John. Born at Merchiston, then a suburb of Edinburgh,

1550 ; died there in. 1617. Inventor of logarithms. Contrib-

uted to trigonometry.

Newton, Sir Isaac. Born at Woolsthorpe, Lincolnshire, Dec. 25,

1642, O. S. ; died at Kensington, March 20, 1727. Succeeded

Barrow as Lucasian professor of mathematics at Cambridge

(1669). The world's greatest mathematical physicist. Invented

fluxional calculus (c. 1666). Contributed extensively to the

theories of series, equations, curves, and, in general, to all

branches of mathematics then known.

Nicole, Francois. Born at Paris, 1683 ; died there, 1758. First

treatise on finite differences.

Nicomachus of Gerasa, Arabia. Lived 100. Wrote upon arith-

metic.

Nicomedes of Gerasa. Lived 180. Discovered the conchoid

which bears his name.

Nicolaus von Cusa. Born at Cuss on the Mosel, 1401 ; died at

Todi, Aug. ii, 1464. Theologian, physicist, astronomer, ge-

ometer.

Odo of Cluny. Born at Tours. 879 ; died at Cluny, 942 or 943.

Wrote on arithmetic.

Oenopides of Chios. Lived 465. Studied in Egypt. Geometer.

Olivier, Theodore. Born at Lyons, Jan. 21, 1793 ; died in same

place Aug. 5, 1853. Writer on descriptive geometry.

Oresme, Nicole. Born in Normandy, c. 1320; died at Lisieux,

1382. Wrote on arithmetic and geometry.

Oughtred, William. Born at Eton, 1574 ; died at Albury, 1660.

Writer on arithmetic and trigonometry.

Pacioli, Luca. Fra Luca di Borgo di Santi Sepulchri. Born at

Borgo San Sepolcro, Tuscany, c. 1445 ; died at Florence,
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c. 1509. Taught in several Italian cities. His Summa de

Arithmetica, Geometria, etc., was the first great mathemat

ical work published (1494).

Pappus of Alexandria. Lived about 300. Compiled a work con

taining the mathematical knowledge of his time.

Parent, Antoine. Born at Paris, 1666; died there in 1716. Fiist

to refer a surface to three co-ordinate planes (1700).

Pascal, Blaise. Born at Clermont, 1623; died at Paris, 1662

Physicist, philosopher, mathematician. Contributed to the

theory of numbers, probabilities, and geometry.

Peirce, Charles S. Born at Cambridge, Mass., Sept. 10, 1839

Writer on logic.

Pell, John. Born in Sussex, March i, 1610 ; died at London, Dec

10, 1685. Translated Rahn's algebra.

Perseus. Lived 150. Greek geometer ; studied spiric lines.

Peuerbach, Georg von. Born at Peuerbach, Upper Austria, May
30, 1423; died at Vienna, April 8, 1461. Prominent teacher

and writer on arithmetic, trigonometry, and astronomy.

Pfaff, Johann Friedrich. Born at Stuttgart, 1765 ; died at Halle

in 1825. Astronomer and mathematician.

Pitiscus, Bartholomaeus. Born Aug. 24, 1561 ; died at Heidel-

berg, July 2, 1613. Wrote on trigonometry, and first used the

present decimal point (1612).

Plana, Giovanni Antonio Amedeo. Born at Voghera, Nov. 8,

1781; died at Turin, Jan. 2, 1864. Mathematical astronomer

and physicist.

Planudes. See Maximus Planndes.

Plateau, Joseph Antoine Ferdinand. Born at Brussels, Oct. 14,

1801 ; died at Ghent, Sept. 15, 1883. Professor of physics at

Ghent.

Plato. Born at Athens, 429; died in 348. Founder of the

Academy. Contributed to the philosophy of mathematics.

Plato of Tivoli. Lived 1120. Translated Al Battani's trigonom-

etry and other works.

Plilcker, Johann. Born at Elberfeld, July 16, 1801
;
died at Bonn,

May 22, 1868. Professor of mathematics at Bonn and Halle.

One of the foremost geometers of the century.
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Poisson, Simeon Denis. Born at Pithiviers, Loiret, 1781 ; died

at Paris, 1840. Chiefly known as a physicist. Contributed

to the study of definite integrals and of series.

Poncelet, Jean Victor. Born at Metz, 1788 ; died at Paris, 1867.

One of the founders of projective geometry.

Pothenot, Laurent. Died at Paris in 1732. Professor of mathe-

matics in the College Royale de France.

Proclus. Born at Byzantium, 412; died in 485. Wrote a com-

mentary on Euclid. Studied higher plane curves.

Ptolemy (Ptolemaeus Claudius). Born at Ptolemais, 87; died at

Alexandria, 165. One of the greatest Greek astronomers.

Pythagoras. Born at Samos, 580 ; died at Megapontum, 501.

Studied in Egypt and the East. Founded the Pythagorean
school at Croton, Southern Italy. Beginning of the theory of

numbers. Celebrated geometrician.

Quetelet, Lambert Adolph Jacques. Born at Ghent, Feb. 22,

1796 ; died at Brussels, Feb. 7, 1874. Director of the royal

observatory of Belgium. Contributed to geometry, astronomy,
and statistics.

Ramus, Peter (Pierre de la Ramee). Born at Cuth, Picardy, 1515 ;

murdered at the massacre of St. Bartholomew, Paris, August

24-25, 1572. Philosopher, but also a prominent writer on

mathematics.

Recorde, Robert. Born at Tenby, Wales, 1510; died in prison,,

at London, 1558. Professor of mathematics and rhetoric at

Oxford. Introduced the sign = for equality.

Rcgiomontanus. Johannes Muller. Born near KSnigsberg, June

6, 1436 ; died at Rome, July 6, 1476. Mathematician, astron-

omer, geographer. Translator of Greek mathematics. Author

of first text-book of trigonometry.

Rcmigius of Auxerre. Died about 908. Pupil of Alcuin's. Wrote

on arithmetic.

Rhaeticus, Georg Joachim. Born at Feldkirch, 1514; died at

Kaschau, 1576. Professor of mathematics at Wittenberg ; pu-

pil of Copernicus and editor of his works. Contributed to

trigonometry.
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Riccati, Count Jacopo Francesco. Born at Venice, 1676 ; died at

Treves, 1754. Contributed to physics and differential equa-
tions.

Richelot, Friedrich Julius. Born at Konigsberg, Nov. 6, 1808 ;

died March 31, 1875 in same place. Wrote on elliptic and

Abelian functions.

Riemann, George Friedrich Bernhard. Born at Breselenz, Sept.

17, 1826 ; died at Selasca, July 20, 1866. Contributed to the

theory of functions and to the study of surfaces.

Riese, Adam. Born at Staffelstein, near Lichtenfels, 1492 ; died

at Annaberg, 1559. Most influential teacher of and writer on

arithmetic in the i6th century.

Roberval, Giles Persone de. Born at Roberval, 1602 ; died at

Paris, 1675. Professor of mathematics at Paris. Geometry
of tangents and the cycloid.

Rotte, Michel. Born at Ambert, April 22, 1652 ; died at Paris,

Nov. 8, 1719. Discovered the theorem which bears his name,
in the theory of equations.

Rudolff, Christoff. Lived in first part of the sixteenth century.

German algebraist.

Sacro-Bosco, Johannes de. Born at Holywood (Halifax), York-

shire, i2Oo(?); died at Paris, 1256. Professor of mathematics

and astronomy at Paris. Wrote on arithmetic and trigonom-

etry.

Saint-Venant, Adhemar Jean Claude Barr de. Born in 1797 ;

died in Vendome, 1886. Writer on elasticity and torsion.

Saint-Vincent, Gregoire de. Born at Bruges, 1584 ; died at Ghent,

1667. Known for his vain attempts at circle squaring.

Saurin, Joseph. Born at Courtaison, 1659; died at Paris, 1737.

Geometry of tangents.

Scheeffer, Ludwig. Born at Konigsberg, 1859 ; died at Munich,

1885. Writer on theory of functions.

Schindel, Johannes. See Joannes de Praga.

Schzuenter, Daniel. Born at Nuremberg, 1585 ; died in 1636.

Professor of oriental languages and of mathematics at Altdorf.

Serenus of Antissa. Lived about 350. Geometer.
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Serret, Joseph Alfred. Born at Paris, Aug. 30, 1819 ; died at

Versailles, March 2, 1885. Author of well-known text-books

on algebra and the differential and integral calculus.

Sextus Julius Africanus. Lived about 220. Wrote on the his-

tory of mathematics.

Simpson, Thomas. Born at Bosworth, Aug. 20, 1710 ; died at

Woolwich, May 14, 1761. Author of text-books on algebra,

geometry, trigonometry, and fluxions.

Sluze, Rene Franois Walter de. Born at Vis on the Maas, 1622 ;

died at Liege in 1685. Contributed to the notation of the cal-

culus, and to geometry.

Smith, Henry John Stephen. Born at Dublin, 1826 ; died at Ox-

ford, Feb. 9, 1883. Leading English writer on theory of num-

bers.

Snell, Willebrord, van Roijen. Born at Leyden, 1591 ; died there,

1626. Physicist, astronomer, and contributor to trigonometry.

Spottisuuoode, William. Born in London, Jan. n, 1825 ; died

there, June 27, 1883. President of the Royal Society. Writer

on algebra and geometry.

Staudt, Karl Georg Christian von. Born at Rothenburg a. d.

Tauber, Jan. 24, 1798 ; died at Erlangen, June i, 1867. Prom-

inent contributor to modern geometry, Geometrie der Lage.

Steiner, Jacob. Born at Utzendorf, March 18, 1796 ; died at

Bern, April i, 1863. Famous geometrician.

Stevin, Simon. Born at Bruges, 1548 ; died at Leyden (or the

Hague), 1620. Physicist and arithmetician.

Stewart, Matthew. Born at Rothsay, Isle of Bute, 1717; died at

Edinburgh, 1785. Succeeded Maclaurin as professor of math-

ematics at Edinburgh. Contributed to modern elementary

geometry.

Stifel, Michael. Born at Esslingen, 1486 or 1487; died at Jena,

1567. Chiefly known for his Arithmetica integra (1544).

Sturm, Jacques Charles Francois. Born in Geneva, 1803 ; died

in 1855. Professor in the Ecole Polytechnique at Paris.

"Sturm's theorem."

Sylvester, James Joseph. Born in London, Sept. 3, 1814 ; died

in same place, March 15, 1897. Savilian professor of pure
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geometry in the University of Oxford. Writer on algebra,

especially the theory of invariants and covariants.

Tdbit ibn Kurra. Born at Harran in Mesopotamia, 833 ; died at

Bagdad, 902. Mathematician and astronomer. Translated

works of the Greek mathematicians, and wrote on the theory

of numbers.

TartagHa, Nicolo. (Nicholas the Stammerer. Real name, Ni-

colo Fontana.) Born at Brescia, c. 1500; died at Venice, c.

1557. Physicist and arithmetician ; best known for his work

on cubic equations.

Taylor, Brook. Born at Edmonton, 1685 ; died at London, 1731.

Physicist and mathematician. Known chiefly for his work in

series.

Tholes. Born at Miletus, 640 ; died at Athens, 548. One of

the " seven wise men "
of Greece ; founded the Ionian School.

Traveled in Egypt and there learned astronomy and geom-

etry. First scientific geometry in Greece.

Theaetetus of Heraclea. Lived in 390. Pupil of Socrates.

Wrote on irrational numbers and on geometry.

Theodorus of Cyrene. Lived in 410. Plato's mathematical

teacher. Wrote on irrational numbers.

Theon of Alexandria. Lived in 370. Teacher at Alexandria.

Edited works of Greek mathematicians.

Theon of Smyrna Lived in 130. Platonic philosopher. Wrote

on arithmetic, geometry, mathematical history, and astronomy.

Thymaridas of Paros. Lived in 390. Pythagorean ; wrote on

arithmetic and equations.

Torricelli, Evangelista. Born at Faeflza, 1608 ; died in 1647.

Famous physicist.

Tortolini, Barnaba. Born at Rome, Nov. 19, 1808
;
died August

24, 1874. Editor of the Annali which bear his name.

Trembley, Jean. Born at Geneva, 1749; died in 1811. Wrote

on differential equations.

Tschirnhausen, Ehrenfried Walter, Graf von. Born at Kiess-

lingswalde, 1651; died at Dresden, 1708. Founded the theory

of catacaustics.



BIOGRAPHICAL NOTES. $21

Ubaldi, Guido. See Del Monte.

Unger, Ephraim Solomon. Born at Coswig, 1788 ; died in 1870.

Ursinus, Benjamin. 1587 1633. Wrote on trigonometry and

computed tables.

Van Ceulen, Ludolph. Born at HildesheSm, Jan. 18 (or 28), 1540 ;

died in Holland, Dec. 31, 1610. Known for his computations
Of 7T.

Vandermonde, Charles Auguste. Born at Paris, in 1735 ; died

there, 1796. Director of the Conservatoire pour les arts et

metiers.

Van Eyck, Jan. 1385-1440. Dutch painter.

Van Schooten, Franciscus (the younger). Born in 1615 ; died in

1660. Editor of Descartes and Vieta.

Vitte (Vieta), Franjois, Seigneur de la Bigotiere. Born at Fonte-

nay-le-Comte, 1540; died at Paris, 1603. The foremost alge-

braist of his time. Also wrote on trigonometry and geometry.

Vincent. See Saint-Vincent.

Vitruvitis. Marcus Vitruvius Pollio. Lived in 15. Roman archi-

tect. Wrote upon applied mathematics.

Viviani, Vincenzo. Born at Florence, 1622 ; died there, 1703.

Pupil of Galileo and Torricelli. Contributed to elementary

geometry.

Wallace, William. Born in 1768; died in 1843. Professor of

mathematics at Edinburgh.

Wallis, John. Born at Ashford, 1616 ; died at Oxford, 1703. Sa-

vilian professor of geometry at Oxford. Published many
mathematical works. Suggested (1685) the modern graphic

interpretation of the imaginary.

Weierstrass, Karl Theodor Wilhelm. Born at Ostenfelde, Oct.

31, 1815 ; died at Berlin, Feb. 19, 1897. OQe f *he ablest

mathematicians of the century.

Werner, Johann. Born at Nuremberg, 1468 ; died in 1528. Wrote

on mathematics, geography, and astronomy.

Widmann, Johann, von Eger. Lived in 1489. Lectured on alge-

bra at Leipzig. The originator of German algebra. Wrote

also on arithmetic and geometry.
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Witt, Jan de. Born in 1625, died in 1672. Friend and helper of

Descartes.

Wolf, Johann Christian von. Born at Breslau, 1679; died at

Halle, 1754. Professor of mathematics and physics at Halle,

and Marburg. Text-book writer.

Woepcke, Franz. Born at Dessau, May 6, 1826 ; died at Paris,

March 25, 1864. Studied the history of the development of

mathematical sciences among the Arabs.

Wren, Sir Christopher. Born at East Knoyle, 1632 ; died at Lon-

don, in 1723. Professor of astronomy at Gresham College ;

Savilian professor at Oxford ; president of the Royal Society.

Known, however, entirely for his great work as an architect
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Abacists, 39, 41.

Abacus, 15, 25, 26, 37.

Abel, 62, 154, 155, 163, 181-188,

Abscissa, 229.

Abul Wafa, 225, 286.

Academies founded, 116.

Adelard {^Ethelhard) of Bath, 74, 218.

Africanus, S. Jul., 202.

Ahmes, 19, 31, 32, 34. 77, 78, 192, 282.

Aicuin, 41.

Al Banna, Ibn, 30, 76, 90.

Al Battani, 285.

Alberti, 227.

Algebra, 61, 77, 96, 107; etymology,
88 ; first German work, no.

Algorism, 75.

Al Kalsadi, 30, 31, 75, 76, 89, 90, 92.

Al Karkhi, 75, 93-

Al Khojandi, 76.

Al Khowarazmi, 29, 33, 74, 75, 88. 89,

91, 217.

Al Kuhi, 217.

Alligation, 34.

Almagest, 283.

Al Nasawi, 30, 34.

Al Sagani, 217.

Amicable numbers, 35.

Anaxagoras, 195, 213.

Angle, trisection of, 196, 197, 207, 208,

217.

Annuities, 56, 148.

Anton, I79.

Apian, 108, 288, 289.

Apices, 15, 27. 37, 39-

Apollonius, 80, 152, 190, 200-209, 228,

229, 231.

Approximations in square root, 70.

Arabs, 3, 15, 20, 35, 39, 53, 74, 76, 88,

89, 191, 214, 285.

Arbitration of exchange, 55.

Arcerianus, Codex, 214, 218.

Archimedes, 68-71, 78, 81-83, 190, 199,

204, 205, 208, 2IO, 312.

Archytas, 69, 82, 204, 207, 211.

Argand, 124, 125.

Aristophanes, 25.

Aristotle, 64, 70.

Arithmetic, 18, 24, 36, 49, 51, 64, 95.

Arithmetic, foundations of, 189 ; re-

quired, 43.

Arithmetical triangle, 118.

Aronhold, 146, 250.

Aryabhatta, 12, 72, 74, 215, 216.

Aryans, 12.

Associative law, 119.

Assurance, 56-60.

Astronomy, 18.

August, 246.

Ausdehnungylehre, 127.

Austrian subtraction, 28, 48.

Avicenna, 76.

Axioms, 197.

Babylonians, 9, 10, 14, 19, 24, 25, 63,

64, 190, 192, 193.

Bachet, 106, 134, 137.

Ball, W. W. R., 172*.

Baltzer, 167*, 224.
Bamberger arithmetic, 51.

Banna. See Ibn al Banna.

Bardin, 277.

Barrow, 169, 238.

Bartl, 167.

Barycentritcher CaldU, 129, 250.

'The numbers refer to pages, the small italic w's to footnotes.
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Cloister schools. See Church schools.

Codex Arcerianus, 214.

Coefficients and roots, 115, 156.

Cohen, 172*.

Cole, i62.

Combinations, 70, 74, 150, 151.

Commercial arithmetic, 22, 51, 60.

Commutative law, 119.

Compasses, single opening, 225.

Complementary division, 38.

Complex numbers, 73, 101, 123, 126,

182. Complex variable. See Func-

tions, theory of.

Complexes, 254.

Compound interest, 52.

Computus, 37, 39.

Conchoid, 211.

Condorcet, 149.

Conies, 81, 202, 204-208, 228, 230, 239,

256.

Congruences, theory of, 131.

Conon, 210.

Conrad, H., 109.

Conrad of Megenberg, 219.

Contact transformations, 178, 269, 276.

Continued fractions, 131-133, 168.

Convergency, 152-155, 189. See Se-

ries.

Coordinates, Cartesian, 231; curvi-

linear, 268, 269; elliptic, 269.

Copernicus, 289.

Correspondence, one-to-one, 251, 264,

Cosine, 288.

Coss, 96-99, 107, 109, in.

Cotes, 174, 239, a*'. 244-

Coifnting, 6.

Cousin, 227.

Covariants, 146. See also Forms, In-

variants.

Cramer, 132. 167, 240; paradox, 240.

Crelle, 141, 245, 257.

Cremona, 256, 266.

Crofton, 276.

Cross ratio, 258, 259.

Cube, duplication of, 82, 104, 204, 207;

multiplication of, 207, 211.

Culvasutras, 72.

Cuneiform inscriptions, 9.

Cunynghame, 166.

Curtze, 28g.

Curvature, measure of, 268.

Curves, classification of, 233, 239, 246;

deficiency 0^262,263; gauche (of

double curvature), 243, 255, 263;

with higher singularities, 253.

Cusa, 237.

Cycloid, 178, 237, 238.

d, symbol of differentiation, 170-172 ;

8, symbol of differentiation, 180.

D'Alembert, 175, 180.

Dante, 94.

DeBeaune, 156.

Decimal fractions, 50.

Decker, 292.

Dedekind, 120-122, 126, 127, 189.

Defective numbers, 35.

Deficiency of curves, 262, 263.

Definite integrals, 174.

Degrees (circle), 24.

De Lagny, 157.

De la Gournerie, 261.

Delambre, 295.

De 1'Hospital, 173, 178, 179.

Delian problem, 82, 104, 204, 207.

Democritus, 213.

De Moivre, 124, 152, 160.

De Morgan, 143, 155.

Desargues, 205, 237, 242, 259.

Descartes, 4, 108, 117, 119, 124, 136,

140, 156, 191, 228, 230-233, 238.

Descriptive geometry, 247, 259, 260.

Determinants, 133, 144, 145, 167, 168,

262.

DeWitt, 57, 148.

Dialytic method, 144, 145.

Diametral numbers, 105.

Differential calculus, 168, 170, 171,178;

equations, 174-178, 269 ; geometry,

867.

Dimensions, ., 275.

Dini, 155, 189.

Dinostratus, 1971 210.

Diocles, 211.

Diophantus, 65, 70, 77. 81, 84, 85, 90,

93- 133, 134-

Dirichlet, 62, 125, 126, 133, 139, 140,

153, 174. 177, 181, 189, 279.

Discount, 54.

Discriminant, 145.

Distributive law, 119, 130.
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160-163, 167, 174, 181, 188, 207, 245,

267, 270, 275, 279, 294, 295.

Geber, 286.

Gellibrand, 292.

Geminus, an.

Genocchi, 139.

Geometric means, 78, 103 ; models,

276.

Geometry, 66, 190, 314; analytic, igi,

205, 230, 232, 246; descriptive, 247,

259, 260; differential, 267; enumera-

tive, 264 ; metrical, 190, 192, 193 ;

protective, 191, 246, 247, 258; non-

Euclidean, 270; of position, 190, 246,

248, 258; of space, 211, 242; three

classes of, 274.

Gerbert, 15, 37, 40, 61, 218.

Gergonne, 249, 257.

Gerhard of Cremona, 40, 286.

Gerhardt, 47.
German algebra, 96, 107 ; universi-

ties, 95.

Giesing, io6.

Girard, 124.

Girls' schools, 21.

Gizeh, 9.

Glaisher, 142.

Gmunden, 95.

Gnomon, 66, 92, 195, 213.

Goepel, 188.

Golden rule, 51.

Golden section, 195, 222, 223.

Gordan, 144, 146, 147.

Gournerie, 261.

Goursat, 178.

Gow, 7.
Grammateus, 45, 49, 98, 99, 108, 109.

Grassmann, 127-129, 131, 256, 275.

Graunt, 57.

Grebe point, 245.

Greek fractions, 32.

Greeks, 2, 8, 10, 14, 19, 20, 25, 64, 77,

190, 193, 282.

Gregory, 151.

Groups, theory of, 164, 177; point, 240

Grube, 23.

Grunert, '28, 257.

Gubar numerals, 15, 17, 31.

Gudermann, 183.

Guilds, 56.

Guldin, 213, 224, 334

Gunter, 288.

Gvinther, i6 ., 133, 168, 93ion

Haan, 222*.

Hachette, 361.

Hahn, 48.

Halley, 57, 58, 166, 203, 204.

Halphen, 147, 253, 256, 264, 269.

Hamilton, 137, 270.

Hammer, 295*.

Hankel, 6., 124, 247/2.

Harmonic means, 78, 79.

Harpedonaptae, 193, 194.

Harriot, 101, 117, 156.

Hebrews, 10.

Heine, 120, 133, 133, 189.

Helix, 211, 343.

Helmholtz, 271,272.

Henrici, 277.

Heptagon, 336.

Hermite, 133, 146, 147, 165.

Herodotus, 34.

Herodianus, n.

Heron, 64, 70, 78, 81, 84, 301, 312, 283.

Hess, 345.

Hesse, 143-145. 164. 168, 176, 344, 250,

262.

Hessel, 245.

Heteromecic numbers, 67.

Hexagram, mystic, 337, 244.

Heyn, 59.

Hieratic symbols, g.

Hilbert, 147, 148.

Hindenburg, 132, 150.

Hindu algebra, 84; arithmetic, 34,71.

72; fractions, 33; geometry, 214;

mathematics, 2, 12 following.

Hipparchus, 213, 366. 382, 283.

Hippias, 196, 310.

Hippocrates, 65, 83, 197, 204, 313.

HSlder, 189.

Homology, 349.

Hoppe, 167, I73-, 345-

Hospital, 173, 178, 179.

Homer, 166.

Hudde, 108, 148, 156.

Hugel, 107.

Hurwitz, 364.

Huygens, 131, 148, 222, 238, 343.

Hyperbola, 81, 205.

Hyperboloid, 242.



328 HISTORY OF MATHEMATICS.

Hyperdeterminants, 146.

Hyperelliptic integrals, 187.

Hypergeometric series, 153.

Hypsicles, 84, 200, 212.

i for 1^, 124.

lamblichus, 136.

Ibn al Banna, 30, 76, 90.

Ibn Kurra, 136, 217.

Icosahedron theory, 166.

Ideal numbers, 126.

Imaginaries. See Complex numbers.
Incommensurable quantities, 69.

Indeterminate equations. See Equa-
tions.

Indivisibles, 234, 236.

Infinite, 173. See Series.

Infinitesimals, 169, 170, 173, 174.

Insertions, 208, 211.

Insurance, 56-58.

Integral calculus, 174, 178.

Interest, 54.

Invariants, 145-148, 262, 274.

Involutes, 238, 241.

Involutions, 252.

Irrational numbers, 68, 69, 100, 119,

122, 123, 133, 189.

Irreducible case of cubics, 112.

Isidorus, 36.

Isoperimetric problems, 179, 200.

Italian algebra, 90.

Jacobi, 62, 138, 139, 143, 144, 165, 168,

174-177, 181-187, 269- 276, 279.

Johann von Gmunden, 95.

Jonquieres, 256.

Jordan, 165.

Kalsadi. See Al Kalsadi.

Karup, 56, 59.

Kastner, 48.

Kepler, 4, 50, 61, 169, 173, 191, 222-224,

245, 288.

Khayyam, 75, 89, 92, 93.

Khojandi, 76.

Khowarazmi. See Al Khowarazmi.
Klein, 147, 165, 177, 178, 2O7., 254, 274,

277, 278.

Knilling, 23.

KBnigsberger, 180.

Kossak, I2ow.

Krafft, 135.

Kronecker, 139, 165.

Kruger, 141.

Krumbiegel and Amthor, 83.

Kummer, 126, 138, i39., 155, 270, 278.

Kurra, Tabit ibn, 136, 217.

Lacroix, 242, 261.

Lagny, De, 157.

Lagrange, 62, 136, 138, 143, 151, i 59

160, 166, 167, 173, 175, 176, 179, j8o.

182, 239, 267, 294, 295.

Laguerre, 274.

Lahire, 106, 249.

Lalanne, 167.

Laloubfcre, 158.

Lambert, 124, 133, 141, 260, 267, 295
Lam6, 240, 269.

Landen, 180, 182, 244.

Lansberg, 249.

Laplace, 150, 151, 167, 175.

Latin schools, 21, 43.

Least squares, 149.

Lebesgue, 139.

Legendre, 133, 136, 138-140, 149, 166,

174, 180-184, 187, 270, 295.

Lehmus, 257.

Leibnitz, 4, 48, 54, 58, 62, 117, 150-15-

156, 167, 170-173, 178, 229, 239, 242.

Lemniscate, 241.

Lencker, 227.

Leonardo da Vinci, 225 ; of Pisa (Fi-

bonacci), 40, 41, 45, 95, 101, 107, ice,-,

in, 218.

Leseur, 158.

Lessing, 83.

Letters used for quantities, 64.

Lexell, 295.

L' Hospital, 173, 178, 179.

Lhuilier, 244.

Lie, 147, 177, 269, 276.

Lieber, 245.
Light, theory of, 270.

Limacon, 241.

Limits of roots, 156, 160, 166.

Lindemann, 133, 189, 207.

Liouville, 139, 181, 269.

Lipschitz, 147.

Lituus, 241.

Lobachevsky, 271.

Loci, 209, 210, 232.
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Oresme, 95, 102, 829,

Osculations, 239.

Oughtred, 117, 156.

IT, nature of, 133, 207; values of, 192,

'93, 199. 201, 2I5-2I8, 222.

Pacioli, 42, 45-47. 52, 95, 96, 101.

Page numbers, 16.

Pappus, 65, 179, 202, 203, 208, 209, 212,

234.

Parabola, 81; area, 68; name, 205.

Paraboloid, 242.

Parallel postulate, 201, 270.

Parameter, 205.

Parent, 242, 247.

Partition of perigon, 160-162.

Partnership, 34.

Pascal, 48, 57, 118, 148, 150, 169, 173,

174- 234, 236-238.

Pascal's triangle, 118, 150.

Pauker, 155, 161.

Peirce, 131.

Peletier, in.

Pencils, 242.

Pepin, 139.

Perfect numbers, 35. 68.

Periodicity of functions, 184.

Permutations, 74.

Perspective, 226, 227, 259.

Pessl, 107.

Pestalozzi, 23.

Petersen, 139.

Petty, 57-

Peuerbach, 3, 42, 45, 103, 289.

Pfaff, 151, 153. 175, 176-

Philolaus, 78.

Phoenicians, 8, 10.

Piazzi, 149.

Pincherle, 189.

Pitiscus, so., 290.

Pitot, 243.

Plane numbers, 66.

Plato, 67, 82, 197, 207 ; of Tivoli, 285.

Platonic bodies, 212.

Pliny, 26.

Plucker, 144, 239, 249-252, 254, 256, 257,

265, 275, 277.

Pliicker's equations, 253.

Plus. See Symbols.

PoStius, 141.

Poincare
1

, 165, 177.

Poinsot, 245.

Point groups, 240.

Poisson, 143, 173.

Polar, 249, 256.

Pole, 249.

Political arithmetic, 56.

Polygons, star, 218, 219, 224.

Polytechnic schools, 261.

Poncelet, 246, 248, 249, 252, 258, 265.

Position arithmetic, 17.

Pothenot, 295.

Power series, 103.

Powers of binomial, 118.

Prime numbers, 67, 68, 136, 141, 161,

162.

Pringsheim, I54., 155, 189.

Prismatoid, 246.

Probabilities, 148, 149, 276.

Proclus, 219.

Projection, 213, 214. See Geometry.

Proportion, 79, 109.

Ptolemy, 201, 214, 266, 283.

Puzzles, 54.

Pythagoras, 68, 179, 190, 194, 195, 214

Pythagoreans, 35, 66, 67, 78, 136, 194,

195, 198.

Quadratic equations. See Equations.

Quadratic reciprocity, 137, 138; re-

mainders, 76.

Quadratrix, 196, 241.

Quadrature of circle. See Circle.

Quadrivium, 94.

Quaternions, 127, 129.

Quetelet, 59.

Raabe, 155.

Radicals, 100.

Rahn, 96.
Ramus, 98, in, 133.

Raphson, 166.

Realschulen, 23.

Reciprocity, quadratic, 137, 138; Her
mite's law of, 146.

Reciprocal polars, 249.

Reckoning schools, 4.

Redundant numbers, 35.

Rees, 55.

Regeldetri, 34, 51.
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Weber, 189.

Weierstrass, 62, 120, 147, 178, 181, 189.

Welsh counting, 8 ; practice, 53.

Wessel, 125.

Widmann, 47, 51, 220.

Wiener, 2z6., 245, 278.

Witt, De, 57, 148.

Wittstein, 59, 256*1.

Wolf, 47, 48.

Woodhouse, 178*.

Woolhouse, 276*.

Wordsworth, 12*.

Wren, 243, 247.

x, the symbol, 97.

Year, length of, 24.

Zangemeister, n.

Zeller, 139-

Zenodorus, 200.

Zero, 12, 16, 39, 40, 74.

Zeuthen, 68., 253, 264-
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Per copy, 50 cents ; Yearly, 82.00. In England and all countries in

U.P.U. per copy, as. 6d.: Yearly, gs. 6d.

CHICAGO:

THE OPEN COURT PUBLISHING CO.

Monon Building, 324 Dearborn St.

LONDON : Kegan Paul, Trench, Trubner & Company,



The Religion of Science Library.

A collection of bi-monthly publications, most of which are reprints of

books published by The Open Court Publishing Company. Yearly, $1.50

Separate copies according to prices quoted. The books are printed upon
good paper, from large type.

The Religion of Science Library, by its extraordinarily reasonable price,

will place a large number of valuable books within the reach of all readers.

The following have already appeared in the series :

No. i. The Religion of Science. By PAUL CARUS. 250 (is. 6d }.

2. Three Introductory Lectures on the Science of Thought. By F. MAX
MULLER. 250 (is. 6d.).

3. Three Lectures on the Science ofLanguage . F. MAX MOLLER. 25c(is.6d.).

4. The Diseases of Personality. By TH. RIBOT. 250 (is. 6d.).

5. The Psychology of Attention. By TH. RIBOT. 250 (is. 6d.j.
6. The Psychic Life ofMicro- Organisms. By ALFRED BINET. 2.50 (is. 6d.)

7. The Nature of the State. By PAUL CARUS. 150 (gd.).
8. On Double Consciousness. By ALFRED BINET. 150 (gd.).

g. Fundamental Problems. By PAUL CARUS. 500 (2s. 6d.).
10. The Diseases of the Will. By TH. RIBOT. 250 (is. 6d.).
11. The Origin of Language. By LUDWIG NOIRE. 150 (gd.).

12. The Free Trade Struggle in England. M. M. TRUMBULL. 250 (is. 6d.J.

13. Wheelbarrow on the Labor Question. By M. M. TRUMBULL. 350 (2s.).

14. The Gospel of Buddha. By PAUL CARUS. 35C (2S.).
The Primer of Philosophy. By PAUL CARUS. 250 (i. .

On Memory, and The Specific Energies ofthe Nervous System. By PROF.
HERING.
emption o

GARBE. 250(15. 6d.).
18. An Examination of Weismannism. By G. J. ROMANES. 350 (2s.).

19. On Germinal Selection. By AUGUST WEISMANN. 250 (is. 6d.).

20. Lovers Three Thousand Years Ago. By T. A. GOODWIN. (Out of print.)
21. Popular Scientific Lectures. By ERNST MACH. soc (2S. 6d.).

22. Ancient India : Its Language and Religions. By H. OLDENBERG. 250
(is. 6d.).

23. The Prophets of Israel. By PROF. C. H. CORNILL. 250 (i. 6d.).

24. Homilies of Science. By PAUL CARUS. 350 (2S.).

25. Thoughts on Religion. By G. I. ROMANES, soc (zs. 6d.).

26. The Philosophy of Ancient India. By PROF. RICHARD GARBE. 250 (is. 6d.),

27. Martin Luther. By GUSTAV FREYTAG. 250 (is. 6d.).
28. English Secularism. By GEORGE JACOB HOLYOAKE. 250 (is. 6d.).

2g. On Orthogenesis. By TH. EIMER. 250 (is. 6d.).

30. Chinese Philosophy. By PAUL CARUS. 25c (is. 6d.).

31. The Lost Manuscript, By GUSTAV FREYTAG. 6oc (35.).

32. A Mechanico-Physiological Theory of Organic Evolution, By CARL VON
NAEGELI. 150 (gd.).

33. Chinese Fiction. By DR. GEORGE T. CANDLIN. 150 (gd.).

34. Mathematical Essays and Recreations. By H. SCHUBERT. 250 (is. 6d.).

35. The Ethical Problem. By PAUL CARUS. 5c (2S. 6d.).

36. Buddhism and Its Christian Critics. By PAUL CARUS. joe (2S. 6d.).

37. Psychologyfor Beginners. By HIRAM M. STANLEY. 200 (is.).

38. Discourse on Method. By DESCARTES. 250 (is. 6d.).

3g. The Dawn of a New Era. By PAUL CARUS. 150 (gd.).

40. Kant and Spencer. By PAUL CARUS. 2oc (is.).

41. The Soul ofMan. By PAUL CARUS. 750 (35. 6d.).

15. The Primer of Philosophy. By PAUL CARUS. 250 (is. 6d.).
16. On Memory, and The Specific Energies ofthe Nervous Syste

EWALD HERING. 150 (gd.).

17. The Redemption of'the Brahman. A Tale of Hindu Life. By RICHARD
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