

Handwörterbuch der astronomie

Wilhelm Valentiner

LIBRARY

OF THE

UNIVERSITY OF CALIFORNIA.

Class

HANDWÖRTERBUCH

DER

ASTRONOMIE

UNTER MITWIRKUNG

von

PROF. DR. E. BECKER-STRASSBURG, PROF. DR. E. GERLAND-KLAUSTHAL DR. N. HERZ-WIEN, Prof. DR. H. KOBOLD-KIEL, DR. N. v. KONKOLY-BUDAPEST, Prof. Dr. E. v. OPPOLZER-INNSBRUCK, PROF. DR. C. F. W. PETERS (†), DR. E. v. REBEUR-PASCHWITZ (†), DR. FR. RISTENPART-BERLIN, PROF. DR. W. SCHUR (†), PROF. DR. H. SEELIGER-MUNCHEN, DR. C. STECHERT-HAMBURG, PROF. DR. W. WISLICENUS-STRASSBURG, DR. K. ZELBR (†)

HERAUSGEGEBEN

von

Dr. W. VALENTINER

Ordentl. Professor der Astronomie an der Universität und Direktor der Astrometrischen Abtheilung der Grossherzoglichen Sternwarte zu Heidelberg

VIERTER BAND.

MIT 48 ABBILDUNGEN IM TEXTE

LEIPZIG
VERLAG VON JOHANN AMBROSIUS BARTH
1902.

747171

Das Recht der Uebersetzung bleibt vorbehalten.

Vorwort zum letzten Bande des Handwörterbuches.

Wenn ich im Vorwort zum ersten Bande dieses Werkes um die freundliche Nachsicht der Fachgenossen gebeten habe, weil ich schon damals fühlte, dass die übernommene Aufgabe nicht in der Weise zur Ausführung gelangte, wie ich es gewünscht und gehofft hatte, so habe ich bei der weiteren Fortsetzung des Handwörterbuches noch oft die grossen Schwierigkeiten empfinden mitssen, welche der annähernd vollkommenen Lösung solcher Aufgaben entgegenstehen. Abgesehen von der Schwierigkeit des Unternehmens an sich, habe ich durch unerwarteten Wechsel der Mitarbeiter grosse Hemmnisse erfahren. Während der Ausarbeitung musste ich nicht weniger als vier der mir nahe gestandenen Mitarbeiter, mit denen ich mich besonders eingehend über die Anordnung und Behandlung der Materie besprochen hatte, durch den Tod verlieren, ausserdem konnten manche in Aussicht gestellte Artikel durch verschiedene Umstände nicht zur Ablieferung kommen. Zum grossen Theil ist durch diese Verhältnisse eine wesentliche Verzögerung in der Vollendung des Werkes eingetreten.

Der Entschuldigung bedarf ferner, dass der Umfang des Handwörterbuchs ein beträchtlich grösserer geworden ist, als anfangs geplant war. Es liegt die Ursache hauptsächlich darin, dass nicht das gesammte Manuscript vor dem Druckbeginn der ersten Lieferung fertig vorlag und daher eine Schätzung des Umfanges bei Ausgabe derselben nur annäherungsweise möglich war. In der Folge aber an den einzelnen Artikeln, die zum Theil schon in thunlichster Form zusammengedrängt waren, noch weiter zu kürzen, verbot sich in jedem speciellen Falle von selbst.

Entgegen dem ersten Plan ist der Artikel über Gradmessung fortgeblieben, um nicht auf wissenschaftliche Disciplinen hinüberzugreifen, welche früher wohl zur Astronomie gerechnet werden konnten, da sie in gewissem Sinn aus ihr hervorgingen, die sich aber längst selbständig entwickelten. Wenn sonst im VI Vorwort,

Text auf Stichworte verwiesen ist, so sind die letzteren nicht immer in getrennten Artikeln behandelt, sondern nach dem Grundsatz, die Zahl der Artikel möglichst einzuschränken, an anderen Orten besprochen. Man wird sie daher im Sachregister nachzusehen haben.

Das Namenregister wäre allzu umfangreich geworden, wenn ausdrücklich auf die bezüglichen Arbeiten der Autoren verwiesen worden wäre, andererseits konnte eine einfache Angabe des Bandes und der Seitenzahl nicht genügen; es ist daher jeweils das Artikelstichwort angeführt, unter welchem der betreffende Name vorkommt und dadurch zugleich ein Hinweis auf die einschlägigen Untersuchungen gegeben. Aehnlich sind auch die Artikelstichworte im Sachregister genannt und der Leser wird schon dadurch auf die vorzugsweise von ihm gesuchten Stellen des Werkes geleitet werden.

Die Berichtigungen verdanke ich zum Theil der Mittheilung aus befreundeten Kreisen oder den Autoren der betreffenden Artikel. Ganz besonderer Mühe hat sich aber ein mir unbekannter Gelehrter unterzogen, indem er vom Erscheinen des ersten Theils an das Werk durchgesehen und mir die dabei aufgefundenen, leider recht zahlreichen, Druckschler durch Vermittelung der Verlagsbuchhandlung mitgetheilt hat. Ich fühle mich um so mehr verpflichtet, ihm dafür an dieser Stelle aufrichtig und herzlich zu danken, als ich in voller Unkenntniss seines Namens und seiner Adresse nicht in der Lage bin, den Dank persönlich zum Ausdruck zu bringen.

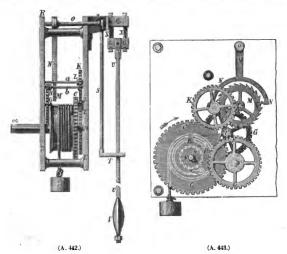
Heidelberg 1902 im Mai.

W. VALENTINER.

Inhaltsverzeichniss.

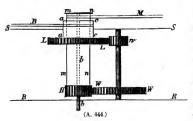
	Definition	,
	Die Theile der Pendeluhr und deren Wirkungsweise	2
	Geschichte der Erfindung der Pendeluhr	4
	Die Uhren vor Galilei	3
	Erfindung der Pendeluhr durch Galilei	4
	Huyghens' Pendeluhren	5
	Das Pendel, theoretische Erörterungen	7
	Das Cycloidenpendel	q
	Die Aufhangung des Pendels	LO
	Die Compensation des Pendels gegen Temperaturänderungen	ш
	Das Rostpendel	(2
	Hebelcompensationspendel	14
	Die Quecksilbercompensation	14
	Die Riefler'sche Compensation	15
	Die Compensation des Pendels gegen Luftdruckänderungen	16
	Verschiedene Methoden der Compensation	17
	Aufhängung im luftdicht verschlossenen Raum	19
	Die Hemmung	
	Theorie der Hemmung	
	Die rückspringende Hemmung	
	Die ruhende Hemmung	
	Die Stiftenhemmung	
	Die freie Hemmung, Construction von D'ent, Budge, Rüffert	
	Die Riefler'sche Hemmung	29
	Der Antrieb	
	Die Aufziehvorrichtungen	
	Der Antrieb durch ein mit Hilfe von Electricität gehobenes Gewicht	
	Der Antrieb durch einen Electromagneten	
	Das conische Pendel	
	Die Regulirung und Controle	40
Univer	rsalinstrument. N. Herz , ,	41
	Beschreibung des Instruments	42
	Repetitionstheodolit	
	Bestimmung und Berichtigung der Fehler	47
	Aufstellung der Formeln	
	Bestimmung des Zenithpunkts am Kreis	52

Universaltransit. N. Herz
Bestimmung der Zeit aus der Beobachtung zweier Sterne in demselben (unbe-
kannten) Azimuth
Universum. F. Ristenpart
Historische Entwickelung der Ansichten vom Universum
Copernikus, Galilei, Kepler, Huyghens
Wright, Kant
Lambert, Michell
W. Herschel und seine Sternaichungen 60
W. Struve's Untersuchungen
Die Milchstrasse
Die grosse Trennung in der Milchstrasse
Die Breite der Milchstrasse
Die Struktur und die Abbildungen der Milchstrasse
Das Material zur Untersuchung der Sternvertheilung
Die Sterncataloge und Karten
Die Sternzahl und die photometrische Constante
Die Vertheilung der Fixsterne
Die Untersuchungen Seeligers
Lineare Maasse im Sternsystem und die mittlere Sterndichte des Raumes 93
Der Sonnensternhaufen
Vertheilung der verschiedenen Spectraltypen
Vertheilung der bewegten Sterne
Vertheilung der rothen und der Ch. Wolf-Rayet'schen Sterne
Vertheilung der neuen Sterne
Vertheilung der Nebelflecke und Sternhaufen
Die Untersuchungen von Stratonoff
Ursachen des Milchstrassenschimmers
Die Milchstrasse als Spiralnebel
Annahme anderer Raumformen
Verticalkreis. N. Herz
Zeit, Zeitbestimmung. N. Herz
Zeitmessung, Zeiteinheiten
Jahr und Julianische Periode
Wahrer Sonnentag, Sterntag, mittlerer Sonnentag
Bürgerliche, astronomische Zeit, Ortszeit
Weltzeit, Zonenzeit, Normalmeridian
Zeitgleichung
Verwandlung der mittleren und wahren Zeit in einander
Verwandlung der Sternzeit, der wahren und mittleren Zeit in einander 137
Sternzeit im mittleren Mittag
Uhrcorrection, Stand und Gang der Uhr
Zeitbestimmung
aus beobachteten Meridiandurchgängen der Sterne
aus einer beobachteten Zenithdistanz
Untersuchung der günstigsten Bedingungen
Beispiel
aus mehreren nach einander gemessenen Zenithdistanzen
Beispiel
Reduction des Mittels der Zenithdistanzen auf das Mittel der Uhrzeiten 145
Reduction des Mittels der Uhrzeiten auf das Mittel der Zenithdistanzen 148
Reispiel


Beobachtungen am Universalinstrument und ihre Reduction bei unbekanntem	
Zenithpunkt	15
aus gleichen Höhen verschiedener Sterne zu beiden Seiten des Meridians .	15
aus correspondirenden Höhen	15
Mittags- und Mitternachtsverbesserung	
Beispiel	15
aus Beobachtungen von Sternen im Vertical des Polarsternes (Döllen's Me-	
thode)	
Entwickelung der Formeln	
Reduction der Beobachtungen für Zeitsterne	
Reduction der Beobachtungen für den Polarstern in der Nähe des Meri-	
dians, in der Nähe der grössten Digression	
Vorausberechnung der Sternörter	
Anordnung der Beobachtung	
Beispiel	
aus dem beobachteten Azimuth	
durch Beobachtung des Verschwindens eines Sterns hinter einem terrestrischen	-11
Object	
aus zwei beobachteten Höhen zweier Gestirne und der Zwischenzeit, ohne	17:
Kenntniss der Polhöhe, Zeitbestimmung zur See	
Das Dipleidoskop oder Chronodeik	
Das Passagenprisma	
Eble's Sextant und astronomisches Netz	
Die Sonnenuhren	
Das Skaphium und der astronomische Ring	
Die Acquatorealsonnenuhr	
Die Horizontal- und Verticalsonnenuhren	
Zodiacallicht oder Thierkreislicht. W. Valentiner	
Das Schnittphotometer	189
Anhang. Tafeln, Vorbemerkung. W. Valentiner	187
Tafel I. Die Barker'sche Tafel	189
Tafel zur Berechnung der wahren Anomalie, wenn sie sich 180° nähert .	238
Tafel II. Encke's Tafel zur Auflösung der Lambert'schen Gleichung	239
Tafel III. Tafel zur Berechnung der Parallaxe nach Hansen, für die verschiedenen	
Sternwarten	243
Tafel IV. Anzahl der Tage vom Anfang des Jahres	
Verwandlung der Decimaltheile des Tages in Stunden, Minuten, Secunden	
und umgekehrt	264
Verwandlung der mittleren Zeit in Sternzeit	
Verwandlung der Sternzeit in mittlere Zeit	
Tafel V. Tafeln zur Reduction der Circummeridianhöhen	
a) von 0 bis 20 Minuten Stundenwinkel für m und n	
b) von 0 bis 60 Minuten Stundenwinkel für log m und log n	
Tafel VI. Verzeichniss der Bahnelemente der Kometen	205
Tafel VII. Bahnelemente der Planeten	
Namenregister des ganzen Werks	
Sachregister des ganzen Werks	
Rerichtigungen	428

Uhr bis Zodiacallicht.

Anhang: Tafeln,



Uhr, Pendeluhr. Definition. Unter Pendeluhren würde man strenggenommen alle die Mechanismen zu verstehen haben, bei denen ein durch einen
Motor (ein gehobenes Gewicht, eine gespannte Feder, einen erregten Electromagnet)
in Bewegung gesetztes und durch einen isochron schwingenden Körper regulirtes
Räderwerk vor einem Zifferblatt sich drehenden Zeigern eine so gleichmässige
Bewegung ertheilt, dass daraus das Fortschreiten der Zeit nach genau gleichen

Theilen erkannt werden kann. Es ist jedoch üblich, unter dieser Benennung nur die Uhren zusammenzufassen, deren Regulator ein gewöhnliches unter dem Einfluss der Schwere in einer lothrechten Ebene schwingendes Pendel ist, im Gegensatz zu den Uhren mit Unruh, die, soweit sie für den Astronomen Bedeutung haben, bereits in dem Artikel Chronometer besprochen wurden.

Die Theile der Pendeluhr und deren Wirkungsweise. Die Bestandtheile der Pendeluhr sind die nämlichen, wie die des Chronometers, Motor, Räderwerk und Pendel mit der Hemmung. Den Motor bildet das gehobene

Gewicht A (Fig. 442 und 443), welches an dem auf die Walze B aufgewundenen Seile liegt und sie der Richtung des Pfeiles entgegen zu drehen bestrebt ist. Die Axe der Walze ist bei a zum Aufsetzen des Uhrschlüssels vierkantig gestaltet, durch dessen Drehung das herabgegangene Gewicht wieder gehoben werden muss. Damit aber dabei nicht das ganze Uhrwerk bewegt wird, ist die Walze mit dem

ebenfalls auf dieser Axe sitzenden Walzenrad C durch einen Sperrkegel x verbunden, der das Walzenrad mitnimmt, wenn es dem Zuge des Gewichtes folgt, über die Zähne des Sperrrades s aber hingleitet, wenn die Walze im entgegengesetzten Sinne gedreht wird. Das Walzenrad überträgt seine Bewegung auf das Getriebe D, das das Rad E mitführt, dieses die seinige durch Vermittlung des Getriebes F und des Rades G, des Getriebes H und des mittleren Rades K, auf das Getriebe L und das Rad M, welches dreieckige Zähne hat und in seiner freien Bewegung gewöhnlich durch den Anker N gehemmt wird. Das Minutenrad G trägt den Minutenzeiger; ist ein Secundenzeiger vorgesehen, so sitzt dieser auf dem Rade M, wenn nicht ein eigenes Secundenrad vorhanden ist. Giebt die Uhr auch die Stunden an, so zeigt Fig. 444 die Art, wie der Stundenzeiger vom Minutenrad aus bewegt wird. b ist die Welle des Minutenrades, die durch Vermittlung des Minutenrohres nur den Minutenzeiger M bewegt. b wird von mn durch Reibung mitgenommen, und es ist möglich, den Zeiger auch ohne die Welle b zu bewegen, zu stellen. Mit mn dreht sich das Viertelrad H, welches in das Wechselrad W greift. Auf dessen Axe sitzt das Getriebe w, und greift in das Stundenrad L ein, welches den Stundenzeiger B auf der lose über das Minutenrohr geschobenen Hülse ac trägt. Die Uebersetzung ist so gewählt, dass der Stundenzeiger sich in 24 Stunden einmal über das Zifferblatt herum bewegt, was der Minutenzeiger in einer Stunde thut. Das Rad M Fig. 442 und 443) führt den Namen des Steig-, Gang- oder Hemmungsrades die nur die Bewegung übertragenden Räder heissen Beisetz-, Mittel- oder Zwischenräder, die Theile, welche die Bewegung auf die Uhrzeiger übertragen, bilden das Zeigerwerk oder das Vorgelege. Die Axen sämmtlicher Räder sind in zwei durch Schrauben miteinander verbundene Messingplatten RR und EE (Fig. 442) und SS und RR (Fig. 444), gelagert.

Fig. 442 zeigt die Art, wie der Anker mit dem Pendel verbunden ist, Fig. 443, die Form des Ankers, die sofort seine Wirkungsweise ergiebt. Er endet in zwei Haken, Hebungen oder Paletten N, die abwechselnd in die Zähne des Steigrades eingreisen; beim Heraustreten gleiten die Zähne des Steigrades an den schiesen Flächen der Paletten hin und treiben sie vor sich her. Jedesmal, wenn das Pendel durch die Ruhelage geht, rückt also das Steigrad um einen Zahn weiter. Auf der Ankeraxe 0\beta ist die Führungsstange oder der Mitnehmer S besestigt, dessen gabelförmiges Ende T die Pendelstange UU umsasst und so das Pendel mit dem linsensörmigen Gewicht V antreibt, wenn ein

Zahn von M an der schiefen Fläche einer Palette hingleitet. Die Führungsstange hat bei Secundenpendeln ein Fünftel der Länge des Pendels, sonst ein Drittel bis ein Viertel, die Gabel muss so stehen, dass das Pendel vertikal hängt wenn die Paletten ihre Ruhelage einnehmen. Um dies unter allen Umständer zu erreichen, besitzen Uhren, bei denen es auf die grösste Genauigkeit ankommt. Vorrichtungen, um das obere Ende der Führungsstange durch zwei einander entgegenwirkende Schrauben etwas im wagerechten Sinne verschieben zu können, oder sie gestatten das nämliche mit der Gabel vorzunehmen. So setzt das Gewicht das Räderwerk in Bewegung und sorgt durch dessen und des Ankers Vermittlung dafür, dass das Pendel bei jeder Schwingung den Verlust an lebendiger Kraft, den es durch Ueberwindung der Reibung und des Luftwiderstandes erlitten hat, wieder ersetzt bekommt.

Geschichte der Erfindung der Pendeluhr. Ehe wir zur ausstührlicheren Betrachtung der einzelnen Uhrtheile uns wenden, werfen wir einen kurzen Blick auf die Entwickelungsgeschichte der Pendeluhr.

1) Die Uhren vor Galilei. Die Anwendung der Uhren ist so alt, wie die astronomischen Beobachtungen selbst. Bereits die Chaldäer, denen wir wohl die ältesten verdanken, maassen die Zeit mit würfelförmigen Gefassen von bestimmter Seitenlänge, aus denen das Wasser durch ein kleines Loch am Boden ausfloss. Jahrtausende hindurch blieb man auf diese Art der Zeitmessung beschränkt und noch die alexandrinischen Gelehrten verbesserten die Klepsydren wie man diese Uhren nannte, indem sie die Grösse der Ausflussöffnung durch Einbohren in Gold oder in einen Edelstein sicherten. Die babylonischen Wasseruhren haben noch das Interesse für uns, dass von den zwei Grössen, in denen sie angewendet wurden, die Seiten des Würfels als Maasseinheiten abgenommen wurden und dass sehr wahrscheinlich von ihnen die grosse und die kleine Elle der Völker des Alterthums stammt. Erst nach und nach kamen im Lause der Jahrhunderte Räderwerke in Gebrauch und es wird von einem solchen erzählt. welches der Sultan von Aegypten dem Kaiser Friedrich II. zum Geschenke sandte. Ueber die Einrichtung jener ältesten Uhren ist uns nichts bekannt, die ersten, von denen wir genauere Nachrichten haben, gehören dem 13. Jahrhundert an. Sie besitzen bereits als Motor ein von Zeit zu Zeit wieder zu hebendes Gewicht, als Regulator ein Horizontalpendel mit Hemmung. Ihre sonstige Einrichtung stimmt aber so sehr mit der unserer jetzigen Uhren überein, dass man mit LITTROW1) BERTHOUD Recht geben muss, wenn dieser sagt, »dass eine solche Uhr nicht die Erfindung eines einzigen Menschen sein kann, sondern dass sie ein Product mehrerer vorhergehenden Erfindungen ist, die z. Thl. wenigstens sehr alten Zeiten angehören«. Als Beleg für diese Behauptung kann das Uhrwerk dienen, welches in der Schweiz verfertigt, 1348 in Dover Castle aufgestellt wurde und dort bis 1872 seinen Dienst schlecht und recht versah. Es befindet sich im South Kensington Museum und ist abgebildet in HOFMANN's Bericht über die wissenschaftlichen Apparate auf der Londoner internationalen Ausstellung auf pag. 20.

Dass die Gleichmässigkeit des Ganges dieser Ühren viel zu wünschen übrig lassen musste, liegt auf der Hand. Fehlte ihnen doch die constante Kraft welche den Regulator stets in eine bestimmte Ruhelage zu bringen sucht. Immerhin waren in solcher Weise die Ühren des Landgrasen Wilhelms IV. von

¹⁾ Gehler's physikalisches Wörterbuch, 2. Aufl., IX. Bd., 2. Abth., pag. 1111.

Hessen-Cassel eingerichtet, welche Burgt verfertigt hat und welche zum ersten Mal die Zeit als Beobachtungselement einzusthren gestatteten. Eine im königlichen Museum in Cassel noch vorhandene von Burgt herrührende Uhr ist eine reich ausgestattete Taseluhr, deren Pendel ein horizontales Rad bildet, so dass es als Unruhe ohne regulirende Feder anzusprechen sein würde.

2) Erfindung der Pendeluhr durch Galilei. Wohl nichts lässt so sehr den Fortschritt, den die Arbeit der letzten drei Jahrhunderte in unsern Anschauungen hervorgerusen hat, schärfer hervortreten, als der Umstand, dass nachdem Galilei den Isochronismus der Pendelschwingungen entdeckt hatte, es noch dreier Jahrzehnte bedurste, bis er auf den Gedanken kam, das Pendel zum Regulator eines Zeitmessers zu benutzen, dass noch sat zwei weitere Jahrzehnte darüber hingingen, bis Huygens das Horizontalpendel der damaligen Uhren durch das gewöhnliche ersetzte. Ja, es wird uns schwer, einzusehen, dass zu der scheinbar so einsachen Beobachtung des Isochronismus des Pendels es eines Galilei bedurste, der die schöne Entdeckung noch dazu dem Zusall verdankte. Vergegenwärtigt man sich jedoch die Ersindungsgeschichte, so wird alles dieses begreißich genug.

Die Erzählung, die den damaligen Professor in Pisa durch die Beobachtung der auseinanderfolgenden Schwingungen einer an langer Schnur hängenden Kirchenlampe den Isochronismus der Pendelschwingungen finden lässt, trifft höchstwahrscheinlich zu. Wenigstens wendet Galllei bei deren Darstellung in den Discorsi¹) dieses Beispiel an. Wenn er nun aber auch so auf die Vermuthung des Isochronismus gekommen war, so konnte er diese Vermuthung zunächst nicht auf ihre Richtigkeit prüfen, da ja genaue Zeitmesser noch sehlten. Theoretische Untersuchungen sührten ihn jedoch ebenfalls zu dem Ergebniss, dass gleichlange Pendel gleiche Schwingungsdauern hätten.

Dass infolge dieses Isochronismus das Pendel einen brauchbaren Zeitmesser abgeben müsse, erkannte Galilei sofort, aber er kam noch nicht darauf, die Uhren seiner Zeit dadurch zu Apparaten für genaue Zeitmessung zu machen, dass er sein isochron schwingendes Fendel an Stelle des horizontalen setzte. Wohl verband er es mit einem Zählwerk einfachster Construction und bestimmte damit die Zeit, wobei er es freilich durch immer erneute Antriebe in Bewegung erhalten musste. Das Zählwerk bestand aus einem Cartonrädchen mit dreieckigen Zähnen, das bei jeder in demselben Sinne erfolgenden Pendelschwingung um einen Zahn weiter geschoben wurde. Dazu war am Pendelgewicht senkrecht auf seine Schwingungsebene eine Borste befestigt, die über die flachgeneigte Seite des Zahnes des Cartonrädchens hinglitt, dann aber nach Umkehr des Pendels gegen die steile abfallende Seite sich legend, das Rädchen um einen Zahn weiterschob.

Den Plan, den Antrieb des Pendels durch ein immer wieder aufzuwindendes Gewicht zu bewerkstelligen und so die erste Pendeluhr zu bauen, entwarf der erblindete Galilei erst kurz vor seinem Tode. Eines Tages im Jahre 1641, so schildert²) Viviani in einem Schreiben, das er am 20. August 1659 an den Prinzen Leopold von Medici richtete, den Vorgang, els ich bei ihm in der Villa bei Arcetri wohnte, fasste er den Gedanken, wenn es möglich wäre, das Pendel der Gewichts- oder Federuhr zuzufügen, anstatt sich der gewohnten Un-

GALILEI'S Untersuchungen und mathematische Demonstrationen. Deutsch von A. v. OETTINGEN. Leipzig 1890. OSTWALD'S Klassiker, No. 11, 2. Tag, pag. 85.

²⁾ Albèri. Le opere di Galileo Galilei. Firenze 1842-56. XIV, pag. 352.

ruhe zu bedienen und hoffte so eine gleichmässige und nattfrliche Bewegung dieses Pendels zu erhalten«. Er dictirte nun seinem Sohne VINCENZIO und dem genannten VIVIANI, als den einzigen, die nach seiner Verweisung in sein Landhaus bei ihm sein dursten, eine Zeichnung, welche seine Idee wiedergab, da ei sie selbst nicht mehr zu Papier bringen konnte. Diese Zeichnung ist noch in der Bibliotheca Palatina in Florenz vorhanden und des österen in Nachbildungen veröffentlicht 1).

Die Pendelaxe trägt zwei Dornen, die sich mit ihr hin und her bewegen und abwechselnd einen Sperrhaken von einem Steigrad abnehmen und wieder darauf legen, oder ebenso unter einen der seitwärts am Steigrad angebrachten Stifte greilend, dessen Bewegung hemmen und zurückschwingend wieden freilassen. Bei jedem Hin- und Hergang wird also das Steigrad um einen Zahn fortgeschoben und kann demnach zur Bewegung von Minuten- und Stundenzeiger benutzt werden, auch die Secunden zählen. Dass die Walze mit dem das Gewicht tragenden Seile fehlt, wird im Hinblick auf die Art der Entstehung der Zeichnung und auf die ausdrückliche Versicherung VIVIANI's hin, dass der Apparat eine Uhr sein solle, Gallei nicht zum Vorwurf gemacht werden können. Kann das Fehlende doch ohne irgend welche Schwierigkeit zugefügt werden.


Van Swinden's 2) Ansicht dagegen, der Apparat stelle lediglich ein Zählwerk dar, beruht auf einem Irrthum, wie ich bereits vor vielen Jahren aus den Quellen nachweisen konnte³), obwohl ein solcher Beweis bei der klar ausgesprochenen Bestimmung, die sein Erfinder, der die wissenschaftliche Mechanik schuf, der die inductive Methode in die Naturwissenschaften einführte, dem Apparat geben wollte, wohl kaum nöthig gewesen wäre. Eine Bedeutung für die Fortbildung der Uhren hat der Galilei'sche Entwurf freilich nicht gehabt, seine Ausführung vereitelte ein feindseliges Geschick. Zwar unternahm es zehn Jahre nach des Vaters Tode VINCENTIO GALILEI eine Uhr nach der in seinem Besitz befindlichen Zeichnung auszuführen. Er liess die dazu nöthigen Räder und Gestelltheile von einem Schlosser ansertigen und setzte sie, um das Geheimniss zu bewahren, selbst zusammen. Er war bereits soweit gekommen, dass er sich mit VIVIANI von der Betriebsfähigkeit der Uhr hatte überzeugen können, als er plötzlich erkrankte und starb. Das noch nicht fertige Werk wurde nach Ausweis des noch vorhandenen Auctionscataloges mit seinem Nachlasse verkauft und ist verschollen. Doch hat man in neuerer Zeit nach zuholen gesucht, was damals versäumt wurde, und nach GALILEI's Plan eine Uhr hergestellt, die ihre Bestimmung vollständig erfüllt. Diese ist im GALILEI-Museum in Florenz noch vorhanden und hat, da sie zu mehreren Malen für den Originalapparat gehalten wurde, öfters zu Irrthümern Veranlassung gegeben.

3) HUYGENS' Pendeluhren. Galilei's Erfindung blieb gänzlich unbekannt und so war es Huygens vorbehalten, ohne von Galilei's Plan etwas zu wissen, das Pendel als Regulator den damals gebräuchlichen Uhren zuzufügen. Seine Erfindung war um deswillen besonders lebensfähig, dass sie ohne jede Schwierig-

¹) HOFMANN, Bericht 77, pag. 22, Biedermann, Bericht über die Ausstellung wissenschaftlicher Apparate im South Kensington Museum zu London 1876, pag. 411. Gerland, Geschichte der Physik, pag. 112. Gerland und Traumüller, Geschichte der physikalischen Experimentirkunst, pag. 122.

²⁾ VAN SWINDEN, Verhandelingen der eersten Klasse van het Kon. Nederlandsche Instituut van wetenschappen. 3. Deel. Amsterdam 1817.

³⁾ GERLAND, WIEDEMANN'S Annalen 1878, IV, pag 610.

keit an den längst im Gebrauch befindlichen Zeitmessern angebracht werden konnte. Wie er im Jahre 1656 die Uhren verbessern wollte 1), ergiebt sich aus Fig. 445. Das Horizontalpendel der früheren Uhrwerke ersetzte er durch ein Zahnrad O, das in die Zähne des Kronrades P eingriff. Das Steigrad L und

die Hemmung MN behielten ihre Lage und Einrichtung bei. Da P nur schwingen, sich nicht drehen sollte, so erhielt es nur in seiner oberen Hälfte Zähne; seine Axe trug die Gabel QR, welche mit ihren Zinken R die Pendelstange /T umfasste. Wohl durchdacht war die Art der Aufhängung des Pendels mittelst des biegsamen Fadens S /, auf die Huygens mit Recht den grössten Werth legte. Wenigstens betonte er, als ihm später3) mitgetheilt wurde, dass GALILEI längst vor ihm eine Pendeluhr angegeben habe, dass dieser Entwurf untauglich sein müsse, wenn - wie es in der That der Fall war - das Pendel sich um eine in Lagern ruhende Axe drehe. Die Reibung beeinflusse dann den Isochronismus auf das Schädlichste. Die Folgezeit hat ihm Recht gegeben, indem sie seine Art der Aufhängung allerdings unter Anbringung einer weiteren Verbesserung beibehielt. So ist die Pendeluhr zuerst von GALILEI, dann aber noch einmal in ganz selbständiger Weise von Huygens erfunden worden und wenn der letztere nach dem, was ihm zu seiner Zeit über Galilei's Entwurf bekannt geworden war, mit Recht fragte, wie es möglich gewesen sei, dass eine so nützliche Erfindung so gänzlich unbekannt bleiben konnte, so sind wir nach dem oben mitgetheilten in der Lage, die Antwort auf diese Frage zu geben.

Eine weitere Verbesserung, die Huygens der Pendeluhr zufügte, bezweckte, sie auch während des Aufziehens durch Vermittlung des Zuges des Gewichtes A weitergehen zu lassen. Dazu hing die das Gewicht tragende Rolle in der einen Schlinge ZO einer Schnur ohne Ende II, welche in einer zweiten Schlinge an einer zweiten Rolle das Gewicht Z trug. Die Schnur ging ausserdem über die beiden Rollen F und Q, von denen die letztgenannte durch Zähne

und den Sperrhaken 0 verhindert wurde, sich in mehr als einem Sinne zu bewegen. Sollte das Gewicht A gehoben werden, so brauchte man nur die Schnur bei II herabzuziehen, der Zug, den \(\Delta \) an der Rolle F ausübte, blieb dann ungeändert.

¹⁾ HUYGENS, Horologium, Opera varia. Vol. I. Lugd. Bat. 1724, pag. 4.

⁹⁾ HUYGENS, Oeuvres complètes III, pag. 8 ff.

Uebertraf nun auch diese erste Huvgens'sche Uhr an Genauigkeit im Gange alle andern zur Zeit ihrer Erfindung im Gebrauch befindlichen, so genügte ihrem Schöpfer ihre Einrichtung noch nicht und er brachte 1673 wesentliche Verbesserungen daran an¹). Er legte die Hemmung MN horizontal, die Axe des Steigrades aber vertical und befestigte die Gabel QR ohne weitere Zwischenglieder an die Hemmung. Das Pendel versah er mit einem Laufgewicht und hing es an zwei Fäden auf, zu deren Seiten er zwei nach Cycloiden geformte culissenförmige Blechstreifen anbrachte, an welche sich bei jeder Schwingung des Pendels die Fäden anlegten. Die Einrichtung hatte den Zweck, den Einfluss der Amplitude auf die Schwingungsdauer aufzuheben und so den Isochronismus der Schwingungen beträchtlich zu erhöhen. Um diese Eigenschaft der Cycloïde nachweisen zu können, wenden wir uns zunächst zu der Ableitung der Formel für die Schwingungsdauer des Pendels. Damit beginnen wir zugleich mit der Betrachtung der gegenwärtig im Gebrauche stehen.

Betrachtung der gegenwärtig im Gebrauche stehenden Pendeluhren, deren einzelne Theile dann der Reihe nach eingehend behandelt werden sollen.

Das Pendel. 1) Theoretische Erörterungen?) Es sei, Fig. 446, CA die Ruhelage, CB die Lage des Pendels von der Länge / bei grösster Elongation, die Anfangsgeschwindigkeit in B sei ν₀. Führen wir nun ein Coordinatensystem ein, dessen Anfangspunkt der Auſhängepunkt C und dessen Z-Axe vertical abwärts gerichtet ist, so würde allgemein sein

$$x^2 + y^2 + z^2 = l^2$$

aber da wegen der lothrechten Lage der Pendelebene y = 0 ist,

$$x^2 + z^2 = l^2$$
.

Ist nun v die Geschwindigkeit in D, so ist nach dem Princip der lebendigen Kraft

and für
$$v_0 = 0$$

$$\frac{\frac{1}{2}v^2 - \frac{1}{2}v_0^2 = g(z - z_0)}{v^2 = 2g(z - z_0)}.$$

Führt man hier statt x den Winkel θ , den in jeder Lage das Pendel mit der Ruhelage bildet, als neue Veränderliche und den seine äusserste Lage gebenden Winkel α ein, so wird

$$z_0 = l \cos \alpha, \ z = l \cos \vartheta,$$
 also

 $v^2 = 2g/(\cos\theta - \cos\alpha).$ Ist nun der Bogen BD = s, so ist

$$s = l(\alpha - \theta)$$

$$v = \frac{ds}{dt} = -l \frac{d\theta}{dt}$$

$$l^{2} \left(\frac{d\theta}{dt}\right)^{2} = 2gl(\cos \theta - \cos \alpha),$$

$$\left(\frac{d\theta}{dt}\right)^{2} = \frac{2g}{l}(\cos \theta - \cos \alpha),$$

²) Vergl. auch Kirchhoff, Vorlesungen über mathematische Physik, 4. Aufl. Leipz. 1897. pag. 17 ff und Schell, Theorie der Bewegung und der Kräfte. Leipz. 1870, pag. 319.

¹⁾ HUYGENS, Horologium oscillatorium Opera varia Vol. I, pag. 29.

also

und

so dass hier der Winkel als Function der Zeit t erscheint. Geht man nun auf die halben Winkel über, so wird

$$\left(\frac{d\theta}{dt}\right)^{2} = \frac{2g}{l}\left(1 - \theta \sin^{2}\frac{\theta}{2} - 1 + 2\sin^{2}\frac{\alpha}{2}\right) = \frac{4g}{l}\left(\sin^{2}\frac{\alpha}{2} - \sin^{2}\frac{\theta}{2}\right).$$

Wir führen nun eine neue Veränderliche ein, indem wir setzen:

$$\sin\frac{\theta}{2} = \sin\frac{\alpha}{2}\sin\psi.$$

Dann wird

$$d\theta = 2 \frac{\sin \frac{\alpha}{2} \cos \psi \cdot d\psi}{\cos \frac{\theta}{2}}$$

$$\cos \frac{\theta}{2} = \sqrt{1 - \sin^2 \frac{\alpha}{2} \sin^2 \psi}$$

$$\frac{dt}{d\theta} = \sqrt{\frac{l}{g}} \frac{1}{\sqrt{4 \left(\sin^2 \frac{\alpha}{2} - \sin^2 \frac{\theta}{2}\right)}}$$

$$dt = \sqrt{\frac{l}{g}} \frac{\sin \frac{\alpha}{2} \cdot \cos \psi \cdot d\psi}{\sqrt{\left(1 - \sin^3 \frac{\alpha}{2} \sin^2 \psi\right) \left(\sin^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} \sin^2 \psi\right)}}$$

$$= \sqrt{\frac{l}{g}} \frac{\sin \frac{\alpha}{2} \sqrt{1 - \sin^2 \frac{\alpha}{2} \sin^2 \psi}}{\sqrt{1 - \sin^2 \frac{\alpha}{2} \sin^2 \psi}}$$

$$= \sqrt{\frac{l}{g}} \frac{d\psi}{\sqrt{1 - \sin^2 \frac{\alpha}{2} \sin^2 \psi}}.$$

Man findet nun die Dauer einer einfachen Schwingung T, indem man diese Gleichung zwischen den Grenzen $\theta = -\alpha$ und $\theta = +\alpha$ integrirt oder da alsdann

$$-\sin\frac{\alpha}{2} = \sin\frac{\alpha}{2}\sin\psi,$$
also
$$-1 = \sin\psi$$
und
$$+\sin\frac{\alpha}{2} = \sin\frac{\alpha}{2}\sin\psi$$
mithin
$$+1 = \sin\psi$$

ist, zwischen den Grenzen $\psi = -\frac{\pi}{9}$ bis $\psi = +\frac{\pi}{9}$; oder es ist

$$T = \sqrt{\frac{l}{g}} 2 \int_{0}^{\frac{\pi}{2}} \frac{d\psi}{\sqrt{1 - \sin^2\frac{\alpha}{2}\sin^2\psi}}.$$

$$\frac{1}{\sqrt{1-\sin^2\frac{\alpha}{2}\sin^2\psi}} = \left(1-\sin^2\frac{\alpha}{2}\sin^2\psi\right)^{-\frac{1}{2}}$$

$$= 1 + \frac{1}{2} \sin^2 \frac{\alpha}{2} \sin^2 \psi + \frac{1 \cdot 3}{2 \cdot 4} \sin^4 \frac{\alpha}{2} \sin^4 \psi + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \sin^6 \frac{\alpha}{2} \sin^6 \psi + \dots$$

und somit

$$\begin{split} \int_{0}^{\frac{\pi}{2}} \frac{d\psi}{\sqrt{1-\sin^{2}\frac{\alpha}{2}\sin^{2}\psi}} &= \int_{0}^{\frac{\pi}{2}} d\psi + \frac{1}{2}\sin^{2}\frac{\alpha}{2} \int_{0}^{\frac{\pi}{2}} \sin^{2}\psi \cdot d\psi + \frac{1\cdot 3}{2\cdot 4}\sin^{4}\frac{\alpha}{2} \int_{0}^{\frac{\pi}{2}} \sin^{4}\psi \, d\psi + \\ &+ \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\sin^{6}\frac{\alpha}{2} \int_{0}^{\frac{\pi}{2}} \sin^{6}\psi \, d\psi. \end{split}$$

Da nun

$$\int_{0}^{\frac{\pi}{2}} \sin^{2\pi} \psi \cdot d\psi = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n} \frac{\pi}{2},$$

so wird

$$T = \pi \sqrt{\frac{l}{g}} \left[1 + (\frac{1}{2})^2 \sin^2 \frac{\alpha}{2} + \left(\frac{1 \cdot 3}{2 \cdot 4} \right)^2 \sin^4 \frac{\alpha}{2} + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \right)^2 \sin^6 \frac{\alpha}{2} + \dots \right].$$

Vernachlässigt man hier die Glieder von der vierten Potenz von $sin\frac{\alpha}{2}$ an, so wird für einen kleinen Winkel α

$$T = \pi \sqrt{\frac{l}{\ell}} \left(1 + \frac{\alpha^2}{16} \right)$$

und für ein unendlich kleines a

$$T=\pi\sqrt{\frac{l}{g}}.$$

Die Schwingungsdauer ist somit von der Amplitude nicht unabhängig, doch beträgt sie für einen Winkel $\alpha=10^\circ$ nur etwa $0.2\,$ § 1). Ein Pendel, welches bei einer Amplitude von 10° 1000 Schwingungen macht, würde also bei einer unendlich kleinen Amplitude in der nämlichen Zeit 1001, 89 vollführen. Auch ist es immer möglich, eine für die Amplitude α beobachtete Schwingungsdauer T auf eine unendlich kleine T_1 zurückzuführen, indem man setzt:

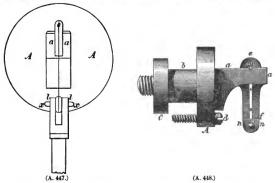
$$T_1 = \pi \sqrt{\frac{l}{g}} = \frac{T}{1 + \frac{1}{4}\sin^2\frac{\alpha}{2}}.$$

2) Cycloïdenpendel. Es würde nach dem Besprochenen möglich sein für ein beliebiges Pendel die Schwingungsdauer für jede Amplitude aus der Pendellänge zu finden. Für die Herstellung einer Pendeluhr aber wäre damit nicht viel gewonnen, deshalb schlug Huvgens den bereits erwähnten zweiten Weg ein, um ein Pendel zu erhalten, dessen Schwingungsdauer von der Amplitude nicht mehr beeinflusst werde. Er brachte zu beiden Seiten des Aufhängefadens des Pendels nach Cycloïden gekrümmte Culissen so an, dass bei jedeschwingung der Pendelfaden sich verkürzend an sie anlegte. Der Pendelkörper beschreibt dann die Evolute der Cycloïde, die wieder eine Cycloïde ist, deren unterster Punkt senkrecht unter dem Punkte liegt, in dem die Culissen zusammen-

¹⁾ Vergl, WÜLLNER, Lehrbuch der Experimentalphysik. 5. Aufl. 1. Bd., Leipzig 1895, pag. 142.

treffen. Ist d'der Durchmesser des die Cycloïde erzeugenden Kreises, so ist diese Zeit bekanntlich

$$t = -\frac{\pi}{2} \sqrt{\frac{2d}{g}}$$


oder weil für l=2d

$$t = \frac{\pi}{2} \sqrt{\frac{l}{g}}$$

auch die Schwingungsdauer des Pendels von der Länge 2d bei unendlich kleiner Amplitude. An dieser Entdeckung hat HUVGENS ganz besondere Freude gehabt, wenigstens finden sich in seinen hinterlassenen Papieren in einer Art Tagebuch darüber die Worte¹): *Sed praccipuum longe hie Cycloidis inventum. Utinam vidisset Galilacus!* So schön nun aber auch diese Erfindung war, zu praktischer Bedeutung ist sie nie gelangt. Schon bei Lebzeiten ihres Urhebers wurde sie wieder verlassen, da sie nur angenähert gleichbleibende Schwingungsdauern gab, wenn nicht der Schwingungsmittelpunkt gezwungen werden konnte, sich auf der Cycloide zu bewegen und namentlich, da in Folge des fortdauernden Antriebes des Pendels die Amplitude sich bei den aufeinander folgenden Schwingungen überhaupt nicht oder nur in ganz unbedeutender Weise ändert. Immerhin hat noch 1839 STAMPFER für eine Amplitude von 6° eine solche Regulirung für die Rathhausuhr in Lemberg ausgeführt, die sich gut bewährte, aber nicht von langer Dauer war, da die sie tragende Uhr 1848 vom Blitz zerstört wurde *).

Wir wenden uns nun zur Betrachtung der einzelnen Uhrtheile.

 Die Aufhängung des Pendels geschieht bei astronomischen Uhren wohl durchgängig mit Hilfe einer Stahlfeder in der Weise, wie es Fig. 447 und

448 in Vorder- und Seitenansicht zeigen. aa ist eine feste Stütze, welche mit der Mutter C an die Rückwand des Uhrwerks angeschraubt wird, so dass durch diese Wand der Bolzen b hindurchgeht. Um jede Drehung unmöglich zu machen, wird die Schraube d noch durch Stütze und Rückwand eingeschraubt. In den Stützentheil aa wird der Kopf e hineingedrückt, der die Feder f trägt. Mit mehreren Stiften wird diese in e befestigt, der durch die Mitte gehende Stift m

¹⁾ VAN SWINDEN, a. a. O., pag. 53.

⁹) GRASHOFF, Theoretische Maschinenlehre. 2. Bd., Hamburg und Leipzig 1883, pag. 577.

liegt in einer in a befindlichen Rinne. An das untere Ende der Feder sind die beiden Messingplatten n angenietet, die den sie und die Feder durchdringenden Stift x tragen. Dieser Stift trägt den Doppelhaken I, in den von unten die Pendelstange geschraubt wird. Fig. 449 zeigt ihn für sich von der Seite.

Die Dicke der Feder ist etwa die eines Kartenblattes, sie muss aus bestem, gut gehärtetem Stahl verfertigt werden. In der Mitte versieht man sie mit dem Einschnitte oo und erreicht dadurch den Vortheil, dass man sie breiter machen kann, ohne dass sie zu steif wird. Statt einer wendet man zweckmässiger Weise jetzt meist zwei Federn an und sichert dadurch die Bewegung der Pendellinse. Das sich bewegende Pendel darf die Feder nur hin- und herbiegen, Bewegungen in den Befestigungen dürfen unter keiner Bedingung stattfinden. Die Güte der Feder erkennt man daran, dass sie ohne eingehängtes Pendel in Schwingungen versetzt, eine genügend lange Zeit mit stetig abnehmender Stärke schwingt.

Zum Schutze der Pendelseder beim Herausnehmen des Pendels hat S. RIEFLER¹) die Pendelstange in zwei Theile getheilt, deren oberer stets mit der Feder in Verbindung bleibt, während der untere leicht abgenommen werden kann. Der obere Theil besteht aus einer Stange von rechteckigem Querschnitt, der in der durch Fig. 447 und 448 angegebenen Weise mit einem Doppelhaken an den Stift der Feder gehängt wird, unten aber einen nach einem Kreisbogen gekrümmten Querstift trägt, der nach beiden Seiten gleich viel hervorragt, während der Mittelpunkt des Kreisbogens der Aufhängepunkt des Pendels ist. An der das Pendel tragenden Wand des Uhrgehäuses sind zwei durchbohrte Backen angebracht, deren Durchbohrungen so geformt sind, dass sie die freie Bewegung der beiden in sie hineinragenden Enden des Querstiftes nicht hemmen. Der untere Theil der Pendelstange ist nun ebenfalls mit einem Doppelhaken an den Querstift so aufgehängt, dass die beiden Theile des Hakens zu beiden Seiten des oberen Theiles der Pendelstange angreisen. Um einer seitlichen Verschiebung des unteren Theiles der Pendelstange an dem Stift vorzubeugen, sind auf diesen noch je zwei Ringe angebracht, welche an den Endflächen der beiden Hakenflächen anliegen. So ist es unmöglich gemacht, dass beim Ein- oder Aushängen des unteren Theiles der Pendelstange eine Verletzung der Aufhängefeder eintrete. Auch bei Pendeln mit ungetheilter Stange kann die Vorrichtung verwendet werden. Sie erhält dann ihre Stelle unmittelbar in der unteren Fassung der Pendelfeder.

Bis zu einem gewissen Grade macht die Federaufhängung die Pendelschwingungen isochron und erfüllt so z. Thl. den Zweck, welchen Huygens mit den Cycloïdenculissen erreichen wollte. Die Feder bewirkt nämlich durch ihre Krümmung eine mit dem Ausschlagswinkel wachsende kleine Erhebung des Schwingungsmittelpunktes über den aus dem Aufhängungspunkte mit seinem Abstand von der tiefsten Lage jenes Punktes als Radius beschriebenen Kreis. Ob es möglich ist, dadurch, dass man die Abmessungen der Feder in ein passendes Verhältniss zur Länge und Masse des Pendels setzt, völligen Isochronismus zu erreichen, bedarf freilich noch der näheren Prüfung²).

4) Compensation des Pendels gegen Temperaturänderungen. Soll eine Pendeluhr richtig gehen, so muss ihr Pendel genau die nämliche Länge

¹⁾ RIKFLER, Deutsches Reichspatent No. 6407. Zeitschrift für Instrumentenkunde 1891 XI, pag. 271.

³⁾ GRASHOFF, a. a. O., pag. 578.

beibehalten. Da aber Aenderungen der Temperatur auch eine Aenderung der Pendellänge zur Folge haben, so muss man das Pendel compensiren, ihm Einrichtungen geben, die es trotz jenes Wechsels seine Länge unter allen Umständen bewahren lassen. Eine Compensation gegen Temperaturänderungen ist auf zweierlei Weise möglich; entweder man wählt den Stoff der Pendelstange so, dass die Wärme ihn nicht ausdehnt, oder man bringt Einrichtungen an, welche den Schwingungspunkt des Pendels selbsthätig ebensoviel wieder heben, als er durch Ausdehnung der Pendelstange gesunken ist und umgekehrt.

Trocknes Holz ist ein Stoff, der sich gegen die Wärme fast ganz indifferent verhält, um so empfindlicher aber ist es gegen die Feuchtigkeit. Entzieht man es deren Einfluss, indem man den aus ihm gefertigten Körper mit Oel tränkt und überzieht ihn dann mit einem die Feuchtigkeit völlig abhaltendem Lack, so erhält man aus ihm Pendelstangen, welche kaum Längenunterschiede zeigen und für bessere Regulatoruhren sehr wohl anzuwenden sind. Für astronomische Uhren reicht aber diese Art der Regulirung nicht aus, da sie kleine Aenderungen doch noch zulässt. Um sie völlig zu compensiren, setzt man die Pendelstange aus Metallstäben, die sich verschieden stark ausdehnen, zusammen, legt sie wie Roststangen nebeneinander und besestigt sie so, dass die Verlängerung des einen die des andern aufhebt. Als eines dieser Metalle kann man auch Quecksilber nehmen und das es enthaltende Gefäss dann als Pendelkörper benutzen. Im Vergleich mit dem Rostpendel hat aber das Quecksilberpendel den Nachtheil, dass das compensirende Quecksilber und die zu compensirende Pendelstange sich in verschiedenen Höhenlagen und dann möglicher Weise in Luftschichten von verschiedener Temperatur befinden, was bei der Anordnung der Stangen des Rostpendels ausgeschlossen ist.

Das Rostpendel wurde 1720 durch HARRISON¹) zuerst angewendet. Sind die Längen der angebrachten beispielsweise fünf Stäbe mit kleinerem Ausdehnungscoëfficienten, deren Verlängerung den Schwingungspunkt senkt, der Reihe nach a, b, c, d, e, die der dazwischen liegenden das Pendel wieder verkürzenden f, g h, k und sind α und β die linearen Ausdehnungscoëfficienten der Metalle, aus denen sie bestehen, so ist die Länge des Pendels bei 0°

$$l_0 = (a + b + c + d + e) - (f + g + h + k)$$

$$l = (a + b + c + d + e) (1 + at) - (f + g + h + k) (1 + \beta t).$$

Soll nun Compensation stattfinden, so muss sein

Setzen wir also

$$l_0 = l_t$$

und

und bei to

$$(a+b+c+d+e) = L$$
$$(f+g+h+k) = M,$$

so müsste werden

$$L - M = L(1 + at) - M(1 + \beta t) = L - M + \alpha Lt - \beta Mt.$$

Dieser Gleichung kann nur genügt werden, wenn

$$\alpha Lt - \beta Mt = 0$$

also

$$L\alpha = M\beta$$

oder

$$L:M=\beta:\alpha.$$

¹⁾ GEHLER, Physikalischss Wörterbuch VII 1, pag. 390.

Die Gesammtlängen der Stäbe müssen sich also umgekehrt, wie die Ausdehnungscoëfficienten verhalten. Hat man die Längen von mehreren dieser Stäbe angenommen, so müssen die übrigen so bestimmt werden, dass diese Bedingung erfüllt ist.

Die Stäbe können nun in verschiedener Weise angeordnet, geformt und befestigt werden, wie die folgenden Beispiele zeigen. Fig. 450 stellt das von

KESSELS angegebene compensirte Pendel vor, welches GROSS-MANN zu seinen Pendeluhren verwendete. Der genannte Künstler beschreibt es folgendermassen1): »Der Aufhängungsstab a mit dem Haken an seinem oberen Ende ist in dem Querstück b befestigt; von diesem aus gehen zwei Stahlstäbe nach unten und tragen das Querstück e, welches dem Zinkstabe g als Stütze dient; die Ausdehnung des letzteren wirkt sonach in der Richtung nach oben und theilt seine Bewegung dem Ouerstücke e mit. In letzterem sind die äusseren beiden Stahlstäbe befestigt und gehen hinab bis durch das Querstück f. Sie sind mittelst Stiften mit diesem Stück verbunden, welches die Schraubenmutter zum Reguliren und mit diesem das Gewicht der Linse trägt. Stahlstäbe sind über das Stück f hinaus verlängert und ihre Enden reichen in zwei tiefe, in den Rand der Linse gebohrte Löcher, wodurch die Linse mit dem Rost in zuverlässiger Weise verbunden wird. Das Querstück d in der Mitte dient lediglich, um dem Roste eine grössere Festigkeit zu geben, und hat keinen Einflusss auf die Compensation.

Das Rohr, in das die Mittelstange hineinpasst, ist bei diesem Pendel aus Zink und es passt in dasselbe ein kurzer Stahlstab ein, welcher in das Querstück ϵ geht und mit demselben durch einen Stift verbunden ist. Die Verkürzung des Rohres und Verlängerung des Stabes und umgekehrt wird ebenfalls durch Versetzen des Stiftes k verursacht . . . Dieses Rohr reicht von einem Querstück zum andern und die Ein- und Ausschaltung geschieht von oben gegen unten.

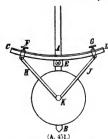
Damit die Ausdehnung der Linse gar nicht in Betracht komme, ist der kurze Stab h, welcher das Gewinde zum Reguliren trägt, bis in die Mitte der Linse geführt und dort fest-

geschraubt, so dass diese Stahllänge bei der Compensation zwar mitzurechnen ist, dagegen die Ausdehnung der Linse, weil sie um den Mittelpunkt nach allen Seiten gleichmässig erfolgt, ganz ohne Einwirkung bleibt.

Wie bei dem Kessels'schen Pendel wird auch bei dem Greenwicher Pendel die Compensation durch ein die Stahlstange umgebendes Zinkrohr erreicht, ein Verfahren, welches zuerst Troughton?) angewendet hatte. Der Stahlstab ist in gewöhnlicher Weise aufgehängt, von dem Zinkrohr umgeben und ruht mit seinem unteren Ende auf einer Schraubenhülse, mit deren Hilfe das Pendel regulirt werden kann. Das obere Ende des Zinkrohres trägt ein Stahlrohr, welches mit seinem erweiterten Rande bis in die Mitte des aus Blei hergestellten Pendel-

h

(A. 450.)


Gellich, Die Uhrmacherkunst und die Behandlung der Präcisionsuhren. Wien 1892 pag. 311 nach Uhrmacher-Kalender 1880, pag. 187.

NICHOLSON'S JOURNAL 1804, T. IX, pag. 225. Vergl. GEHLER, Physikalisches Wörterbuch VII 1, pag. 390.

körpers reicht. Die Röhren sind von Canälchen durchzogen, welche ihr Inneres mit der äusseren Luft in Verbindung setzen und dafür sorgen, dass dessen Temperatur rasch den Schwankungen der Lufttemperatur folgt¹). Eine weitere an diesem Pendel angebrachte Einrichtung, welche die genaue Compensation zu erhalten erlaubt, auch wenn die Länge der das Pendel bildenden Stäbe und Rohre nicht ganz genau bestimmt ist, wird später noch besprochen werden.

Bei dem Compensationspendel von BOURDIN²) ist die Eisenstange durch ein Glasrohr ersetzt, das auf beiden Seiten durch Stahlstücke geschlossen ist. Das obere dieser Stücke trägt den Aufhängehaken des Pendels, das untere ist mit einer mit Schraubengewinde versehenen Stange fest verbunden, welche zum Aufsetzen einer Mutter und der ihre Befestigung bewirkenden eiformigen Gegen-Ueber das Glasrohr ist mit ganz geringer Reibung ein Zinkrohr geschoben, welches auf der Mutter ruht. Es geht durch die über ihr befindliche messingene Pendellinse hindurch, welche mittelst zweier Platinstäbe an dem Zinkrohr aufgehängt ist. Dazu ist ein Ring an dem Zinkrohr befestigt, welcher mittelst zweier Schrauben einen zweiten Ring trägt, an dem die Platinstangen befestigt sind. Mit Hilfe dieser Schrauben kann durch Vermittlung der Platinstangen die Pendellinse etwas gehoben und gesenkt und dadurch so gestellt werden, dass bei Temperaturänderungen die Linse in Folge der Ausdehnung des Glases und Platins sich um ebensoviel abwärts bewegt, als sie durch die Ausdehnung des Zinkes wieder gehoben wird. Auf diese Weise wird die Pendellänge unverändert gehalten. Zwei Stifte verhindern, dass sich die Röhren gegeneinander verdrehen können.

Bei den Hebelcompensationspendeln wird in ähnlicher Weise, wie bei den Unruhen die Compensation bewirkt. Eine solche Einrichtung, die PERRON

angegeben hat⁸), zeigt Fig. 451. Das Pendel, dessen Linse allein gezeichnet ist, hat nur eine Stange A, die durch die Linse, bei B wieder erscheinend, hindurchgeht, ohne dass beide direkt mit einander befestigt wären. Gehalten wird die Linse durch die an dem Zapfen K befestigten Stangen H und J, welche in den Läufern, Metallbügeln mit den Schrauben F und G, endigen. Diese Schrauben sind an den aus zwei Metallen zusammengesetzten, nach einem Kreise gebogenen Streifen CD angeklemmt und verbinden so die Pendelstange mit der Linse. Bei steigender Temperatur sinkt nun zwar die Schraube E herab; da sich aber nun der Bogen CD, der das Metall mit

dem stärkeren Ausdehnungscoëfficienten an seiner äusseren Seite hat, stärker krümmt, so kann es leicht eingerichtet werden, dass der Schwingungspunkt K um eben soviel wieder gehoben wird, als er durch Senken der Schraube herabgegangen war.

Die Quecksilbercompensation hat bereits 1721 GRAHAM⁴) angewendet. Ist / die Länge der Pendelstange, 2 ihr linearer Ausdehnungscoëssicient so nimmt

¹⁾ LOCKYER, Die Beobachtung der Sterne sonst und jetzt. Uebersetzt von G. Sießert. Braunschweig 1880, pag. 211.

²⁾ GELCICH, a. a. O, pag. 321.

³⁾ GELCICH, a. a. O., pag. 317.

⁴⁾ GEHLEP, a. a. O., VII 1, pag. 388

l bei Erwärmung von 1° C. um α l zu. Ist sodann β der cubische Ausdehnungscoëfficient des Quecksilbers in dem es umschliessenden Gefässe, \hbar dessen Höhe und nimmt man es als cylindrisch an, welche Form wohl allein in Frage kommen dürfte, so liegt sein Schwerpunkt in der Höhe $\frac{\hbar}{2}$ über dem Boden. Ohne merklichen Fehler wird man den Schwerpunkt für den Schwingungspunkt nehmen dürfen. Bei einer Temperaturänderung aus 1° C. müsste der Schwerpunkt um β $\frac{\hbar}{2}$ gehoben werden und für den Fall vollständiger Compensation also sein:

$$\beta \frac{h}{2} = /\alpha$$

$$h = 2 / \frac{\alpha}{\beta}.$$

Es ist nun nicht zweckmässig, das Quecksilber in Glasgefässen zu verwenden. Schon Dent'l) hat vorgeschlagen, gusseiserne zu nehmen. Nicht nur, dass solche sich in viel vollkommener Weise cylindrisch herstellen lassen, es lässt sich auch in ihnen das Quecksilber durch Auskochen leicht von aller Feuchtigkeit befreien. Das ist aber von grösster Bedeutung, da sonst das Eisen in Folge des entstehenden galvanischen Stromes rasch rosten würde. Auch kann das Quecksilber in eisernen Gefässen leicht versendet werden. Nach Regnault's Untersuchungen') ist nun der Ausdehnungscoöfficient des Quecksilbers im Gusseisen 5/1/2. Es wird somit

$$\beta = \frac{1}{6712} r^2 \pi h,$$

wenn r den Radius des cylindrischen Quecksilbergefässes bedeutet und also

$$h = 2 l \alpha \frac{6712}{r^2 \pi h} = \frac{65,37}{r} \sqrt{l \alpha}$$

eine Gleichung, welche für eine Pendelstange von der Länge / mit einem Ausdehnungscoöfficienten α die Höhe h des Quecksilbers im Gefässe zu berechnen gestattet.

Damit Pendelstange und Gesäss möglichst gleiche Temperatur annehmen, ist jene durch dieses hindurchgesührt. Um dem Quecksilber leicht die Temperatur der Umgebung mitzutheilen, nahm Jürgensen zwei solcher Gesässe, welche er zu beiden Seiten der Pendelstange anbrachte. Da nicht genügend genaue Kenntniss der Ausdehnungscoessicienten nachträgliche Correcturen nöthig macht, so trägt die Pendelstange oben ein Schälchen, in welches Gewichte gelegt werden können, die den Gang des Pendels verlangsamen. Eine weitere Correctur erhält man, wenn man eine auf dem Deckel des Gesässes angebrachte, getheilte Mutter dreht. Eine noch seinere Regulirung lässt das Compensationspendel von Riefler³ zu: »Es besteht aus einem Mannesmann Stahlrohr von 16 mm Weite und 1 mm Wandstärke, welches etwa bis zu § seiner Länge mit Quecksilber gestillt ist. Das Pendel hat ausserdem eine mehrere Kilogranm schwere Metallinse von einer die Lust gut durchschneidenden Form, oberhalb derselben sind scheibensörmige Gewichtskörper sür die Correctur der Compensation ausgeschraubt, deren Anzahl man zu diesem Zweck nach Bedarf ver-

Gehler, a. a. O. XI, pag. 447. Vergl. Luttrow's Kalender für alle Stände, Wien 1845, pag. 18.

²⁾ Winkelmann, Handbuch der Physik. Breslau 1896 II 2, pag. 87.

³⁾ RIEFLER, Die Präcisionsuhren mit vollkommen freiem Echappement und neuem Quecksilbercompensationspendel 1894, pag 8.

mehren oder vermindern kann. Das Pendel lässt also eine dreifache Regulirung des Uhrgangs¹) zu, eine grobe durch Auf- und Abwärtsschrauben der Linse, eine feinere durch die nämlichen Bewegungen der Correctionsscheiben unterhalb der Linse und eine ganz feine durch Zufügen von Zulagegewichten, welche auf ein am Pendelrohr angebrachtes Schälchen gelegt werden. Die Güte der Compensation prüft man, indem man die von der Uhr angegebene Zeit mit Sternbeobachtungen vergleicht. So fand Anding für die Rieflersche Uhr den Con pensationsfehler für ± 1° C. zu 0.0005 Sec. täglich.

Es versteht sich wohl von selbst, dass die Uhren in Räumen aufgestellt werden, die dem Temperaturwechsel in möglichst geringem Grade unterworfen sind. Russische Astronomen sind sogar so weit gegangen, die Uhr in einem im Boden befindlichen Steingehäuse aufzustellen, um sie den Temperaturschwankungen soviel wie möglich zu entziehen.

5) Compensation des Pendels gegen Luftdruckänderungen. Neben den Aenderungen der Lufttemperatur üben auch die des Luftdruckes einen Einfluss auf den Gang der Pendeluhr aus. Denn da die Luft den Schwingungen des Pendels einen Widerstand entgegensetzt, so muss dieser mit wachsender Dichte zu-, mit abnehmender abnehmen, die Dichte der Luft verändert sich aber mit dem Luftdruck. Dass die Wirkung des Luftdruckes bemerkbar ist und also corrigitt oder compensirt werden muss, beweisen die Beobachtungen Tisserand's 3 an dem vom Mechaniker Winnerl verfertigten Pendel, welches in einer Tiefe von 27 m unter der Erdoberfläche in den Kellern der Pariser Sternwarte aufgestellt ist. Das Pendel schwingt in einem besonderen Gehäuse, welches aber nicht luftdicht verschlossen ist; ein in ihm aufgestelltes Manometer liess erkennen, dass sich der in ihm herrschende Luftdruck mit dem äusseren änderter Thermometerbeobachtungen aber ergaben nur Schwankungen der Lufttemperatur von 0·01° bis 0·02°. Der tägliche Gang µ der Uhr wurde durch die Formel

$$\mu = 0^{\circ} \cdot 019 + 0^{\circ} \cdot 0146 \ (b - 753)$$

darstellbar gefunden, wo b den Barometerstand in Millimetern bedeutet. Die Formel ist mit Hilfe der Meridianbeobachtungen einer Anzahl Sterne vom August 1894 bis Januar 1895 aufgestellt und ihre Brauchbarkeit folgt daraus, dass der Coëfficient 0·0146 mit dem übereinstimnt, den man auch auf theoretischem Wege durch den Widerstand der Luft bedingt findet. Wie merklich der Einfluss des Barometerstandes ist, ergiebt sich aus den grössten Abweichungen der durch das Pendel gegebenen von den wirklichen Werthen. Brachte man die Correction wegen des Barometerstandes an, so bewegten sie sich zwischen den Grenzen -0.20 und +0.29, vernachlässigte man sie, so stiegen diese Werthe auf -1.28 und +1.207.

Es giebt nun zwei Wege, das Pendel vom Einflusse des Luftdruckes zu befreien, entweder indem man es zu compensiren sucht, oder indem man es in einen luftdicht verschlossenen Raum einschliesst. Beide Wege sind eingeschlagen worden. Namentlich hat man die Compensation auf die verschiedenste Weise erreichen wollen. Man hat die Aufhängefeder an den Schlitz einer Metallplatte gelegt, welche mit dem Deckel eines Aneroïds oder mit einem Schwimmer auf dem Quecksilber im offenen Schenkel des Barometers sich auf- und abbewegt

Ueber Gang und Stand der Uhr, s. den Artikel Chronometer, Handwörterbuch der Astronomie Bd. I, pag. 635.

²⁾ TISSERAND, Compt. rend. 1896, Bd. 122, pag. 646.

und so die Pendellänge zu vergrössern oder zu verkleinern gesucht, ohne jedoch zufriedenstellende Ergebnisse zu erhalten.

In Greenwich wendet man mit besserem Erfolge einen Magneten an 1). An das Pendelgewicht sind zu beiden Seiten Stahlmagnete angeschraubt, welche entgegengesetzte Pole nach unten kehren. Ihnen gegenüber befinden sich die nach oben gekehrten Pole eines Huseisenmagneten, der so ausgestellt ist, dass sich ungleichnamige Pole einander gegenüberstehen. Der Huseisenmagnet ist an dem einen Arm eines auf Stahlschneide ruhenden Wagebalkens aufgehängt. dessen anderer Arm eine Schale trägt zur Aufnahme von Gewichten behufs Aequilibrirung des Magneten und eine eiserne Platte, die auf dem Quecksilber im offenen Schenkel eines Heberbarometers schwimmt. Die Anziehung der Magnete verstärkt die Wirkung der Schwere und vermehrt also die Anzahl der in der Zeiteinheit ausgeführten Pendelschwingungen. Indem der offene Schenkel des Barometers aber viermal so weit wie der geschlossene ist, so entspricht der Bewegung des Quecksilbers in diesem nur der fünste Theil von der in jenem. Steigt oder fällt das Barometer also um 1 cm, so wird der Huseisenmagnet um 1 cm gehoben oder gesenkt und dementsprechend der Gang der Uhr beschleunigt oder verlangsamt.

In einfacher Weise suchte KRÜGER?) die Compensation des Lustdruckes zu erreichen, indem er an die Pendelstange ein U-förmig gebogenes Rohr mit einem längeren oben geschlossenen und einem kützeren offenen Schenkel anbrachte. Dieses Rohr wurde soweit mit Quecksilber gefüllt, dass es etwa die Hallte des geschlossenen Schenkels einnahm, aus dem offenen Schenkel aber bei dem niedrigsten Barometerstand noch nichts aussloss. Der obere Theil des geschlossenen Schenkels war mit Lust gefüllt, der ganze Apparat war also nichts anderes wie ein Manometer. Bei steigendem Lustdruck tritt nun ein Theil des Quecksilbers aus dem offenen in den geschlossenen Schenkel über und hebt so den Schwingungspunkt des Pendels. Das so verkützte schwingt rascher und umgekehrt wird, wenn bei abnehmendem Lustdruck die Quecksilbersaule sich verkützend den Schwingungspunkt senkt, die Schwingungsdauer verlängert.

Ein solches Manometer kann an jedem gegen die Temperaturänderung compensierten Pendel angebracht werden, wenn nur der Punkt an dem dies geschehen muss, richtig bestimmt wird. Den Abstand & der Mitte der »wirksamen Quecksilbersäule«, d. h. der Quecksilbersäule, welche im geschlossenen Schenkel über die Oberfläche des offenen emporragt, von der Mitte der Pendelstange findet man nach Krüger mit Hilfe der Formel

$$\xi = \frac{\mu}{86\cdot 4} \cdot \frac{2\lambda - h - y}{\lambda yz} V,$$

wo μ die tägliche Retardation, welche dem Steigen des Barometerstandes um 1 mm entspricht, λ die Länge des mit verdünnter Lult gefüllten Theiles der Röhre, \hbar den Barometerstand, y den Höhenunterschied des Quecksilbers in beiden Manometerröhren, z das Gewicht einer Längeneinheit Quecksilber in der Röhre des Manometers, V das Trägheitsmoment des ganzen Pendels bedeutet.

Bringt man nun aber das Manometer an, so wird der Gang des Pendels beschleunigt und es muss berechnet werden, um wieviel das den Pendelkörper ausmachende Quecksilber mit Gefäss und Zubehör tiefer gelegt werden muss, damit die Schwingungsdauer des Pendels ungeändert bleibt, und dies um so

¹⁾ LOCKYER, a. a. O, pag. 215.

³⁾ KRUGER, Astronomische Nachrichten No. 1482. März 1864.

mehr, als auch dadurch das Trägheitsmoment um ein weniges vergrössert wird. Aber auch die Wärmecompensation ist dann gestört und es muss somit weiter berechnet werden, wie viel Quecksilber zuzufügen ist, um sie wieder herzustellen. Ist das geschehen, so muss das Untergestell des Pendels wieder etwas gesenkt werden, wenn der richtige Gang der Uhr bewahrt bleiben soll. Weil aber dadurch das Trägheitsmoment des Quecksilbers vermehrt wird, so ist nun ein weiterer Näherungswerth von \(\frac{z}{u}\) berechnen, danach wieder Quecksilber zuzufügen und das Untergestell bestimmungen, die zu diesem Zwecke angestellt werden, geben sodann darfüber Außschluss, um wieviel bei mittlerer Temperatur die Uhr vorgeht und welche Retardation ein Steigen der Temperatur um 1° C hervorruft. Mittelst zweier linearer Gleichungen mit zwei Unbekannten findet man schliesslich, wieviel Quecksilber noch hinzugefügt, wie weit das Untergestell noch gesenkt werden muss, wenn die Compensation zur Zufriedenheit wirken soll.

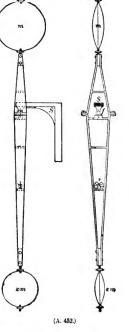
In solcher Weise wollte Oudemans¹) für die Hohwü'sche Normaluhr der Utrechter Sternwarte die Compensation für den Luftdruck herstellen. Während eines ganzen Jahres war zu diesem Zwecke der Gang der Uhr beobachtet, bei den alsdann vorgenommenen Messungen zerbrach aber das die Temperatur-compensation herstellende gläserne Quecksilbergefäss und musste durch ein neues von anderer Weite und anderem Gewicht ersetzt werden. Es blieb dann nichts übrig, als die Menge Quecksilber von Neuem zu bestimmen, welche für jene Compensation erforderlich war, sodann die Entfernung des Bodens des Quecksilbergefässes vom Aufhängepunkte des Pendeis, endlich den Ort, wo das Manometer angebracht werden musste, um die Compensation zu einer vollständigen zu machen. Oudemans hat die dazu nöthigen weitläufigen Rechnungen in der Zeitschrift für Instrumentenkunde mitgetheilt, auf welche zu verweisen wir uns hier begnügen müssen.

Einen anderen Weg, die Lustdruckcompensation des Pendels zu erhalten, schlägt NippoldT2) ein. Ausgedehnte, zum Theil von Bessel's Arbeiten über das Pendel, ausgehende Bestimmungen, die wir hier jedoch übergehen müssen, führten zu dem Ergebniss, dass ein Doppelpendel, wie es in Fig. 452 von vorn und von der Seite dargestellt ist, gegen Temperaturänderungen compensirt werden kann, wenn seine Theile aus verschiedenen Metallen bestehen, von denen das den unteren bildende den grösseren Ausdehnungscoëfficient für Wärme haben muss, und wenn zugleich die Massenverhältnisse richtig bestimmt sind, dass dagegen die Compensation gegen Luftdichteänderungen durch Festlegung der Volumenverhältnisse der beiden vertical übereinanderliegenden Hauptpendelmasse möglich ist, endlich dass diese beiden Compensationen unabhängig von einander functioniren. Die Compensationen gegen Luftdichteänderungen will NIPPOLDT auf solgende Weise erhalten: (Fig. 452) >Es werden3) eine Anzahl kleiner aus dünnem Blech gefertigter Doppelkreissectoren fächerartig auf einer gemeinsamen durch den Schwerpunkt der Sectoren gehenden Drehungsaxe befestigt, so dass letztere senkrecht zu den unter sich parallelen Ebenen der Sectoren steht. Die Sectoren lassen sich derart um die Axe drehen, dass sie eine grössere oder kleinere Fläche dem Luftwiderstande darbieten. Diese Vorrichtung wird je nach Bedürfniss in grösserer oder geringerer Entsernung vom

¹⁾ OUDEMANS, Zeitschrift für Instrumentenkunde. 1881. I. pag. 190, ff.

²⁾ NIPPOLDT, Zeitschrift für Instrumentenkunde. 1889. IX, pag. 197.

⁸⁾ NIPPOLDT, a. a. O., pag. 213.


Aufhängepunkt am Pendel angebracht, so dass die Fächeraxe in die Richtung der Bewegung fällt. Die Gesammtfläche aller Sectoren braucht nur wenige Procente des Maximalquerschnittes aller Pendeltheile senkrecht zur Schwingungsebene des Pendels zu betragen. In der Figur ist der untere Arm doppelt so lang

gewählt, als der obere. Die Fächerjvstirung ist bei r zu sehen, f ist die Aufhängefeder, s die feste Stütze, welche das Pendel trägt. Sie kann an der Seiten- oder Hinterwand des Gehäuses befestigt werden. Würde man die Grösse des Pendels und seiner Theile fünf Mal so gross, wie in der Figur nehmen, so gäbe die Zeichnung die Maasse für ein Pendel aus Zink und Eisen. Für Bronze und Eisen wären die Maasse der Fig. 452 $\frac{3}{10}$ von den zur Anwendung zu bringenden.

In einer späteren Arbeit schlägt NIPPOLDT 1) vor, den Einfluss der Luttdichte und der Temperaturschwankungen durch ein nicht ausgepumptes Aneroïd, welches auf einem am Pendel befestigten, die Aufhängeteder und stütze umschliessenden Ringe oder Rahmen mit horizontaler elastischer Membran angebracht ist und dessen oberer Deckel mit einer Schale zur Aufnahme von Gewichten versehen ist, unschädlich zu machen.

Beide Vorschläge scheinen noch nicht ausgeführt worden zu sein.

Das zweite Mittel, das Pendel von den störenden Einwirkungen des veränderlichen Lustdruckes dadurch zu befreien, dass man es in einen lustdicht verschlossenen Raum einschliesst, hat 1867 FÖRSTER³) angewendet. Er setzte die Uhr in einen Glascylinder, auf dessen beide Enden messingene Deckplatten aufgerieben und mit einem Gemenge von Wachs und Schweinesett

gedichtet waren ³). Die Lust in dem Rohre war zum Theil ausgepumpt worden. Nicht nur die Aufstellung in seuchten Räumen von constanter Temperatur ermöglicht die lustdichte Aufstellung, sie erlaubt auch die darin enthaltene Lust mit Chlorcalcium zu trocknen und schützt besonders wirksam gegen Staub und Unreinigkeit. Die Besürchtung des zu starken Eintrocknens des Oeles hat sich als nicht begründet erwiesen. Die Untersuchung des Ganges dieser Uhr, welche Zwink aussührte, hat gezeigt, dass dessen wahrscheinlicher Fehler in der That kleiner war, als bei anerkannt vorzüglichen Uhren. Die Anbringung der Uhr im lustdichten Verschluss ist indessen mit soviel Schwierigkeiten verknüpst, dass man sich besser damit begnügt, die Uhr nur so auszustellen, dass sie vor starken

¹⁾ NIPPOLDT, Zeitschr. für Instrumentenkunde 1896, XVI, pag. 44.

²⁾ Förster, Carls Repertorium 1867. III., pag. 271.

³⁾ ZWINK, Die Pendeluhren im luftdicht verschlossenen Raume, Inauguraldissertation, Halle a. S. 1888, pag. 6.

Temperatur- und Feuchtigkeitsschwankungen geschützt ist. Zeigte doch auch die Umgebung der Berliner Uhr in dem Glasrohr noch Spuren von Wasserdampf, dessen Quelle man in dem zum Dichten benutzten Schweinefett vermuthete. Für die Brauchbarkeit der in dieser einfachen Weise getroffenen Anordnung spricht die Formel für den Gang der so aufgestellten Pendeluhr der Bothkamper Sternwarte. Für die Zeit nach dem 31. Juli 1891 fand sie TETENS¹) zu +0.º0981-0.º00209(T-1891.Juli 31·5)-0.º0442(t°-10°C.)-0.º0153(b-700mm).

+0.0981-0.00209(T-1891.]uli $31.5)-0.0442(t^0-10.0^{\circ}C.)-0.0153(b-700mm)$. wo T die Zeit der Beobachtung, t die Temperatur, b den Barometerstand bedeuten.

Einen Ueberblick über die Güte der Compensation einer Anzahl der besten Uhren giebt die folgende von RIEFLER ²) zusammengestellte Tabelle.

Lau- fende Numm.	Namen der Uhr und Ort ihrer Aufstellung	Tägliche Gang- änderung für 1° C. Secunden.	Grösste Tem- peraturdifferenz ° C.	Quellenangabe
1.	Нонwü, No. 17. Stern- warte zu Leiden.	0.0151	17°-6	KAISER, Astronomische Nach- richten, Bd. 63, No. 1502.
2.	TIEDE, No. 400, Stern- warte Berlin.	+ 0.0222	15.4	ZWINK, Inaug. dissert. 1888.
3.	KNOBLICH, No. 1952, Ob- servatorium Potsdam.	- 0.0360	16.8	BECKER, astron. Nachrichten Bd. 96, No. 2290.
4.	DENT, Observatorium Hongkong.	- 0.0350	-	DOBERCK, Astron. Nachr. Bd. 120, No. 2868.
5.	Hoнwü, No. 34, Stern- warte Upsala.	$ \left. \begin{array}{l} -0.0350 \\ -0.0265 \end{array} \right\{ $	15	SCHULTZ, Astron. Nachr. Bd. 103, No. 2452.
6.	KNOBLICH, No. 1847.	0.0025	19	SCHUMACHER, Astron. Nachr. Bd. 91, No. 2166.
7.	DENKER, No. 12, Stern- warte Leipzig.	0.0160	22	R. SCHUMANN, Berichte der K. S. Gesellschaft der Wissen- schaften. 1888.
8.	Hipp ³), Sternwarte Neu- châte! von 1885—1887 von 1888—1890	+ 0.0610 - 0.0049	16.5	Hirsch, Rapport générale sur l'Observatoire de Neu- chàtel.
9.	Knoblich, No. 1770, Sternwarte Bothkamp.	0.0442	19.8	TETENS, Inauguraldisserta- tion. 1892.
10.	RIEFLER, No. 1, Stern- warte München.	+ 0.0008	31	Anding, Sternwarte München.

Die Hemmung. Wie wir sahen, hatte HUYGENS die Art der Hemmung, wie sie zu seiner Zeit längst üblich war, beibehalten, aber wenn sie sich auch als brauchbar erwies, so hatte sie doch den Nachtheil, grosse Schwingungsweiten

¹⁾ TETENS, Untersuchung über den Gang und Stand der Hauptuhr der Bothkamper Sternwarte. Inauguraldissertation, Leipzig 1892. pag. 35.

²⁾ RIEFLER, Zeitschrift für Instrumentenkunde. 1893. XIII., pag. 93.

³⁾ Bei der Hipp'schen Uhr war das Quecksilberquantum 1885 und 1888 vermehrt.

des Pendels zu erfordern und dadurch den Isochronismus zu gefährden. Man ersetzte deshalb später die Stange mit den Lappen durch den in Fig. 442 dargestellten Anker N. Die günstigsten Bedingungen für die Wirkung der Hemmung findet man folgendermaassen.¹):

1) Theorie der Hemmung. Das Pendel schwinge während der Zeit τ_1 für sich, ohne dass die treibende Kraft seine Bewegung beeinflusst. Während dieses Zeitraumes bleibt das Uhrwerk in Ruhe. Durch die Zeit τ_2 wirke nun die treibende Kraft beschleunigend auf das Pendel und während einer darauf folgenden Zeit τ_3 , die oft sehr klein angenommen wird, schwinge das Pendel wieder für sich weiter, während die treibende Kraft auf das Uhrwerk einwirkt. Es ist alsdann $\tau_1 > \tau_2 > \tau_3$ und die Schwingungszeit

$$\tau = \tau_1 + \tau_2 + \tau_3.$$

Nennen wir nun A den Ueberschuss der Arbeit, welche die treibende Kraft verrichtet, über die Arbeit der Widerstände des Uhrwerks während der Zeit τ_2 , B die Widerstandsarbeit des Pendels für die ganze Schwingungsdauer τ , so dient nicht die ganze Arbeit A zur Ueberwindung des Widerstandes B, sondern, da am Anfang der Zeit τ_2 das Uhrwerk in Ruhe war, nur ein Theil davon. Ist M die auf den Angriffspunkt der Hemmung am Pendel reducirte Masse des Uhrwerks, v_2 die Geschwindigkeit dieses Punktes am Ende von τ_2 , W der Widerstand, den das Pendel unabhängig von seiner vorübergehenden Berührung mit der Hemmung leistet, also namentlich der ihm von der Luft entgegengesetzte, R der Reibungswiderstand beim Hingleiten des das Pendel antreibenden Theiles der Hemmung, so ist

$$A = \frac{1}{2} M v_2^2 + B = \frac{1}{2} M v_2^2 + R + W.$$

Ist ferner w_3 die der Geschwindigkeit v_2 entsprechende Geschwindigkeit des mit dem Angriftspunkt der Hemmung zusammenfallenden Pendelpunktes, w_1 das Maximum der Geschwindigkeit w dieses Punktes, also seine Geschwindigkeit in der Mitte des Schwingungsbogens, so bleibt selbst bei grösserer Aenderung des Ausschlagswinkels α das Aenderungsgesetz von w und die Schwingungsdauer τ ungeändert und da man also $w_1 = n\alpha$ setzen kann, wo n eine Constante bedeutet, so ist

$$\frac{1}{2} M v_2^2 = \frac{1}{2} M \left(\frac{v_2}{w_2} \cdot \frac{w_2}{w_1} n \right)^2 \alpha^2.$$

Da die Reibungsarbeit R nahezu proportional a sein wird, so darf man setzen

$$R = a + ba$$

wo a und b zwei Constante bedeuten. Ebenso darf man das Moment des Luftwiderstandes für die Schwingungsaxe des Pendels proportional u^{ord} setzen, also, wenn C wieder eine Constante ist

$$Cw^m = C\left(\frac{w}{w_1}\right)^m (n\alpha)^m,$$

somit der von der Luft für den Ausschlagswinkel 2a der Pendelbewegung entgegengesetzte Widerstand

$$W = 2 \int_{0}^{\alpha} Cw^{m} d\alpha = 2 C(n\alpha)^{m} \int_{0}^{\alpha} \left(\frac{w}{w_{1}}\right)^{m} d\alpha.$$

¹⁾ GRASHOF, a. a. O. II, pag. 630.

Das Integral ist gleich dem Produkte aus α in einen durch das Schwingungsgesetz bestimmten Mittelwerth von $\left(\frac{w}{w_1}\right)^m$, so dass, wenn man diesen und ebenso $2 n^m$ als Factoren in eine weitere Constante c einschliesst

$$W = c \alpha^{m+1}$$

wo m zwischen 1 und 2 liegt und zwar um so näher an 1, je mehr der Luftwiderstand sich vorzugsweise als Reibung geltend macht, So ergiebt sich

$$A = \frac{1}{2} M \left(\frac{v_2}{w_1} \cdot \frac{w_2}{w_2} n \right)^2 \alpha^2 + a + b\alpha + \epsilon \alpha^{m+1}$$

und

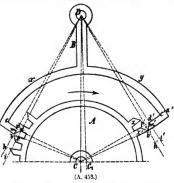
$$\frac{dA}{d\alpha} = M \left(\frac{v_2}{w_0} \cdot \frac{w_2}{w_1} n \right)^2 \alpha + b + (m+1) \epsilon_2^m.$$

Sollen hier die Aenderungen von α möglichst klein erhalten werden, so müssen die Ursachen der Aenderung von A möglichst fern gehalten, und die Verhältnisse so gewählt werden, dass $\frac{dA}{d\alpha}$ möglichst gross wird. Das erreicht man am Unbedenklichsten, wenn man $\frac{v_2}{w_0}$ und $\frac{v_2}{w}$ möglichst grosss macht.

 $\frac{v_2}{w_2}$ hängt von den Eigenthümlichkeiten der verschiedenen Hemmungsarten ab,

 $\frac{w_9}{w_1}$ dagegen ist möglichst = 1 zu machen, indem man eine Anordnung trifft, bei welcher das Pendel stets während einer solchen Zeit τ_3 angetrieben wird, deren Ende es mit seiner grössten Geschwindigkeit durchläuft. Dann setzt sich die Schwingungsdauer in der Weise aus ihren Bestandtheilen zusammen, dass

$$\tau = \frac{1}{2}\tau_1 + \tau_2 + \frac{1}{2}\tau_1$$


wird. Das Steigrad kann nun nur während der kleinen Zeit τ_3 der bewegenden Kraft folgen, während der Zeit τ_1 ist es durch Vermittlung seiner Zähne gehemmt, und nur innerhalb der Zeit τ_2 wirkt es durch seine Zähne antreibend auf das schwingende Pendel. Ist während τ_1 und τ_2 das Steigrad in unmittelbarer Berührung mit dem Regulator, so hat man die direkt oder unmittelbar wirkende Hemmung, wozu die rückspringende und ruhende gehören schwingt das Pendel dagegen während des grösseren Theiles der Hemmungsdauer τ_1 ganz frei, nämlich unabhängig von der Hemmung, wirkt diese also indirekt oder mittelbar, so ist die Hemmung eine freie.

2) Die rückspringende Hemmung oder den englischen Haken hat 1680 zuerst der englische Uhrmacher CLEMENT angewendet. Sie ist in Fig. 442 abgebildet. Hat der rechts hinter H gelegene Haken von N einen Zahn des Rades M freigegehen, so rückt das Rad um einen Zahn weiter, wird aber, nachdem dies geschehen ist, durch den linksgelegenen Haken von N sogleich wieder in seiner Bewegung gehemmt, da dieser bei der Schwingung des Pendels und Hakens nach rechts in die Zahnlücke getreten ist Das Pendel hat alsdann aber seine Schwingung noch nicht vollendet und drängt, indem es dies, sich noch weiter nach rechts bewegend und den Anker N mitnehmend, thut, den gehemmten Zahn so lange wieder zurück, bis sich seine Bewegung umkehrt. Das dadurch bedingte ruckweise Vorschreiten mit folgendem Zurückweichen kann man sehr schön mit blossem Auge u. a. an der in riesenhaften Abmessungen ausgeführten Uhr im Krystallpalast in Sydenham sehen. Während des grössten Theiles seiner Schwingungen wird also das Pendel von der treibenden Kraft

bewegt. Da es dadurch aber einen grösseren Ersatz an Arbeitsvermögen erhält, als es aufgewendet hat, so gleicht sich der Ueberschuss wieder in der Rückbewegung aus. Aus der Dauer dieser Rückbewegung und der darauf folgenden Vorwärtsbewegung des Steigrades setzt sich also die Zeit τ_1 zusammen.

3) Die ruh ende Hemmung oder den Grahamgang hat 1715 Graham an die Stelle der rückspringenden gesetzt und so die Erschütterungen, die diese mit sich brachte, vermieden. Ihre Einrichtung ist aus Fig. 453 zu ersehen. Der Unterschied beider Hemmungen liegt nur in der Form der Haken. Sie stehen bei der ruhenden Hemmung etwa senkrecht auf der Peripherie des Steigrades, mit dessen Zähnen die Flächen bd, b'd', ab und d'c' in Berührung kommen. Während aber die beiden erstgenannten gegen die Peripherie oder die Tangente daran ein wenig geneigt sind, so dass der an ihnen abgleitende Zahn des Steigrades die zurückgehende Bewegung des Ankers beschleunigt und damit dem Pendel

die verloren gegangene lebendige Kraft wieder ersetzt, sind die Flächen ab und d'c' Cylinderflächen, deren Axe mit der Axe D des Ankers zusammenfälllt. In der in Fig. 453 gezeichneten Lage ist der Zahn z' eben an der Fläche d'b' hingeglitten und da der andere Haken noch nicht in die Steigradzähne eingriff, so konnte das Steigrad die neue Stellung einnehmen, in welcher die Spitze des Zahnes e im Begriffe ist, sich gegen die Kante b zu Bei der Weiterbewegung legen. des Pendels nach rechts hemmt nun der Haken ad die Bewegung des Rades, indem sich die Fläche ab

vor dem Zahne e hinbewegt. Ist die Cylinderform dieser Fläche richtig gewählt, so drückt sie e nicht zurück und das Steigrad bleibt in Ruhe, bis die Spitze von e wieder bei b ankommt und nun das Pendel beschleunigend an bd hingleitet, Da dieses alsdann seine grösste Geschwindigkeit hat, so kann der Antrieb weder eine Beschleunigung noch Verzögerung seiner Bewegung zur Folge haben.

Der Beweis hierstit, sowie die Bedingung für die richtige Wirkung der Hemmung, ergiebt sich folgendermassen. Während der Anker den Winkel hDi oder den andern h'Di' beschreibt, erhält das Pendel seinen Antrieb. Soll sein Gang regelmässig sein, so muss man $\angle hDi = h'Di'$ machen und ebenso bCp = b'Cp' also auch

$$bp = b'p'$$
 und $dp = d'p'$.

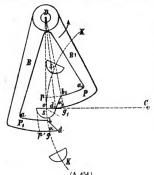
Als Winkel b p C' und b' p' C' wird man aber Rechte nehmen; es werden somit die Dreiecke b p d und b' p' d' congruent und

$$\angle dbp = d'b'p'$$
.

Den Gleit- oder Hebungsflächen bd und b'd' sind somit gegen die Peripherie des Steigrades die nämlichen Neigungen zu ertheilen. Sollten bpC und b'p'C aber rechte Winkel werden, so müssen die Flächen c'd' und ab Kreisen mit demselben Radius angehören. Da das nicht zu erreichen ist, so begnütgt man sich damit, die Mitten m und m' der kleinen Bogen bp und b'p' so zu legen, dass

sie die Berührungspunkte der von D an den um die Zahnspitzen des Steigrades gelegten Kreis gezogenen Tagenten bilden. Setzt man nun

so wird


$$pd = p'd' = \beta \cdot l = a tang a$$

und die Bedingung für einen guten Gang der Hemmung würde sein

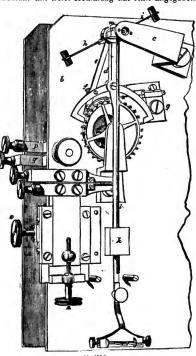
$$\frac{tang \ \alpha}{\beta} := \frac{l}{\alpha}.$$

Soll nun, wie dies die vorgetragene Theorie fordert, das Verhältniss $\frac{w_2}{w_1}$ möglichst gross werden, so wird w_2 gleich der Maximalgeschwindigkeit des Ankers gemacht werden, das Pendel also seine Ruhelage gleich nach Beendigung des Antriebes durchlaufen müssen. Genau diese Forderung zu erfüllen, ist deshalb nicht möglich, weil die Steigradzähne die Kanten d und d nicht verlassen, während das Pendel dieselbe Lage einnimmt. Annähernd aber wird dies dann geschehen, wenn bei der Ruhelage des Pendels eine Steigradzahnkante in der Mitte der entsprechenden Hebungsfläche steht, oder auch, wenn die Axe D lothrecht über C sich befindet und die Mittellinie D C des Ankers den Winkel b D d halbirt.

4) Die Stiftenhemmung. Da bei dem Graham-Gang die Steigradzähne abwechselnd von der einen und der anderen Seite gegen den Anker stossen

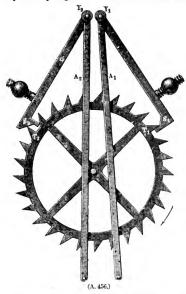
so werden die Axen des Steigrades und des Ankers mit der Zeit etwas schlottrig. Diesen Uebelstand vermeidet die vom englischen Uhrmacher Vulliamy erfundene Stiftenhemmung, deren Einrichtung aus Fig. 454 ersichtlich ist. Bei ihr ist der Anker, der sich von dem der ruhenden Hemmung hauptsächlich durch die ungleiche Länge der Arme und den spitzeren Winkel, den sie einschliessen, unterscheidet, über dem am weitesten links liegendem Punkte des Steigrades angebracht. Ruheflächen ab und a'b' sind wieder Cylinderflächen mit der Axe D, anstatt der Zähne aber trägt das Steigrad Stifte, deren Querschnitt ein Halbkreis ist und die sich senkrecht auf der Ebene des Steigrades

erheben. Der Halbmesser der Grundkreise dieser Stifte bleibt etwas hinter der Dicke der Ankerhaken P und P' zurück. Der Radius der Ruheflächen kann kleiner wie der des Steigrades genommen werden.


Hat nun das Pendel seine äusserste Lage nach links erreicht, so liegt ein Stift auf der Ruhefläche a_1b_1 auf, an der er, indem das Pendel wieder nach rechts schwingt, während der Zeit $\frac{1}{2}\tau$, hingleitet, bis er mit Beginn der Zeit τ_2 an die Hebefläche b_1d_1 gelangt und daran hingleitend dem Pendel den nötigen Antrieb ertheilt. Am Ende dieser Zeit trifft er auf die Ruhefläche ab, die so liegen muss, dass die Zeit τ_3 , an deren Schluss die freie Bewegung des Steig-

rades aufhört, sehr kurz ist und beim Auflegen des Stiftes auf ab nun wieder die doppelte Zeit $\frac{1}{4}$ τ beginnt.

5) Die freie Hemmung. Bei den freien Hemmungen wird zwischen das Pendel und das Steigrad ein Hilfsmechanismus eingeschaltet, dessen Bestimmung es ist, während des grössten Theiles der Hemmungsdauer τ, die Schwingung ganz frei geschehen zu lassen, so dass die Reibungsarbeit auf ein Minimum zurückgeſtihrt wird. Lässt man dann noch anstatt der mehr oder weniger ver änderlich wirkenden Hauptbetriebskraſt des Pendels eine davon abgeleitete constante Hilſskraſt seinen Anstoss besorgen, so erhält man die ſreie Hemmung mit constanter Kraſt.


Namentlich bei den grossen Ausschlagswinkeln der Unruhen wird die freie Hemmung mit Vortheil angewendet, doch ist sie auch bei Pendeluhren im Gebrauch. Eine astronomische Pendeluhr mit freier Hemmung hat Airy angegeben

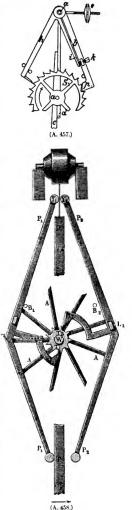
und sie von E. DENT & Comp. in London für die Sternwarte in Greenwich bauen lassen. wo sie 1871 aufgestellt worden ist. Das Pendel dieser Uhr ist während seiner Schwingungszeit frei bis auf einen Theil iedes Mal der zweiten Sekunde, während welcher es seinen An-Es tickt also trieb erhält. während zweier Secunden nur einmal. Soweit es zum Verständniss ihres Ganges nöthig ist, sind in Fig. 455 die dafür in Betracht kommenden Theile dargestellt. Das Pendel selbst ist fortgelassen, aber die Gabel, welche es führt, ist sichtbar. Mit ihr steht der Anker in Verbindung, dessen Form nichts Besonderes bietet. Seine Axe wird durch die Lagerplatte c gehalten. Diese trägt ausser dem Ankerstab d auch noch einen Arm e, welcher bei f mit dem linken Arm des Ankers verbunden ist. Oas Metallstück g dient zum Halten eines nach links vorspringenden und am äussersten Ende gekrümmten Sperrhakens, der in der Nähe des obersten Theils des Steigrades einen Zapfen zum

Anhalten des Rades besitzt, dann aber in eine Feder ausläuft, welche ausserordentlich leicht nachgiebt. Das Pendel schwingt demnach von rechts nach links vollkommen frei, bis ein Stift am Ende des Armes e den Sperrhaken aushebt. Dadurch kann das Steigrad dem Zuge des Gewichtes folgen und der zunächst über dem Ankerhaken auf der linken Seite stehende Zahn fällt in der Weise, wie es die Figur zeigt auf ihn herab und giebt dem Pendel den nöthigen Krastantrieb. Der Zapsen aber hält das Rad sosort wieder an und das Pendel beendet seine Schwingung nach links. Nach rechts zurückschwingend gleitet es an der Feder vorbei, ohne den Sperrhaken auszuheben und den nächsten Ersatz an lebendiger Krast erhält es erst wieder, wenn es abermals nach links schwingt. Der Ankerhaken auf der rechten Seite dient also nicht zur Hemmung, sondern nur als Sicherheitshaken für die Zeit, während welcher der andere Haken nicht in das Rad eingreisst.

6) Die freie Hemmung mit constanter Kraft, welche Mudge angegeben hat, zeigt Fig 456. Der Anker besteht aus zwei Stücken; die die Haken S, und S, tragenden Arme sind von einander getrennt und mit den mit ihnen

fest verbundenen Armen A1 und A2 versehen. Sie sind um die Axen Y1 und Y2 drehbar. Das Pendel schwingt frei zwischen den beiden am untern Ende der Stäbe befindlichen Stiften. In dem in der Figur dargestellten Zeitpunkte bewegt es sich nach rechts und hebt, wenn es gegen den Stift am Arme A, stösst, den Zahn S, aus den Zähnen des Steigrades heraus. Der Arm A, hat seine Stellung eingenommen, nachdem der Zahn T, an der schiefen Ebene seines Hakens S1 heruntergleitend an deren unterem Ende in Ruhe gekommen war. Das Steigrad dreht sich nun in der Richtung des Pfeiles und treibt dabei den Haken S, soweit nach aussen, bis der Zahn T2 am Ende der schiefen Ebene S2 angekommen ist, so den Stab A, etwas hebend. Indem sich aber nun das Pendel wieder nach links wendet, folgt ihm der Stab A, und treibt es in seine Ruhelage. Sobald es

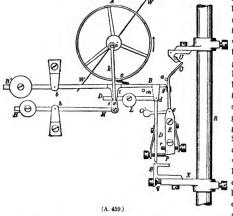
diese wieder überschritten hat, trifft es auf den Stab A_2 und löst dadurch S_2 Y_2 aus, indem es gleichzeitig den Stab A_2 zur Seite drängt. Zurückfallend treibt dieser es wieder nach rechts und so wiederholt sich der Vorgang immer von Neuem.


In einfacherer Weise sucht F. W. RUFFERT 1) die nämliche Aufgabe zu lösen. Seine freie Pendelschwingung mit stetiger Kraft ist aus Fig. 457 ersichtlich. Um die Axe a drehbar befestigt ist zunächst das dem Pendel den Antriebertheilende System, welches aus den Armen d und b und dem durch eine Schraube verstellbarem Gewichte e besteht. Mit ihm nicht in Verbindung steht

Deutsches Reichspatent No. 52868 vom 4. Dec. 1889. Vergl. Zeitschrift für Instrumentenkunde 1891. XI., pag. 75.

der ebenfalls um a drehbare Hemmarm h, der mit dem Hebel i ein Ganzes bildet. Schwingt nun das Pendel, dessen oberer Theil c in der Figur sichtbar

ist und das mit keinem der beschriebenen Theile in Verbindung steht, nach links, so erhält es seinen Antrieb durch das Eigengewicht des auf ihm ruhenden Armes d, durch das des Armes b und das Gewicht e. Dabei stösst die Schraube k gegen den Hebel i, drängt ihn zur Seite und hebt dadurch den Hemmarm h vom Steigrad ab, dessen einen Zahn er an einer kleinen, an diesem befindlichen Rast aufhielt. Das Steigrad dreht sich in der Richtung des Pfeiles und hebt an der schiefen Fläche p des Armes b diesen und die mit ihm zusammenhängenden Theile, während das Pendel frei weiter schwingt. Die Hebung findet dadurch ihr Ende, dass sich die wirkende Zahnspitze auf eine kleine Stufe der Neigungsfläche p legt. Schwingt alsdann das Pendel wieder nach rechts, so nimmt es d mit und hebt b vom Steigrad ab, das aber wieder durch h gehemmt wird, bis sich die beschriebenen Vorgänge wiederholen.


Bei der Hemmung von MUDGE kann es vorkommen, dass die Haken S zu weit nach aussen getrieben werden und ihre radialen Flächen alsdann die Zähne des Steigrades nicht mehr aufzuhalten im Stande sind. Dieser Uebelstand will die in Fig. 458 dargestellte Hemmung von BLOXAM1; dadurch vermeiden, dass das Ausheben der in das Rad eingreifenden Haken nicht unmittelbar durch das Pendel, sondern durch ein kleines auf der Axe des Steigrades sitzendes Rädchen bewirkt wird. Die schwingenden durch ihr Gewicht das Pendel antreibenden Stäbe P, P, tragen je zwei Zapfen L, und L2 an ihrer inneren Seite, welche durch eines der neun etwa & Zoll langen auf der Steigradaxe sitzenden Zähne A angehalten werden. Ausserdem tragen die Stäbe P1 und P2 zwei rechtwinklig gebogene mit spitzen Haken versehene Arme H, und H, welche die dreieckigen Zähne des Rädchens T1 T2 festhalten, wenn die Stäbe P, P, sich nach innen bewegen. Schwingt nun das Pendel P nach links, so drückt es den Stab P, zurück, dessen Zapfen L, denjenigen der Arme A, welcher mit der äussersten Spitze an ihm anlag, frei lässt und indem es zugleich die Platte H, aus den Zähnen des Rades T, T2 aushebt, der Axe W sich zu drehen gestattet.

¹⁾ LOCKYER, a. a. O., pag. 222.

Schwingt nun, wie in der Figur, das Pendel wieder nach rechts, so folgt ihm, es antreibend, der Stab P_1 bis einer der Arme A auf den Zapfen L_2 sich auflegt. Dabei hat das Rädchen T_1T_2 den Haken H_2 und mit ihm den Arm P_2 und den Zapfen L_2 soweit zurfückgedrückt, dass die geringste Bewegung des Armes P_2 nach rechts den Arm A loslässt. Diese bewirkt aber das an seiner äussersten Lage auf der rechten Seite ankommende Pendel und das eben beschriebene Spiel des Stabes P_1 wird nur von dem Stabe P_2 ausgeführt; dabei schwingt das Pendel wieder von P_2 angetrieben nach links und der auseindergesetzte Vorgang wickelt sich von Neuem ab. Bei jeder Pendelschwingung rückt die Uhr um 1 Secunde vor.

Den Zweck, dem Pendel, wie es die Theorie fordert, in der Mitte seines Schwingungsbogens durch die Schwere allein unabhängig vom Räderwerk einen Antrieb zu ertheilen, erreicht C. A. Young bei der im Observatorium zu Princeton N. J. aufgestellten Normaluhr in ganz anderer, in Fig. 459 dargestellter Weise. Die Uhr, welche von der Howard Clock Co. ausgeführt worden ist und sich vorzüglich bewärt hat, schildert der Mechaniker D. Appel. 1) an der Hand der Figur, bei deren Darstellung der Beobachter als hinter der Uhr stehend angenommen wurde, in folgender Weise: »In der gezeichneten Stellung arretirt der

Sperrhebel B'B, drehbar bei b, das Hemmungsrad A, welches für jeden Antrieb einen vollen Umlauf macht, bei o, und ist selbst gefangen und vor allem Herabfallen gesichert bei g durch den Vorfallhebel C'C, welcher sehr empfindlich bei c gelagert ist und sich gegen den justirbaren Stift a lehnt. Das Pendel R ist dargestellt, wie es sich von der linken her der verticalen nähert. Der Auslöser U, ganz ähnlich der Sperrklinke des gewöhnlichen Chrono-

meters, ist eben im Begriffe, das obere Ende des Vorfallhebels zu berühren. Indem sich das Pendel noch weiter bewegt, schiebt der Auslöser den Vorfallhebel nach rechts und gleitet darauf über ihn hinweg, so dass derselbe völlig frei wird; bevor dies jedoch geschieht, wird der Sperrhebel B'B bei g ausgelöst und fällt, theilweise durch das Gewicht B' entlastet, auf den festen Stift m.

Indem er fällt, nimmt er den Antriebhebel DD, drehbar bei d und belastet mit dem Gewicht L, mit sich. Inzwischen hat sich der Winkel S, am Arme X durch die Schraube q justirt, so weit nach rechts bewegt, dass das untere Ende des Antriebhebels während des Fallens zur linken von S herabsinkend, eben passiren kann; sobald nun die Schraube p von dem Stein am unteren Ende

¹⁾ Zeitschrift für Instrumentenkunde, 1887. VII 29.

des festen Trägers E, gegen den sie sich bislang stützte, abgleitet, wird das untere Ende des Antriebhebels augenblicklich unter der Wirkung des Gewichte L nach rechts gehen und gegen S drückend dem Pendel einen Stoss- oder Antrieb, ertheilen, welcher so lange dauert, bis der Antriebhebel, sich gegen die Schraube r lehnt.

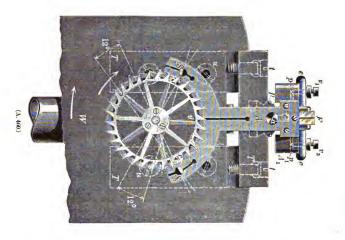
Im Augenblicke der Befreiung von p wird der Zahn des Hemmungsrades bei o ausgelöst und das Rad beginnt seinen Umlauf. Der Windflügel WW ist so justirt und seine Form so gewählt, dass der Umlauf nahezu $\frac{1}{4}$ Secunden dauert.

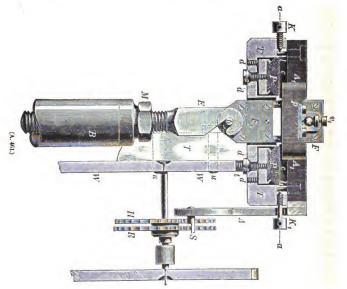
Indem sich das Rad dreht, senkt der Kurbelzapfen i noch für einen Augenblick die Kurbelstange k und mit ihr den Stift e am unteren Ende. Dieser Stift greift unter den Antriebshebel DD; sobald inzwischen der Antrieb beendet ist, beginnt der Stift e sich zu heben und auf das Ende des Hebels DD zu wirken. Er wird zuerst L heben, bis p genügend zurückgezogen ist, um E zu passiren, dann erreicht e den Vorsprung t am Sperrhebel B'B, wirkt gleichzeitig auf diesen und hebt B'B den Antriebshebel, und die an diesem hängenden Theile noch weiter mitnehmend, bis etwas über die angegebene Stellung hinaus, um dem Vorfallhebel C'C zu gestatten, durch die Wirkung des Gewichtes C' seine Stellung wieder einzunehmen. Wenn der Kurbelzapfen i seinen oberen toten Punkt passirt hat, wird B'B sanft herabgelassen auf den Ruhestein m und das Hemmungsrad wird weiter laufen, bis sein Arretirzahn wieder in die Stellung gebracht ist, wie in der Figur.

Der Hebel H'hH führt das untere Ende der Kurbelstange a und das Gewicht H' ist so justirt, dass seine Wirkung fast der während der beiden halben Umläuse des Hemmungsrades ausgewandten Arbeit gleichkommt.

Indem das Pendel nach links zurückkehrt, gleitet der Auslöser *U* über das äusserte Ende des Vorfallhebels ohne merklichen Widerstand und der Kreis ist vollendet. Das Pendel ist demnach während seiner ganzen Schwingung vollkommen frei, ausgenommen den einen Augenblick, wenn es die Ruhelage passirt.

Erwähnt sei hier auch die von WEISS¹) in Glogau vorgeschlagene Pendelhemmung mit constanter Kraft, bei der ein sinkendes Gewicht durch Eingriff eines von ihm bewegten kleinen Zahnrades in ein Kronrad den von ihm ausgeübten Antrieb auf das Steigrad überträgt, die Hebung des Gewichtes nach Auslösung einer Sperrung aber durch ein zweites in das nämliche Zahnrad eingreifendes Kronrad, welches von der Gewichtswalze aus angetrieben wird, besorgen lässt.


Ein ganz neues Princip hat A. RIEFLER²) bereits 1869 zu einer völlig freien Hemmung verwendet, welches dann im Ansange der achtziger Jahre des 19. Jahrhunderts Groselande in Genf und Petersen in Altona auch auf die Unruheuhren zu übertragen versucht haben. 1889 gab RIEFLER seiner Hemmung die sogleich zu heschreibende Form und 1890 wandte sie der oben erwähnte Mechaniker Appel zur Bewegung eines Aequatoreals an, nachdem er 1884 wohl selbständig auf die nämliche Idee wie RIEFLER, gekommen war²).


Die Riefler'sche Hemmung, welche die Figuren 460 und 461 in natürlicher Grösse in Vorder- und Seitenansicht darstellt, beruht darauf, dass die Aufhängeseder jeder Pendelschwingung durch das Räderwerk eine kleine Biegung

¹⁾ Zeitschrift für Instrumentenkunde. 1893. XIII. 433.

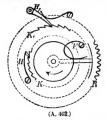
²⁾ Zeitschrift für Instrumentenkunde. 1892. XII. pag. 164.

⁸⁾ Zeitschrift für Instrumentenkunde. 1892. XII. pag. 19.

erfährt und hierdurch ein wenig gespannt wird¹). Diese Spannkraft der Pendelfeder ertheilt dann dem Pendel den Antrieb. Da somit das Pendel mit dem Uhrwerk nur durch die Aushängeseder in Verbindung steht, so schwingt es vollkommen frei.

TT ist ein an der rückseitigen Werkplatine W der Uhr durch 4 Schrauben uu festgeschraubter kräftiger Träger aus Metallgusse, so beschreibt Riefler eine Uhr, sin welchem die beiden Lagersteine PP befestigt sind, deren ebene Oberflächen, zwischen denen die Pendelaufhängung hindurch geht, zusammen in einer horizontalen Ebene liegen. Auf dieser Ebene liegt die Drehungsaxe aa des Ankers A, welche durch die Messerschneiden der Stahlprismen ce gebildet Die für den ordnungsmässigen Eingriff des Ankers in die Gangräder H und R erforderliche Richtung erhält die Drehungsaxe des Ankers durch die Körnerspitzen der Schrauben KK1, welche jedoch, wenn das Pendel B eingehängt ist, ein wenig zurückgeschraubt werden, damit sie das freie Spiel des Ankers nicht beeinträchtigen. F ist die auf das Ankerstück A_1A_1 aufgesetzte Pendelaufhängung mit der Pendelfeder ii, deren Biegungsaxe genau mit der Drehungsaxe aa des Ankers zusammenfällt. Das Gangrad ist ein Doppelrad und besteht aus dem Hebungsrad H und dem etwas grösseren Ruherad R. Die Zähne hh, des ersteren bewirken mit ihren schrägen Flächen die Hebung, die Zähne rr1 des letzteren bilden mit ihren radialen Flächen die Ruhen. S, sind die Hebe- und zugleich Ruhepaletten des Ankers. Dieselben sind cylindrisch jedoch am vorderen Ende bis zur Cylinderaxe abgeflacht. An der Cylinderfläche findet die Hebung des Ankers durch die Zähne des Hebungsrades H statt, an den ebenen Flächen erfolgt die Ruhe durch die Zähne des Ruherades R.

Das Spiel des Echappements ist nun folgendes: Fig. 460 stellt dasselbe in dem Momente dar, in welchem das Pendel sich in der Ruhelage befindet und der Zahn r des Ruherades auf der ehenen Fläche der Palette S aufruht. Schwingt nun das Pendel in der Richtung des Pfeiles nach links aus, so bleibt die Pendelseder ii zunächst noch gerade gestreckt und die Schwingung findet anfänglich um die Schneidenaxe aa des Ankers statt. Der Anker A wird, weil er durch die Pendelfeder ii mit dem Pendel in Verbindung steht, diese Schwingung des Pendels soweit mitmachen, bis die Zahnspitze des Ruheradzahnes r von der Ruhefläche der Palette S herabfällt. - Das Pendel hat bis dahin einen Bogen (Hebungsbogen) von etwa 1º zurückgelegt. - In diesem Moment ist die Cylinderfläche der Palette S, an den Hebezahn h des Hebungsrades bis auf den erforderlichen Spielraum herangerückt, die Räder drehen sich in der Pfeilrichtung, bis der Ruhezahn r, auf der ebenen Fläche der Palette S, aufliegt und der Hebungszahn / bewirkt während dieser Drehung die Hebung, d. h. derselbe drängt die Palette S, zurück und bewegt dadurch den Anker in der der Pendelschwingung enfgegengesetzten Richtung. Durch diese vom Räderwerk bewirkte Drehbewegung des Ankers hat die Pendelfeder ii eine kleine Biegung um die Schwingungsaxe aa und damit eine geringe Spannung erfahren, welche dem Pendel den Antrieb ertheilt. Das Pendel folgt jedoch nicht sofort der antreibenden Kraft, sondern vollendet zunächst seine Schwingung nach links, nunmehr um die Biegungsaxe der Pendelfeder schwingend, wobei


S. RIEFLER. Die Pr\u00e4cessionsuhren mit vollkommen freiem Echappement und neuem Quecksilbercompensationspendel, sowie die Regulirung und Behandlung derselben. M\u00fcnchen 1894.
 XII, pag. 21 ff.

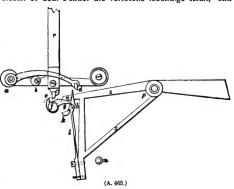
der Anker in Ruhe bleibt. Der betreffende Ergänzungsbogen beträgt bei astronomischen Uhren 1° und bei Turmuhren $1\frac{1}{2}$ bis $1\frac{1}{8}$ ° nach jeder Seite hin. Bei der Rückkehr des Pendels wird, nachdem dasselbe die Ruhelage nach rechts überschritten hat, der inzwischen auf S_1 aufgeruhte Zahn r_1 frei und eine neue Hebung findet auf der andern Seite durch den Zahn h_1 statt.

Ueber einige Theile der Riefler'schen Uhr sei dann noch bemerkt, dass die conische Schraube v_1 zur Einstellung der Weite des Ankers, die Schrauben tt die Tiefe des Ankereingriffes in die Gangräder ändern lassen, dass die Schrauben v_1v_2 dazu dienen, die Biegungsaxe der Pendelfeder it mit der Schneidenaxe in verticaler und horizontaler Richtung zusammenfallen zu lassen. Die Compensation des Pendels dieser Uhr ist bereits oben beschrieben worden.

Der Antrieb. Die treibende Kraft, welche das Pendel in dauernder Bewegung hält, ist entweder die in kinetische umgesetzte potentielle Energie eines gehobenen Gewichtes oder einer gespannten Feder, oder die Kraft, mit der ein erregter Elektromagnet seinen Anker anzieht. Die letztere kann man zur Hebung des Gewichts oder zur Spannung der Feder benutzen oder ohne weiteres auf das Pendel einwirken lassen.

1) Auf mechanischem Wege gehobenes Gewicht oder gespannte Feder. Die Aufziehvorrichtungen. Das die Triebkraft liefernde Gewicht muss von Zeit zu Zeit wieder gehoben, die ebenso wirkende Feder gespannt werden, wenn die Uhr im Gange bleiben soll; die Uhr muss aufgezogen werden. Sie bedarf dazu einer Vorrichtung, welche sich nach einer Seite leicht in Bewegung setzen lässt, nach der andern nur langsam ihre Wirkung entfaltet. Zugleich aber darf das Aufziehen die Wirkung von Gewicht oder Feder nicht unterbrechen. Den zu diesem Zwecke von Huygens erdachten Mechanismus

haben wir bereits kennen gelernt. Wenn er seinen Zweck auch gut erfüllt, so übertrifft ihn die Gegensperre Harrison's darin, dass sie auch für Federuhren gebraucht werden kann, und ist deshalb jetzt meist in Verwendung. Ihre Einrichtung lässt Fig. 462 erkennen. Sie besteht aus den beiden Klinkrädern K und K_1 , deren Zähne einander entgegengerichtet sind und welche lose auf der Welle der Gewichtswalze sitzen. In derselben Weise bewegt sich das Triebrad auf der nämlichen Welle. In die Verzahnungen der Klinkräder K und K_1 , greisen die Klinken H und H_1 , von


denen die erste auf K_1 , die zweite am Uhrgestelle befestigt ist. Ebenso ist die Feder F, die gegen einen Vorsprung am Triebrad drückt, auf K_1 angeschraubt. Anstatt einer einzigen solchen Feder kann man auch mehrere auf K_1 symmetrisch vertheilte ihre Wirkung ausüben lassen. Das gehobene Gewicht oder die gespannte Feder suchen nun K im Sinne des Pfeiles zu drehen. Den von ihnen ausgeübten Zug überträgt H auf K_1 , dieses durch Vermittelung von F auf R, während H_1 der Bewegung kein Hinderniss entgegensetzt. Wird auf ein auf der Axe von K angebrachtes (nicht gezeichnetes) Vierkant der Uhrschlüssel oder eine Kurbel aufgesetzt, und damit K im entgegengesetzten Sinne gedreht, so gleitet nunmehr H auf den Zähnen von K, während K_1 durch H_1 festgehalten wird. Die Spannung der Feder F wirkt während der kurzen Zeit, die das Aufziehen in Anspruch nimmt, anstatt der ausser Wirksamkeit gesetzten Triebkraft auf die Ühr und verhindert ihr Stehenbleiben.

Aufziehvorrichtungen mittelst eines Wassermotors, dessen Speisehahn zur geeigneten Zeit selbsthätig geöffnet wird, wie sie sich Mayrhofer!) hat patentiren Jassen, kommen bei astronomischen Uhren schwerlich in Betracht. Ebensowenig dürfte die beim Oeffnen und Schliessen der Thür des Uhrkastens sich bethätigende Aufziehvorrichtung, die Scheinberger? erdacht hat, in Anwendung genommen werden, da die dazu sich als nothwendig erweisende Complication des Aufziehmechanismus schwerlich im Verhältniss zu dem erreichten Zuwachs an Bequemlichkeit stehen dürfte.

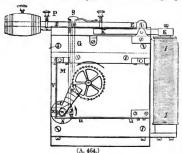
2) Antrieb durch ein mit Hilfe von Elektricität gehobenes Gewicht. Ein solcher wird benutzt bei der Pendeluhr der Stockholmer Sternwarte, welche 1877 nach der Idee des 1875 verstorbenen Theorett. ausgessührt worden ist. Die Triebkrast liesert ein an einem Seidenschnürchen besetsigtes kleines Gewicht von 4 g, welches der Elektromagnet jede Secunde einmal hebt. Wieder niedersallend ersetzt es dem Pendel die verlorene lebendige Krast, und

so bedarf die Uhr keines Steigrades. Fig. 463 führt in natürlicher Grösse den diesen Zweck

verwirklichenden
Mechanismus vor¹).
Das Pendel selbst
ist nicht dargestellt,
wohl aber der Pendelführer r, welcher
in dem Steine c
endigt. Er trägt ein
Quersttick, in welchem die Axe des
bogenförmigen Hebels ad gelagert ist.
An seinem Ende mit

dem Steine d versehen, wird es durch die Stütze b in passender Höhe gehalten. Während nun das Pendel sich von links nach rechts bis zu der in der Figur dargestellten Ruhelage bewegt hat, ist der Stein d an der über h befindlichen Stütze hingeglitten, ohne dass eine Aenderung in der Lage der Theile des Mechanismus eingetreten wäre. Schwingt aber das Pendel wieder nach rechts, so stösst der Stein d gegen die Spitze über h und drängt diese zur Seite, dabei den nasenartigen Vorsprung g der Axe f die Stütze h entziehend. Um f ist das das Gewicht tragende Schnürchen gewunden und dieses dreht nun f im Sinne des Uhrzeigers, wobei der Vorsprung e gegen e stossend dem Pendelführer e seinen Antrieb ertheilt. Zugleich ist der links an e befindliche Haken seiner Stütze e beraubt, und dadurch fällt der um die Axe e drehbare Rahmen e so weit herab, bis der feste Stift e seine Bewegung hemmt. Sobald diese Lageänderung eingetreten ist, schliesst ein auf e angebrachter Contact den Strom, der nun durch Vermittlung eines Elektromagneten e wieder an seine frühere

¹⁾ Deutsches Reichspatent No. 47731 vom 12. Aug. 1888.


²⁾ Deutsches Reichspatent No. 51522 vom 25. Juli 1889.

³⁾ LINDHAGEN, Zeitschr. für Instrumentenkunde 1881 I, pag. 117.

Stelle hebt, sodass das Spiel von Neuem beginnen kann. Der Stift n sorgt dafür, dass der Haken der Feder / immer gleich weit über die Stütze & greist.

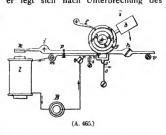
Da der beschriebene Vorgang immer nur dann abläuft, wenn das Pendel nach rechts schwingt, in jeder Secunde aber einmal eintreffen soll, so muss das Pendel, was freilich nicht vortheilhaft ist, ein Halbsecundenpendel sein. Die Uhr ist unter einer Glasglocke auf einem besonderen Pfeiler in einem verschlossenen Kellergewölbe der Stockholmer Sternwarte, in dem die Temperatur sich nur wenig ändert, aufgestellt; der durch das Pendel in jeder Secunde geschlossene Strom wird um einen im Beobachtungssaale befindlichen Elektromagneten geführt, dessen Anker die vor dem Zifferblatt einer Uhr sich bewegenden Zeiger in Bewegung setzt.

Bei der auf dem nämlichen Princip beruhenden Uhr von Geist in Würzburg 1) trägt die Pendelstange auf der einen Seite einen nasenartigen Fortsatz, der, wenn das Pendel so schwingt, dass er vorwärts bewegt wird, am Ende seiner Elongation angekommen, einen federnden Haken zurückdrückt und dadurch ein am einen Ende eines zweiarmigen Hebels befestigtes Gewicht frei giebt. Dieses sinkt nun herab und drückt dabei ein leicht drehbares Rädchen auf den leicht gekrümmten oberen Teil des nasenartigen Fortsatzes. Indem das Rädchen darüber hinrollt, ertheilt es dem nunmehr rückwärts schwingenden Pendel den gewünschten Antrieb, während ein am andern Arme des Hebels angebrachtes verschiebbares Gewicht, das mit gehoben werden muss, die Stärke des ausgeübten Antriebes regelt. Ist das Pendel, rückwärts schwingend, am andern äussersten Punkt seiner Elongation angelangt, so kommt der es mit der Pendelfeder verbindende Stift mit einer Contactfeder in Berührung und schliesst dadurch den Strom einer Batterie, in den die Pendelfeder, die Contactfeder und ein Elektromagnet eingeschaltet sind. Den Anker dieses Elektromagneten bildet das Gewicht, welches herabfallend dem Pendel seinen Antrieb ertheilt, er hebt es und ein an ihm befindlicher Stift schnappt in den federnden Haken ein, der es so lange hält, bis es das wieder vorwärts schwingende Pendel abermals frei macht, das beim Beginn dieser Schwingungsrichtung den Contact wieder unter-

brochen hatte. Der schwache Punkt dieser Einrichtung dürfte der Contact sein, für dessen Reinhaltung keine Vorsorge getroffen ist.

Im Gegensatze zu den vorgeführten Constructionen dient das
mit Hülfe eines Elektromagneten
gehobene Gewicht bei den Anordnungen von Schweizer und WinBAUER dazu, eine Feder zu spannen
und sie so zu befähigen, immer
mit der nämlichen Kraft auf das
Pendel, es antreibend, zu wirken.
Schweizer²) führte sein Uhrwerk
zuerst auf der Pariser Ausstellung

vom Jahre 1881 vor. Den elektrischen Theil seiner Uhr zeigt Fig. 464. Die in der Figur nicht sichtbare zu spannende flache Stahlseder sitzt mit dem einen Ende


¹⁾ TOBLER, Die elektrischen Uhren. Wien 1883, pag. 85.

⁹) Journal Telegraphique 1882, pag. 167, vergl. Tobler a. a. O., pag. 87.

auf der Hauptaxe des Uhrwerkes fest, mit dem anderen drückt sie gegen einen Stift, welcher auf der Stirnfläche eines mit dem in der Mitte der Figur sichtbaren Sperrad auf derselben Axe befindlichen Rades angebracht ist. Wird nun das Rad. gegen welches sich die Feder stützt, in bestimmten Zwischenräumen gegen ihr Ende hin bewegt, so wird ihr die durch Drehung der Axe des Uhrwerks verlorene Spannung wieder ertheilt. Das besorgt der in der Figur dargestellte Mechanismus. In das Sperrad greift der Arm G, dessen hakenförmiges Ende vor einem seiner Zähne liegt. Auf G wirkt das Gewicht P. das am Ende des zweiarmigen Hebels EE befestigt ist und sucht das Sperrad in der Pfeilrichtung zu drehen. Ist das Gewicht aber bis in eine bestimmte Lage herabgegangen, so hört seine Wirkungsfähigkeit auf und es erhält sie erst durch eine erneute Hebung wieder. Um diese zu bewerkstelligen ist neben G eine zweite Stange M an den Hebel EE eingelenkt, welche mit einem Kurbelarm der um die Axe m drehbaren Scheibe N verbunden ist. Beim Herabsinken des Gewichtes dreht sich die Scheibe N im Sinne des Uhrzeigers. Dabei bewegt sich der ebenfalls an N befestigte Stift / nach rechts und lässt die gegen ihn anliegende Contactfeder V los, die er so weit nach links gedrängt hatte, dass ihr unteres Ende vor dem Ende der zweiten Feder u lag. So lange nun aber die auch an N befestigte Schraube S nicht u herabdrückt, kann sich V nicht nach rechts bewegen und den Contact x nicht schliessen. Tritt dies endlich bei fortgesetzter Drehung von N ein, so zieht der nunmehr durch den Strom erregte Elektromagnet / den am kurzen Ende von EE sitzenden Anker K an und hebt mit dem Gewicht die Stangen M und G. Dadurch wird die Scheibe N im Sinne des Pfeiles gedreht, t drückt die Contactfeder V so weit zur Seite, dass u der Schraube s folgen kann und nachdem der Contact unterbrochen worden ist, der frühere Zustand wieder hergestellt wird. Während das Gewicht gehoben wird, gleitet der Arm G über einige Zähne des Rades, in welche er eingreift, hinweg, und strebt nunmehr, es wieder in der Pfeilrichtung zu drehen. Der mit N verbundene Stift g ist während der Drehung der Scheibe N von dem auf der Axe des von G gehemmten Rades sitzenden in Fig. 464 sichtbaren Sperrades abgehoben gewesen; er legt sich nach Unterbrechung des

Stromes wieder hinein und verhindert so, dass das die Feder spannende Rad sich in dem der Pfeilrichtung entgegengesetzten Sinne drehen kann.

Die Uhr von WINBAUER¹) wurde 1883 durch die Wiener elektrische Ausstellung bekannt. Fig. 465 zeigt die Anordnung der für uns in Betracht kommenden Theile. Die das Pendel in Bewegung haltende Spiralfeder aus Stahl liegt in dem Gehäuse d, mit dem ihr eines Ende fest verbunden ist, während

ihr anderes an die Steigradaxe a angreift. Ebenso bilden Gehäuse und Zahnrad e ein Stück, welches wie die das Gewicht b tragende Scheibe e lose auf der Axe a aufsitzt. Da die am Gestell befestigte Klinke f das Zurückge hen des Rades unmöglich macht, so würde die Feder während des Ganges der Uhr ihre

Klein, Bericht über die internationale elektrische Ausstellung in Wien 1883. Wien 1885, pag. 315.

Spannung langsam verlieren, wenn nicht das herabsinkende Gewicht, welches durch Vermittlung der auf der Scheibe e gelagerten Klinke das Gehäuse im Sinne des Pfeiles zu drehen sucht, für ihre Erneuerung sorgte. Das würde aber aufhören, wenn das Gewicht an seinem tiefsten Punkt angekommen, dort verhartte. Es jedes Mal wieder emporzuheben, ist die Aufgabe des elektrischen Stromes.

Ist das Gewicht nach h gekommen, so hat der Stift g das gabelförmige Ende der Feder o zur Seite gedrückt; dieses lässt den Stift n los, der Hebel mn sinkt, den Contact r schliessend, herab und da der Kopf der Schraube p etwas aus mn nach unten hervorragt, so hat der bei i gelagerte Hebel kh seine Lage nicht geändert, thut dies aber nun, nachdem der Elektromagnet erregt worden ist. Sein längerer Arm schnellt empor und schleudert das Gewicht b in die Höhe, nimmt dabei durch Vermittlung von p auch mn mit und unterbricht so den Strom. Zugleich geht die Feder o zurück und alles ist wieder in der früheren Verfassung. Der Stromschluss erfolgt alle 5 bis 7 Minuten. Wie bei der Uhr von Schweizer treibt die Feder während der kurzen Zeit, in der sie sich selbst überlassen ist, die Uhr allein weiter. Wenn auch für beide Uhren der Strom von 1 bis 2 Leclanché-Elementen genügt, so empfiehlt sich doch die Anwendung von grösseren, die man besser aber nicht im Sockel der Uhr unterbringt, wie dies vielfach empfohlen worden ist.

Bei der elektrischen Uhr von MENGER 1) wirken zwei huseisensörmige Elektromagneten auf einen ebenso gestalteten, welcher mit dem Pendel hin- und herschwingt, bei der von GRAU 2) schliessen die Pendelschwingungen in jeder Secunde einen einen Elektromagneten bethätigenden Strom, welcher Elektromagnet dann das Gangwerk treibt. Dieses hebt dabei ein Gewicht, welches frei wieder herabfallend, dem Pendel einen Antrieb ertheilt.

Die Uhren, bei denen der Strom durch Vermittelung von Elektromagneten, aber ohne Mitwirkung von Gewichten eine Feder spannt, die dann wiederum auf das Pendel antreibend wirkt, werden astronomischen Zwecken schwerlich genügen können. Wir beschränken uns darauf, um ihrer ebenso einfachen, wie eigenartigen Contactvorrichtung aus ihrer Zahl die Uhr von Napoli³) hervorzuheben. Bei ihr erfolgt bei jeder Umdrehung der Steigradaxe drei Mal der Stromschluss, indem eine Contactfeder, die an einer Stange sitzt, während kurzer Zeit durch das Gewicht der Stange gegen eine zweite Stange gedrückt, sogleich aber auch wieder von ihr entfernt wird. Um dies zu ermöglichen, endigen die Stangen in Haken, welche nebeneinander auf dem Umfang eines mit drei Zähnen versehenen Rades aufliegen. Indem nun die die Contactfeder tragende obere Stange etwas kürzer ist, wie die untere, fällt sie etwas früher herab als diese, und schliesst so den Contact so lange, bis bei weiterer Umdrehung des Steigrades nach ganz kurzer Zeit auch der längere Hebel herabfäilt und den Strom wieder unterbricht.

3) Antrieb durch Elekromagneten. Von den Uhren, bei denen das Pendel durch Stromschluss zu verstärkten Schwingungen angetrieben wird, hat die von Mathias Hipp 4) in Neuchâtel wohl die häufigste Verwendung gefunden.

¹⁾ Deutsches Reichspatent No. 19834. Vergl. Merling, Die elektrischen Uhren. Braunschw. 1886, pag. 103.

²⁾ TERLING, a. a. O., pag. 101.

³⁾ KLEIN, a. a. O., pag. 318.

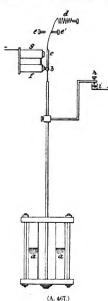
⁴⁾ Mobler, a. a. O., pag. 70; Klein, a. a. O., pag. 323; Merling, a. a. O., pag. 84.

Aber ihr Verfertiger hat auch keine Mühe gescheut, sie auf den möglichsten Grad von Vollkommenheit zu bringen und vor allen Dingen für einen dauerhaften Contact zu sorgen. Das Pendel und seine Antriebsvorrichtung zeigen Fig. 466. L ist der Pendelkörper, P die Pendelstange, unter L befindet sich

der Elektromagnet e, über L der Contact S, S2. Der Anker a ist mit der Pendelstange vereinigt und schwingt über den Polen des Elektromagneten, der erregt das Pendel zu rascherem Schwingen antreibt. Den Stromschluss bewirkt das an der Pendelstange B befindliche mit feiner Riefelung versehene Plättchen s. und das schneidenförmige Stahlstäbchen s1, welches an der Stahlseder f um einen seinen Zapsen drehbar aufgehängt ist. Während der Schwingungen des Pendels gleitet die Palette s, über die Riefeln von s, hin, kann aber nur dann einen Stromschluss geben, wenn sie sich im Augenblick der Umkehr des Pendels darüber befindet. Sind die Elongationen so klein geworden, dass dieser Fall eintritt, so stemmt sie sich gegen die Riefeln und drückt dadurch f etwas in die Höhe. f verlässt in Folge davon seinen Ruhestift s und sein Ende c kommt mit der Feder c, den Strom schliessend in Berührung, der Elektromagnet wird erregt und wirkt antreibend auf das Pendel ein. Wäre nun aber der Elektromagnet noch eingeschaltet in dem Augenblick, in dem der Strom unterbrochen wird, so würde ein starker, schädlicher

Oeffnungsfunken entstehen. Um dies unmöglich zu machen, legt sich, während die Contactstücke ϵ und ϵ_1 noch in Berührung sind, die den letzteren tragende Feder auf den Contactstüft s_3 und schaltet so einen Draht parallel dem Elektromagneten ein. Durch diesen fliesst also der Strom, während sich ϵ und ϵ_1 trennen und das Auftreten eines Oeffnungsfunkens ist vermieden.

Die vorgeführte Einrichtung wird meistens in Verbindung mit dem Halbsecundenpendel verwendet, doch hat Hipp auch ein Secundenpendel für astronomische Uhren angegeben, welches durch den nämlichen Mechanismus in Bewegung gehalten werden kann¹). Das Pendel ist in einem Glasgehäuse angebracht, welches luftleer gemacht werden kann. Es besteht aus zwei Stahlstangen, welche eine Platte mit compensirendem Quecksilbergefäss tragen. In ihrer Mitte befindet sich der Anker, welcher zwischen den Polen des horizontal gelagerten hufeisenförmigen Elektromagneten schwingt. Er bildet zugleich eine Versteifung der Stahlstangen. Etwas darfüber tragen diese einen zweiten Steg, auf welchem die ihre Spitze nach oben richtende Palette gelagert ist. An seinem oberen Ende trägt das Pendel eine Contactvorrichtung, welche bei jeder Schwingung den Strom einer besonderen Batterie in ein Zeigerwerk sendet.


Das HIPP'sche Pendel hat HONISCH²) mit ganz geringen Aenderungen beibehalten, während LASSANCE³) das Pendel durch die Anziehung des Elektromagneten auf der absteigenden Hälfte seiner Bahn beschleunigen lässt. Um

¹⁾ TOBLER, a. a. O., pag. 75.

³⁾ KLEIN, a. a. O., pag. 327.

³⁾ MERLING, a. a. O., pag. 3

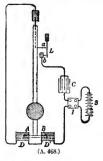
dies zu erreichen, lässt er den aus weichem Eisen bestehenden Pendelkörper über einem Elektromagneten schwingen. Während das Pendel nach oben schwingt, ist der Elektromagnet nicht erregt, wird dies aber, sobald das Pendel seine höchste Lage erreicht hat, indem nun eine am Pendelkörper und eine zweite an der Pendelstange angebrachte Contactfeder den Strom schliessen. Der erregte Magnet zieht dann zugleich einen unter dem Pendelkörper gelegenen Relaisanker an, der den Strom geschlossen hält, bis das Pendel seine tiefste Lage erreicht hat. Der thätig bleibende Elektromagnet wirkt dessen Bewegung beschleunigend, auf den Pendelkörper. In dessen tiefster Lage streift aber eine unter ihm angebrachte dritte Contactfeder eine Metallplatte auf dem Relaisanker und schliesst dadurch einen Strom von geringem Widerstand, in dessen Nebenschluss nun der Elektromagnet zu liegen kommt. Der so sehr geschwächte Strom reicht dann nicht mehr hin, den Elektromagnet zu bethätigen, die Relaisseder reisst den Anker ab und der Elektromagnet wird stromlos. Das bleibt er, bis das Pendel in seine höchste Lage auf der anderen Seite kommt und den Strom wieder schliesst, wobei sich die geschilderten Vorgänge auf dieser Seite wiederholen. So wohl durchdacht und ausgeführt auch LASSANCE's

Mechanismus ist, die Schwierigkeit, so viele Contacte sauber zu halten, wird seine Anwendung in den meisten Fällen unmöglich machen.

Im Gegensatz zu den bisher besprochenen Anordnungen bringen die nun noch vorzuführenden den Elektromagneten nicht unter, sondern seitwärts vom Pendel an. Die von JoLy1) getroffene zeigt Fig. 467. aa sind zwei den Pendelkörper bildende Quecksilbergefässe, fg ist der Elektromagnet. Das Pendel ist in gewöhnlicher Weise bei b an einer Stahlfeder aufgehängt; bei be oberhalb b trägt diese den Anker des Elektromagneten, setzt sich aber dann nach oben fort, wo die Schrauben e, e' ihre Bewegung begrenzen, während die Feder d ihr oberstes Ende fortwährend nach rechts zieht. Schwingt nun das Pendel nach links, so taucht die verstellbare Spitze h in das Quecksilbernäpfchen i, schliesst dadurch den Strom und veranlasst den Elektromagnet seinen Anker ebenfalls nach links zu ziehen. Dadurch wird aber dem Pendel ein Antrieb nach rechts ertheilt. der es im Gange erhält. Nach Unterbrechung des Contactes, der auf die Dauer indessen kaum brauchbar zu erhalten sein dürfte, reisst die Feder den Anker wieder ab.

EGTS²) erreicht den Stromschluss dadurch, dass er einen Stift auf einer vom Pendel unmittelbar in Drehung versetzten Scheibe bei jeder Um-

drehung eine Feder stossen lässt. Der Elektromagnet zieht dann seinen Anker an und spannt dabei eine Spiralseder. Wird der Strom wieder unterbrochen, so schnellt


¹⁾ KLEIN, a. a. O., pag. 329.

⁹⁾ Deutsches Reichspatent, No. 22325.

durch die Wirkung der Feder der Anker in seine Lage zurück und ertheilt dabei dem Pendel durch Vermittelung eines passend angebrachten Ansatzes einen Stoss.

In ähnlicher Weise suchen SCHNEIDER¹) und HEROTIZKV²) dem Pendel die verlorene lebendige Kraft zu ersetzen, indem sie dafür sorgen, dass eine mit dem Anker eines Elektromagneten verbundene Stange dem Pendel einen Antreib giebt, wenn es in einer seiner äussersten Lagen sich befindet und sich anschickt umzukehren. Einer solchen Anordnung gegenüber aber betont LIPPMANN²), dass sie aus theoretischen Gründen verwerflich sei. Es muss vielmehr erreicht werden,

sie aus theoretischen Gründen verwerflich sei. Es mus dass das Pendel den neuen Antrieb beim Durchgang durch seine tiefste Lage erhält. Seine Anordnung zeigt Fig. 468. Das Pendel trägt an seinem unteren Ende den permanenten Magneten AB, dessen Pole in die Spulen D und D' hereinragen, je nach der Lage des Pendels abwechselnd mehr in die eine oder in die andere. Der Strom der Batterie S geht bei deren Schluss um die Spulen durch den Contakt bei L. Die Feder L liegt, solange sie nicht gewaltsam davon weggedrängt wird, an dem Stift δ an. Erreicht das Pendel seine tiefste Lage, so trifft die mit ihm schwingende Contactspitze a auf L und stellt im Augenblick der Berührung den Stromschluss her, drängt aber dann sogleich die Feder von a weg und unterbricht somit sogleich wieder den Strom. Ebenso

erfolgt beim Rückgang des Pendels beim Wiederauflegen der Feder auf bein momentaner Stromschluss. Die so erregten Spulen ertheilen somit dem Pendel den Antrieb jedesmal in der günstigsten Lage. Die Einrichtung würde nun den Nachtheil einer starken Funkenbildung haben, wenn nicht ein einfaches Mittel solche völlig unmöglich machte. Dieses besteht in dem Condensator C, welcher abwechselnd innerhalb einer Secunde von S aus mittelst des Umschalters J positiv und negativ geladen wird. Es ist also statische Elektricität, welche sich ausgleicht; die Geschwindigkeit aber, mit der dies geschieht, ist so gross, dass der Ausgleich längst erfolgt ist, wenn die Unterbrechung stattfindet.

Nicht sehr zweckmässig dürften die Anordnungen sein, welche die durch den Strom zu magnetischen Wirkungen besähigten Theile am Pendel selbst anbringen. Bei der Uhr von Bam4) und Jones5) sind dies Spulen ohne Eisenkerne, welche zwischen den Polen zweier Magnete oder in ihren äussersten Lagen über einen Magneten hinschwingen und im günstigsten Augenblick mit einem so gerichteten Strome versehen werden, dass das Pendel dadurch einen Antrieb erhält.

Ganz eigenartig ist die Construktion von Egger.6). Er giebt dem Pendelkörper die Form eines Ringes, in dessen Innern sich zu beiden Seiten zwei stabförmige Elektromagneten und ein permanenter Magnet von derselben Form

¹⁾ Deutsches Reichspatent, No. 43108. Vergl. Zeitschr. f. Instrumentenkunde. 1888. VIII, pag. 335.

³) Deutsches Reichspatent, No. 25 123. Vergl. Zeitschr. f. Instrumentenkunde. 1884. IV, pag. 182.

³⁾ Comptes rendus. 1896. Bd. 122, pag. 104.

⁶⁾ MERLING, a. a. O., pag. 54.5) MERLING, a. a. O., pag. 37.

⁶⁾ KLEIN, a. a. O., pag. 330.

befinden. Letzterer ist in der Verlängerung der Pendelstange um sein unteres Ende drehbar aufgestellt, erstere lagern zu seinen beiden Seiten. Kurze Zeit nachher, nachdem das Pendel seine äusserste Lage erreicht hat, schliesst einer der beiden in der Nähe des Aufhängepunktes angebrachten Contacte den Strom einer Batterie; dadurch werden die Elektromagnete in solcher Weise erregt, dass dem beweglichen Pole des permanenten Magneten in der Richtung der augenblicklichen Pendelbewegung ein gleichnamiger Pol gegenübersteht, während auf der entgegengesetzten ein ungleichnamiger auftritt. Der obere Theil des Magneten weicht demnach plötzlich in der Richtung der Bewegung aus der Richtung der Pendelstange ab und bewirkt so eine Verschiebung seines Schwerpunktes in derselben Richtung, die wiederum eine verstärkte Bewegung zur Folge hat. Auf der anderen Seite der Ruhelage erfolgen die nämlichen Wirkungen im umgekehrten Sinne. Durch Hemmstangen wird die Bewegung des Magneten eingehalten. Weder die dadurch hervorgerufenen Stösse noch die veränderliche Stärke der Batterie sollen den genauen Gang des Pendels beeinträchtigen.

Nicht nur den Schwerpunkt des Pendelkörpers, sondern das ganze Pendel verschiebt Carpentier1), um ihm den nöthigen Antrieb zu ertheilen. erreicht er durch eine ganz kleine periodische Verschiebung (um 0,02 mm) des Aufhängepunktes in horizontaler Richtung. Bewirkt wird diese Verschiebung dadurch, dass das Pendel mittelst eines dünnen Stahlplättchens am Anker einer Art von polarisirten Relais aufgehängt ist, welches ihm die gewünschte Bewegung ertheilt, wenn es periodischen Stromumkehrungen unterliegt. Da deren Periode mit den Schwingungszeiten des Pendels übereinstimmen muss, so lässt CARPENTIER das Pendel selbst den Stromschluss besorgen, vermeidet aber den dabei zu befürchtenden Widerstand, indem er die Wirkung aus der Ferne vor sich gehen lässt. Dazu läuft das Pendel in einen kleinen Magneten aus, der über dem eisernen Commutator hin- und herschwingt. Der Commutator kann sich um einen Zapfen in der Pendelebene etwas drehen und hat die Form eines Bogens. An den Pendelschwingungen nimmt er so in beschränktem Maasse Theil, aber die Schaukelbewegung, in welche er geräth, reicht hin, um abwechselnd die Contacte zu schliessen. Durch Rückwirkungen der magnetischen Anziehungen auf das Pendel kann keine Störung entstehen; sind diese doch radial zu dem Schwingungsbogen gerichtet und können somit nur auf den festen Aufhängepunkt des Pendels wirken.

4) Das conische Pendel. Auch das rotirende Pendel kann man als Regulator einer Uhr verwenden und es ist möglich, dabei das antreibende Gewicht durch einen Luftstrom, wie ihn eine Gasflamme hervorrusen kann, zu ersetzen?). Seine rasche Bewegung lässt es auch zur Messung der Bruchtheile von Secunden geeignet erscheinen. Immerhin ist seine Anwendung eine so seltene, dass wir uns hier auf seine Erwähnung beschränken dürsen.

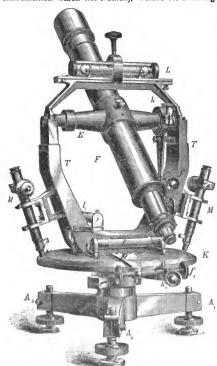
Die Regulirung und Controlle. Die Regulirung der Uhr hat den Zweck, den Gang der Uhr von äusseren Einflüssen so unabhängig wie möglich zu gestalten. Sie setzt die beschriebenen Compensationsvorrichtungen voraus. Sind dieselben so sorgfältig wie möglich hergestellt und ist die Länge des Pendels durch die dazu vorhandenen Schrauben etc. den Verhältnissen angepasst, so muss der Gang der Uhr, wie wir bereits erwähnten, durch astronomische Zeitbestimmungen geprüft werden. Man bestimmt dazu in etwa fünftägigen Intervallen den Stand

¹⁾ Compt. rend. 1887. Bd. 104, pag. 1785.

²⁾ RAAB, Deutsches Reichspatent No. 65348 vom 17. April 1891.

und Gang der Uhr zunächst zur Regulirung der Pendellänge bei mittlerer Temperatur, dann zu der der Compensation bei möglichst wechselnden Temperaturen. Beide Grössen müssen nöthigen Falls entsprechend corrigirt werden. Die Pendellänge ändert man durch die dazu vorhandenen Schrauben. Feinere Aenderungen, die auch während des Ganges anzubringen sind, lassen sich erreichen, wenn man an der Aufhängefeder eine verschiebbare Metallklammer anbringt. Die Mittel zur Aenderung der Compensation sind, wie wir sahen, Wegnahme oder Zugabe von Quecksilber oder Verschiebung eines Querstückes des Rostpendels.

Ist nun aber die Regulirung auch vollständig gelungen, so bleiben doch noch kleine Abweichungen vom regelmässigen Gange, deren Grund man in dem nicht immer gleich bleibenden Einfluss des Räderwerkes auf die Bewegung des Pendels sucht. Um sie genauer kennen zu lernen, ist es wünschenswerth, ihren Gang fortlaufend zu controlliren. Dazu schlägt Bigourdan1) vor, ihn mit dem eines sich frei bewegenden Pendels zu vergleichen, welches in einem fast luftleer gemachten, Temperaturänderungen nicht unterworfenen Gehäuse schwingt. Ist einem solchen Pendel eine Amplitude von 60 bis 80 Bogenminuten gegeben, so führt es in einem Raum, in dem ein Barometerdruck von 10 mm herrscht, während 24 Stunden noch gut zu beobachtende Schwingungen aus und Bigourdan hält es für möglich, so unter Berücksichtigung des Einflusses der Amplitude die Unregelmässigkeiten im Gang einer astronomischen Uhr ihrer Grösse nach mit einer Unsicherheit zu bestimmen, die im Laufe des Tages auf höchstens 0,03 Secunden ansteigen würde. Weiter noch geht MENDENHALL2), indem er als Pendel ein solches benutzen will, wie man es zur Bestimmung der Schwerkraftbeschleunigung hergestellt hat, dann aber mehrere, etwa drei solcher Pendel anordnet, die sich gegenseitig controlliren. Sie müssten vor ihrer Benutzung auf einer Sternwarte einige Jahre lang geprüft sein und sollten alle paar Jahre mit Hilfe der Coincidenzmethode nachgeprüft werden.


Universalinstrument. Für feinere Messungen von Horizontalwinkeln wie dieses in der Geodäsie eine immer wiederkehrende Aufgabe ist, dienen Instrumente, welche dem Wesen nach aus einem größeren fein getheilten Horizontalkreise bestehen, der mit einem Fernrohre (auf einem oder zwei Ständern montirt) um eine verticale Axe drehbar ist. Solche Instrumente heissen Azimuthalinstrumente oder Theodoliten. Deren Ausführung wird aus Fig. 469 ersichtlich. Auf dem Dreifuss A, A, A, erhebt sich in der Mitte eine hohle Säule, welche den Horizontalkreis K trägt. In die Bohrung der Säule passt die cylindrische (oder conische) Verticalaxe, mit welcher die Träger T verbunden In V-förmigen Lagern dieser Träger ruht die horizontale Umdrehungsaxe E des Fernrohres F; auf cylindrischen Zapfen der Drehungsaxe kann das Niveau L aufgesetzt werden, welches vor dem Herabfallen bei den meisten Instrumenten durch eine dasselbe umfassende Gabel geschützt wird, welche an einem der Träger T befestigt ist, und die Libelle zwischen ihren Zinken fasst, ohne deren freie Beweglichkeit aufzuheben. (vergl. die Fig. 471).

Zur Feststellung und Feinbewegung des Fernrohres in Höhe dient die Klemme & und die Feinbewegungsschraube f.

¹⁾ Compt. rend. 1896. Bd. 122, pag. 513.

⁹) Americ. Journ. of Sciences, 1892. III, Bd. 43, pag. 45. Vergl. Zeitschr. für Instrumentenkunde. 1892. XII. pag. 321.

An den Trägern T sind die Mikroskope M befestigt, und meist zur Ablesung der Grad- und Minutenstriche noch ein Nonius (bei den älteren und kleineren Instrumenten waren nur Nonien), welche die Drehung des Fernrohres mitmachen,

»Nach Ambronn, Handbuch der astronomischen Instrumentenkunde.»
(A. 469.)

und dieselbe am Horizontalkreise abzulesen gestatten. Feststellung und
Feinbewegung in horizontaler Richtung wird mittels
der mit dem Obertheil
durch die Platte p verbundenen Klemme k₁ und
Feinbewegungsschraubef₁
bewirkt.

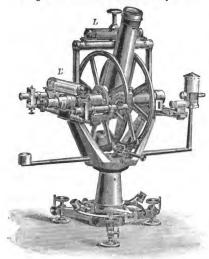
Horizontalstel-Zur lung des Kreises sind bei dem abgebildeten Instrumente die beiden Libellen l und l, mit den Trägern Tfest verbunden; die eine Libelle ist in der Richtung der Träger TT angebracht, die zweite senkrecht dazu; zur Correction bringt man die Träger in die Richtung des einen Fusses und corrigirt dann die Stellung des Instrumentes durch die Fussschraube. Die Libellen / und 1, sind jedoch nicht nöthig und nicht bei allen Instrumenten vorhanden. Die auf der Axe aufgesetzte, sogen. Axenlibelle L kann direkt zu diesem Zwecke verwendet werden. Bringt man die Umdrehungsaxe des Fernrohres und damit die

Libelle L in die Richtung der einen Fussschraube A_1 so kann durch entsprechende Drehung der Schraube die (selbstverständlich rectificirte) Libelle zum Einspielen gebracht werden; bringt man dann die Libelle in die Richtung der beiden andern Fussschrauben A_2A_3 , so kann man durch entgegengesetzte Drehung dieser beiden Schrauben die Horizontalstellung auch in dieser Richtung herbeiführen, ohne die frühere Correction wesentlich zu alteriren. Durch eine zwei- bis dreimalige Wiederholung dieses Verfahrens wird man die Kreisebene horizontal erhalten.

Bei Messungen von Horizontalwinkeln hat man die Drehung der Träger T an dem Horizontalkreise abzulesen; selbstverständlich braucht die Einstellung auf das erste Object nicht die Lesung 0 zu haben; sind die Lesungen bei Poin-

tirung der beiden Objecte L und L_1 , so ist der durchlaufene Winkel L_1-L . Handelt es sich um die Bestimmung von Azimuthen aus Sternbeobachtungen, so erfordert die Einstellung von Sternen ebenso wie beim Passageninstrument (s. dieses) noch einen mit dem Fernrohre verbundenen Verticalkreis und zugehörige, an den Trägern befestigte Nonien.

Zur Erhöhung der Genauigkeit wurden die Instrumente früher auch so gebaut, dass die Grösse des Winkels durch Vervielfältigung desselben bestimmt werden konnte. Bei diesen Instrumenten, den Repetitionstheodoliten, ist der Kreis K nicht direct mit dem Dreifuss verbunden, sondern selbst wieder um dieselbe Axe drehbar, und durch eine Klemme k' und Feinbewegungsschraube f' mit der Axe und dem Dreifuss zu verbinden (in der Figur nicht gezeichnet). Verbindet man mittels der Klemme k' den Kreis K mit der Axe, so kann man durch Drehung des Obertheiles mit dem Fernrohr die Winkelmessung durch aufeinanderfolgende Pointirung des linken und dann des rechten Objectes wie früher vornehmen. Man liest jedoch nunmehr nicht an den Mikroskopen ab, sondern während durch die Klemme k, Fernrohr und Kreis verbunden bleiben, wird die Klemme k' gelüftet, und das Fernrohr neuerdings auf das links liegende Object gerichtet, wobei also, da die Klemme k, nicht gelüftet wurde, die Mikroskope gegen den Kreis eine unveränderte Stellung behalten haben. Hat man dann mittels der Feinbewegungsschraube f' das Fernrohr F wieder scharf eingestellt, so wird mittels & der Kreis K an der Axe besestigt, und nunmehr nach Lüftung der Klemme k, das Fernrohr F wieder auf das rechtsgelegene Object gerichtet, und mit Hülfe der Klemme k, und Feinbewegung f, scharf eingestellt. Die Mikroskope M haben dann an dem Horizontalkreise den Winkel zwischen den beiden Objecten ein zweites Mal durchmessen. Würde man jetzt ablesen, so erhielte man den doppelten Winkel. Durch abwechselnde Benützung der Klemmen k, und k' kann man dieses Verfahren beliebig oft wiederholen, wobei die Mikroskope M den Winkel zwischen den beiden Objecten n-mal durchlaufen werden. L'-L ist dann der n-fache Winkel, wenn L' die Lesung nach der letzten Repetition ist.


Das Fernrohr kann bei allen diesen Instrumenten in der Mitte zwischen zwei Säulen (Fig. 469) oder auch seitlich angebracht sein (Fig. 471) oder wie beim Passageninstrument als gebrochenes Fernrohr (Fig. 470), wie sich denn in der Ausführung die mannigsachsten Verschiedenheiten ergeben.

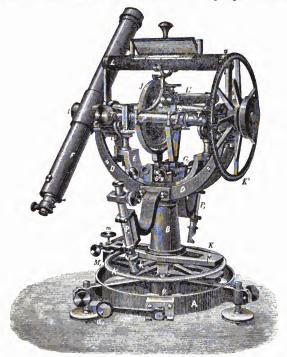
Will man nicht Horizontalwinkel, sondern Höhen messen, so ist der Höhenkreis mit besonderer Sorgfalt ausgeführt, während der Horizontalkreis nur als
Aufsuch- oder Einstellkreis dient. Das Instrument wird dann Höhen instrument.
Ein solches wird aus Fig. 470 ersichtlich. Das gebrochene Fernrohr mit den beiden
Kreisen ist um eine horizontale Axe drehbar. Klemme und Feinbewegung des
Fernrohrs (mit den Kreisen gemeinschaftlich) wird in derselben Weise bewerkstelligt wie bei dem vorigen Instrumente. Ebenso die Nivellirung der Axe; die
Einstellung am Horizontalkreise, der in diesem Falle nur zum Aufsuchen dient,
wird an zwei Nonien mittels Lupen abgelesen.

Die Ablesung am Verticalkreise wird durch 2 Mikroskope bewirkt, welche an einem Arme des Trägers für die horizontale Umdrehungsaxe befestigt sind; da es jedoch hier wesentlich auf eine feste Lage der Mikroskope ankommt, so hat dieser Mikroskopträger kreisrund abgedrehte Zapfen, auf welchen die Libelle L', die sogen. Versicherungs- oder Alhidadenlibelle, aufgesetzt wird. Mitunter ist diese Libelle festgeschraubt, wodurch eine sicherere Verbin-

dung hergestellt ist, dasur aber eine Umsetzung der Libelle behus Rectification unmöglich ist.

In Fig. 470 ist überdies rechts die Lampe zu sehen, welche bei den grösseren

•Nach Ambrons, Handbuch der astronomischen Instrumentenkunde.•


Instrumenten dieser Art stets beigegeben ist, um das Gesichtsfeld und diejenigen Stellen der Kreistheilung, welche unter den Mikroskopen sich befinden, zu beleuchten; links befindet sich auf demselben Arme ein Gegengewicht, um das Gewicht der Lampe zu balanciren. Für die Ablesung bei Tageslicht sind ferner die Objectivenden der Mikroskope rings um die Objective mit schrägaufgelegten weissen Papierflächen versehen, welche nur die Ausschnitte für die Objective haben und als reflectirende Flächen zerstreutes Tageslicht auf die Kreistheilungen werfen.

Die Mikroskope müssen selbstverständlich sowohl für das Höheninstru-

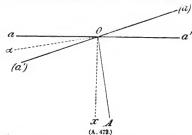
ment, als auch für den Theodoliten mit den entsprechenden Correctionsvorrichtungen montirt sein, um die Mikroskope senkrecht zur Theilung zu stellen, oder sie wenigstens in eine durch die Drehungsaxe des Kreises gehende Ebene zu bringen, da sonst bei den geringsten Veränderungen des Abstandes der Mikroskope von den Theilungen die Bilder der Theilstriche ihre Lage gegen das Fadennetz des Mikrometers ändern würden (das Mikroskop gegen andere Punkte des Kreises gerichtet wäre). Selbstverständlich muss auch ein eventueller Fehler des Schraubenganges (Run) zu corrigiren möglich sein u. s. w.

Eine Vereinigung des Azimuthal- und Höheninstrumentes, bei welchem daher sowohl der Horizontal- als auch der Verticalkreis möglichst genau getheilt sind, wurde früher als Altazimuth (Altitudo = Höhe, vergl. auch den betr. Artikel) bezeichnet. Reichenbach führte für dieselben den jetzt allgemein gebräuchlichen Namen Universalinstrumente ein. Ein solches ist in Fig. 471 abgebildet. Das Fernrohr ist hier excentrisch; die Mikroskope sind auf die gegen das Fernrohr hin gerichtete Seite des Kreises eingestellt, während sich auf der äusseren Seite ein Theilung zur rohen Einstellung des Fernrohres befindet; zur Bewegung des Fernrohrs dienen die Handhaben &. Ueber der Axenlibelle ist ein Spiegel unter 45° angebracht, um die Ablesung der Libelle von der Seite statt von oben vornehmen zu können. Die Klemmung und Feinbewegung um die Verticalaxe ist hier ebenso wie bei den früheren Instrumenten; die Klemmungs- und Feinbewegungsvorrichtung für das Fernrohr sind jedoch hier nicht mit dem Träger D verbunden, sondern mit den

innerhalb befindlichen beiden Trägern E, welche nach oben zwei Säulen aufgesetzt haben, auf welchen die horizontale Umdrehungsaxe auf Frictionsrollen aufruht (vergl. den Meridiankreis). Das Gewicht der Axe, des Fernrohres, der Kreise und Mikroskope ruht daher zum grössten Theile auf diesen Säulen, welche durch Federn (oder bei anderen Instrumenten durch Gegengewichte) jenes Gewicht balanciren, so dass von demselben nur ein geringer Theil auf den

»Nach Ambronn, Handbuch der astronomischen Instrumentenkunde.«
(A. 471.)

Zapfenlagern aufruht. Die Träger E ruhen nun weiter auf einer in einer Bohrung der Verticalaxe hindurchgehenden Säule, welche durch ein Excenter, das mittels der Handhabe a gedreht werden kann, gehoben wird, so dass hierdurch das ganze Instrument aus den Lagern herausgehoben und umgelegt werden kann.


Behufs Elimination von Theilungssehlern sind aber die getheilten Kreise nicht fest mit den Axen verbunden, sondern zwischen Flanschringen durch starke Reibung auf dieselben ausgesetzt, und daher sür gewöhnlich nicht verschiebbar; durch entsprechende Fixirung der Axen und Verschiebung der Kreise können jedoch diese in eine gegen die Richtung der Fernrohraxe (Nullpunkte) geänderte Lage gebracht werden.

Für geodätische Zwecke hatte die Einrichtung des Universalinstrumentes mit Repetitionskreis unstreitig gewisse Vortheile, da es sowohl zum Zwecke der Azimuth- und Höhenbestimmung als auch der Horizontalwinkelmessung, und für letzteren Fall zu Repetitionsbeobachtungen geeignet ist. Man hatte sogar auch bei den Verticalkreisen mitunter dieselbe Einrichtung zur Repetition der Winkelmessung getroffen. Allein dieselben Ursachen, welche zur Einrichtung der Meridiankreise, Passageninstrumente u. s. w. führten: das Streben die Genauigkeit der Beobachtungen durch Erhöhung der Stabilität der Instrumente zu sichern, hat in neuerer Zeit dahin geführt, bei den grossen Universalinstrumenten, bei denen die Genauigkeit der Messungen schon durch anderweitige Einrichtungen (feine Kreistheilungen, mikroskopische Ablesungen u. s. w.) erzielt ist, auf die Repetition zu verzichten, und ist dieselbe jetzt fast vollständig verlassen, umsomehr, als an Stelle der Winkelmessung bei den Triangulationen die Richtungsmessung getreten ist.

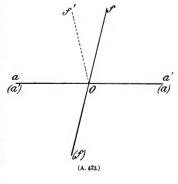
Voraussetzungen für die Benützung des Instrumentes sind:

- 1. Die verticale Umdrehungsaxe des Instrumentes soll vertical stehen.
- Die horizontale Umdrehungsaxe des Fernrohrs soll auf der verticalen Umdrehungsaxe senkrecht stehen.
- Die Collimationslinie des Fernrohrs soll auf der horizontalen Umdrehungsaxe derselben senkrecht sein.

Ueber die verticale Stellung der verticalen Umdrehungsaxe wurde vorher gesprochen. Es setzt dies jedoch voraus, dass die Bedingung 2) bereits erfüllt ist. Um dieses zu prüfen wird zunächst die Axenlibelle L auf die horizontale Umdrehungsaxe des Fernrohres aufgesetzt; diese in die Richtung einer Fusschraube gebracht, und letztere so lange gedreht, bis die Libelle einspielt. Ist die Libelle rectificirt (sollte dieses nicht der Fall sein, so kann dieses durch Umsetzen derselben auf der Axe vorher geschehen; vergl. den Artikel »Niveau«) so

ist jetzt die horizontale Umdrehungsaxe aa' des Fernrohres (Fig. 472) horizontal. Dreht man den Obertheil des Instrumentes um 180°, so wird die Libelle nur dann wieder einspielen, wenn die beiden Instrumentenaxen aa' und OA (letztere die verticale Umdrehungsaxe) auf einander senkrecht stehen. Ist dieses jedoch nicht der Fall, d. h. OA nicht senkrecht auf aa', so wird nach

der Drehung von OA um 180°, wenn das Axenende a' an die Stelle a gekommen ist, die Lage der Fernrohraxe (a) (a') sein und da Winkel a'OA = (a')OA ist, so ist $\angle aO(a') = 2xOA$.


Die Ausweichung der Libelle kommt daher zur Hälfte auf die Abweichung des Winkels a'OA vom rechten Winkel, und zur Hälfte auf die nicht verticale Stellung von OA. Corrigirt man daher jetzt die Hälfte des Ausschlages der Libelle an der Fussschraube des Instrumentes, so kommt OA in die verticale Richtung Ox (Correction der Stellung der verticalen Umdrehungsaxe) und Aa' kommt in die Richtung Oa, so dass aOx = (a')OA = a'OA ist. Corrigirt man nun die zweite Hälfte der Ausweichung des Niveaus durch Hebung des betreffen-

den Zapfenlagers (zu welchen Zwecken Einrichtungen getroffen sind, 'ganz ähnlich denjenigen, welche beim Meridiankreise und Passageninstrumente ersichtlich sind), so fällt die Richtung der Umdrehungsaxe des Fernrohres nunmehr in die Richtung aa', ist daher senkrecht auf Ox. Eine neuerliche Drehung um 180°, wobei a und a' wieder vertauscht werden, dient zur Controlle und etwaigen genaueren Berichtigung, die so oft vorzunehmen ist, bis der Fehler sehr klein ist. Zur Berichtigung der Verticalstellung der Axe OA gehört nun weiter noch die Untersuchung der Verticalstellung in einer auf aOA senkrechten Ebene, welche ir. der schon fülher erwähnten Weise vorgenommen wird.

Für die Berichtigung des Collimationssehlers kann man das Instrument durch Fixirung des Horizontalkreises zu einem nur um eine horizontale Umdrehungsaxe drehbaren Passageninstrument machen; daher den Collimationssehler durch Umlegen der Axe in ihren Lagern (in derselben Weise, wie beim Meridiankreis und Passageninstrument) wegschaffen, wobei irgend ein im Horizonte gelegenes Object, auf welches das Instrument gerichtet wird, die Stelle der Mire vertritt. Hatte man die Fäden des Fernrohres vorher auf das Object collimirt, und deckt nach dem Umdrehen des Fernrohres der Faden nicht mehr das Bild des Objectes, so wird der Fehler weggeschafft, indem der Verticalfaden im Fernrohr durch Verschieben der Fadenplatte mit Hilfe der hierzu angebrachten Correctionsschrauben um die Hälfte der Ausweichung dem Objecte genähert wird. Durch neuerliche Collimirung und Umlegung des Fernrohres kann man sich von der vollständigen Berichtigung überzeugen, eventuell dieselbe noch genauer erhalten.

Beim Universalinstrument kann jedoch der Collimationsfehler noch in anderer Weise bestimmt werden, bei welcher man die Umlegung des Instrumentes vermeiden kann. Die Methode besteht darin, dass das Fernrohr wieder auf ein entferntes, im Horizonte gelegenes Object (z. B. eine Thurmspitze) gerichtet wird, und dann um 180° um seine verticale Umdrehungsaxe gedreht wird, so dass nunmehr die horizontale Drehungsaxe des Fernrohres in dieselbe Richtung aa' nur mit Vertauschung der Zapfenenden kommt. Das Objectiv aber kommt

dabei in die Lage O(f) an Stelle der früheren Of (Fig. 473) und »schlägt man dann das Fernrohr durche, d. h. dreht es um die horizontale Drehungsaxe auf das früher collimirte Object, so kommt die Fernrohraxe in die Richtung Of', welche sich nur dann mit der früheren deckt, wenn Of \(\pm aa' \) ist. Deckt jedoch nach dem Durchschlagen des Fernrohres der Kreuzungspunkt der Fäden (Mittelfäden) nicht mehr das Object, so zeigt hier die Abweichung fOf' ebenfalls den doppelten Betrag des Collimationsfehlers; dieser wird eliminirt, indem man das Fadenkreuz um die Hälfte der Ausweichung gegen das collimirte Object zu verschiebt.

Da auch hier die Elimination der Instrumentalfehler nicht vollständig vorgenommen werden kann, die übrig bleibenden Fehler aber, bei der mit den heutigen Instrumenten zu erzielenden Genauigkeit nicht übergangen werden dürfen, so handelt es sich wieder um den Einfluss der Instrumentalsehler auf die gemessenen Winkel und die Berücksichtigung der daraus hervorgehenden Corectionen.

Sei HH' (Fig. 474) die Horizontalebene, Z das Zenith; hingegen MN die von der Horizotalen abweichenden Lage des Horizontalkreises des Instrumentes; P der Pol desselben, also CP die verticale Umdrehungsaxe des Instrumentes, welche

analog der bei parallactischer Montirung eingeführten Bezeichnung hier die Azimuthalaxe genannt werden soll. Ebenso soll die horizontale Umdrehungsaxe CA des Fernrohres als Höhenaxe bezeichnet werden. Die Höhenaxe wird nun nicht horizontal sein, aber auch nicht in die Ebene MN hinein-

fallen, wenn sie nicht auf der Azimuthalaxe senkrecht steht. Von den beiden Seiten des Axenendes wird wieder das eine als das Kreisende (oder bei zwei getheilten Kreisen durch die Klemme) besonders bezeichnet. Sei A das Kreisende. Endlich sei CO die Richtung der Fernrohraxe (Absehenslinie) bei der Pointirung eines Objectes (eines Sternes oder eines terrestrischen Objectes) und wenn der Collimationsfehler nicht vollständig weggeschafft ist, so wird OC nicht auf CA senkrecht stehen.

Die Festlegung der einzelnen Punkte ist hier auf die Ebene des Horizontes zu beziehen. Seien das Azimuth und die Zenithdistanz des Punktes O bezw. a und s; da die Höhenaxe CA nicht horizontal liegt, so sei die Neigung derselben gegen die Horizontalebene HH'=i, da ferner OA nahe 90° ist, so wird das Azimuth A des Axenendes A nahe 90° von demjenigen von O verschieden sein; ist $OA=90^{\circ}+\epsilon$ und¹)

$$A = a + e - 90^{\circ}$$

so hat man in dem Dreiecke OZA, in welchem

$$ZO = z$$
, $OA = 90^{\circ} + c$, $ZA = 90^{\circ} - i$ und der Winkel

ist:

$$OZA = a - (a + e - 90^{\circ}) = 90^{\circ} - e$$

.

$$-\sin c = \sin i \cos z + \cos i \sin z \sin e$$

demnach

$$sin e = -tang i cotang z - sin c sec i cosec z.$$
 (1)

Die Richtung nach dem Südpunkte ist aber an dem Instrumente nicht besonders bezeichnet, und Azimuthe können nur in derselben Weise bestimmt werden, wie Horizontalwinkel, als Differenzen von Richtungen nach dem Stern

¹⁾ Die Azimuthe von 0° bis 360° in der Richtung NoM gezählt.

(dessen Azimuth aus seinen sphärischen Coordinaten und der Zeit ermittelt wurde; s. den Artikel Azimuthbestimmunge) und einem Objekte oder aber aus der Lesung im Meridiane, welche wieder durch die Beobachtung des Sternes bestimmt wurde und der Lesung bei Einstellung auf das zu beobachtende irdische Object. Die Drehung des Fernrohres wird aber hierbei durch die Drehung des Axenendes A bestimmt, welche jedoch nicht in der Horizontalebene, sondern um die Azimuthalaxe CP stattfindet, und man hat aus den Lesungen L die Azimuthe A abzuleiten.

Sei die Neigung des Horizontalkreises des Instrumentes gegen die Horizontalebene I, also PZ = I, oder, wenn der Kreis PZ verlängert wird, mn = I und das Azimuth dieses Kreises A_0 ; ferner die Neigung der Höhenaxe gegen den Horizont, wie oben i, d. h. ACq = i, $ZA = 90^\circ - i$ und deren Neigung gegen die Kreisebene $Ap = i^\circ$ und $PA = 90^\circ - i^\circ$. Endlich sei die Lesung am Kreise in der Stellung des Fernrohres gegen O hin = L, und die Lesung, wenn die Axe CA in die Verticalebene Zmn fällt, $= L_0$, so hat man in dem Dreiecke PZA die Seiten:

$$PZ = I$$
, $ZA = 90^{\circ} - i$; $PA = 90^{\circ} - i'$

und die Winkel

$$ZPA = L - L_0; PZA = 180^{\circ} - (A - A_0).$$

Demnach:

$$\cos i \sin (A - A_0) = \cos i^{\prime} \sin (L - L_0)$$

$$-\cos i \cos (A - A_0) = \sin i^{\prime} \sin I - \cos i^{\prime} \cos I \cos (L - L_0)$$

$$\sin i = \sin i^{\prime} \cos I + \cos i^{\prime} \sin I \cos (L - L_0)$$

Die dritte dieser Gleichungen giebt

$$i = i' + I\cos(L - L_0)$$

$$i' = i - I\cos(L - L_0),$$
(2)

und die beiden ersten derselben durch Multiplication mit $\cos{(L-L_0)}$ bezw. $\sin{(L-L_0)}$ und Addition:

cosisin $[(A-A_0)-(L-L_0)]=\sin i'\sin I\sin (L-L_0)+\cos i'\sin^2\frac{1}{4}I\sin 2(L-L_0).$ $(A-A_0)-(L-L_0) \text{ ist demnach eine Grösse von der zweiten Ordnung}$

der Neigungen, weshalb man schreiben kann:

$$(A-A_0)-(L-L_0)=[\vec{i}'\,I\sin{(L-L_0)}+\frac{1}{4}\,I^2\sin{(2(L-L_0))}]$$
 are 1", und wenn man für \vec{i}' aus (2) substituirt:

$$(A-A_0)-(L-L_0)=[iI\sin{(L-L_0)}-\frac{1}{4}I^3\sin{2(L-L_0)}]$$
 are 1".

Setzt man voraus, dass l und i bis auf wenige Secunden berichtigt sind, so wird diese Correction völlig verschwinden, und man kann für die Differenz der Azimuthe direkt die Differenz der Lesungen setzen.

Die Formeln (1) und (2) gelten zunächst für Kreis links, da in diesem Falle $A=a+\epsilon-90^\circ$ ist. Für Kreis rechts, d. h. wenn das Fernrohr gegen O' gerichtet ist, bleiben, wie man sicht, die Formeln (2) dieselben, hingegen wird, wegen $A=90^\circ+a+\epsilon$ die Formel (1) aus dem Dreiecke O'ZA, in welchem

 $O'ZA = (a + e + 90^{\circ}) - a = 90^{\circ} + e$ ist:

$$-\sin c = \sin i \cos z - \cos i \sin z \sin e$$

$$\sin e = \tan g i \cot a g z + \sin e \sec i \csc z. \tag{1}$$

Man erhält hieraus das Azimuth des Punktes O aus demjenigen A des Kreisendes der Höhenaxe nach

$$a = A \pm 90^{\circ} - \epsilon \left| \frac{KL}{KR} \right|$$

c ist von der Ordnung von i und c; sind diese Grössen klein, was bei ausreichender Rectification des Instrumentes immer angenommen werden kann, so wird man seizen können:

$$e = \mp i cotang z \mp c cosec z \begin{cases} KL \\ KR \end{cases}$$

und demnach

$$a = A \pm 90^{\circ} \pm i \cot ng \ z \pm c \csc z \ \begin{cases} KL \\ KR \end{cases}, \tag{3}$$

wobei die Neigung i positiv ist, wenn das Kreisende das höhere ist, und der Collimationssehler c positiv, wenn der Winkel, welchen die Collimationslinie des Fernrohres mit dem Kreisende einschliesst, grösser als 90° ist.

Für ein zweites Objekt, dessen Zenithdistanz z' und dessen Azimuth a' ist, hat man, wenn das zugehörige Azimuth des Kreisendes A' ist, und die durch die Libelle bestimmte Neigung des Kreisendes für diese Einstellung i':

$$a' = A' \pm 90^{\circ} \pm i'$$
 cotang $s' \pm c$ cosec s' $KL \atop KR$

und in der Differenz a - a' fällt der Winkel von 90° heraus. Es ist

$$a-a'=A-A'+(\pm i\operatorname{cotang} z\pm c\operatorname{cosec} z)-(\pm i'\operatorname{cotang} z'\pm c\operatorname{cosec} z')\left\{\begin{array}{l}KL\\KR\end{array}\right. \tag{4}$$

Da nur

 $A-A'=(A-A_0)-(A'-A_0)=(L-L_0)-(L'-L_0)=L-L'$ gesetzt werden kann, wenn man die Quadrate der Neigungen i und I als verschwindend vernachlässigt, so wird

$$a - a' = L - L' + (\pm i \operatorname{cotang} z \pm c \operatorname{cosec} z) - (\pm i' \operatorname{cotang} z' \pm c \operatorname{cosec} z') \begin{cases} KL \\ KR \end{cases}$$
 (5)

Hat man zur Bestimmung des Collimationssehlers das Fernrohr in den Lagern umgelegt, so kann man die Grösse des Collimationssehlers entweder mittels einer Mikrometerschraube bestimmen, deren Schraubenwerth man in Secunden bestimmt, oder aber indem man direkt das Instrument um die verticale Umdrehungsaxe dreht, bis der Verticalsaden wieder das Object deckt. Hat man hierbei eine Drehung von α" vorgenommen, so wird

$$c = \frac{1}{2} a \sin z$$

wenn das zur Bestimmung benützte Object nicht im Horizonte liegt, sondern die Zenithdistanz z hat.

Hat man jedoch zur Bestimmung des Collimationssehlers nicht umgelegt, sondern das Instrument um 180° gedreht, und das Fenrohr durchgeschlagen, so sind beide Objecte identisch, d. h. es ist a=a'; chenso ist z=z'; hingegen ist die neue Lesung 180° + $L-\alpha$ an Stelle von 180° + L und während früher das Kreisende rechts war, ist es jetzt links; sind daher L und (180° + $L-\alpha$) die Drehungen bei Kreis rechts und bei Kreis links, so wird

$$0 = L - (L - \alpha) + (-i \operatorname{cotang} z - c \operatorname{cosec} z) - (+i' \operatorname{cotang} z + c \operatorname{cosec} z).$$

Hieraus folgt

$$2 c cosec z + (i + i') cotang z = \alpha$$
,

wobei vorausgesetzt ist, dass in den beiden Stellungen die Neigung des Kreisendes sich geändert hat. Es wird demnach:

$$c = -\frac{i+i'}{2}\cos z + \frac{\alpha}{2}\sin z.$$

Ist das Object nahe dem Horizonte, so verschwindet das von den Neigungen i und i' abhängige Glied.

Aehnlich wie beim Meridiankreise liesse sich aus dieser Formel eine Methode zur Bestimmung des Collimationsfehlers aus Neigungsbestimmungen bei Nadirbeobachtungen ableiten, doch werden solche beim Universalinstrumente nicht angewendet.

Die hier abgeleiteten Formeln gelten zunächst für den Fall, dass das Fernrohr centrisch über der Azimuthalaxe angebracht ist. Ist dieses nicht der Fall, wie z. B. in Fig. 471 (Fernrohr an einem Ende der Höhenaxe), so wird noch eine Correction nöthig. Sei aa' (Fig. 475) die Höhenaxe, a das Kreisende, C derjenige Punkt der Höhenaxe, welcher vertical über der Azimuthalaxe liegt, oO das Fernrohr, und daher $aa'O = 90^{\circ} + \epsilon$, wenn ϵ der Collimationsfehler ist, so

wird, sowohl beim Umlegen des Fernrohrs in den Lagern, als auch beim Drehen um 180° und Durchschlagen das Fernrohr nach a(O) kommen, und daher durch mickrometrische Messung oder Drehung des Horizontalkreises der Winkel (O) aM gemessen, wenn M das im Horizonte gelegene anvisirte Object ist. Es ist aber

$$(O)aM = (O)ax + xaM$$
$$(O)aM = c + (xaM)$$

Man findet aber leicht, wenn man von M ein Perpendikel auf aa' fällt, wenn

$$aa' = 2l$$
 und $Ma' = E$

gesetzt wird:

$$tang \ xaM = \frac{2l + E \sin c}{E \cos c}.$$

Ist der Collimationsfehler c klein, wie dies immer vorausgesetzt werden kann, so wird

$$tang \ xaM = \frac{2l}{E} + sin c$$

oder, die Tangenten und Sinus durch die Bögen ersetzend:

$$xaM = \frac{2l}{E}arc 1'' + c.$$

Damit wird der gemeisene Winkel

$$(O)aM = 2c + \frac{2l}{E}arc 1'' = 2\left(c + \frac{l}{E}arc 1''\right),$$

d. h. es tritt in den Formeln statt des Collimationsfehlers c der Ausdruck

$$c + \frac{l}{E} \operatorname{arc} 1''$$

auf, wobei l die halbe Länge der Höhenaxe und E die Entfernung des anvisirten Objectes ist. In der That wird man auch bei den Winkelmessungen in diesem Falle die Reduction wegen der excentrischen Stellung des Fernrohrs (in a' statt in C) berücksichtigen, indem man an Stelle der Visur a'M die vom Centrum C ausgehende CM setzt; dieses würde aber dadurch berücksichtigt, dass man sich ein Fernrohr denkt, dessen Visirlinie mit dem Kreisende der Höhenaxe den Winkel aCM einschliesst, für welches also der Collimationsfehler (c) bestimmt ist durch

$$aCM = aCy + yCM$$

oder

$$90^{\circ} + (c) = 90^{\circ} + yCM; \quad (c) = yCM.$$

Es ist aber wieder

$$MCy = \frac{l + E \sin c}{E \cos c} = \frac{l}{E} + \sin c$$

$$MCy = \frac{l}{E} \arctan 1'' + c,$$

demnach

$$(c) = c + \frac{1}{E} \operatorname{arc} 1''.$$

Es erübrigt noch die Verwendung des Instrumentes zur Messung von Zenithdistanzen zu untersuchen.

Die Collimationslinie des Fernrohrs kann nur dann durch das Zenith gehen, wenn entweder die Höhenaxe horizontal und der Collimationsfehler null ist, oder allgemein c+i=0 ist. Ist diese Bedingung nicht erfüllt, so beschreibt der Punkt O auf der Kugel einen kleinen Kreis, wenn das Fernrohr um die Axe CA gedreht wird. Sei die Lesung für den Fall der Coincidenz der Ebene OCA mit der Verticalebene AZ gleich L_0 , die Lesung nach der Drehung auf das Object O gleich L_0 , so ist

$$\lambda = L - L_0$$

die Drehung des Fernrohrs, welche gleich ist dem Winkel ZAO. Man hat nun in dem bereits betrachteten Dreiecke ZOA:

$$\cos z = -\sin c \sin i + \cos c \cos i \cos \lambda$$

und daraus

$$\cos \lambda - \cos z = 2 \sin \frac{z - \lambda}{2} \sin \frac{z + \lambda}{2} = \sin c \sin i + \cos \lambda (1 - \cos c \cos i).$$

Daraus folgt, dass $z - \lambda$ stets eine kleine Grösse ist, und zwar von der zweiten Ordnung der Grössen i und ϵ und man kann daher schreiben:

$$(s - \lambda) \sin z = ci + \frac{c^2 + i^2}{2} \cos z$$
$$z = \lambda + ci \csc z + \frac{c^2 + i^2}{2} \cot ang z.$$

Man kann demnach hier, ebenso wie bei den Horizontalwinkelmessungen den Einfluss der Neigung der Höhenaxe und des Collimationsfehlers vernachlässigen, wenn die Werthe nur hinreichend klein gehalten werden, und die Objecte nicht zu nahe zum Zenith gelegen sind.

Die Einstellung des Fernrohrs in der Richtung des Zenithes ist aber nicht zu erkennen. Man kann wohl das Fernrohr gegen das Nadir richten, und den Nadirpunkt in der Art bestimmen, wie dies in dem Artikel »Meridiankreis« beschrieben wurde; allein Einrichtungen dieser Art sind bei den Universalinstrumenten nicht angebracht. Man bestimmt daher die Zenithdistanz durch Messung des doppelten Winkels, indem man zuerst das Fernrohr nach O richtet (z. B. bei KL), sodann das Instrument um 180° dreht, wobei das Kreisende auf die entgegengesetzte Seite (KR), und das Fernrohr in die Richtung CO' kommt. Schlägt man dann das Fernrohr durch das Zenith, bis es wieder gegen O gerichtet ist, so erhält man jetzt eine zweite Einstellung in der anderen Kreislage. Ist nun die (unbekannte) Lesung bei der Stellung des Fernrohrs ins Zenith L_0 , die Ablesung bei Kreis links L_1 , bei Kreis rechts L_2 , die gesuchte Zenithdistanz z, so hat man

$$z = L_1 - L_0; \quad z = L_0 - L_2,$$

wenn die Lesungen vom Zenith gegen das Object hin bei Kreis links wachsen; und

$$z = L_0 - L_1; \quad z = L_2 - L_0,$$
 II

wenn die Lesungen vom Zenith gegen das Object hin bei Kreis rechts wachsen. Man erhält hieraus durch Addition, bezw. Subtraction

für den ersten Fall:
$$z = \frac{1}{2}(L_1 - L_2); \quad L_0 = \frac{1}{2}(L_1 + L_2)$$
 If für den zweiten Fall: $z = \frac{1}{2}(L_2 - L_1); \quad L_0 = \frac{1}{2}(L_1 + L_2),$ II

d. h. in beiden Fällen die Zenithdistanz gleich der halben Differenz der Lesungen, den Zenithpunkt gleich der halben Summe der Lesungen.

Dieses setzt jedoch voraus, dass in beiden Fällen die Lesung L_0 gegen das Zenith unverändert blieb. Dies wäre aber nur der Fall, wenn die Stellung der Mikroskopträger gegen die Horizontale in der Zwischenzeit sich nicht geändert hätte. Denn denkt man sich das Fernrohr gegen das Zenith gerichtet, und die Mikroskope abgelesen, so wird stets dieselbe Lesung bleiben, wenn das Fernrohr seine Lage gegen das Zenith und auch die Mikroskope ihre Lage gegen die Verticale unverändert beibehalten hätten. Jede Veränderung in der Stellung der Mikroskope würde eine andere Lesung selbst bei unveränderter Lage des Fernrohrs zur Folge haben.

In der That wird aber die Stellung der Mikroskope durch längere Zeitintervalle durchaus nicht als unveränderlich angesehen werden dürfen, um so
mehr, als das Instrument in der Zwischenzeit um seine Azimuthalaxe gedreht
wurde. Man wird daher die Ablesungen der Mikroskope auf eine gewisse
Normalstellung beziehen müssen, zu welchem Zwecke eben die Alhidaden- oder
Versicherungslibelle dient. Die Mikroskopträger könnten so lange gedreht
werden, bis die (als rectificirt gedachte) Libelle einspielt. Bei vielen Instrumenten ist auch der Mikroskopträger thatsächlich mittels eines Armes verstellbar,
der durch eine Feinbewegungsschraube ähnlich denjenigen, welche für die
Klemmung und Feinbewegung des Fernrohres dienen, bewegt wird. Dieses ist
jedoch nicht nöthig, und es genügt, die Lesung für eine beliebige Stellung der
Mikroskopträger auf eine Normalstellung zu reduciren.

Die Röhre der Alhidadenlibelle ist gegen das zu pointirende Object hin gewendet, und man bezeichnet jene Seite desselben, welche demselben näher liegt, als die äussere Seite desselben, das gegen das Objectiv gerichtete Blasenende als das äussere Blasenende. Man findet nun leicht als Correction der Lesung bei der Lage des Nullpunkts der Libelle¹) a) in der Mitte, b) nach innen, c) nach aussen und wenn die Lesungen am Kreise vom Zenith gegen das Object hin

zunehmen:
$$+\frac{1}{2}(a-i)\mu$$
 $+[\frac{1}{2}(a+i)-m]\mu$ $+[m-\frac{1}{2}(a+i)]\mu$ abnehmen: $-\frac{1}{2}(a-i)\mu$ $-[\frac{1}{2}(a+i)-m]\mu$ $-[m-\frac{1}{2}(a+i)]\mu$,

wobei im zweiten und dritten Falle, in denen der Nullpunkt der Libelle seitlich

¹⁾ Es ist z. B. wenn der Nullpunkt der Libelle innen ist, und a,i die Lesungen am äusseren und inneren Blasenende bedeuten, $\frac{1}{2}(a+i)$ der Einspielpunkt, und $\frac{1}{2}(a+i)-m$ die Ausweichung des Einspielpunktes nach aussen; eine Drehung des Mikroskopträgers, bis die Libelle in m einspielen würde, würde daher die Lesung L vergrössern, wenn die Lesungen vom Zenith gegen das Object hin wachsen. Die Lesung bei in m einspielender Blase und Einstellung auf das Object würde daher grösser oder kleiner sein, je nachdem die Lesungen vom Zenith gegen das Object zu wachsen oder abnehmen. In derselben Weise sind alle andern Correctionen abzuleiten.

vorausgesetzt ist, ein in der Mitte der Libelle liegender Theilstrich m als Einspielpunkt angesehen wurde, und μ der Parswerth der Libelle ist.

Nun ist, da beim Drehen des Instruments um seine Azimuthalaxe der Nullpunkt der Libelle seine Lage gegen das Object ändert (nach innen oder aussen kommt, je nachdem er früher nach aussen oder innen gerichtet war) für den Fall I:

$$\begin{array}{ll} \mathbf{a}) & \mathbf{c}) \\ \mathbf{z} = L_1 + \frac{1}{2}(a-i)\mu - L_0; \ L_1 + [\frac{1}{2}(a+i)-m]\mu - L_0; \ L_1 + [m-\frac{1}{2}(a+i)]\mu - L_0 \\ \mathbf{z} = L_0 - [L_2 - \frac{1}{2}(a'-i')\mu]; \ L_0 - \left\{L_2 - [m-\frac{1}{2}(a'-i')]\mu\right\}; \ L_0 - \left\{L_2 - [\frac{1}{2}(a'-i')-m]\mu\right\}, \\ \text{folglich:} \end{array}$$

a)
$$z = \frac{1}{2} (L_1 - L_2) + \frac{1}{4} [(a - i) + (a' - i')] \mu$$

b) $z = \frac{1}{4} (L_1 - L_2) + \frac{1}{4} [(a + i) - (a' + i')] \mu$
c) $z = \frac{1}{4} (L_1 - L_2) - \frac{1}{4} [(a + i) - (a' + i')] \mu$

und für den Fall II:

$$\begin{array}{ll} \text{a)} & \text{b)} & \text{c)} \\ z = L_0 - [L_1 - \frac{1}{2}(a-i)\mu]; \quad L_0 - \{L_1 - [\frac{1}{2}(a+i)-m]\mu\}; \quad L_0 - \{L_1 - [m-\frac{1}{2}(a+i)]\mu\} \\ z = L_2 + \frac{1}{2}(a'-i')\mu - L_0; \quad L_2 + [m-\frac{1}{2}(a'+i')]\mu - L_u; \quad L_2 + [\frac{1}{2}(a'+i')-m]\mu - L_0, \\ \text{demnach} \end{array}$$

a)
$$z = \frac{1}{2}(L_2 - L_1) + \frac{1}{4}[(a - i) + (a' - i')]\mu$$

b) $z = \frac{1}{2}(L_2 - L_1) + \frac{1}{4}[(a + i) - (a' + i')]\mu$
c) $z = \frac{1}{2}(L_2 - L_1) - \frac{1}{4}[(a + i) - (a' + i')]\mu$,

also dieselben Formeln wie früher. Es mag jedoch bemerkt werden, dass man sich am sichersten von Irrthümern in den Zeichen frei halten wird, wenn man die Anbringung der Correctionen nicht nach diesen oder ähnlichen Formeln mechanisch anbringt, sondern von Fall zu Fall je nach der Stellung der Libelle die Reduction der Lesung auf einen Normalpunkt durch Ueberlegung vornimmt, wozu ebenfalls im vorhergehenden bereits ausreichende Andeutungen für den denkenden Beobachter gegeben sind.

N. Herz.

Universaltransit. Obwohl Passageninstrumente in jeder beliebigen Verticalebene verwendet werden können, so ist es nicht leicht möglich, dieselben abwechselnd in kurzen Zwischenräumen in verschiedenen Verticalebenen zu benutzen. Um diese Aufgabe zu lösen, hat FOERSTER ein Instrument construirt (dasselbe wurde zuerst von Bamberg ausgeführt), welches gestattet, dasselbe leicht in jede beliebige Verticalebene zu bringen, in derselben aber ebenso stabil und sicher festzustellen, wie ein einfaches Passageninstrument. Dem Wesen nach ist dieser Zweck erreicht durch den massiven und kräftigen Unterbau, welcher aus Fig. 476 ersichtlich ist. Dieser Unterbau L und M ist auf Rollen P auf einer Bahn drehbar, sobald die Fussschrauben N genügend gehoben sind. Soll dann das Instrument festgestellt werden, so werden die Fussschrauben gesenkt, sodass deren untere Spitzen in radiale Einschnitte der unter ihnen sichtbaren Fussplatten einsinken, welch letztere auf einen zweiten, der früheren parallelen Führungsbahn gleiten, aber auf derselben durch Klemmschrauben genügend sicher fixirt werden können. Ist diese Fixirung erfolgt, so kann bei Temperaturänderungen wohl eine Verschiebung der Füsse in radialer Richtung in den Rinnen, nicht aber eine seitliche Verschiebung derselben erfolgen, und das Instrument dient dann als einfaches Passageninstrument; es sind die einzelnen Theile daher nach dem bei diesem und in dem Artikel Meridiankreise Gesagten, leicht zu verstehen.

•Nach Ambronn, Handbuch der astronomischen Instrumentenkunde.•
(A, 476.)

V sind die Träger, welche das Gewicht der Libelle U äquilibriren. S_2 , S_3 sind hohle Träger, welche das Fernrohr sammt Axe und Libelle auf Rollen tragen. Die Aequilibrirung findet durch Gewichte g statt, welche durch Hebelwirkung auf zwei in den Säulen S_2 , S_3 befindlichen Stangen wirken. Gleichzeitig dienen diese Säulen zur Umlegung mittels des Rades T.

E ist ein Aufsuchkreis, der mittels des Ablesefernrohres G abgelesen wird, k eine Libelle für Polhöhenbestimmungen nach der Horrebow-Talcott'schen Methode. W ist ein Fernrohr, welches zur Einstellung und Ablesung an einem in der Figur nicht gezeichneten Horizontalkreise dient.

Instrumente, welche denselben Zwecken dienen, wurden später in anderer Aussührung von Repsold construirt, welcher dieselben Durchgangstheodolite nannte. Da die Principien derselben aus dem obigen hinreichend ersichtlich sind, die praktische Lösung der gestellten Anforderungen jedoch in mannigfacher Weise möglich ist, und die Instrumente daher in mancherlei verschiedenen Formen austreten können, so kann hier auf alle Details nicht näher eingegangen werden. Man vergl. hierzu z. B. »Ambronn, Handbuch d. astronom. Instrumentenkunde«.

Als eine wichtige Anwendung des Universaltransits mag die Bestimmung der Zeit aus den Beobachtungen zweier Sterne im selben (unbekannten) Azimuth durchgeführt werden.

Es sei ein Stern, dessen sphärische Coordinaten: Rectascension und Deklination α und δ seien, zur Zeit θ , ein anderer mit den Coordinaten α' , δ' zur Zeit θ' beobachtet worden, wobei aber θ und θ' nicht bekannt sind, wohl aber die Differenz der Zeiten $\theta' - \theta$. Ist das (unbekannte) Azimuth, in welchem das Instrument aufgestellt ist A, so hat man, wenn t, t' die zugehörigen Stundenwinkel sind:

cotang A sin
$$t = -\cos \varphi \tan \theta + \sin \varphi \cos t$$

cotang A sin $t' = -\cos \varphi \tan \theta + \sin \varphi \cos t'$.

Multiplicirt man die erste Gleichung mit sin t', die zweite mit sin t und subtrahirt, so folgt

 $0 = -\cos \varphi(\sin t' \tan \theta \delta - \sin t \tan \theta \delta') + \sin \varphi(\sin t' \cos t - \cos t' \sin t)$ oder

$$tang \varphi \sin(t'-t) = \sin t' tang \delta - \sin t tang \delta'. \tag{1}$$

Es ist aber

$$\begin{array}{l} \sin t' = \sin \left[\frac{1}{2} (t' + t) + \frac{1}{2} (t' - t) \right] = \sin \frac{1}{2} (t' + t) \cos \frac{1}{2} (t' - t) + \cos \frac{1}{2} (t' + t) \sin \frac{1}{2} (t' - t) \\ \sin t = \sin \left[\frac{1}{2} (t' + t) - \frac{1}{2} (t' - t) \right] = \sin \frac{1}{2} (t' + t) \cos \frac{1}{2} (t' - t) - \cos \frac{1}{2} (t' + t) \sin \frac{1}{2} (t' - t). \end{array}$$

Es wird daher, indem man diese Ausdrücke in Gleichung (1) substituirt: $sin(\delta - \delta') \qquad sin(\delta + \delta')$

$$tang \varphi sin(t'-t) = sin\frac{1}{2}(t'+t) cos\frac{1}{2}(t'-t) \frac{sin(\delta-\delta')}{cos\frac{1}{2}cos\frac{1}{2}(t'+t) sin\frac{1}{2}(t'-t) \frac{sin(\delta+\delta')}{cos\frac{1}{2}cos\frac{1}{2}cos\frac{1}{2}(t'-t)}$$

Setzt man daher die bekannten Grössen

$$sin \frac{1}{2}(t'-t) sin (\delta + \delta') = m sin M
cos \frac{1}{2}(t'-t) sin (\delta - \delta') = m cos M,$$
(2)

so wird

tang
$$\varphi \sin(t'-t) = m \sin[M + \frac{1}{2}(t'+t)] \sec \delta \sec \delta'$$
,

demnach

$$m\sin[M+\frac{1}{2}(t'+t)]=\cos\delta\cos\delta'\tan q\sin(t'-t). \hspace{1cm} (3)$$

Man kann diese Gleichung noch in eine andere Form bringen. Man erhält nämlich aus den Gleichungen (2), indem man die erste Gleichung mit $\cos \frac{1}{2}(t'-t)$, die zweite mit $\sin \frac{1}{2}(t'-t)$ multiplicirt:

 $\frac{1}{2}\sin(t'-t)[\sin(\delta+\delta')+\sin(\delta-\delta')]=m\sin[M+\frac{1}{2}(t'-t)]$

oder

$$sin(t'-t)$$
 $sin \delta cos \delta' = m sin[M + \frac{1}{2}(t'-t)]$

und wenn man den Werth von sin(t'-t) hieraus in die Gleichung (3) einsetzt:

$$sin[M + \frac{1}{2}(t' + t)] = \frac{tang \, \varphi}{tang \, \delta} \, sin[M + \frac{1}{2}(t' - t)].$$
 (4)

Da nun $t'-t=\theta'-\theta-(\alpha'-\alpha)$ ist, so erhält man hieraus t'+t und somit die beiden Stundenwinkel t' und t, welche in Verbindung mit den bekannten Rectascensionen α' , α die bezüglichen Sternzeiten θ' , θ ergeben.

Schliesslich kann man noch das Azimuth des Instrumentes bestimmen; für dieses hat man die Formel

$$cotang A = \frac{-\cos\varphi\sin\delta + \sin\varphi\cos\delta\cos t}{\cos\delta\sin t}$$

und hieraus

$$\frac{\operatorname{cotang} A}{\sin \varphi} = \frac{-\operatorname{tang} \delta + \operatorname{tang} \varphi \cos t}{\operatorname{tang} \varphi \sin t}.$$

Dieser Ausdruck kann vereinfacht werden, wenn man für tang φ seinen Werth aus (4) substituirt. Setzt man Kürze halber für einen Augenblick

$$M+\tfrac{1}{2}(t'+t)=\lambda,$$

so wird

57

demnach

$$M+\tfrac{1}{2}(t'-t)=\lambda-t,$$

$$tang \varphi = \frac{tang \delta \sin \lambda}{\sin (\lambda - t)},$$

folglich

$$\frac{\operatorname{cotang} A}{\sin \varphi} = \frac{\operatorname{cos} t \sin \lambda - \sin (\lambda - t)}{\sin t \sin \lambda} = \operatorname{cotang} \lambda$$

oder

cotang
$$A = \sin \varphi \cot \arg[M + \frac{1}{2}(t' + t)].$$
 (4 a)

Die Formeln (2), (4), (4a) lassen daher t', t und A aus t'-t, δ , δ' und φ finden. N. HERZ.

Die Gestalt des Weltgebäudes (constitution du ciel, construction of the heavens) zu erforschen, ist schliesslich der letzte Zweck der ganzen Astronomie. Alle Theilresultate, die wir über Himmelskörper erlangen können, vereinigt zu einem Gesammtbilde, das uns gewissermaassen gestattet, herauszutreten von dem Punkte im Innern der Welt, auf welchen das Menschengeschlecht festgenagelt ist und uns ausserhalb postirend mit einem Blicke das ganze Weltgebäude zu umfassen, ähnlich wie wir auf einem Erdglobus die Configuration der Erdoberfläche, aus dieser heraustretend, überschauen, das wäre die Krönung all unsrer Forschung, und wenn sie gelungen wäre, so stände die Astronomie sowohl an der Erreichung ihres Zieles als auch - am Ende und was weiter zu thun bliebe, wäre nichts als uninteressante Kleinarbeit. Eben deswegen ist aber weder zu hoffen, noch zu erwarten, dass wir ein solches Weltbild, das der Wahrheit entspräche, jemals völlig zu entwersen im Stande sein werden, zumal die Festlegung unseres Standpunktes im Innern des zu erforschenden Gebietes und die unmerklich langsame Ortsveränderung desselben uns das Weltbild fast nur von einer Seite zeigt.

Historische Entwicklung der Ansichten vom Universum.

Aber der tiefe Drang im Menschen nach dem letzten Grunde aller Dinge hat die »Welt als Ganzes« schon zum Objecte der Speculation gemacht, als die Forschung noch in den Kinderschuhen steckte und nur das auffälligste Object des Weltgebäudes, die Milchstrasse, und die Thatsache, dass sie, wenig vom grössten Kreise abweichend, den Himmel ganz umschlösse, nicht übersehen werden konnte. Dass sie in der Sphäre der Fixsterne das ganze Planetensystem mit umfasse und hier entweder die Stelle bezeichne, wo die beiden Hälften der Sphäre zusammengeschweisst seien oder auch die Spur, die die Sonne früher gewandelt sei, ehe sie den Weg der Ekliptik entlang eingeschlagen, steht uns von den Ansichten der Alten 1) nicht viel höher, wie die bekannte mythologische Deutung der via lactea in der Herkulessage, und nur die Annahme DEMOKRIT's, dass der Glanz der Milchstrasse erzeugt sei von dem zusammenfliessenden Licht einer sehr grossen Anzahl sehr weit entfernter, dicht gedrängter Sterne, verdient als weiterer Beleg dafür hervorgehoben zu werden, wie nahe z. Thl. die griechische Astronomie der Wahrheit kam, gegenüber der des Mittelalters. Auch die Begründer der modernen Astronomie hatten Ansichten über das Weltgebäude, die lediglich speculativer Natur waren und nur bestehen konnten, weil jede Vorstellung über die wahren Entfernungen der Fixsterne und der Milchstrasse ihnen

¹⁾ Mehr Einzelheiten über die historische Entwickelung der Ideen über die Milchstrasse finden sich im Annuaire de l'Observatoire royal de Bruxelles 1880, pag. 233.

58 Universum.

fremd blieb. Copernicus 1) hielt bezüglich der Sterne noch an der prima sphaera immobilis fest, GALILEI 2) stellt nur fest, welch eine Fülle neuer Sterne zu den mit unbewaffnetem Auge sichtbaren das von ihm zuerst angewandte Fernrohr offenbarte; Kepler weist im ersten Buche seines Epitome, 1618, der Sonne eine ganz isolirte Stelle in einem leeren Raume im Innern des Sternsystems an und setzt die Entfernungen der Sterne untereinander als viel kleiner voraus, denn ihre Entsernung von der Sonne. Die Sonne nimmt sehr nahe den Mittelpunkt des Sternenringes ein, den die Milchstrasse bildet, weil diese sich als grösster Kreis projicirt. Jenseits der Milchstrasse beginnt der »leere Raum«. Die ganze Materie ist so vertheilt, dass ein Drittel der Masse die Sonne ausmacht, ein zweites Drittel zur Bildung des Planetensystems verwendet ist und das letzte Drittel die Sterne und die Milchstrasse erzeugt hat. Der Abstand der (dünnen) sternbesetzten Kugelschale verhält sich zum Abstande des (äussersten Planeten) Saturn, wie dessen Radiusvector zum Sonnendurchmesser oder wie 2000:1, sodass der Sonnendurchmesser den Sternen unter dem Winkel einer zehntel Bogensecunde erscheint (statt 10 wie richtiger wäre) und diese, die viel kleiner sind als die Sonne, uns erst recht keinen Durchmesser zeigen können. Freilich hält KEPLER es für denkbar, dass die Sterne der Sonne gleich an Grösse und vielleicht auch von einem Planetensystem umgeben seien, aber er lehnt es ab, diesem Gedanken nachzugehen, »da das Copernicanische System nichts über die Natur der Sterne aussage.«

HUYGHENS setzt hingegen in seinem 1698 veröffentlichten Cosmotheoros bereits die Sterne der Sonne in jeder Hinsicht gleich, denn inzwischen hatte die NEWTON'sche Gravitationstheorie die Vertheilung der Massen im Weltall, wie sie KEPLER sich dachte, als unmöglich erwiesen. Aus der Unveränderlichkeit der gegenseitigen Stellung der Sterne Mizar und Alcor im Laufe eines Jahres folgert er die ausserordentliche Kleinheit ihrer Parallaxe und versucht einen andern Weg, um zu einer zahlenmässigen Entfernungsbestimmung der Sterne zu gelangen, indem er die Helligkeit des Sirius mit der der Sonne vergleicht, wobei er den Abstand des ersteren zu 28000 auswerthete, also rund 30 Mal zu klein.

WRIGHT hat mit seiner »Theory of the universe, London 1750« jedenfalls das eine grosse Verdienst, KANT zum Nachdenken über die Probleme der Gestaltung des Weltalls angeregt zu haben, wie dies der Königsberger Philosoph selbst hervorhebt in seiner Allgemeinen Naturgeschichte und Theorie des Himmels, oder Versuch von der Verfassung und dem mechanischen Ursprunge des ganzen Weltgebäudes nach Newton'schen Grundsätzen abgehandelt, Königsberg und Leipzig 1755.« KANT spricht hier zuerst diejenigen Ansichten aus, die auch heute noch Geltung besitzen, wenngleich man sie heute als elementare bezeichnen würde. Die Sterne sind sämmtlich Sonnen, mit Planetensystemen umgeben, in denen die Schwerkraft waltet, die aber auch System mit System verbindet. Und wie im Sonnensystem eine Fundamentalebene vorhanden ist, die Ekliptik, in deren Nähe sich die Planeten anordnen, so besteht auch in dem System höherer Ordnung eine Hauptebene und um diese gruppiren sich die Fixsterne so, dass ihre Anzahl in der Nähe derselben am grössten ist, und sie einander um so näher stehen, je mehr sie sich nach der Fundamentalebene zusammendrängen; der vereinigte Glanz so vieler so eng stehender Sterne ist die Milchstrasse. Die Sterne sind Bewegungen unterworfen im Systeme der Milchstrasse und wesentlich

¹⁾ De revolutionibus. 1543.

²⁾ Nuncius sidereus. 1610.

in deren Ebene; sie sind Planeten einer Centralsonne, als welche zu gelten, Sirius das meiste Anrecht hätte. Da die Milchstrasse am hellsten ist in der Gegend des Schwans, so befindet sich die Sonne diesem Theile des Ringes am nächsten und die Centralsonne muss von ihr aus betrachtet dem Schwan gegenüberliegen, was auf Sirius passt. Die Nebelflecke elliptischer Form sind besondere Milchstrassensysteme ausserhalb des unsrigen und eben ihre längliche Form deutet auch in ihnen auf das Bestehen einer Hauptebene. >All die Milchstrassen ordnen sich dann wahrscheinlich wieder in ein System höherer Ordnung und wir stehen auch damit nur am Ansange eines Fortschritts zu immer höheren Ordnungen, die die Unendlichkeit des Weltalls erweisen.

Fast gleichzeitig mit und unabhängig von KANT kommt LAMBERT in seinen »Kosmologischen Briefen über die Einrichtung des Weltbaues, ausgesertigt von J. S. LAMBERT, Augspurg 1761« zu ähnlichen Anschauungen, die uns Modernen aber noch näher stehen. Er unterscheidet im Weltall Systeme von 5 Ordnungen. Das Planetensystem bildet das erste, die Sonne und ihre vielen Schwestersonnen, nämlich all die isolirt am Himmel sichtbaren Sterne sind ein System zweiter Ordnung, ein Sternhaufen, und ebenso wie die einzelnen Planeten durch Räume getrennt sind, die ungeheuer sind im Vergleich zu ihren Durchmessern, so sind die Zwischenräume zwischen den Sonnen des Sternhaufens vieltausendfache von den Ausdehnungen der Planetensysteme. Die Sternhaufen ihrerseits sind durch Räume von einander getrennt, die wieder ihre Durchmesser ganz beträchtlich übertreffen, sie ordnen sich neben- und hintereinander, nicht übereinander, und zwar können demnach nur 6 unserm Sternhaufen gleiche ihm zunächst stehen, wenn die Abstände ungefähr gleich sind; das Hintereinanderstehen der vielen Sternhaufen erzeugt das System dritter Ordnung, die Milchstrasse, und da in verschiedenen Richtungen nicht immer gleich viele stehen, erklärt sich die verschiedene Helligkeit und durch die Abweichung einiger Sternhaufen von der Hauptebene die Verästelung der Milchstrasse. Die grosse Zahl der Milchstrassen im Weltraume ordnet sich in ein System vierter Ordnung, von wo der Weg zu den Systemen fünfter Ordnung vorläufig bloss ein Analogieschluss ist. Auch LAMBERT setzt für unseren Sternhaufen einen Centralkörper voraus, aber da ihm keiner der Sterne genügende Leuchtkraft für einen solchen zu besitzen scheint, schreckt er vor der Annahme eines riesenhaften, entweder sehr schwach leuchtenden, oder selbst dunkeln Körpers nicht zurück, dessen Vorhandensein vielleicht Störungen in den Bewegungen der äusseren Planeten ebenso verraten möchten, wie wir im Mondlauf Störungen durch die Sonne bemerken. Nicht ganz abgeneigt wäre LAMBERT, den Orionnebel für diesen von irgend einer nahestehenden Sonne matt erhellten Centralkörper zu halten. LAMBERT giebt Zahlenwerthe für die Ausdehnungen der Systeme der verschiedenen Ordnungen, die nicht aus der Lust gegriffen sind, sondern ihren Ausgangspunkt daher nehmen, dass er die Parallaxe des Sirius aus photometrischer Vergleichung mit der Sonne erhält.

Auf der gleichen Grundlage baut MICHELL¹) auf, indem er in dieser Weise, mit Zwischenschaltung des Saturns die Parallaxe des Sirius bestimmt und sie unter einer Bogensecunde findet, den Sternen 6. Grösse, die Sirius an Licht 400 bis 1000 Mal übertrifft, kämen dann Parallaxen von nur 0"05 bis 0"03 zu.

¹⁾ An Inquiry into the probable Parallax and Magnitude of the fixed stars from the Quantity of Light, which they afford us and the particular circumstances of their Situation by the Rev. JOHN MICHELL. Phil. Transactions vol. LVII, pag. 234. London 1767.

60 Universum.

Die Gruppirung der Sterne zu Sternbildern ist ihm nicht lediglich ein Spiel des Zufalls, wenngleich die Einbeziehung irgend eines Sterns in ein bestimmtes Sternbild natürlich Sache der Willkür ist. Denn die Sterngruppen scheinen ihm durch ihren Anblick physische Zusammengehörigkeit anzuzeigen, zumal er findet, dass nach den Gesetzen der Wahrscheinlichkeit, die er zuerst auf diese Fragen anwendet, z. B. die beiden Sterne α1 und α2 Capricorni nur 1 als Wahrscheinlichkeit für ein so nahes Nebeneinanderstehen als Ergebniss zufälliger Vertheilung für sich hätten. Das sind Ansichten, die z. Thl. ganz neuerdings ausgesprochen sind, wenn wir z. B. aus der parallelen Bewegungsrichtung der Sterne im Gürtel des Orion und anderer auf eine geringe räumliche Distanz derselben von einander schliessen, oder wenn Höffler 1) nachweist, dass von den 7 Sternen des grossen Bären 5 von einer Kraft getrieben hinter einander den Raum durchsausen. Andrerseits hat die berühmte Spekulation über das Verhältniss der Zahl der optischen zu den physischen Doppelsternen Michell zum Urheber, der ausführt, dass eine halbe Million gegen 1 zu wetten sei, dass die 6 hellen Plejadensterne nicht durch Zufall so nebeneinander stehen. Er hält es für sehr wahrscheinlich, dass die Sonne selbst mit einigen Sternen, die vielleicht 350, vielleicht auch 1000 an Zahl sein mögen, einen besonderen Sternhaufen im Sternenheere bilde und kommt damit wieder mit ganz modernen Ergebnissen überein.

Und doch bei aller theilweisen Anerkennung, die wir den Ansichten der genannten haben zollen können, welch ein Unterschied zwischen ihnen und dem nächsten in der Reihe der Erforscher des Weltgebäudes, WILHELM HERSCHEL, dem Astronomen von Slough. Jene combinirten bekanntes zu theils nur geistvollen, theils richtigen Hypothesen. Dieser stellte zum ersten Male umfangreiche Beobachtungsreihen an, um auf Grund solcher neu gewonnenen Thatsachen ein weit sichereres Gebäude aufzuführen und schuf sich die dazu nöthigen Instrumente mit eigener Hand. Die von ihm angewandte Methode2) war die der Stern-Aichungen (star-gaugings, jauges d'étoiles) und bestand darin, dass er die Sterne zählte, die in einer bestimmten Zeit das 15' 4" im Durchmesser haltende Feld seines 20-füssigen Spiegelteleskops passirten. Die Grundidee (die er später selbst als lückenhast erkannte) war die: Wenn die Sterne gleichsörmig im Raume vertheilt sind und wenn das angewandte Fernrohr bis zur äussersten Grenze unseres Systems vordringt, so sind alle darin sichtbaren Sterne in einem Kegel enthalten, dessen Spitze im Auge liegt und dessen Oeffnungswinkel constant ist, nämlich gleich dem Durchmesser des Gesichtsfeldes, dessen Höhe aber veränderlich ist, wenn nicht das Milchstrassensystem zufällig eine Kugel mit der Sonne in der Mitte sein sollte. Die Anzahl der gleichförmig in einem solchen Kegel vertheilten Sterne würde der dritten Potenz seiner Höhe proportional sein, und somit ergeben die Abzählungen der Sterne in dem nach verschiedenen Stellen des Firmaments gerichteten Rohre die Entsernungen der Grenzen unsres Sternsystems an der betr. Stelle. Das Gesichtsfeld des HERSCHEL'schen Teleskops entspricht dem 833000. Theile des ganzen Himmels, aber selbst in der Zone, wo HERSCHEL ausschliesslich aichte, in + 45° bis - 30° Deklination, wären über 500 000 Gesichtsfelder erforderlich gewesen, um die ganze Fläche zu bedecken. HERSCHEL begnügte sich daher mit ungefähr 3400 Stichproben, die er leider nicht äquidistant anlegte und die er selbst, nahestehende Felder zusammenziehend, in 683 Mittel vereinigte. Die Zone, auf welche er sich beschränkte,

¹⁾ Ueber die Parallaxe des Systems Ursa major. A. N. 3456.

²⁾ On the construction of the heavens. Phil. Transactions 1784 und 1785.

61

erschien ausreichend, da sie sowohl den einen Pol der Milchstrasse, wie diese selbst in grosser Ausdehnung enthält.

Die Gestalt des Milchstrassensternhausens untersucht HERSCHEL nun in einem Schnitte, der 35° gegen den Himmelsaequator geneigt, seinen Knoten in 1241° hat. In ihm liegen die Sternbilder des Adlers, des Wassermanns, des südlichen Fisches, der Waage, des Eridanus, des Hasen, des Einhorns, der Hydra, des Löwen, des Haares der Berenice, der Jagdhunde, des Bootes, der Krone und des Herkules. Die jeweiligen Radien-Vectoren, d. h. die dritten Wurzeln der Sternzahlen, trägt HERSCHEL in einer oft reproducirten Zeichnung auf, welche diesen zur Milchstrassenebene ungefähr senkrechten Schnitt versinnbildlicht. Die Sonne befindet sich ungefähr in der Mitte. Die Längsaxe der Figur ist zu 850 Siriusweiten, die kleine Axe zu 155 solchen angenommen, das Verhältniss beider Axen ist also 11:2 Die grösste Entsernung der Grenze von der Sonne liegt in der Richtung des Sternbildes des Adlers, wo die zweigetheilte Milchstrasse sich auf 497 resp. 420 Siriusweiten erstreckt, ein leerer Raum gähnt zwischen beiden Aesten, die erst 220 Siriusweiten von der Sonne entfernt sich vereinigen. Auf der entgegengesetzten Seite ist die Grenze der einfachen Milchstrasse im grossen Hunde nur 352 Siriusweiten entfernt. Die grösste Entfernung in diesem Schnitt vom Einhorn zum Adler würde das Licht erst in 12920 Jahren durchmessen.

Aber HERSCHEL arbeitete rastlos an seinen Ideen weiter und hat sie stufenweise fortschreitend in 12 weiteren Abhandlungen 1) niedergelegt, die in den Philosophical Transactions« von 1786, 1789, 1791, 1794, 1796, 1799, 1802, 1806, 1811, 1814, 1817 und 1818 erschienen sind. Er erkannte, vor allem seit er das 20-füssige Teleskop durch Beseitigung des zweiten Spiegels lichtstärker gemacht und zumal nach Anwendung des 40-füssigen, dass er weder die Sterne als gleichförmig vertheilt annehmen dürfe, noch daran festhalten könne, dass er mit seinem Fernrohr bis zu den Grenzen der Milchstrasse vorgedrungen sei. Schon im 20-Füsser war er auf 6 Stellen in der Milchstrasse gestossen, die es ihm nicht gelang, in Sterne aufzulösen, der neblige Schimmer blieb, also durchdrang das Fernrohr den Raum nicht bis zu jenen Sternen, obwohl es den Blick 75 Mal weiter in die Tiefen des Himmels führte, als das unbewaffnete Auge dies that, und auch der 40-Füsser vermochte hier keine Auflösbarkeit zu erzielen. HERSCHEL sieht also das erhoffte Resultat seinen Händen entgleiten. Die Milchstrasse selbst bleibt unauflösbar, nur ausserhalb derselben zeigen ihm seine Hilfsmittel die Grenzen der Welt. Wenn aber die Hypothese gleichförmiger Sternvertheilung nicht aufrecht erhalten bleiben kann, so lassen sich diese Grenzen nur abstecken, wenn eine photometrische Abstufung der Sterne in jedem Gesichtsfeld hinzutritt. Diesen neuerdings mit Erfolg durchgeführten Gedanken hatte HERSCHEL schon, nur waren eben in seinen Aichungen die Sterne nicht nach Helligkeitsklassen abgezählt. Als Endergebniss mehr als 30-jähriger Bemühungen, kommt HERSCHEL zu dem Schlusse, dass die Milchstrasse eine ungeheure Ansammlung grösstentheils unregelmässig gebauter Sternhaufen sei, untermischt mit schwächer leuchtenden Nebelparthieen. Ihre Dicke ist klein gegenüber der Längsausdehnung, doch ist das Verhältniss nicht angebbar.

Den nächsten Schritt that F. G. W. STRUVE, dem ein geeignetes Material in die Hand gegeben war durch die unter seiner Leitung von Weisse catalogi-

¹⁾ Struve stellt in seinen » Etudes d'astronomie stellaire« diese Abhandlungen auf pag. 19 und 20 der Notes übersichtlich zusammen.

sirten Bessel'schen Zonen zwischen 15° nördlicher und stidlicher Deklination. wobei er für die Zwecke der Untersuchung der Sternvertheilung dieses Material in sinnreicher Weise umarbeitete, um aus den beobachteten Sternen die Anzahl der vorhandenen der gleichen Grösse zu ermitteln. Diese ganze Untersuchung findet sich ausführlich 1) auf pag. XII bis I. der von STRUVE geschriebenen Praefatio editoris zu dem Cataloge W, eingeleitet mit den bescheidenen Worten Res a proposito non aliena videtur, quaerere quantam partem stellarum in coelo inter certos magnitudinis limites exstantium zonae Besselianae offerant und allmählich weitergeführt zu der ersten klassischen Untersuchung über die Vertheilung der Fixsterne. In den ȃtudes d'astronomie stellaire, St. Petersbourg 1847« referirt STRUVE selbst die gleiche Arbeit und erweitert sie noch. Die Ueberlegung aber, die STRUVE anwandte, geht davon aus, wieviel Sterne BESSEL einmal, wieviel er zwei-, drei-, vier- und fünfmal beobachtet hat. Die Königsberger Zonen waren bekanntlich 2° hoch gedacht, doch so, dass 6' im Norden und Süden zugegeben wurden; ausserdem griffen die Zonen in R. A. ein wenig in einander über und stellenweise wurden ganze Zonen wiederholt. STRUVE berechnet nun den Theil der Fläche zwischen den Parallelen + 15° und -15°, der zweimal resp. dreimal und mehr von den Rechtecken der Zonen bedeckt wird, in welchem also die Sterne zweimal resp. dreimal und mehr beobachtet werden konnten und findet dann aus der Zahl der thatsächlich mehrfach beobachteten Sterne im Verhältniss zu den einmal beobachteten, die wahrscheinlichste Zahl der dort überhaupt existirenden; davon aber nicht vollkommen befriedigt, zieht er den Catalog von Piazzi heran, und reduzirt zunächst die Grössen beider Cataloge genau auf einander, dann stellt er die Zahl der von Bessel und von Piazzi beobachteten Sterne r resp. s und der darunter beiden gemeinsamen c für die Klassen 1.-6. Grösse, 7. Grösse und 8. Grösse auf und berechnet die Zahl Z der überhaupt dort vorhandenen nach $Z = \frac{r \cdot s}{c}$ und zwar für die einzelnen Rectascensions-

stunden. Dieser an und für sich richtige Wahrscheinlichkeitskalkül kann nur darum nicht ganz zutreffen, weil zwar Bessel aus der Fülle der den Meridiankreis passirenden Sterne ohne Programm die herausnahm, auf welche das in Deklination hin- und herbewegte Rohr traf, während Plazzi wenigstens für die helleren Sterne bis zur 7. Grösse ein Programm hatte, wie die häufige Wiederbeobachtung derselben zeigt, sodass hier der Zufall, der stets bei Wahrscheinlichkeitsrechnungen vorausgesetzt werden muss, nicht frei gewaltet hat. Da die Zahl der Sterne 9. Grösse bei Plazzi zu klein ist, um hier ähnlich vorzugehen (eben weil für diese Plazzi das Arbeitsprogramm aus früheren Catalogen fehlte) so schliesst Struve auf die Zahl der existirenden Sterne 9^m, indem er die Anzahl der von Bessel ein-, zwei-, drei- und viermal beobachteten Objecte dieser Klasse einer neuen ziemlich komplicirten Wahrscheinlichkeitsrechnung zu Grunde legt, für welche er die ein-, zwei-, drei- und viermal beobachteten Sterne 8. Grösse in Beziehung setzt zu den vorhandenen, die er der früheren Rechnung entnimmt.

Nachdem so die Zahlen der Sterne im Areale der 30° breiten äquatorealen Zone nach Rectascensionsstunden errechnet sind, halt STRUVE es für die helleren Klassen noch für richtiger, mit Hilse der Argelander'schen Uranometria die Vertheilung der Klasse 1.—5. Grösse abzusondern, denen also dann 4 weitere,

¹⁾ Zum ersten Male spricht STRUVE von seinen Arbeiten in dieser Richtung in der Einleitung zu seinem «Catalogus novus stellarum duplicium 1827«, pag. XXXIII bis XXXV.

63

6. Grösse nach Argelander, sowie 7. 8. 9. Grösse nach Bessel angestigt sind. Eine graphische Darstellung der sünd Dichtigkeitscurven am Schlusse des Weisseschen Cataloges zeigt dann sehr deutlich, dass die Sternzahlen zwei scharf ausgeprägte Maxima besitzen, da wo die Milchstrasse den Aequator schneidet, nämlich bei 6⁴ und bei 19⁴, allerdings fallen die Curven sür die verschiedenen Sternklassen recht verschieden aus, bei den hellsten Sternen ist das Maximum bei 19⁴ gar nicht vorhanden, das bei 6⁴ dagegen viel stärker ausgeprägt, als bei den übrigen; überhaupt ist das Dichtigkeitsmaximum in der Milchstrassenzone bei 6⁴ weit stärker, als das gegenüberliegende bei 19⁴.

Im Gegensatze dazu ordnet nun Struve auch die in diese Zone fallenden Sternaichungen Herschell's nach Stunden und giebt die relativen Dichtigkeiten an, die mittlere gleich 1 gesetzt, dieselben schwanken von 0·18 in Stunde 11⁴, bis zu 2·64 in Stunde 6⁴, dem einen Maximum, und bis 3·78 in Stunde 19⁴, dem anderen Maximum, der Spielraum ist also weit grösser als bei den Sternen, wo der Mindestzahl 1518 in Stunde 0⁴ eine Meistzahl von nur dem dreifachen 4422 in Stunde 6⁴ gegenüberstand. Ausserdem fallen die Maxima in der Darstellung der Sternaichungen viel steiler ab, als in denen der Sternzahlen. Dieseigt, dass die letzten in den Sternaichungen erreichten Sterne weit jenseits der Sterne 9. Grösse liegen und dass unser Sternsystem die Form einer flachen Scheibe hat, in deren Längsrichtung die Herschelschen Sternaichungen mit den grössten Zahlen liegen. Die Ansicht Struve's, dass die Anhäufung der Sterne bis zur 9. Grösse nach der Milchstrasse hin das optische Phänomen der Milchstrasse erzeuge, wird heute nach den Untersuchungen Easton's (siehe weiter unten) nicht mehr getheilt werden können.

Die Linie, die die beiden Stellen geringster Dichtigkeit der BESSEL'schen Sterne in 14 30m und 134 30m verbindet, bildet mit der Axe der grössten Dichtigkeiten, die nach 64 40m und 18h 42m zielt, nicht einen rechten, sondern nur einen Winkel von 78°. Aus dem Umstande, dass die Sterne der 1. bis 6. Klasse ihre Dichtigkeitsmaxima jedoch nicht in einem solchen Abstande von 12h haben, sondern bei 54 29 m und 204 30 m, also ungefähr 154 auseinander, folgt, dass die Sonne nicht genau in der Symmetrieebene des Systems steht, die beiden Punkte. wo die Kugel, die mit dem Radius der Sterne 6. Grösse um die Sonne geschlagen ist, die Symmetrieebene im Himmelsäquator schneidet, haben Fahrstrahlen, welche einen Winkel von 225° mit einander bilden. Das Perpendikel von der Sonne auf diese Ebene verhält sich also zum Einheitsradius wie sin 224°:1, d. h. es ist 0.38; um soviel also steht die Sonne von der Symmetrieebene ab, oder ungefähr um die Entfernung der Sterne dritter Grösse. Die Sonne weicht von der Symmetrieebene nach dem Sternbilde der Jungfrau zu ab. nach 134, also nach Norden. Allerdings weist das Auftreten besonders heller Sterne in der Richtung des Orion und die verhältnissmässige Sternarmuth beim Ophiuchus auf unregelmässige Kondensationen selbst in diesem innersten Theile des Milchstrassensystems hin,

In den > Études d'astronomie stellaires erweitert Struve diese Untersuchungen noch nach zwei Richtungen hin. Er zeigt zunächst die symmetrische Anordnung der Sternzahlen in der äquatorealen Zone zu den Stunden 6^k und 18^k , derart, dass in den Stunden von der Form $(0 \pm 6 \pm \epsilon)^k$, wo ϵ von 6 bis 0 abnimmt, gleichviel Sterne stehen und sich die Zunahme an einem Quadranten studieren lässt; freilich geht man von 6^k 30^m nach 18^k 30^m , so findet man dort 7116 Sterne bis 8. Gr., während von 18^k 30^m bis 6^k 30^m , deren 7344 zu finden sind, diese geringe Abweichung von der Symmetrie beweist aber nur ähnlich wie die analogen Zahlen aus den Herschelschen Sternaichungen die Abweichung der Sonne in der Richtung

nach 13^k. Allerdings ist bei den Zahlen der Herschel'schen Sterne der gleiche Ueberschuss procentual so viel grösser, dass der Gedanke nicht abzuweisen ist, dass auch in der Hauptebene die Vertheilung nicht gleichmässig ist, und dass die Abnahmen zu beiden Seiten derselben nicht gleichförmig vor sich gehen. Eine allgemeine Vorstellung von der Abnahme der Sterndichtigkeit in Schichten, die parallel der Hauptebene liegen, gewinnt aber Struve, indem er die Herschelschen Aichungen in der Zone der Bessel'schen Sterne zu Mitteln zusammenfasst nach galaktischen Breiten, die von 15 zu 15° wachsen. Er findet für die galaktische Breite φ = 0, 15, 30, 45, 60° die resp. Sternzahlen im Felde des Herschel'schen Teleskopes zu 122·00, 30·30, 17·68, 10·36, 6·52, und wagt wegen zu geringer Zahl der für φ = 75 und φ = 90° vorhandenen Aichungen die Werthe für diese Breiten nicht hinzuzufügen. Jene fünf stellt er dann durch die Fornel

$$z = \frac{6.5713 - 5.03\cos 2\varphi - 1.39\cos 4\varphi}{1 - 1.23088\cos 2\varphi + 0.23212\cos 4\varphi}$$

strenge dar, die für $\varphi=75^\circ$ resp. 90° , z=4.69 resp. 4.15 geben würde. Eine Integration führt damit auf 20374034 als Zahl der Herschell'schen Sterne über den ganzen Himmel. Die Dichtigkeit ρ der Sterne im vertikalen Abstande x (wo x=1 der Entfernung der letzten Herschell'schen Sterne entspricht) von der Hauptebene findet dann Struve als Function dieses Abstandes und, wenn die Dichtigkeit in der Hauptebene = 1 gesetzt wird, zu

$$\rho = \frac{1 + 395 \cdot 90 \cdot x^9 + 67607 \cdot 7x^4 + 10134 \cdot 5x^6 - 110063 \cdot x^8}{(1 + 487 \cdot 74 \cdot x^9 + 1497 \cdot 55 \cdot x^4)^2}$$

Er werthet die Formel für aequidistante x aus bis $x = 0.8660 = \sin 60^{\circ}$; weiter will er nicht gehen, weil das eine Extrapolation sein würde. Es zeigt sich deutlich die rasche Abnahme der Dichtigkeit mit dem Abstande von der Hauptebene, schon für $x = \frac{1}{20}$ ist sie unter $\frac{1}{4}$, für $x = \frac{1}{4}$ unter $\frac{1}{4}$ und für x = 0.866 kaum $\frac{1}{100}$. Setzt man den mittleren Abstand der Sterne von einander in der Hauptebene gleich 1, so verhalten sich offenbar die Kuben der durchschnittlichen Abstände der Sterne umgekehrt wie die Dichtigkeiten und die Abstände sind daher an der Grenze der Untersuchung d. h. im Abstande 0.8660 von der Hauptebene 5.729 mal so gross wie in dieser. In analoger Weise leitet nun STRUVE für die Sterne Bessel's 1.-7. Grösse und 1.-8. Grösse Formeln ab, welche ihre Anzahlen als Function der galaktischen Breite und ihre Dichtigkeit als Function des Abstandes von der Hauptebene darstellen, indem er den Radius der Kugeln, die diese Sterne einschliessen, gleich 1 setzt. In dem Abstande 1, d. h. für senkrecht über uns in Bezug auf die Milchstrasse stehende Sterne erhält er dann die Dichtigkeiten 0.40525 resp. 0.28410. Die gleichen Dichtigkeiten aber kann er auch ableiten aus der oben angeführten Dichtigkeitsformel für die HERSCHELschen Sterne, wenn er nur die Radien der beiden Sphären der Sterne 1-7m resp. 1-8" in Einheiten des Radius der HERSCHEL'schen Sterne ausdrückt; dies thut er, indem er die Stern-Zahlen der drei Klassen (und auch der Sterne 1-9m) für gleiche Flächen berechnet und die Radien den dritten Wurzeln aus den Sternzahlen proportional setzt. So findet STRUVE

für den die Sterne 1—9^m einschliessenden Radius 0·16567 , , , , , 1—8^m , , 0·10907 , , , , , , 1—7^m , , 0·06338 Sterne einschliesst.

Geht man mit den beiden letzten Zahlen in die obige Dichtigkeitsformel für ρ ein, so ergiebt diese 0·41365 resp. 0·31083 als Sterndichte in dem Abstand der Sterne 7. resp. 8. Grösse von der Hauptebene und diese Zahlen stimmen so

nahe mit den aus den besonderen Dichtigkeitsformeln gefundenen 0.40525 und 0.28410 überein, dass Struve darin eine ausreichende Prüfung seiner Annahmen erblickt. Endlich zieht er noch die ersten 6 Helligkeitsklassen der Argelanderschen Uranometrie in Betracht und leitet für sie ebenfalls die Radien ab. Er setzt dabei die mittlere Entfernung eines Sterns der Grösse n dahin fest, dass er darunter den Radius einer Kugel versteht, deren Volumen das Mittel hält zwischen den Kugeln, deren Oberflächen resp. die Sterne bis (n-1)ter und bis nter Grösse einschliessen. Indem er endlich alles auf den mittleren Abstand der Argelander'schen Sterne 1. Grösse reducirt, schliesst er mit folgender Tafel ab für die Radien der Kugeloberflächen, welche einschliessen alle Sterne

ARGELANDER'S	bis	zur	Grösse	1	1.26	BESSEL'S	bis	zur	Grösse	6			8.22
,,	,,	,,	,,	2	2.14	,,	,,	,,	,,	7			14.44
,,	,,	,,	,,	3	3.20	,,	,,	,,	,,	8			24.84
"	,,	,,	**	4	4.44	,,	,,	,,	,,	9			37.74
,,	39	,,	,,	5	6.21	und endl	ich :	alle	Sterne,	wel	che	1	
**	,,	,,	**	6	8.87	HERSCHE	L's	Aic	hungen	zei	gen	}	227.78
							v	vürd	en.			J	

Eine Kritik dieser Zahlen für später vorbehaltend, heben wir mit Struve die wichtigsten Ergebnisse seiner letzten Untersuchungen nochmals heraus. Die letzten dem unbewaffneten Auge sichtbaren Sterne sind beinahe neunmal so weit entfernt, als die erster Grösse, die schwächsten von Bessel beobachteten Sterne sind noch viermal weiter entfernt als das unbewaffnete Auge in den Raum vordringt, und die sechsfache Entfernung der von Bessel's Meridiankreis erreichten Sterne führt uns erst zur Grenze von Herschel's Sternaichungen.

Soviel über die Untersuchungen Struve's, die, soweit auch die reicheren Hilfsmittel unserer Zeit über seine Ergebnisse, die grösstentheils auf künstlich berechnete, nicht auf wirklich beobachtete Zahlen sich gründen mussten, hinausgeführt haben, immer eine Epoche in der Geschichte der Anschauungen über das Universum bilden werden, als der erste Versuch, die räumliche Vertheilung der Fixsterne der Rechnung zu unterwersen. Zugleich erscheint es angemessen, hier die historische Reihenfolge in den Arbeiten zu verlassen, einmal weil die wichtigsten Ergebnisse, die sich um den Namen Easton für die Milchstrasse und Seeliger für die Sternvertheilung gruppieren, doch beinahe alle neueren Datums sind, und dann weil zuvor das reichlich im Lause der Jahrzehnte angehäuste Material auszuzählen ist.

Die Milchstrasse.

Was zunächst die Milchstrasse selbst angeht, so liefert u. A. eine eingehende Beschreibung ihres Verlauses der jüngere Herschel in seinen » Outlines of Astronomy, London 1849s, art. 786 ff. Derselbe lässt sich wohl angeben nach den Sternbildern, durch die er führt, unmöglich aber kann eine Beschreibung eine klare Vorstellung von all den verschiedenen Verästellungen und seinen und seinsten Lichtabstusungen in der Milchstrasse geben. Fangen wir mit der Cassiopea an, wo die beiden Sternhausen G. C. 5031 und 341 in unverkennbarem Zusammenhang mit der Milchstrasse stehen, so wendet sich diese dann mit wachsendem Glanze nach dem Schwan, wo ihre Zeichnung besonders auffällig und kontrastreich ist. Eine schon angedeutete Theilung wird zur völligen Spaltung im Adler, wobei der südliche Zweig der breitere und hellere ist, der nördliche bricht sogar in der Schlange vollständig ab. Im Skorpion sind wieder beide Theile sichtbar und hier erreicht auch die Milchstrasse ihre grösste Breitenausdehnung. Im

66

Schützen wird dann der stidliche Zweig besonders hell. Immer noch getrennt ziehen beide Theile durch das Winkelmaass und den Wolf weiter und vereinigen sich dann im Kreuz, wo sofort die Milchstrasse ihre geringste Breite hat. Hier ist auch ein wirkliches Loch in der Milchstrasse, der sogenannte grosse Kohlensack. Der Glanz derselben wird beim weiteren Verlauf durch das Sternbild des Schiffes stellenweise so schwach, dass man an eine völlige Unterbrechung denken könnte. Auch nach dem Eintritt in das Einhorn ist die Milchstrasse recht schwach, bleibt so zwischen Orion und Zwillingen, tritt dann im Fuhrmann kräftiger auf und zieht in wunderbar verästelter Struktur leuchtend durch den Perseus zur Cassiopea, von der wir ausgingen.

So stark auch die Abweichungen im einzelnen sein mögen, im Grossen und Ganzen legt sich die Milchstrasse symmetrisch um einen grössten Kreis. Die genaue Bestimmung seiner Lage ist ausserordentlich schwierig. Dies wird am deutlichsten, wenn die Werthe für den Ort des Pols, nebst dem Aequinoctium, auf das er bezogen ist, und den sphärischen Radius dieses grössten Kreises hier zusammengestellt werden, wie sie verschiedene Beobachter angenommen haben.

	Aequ.	α	8	R	
HERSCHEL .	1785	186°	32°	-	Phil. Transactions. 1785, pag. 253.
STRUVE	1825	189 30'	30 50'	93° 5′	Catalogus Regiomont. Introductio.
,,	1825	189 30	31 30	_	Etudes d'astronomie stellaire.
ARGELANDER	1800	189	28 30		Ueber die Eigenbewegung des Sonnensystems § 7.
,,	1800	189 15	31 28		Bonn. Beob. Bd. V. Einl. §3. Anm.
"	1855	188 15	30		Bonn. Beob. Bd. V. Einl. § 3.
HOUZEAU .	1880	191 8	28 47	90 48	Uranométrie générale.
,,	1880	192 17	27 30	90 20	,, ,,
HOUZEAU-	1880	191 9:	5 29 19	90 35.4	RISTENPART. Untersuchungen
RISTENPART.	1880	190 24:	3 28 13	91 16.2	über die Constante der Präcession.

Zunächst hinter dem Namen steht das Aequinoctium, auf welches sich die beiden Coordinaten beziehen, die letzte Columne giebt den sphärischen Abstand des grössten Kreises von diesem Pol. Herschel's Werth ist aus seinen Sternaichungen abgeleitet. Struve's Werthe beruhen auf der Bessel'schen Zone von + 15° bis — 15° Deklination. Argelander's erster Werth ist aus dem Verlaufe der Milchstrasse in dem Atlas von Bode's Uranographie abgeleitet, der zweite nur aus dem nördlichen Theile derselben, der dritte ist ein Mittel aus dem ersten und dem Herschel'schen mit Rücksicht auf Präcession.

GOULD . . | 1875 | 190 20 | 27 21 | 90 = 6 | Uranometria Argentina.

Houzeau zeichnet in der Juranométrie générale, Annales de l'observatoire royal de Bruxelles, nouvelle série, tome I, Bruxelles 1878s, die Milchstrasse nach eigenen Beobachtungen auf beiden Hemisphären und zwar in 4 verschieden hellen Nuancen. Die Stellen grössten Glanzes glaubt er als Schwerpunkte der Milchstrasse in nächster Umgebung betrachten zu dürfen. Er hebt 33 solcher points d'éclat maximum heraus, deren Helligkeiten zwischen 4. und $6\frac{1}{4}$. Sterngrösse liegen und löst die Aufgabe, den Punkt zu finden, von dem alle 90° abstehen, indem er Struve's Pol annehmend, dazu ein $d\alpha$ und $d\delta$ bestimmt, das giebt das erste oben angeführte Resultat als Pol, und 90° 48' für den mittleren Abstand anstatt wie angenommen 90° . Das zweite Resultat findet Houzeau, indem er den einzelnen points Gewichte zwischen 4 und $\frac{1}{4}$ je nach ihrer Helligkeit ertheilt. Strenger wäre es gewesen, nicht die Annahme zu machen, dass die Milchstrasse

ein grösster Kreis wäre, sondern den sphärischen Abstand ihrer Mittellinie von dem Pole mit als Unbekannte einzusühren. Dies thut RISTENPART mit der HOUZEAU'schen 33 Punkten nach den Formeln, die auf pag. 251 des IV. Heftes der »Veröffentlichungen der Grossh. Sternwarte Karlsruhe« entwickelt sind, und erhält so ohne Unterscheidung von Gewichten den dritten Werth. Der vierte resultirt nach Ausschliessung eines stark abweichenden Punktes und beweist durch die grosse dadurch bewirkte Aenderung die Unsicherheit des Resultates. 33 Punkte Houzeau's sind übrigens recht ungünstig vertheilt. 23 derselben liegen zwischen 16h und 22h, also auf 1 des Umkreises beisammen. Es scheint daher dem Referenten der andere Weg empfehlenswerther, den Gould in der Uranometria Argentina (>Resultados del observatorio nacional Argentino en Cordoba, Vol. I, 1879c) eingeschlagen hat. Dieser hat aus seinen resp. THOME's genauen Zeichnungen des Verlaufes der Milchstrasse südlich von + 10° Deklination und den Heis'schen Angaben für den Nordhimmel für jede halbe Rectascensionsstunde die Deklination der Mitte einer möglichst senkrecht die Milchstrasse durchschneidenden Graden bestimmt. Von den 48 Punkten wurden zunächst die ausgeschlossen, welche in 154h bis 194h, wo die grosse Spalte sich befindet, lagen. Die übrigen schlossen sich sehr schön einem grössten Kreise an, von dem nur 2 um mehr wie 35' abwichen, während 164' die mittlere Abweichung war, und dessen Pol oben angeführt ist. Nach Gould steht also die Sonne genau in der Ebene der Milchstrasse, nach den HOUZEAU'schen Bestimmungen würde sie dem Nordpole der Milchstrasse näher stehen. Höchstens könnte man nach Gould auf eine Abweichung der Milchstrasse von 6' nach Norden von jenem grössten Kreise schliessen (wenn man die Trennungsstelle ausser Acht lässt; mit Rücksicht auf diese würde im Gegentheil die Mittellinie 6' nach Süden zu liegen kommen).

Die grosse Trennung in der Milchstrasse geht vom Schwan bis nahe zu α Centauri. Die Mitten beider Zweige entfernen sich am weitesten auf 17°40′ der Zweig in der kleineren Rectascension ist scharf unterbrochen auf eine Länge von 8° im Ophiuchus von -2° bis -10° Declination. Im Innern der Trennung ist auch vielfach schwacher Lichtschimmer zu bemerken, doch lassen sich die inneren Grenzen beinahe so scharf ziehen wie die äusseren. Die Trennung geht über 100 Deklinationsgrade und 6 Rectascensionsstunden hinweg in einer Gesammtlänge von 125°.

Die Mittellinie der beiden Aeste würden übrigens nach Gould durch 2 kleine Kreise dargestellt, deren Coordinaten sein würden für den

	α	0	K
vorangehenden	182° 25'	27° 55′	89° 8'
folgenden	196 30	27 32	92 39

Indessen ist die Position dieser Kreise insofern schwierig zu bestimmen, als die beiden Aeste der Milchstrasse wieder Verästelungen und Kanäle zeigen. Der am meisten ausgeprägte und wichtigste Fall ist bei der grossen Unterbrechung des vorangehenden Zweiges zu finden. Hier ist ein über 20° langer, heller und gewundener Streifen in dem Schwanze der Schlange und der nördlich vorangehenden Ecke des Sobieski'schen Schildes vorhanden, der nahezu von beiden Aesten isolirt ist; rechnet man ihn zum folgenden Aste, so wird dessen Mittellinie weit nach Westen weggezogen, und der vorangehende ist thatsächlich abgebrochen. Betrachtet man ihn aber als die Fortsetzung des vorangehendens os ist"er für diesen immerhin nur ein ganz schmales Band, welches da ansetzt, wo vorher der innere Rand des Astes war. Gould glaubte nach langem

Schwanken ihn zum folgenden Ast rechnen zu sollen, sodass der vorangehende thatsächlich in Nichts endigt.

Die Breite der Milchstrasse ist sehr verschieden und verschiedener Auffassung fähig je nach der Durchsichtigkeit der Luft. Gould giebt auf pag. 379 für jeden Punkt galaktischer Länge (die Längen vom aufsteigenden Knoten der Milchstrasse auf dem Aequator in 280° 20' an gezählt) und zwar von 5 zu 5°, die Breite der Milchstrasse einmal so, wie sie jederzeit bei unbewölktem Himmel sichtbar ist und dann wie sie in vollständig klaren Nächten bei aussergewöhnlich durchsichtiger Luft sich gestaltet. Die allergrösste Breite liegt in der galaktischen Länge 210° (a = 7^{4} 41^{m} , δ = -26°) mit 57° .0 (von denen nur 24° ·5 leicht sichtbar sind), die engste bei 345° (a = 18^{4} 13^{m} , δ = -15°) mit 24° ·8 (von denen aber 24° ·1 immer gesehen werden); die zweitengste Stelle dagegen mit 26° ·2 in 145° Länge (a = 5° 80^{m} , δ = $+30^{\circ}$) schrumpft für gewöhnlich auf 9° ·4 zusammen.

Es fällt auf, dass die breitesten Stellen der Milchstrasse in 160° bis 225° Länge liegen, ungefähr gegenüber der Verdopplung in 280° bis 50° Länge, wo also auch durch dieses Phänomen eine grosse Gesammtbreite erzeugt wird. Die engsten Stellen, die zugleich besonders hell sind, liegen in 105° bis 150° und 255° bis 270° Länge, wieder ungefähr einander gegenüber. Und man kann sich des Eindrucks nicht erwehren, als ob in grossen Zügen hier zwei Milchstrassenringe wirksam wären, die, beide nahe grösste Kreise, um 14° gegen einander geneigt sind, und sich in den engen Stellen für unseren Standpunkt verdecken, während in der ganz breiten Stelle, die eine unmerklich in die andere übergeht.

Soviel über die Lage der Milchstrasse. Was nun die Feinheiten ihrer Struktur angeht, so ist eine Beschreibung ganz unzulänglich und nur Zeichnung kann hier wirken. Auch diese aber ist schwierig herzustellen, weil eben geradezu Künstlerhand dazu gehört, um dem allmählichen Ineinanderübergehen der verschiedenen Lichtnuancen den rechten Ausdruck zu verleihen. Zwei gute Darstellungen haben wir schon in HOUZEAU's und THOME's Arbeiten kennen gelernt.

In den »Results of Astronomical Observations made during the years 1834—8 at the Cape of Good Hope by J. F. W. HERSCHEL, London 1847s, findet sich auf plate XIII der beigegebenen Karten eine Darstellung der Partie vom Antinous bis zum Einhorn.

BOEDDICKER hat auf der Sternwarte des Lord Rosse zu Birr Castle, Parsonstown mit besonderer Sorgfalt die Milchstrasse bis zu — 10° Deklination in 4 Zeichnungen auf Blättern von 18 zu 23 Zoll in stereographischer Projection dargestlund als Frucht 5-jähriger Arbeit der Royal Astronomical Society 1889 vorgelegt¹), und 1892 bei Longman, Green & Co. in London erscheinen lassen. Ein Jahr später hat Easton in Dordrecht einen besonderen Atlas der Milchstrasse herausgegeben³)¹ der ebenfalls nur die Gegend bis zum Orion einerseits und zum Sobieski'schen Schilde andererseits umfasst. Wesley vergleicht in einem Referate in >Observatory Vol. XVII¹, pag. 57 anlässlich einer Besprechung der Easton'schen Arbeit diese mit der von Boeddicker und stellt fest, dass die Boeddicker'sche reicher an Details sei, dass es aber fast entmuthigend sei, die oft nur geringe Aehnlich-

¹⁾ Monthly Notices Vol. L, pag. 12. Zwei kleine Referate darüber vergl. Observatory Vol. XV., pag. 151 und 193.

²⁾ EASTON, La Voie Lactée dans l'hémisphère boréal; cinq planches lithographiées, description détaillée, catalogue et notice historique avec une préface par H. G. VAN DE SANDE BAKHUYZEN Dordrecht et Paris, GAUTHIER Villars 1893. Vergl. auch das eingehende und anerkennende Referat von Klein in dem Jahrbuch der Astronomie und Geophysik für 1894, pag. 94.

keit zwischen beiden Darstellungen wahrzunehmen. Der einzige Weg zu einer wirklichen Kenntniss der Milchstrasse sei daher, wenn möglichst viele Liebhaber der Astronomie unabhängig von den bereits vorliegenden Zeichnungen sich neu an die Aufgabe heranmachten, nach eigenen Wahrnehmungen dieselbe abzuzeichnen; nur so könne der persönliche Fehler eliminirt werden.

Die hier geforderte Betheiligung von Laien ist schon öfters angeregt worden. zuerst wohl in der klassischen »Aufforderung an Freunde der Astronomie zur Anstellung von ebenso interessanten und nützlichen, als leicht auszuführenden Beobachtungen über mehrere wichtige Zweige der Himmelskunde«, die ARGE-LANDER in SCHUMACHER'S Jahrbuch für 1844, pag. 122 erliess, dann hat Heis in seiner >Wochenschrift für Astronomie, Meteorologie und Geographie« 1864, pag. 265, diese Aufforderung wiederholt und besonders auf die Benutzung von Höhenstationen und Orten fern vom Lichtmeer der grossen Städte dabei hingewiesen. In Befolgung dieser Aufforderung berichtet KLEIN in Band 1867, pag. 285, derselben Zeitschrift über die scheinbare Ausdehnung der Milchstrasse, wobei HEIS feststellt, dass er ihr Licht noch weiter als KLEIN zu verfolgen im Stande ist. Auf den Beobachtungen des ersteren beruhen dann die Zeichnungen in HEIS' >Atlas coelestis novus«, über deren technische Darstellung sich HEIS selbst nicht ganz befriedigt äussert1), während in dem Klein'schen >Sternatlas für Freunde der Himmelsbetrachtunge, Leipzig 1888, die Milchstrasse überhaupt nicht dargestellt ist3).

MARTH hat in Uebereinstimmung mit Lord LASSELL auf Malta solche Milchstrassenzeichnungen erleichtern wollen, indem er die galaktischen Coordinaten der dem unbewaffneten Auge sichtbaren Sterne berechnete. Diese sollen zuerst in die Karten niedergelegt und dann die Contouren der feinen Milchstrassennebel nach Augenmaass zwischen sie eingefügt werden. Der Pol der Milchstrasse ist dabei zu 190° A. R und 60° N. P. D3) angenommen. Und zwar finden sich in Monthly Notices Vol. XXXIII, pag. 1 ff. alle Sterne der nördlichen Hemisphäre, deren galaktische Breite 15° nicht übersteigt und eine Anzahl noch weiter von der Milchstrasse abstehender und zwar nicht etwa in Länge und Breite, sondern indem gleich die Länge der zu projektirenden Karten zu 6 Fuss und ihre Breite zu 8 Zoll angenommen ist, werden sofort die rechtwinkligen Coordinaten der einzutragenden Sterne in Zollen angeführt, 5 Grade entsprechen sonach einem Zoll. Die zweite Hälfte - die südlichen Sterne - folgt im gleichen Bande, pag. 517-527, ist aber auf je 20° Breite ausgedehnt und in Vol. XXXIV, pag. 77 -82 lässt Marth ein Supplement folgen, welches auch für die nördliche Hälfte noch die fehlenden Sterne nachträgt, damit die Gesammtbreite der Zone auch hier 40° wird. Diese Sterne sind wirklich als Skelett für die Eintragung der Milchstrasse nur von Trouvelor benutzt worden, dessen Pastellzeichnungen auf der Ausstellung in Philadelphia zu sehen waren, und dann von CHARLES SCRIBNER'S Sons in New-York herausgegeben wurden; auch sie gaben - in Cambridge, Mass. angefertigt - nur den nördlichen Theil. MARTH kommt daher in Vol. LIII der Monthly Notices, pag. 74, nochmals auf den Gegenstand zurück, und theilt jetzt wirklich die galaktischen Längen und Breiten der Sterne mit unter Beibehaltung des früheren Poles, obwohl er Gould's Bestimmung für richtiger hält, dadurch wird die Wahl der Skala jedem freigestellt. Die erste Hälfte der Sterne

¹⁾ Vergl. V. A. G. Band VI, pag. 267.

²⁾ Eine Darstellung der Milchstrasse, die SCHMIDT unter dem durchsichtigen Himmel Athens angefertigt hat, liegt unveröffentlicht auf dem astrophysikalischen Observatorium in Potsdam.

³⁾ Wie nach Verbesserung eines offensichtlichen Druckfehlers statt Decl. gelesen werden muss-

ist pag. 78—111, die zweite pag. 384—417 abgedruckt, letzterer folgen einige Rechnungen mit Gould's Pol. Diese Sterne hat Pannekoek kartirt, und zwar so, dass jedes Kartennetz und jede Bezeichnung der Sterne vermieden ist, die störend wirken müssten, und letztere nur am Rande vermerkt sind 1). In den Mitheilungen der V. A. P. 1897, pag. 1 bringt er dann »Vorschläge für wissenschaftliche Beobachtungen der Milchstrasse,« welche die Benutzung dieser Karten voraussetzen, die daher gratis von Herrn J. Plassmann in Münster für Interessenten zu beziehen sind. Den gleichen Zweck, weitere Kreise zu Milchstrassenzeichnungen heranzuziehen, verfolgen drei Aufsätze desselben Verfassers in Popular Astronomy, Vol. V, pag. 395 »The necessity of further research on the Milky Way«; pag. 485 »New charts for inserting the Milky Way« und pag. 524 »On the best method of observing the Milky Way«.

Die Früchte dieser Anstrengungen müssen noch abgewartet werden und gegenwärtig sind wir noch weit entfernt von einer Kenntniss der Milchstrasse in all ihren feinen Details. Besonders hervortretende Eigenthümlichkeiten aber mögen hier zusammengestellt werden. Zunächst ist der Kohlensack im Sternbilde des Kreuzes nicht das einzige »Loch« in der Milchstrasse. Easton weist in seinem Catalog heller und dunkler Flecken in derselben 164 Objecte der letzteren Art nach, namentlich eine grosse leere Stelle zwischen A Cygni und a Cephei, die er als nördlichen Kohlensack bezeichnet. CHAMBERS2) zählt solche dunkeln Stellen unter anderm im Skorpion auf. BARNARD berichtet in A. N. 2588 über die Auffindung eines kleinen schwarzen Loches ebenda, von dreieckiger Form von 2' Durchmesser, an dessen nördlich vorangehendem Rande ein heller orangefarbener Stern stehe in 17h 56m - 27° 51' (1884. o). Auch SECCH1 spricht A. N. 975 von mehreren unter dem klaren Himmel Roms dem unbewaffneten Auge sichtbaren Löchern. Diese Löcher, vom grossen Kohlensack bis zu den kleinsten, lassen sich wohl nur als wirkliche Spalten und leere Räume in der Milchstrasse deuten und nicht wie RANYARD will, als ein dunkles Medium, welches sich zwischen uns und die betr. Stelle schiebt. Man sah meist diese Löcher als Beweis für eine ausserordentlich geringe Tiefenausdehnung der Milchstrasse in der Richtung des Visionsradius an; denn bei grösserer Tiefe müsste man sich die Löcher röhrenförmig denken und es wäre dann doch ganz unvorstellbar, warum die Axen all dieser Röhren genau auf die Sonne zu gerichtet wären. SEELIGER hat aber jetzt durch einfache theoretische Ueberlegungen³) gezeigt, dass jede gegebene Anordnung der Sternvertheilung ganz unabhängig von der grösseren oder geringeren Tiefe im Visionsradius ist, auf welche wir sie uns vertheilt denken, und widerlegt einen von Easton hiergegen im Astrophysical Journal Vol. XII, pag. 150 erhobenen Einwand in Vol. XIII. Heft 2 der gleichen Zeitschrift. In der That ist offensichtlich, dass wenn die Milchstrasse zum Theil aus isolirten Sternhaufen besteht, dann zwischen denselben leere Räume bleiben können, die von den über- und nebeneinanderliegenden Sternhaufen vollständig umgeben, jedem einigermaassen ent fernten Standpunkte freie Durchsicht gewähren.

Das Gegentheil dieser schwarzen Löcher bilden isolirte Nebelparthieen in der Milchstrasse und besonders ein schwach leuchtendes Lichtband, welches Searle in A. N. 2358 nach Beobachtungen aus dem Jahre 1880 auf der Harvard Stern-

Eine Anzahl Verbesserungen zu MARTH's Rechnungen und seinen Karten giebt er Monthly Notices, Vol. LIII, pag. 420 V. A. P. Jahrgang 7, pag. 10 (letztere auch in Popular Astronomy, Vol. V, pag. 485) und V. A. P. Jahrgang 8, pag. 29.

²⁾ Astronomy, pag. 111.

³⁾ Betrachtungen über die räumliche Vertheilung der Fixsterne, pag. 64.

71

warte beschreibt. Dasselbe würde, 5° breit, zwischen α und δ Aquilae beginnen, dann zwischen α und β Aquarii passiren, 15 Aquarii überschreiten, 27 Piscium und ν Piscium enthalten und dann durch die südlicheren Parthieen des Widders auf die Plejaden zueilen, wo der Anschluss an die Milchstrasse wieder erreicht wird. Diese einzeln gebliebenen Beobachtungen SEARLE's erscheinen heut zu Tage in besonderem Lichte, wo Wolf Nebelmassen entdeckt hat, die von den Plejaden sich weit weg erstrecken, und daher vielleicht das eine Ende der von SEARLE's feinem Auge wahrgenommenen Milchstrassenverzweigung sind.

Man könnte daran denken, die genauere Darstellung des Verlaufes der Milchstrasse von der Photographie zu erhoffen. Kurze Expositionen versagten hier aber nach BARNARD 2) vollständig. Es zeichnen sich dann nämlich lediglich die Sterne in der Milchstrasse auf, von dieser selbst aber kommt keine Spur. Es ist hier wesentlich, um den Eindruck der Milchstrasse hervortreten zu lassen, dass sehr grosse Regionen photographirt werden, welche dunkle Stellen des Himmels und von der Milchstrasse bedeckte neben einander enthalten. Es müssen also Portraitlinsen von möglichst grosser Oeffnung mit möglichst kurzer Brennweite verwendet werden, sodass vielleicht ein Feld von 100 Quadratgraden abgebildet wird, in Verbindung mit mehrstündiger Exposition. Wenn man eine solche Platte dann auf eine kleinere Skala reducirt, so treten für das Auge deutlich die Contraste hervor. BARNARD reproducirt u. A. eine solche Aufnahme der Milchstrasse, deren Mitte in 17th 56m und - 28° liegt, die über 3 Stunden exponirt ist und spricht die bis jetzt unerfüllte Hoffnung aus, auf diese Weise einen vollständigen photographischen Milchstrassenatlas herstellen zu können. Bekannter noch sind die wundervollen Daueraufnahmen Wolf's, die weit längere Expositionen erfahren haben und ebenso wie einige Aufnahmen BARNARD's z. Th. in Knowledge3) reproducirt sind. Immerhin kann man zu einer dem Auge ähnlich erscheinenden Darstellung der Milchstrasse auf diese Weise nicht kommen, denn da es bekannt ist, dass die Milchstrassensterne wesentlich dem 1. Spektraltypus angehören, so wirken sie und noch mehr ausgedehnte Nebelmassen ultravioletten Lichtes, die ebenfalls Wolf mehrfach entdeckt hat, weit stärker auf die Platte als die dem Auge auffallenden Stellen. Es wäre auch noch zu erwägen, ob das Schnittphotometer, welches Wolf jüngst zur Bestimmung der hellsten Stellen des Zodiakallichtes verwandt hat4), nicht sehr geeignet wäre, in ganz analoger Weise die Milchstrasse klassisch zu aichen. BARNARD folgert aus seinen photographischen Versuchen und HOLDEN⁵) stimmt ihm anlässlich eines Berichtes über die Leistungen des 36-Zöllers der Lick-Sternwarte darin bei, dass der Eindruck der Milchstrasse nicht von den hellen Sternen hervorgerufen wird, auch nicht von den helleren teleskopischen Sternen, die ja die Platte noch einzeln abbildet, sondern von dicht gedrängt stehenden Sternen vielleicht der HOLDEN findet die Milchstrasse auch im 36-Zöller stellenweise unauflösbar. Und wenn SEARLE die Existenz seines oben beschriebenen Lichtbandes dadurch erhärten will, dass er versucht, es durch die Anhäufung von BD-Sternen, die er abzählt, zu erklären, so ist diese irrige Voraussetzung, als ob

¹⁾ Max Wolf. Die Aussennebel der Plejaden; München, Sitzungsber. 1900.

²⁾ Monthly Notices, Vol. L, pag. 312.

³⁾ Knowledge Jahrgang 1894, 1895 u. ff. Vergl. auch die prachtvollen 8 stündigen Expositionen Wilson's in Popular Astronomy Vol. III, pag. 58.

⁴⁾ MAX WOLF. Ueber die Bestimmung der Lage des Zodiakallichts und den Gegenschein. Sitzungsber. der math. phys. Classe der k bayer. Akademie d. Wiss. 1900, Band XXX, Heft II.

b) Sidereal Messenger 1888, pag. 298.

Sterne 9. Grösse Milchstrassenschimmer erzeugen könnten, nur die Folge einer Befangenheit in den Ansichten von STRUVE's études d'astronomie stellaire, die wir in dieser Hinsicht noch mehrfach zu widerlegen im Stande sein werden.

Das Material zur Untersuchung der Sternvertheilung.

Das Material auch die Vertheilung der Sterne im Milchstrassensternhaufen eingehender zu untersuchen, beruht auf der Abzählung der Sterne nach bestimmten Grössenordnungen und der Voraussetzung, dass alle Sterne einer bestimmten Grössenordnung innerhalb des betrachteten Raumes wirklich bekannt seien. Sterncataloge aber, die eine sichere Gewähr dafür übernehmen können, alle Sterne bis zu einer bestimmten Helligkeit zu enthalten, sind nur die Durchmusterungen, die bei feststehendem Fernrohr alle hindurchpassirenden wenigstens beobachten konnten. Dabei kann aber die niedrigste Grössenordnung unmöglich vollständig sein, da ihre Mitnahme nur die Gewähr bietet, dass die vorhergehende nahezu vollständig aufgenommen ist. Thatsächlich ist die Bonner Durchmusterung für die Sterne bis zur Grösse 9:0 sehr nahe vollzählig mit verschwindenden, für diese Untersuchungen nicht belangreichen Ausnahmen und höchstens könnte man nach Schönfeld eine gewisse Vollständigkeit bis zur Grösse 9:2 annehmen. Die südliche Durchmusterung und die Cordoba Durchmusterung, die bis 10. Grösse gehen, mögen bis zur 9.5 vollzählig sein, obwohl sie eine so ausgedehnte Prüfung wie die erstgenannte daraufhin noch nicht zu bestehen gehabt haben. Auch die photographische Durchmusterung kann zwar nach Art ihrer Herstellung eher bis zu ihrer Grenzgrösse 10.5 für vollständig erachtet werden, doch ist die aktinische Wirkung der Sterne nach den Untersuchungen Kapteyn's 1) eine derart mit wachsender galaktischer Breite abnehmende, dass hier ganz andere Ergebnisse für die Sternvertheilung von vorn herein zu erwarten sind2) Die Abzählungen dieser Durchmusterungen sind in grossen Zügen in ihren resp. Einleitungen geschehen, wo z. B. ARGELANDER selbst bereits in der Einleitung zu Band 5 der Bonner Beobachtungen genau die Vertheilung der Durchmusterungssterne sowohl nach Rectascension und Deklination, wie nach Zonen parallel zur Milchstrasse untersucht hat3) und folgert, dass man zwar in diesen Sternen die Anordnung nach Zonen parallel zur Milchstrasse nachweisen könne, dass es aber zur wahren Erkenntniss der Constitution des Fixsternsystems, zwischen den BD-Sternen und den HERSCHEL'schen Sternaichungen noch eines Zwischengliedes bedürfe. Genauere Abzählungen der BD-Sterne hat dann Littrow in seiner »Zählung der nördlichen Sterne im Bonner Verzeichnisse nach Grössen« (Sitzungsberichte der K. Akademie der Wissenschaften, LIX Band, Wien 1869) mitgetheilt.4) Er hat dabei aber nur in den einzelnen Deklinationsgraden die Zehntelgrössenklassen abzählen lassen, ohne Trennung nach Rectascensionen und seine Zählungen haben daher nur den Werth, zu zeigen, was schon bekannt war, dass nur die halben und ganzen Grössen der BD, die an Zahl bedeutend überwiegen, wirklich geschätzt sind, während die anderen Zehntel, die lediglich das Resultat des Mittelnehmens sind, viel weniger häufig vorkommen. Seeliger liess daher eine

Bulletin du comité international pour l'exécution photographique de la carte du ciel, tome II, 1892.

⁵⁾ STRATONOFF hat jetzt die Verwerthung der drei Bände der PD für eine Bestimmung der Sternvertheilung begonnen.

³⁾ Auch Abzählungen in den einzelnen Deklinationsgraden von 4^m zu 4^m Abstand sind in Bonn ausgeführt, aber nicht publicirt (vergl. Einleitung zu Band 5, pag. 8).

⁴⁾ Zusammengefasst für ganze Grössenklassen giebt LITTROW diese Abzählungen richtig in A. N. 1741 verfehlt in A. N. 1487; doch sind dieselben, wie gesagt, ohne Interesse.

neue Abzählung aussühren, wobei er nur nach halben Grössen trennte, und die folgenden 7 Klassen bildete 1.0 - 5.5, 5.6 - 6.0, 6.1 - 6.5, 6.6 - 7.0, 7.1 - 7.5, 7.6 - 8.0, 8.1 - 8.5, 8.6 - 9.0, 9.1 - 9.5, geleitet von der Absicht, die letzten 5 Zehntel 9:1 - 9:5, die bekanntlich ein anderes photometrisches Verhalten zeigen, als die helleren Sterne, für sich abzusondern, sonst hätte die Bildung von Klassen 1 - 6.2, 6.3 - 6.7, 6.8 - 7.2, u. s. w., welche die mittlere Grösse einer Klasse auf eine runde halbe oder ganze Grösse legen, näher gelegen, die er bei anderen Untersuchungen (vergl. pag. 70) benutzt hat. Ferner wurde nach Rectascensionen von 20 zu 20 Minuten getrennt. Die ausführlichen Abzählungen für jeden Grad finden sich in den neuen Annalen der Münchener Sternwarte, Band II. Abtheilung C mitgetheilt, Nach Zusammenfassung zu je 40 Zeitminuten und 5 Deklinationsgraden sind die Durchmusterungssterne nördlich des Aequators abgezählt in »Ueber die Vertheilung der Sterne auf der nördlichen Halbkugel nach der Bonner Durchmusterung« und »Zur Vertheilung der Fixsterne am Himmel« von H. SEELIGER. (Sitzungsber. der math. phys. Classe der k. bayer. Akademie der Wiss. 1884, Hest 4 und 1899, Hest 3.) Die Abzählungen der SD + den zwei südlichsten Graden der BD nach dem gleichen Princip finden sich in » Ueber die Vertheilung der Sterne auf der südlichen Halbkugel nach Schönfeld's Durchmusterung« von H. SEELIGER (Sitzungsber, der math.-phys. Classe der k. bayer, Akademie d. Wiss, 1886, Heit 2) unter Hinzustigung einer 8. Klasse sür die Sterne 9.6 - 10.0 Grösse. Die gleichen Abzählungen mit der Sekante der Deklination multiplicirt, sodass die 5° hohen und 40m breiten Trapeze auf gleichen Flächeninhalt reducirt erscheinen, giebt RISTENPART in seinen »Untersuchungen über die Constante der Präcession und die Bewegung der Sonne im Fixsternsysteme«, pag. 44 bis 51. (Veröffentlichungen der Karlsruher Sternwarte, Hest IV). Von der CD von - 22° bis - 41° sind in der Einleitung zu Vol. XVI. der »Resultados del observatorio nacional Argentino« ausführliche Abzählungen von 4 zu 4 Zeitminuten und für jeden Deklinationsgrad aufgeführt, doch ohne Trennung nach Grössenklassen. Und man erkennt nur soviel, dass die Gegend dieser Zone, durch welche die Milchstrasse geht, bei 6h - 10h, viel dichter besetzt ist, als der andere Milchstrassenzweig bei 164 - 204. Von der PD sind nur statistische Aufzählungen der Sterne pro Deklinationsgrad in der Einleitung des 3. Bandes, pag. 36 und die Sternzahl pro Quadratgrad, in 1th breiten, 5° hohen Trapezen auf pag. 37 gegeben. Als weiteres Material kommen für schwächere Sterne in Betracht die Sternaichungen von CELORIA, enthalten in »Sopra alcuni scandagli del cielo eseguiti all' osservatorio reale di Milano e sulla distribuzione generale delle stelle nello spazio. Annotazioni del prof. Giovanni Celoria« (Pubblicazioni del reale osservatorio di Brera in Milano No. XIII. Milano 1877). CELORIA hat die in einem durch Draht sichtbar gemachten Rechteck von 17' Höhe und 33:7 Länge im Plössl'schen kleinen Aequatoreal von 10 cm Oeffnung gleichzeitig stehenden Sterne abgezählt. Die Definition der Bilder war eine ausgezeichnete und, wie noch bewiesen werden soll, die Grösse der schwächsten eben noch gesehenen Sterne 111 in der Skala der Durchmusterung. Dann wurde das Fernrohr so in Rectascension verstellt, dass das benachbarte Feld in das Rechteck trat u. s. w. Von je zwei auseinanderfolgenden Rechtecken wurde gleich die Summe gebildet und nur diese notirt, dadurch wird die abgezählte Fläche 67:4 lang, also bei 17' Höhe im Aequator fast quadratisch. CELORIA hat nun alle 24 Stunden herumgezählt, und in Deklination zunächst das Feld von 0° bis 0° 17' gehen lassen. Er fügt dann die unmittelbar nördliche Zone 0° 17' bis 0° 34' an u. s. w. und kommt mit 21 Zonen dazu, die ganze Breite vom Aequator bis 6° nördlicher Deklination zu bedecken,

indem er nur die Deklinationsminuten 1° 42′, 3° 42′, 5° 42′ auslässt, damit 21 × 17 Minuten 6 Grade ausmachen können. Im Ganzen sind 9×144×21 Aichungen gemacht, die nahezu vollkommen die Zone bedecken. Celoria hat jedoch in seiner Publikation immer von 9 in R. A. nebeneinanderliegenden Aichungen, die sehr nahe 10 Zeitminuten Gesammtlänge haben, nur die Summe der dort stehenden Sterne und das Mittel pro Feld angeführt, und dabei die mittleren Rectascensionen solcher Neunselderreihen auf 0⁶ 5^m, 15^m, 25^m u. s. w. gelegt, sodass in jeder der Zonen 144 Zahlen mitgetheilt sind. Zonenweise hat dann Celoria Curven construirt und am Schluss seiner Arbeit angesügt, die den Verlauf der Sternzahlen mit der Rectascension illustriren. Die 21 Curven stimmen nicht nur in den beiden Maximis in ca. 7^h und 19^h (das erstere ist ausgeprägter) überein, sondern auch in vielen einzelnen Zügen, was bei dem geringen Deklinationsabstand nicht weiter wunderbar ist.

Ein weiteres Material könnten dann die ekliptikalen Karten darbieten, zwar nicht die von HIND, welche kaum über die BD-Sterne hinausgehen, wohl aber die von Peters, Chacornac und Palisa. Holden hat in den »Publications of the Washburn Observatory of the University of Wisconsin, Vol. II, Madison 18844, pag. 174 Abzählungen dieser Karten vorgenommen, und zwar erstlich der von PETERS' Hand gezeichneten, für jeden Quadratgrad, wobei er die Meinung ausspricht, dass diese Karten wohl bis zur 13 m.5 Sterngrösse gehen. Ferner nimmt er die CHACORNAC'schen, von PETERS handschriftlich ergänzten Karten hinzu. Wir erfahren daraus, dass Peters ausser seinen publicirten, in der Tabelle auf pag. 518 von Band III, 2 aufgezählten Karten noch mehrere, z. Th. weit fortgeschrittene besass, die er nur nicht publicirte, weil sie nicht vollkommen die 20m × 5° ausfüllten, hinzu treten einige von Warson selbst angesangene Karten, und die Sternzahlen werden auch noch nach Multiplication mit see & zur Reduction auf gleiche Flächen mitgetheilt. In einer zweiten Tabelle sind die Abzählungen in den 20 publicirten Peters'schen Karten enthalten, in welche Peters bei einer nochmaligen Vergleichung seiner Manuscriptkarten mit dem Himmel, noch die schwächsten im Clintoner Refractor sichtbaren Sterne (nach HOLDEN bis 14m·8 nach der Bonner Skala) eingezeichnet hatte. Eine dritte Tasel umfasst Abzählungen aus unpublicirten Kartenstücken Palisa's, die alle mit dem Polaer Sechszöller, resp. dem Wiener Zwölfzöller sichtbaren Sterne enthalten, nach Flächen eines Viertelquadratgrades; endlich theilt eine vierte Abzählung die Ergebnisse der Palisa'schen Karten No. 2 und No. 3 mit. Indessen zeigt SEE-LIGER 1), dass die Annahme nicht aufrechterhalten werden kann, dass PETERS' Karten bis zur 13.5 Grösse oder gar weiter gingen. Eine Vergleichung mit CE-LORIA'S Sternzahlen, nachdem beide nach Milchstrassenzonen vertheilt waren, giebt im Gegentheil einen geringen Ueberschuss für CELORIA's Sterne, die doch nur bis 112.5 gehen. Auch eine direkte Prüfung am Münchener Refraktor durch VILLIGER hat gezeigt, dass nur selten Sterne unter 11m.5 in den Peters'schen Karten sich finden und ein ähnliches Resultat hätte schon HOLDEN erhalten müssen, der in einer Schlusstafel A. die Sternzahlen für den Quadratgrad für verschiedene Himmelsdurchmusterungen neben einander stellt, er findet hier für PETERS 87.87, für die beiden HERSCHEL 1417.9 als mittlere Sternzahl, also für PETERS nur den 16. Theil von HERSCHEL, kann also nicht, wie er es thut, die Grenzgrösse für PETERS zu 14.9, für HERSCHEL zu 15 annehmen, vielmehr müssen PETERS' Grenzsterne um ca. 3 Grössenklassen heller sein als die der beiden HERSCHEL, mag

Betrachtungen über die räumliche Vertheilung der Fixsterne von H. SEELIGER. Abhandlungen der k. bayer. Akademie der Wiss. II. Kl., XIX. Bd., III. Abth. München 1898.

auch immerhin die Bevorzugung der Milchstrasse durch den älteren HERSCHEL und die Vermeidung derselben durch PETERS das Verhältniss beeinflussen.

Die Pariser und Marseiller Karten sind aber zu so verschiedenen Zeiten und von mehreren Beobachtern angesertigt, dass Gleichsörmigkeit und Vollständigkeit kaum verbürgt werden können, und ohne ausgedehnte Untersuchungen darüber, die sehr mühselig wären, könnten sich nur ganz irrige Resultate aus ihrer Verwendung ergeben. Die Pallsa'schen Karten sind zu zerstreut und zu wenig zahlreich.

Ausserdem haben fast alle Karten den Fehler, dass sie die Milchstrasse vermeiden, in welcher die Sternvertheilung gerade ein besonderes Interesse bietet.

Ein reiches Material für die schwächsten Sterne bieten dann die Sternaichungen der beiden HERSCHEL. 3400 seiner Sternaichungen hat der ältere HERSCHEL selbst in seinem Aufsatze: »On the construction of the heavense (Philosophical Transactions for 1785) publicirt. Reproducirt finden sich dieselben, zu 683 Feldern gemittelt, in dem gleichen Bande der Washburn Observations wie die eben besprochenen Sternzählungen auf pag. 115-140, während auf pag. 159-173 noch 405 weitere Felder, als Ergebniss von 2245 bis dahin unveröffentlichten Aichungen W. HERSCHEL's von HOLDEN mitgetheilt werden, die dieser aus den Papieren HERSCHEL's von dessen Erben erhalten hat. Die 2299 Sternaichungen John Herschell's finden sich zu 605 Mitteln vereinigt in dessen Cap-Beobachtungen mitgetheilt; während aber der ältere HERSCHEL ganz willkürlich am Himmel sich die Orte seiner Aichungen aussuchte und dabei nur besonders reiche und besonders arme Gegenden bevorzugte, hat der jüngere, obwohl er im übrigen mit demselben Instrument und nach derselben Methode beobachtete wie sein Vater, seine Aichungen systematisch vertheilt. Er ging nämlich von einem Ausgangsseld zum nächsten 10 Zeitminuten weiter und zugleich 1 10 nach Süden, dann nochmals 10 Zeitminuten weiter und 110 nach Süden, hierauf aber 10m weiter und 14° nach Norden und dies nochmals, worauf er wieder nach Süden ging und so im Zickzack, immer abwechselnd 2 Schritt nach links oben und dann 2 nach links unten machend, erhielt er als Endergebniss Felder, die in den Parallelen von der Form $n \times 11^{\circ}$ und in denselben 20^{m} auseinander lagen. HOLDEN theilt zugleich mit, dass er auf dem Washburn Observatory mit dem Fünfzehnzöller und 195 facher Vergrösserung Sternaichungen begonnen habe in einem quadratischen Felde von 10' Seite, über deren Ergebniss indessen noch nichts bekannt geworden ist. Er bezeichnet es dabei zugleich als wünschenswerth, die Gesammtlichtstärke der im Felde vereinigten Sterne photometrisch zu bestimmen. Das wesentliche aber für eine eingehende Diskussion der Vertheilung der schwächeren Sterne ist, dass man nicht die Gesammtzahl der in einem bestimmten Felde stehenden Objecte oder ihre Gesammthelligkeit kennt, sondern die Anzahl bis zu einzelnen äquidistanten Grenzhelligkeiten, sodass man stufen. weise Halt machen kann beim Eindringen in die Tiese des Sternenheeres und weil hierfür eben über die BD hinaus noch so unendlich viel fehlt, macht SEELIGER den Vorschlag, Zählungen mit einem grossen Fernrohr vornehmen zu lassen, das dann systematisch auf mehrere kleinere Oeffnungen abgeblendet wird, die gleiche Lichtverluste bedingen, oder noch besser photographische Daueraufnahmen zu machen, auf denen sich dann die Sterne der verschiedenen Grössenklassen abzählen liessen. Es müssten dann noch vielleicht mit Rücksicht auf die stärkere aktinische Wirksamkeit einzelner Sterne, die also weit heller erscheinen würden und das Ergebniss systematisch gegen die Milchstrasse fälschen würden, Parallelaufnahmen mit Vorschaltung einer Gelbscheibe gemacht

werden, ähnlich wie dies jüngst Barnard gethan, um solche aktinischen Anomalien in dem Sternhaufen M 13 Herculis zu untersuchen 1).

Sternzahl und photometrische Constante.

Besitzt man in bestimmter Richtung und für ein bestimmtes Feld, vielleicht einen Quadratgrad, die Abzählungen von Sternen äquidistanter Grössenklassen, so ist, wie Struve in den Études zeigt, bei gleichförmiger Vertheilung der Sterne im Raume und durchschnittlich gleicher Helligkeit der Sterne eine einfache Beziehung sofort abzuleiten*). Bezeichnet A_m die Anzahl aller Sterne bis zur Helligkeit m und ist γ_m das Verhältniss der Helligkeit der Sterne mter Grösse zu denen der (m+1)ten, während r_m den Radius der Kugel bezeichnet, die die Sterne bis zur mten Grösse einschliesst, so ist offenbar

$$\frac{A_{m+1}}{A_m} = \frac{r_{m+1}^3}{r_m^3},$$

da die Sterne bis zur (m+1)ten resp. zur mten Grösse in zwei Kugelsectoren enthalten sind, deren Inhalt sich verhält wie die Cuben der Radien, andrerseits ist $\gamma_m = \frac{r_m^2+1}{r_m^2}$, da sich die scheinbaren Helligkeiten gleichheller Kugeln — das ist die Voraussetzung — umgekehrt verhalten wie die Quadrate der Abstände, daraus folgt $\frac{A_{m+1}}{A_m} = \gamma_m^{3/2}$. Danach würde sich also die Anzahl der Sterne bis zu einer bestimmten Grössenklasse zu der der nächsthelleren verhalten müssen wie die $\frac{3}{2}$ te Potenz des Helligkeitsverhältnisses γ , welches auch den Namen der photometrischen Constante führt. Eine solche Annahme aber findet sich bei keiner Reihe von Sternzahlen bestätigt. Schiapparellij führt z. B. folgende Zahlen für die in der Harvard Photometry') ihrer Grösse nach genau bestimmten Sterne zwischen dem Nordpol und — 30° Deklination an:

				Zahl	Am	C ₁	$A_m - C_1$	C 2	$A_m - C_2$
Stern	ne	bis	1.4.00	7	7	8	- 1	4	+ 3
,,	1.00	**	2.00	16	23	28	- 5	16	+7
"	2.00	,,	3.00	66	89	. 92	- 3	65	+ 24
,,	3.00	,,	4.00	218	307	307	0	257	+ 50
**	4.00	,,	5.00	717	1024	1024	-	1024	_
**	5.00	,,	6.00	2089	3113	3413	- 300	4077	- 964

Die letzte Klasse kann nicht vollständig sein, da das Arbeitsprogramm sich auf die Sterne der BD und zwar nur bis $6^{m}\cdot 2$ vollzählig, aufbaute, und sehr wohl etwas schwächere hierin noch nicht enthaltene Sterne, doch heller als $6^{m}\cdot 00$ photometrisch sein könnten. Die Harvard Photometry wählt $log \gamma = 0.400$ ($\gamma = 2.5119$). SCHAPARELLI findet nun, dass obige A_m sehr nahe in der Pro-

¹⁾ Astrophysical Journal, Vol. XII, pag. 176.

⁹) Peters zeigt A. N. Band 28, pag. 229, dass die Folgerung auch gilt, wenn nicht gleiche Helligkeit vorausgesetzt wird, sondern nur angenommen wird, dass für jeden Stern alle Helligkeiten zwischen 0 und einer Maximalhelligkeit 2 E gleich wahrscheinlich sind.

³⁾ Sulla distribuzione apparente delle stelle visibili ad occhio nudo. Pubblicazioni del reale osservatorio di Brera in Milano No. XXXIV.

⁴⁾ Observations with the Meridian Photometer during the years 1879—82 by E. PICKE-RING, Director aided by A. SEARLE and O. C. WENDELL, Annals of the Observatory of Harvard College, Vol. XIV, part 1.

77

gression 10:3 fortschreiten und berechnet aus A_5 , die unter Voraussetzung der strengen Progression sich ergebenden anderen A_m , die unter der Ueberschrift C_1 oben in der vierten Columne stehen. Die Differenzen $A_m - C_1$ sind ganz ausserordentlich klein, die grosse letzte Differenz würde sich fast durch die Unvollständig-

keit des Programms erklären lassen; aber $\frac{A_{m+1}}{A_m}$ zu 10:3 angenommen, ergäbe $\log \gamma$ zu 0:34859, also viel zu klein; $\log \gamma = 0.4$ würde umgekehrt $A_{m+1}: A_m = 3.981$ verlangen, also, wieder unter Festhaltung von A_5 , die Zahlen der Columne C_2 , eine, wie die $A_m - C_2$ zeigen, ganz unzulässige Annahme.

Gould stellt in der Uranometria Argentina die Sternzahlen sowohl der Uranometria selbst, als auch des nördlichen Himmels durch 3 Formeln dar, die erstlich aus der Uranometrie allein, dann aus der nördlichen Hemisphäre und endlich aus der Gesammtheit aller Sterne abgeleitet sind und findet für die Gesammtheit der Sterne bis zur Grösse m resp.

 $\Sigma_m = 0.5312 (3.9120)^m$ tür die Uranometrie,

 $\Sigma_m = 0.4691 (3.9129)^m$ für die nördlichen Sterne bis 9m,

 $\Sigma_m = 1.0068 (3.9111)^m$ aus allen Sternen bis 7m.

Nimmt man hier im Mittel 3.912 für das Verhältniss $\frac{A_{m+1}}{A_m}$, so würde daraus

log γ zu 0·3949 resultiren, also ebenfalls zu klein, wenn auch nicht mehr sehr viel, doch weist das abweichende Resultat von Schiaparelli und Gould aut verschiedenartige Grundlagen in den photometrischen Constanten für die helleren Sterne, es zeigen denn auch die beiderseits verwandten Sternzahlen grosse Differenzen, namentlich für die Sterne der 4.—5. und 5.—6. Grösse. Jedenfalls ist aber die Annahme durchschnittlich gleicher resp. zufällig vertheilter Helligkeit und gleicher Vertheilung der dem unbewaffneten Auge sichtbaren Sterne nicht zulässig. Gleiche Helligkeit der Sterne würde als Ergebniss vorstehender Ueberlegung die Thatsache bedeuten, dass die Sterne sich um die Sonne zusammendrängen, gleiche Vertheilung aber würde aussagen, dass die Sterne in der Umgebung der Sonne durchschnittlich kleiner und schwächer leuchtend wären als die entfernteren. Für letzteres werden wir später in dem Ueberwiegen der Sterne des zweiten Spectraltypus in der Nähe der Sonne einen geringen Anhalt finden.

Wie schon dies Beispiel zeigt, ist die genaue Kenntniss des Helligkeitsverhältnisses γ wesentlich, um die Sterne der verschiedenen Grössenklassen in ihre richtige mittlere Entfernung von der Sonne zu versetzen. Bei den visuell bestimmten Grössen der Durchmusterungen ist dieser Helligkeitsfaktor zunächst unbekannt und muss daher bestimmt werden. Dies haben Th. Wolff¹, Lindemann³) und Rosén³) unternommen, indem sie zahlreiche photometrische Vergleichungen der geschätzten Bonner Sterngrössen unter sich vorgenommen und das mittlere Verhältniss dann für successive Grössenklassen aufgestellt haben; sehen wir von den wenig benutzten Arbeiten Wolff's ab, so findet Rosén aus insgesammt 110, Lindemann aus 290 Sternen für die teleskopischen BD-Sterne als Helligkeitsverhältniss log γ

³⁾ JULIUS THEODOR WOLFF, Photometrische Beobachtungen der Fixsterne. Leipzig 1877.

²⁾ LINDEMANN, Photometrische Bestimmung der Grössenklassen der Bonner Durchmusterung: »Supplement II aux Observations de Poulkova 1889.

³⁾ Rosén, Studien und Messungen mit einem Zöllnerschen Photometer. Bulletin de l'Academie de St. Pétersbourg 1870.

	Rosén	LINDEMANN
6-7"	0.388	0.394
7-8-	0.363	0.392
8-9**	0.379	0.437.

Die Helligkeitsfaktoren sind also weder constant, wie es für eine homogene Grössenskala erforderlich wäre, noch stimmen die beiden Bestimmungen unter sich genügend überein, sodass, da beide Beobachter verschiedene Objecte benutzt haben, der Verdacht gar nicht abzuweisen ist, dass das Helligkeitsverhältniss innerhalb derselben Grössenklasse in verschiedenen Gegenden des Himmels ein anderes ist. Es ware dies ja auch gar nicht weiter zu verwundern, da verschiedene Beobachter mitgewirkt haben und die Auffassung in den einzelnen Zonen auch noch mit der Durchsichtigkeit der Luft und persönlichen Einflüssen veränderlich sein musste. Ausserdem hat schon Schönfeld einen systematischen Schätzungsfehler, derart, dass die Durchmusterungsgrössen um so mehr grösser sind, je sternreicher die durchmusterte Gegend ist, in der Einleitung zur SD pag. [36] aus den Vergleichungen mit den BESSEL'schen Grössen abgeleitet, also eine Abhängigkeit von der galaktischen Breite, und das gleiche Ergebniss hat Scheiner 1) aus den Vergleichungen der S.D. Grössen mit denen mehrerer anderer Cataloge gefolgert. Eine solche systematische Abhängigkeit der Sterngrössen von der Milchstrasse aber einmal angenommen, ist die Zahl der von Rosen und Linde-MANN vorgenommenen Vergleichungen viel zu gering. Es muss eine ausgedehnte Vergleichung mit einer, zahlreiche Anhaltspunkte enthaltenden sorgfältigen photometrischen Untersuchung der BD-Sterne ausgeführt werden. Hierzu wäre die in Potsdam von MULLER und KEMPF im Gange befindliche genaue Bestimmung aller BD-Sterne bis zur Grösse 7m.5 sehr geeignet, resp. sie könnte dann einfach in Bezug auf die Sternvertheilung in gewissem Grade die BD-Abzählungen ersetzen, vor ihrer Vollendung aber stehen hierfür nur zur Verfügung die schon anlässlich der Schiaparelli'schen Arbeit erwähnte Harvard Photometry und ferner die ebendort angefertigte »Photometric Revision of the Durchmusterung« (Vol. XXIV), welche die photometrische Bestimmung von 16865 Durchmusterungssternen enthält, eine dritte Arbeit der Harvard-Sternwarte auf diesem Gebiete ist die von Bailey auf der Filialsternwarte in Arequipa ausgeführte, den südlichen Himmel betreffende, die in Vol. XXXIV als >A catalogue of 7922 southern stars observed with the Meridian Photometer during the years 1889-914 publi-Sie kommt indes ihrer von Kempf⁹) besprochenen Mängel wegen als Ersatz für die visuellen Grössen der Uranometria Argentina kaum in Betracht. Die beiden erstgenannten Arbeiten benutzt Seeliger in den folgenden beiden in den Sitzungsberichten der k. baierischen Akademie der Wissenschaften, Band XXIX, Heft III und Band XXVIII, Heft II erschienenen Untersuchungen »Zur Vertheilung der Fixsterne am Himmel« und »Ueber die Grössenklassen der teleskopischen Sterne der Bonner Durchmusterungen«, um die Durchmusterungsgrössen auf eine einheitliche photometrische Skala, für welche überall $\log \gamma = 0.4$ ist, zu reduciren. Die erstgenannte Arbeit beschäftigt sich mit den Sterngrössen 5m·3-6m·2 der BD und findet folgende Beziehung:

¹⁾ A. N. 2766.

⁹⁾ V. A. G. 31. Jahrgang, pag. 191 ff.

772	#1	Anzahl	m	m	Anzahl
$BD \ 5.3 =$	Harv. 5.22	89	BD 5.8 = Ha	arv. 5.53	169
5.4	5.26	29	5.9	5.69	49
5.5	5.47	172	6.0	5.88	574
5.6	5.26	32	6.1	5.85	79
5.7	5.48	111	6.2	5.97	168

Obwohl der mittere Fehler einer Vergleichung 0 30 ist, dürste doch durch diese Zahlen genügend erwiesen sein, dass die BD-Schätzungen in dem Intervall von 5.3 bis 6.2 nicht gleichmässig fortschreiten, 5m.7 und 5m.6 ist heller als 5 m·5, 6 m·1 heller als 6 m·0. Eine geringe Abhängigkeit von der Milchstrasse mit der Tendenz dort die Grössenzahlen höher zu nehmen, findet Seeliger ebenfalls. Es ist also die BD in diesen Helligkeitsklassen der geringen Sternzahlen wegen überhaupt zu Untersuchungen über Sternvertheilungen nicht geeignet und Seeliger ersetzt sie daher durch die Harvard Photometry. Für die schwächeren Durchmusterungssterne bildet Seeliger die Klassen 6.3-6.7. 6.8-7.2, 7.3-7.7, 7.8-8.2, 8.3-8.7, 8.8-9.0 und 9.1-9.2 in der zweiten Arbeit und erhält für sie 10600 Vergleichspunkte mit der Phometric Revision. zerlegt er aber gleich in 9 der Milchstrasse parallele Zonen, deren erste von dem galaktischen Pole, der nach Houzeau angenommen ist, bis zu 20° Abstand geht, die zweite von 20° bis 40° Poldistanz u. s. w., sodass in der V. Zone mit 80° bis 100° galaktischer Poldistanz die Milchstrasse selbst liegt. Zur bequemen Einordnung der nach R. A. und Dekl. Graden erhaltenen Abzählungen in diese galaktischen Zonen hat Seeliger am Schluss seiner Arbeit über die S.D. Diagramme gezeichnet, welche den Verlauf der galaktischen Parallelkreise von 10° zu 10° angeben. Die Unterschiede Δ im Sinne BD – H. R. sind zunächst vorwiegend negativ, was beweist, dass log γ in der BD durchschnittlich grösser als in der H. R. ist, ferner aber zeigt sich ein deutlich ausgesprochener Gang nach der Milchstrasse. SEELIGER findet nämlich

	6m·3	-6m		6m	8-7m	2	7m·37m·7		
Zone	Δ	Α	F	Δ	A	F	Δ	A	F
VIII	- 0m·120	3 -	-0023	+ 0".188	3 11 -	-0m·065	$+0^{m\cdot}121$	15 -	-0m·077
VII	- 0·051	42	21	- 0.058	70	63	- 0.029	89	75
VI	- 0.040	144	14	- 0·084	202	56	- 0·110	201	65
v	-0.003	203	09	- 0.044	288	51	- 0.027	344	56
IV	- 0.019	171	16	- 0.042	256	58	- 0.076	322	68
III	0.033	118	22	- 0.060	158	64	- 0.079	212	76
II	+0.028	70	24	- 0.063	99	66	- 0.113	147	79
1	+0.075	28	24	- 0.161	55	66	— 0.085	57	79
Mitte	1 — 0.015	779		- 0.059	1139		- 0.060	1387	

	7m·8	-8m·2		8m·38m·7				
Zone	Δ	A	F	Δ	A	F		
VIII	+ 0m·067	21	− 0m·087	- 0m·186	53	$-0^{m\cdot 156}$		
VII	— 0.023	111	83	- 0.164	159	148		
VI	- 0.109	247	62	- 0·121	388	109		
\mathbf{v}	- 0.047	389	47	- 0.072	526	079		
IV	-0.067	410	68	- 0 116	507	121		
III	- 0.067	227	84	- 0·137	289	151		
II	-0.118	143	89	- 0.144	196	161		
_ I	— 0·107	51	91	- 0.234	73	164		
Mittel	- 0:069	1599		- 0:121	2191			

Witter — 0.069 1999 | — 0.151 5191

8m·8-9m·0			9m·1-9m	·2	8m·8—9m·2			
Zone	Δ	A	Δ	A	Δ	A	F	
VIII	- 0m·281	83	- 0m·337	7	- 0**28	6 90	-0m·270	
VII	-0.250	224	- 0 200	42	- 0.242	266	256	
VI	-0.229	508	— 0·189	80	0 223	588	183	
V	-0.153	731	- 0.118	145	- 0·122	876	125	
IV	- 0.182	673	- 0.154	127	- 0.177	810	204	
Ш	- 0·213	406	- 0.214	99	0.213	505	261	
II	-0.306	258	- 0.341	65	- 0·321	323	280	
I	 0·378	80	- 0.390	27	- 0.381	107	285	
Mittel	- 0.205	2963	- 0·196	602	- 0.203	3565		

Hier steht unter Δ die Grössendisterenz, unter Δ die Zahl der Sterne, während F gleich zu erläutern ist. Es ist ersichtlich, wie die Zahlen alle gegen die V. Zone ein positives Maximum erreichen und überdies haben die Werthe, wenn man von solchen, die auf ganz wenigen Vergleichungen beruhen, absieht, einen so gesetzmässigen Verlaut, dass Seeliger eine Ausgleichsformel für die Grössendisterenz BD-H. R. zu bestimmen unternimmt, in welche als Parameter eingehen: die relative Sterndichtigkeit D der betr. Zone, die in der Milchstrassenzone zu 1 angenommen, und dann in den Zonen I bis VIII successive gesetzt wird zu 0.35, 0.37, 0.45, 0.68, 1.00, 0.77, 0.47, 0.41, ferner das Product aus Grösse und Sterndichtigkeit und endlich die Sterndichte multiplicit mit den Potenzen des Helligkeitsfaktors γ .

Die Formel, welche die obigen 48 Differenzen ausgleicht, lautet, wenn noch $\delta = D - 0.7$ gesetzt wird:

BD - H. R. = $c_m - 0^m \cdot 014 \delta - 0^m \cdot 043 (\delta \cdot m) + 0^m \cdot 0368 \delta \cdot \gamma^{m-65}$ worin c_m der Reihe nach für m = 6.5 bis 9·0 die Werthe $-0^m \cdot 016$, $-0^m \cdot 058$ $-0^m \cdot 067$, $-0^m \cdot 067$, $-0^m \cdot 118$, $-0^m \cdot 199$ hat, oder nach halben Grössenklassen ausgewerthet, es ist für

$$m = 6.5$$
 $BD - H. R. = -0^{m} \cdot 032 + 0^{m} \cdot 023 D$
 $7 \cdot 0$
 $= -0.075 + 0.024 D$
 $7 \cdot 5$
 $= -0.092 + 0.035 D$
 $8 \cdot 0$
 $= -0.115 + 0.068 D$
 $8 \cdot 5$
 $= -0.210 + 0.131 D$
 $9 \cdot 0$
 $= -0.372 + 0.246 D$

Da D stets positiv und höchstens =1 ist, so zeigen sämmtliche Darstellungen, dass die Grössenzahlen der H. R. zwar immer die der BD übertreffen, dies aber um so weniger thun, je grösser die Sterndichte der betr. Zone ist. Beide Zahlenwerte der Darstellung, sowohl der absolute, wie der Faktor von D nehme mit der Grössenzahl zu. Die 48 Werthergebnisse dieser Formeln sind unter der Ueberschrift F oben neben den direkten Vergleichungen mitgetheilt und stellen alle jene, die auf einer grösseren Zahl von Vergleichspunkten beruhen, befriedigend dar.

Zur Vergleichung der Grössenklassen der SD mit der Photometric Revision war die Anzahl der Anhaltpunkte viel geringer und Seeliger musste sich begnügen, nur 3 Klassen $6^{m} \cdot 6 - 7^{m} \cdot 5$, $7^{m} \cdot 6 - 8^{m} \cdot 5$, $8^{m} \cdot 6 - 9^{m} \cdot 2$ zu bilden, nachdem eine erstmalige Trennung der letzten Klasse in $8^{m} \cdot 6 - 9^{m} \cdot 0$ und $9^{m} \cdot 1 - 9^{m} \cdot 2$ gezeigt, dass wesentliche Unterschiede nicht zwischen den beiden Theilen derselben beständen. Hier findet sich

		611-6-7	m·5	7m·6-8	m·5	8m·6-9m·2		
		Δ	A	Δ	A	Δ	A	
Zone	IX	$-0^{m\cdot 068}$	33	- 0m·268	49	- 0m·394	40	
,, V	Ш	- 0.088	86	- 0.162	97	0.322	130	
,,	VII	-0.066	101	- 0·114	112	- 0.261	132	
,,	VI	+0.158	81	+ 0.044	129	— 0·110	222	
,,	v	+0.052	111	0.062	147	- 0.084	276	
"	IV	- 0.052	107	0·150	137	0.241	183	
,,	III	-0.008	102	-0.110	133	- 0·225	234	
,,	11	+0.021	39	— 0.085	46	- 0.257	62	
М	ittel	- 0.009	660	- 0.099	850	− 0·197	1279	

Also ist der Einfluss der Milchstrasse wieder sehr deutlich ausgesprochen, indessen ist das Verhalten nicht mehr so symmetrisch, wie bei der BD und namentlich die Zone VI zeigt Werthe, die z. Thl. noch mehr positiv sind als die in Zone V. Um nun auch hier eine Formel zu gewinnen, vereinigt SELIGER die Zonen IV und VI, III und VII, II und VIII, und erhält, indem die relativen Sterndichtigkeiten der Zonen IX, $\frac{1}{2}$ (II + VIII), $\frac{1}{2}$ (III + VII), $\frac{1}{2}$ (IV + VI), V zu 0·46, 0·47, 0·53, 0·75, 1·00 angenommen werden, als Darstellung

für
$$6^{m\cdot 6}-7^{m\cdot 5}$$
 $SD-$ H. R. $=-0^{m\cdot 150}+0^{m\cdot 2}14D$
,, $7\cdot 6-8\cdot 5$ -0.229 $+0\cdot 196D$
,, $8\cdot 6-9\cdot 2$ $-0\cdot 454$ $+0\cdot 374D$.

Die weit grösseren Faktoren von D zeigen, dass bei den Helligkeitsschätzungen der SD die Sterndichte einen weit stärkeren Einfluss gehabt hat, als bei der BD.

Die 15 Werthe F dieser Formel neben die entsprechenden Δ gesetzt

	6m·6 -	7m·5	7**6-	-8m·5	8**6-9**2		
Zone	Δ	F	Δ	F	Δ	F	
IX	- 0···068	- 0m·052	- 0m·268	- 0m·139	- 0m·394	- 0····282	
II und VIII	-0.054	-0.050	- 0.137	- 0.137	- 0.301	-0.278	
III " VII	— 0.037	- 0.036	0.112	- 0.126	- 0.238	-0.256	
IV " VI	+0.025	+0.011	0.056	-0.085	- 0.170	-0.174	
v	+0.052	+0.064	- 0.063	— 0.033	0.084	— 0·080	

zeigen immerhin, dass die Darstellung recht befriedigend ist.

Die beiden Formeln für BD-H. R. und SD-H. R. erlauben nun, die Beziehungen der beiden Durchmusterungen zu einander ebenfalls als Funktion der Sterndichte zu untersuchen. Man findet in Mittelwerthen für ganze Grössenklassen

$$7^{m\cdot0}$$
 $SD - BD = -0^{m\cdot068} + 0^{m\cdot180}D$
 $8\cdot0$ $-0\cdot115 + 0\cdot128D$
 $9\cdot0$ $-0\cdot083 + 0\cdot128D$,

da +0.3 < D < +1, so erreicht SD-BD in den seltensten Fällen den Betrag einer zehntel Grössenklasse, wobei in den sternarmen Gegenden die BD, in den sternreichen aber die SD die höhere Grössenzahl haben würde, und auch diese Untersuchungen ergeben als Nebenresultat die fast völlige Uebereinstimmung der SD und BD in der Grössenskala bis $9^{\infty}\cdot 0$.

Die Vertheilung der Fixsterne.

Die vorstehend besprochenen Untersuchungen befähigen nun Seellger, dessen erste sich an die beiden Abzählungen der Durchmusterungen anschliessende

Arbeiten mehr in grossen Zügen die Sternvertheilung betrachteten, genauer nach Grössenklassen zu sondern. Der Milchstrassenpol, nach welchem SEELIGER dabei die Zonen orientirt hat, ist der Houzeau'sche 12^h 49^m + 27° 30' und es scheint von vornherein klar, dass die Sternvertheilung sich um dieselbe Symmetrieebene anordnet, als das Phänomen der Milchstrasse. Zwei andere Untersuchungen bestätigen dies zwar zunächst nicht. RISTENPART hat in seiner öfter citirten Arbeit in den Tafeln der auf gleiche Flächen reducirten Sternzahlen, den Parallelkreisen und den Stundenkreisen entlang gehend, für die einzelnen halben Grössenklassen die Orte der Punkte grösster Sternzahlen ermittelt und unter der Voraussetzung, dass all diese Punkte auf einem kleinen Kreise, dem Schnitt der als Ebene angenommenen Milchstrasse mit der Sphäre, die die einzelnen Helligkeitsklassen trägt, lägen, den Pol und den sphärischen Radius dieses Kreises bestimmt. Es zeigte sich dabei aber, dass unmöglich alle Maxima auf einem Kreise liegen könnten und ausser einem Kreise, der die grösste Zahl dieser Stellen enthielt, musste ein zweiter angenommen werden für den kleineren Theil derselben mit einem stark abweichenden Pol. Diesem Ergebniss würde als räumliche Vorstellung die Thatsache einer gebrochenen Symmetrieebene entsprochen haben. Der Haupttheil derselben schnitt die Sphären, auf denen die Sterne von ganzer zu ganzer, später von halber zu halber Grössenklasse standen, in Kreisen, deren Pol in $A = 196^{\circ}.63$, $D = +18^{\circ}.67$ lag und deren sphärische Radien sich für die einzelnen Helligkeitsklassen, wie folgt, ergaben:

	sphär. Radius	m. F.	1	sphär. Radius	m. F.
$9^{m\cdot 5} - 9^{m\cdot 1}$	90° + 0°.76	1°-11	6m·5 -6m·00	90° + 4°.60	1°-59
9.0-8.6	+ 2.05	0.51	5.99 - 5.00	+ 5.01	0.79
8.5-8.1	+ 2.46	0.47	4.99-4.00	+ 3.66	2.19
8.0-7.6	+ 1.24	0.96	3.99 -3.00	+12.38	2.61
7.5-7.1	+ 1.80	1.24	2.99-2.00	+ 8.43	3.79
7.0-6.6	+ 1.48	1.12			

Dass alle sphärischen Radien 90° übersteigen, beweist, dass die Sonne zwischen dem Pole und der Hauptebene steht, also nördlich der letzteren, die Ueberschüsse der sphärischen Radien über 90° müssen für die helleren Sterne immer grösser werden, denn das von der Sonne auf die Hauptebene gefällte Perpendikel ist ja gleich dem Sinus dieses Ueberschusses mal dem Abstand der Sterne und ergiebt sich im Mittel zu dem 0.759 fachen der Entfernung der Sterne erster Grösse.

Für den zweiten Theil der Punkte grösster Sternzahlen ergiebt sich ein Kreisstück, dessen Pol entweder in 191°·10 + 55°·75 oder in 191°·80 + 38°·85 liegt, je nachdem man die Bedingung, dass das Perpendikel gleich dem Abstand der Sternklasse mal dem Cosinus des sphärischen Radius sein muss, übersieht oder einführt. Letzterer Pol führt auf sphärische Radien, die um 4° bis 7° kleiner als 90° sind und somit aussagen, dass die Sonne südlich von dieser zweiten Hauptebene liegt. Die Länge des zweiten Perpendikels wird zu 8·75 mal der Entfernung der Sterne erster Grösse oder ungefähr gleich der der Sterne sechster Grösse gefunden.

PREY 1) hat auf dasselbe Material jedoch mit Zusammensassung aller Grössenklassen von 6:0 bis 9:5 in eine einzige Tasel der Sternzahlen vom Nordpol bis zu — 23° Deklination eine mathematische Darstellung der Sternzahlen durch

ADALBERT PREY, Ueber die Gestalt und Lage der Milchstrasse. Aus dem LXIII. Bande der Denkschriften der math.-naturw. Classe der kais. Akademie der Wissenschaften, Wien 1896.

eine Kugelfunction zweiter Ordnung angewandt unter Ausscheidung der Stellen, die einem zweiten Hauptzweige offenbar angehören. Wenn alle Sternzahlen durch 1834-3, die Maximalzahl überhaupt (in $\alpha=295^{\circ}$, $\delta=+32^{\circ}$ -5) dividirt werden, findet sich folgende Darstellung:

$$0.4747 - 0.0726 \sin \delta + 0.1566 (\frac{1}{2} \sin^2 \delta - \frac{1}{2})$$

+ $[0.0126 \cos \delta + 0.3513 \sin \delta \cos \delta] \cos \alpha$
+ $[0.0310 \cos \delta - 0.1734 \sin \delta \cos \delta] \sin \alpha$
- $0.1857 \cos^2 \delta \cos 2 \alpha - 0.0945 \cos^2 \delta \sin 2 \alpha$

die jedoch für verschiedene Parallelkreise, durch Curven dargestellt, dem wahren Verlauf der Sternzahlen nicht ausreichend folgt, es wird wohl der Ort, nicht aber die Höhe und Tiefe der Maxima und Minima wiedergegeben, sodass die Mitnahme von mehr Gliedern angezeigt gewesen wäre. Durch Differentiation nach α erhält Prev den Ort der Maximal und Minimalsternzahlen ausgedrückt durch Nullsetzung von

-
$$[0.0126 \cos \delta + 0.3513 \sin \delta \cos \delta] \sin \alpha + [0.0310 \cos \delta - 0.1734 \sin \delta \cos \delta] \cos \alpha + 0.3714 \cos^2 \delta \sin 2\alpha - 0.1890 \cos^2 \delta \cos 2\alpha$$

Die Einführung rechtwinkliger Coordinaten zeigt ihm, dass ein zweischaliges Hyperboloid vorliegt, dessen Schnitte mit der Sphäre die Curven grösster und kleinster Sterndichtigkeit ergeben. Dasselbe ist nahe dem Zersall in zwei Ebenen und diese Ebenen schneiden zwei Kreise aus von den Coordinaten:

$$A =$$
 Rectascension des Pols 199°.35 $108°.55$ $D =$ Deklination des Pols 17.90 -16.22 $R =$ sphärischer Radius 91.3391.77

Offenbar entspricht der erste Kreis dem Zuge der grössten, der zweite dem Zuge der kleinsten Dichtigkeiten; letzterer interessirt also nicht weiter.

Für den zweiten Theil der Maximalsternzahlen, der sofort als nicht dem Hauptzuge angehörig erkannt wurde, hat PREV nur 11 Funkte und bestimmt den Kreis, der sich ihnen möglichst anschmiegt, in derselben Weise wie RISTENPART aus der Gleichung

$$\sin \delta \sin D + \cos \delta \cos D \cos (\alpha - A) - \cos R = 0.$$

Er findet

$$A_2 = 182^{\circ} \cdot 11$$
 $D_2 = 19 \cdot 69$
 $R_2 = 89 \cdot 40$.

Die beiden Resultate von RISTENPART und PREV stimmen bezüglich der ersten Hauptebene sehr gut überein, da sie sich in den Coordinaten des Poles nur um $\Delta A = 2^{\circ}.73$, um $\Delta D = 0^{\circ}.77$ unterscheiden. Dagegen stimmen die Pole der zweiten Hauptebene recht wenig untereinander ($\Delta A = 9^{\circ}.69$, $\Delta D = 19^{\circ}.16$), was an der kleinen Zahl des verschiedenartigen Materials liegt. Deswegen differiren auch die beiden Untersuchungen über die Lage und Entfernung der Schnittlinie beider Ebenen sehr.

So wunderbar nun auch vielleicht auf den ersten Blick die Ansicht von einer zweifachen Fundamentalebene erscheinen mag, so entspricht sie doch dem thatsächlichen Auftreten von zwei Sternverdichtungen über einen langen Zug der Milchstrasse, wo eine völlig symmetrische Anordnung nur ein Sternzahlenmaximum erzeugen würde. Man braucht nur die Sternzahlen in den RISTENPART'schen Taseln der schwächeren Grössenklassen anzusehen und den Stundenkreisen 234 40m, 04 20m und 14 0m entlang zu gehen, um in den Deklinationen von ca. 52½°-62½° die Lücken zwischen zwei deutlichen Maximis zu sinden. Es entspricht diesen Stellen nicht etwa eine Gabelung der sichtbaren Milchstrasse, sondern

nur die Durchmusterungssterne nehmen an derselben theil; eine ähnliche Gabelung, die ebenfalls mit der Milchstrasse nichts zu thun hat, bespricht Celoria auf pag. (39) seiner scandagli, wo er die nach R. A. Stunden abgezählten Sterne der BD graphisch darstellt. Schon Struve hat in den études d'astronomie stellaire, pag. (82), den Gedanken einer gebrochenen Fundamentalebene ausgesprochen; beide Theile sollten um 10° gegen einander geneigt sein und ihre Schnittlinie im Himmelsäquator liegen.

Doch handelt es sich aller Wahrscheinlichkeit nach um ein lokales Phänomen, herrührend von einem seitabgelagerten Sternhaufen und nicht um eine allgemeine Anordnung des ganzen Fixsternsystems; denn welche Art von Entstehung man ihm auch zuschreiben möge, keine wird sich angeben lassen, die eine Anordnung um zwei sich schneidende Ebenen zur Folge hätte. Jedenfalls aber dürfte heut zu Tage überhaupt die Berechtigung, die Sternvertheilung als ein Ganzes zu betrachten, bezweifelt werden, da die Ansicht, dass wir es mit vielen ausgedehnten Sternhaufen im Milchstrassensystem zu thun haben, wieder hervorzutreten beginnt, und keinesfalls dürfte die Annahme mit der Ableitung der Pole der grössten Sterndichten zugleich den Pol der Milchstrasse finden zu können auf Zustimmung rechnen, da, wie noch gezeigt werden wird, das Phänomen der Milchstrasse sich nicht auf die Vertheilung der Sterne bis zur 9. Grösse gründet. Die Schwierigkeit, welchen von den oben gefundenen Polen man für eine Anordnung der Sternzahlen nach galaktischen Zonen zum Ausgangspunkte wählen soll, wird sich daher nur so umgehen lassen, dass ein Punkt ungefähr in der Mitte aller dazu zu nehmen ist; auf ein paar Grade kann es ja nicht ankommen bei der Ableitung allgemeiner Resultate, die auf die speciellen Eigentümlichkeiten lokaler Abweichungen nicht eingehen. Der von SEELIGER angewandte Houzeau'sche Pol der Milchstrasse in $A = 192^{\circ} 15'$, $D = 27^{\circ} 30'$ entspricht aber dieser Bedingung recht nahe und ist daher gut geeignet, auch als Pol für die Untersuchung der Sternvertheilung zu dienen.

Demgemäss bildet Seeliger neun 20° breite Kugelzonen von diesem Pole aus und bezeichnet sie mit I bis IX, sodass der Nordpol selbst inmitten der ersten, die eine Kalotte ist, liegt, der Aequator dieses Systems, die Milchstrasse, in der fünften. Es ist natürlich nicht möglich, die ungeheure Arbeit der Umrechnung der äquatorealen Sternörter in galaktische auszuführen, es genügt aber auch, da die Abzählungen nach 5° hohen und 40^m breiten Trapezen angestellt sind, die Begrenzungslinien dieser galaktischen Zonen als gebrochene Linien den natürlichen Grenzlinien der Trapeze entlang laufen zu lassen, wobei eine graphische Darstellung der galaktischen Parallelkreise am Schluss von Seeliger's Abzählungen der SD einen bequemen Anhalt bietet.

Die Sternzahlen in den einzelnen Zonen werden dann für die BD

	Areal in Graden	1-6.5	6.6-7.0	7·1—7·5	7.6—8.0	8.1—8.5	8.6—9.0	9.1-9.5	Sterne. 6.6—9.5
Zone I	1398-7	208.5	177	308	475	992	2116	7831	11899
,, II	2749.8	425.5	359	580	980	2050	4403	16235	24 607
,, III	3654.1	632.0	581	929	1565	3163	7004	27035	40277
" IV	3548.1	759.0	718	1152	2180	4316	10230	40893	59489
" v	3539.3	958.0	1039	1503	2977	5983	14017	61556	87075
" VI	2990.9	738.0	691	1070	1942	4042	9348	39509	56 602
., VII	2076.1	321.5	260	412	839	1829	4336	16384	24 060
,,VIII	669.6	77.5	62	100	210	523	1398	4530	6 823
Summe	20626-7	4120	3887	6054	11168	22898	52852	213973	310832

85

Die neunte, den galaktischen Südpol umschliessende Zone kommt in der BD nicht vor. Die Anzahl der Quadratgrade, die jede Zone im Bereiche der BD bedeckt, ist in der zweiten Columne mit vermerkt.

Dividirt man alle Zahlen durch die zweite Columne, so erhält man die auf der Fläche eines Quadratgrades durchschnittlich in den Zonen stehenden

S	terne	1.0-6.5	6.6-7.0	7.1-7.5	7.6-8.0	8.1 - 8.5	8.6-9.0	9.1-9.5	6.6-9.5
Zone	I	0.1491	0.1266	0.2202	0.3396	0.7092	1.5128	5.5988	8.5070
,,	11	0.1547	0.1306	0.2109	0.3564	0.7455	1.6012	5.9041	8.9488
,,	III	0.1730	0.1590	0.2542	0.4283	0.8656	1.9168	7.3987	11.0225
**	IV	0.2139	0.2024	0.3247	0.5144	1.2164	2.8833	11.5255	16.7665
,,	\mathbf{v}	0.2707	0.2936	0.4247	0.8411	1.6904	3.9603	17.3920	24.6022
,,	VI	0.2468	0.2310	0.3578	0.6493	1.3514	3.1255	13.2100	18.9248
,,	VII	0.1549	0.1252	0.1985	0.4041	0.8810	2.0888	7.8917	11.5892
,,	vIII	0.1157	0.0926	0.1493	0.3136	0.7810	2.0878	6.7652	10.1898

Es zeigt sich also überall in der Milchstrassenzone auch die grösste Zahl der Durchmusterungssterne. Die Vertheilung ist aber keineswegs vollkommen symmetrisch, namentlich die VI. Zone ist überall dichter besetzt als die IV. Dies rührt mit daher, dass die oben besprochene zweite Hauptebene PREY's und RISTENPART's in ihren ausgeprägtesten Stellen bei 04 und 50° in die VI. Zone fällt. Ferner ist der Ueberschuss der II. Zone über die erste nur ein recht geringer, herrührend von der bekannten Thatsache, dass der Milchstrassenpol durchaus nicht in der sternärmsten Gegend liegt. Die mittlere Zunahme einer Zone gegen die nächste findet SEELIGER, indem er die Summe der Sterndichten durch die der Zone V dividirt und die Differenz der Quotienten gegen 8 durch 7 theilt. Das Resultat nennt Seeliger den Gradienten. Offenbar würde bei gleichmässiger Vertheilung der Sterne in allen Zonen aus diesem Rechnungsvorgang der Werth 0, bei völliger Sternleere der Zonen, ausser der V. aber der Werth 1 herauskommen. Ersterer Annahme würde eine ganz gleichmässig mit Sternen erfüllte Kugel, letzterer aber eine ganz flache Scheibe in Richtung der Milchstrasse entsprechen. Die Werthe der Gradienten lassen also erkennen wie weit die Form des Sternsystems von beiden Extremen entfernt ist. Nun finden sich die Gradienten

$1^m - 6^m \cdot 5$	0.3625
6.6 - 7.0	0.4806
7.1 — 7.5	0.4229
7.6 - 8.0	0.4725
8.1 — 8.5	0.4465
8.6 - 9.0	0.4511
9.1 - 9.5	0.5211
6.6 - 9.2	0.5009

Es zeigt sich also bei den helleren Sternen der Klasse 1—6·5 ein Hinneigen zur Kugelform, das immer weniger deutlich bei den schwächsten Sternen wird, und ersteres tritt noch klarer hervor, wenn Seeliger die Houzeau'schen dem unbewafineten Auge sichtbaren Sterne einer ähnlichen Untersuchung unterwirft, getrennt für die Sterne 1—3^m und 4—6^m, für erstere findet sich der Gradient 0·3375, für letztere 0·1909, und da die ganz hellen Sterne wegen ihrer geringen Anzahl nicht sehr ins Gewicht fallen, ergiebt sich hieraus für die dem unbewaffneten Auge sichtbaren Sterne eine starke Annäherung an die gleichförmige Vertheilung. Das Gesammtbild des Sternsystems ist aber keineswegs

die Herschell'sche flache Scheibe, sondern ein ziemlich stark abgeplattetes Ellipsoid.

Für die Sterne der SD findet Seeliger, indem diesmal die Zone I¹) überhaupt nicht ins Gebiet der bis zum Aequator erweiterten SD hinei nreicht, die Sternzahlen

Zone	Arealin Gra- den		6.6 - 7.0	7-1 - 7-5	7.6-8.0	8-1-8-5	8.6-9.0	9.1-9.5	9-6-10-0	Summe	9.1–10.0
II	397.1	61	65	81	164	287	730	2073	1736	5197	3809
III	1472.5	204	231	343	604	1224	3008	8559	6110	20283	14669
IV	1041.7	176	204	292	559	1199	2707	8343	7970	21450	16813
v	980.2	194	197	330	593	1423	4053	12489	8930	28209	21419
VI	980-6	222	202	269	602	1283	3171	9888	6475	22112	16363
VII	878.3	161	135	214	395	883	2004	5897	5015	14704	10912
VIII	1121.0	175	176	207	409	934	2104	5986	5399	15390	11385
IX	468.2	72	66	92	190	368	856	2330	2261	6225	4591
Sum-	7339-6	1265	1276	1828	3516	7601	18633	55565	43896	133580	99461

und demnach die Zahl der Sterne auf dem Quadratgrade

Zone	1-6.5	6.6-7.0	7.1-7.5	7.6-8.0	8.1-8.5	8.6-9.0	9.1-9.5	9.6-10.0	Summe	9-1-10-0
II	0.154	0.163	0.204	0.413	0.723	1.838	5.220	4.371	13.087	9.592
III	0.139	0.157	0.233	0.410	0.831	2.043	5.812	4.149	13.774	9.962
IV	0.169	0.196	0.580	0.537	1.151	2.599	8.009	7.651	20.591	15.660
v	0.198	0.201	0.337	0.602	1.452	4.135	12.742	9.110	28.779	21.852
VI	0.226	0.206	0.274	0.614	1.308	3.234	10.084	6.603	22.549	16.687
VII	0.183	0.154	0.244	0.450	1.005	2.282	6.714	5.710	16.741	12.424
VIII	0.156	0.157	0.182	0.365	0.833	1.877	5.340	4.816	13.729	10.156
IX	0.154	0.141	0.197	0.406	0.786	1.828	4.977	4.829	18.317	9.806

Das Uebergewicht der Milchstrasse ist hier auf den ersten Blick viel geringer, ja in den 3 Helligkeitsklassen 1-6.5, 6.6-7.0, 7.6-8.0 übertrifft die VI. Zone die V. an Sterndichtigkeit; dementsprechend fallen auch die Gradienten erheblich kleiner aus als für die BD, nämlich

$1^{m} - 6^{m \cdot 5}$	0.148	$8^{m\cdot 6} - 9^{m\cdot 0}$	0.458
6.6 - 7.0	0.166	9.1 — 9.5	0 - 482
7.1 — 7.5	0.314	9.6 — 10.0	0.402
7.6 - 8.0	0.246	9.1 - 10.0	0.449
8.1 - 8.5	0.347	1 - 10.0	0.435

Seeliger hält es indessen für verfrüht, aus diesen kleineren Gradientenzahlen auf eine wesentlich andere Sternvertheilung auf der Südhalbkugel zu schliessen, weil dazu doch erst die Sternabzählungen auch südlich des — 23. Parallels mit herangezogen werden müssten.

Nach der Ableitung der ersten allgemeinen Resultate aus den Abzählungen der BD und SD benutzt Seeliger seine Feststellungen über die Beziehungen der BD-Grössen zu der photometrischen Skala ($log \gamma = 0.4$), um in der Arbeit Betrachtungen über die räumliche Vertheilung der Fixsternes die Gestalt des

¹⁾ SEELIGER numerirt die Zonen jetzt umgekehrt wie bei der BD, hier ist dieselbe Numerirung wie bei BD eingeführt worden.

Fi xsternsystems selbst zu erforschen. Bezeichnet A_m die Anzahl aller Sterne bis zur Grösse m, so finden sich in der BD:

bis zur Grösse	A_{m}	log a	log a
6.5	4120	_	_
7.0	8007	0.289	0.267
7.5	14061	0.245	0.240
8.0	25229	0.254	0.253
8.5	48127	0.281	0.254
9.0	100979	0.322	0.274

 α ist $=\frac{A_m}{A_{m-\frac{1}{2}}}$, giebt also das Verhältniss der Sterne bis zu einer bestimmten

Grössenklasse zu denen bis zu der eine halbe Klasse helleren an. Die $\log \alpha$ zeigen nicht unerhebliche Schwankungen, die aber in den $\log \alpha_0$ bedeutend kleiner geworden sind, nachdem hier die Grenzen der Klassen auf photometrische Grössen umgerechnet sind. Nimmt man als Mittel der $\log \alpha_0$ 0.258, so darf man also allgemein aussprechen, dass die Anzahl der Sterne bis zu einer bestimmten photometrischen halben Klasse sich zu der nächstvorgehenden (nach halben Klassen abgetheilt) wie 1.81 zu 1 verhält, während eine gleichförmige Vertheilung $\log \alpha_0$ zu 0.300, also α_0 = 1.995 ergäbe. Die Anzahl der Sterne nimmt also langsamer mit der Sterngrösse zu, als eine gleich mässige Vertheilung erforderte. Die Sterne sind um die Sonne etwas zusammenge drängt.

Wenn man aber, anstatt die Gesammtheit der Sternzahlen zu betrachten, nach den bekannten Zonen parallel zur Milchstrasse sondert und gleich auf photometrische Grössen reducirt, so findet sich

Zone	log a 70	log and	log a 80	log a 85	log ago	Σ	Mittel	
I	0.246	0.248	0.222	0.232	0.239	1.187	0.237	
II	245	234	230	239	244	192	238	
Ш	261	241	234	236	250	222	244	
IV	267	245	262	251	280	305	261	
v	294	242	272	267	300	375	275	
VI	265	239	247	257	281	289	258	
VII	237	228	262	266	279	272	254	
VIII	235	230	268	294	315	342	268	
Mittel	0.256	0.239	0.250	0.255	0.274			

Es ist also überall eine deutliche Zunahme der $\log \alpha_0$ gegen die Milchstrasse zu verzeichnen, wenn man von einzelnen Werthen in der VIII. Zone absieht, die nur mit einem kleinen Areale in der BD vertreten ist, sodass Zufälligkeiten mehr Einfluss gewinnen. Einmal, nämlich für die Sterne $9^{m\cdot0}$, wird in der Milchstrasse sogar der Werth 0.300 erreicht. Der Umstand, dass nach der Milchstrasse hin die $\log \alpha_0$ zunehmen, sagt den Satz aus:

Die Verlangsamung der Zunahme der Sternzahlen mit der Grösse tritt um so stärker auf, je grösser die galaktische Breite der betr. Region ist und kommt in der Milchstrasse selbst stellenweise fast zum Stillstand. Die Gegenden, durch welche der Visionsradius streift, werden also mit der Entfernung relativ sternärmer, und zwar um so stärker, je grösser die galaktische Breite ist.

Die BD-Sterne schwächer als $9^{w\cdot 0}$ zeigen ein ähnliches Verhalten und a_{95} ist ebenso in der Milchstrasse ein Maximum, wie die analogen Werthe von a_{95}

88

und a_{10'0} für die S.D. Die Sternzahlen auf den Quadratgrad bis zur Grösse 9·0 beider Durchmusterungen werden für die

Zone	D	BD	SD	D'
I	3.06	9.285	_	2.78
II	3.24	280	9.278	3.03
Ш	3.80	261	256	3.54
IV	5.34	204	174	5.32
v	7.36	125	080	8.17
VI	5.94	183	174	6.07
VII	3.99	256	256	3.71
VIII	3.56	270	278	3.21
IX	3:51		282	3.14

Dabei entsprechen aber die Grenzgrössen 9:0 den in der Tabelle unter BD und SD gleich mit aufgenommenen photometrischen Grössen und es liegt nahe alles auf die photometrische Grösse 9:2 zu reduciren, welche ungefähr die Mitte zwischen den vorkommenden hält. Thut man dies, so stehen auf dem Quadnatgrad die unter D' angegebenen Zahlen von Sternen bis 9:2. Die Sterndichtigkeit darf danach in erster Annäherung als eine grade Function der galaktischen Breite angesprochen werden. Werden daher in der obenstehenden Tafel (ür $\log a_0$ die symmetrisch zur Milchstrasse gelegenen Zonen zusammengezogen, und führt man in der theoretischen Formel für $\log a_0$ in den Exponenten noch den Subtrahenden λ ein, so lautet dieselbe

$$\log a_0 = \log \left(\frac{h_{m-\frac{1}{2}}}{h_m}\right)^{\frac{3-\lambda}{2}} = \log \gamma^{\frac{1}{2} \cdot \frac{3-\lambda}{2}} = \frac{3-\lambda}{2} \cdot 0.2 = \frac{3-\lambda}{10}$$

und es sind die Werthe von log α, und λ die folgenden

Somit hängt \(\lambda\) in erster N\(\text{aherung}\) nur von der galaktischen Breite ab, es ist zwar wie Seellger nachweist, in verschiedenen Gegenden derselben Zone recht verschieden, und namentlich von der Gr\(\text{o}\)see nicht unabh\(\text{angig}\), doch gen\(\text{ugen f\(\text{tr}\)}\) eine allgemeine Betrachtung obige Mittelwerthe.

Celoria's Abzählungen in der äquatorealen Zone von 0° bis 6° nördlicher Deklination, die wohl bis zu den Sternen 11½. Grösse gehen werden, vertheilt nun Seeliger zunächst in die einzelnen galaktischen Zonen; weder die erste noch die neunte Zone kommen vor. Das Verhältniss der Zahlen dieser Sterne C zu den Sternen B der BD auf den gleichen Flächen erläutert die folgende Tabelle, in der J das Areal in Quadratgraden, C_1 und B_1 aber die Anzahlen dieser Sterne auf den Quadratgrad bedeuten.

Zone	С	В	I	C1	B_1	B_{0}	$log \frac{C_1}{B_1}$	$log \frac{C_1}{B_0}$	$log\left(\frac{C_1}{B_1}\right)_0$
11	27352.5	1230-5	404.4	67.6	3.04	3.50	1.347	1.325	1.386
III	22551.2	932.2	284.6	79.3	3.28	3.80	384	320	415
IV	29468.8	1487.8	254.6	115.7	5.83	5.45	297	327	299
v	41820.2	1833-2	284.6	146.9	6.44	7.48	858	293	315
VI	31705.5	1472.3	284.6	111.4	5.22	5.96	333	272	324
VII	25618.3	1342.5	329.5	77.7	4.07	3.85	281	305	312
VIII	22264.5	1184.5	314.5	70.8	3.77	3.54	274	301	319

Die $log \frac{C_1}{B_1}$ könnten vielleicht eine schwache Zunahme gegen die Milchstrasse andeuten, führt man aber statt B_1 , der Zahl der BD-Sterne auf den Quadratgrad innerhalb des von den CELORIA-Sternen bedeckten Areals, die Zahl Bo der B D-Sterne pio Quadratgrad innerhalb der betr. Zone überhaupt ein, um lokale Uniegelmässigkeiten in der Vertheilung der BD-Sterne besser auszugleichen, so ist in den Zahlen $\log \frac{C_1}{B_2}$ eine bedeutend grössere Gleichmässigkeit eingetreten, und dieselbe wird kaum gestört, wenn in $log\left(\frac{C_1}{B_1}\right)$ nun die Zahl der BD-Sterne bis zur photometrischen Grösse 9m·2 pro Quadratgrad wie oben eingesetzt wird. Namentlich die geringe Verschiedenheit der Zahlen in der Columne $\log \frac{C_1}{B_0}$ von dem Mittel 1.307 beweist, dass sich im Mittel die Celoriasterne in ihrer Vertheilung in Bezug auf die Milchstrasse ebenso verhalten wie die BD-Sterne der ersten 9 Grössenklassen.

Ganz anders wird aber das Resultat, wenn man die Sternaichungen der beiden HERSCHEL mit heranzieht. Bildet man auch hier nach Zonen veitheilt die Anzahlen H der Sterne pro Quadratgrad und stellt zum Vergleich die der CELORIA-Sterne unter C aus der vorigen, der BD-Sterne unter D aus der Tafel auf Seite 88 wieder zusammen, so folgt

Zone	Н	С	D	$\frac{c}{D}$	$\frac{H}{D}$	$\frac{H}{C}$
I	107	_	3.06	-	35.0	_
11	154	67.6	3.24	20.9	47.5	2.28
111	281	79.3	3.80	20.8	73.9	3.54
IV	560	115.7	5.34	21.7	104.9	4.84
v	2019	146-9	7.36	20.0	274.3	13.74
VI	672	111.4	5.94	18.8	113.1	6.03
VII	261	77.7	3.99	19.5	65.4	3.36
VIII	154	70.8	3.56	19.9	43.3	2.18
IX	111	_	3.51	_	31.6	-

Das Verhältniss $\frac{C}{R}$ ist, wie schon eben gesagt, nahezu constant für alle Zonen, dagegen ist ein ungeheures Anwachsen der $\frac{H}{D}$ gegen die Milchstrasse ausgeprägt. Wir erhalten kleinere und ühersichtlichere Zahlen, wenn wir statt der $\frac{H}{D}$ die $\frac{H}{C}$ betrachten, was gestattet ist, da die Vertheilung der D und C die gleiche ist. Während also in den Zonen II und VIII die HERSCHEL'schen-Sterne an Zahl die CELORIA-Sterne nur um mehr als das doppelte übertreffen, wird es in der Milchstrasse beinahe das 14 fache, also 7 mal soviel. In hohen galaktischen Breiten nehmen also die schwächeren Sterne überaus langsam an Zahl zu und man kann sich fast des Gedankens nicht erwehren, dass hier schon CELORIA nahe an die Grenzen des Systems vorgedrungen ist und HERSCHEL nicht mehr viel weiter gehen konnte. Aber auch in der Milchstrasse ist die Zunahme weit geringer als man erwarten sollte, wenn HERSCHEL'S Grenzklasse thatsächlich mehrere Grössen tiefer liegt als bei CELORIA. UNIVERSITY

90

Um nun zu bestimmten Vorstellungen über die Gestalt der Begrenzung des Sternsystems zu gelangen, entwickelt SEELIGER zunächst ganz allgemein die Formeln, welche zwischen Sterndichtigkeit, Häufigkeit des Vorkommens von Sternen bestimmter Helligkeit und der Anzahl der Sterne bis zu einer gewissen Grössenkasse bestehen, beschränkt sich dann aber auf einfache plausible Annahmen, um zahlenmässige Ergebnisse zu erhalten. Der Ausdruck für die Häufigkeit des Vorkommens von Sternen von der Helligkeit H in der Entfernung $1, \varphi(H)$ werde $=\frac{1}{H}$, also der Helligkeit umgekehrt proportional, die Sterndichte D aber $=K \cdot r^{-\lambda}$, wo λ der Werth aus der kleinen Tafel auf pag. 88 ist, gesetzt. Ist ferner h_n die Grösse, welche die hellsten Sterne von der Grösse h_0 annehmen würden, wenn sie aus der Entfernung 1 an die Grenzen des Fixsternsystems versetzt würden, dann findet Seelliger für die Anzahl aller Sterne bis zur Grösse m',

$$A_{m'} = K \cdot d\omega \left(\frac{h_0}{h_{m'}}\right)^{\frac{3-\lambda}{2}} \cdot \frac{2}{(3-\lambda)(5-\lambda)},$$

wenn m' < n ist, also für die Sterne, die heller sind als jene Grenzgrösse

wenn aber $m \ge n$, also für die allerschwächsten Sterne

$$A_m = Kd\omega \left(\frac{h_0}{h_n}\right)^{\frac{3-\lambda}{2}} \left(\frac{1}{3-\lambda} - \frac{1}{5-\lambda} \frac{h_m}{h_n}\right);$$

dω ist hier ein Flächenelement an der Sphäre.

Setzt man in letzterer Formel $m = \infty$, bestimmt also die Zahl aller Sterne überhaupt bis zu den am schwächsten leuchtenden (jedoch mit Ausschluss der dunkeln), so ist $h_m = 0$ und es wird

$$A_{\infty} = Kdw \left(\frac{h_0}{h_n}\right)^{\frac{\alpha-\lambda}{2}} \frac{1}{3-\lambda}.$$

Um K zu eliminiren, bestimmen wir

$$\frac{A_m}{A_{m'}} = \frac{1}{2} \left(\frac{h_{m'}}{h_n} \right)^{\frac{3-\lambda}{2}} \left| 5 - \lambda - (3-\lambda) \frac{h_m}{h_n} \right| \text{ und } \frac{A_m}{A_\infty} = 1 - \frac{3-\lambda}{5-\lambda} \frac{h_m}{h_n}$$

Wenn wir nun m' = 9.0 der photometrischen Skala, m aber gleich der unbekannten Helligkeit der Herschell'schen Sterne setzen, so ist A_m und A_m' bekannt, also h_n dann zu bestimmen, wenn wir noch für m irgend eine plausible Annahme in der gleichen Skala setzen. Seeliger macht dafür die vier Annahmen

a) 13m·5, b) 14m·0, c) 14m·5, d) 15m·0, sodass wir haben für die

				,	,	
Zone	λ	$A_m:A_m'$	a	6	6	d
I u. IX	0.63	33.3	11.58	11.55	11.53	11.21
II " VIII	0.57	45.4	11.81	11.76	11.73	11.72
III " VII	0.52	69.7	12.17	12.10	12.06	12.04
IV " VI	0.40	109.0	12.42	12.33	12.29	12.27
v	0.25	274.3	13.22	12.95	12.86	12.81.

 $\frac{A_m}{A_{m'}}$ ist hier aus der Zusammenstellung auf pag. 89 entnommen. Für die Unbekannte h_n aber liefert die Gleichung nun die in der Tabelle für die 5 Zonen und die 4 Annahmen getrennten Werthe von h_n als die Helligkeiten, welche die hellsten Sterne, z. B. Sirius zeigen würden, wenn sie an die Grenzen des Sternsystems versetzt würden; dieselben sind für die 4 Annahmen merkwürdig wenig verschieden. Stehen diese hellsten Sterne ursprünglich im Abstande einer

Siriusweite, so ist nun r_1 der Radiusvektor der Grenzfläche des Sternsystems zu berechnen als

$$\log r_1 = \frac{n+2}{2} \cdot 0.4,$$

wenn die Helligkeit der Siriussterne zu -2 angesetzt wird. Für die vier Annahmen wären die Radienvektoren r_1 dann

			a	ь	e	d
Zone	I u.	IX	520	513	508	503
,,	ΙΙ ,,	VIII	578	565	557	555
,,	ш,,	VII	682	661	649	643
,,	IV "	VI	766	735	721	715
,,	v		1108	977	938	916

Die Entfernung des Systems in der Richtung nach dem Pole der Milchstrasse kommt also zu rund 500, in der Richtung der Milchstrasse selbst zu 900 bis 1100 Siriusweiten heraus.

Die zweite obige Formel aber ergiebt für die Gesammtzahl aller Sterne, wenn wir gleich für alle Zonen addiren, und wenn A_{mi} , die Zahl der Herschelschen Sterne zu 27 Millionen angenommen wird, je nach den 4 Voraussetzungen über h_m

Ueber die Sterndichtigkeiten in den verschiedenen Theilen dieses Sternsystems erhalten wir Auskunft, wenn wir in den Ausdruck für A_m , $K = D \cdot r^{\lambda}$ einsetzen und nach D auflösen. Es resultirt

$$D = \left(\frac{h_{m'}}{h_{0}}\right)^{\frac{3-\lambda}{2}} \cdot \frac{A_{m'}}{d\omega} r^{-\lambda} \frac{(3-\lambda)(5-\lambda)}{2} \cdot$$

Indem wir für $\frac{A_{m'}}{d\omega}$ die Anzahl der Sterne bis zur 9 m 0 der BD, für $\log\frac{h_{m'}}{d\omega}$ demgemäss – 4 4 setzen, erhalten wir zusammengehörige Werthe von r und D, die Seeliger graphisch darstellt, die aber auch aus folgender von Kobold in seinem Referat in V. A. G. 34. Jahrgang, Heft 3 gegebenen Tabelle übersichtlich hervorgeben. Nennt man die Sterndichtigkeit in der Entfernung 1 und in der Richtung nach dem galaktischen Pole 1, so entsprechen die Dichtigkeiten D der folgenden Tabelle den beigesetzten Entfernungen r, wobei nach den 4 galaktischen Breiten 0°, 30°, 60°, 90° unterschieden ist.

D	r für die galaktische Breite					
	0°	30°	60°	90°		
1.0	0.07	0.36	0.60	1.00		
0.8	0.16	0.28	1.11	1.41		
0.6	0.21	1.11	1.82	2.22		
0.4	2.58	2.72	3.66	4.18		
0.5	12.95	5.16	6.01	6.26		
0.1	662	59	40	36		
0.02	10570	277	132	108		

Die Tabelle zeigt, wie rasch in der Richtung nach dem Pol die Dichtigkeit 10 erreicht wird, während man in der Hauptebene beinahe 100 mal so weit gehen muss. Das ganze Fixsternsystem ist nach diesen Untersuchungen von SEELIGER also in grossen Zügen enthalten in einer Rotationsfigur, die ganz roh einem Ellipsoid ähneln würde, dessen kleine Axe etwa halb so gross ist wie die Hauptaxe, die Dichtigkeit in demselben ist aber stark verschieden, und nimmt, in der Hauptebene sehr langsam, nach den Polen zu aber sehr rasch ab. Die eigentliche Milchstrasse hat damit zunächst nichts zu thun.

Neben diesen höchst wichtigen Untersuchungen SEELIGER's, die zum ersten Mal auf der Grundlage wirklicher Beobachtungsergebnisse unsere Anschauung vorwärts führen in den Raum, von der Sphäre weg, an der sie bislang gehaftet, stützen die Anschauung auch mehrere graphische Darstellungen, obschon sie auf der Sphäre bleiben. Da sind zunächst die Planisferi Schiaparelli's, die seiner Publikation »Sulla distribuzione apparente delle stelle visibile ad occhio nudo« beigegeben sind. Sie stellen in stereographischer Polarprojection beide Hemisphären dar, und geben in Trapezen, die von 5° zu 5° abstehenden Deklinations- und 20m zu 20m auseinanderliegenden Stundenkreisen begrenzt werden, erstlich die Zahl aller Sterne bis zur Grösse 6:00, nachdem die Trapeze auf eine Ausdehnung von 100 Quadratgraden reducirt sind. Die das Mittel, das ungefähr 10 ist, übertreffenden Trapeze sind blau gezeichnet, die mehr als 15 Sterne enthaltenden in stärkerem und die 20 und mehr Sterne tragenden in ganz tiefem Blau. Der Zug der Milchstrasse tritt auf diese Weise angenähert hervor, doch sind in dieser wieder mehrere von einander getrennte Hauptdichtigkeitscentren ausgeprägt. Das intensiyste und grösste zieht an der Südhalbkugel von 134 - 65° rückläufig zum Aequator, der in 514 geschnitten wird, und endet in 34 + 30°. Die allerdichteste Stelle liegt in 84 - 45° mit 28 Sternen auf 100 Quadratgrade. Ein anderer ausgedehnter Streisen grösster Sterndichte läuft dann von 14 + 55° rückläufig nach 17^h 20^m + 25° mit einem Maximum von 20¹ Sternen in 20^h 10^m + 45°. Wenn diese aus dem allgemeinen Verlauf der Milchstrasse hervortretenden stärkeren Dichtigkeiten als Repräsentanten von nahen und deshalb ausgedehnten Sternhaufen gedeutet werden können, so stände die Sonne also genau in der Mitte von 2 der grössten derselben. Schiaparelli giebt dann auch die bildlichen Darstellungen der Vertheilung der Sterne jeder Grössenklasse von 5:00-6:00. 4.00-5.00, 3.00-4.00, 2.00-3.00 (in zwei verschiedenen grossen Trapezabschnitten) und endlich der Sterne bis zur 2.00 Grösse, natürlich müssen die Trapeze allmählich grösser dabei ausfallen, für die hellsten Sterne ist nur eine Zerfällung nach 8 Oktanten gewählt. Die beiden ersten Klassen zeigen noch ungefähr dieselbe Anordnung wie die Gesammtheit, die helleren aber nicht mehr und beweisen damit die noch genauer zu besprechende Existenz eines gesonderten Sternhaufens in unmittelbarer Nähe der Sonne. Zum Schluss legt Schlaparelli alle Sterne der Uranometria Argentina bis zu 95° Südpolardistanz und 6m·2 in einer gesonderten Darstellung nieder, die wieder den oben bezeichneten Sternhaufen in 84 - 45° offenbart.

STRATONOFF hat in seinem Atlas zu den ›Etudes sur la structure de l'universc¹) diese Darstellungen fortgesetzt für die Sterne der BD und zwar in 9 Karten deren erste die Sterne 1^m-6^m·0 behandelt, dann ist jeder halben Grössenklasse eine Karte gewidmet, und endlich eine für die Darstellung der Sterne 1^m-9^m·0 bestimmt. Aus allen geht hervor, dass das Minimum der Dichtigkeit nicht im Pole der Milchstrasse²) liegt, sondern zwar bei 13^h, aber mehr nach dem Aequator zu verschoben, nur für die Sterne 8^m·6-9^m·0 und 9^m·1-9^m·5 ist der Nordpol der Milchstrasse selbst das Dichtigkeitsminimum. Die Maxima liegen der Milchstrasse ungefähr entlang, zeigen aber stellenweise nicht unbeträchtliche Ab-

¹⁾ Publications de l'observatoire de Tachkent, N. 2. Tachkent 1900.

²⁾ Dies ist wahrscheinlich dem Zufall zuzuschreiben, dass dort der Sternhaufen Coma Berenices steht.

03

weichungen. Die Sternzahlen nehmen von dieser Hauptlinie gegen den Milchstrassenpol nicht gleichförmig ab, sondern für die helleren Klassen der teleskopischen Sterne ist die Gegend des äquatorialen Poles stärker besetzt als die gleichen galaktischen Breiten in der Nähe des Himmelsäquators. Dies kann aber ein scheinbares Phänomen sein, welches durch die andersartige Durchmusterung der Polargegenden (vergl. Band III, 2, pag. 519) entstanden ist Es folgt aber weiter aus diesen graphischen Darstellungen aufs neue, dass das optische Phänomen der Milchstrasse nichts mit der Vertheilung der BD-Sterne bis 9m·5 zu thun hat. Weder ist die Gabelung der Milchstrasse vom Schwan bis zum Schützen auf den Karten irgendwie angedeutet, noch fallen die breiten und engen Stellen derselben mit solchen des Zuges der Maximaldichtigkeit zusammen, noch liegen die Dichtigkeitsmaxima im allgemeinen auf den Stellen grösster Helligkeit der Milchstrasse. Von HOUZEAU'S 21 points d'éclat maximum, die auf den Nordhimmel fallen, kämen für eine solche Coincidenz nur 2 oder 3 in Betracht.

Die Karten offenbaren dann aber nicht ein, sondern mehrere Dichtigkeitsmaxima in der Hauptzone, deren Lage unter den Sternen sich gut beurtheilen lässt, da STRATONOFF die helleren Sterne durch rothe Punkte fixirt hat. Sieht man von den Karten der hellsten halben Grössenklassen ab, die zu wenig Sterne enthalten, so zeigen die Sterne 7m·1 - 7m·5 zunächst dieselbe Condensation zwischen Lever und Cassiopea, welche auch Schiaparelli's Karten offenbarten, mit dem Hauptmaximum in 201 h + 45°. Zwei Condensationen von kleinerem Umfange liegen um 31 + 40° im Perseus und um 51 + 40° im Fuhrmann. In der Karte der Sterne 7m·6-8m·0 ist die Hauptcondensation ausgedehnter und kräftiger, die zweite ist fast verschwunden, und nur in zwei kleinen Stellen im südlichen Perseus angedeutet, die dritte im Fuhrmann ist ausgedehnter geworden. Die Sterne 8m:1-8m:5 zeigen die Hauptcondensation noch breiter und die Stelle mit umfassend, wo vorher die zweite war, die dritte Condensation hat sich verengert, und eine vierte tritt bei 7h am Aequator auf. Die Karte der Sterne 8m·6-9m·0 zeigt nur 2 Verdichtungen, die grosse von Adler und Leyer bis zur Cassiopea und eine neue grosse, die von Süden herauskommend, die frühere dritte und vierte mit umfasst vom Einhorn bis zum Fuhrmann. Die Sterne 9m·1-9m·5 zeigen ungefähr dieselbe Vertheilung.

Wenn man mehrere auf einander folgende Karten betrachtet, so kann man die Erstreckung dieser Condensationen in die Tiefe des Raumes mit der Vorstellung verfolgen. Die grosse Verdichtung scheint ihr Centrum in der Entfernung der Sterne 6:**0-6**:5 zu haben, und ihre Breite nimmt nach den schwächeren Sternen him wieder ab. Die zweite Verdichtung ist an Tiefenausdehnung kleiner, sie geht überhaupt nur von den Sternen 6**:5 bis zu denen 8**:5. Die dritte ist die entfernteste und fängt erst bei den Sternen 7**:6-8**.0 an und verschmilzt sich dann mit der vierten.

So deuten die graphischen Darstellungen STRATONOFF's darauf hin, dass das Sternenheer aus mehreren grossen Sternhausen besteht, deren drei sich am Nordhimmel offenbaren, zwischen ihnen liegen verhältnissmässig leere Stellen. In und ausser diesen sind noch mehrere kleine Hausen angedeutet, von denen er auf pag. 28 in der Anmerkung mehrere auszählt.

Lineare Maasse im Sternsystem und die mittlere Sterndichte des Raums.

Die genaue Reduction der BD-Grössen auf photometrische, welche wir SEELIGER haben vornehmen sehen, hat die Folge, dass der mittlere lineare Abstand der Sterne einer beliebigen Grösse angegeben werden kann. Mit Hilfe der photometrischen Constante $\log \gamma = 0.4$ ergeben sich die Abstände von Sternen von derselben absoluten Leuchtkraft, aber verschiedener scheinbarer Helligkeit in Einheiten der Sterne 1^m wie folgt:

Grösse	log r	r	r'	p	Millionen Erdbahnradien	Billionen Kilometer	Lichtjahre
1	0.0	1.000	1.000	0"-2000	1.0313	154-184	16.286
2	0.5	1.585	1.549	0.1262	1.6346	244.365	25.811
3	0.4	2.512	2.371	0.0796	2.5906	387.292	40.908
4	0.6	3.981	3.572	0.0502	4.1058	613.817	64.835
5	0.8	6.310	5.269	0.0317	6.5073	972.835	102.757
6	1.0	10.000	7.576	0.0200	10.313	1541.84	162.86
7	1.2	15.845	10.578	0.0126	16.346	2443.65	258.11
8	1.4	25.119	14:317	0.0080	25.906	3872.92	409.08
9	1.6	39.811	18.788	0.0050	41.058	6138-17	648.35
10	1.8	63.096	23.948	0.0032	65.073	9728:35	1027:57
11	2.0	100	29.733	0.0020	103.13	15418.4	1628-6
12	2.2	158.489	36.066	0.0013	163.46	24436.5	2581.1
13	2.4	251.189	42.878	0.0008	259.06	38729.2	4090.8
14	2.6	398-107	50.099	0.0005	410.58	61381.7	6483.5
15	2.8	630.957	57.673	0.0003	650.73	97283.5	10275.7
16	3.0	1000.000	65.548	0.0002	1031.30	154184	16286

Die erste Columne vorstehender Tabelle enthält die photometrische Grösse. auf welche also alle Grössenzahlen vorerst reducirt werden müssen, ehe man mit ihnen in die Tabelle eingeht, die zweite enthält den log der Entfernung des Sterns, der aus der strengen Formel $\log r = (m-1)\frac{\log \gamma}{2}$ folgt, die dritte die Radien selbst, in Einheiten der Sterne 1m. Die Tabelle ist bis zu den Sternen 16" ausgedehnt, weil selbst die schwächsten HERSCHEL'schen Sterne. wenngleich ihre photometrische Helligkeit nicht bekannt ist, dann jedenfalls in der Tabelle mit eingeschlossen werden. Es ist bei dieser Entfernungsbestimmung keine Rücksicht genommen auf die Olbers'sche Extinction des Lichtes 1), sondern es ist mit Skeliger angenommen worden, dass diese zweifellos vorhandene Extinction doch so schwach sei, dass sie erst bei Lichtquellen ausserhalb des ganzen Fixsternsystems in Wirksamkeit tritt und diese vielleicht ganz auslöscht, sodass keine Kunde von Welten ausserhalb des Milchstrassensystems zu uns gelangt2). STRUVE3) hatte bekanntlich für die Constante der Extinction den Werth ξ = 0.990651 angenommen, als den Procentsatz der Lichteinheit, welcher nach Durchlaufen der Entfernungseinheit noch übrig bleibt. Mit dieser Annahme sind, nur um eine Vorstellung von der sich ungeheuer summirenden Wirkung der Extinction zu geben, die Entfernungen r' der vierten Columne berechnet, die auch Schiaparellit4) hat. Es ist dann die Parallaxe der Sterne 1" durchschnittlich zu der runden Zahl von 0"-200 angenommen; dies liegt ebenso nahe dem von C. A. F. Peters ermittelten Werth, wie dem Ergebniss der Unter-

¹⁾ Olbers, Ueber die Durchsichtigkeit des Weltraums, Werke I, pag. 133.

²⁾ SEELIGER, Betrachtungen über die räumliche Vertheilung der Fixsterne, pag. 8.

³⁾ Etudes d'astronomie stellaire, pag. 88.

⁴⁾ Sulla distribuzione apparate, pag. 26.

suchungen Gylden's 1) und aus diesem runden Werth sind dann die Parallaxen der anderen Grössenklassen abgeleitet. Der Parallaxe von 0".2 entspricht ein Abstand von 1.0313 Millionen Erdbahnradien und daraus folgen in der 6. Columne die Abstände der Sterne in Halbmessern der Erdbahn. Die astronomische Einheit wird für eine Sonnenparallaxe von 8".80 zu [2.1746439] = 149.5009 Millionen Kilometern erhalten, und in der Einheit von Billionen Kilometern sind dann in der 7. Columne die Sternabstände in unserem Längenmaass ausgedrückt. Das Licht legt im Jahre [0.97623] = 9.4674 Billionen Kilometer zurück, und so ergeben sich endlich in der 8. Columne die Zeiten, die das Licht durchschnittlich von dem Sterne einer bestimmten Grösse bis zu uns gebraucht.

Man kann sonach mit Hilfe dieser Tabelle an alle Entfernungen im Fixsternsystem einen vergleichenden Maassstab legen. Die Grenzen des Milchstrassensystems, die man durch die schwächsten Herschell'schen Sterne als gegeben ansehen darf, würden je nach den 4 Seeliger'schen Annahmen sehr verschieden weit gesteckt, aber auf höchstens 650 Millionen Erdbahnradien und 10000 Lichtjahre von der Sonne kommen.

Wie in diesem Raum die Fixsterne vertheilt sind, das können wir nur von dem innersten Zehntel desselben genauer angeben. Es liegt dabei die Frage nahe, in welchem durchschnittlichen linearen Abstand voneinander zwei Sterne im Weltraum stehen; diese Frage wird aber, um von etwaigen Irrungen in den Annahmen über die Abnahme der Sterndichte mit wachsender Entfernung frei zu sein, am besten nur für den Complex der Sterne $1-6^m$ beantwortet, welche ja sehr nahe gleichförmig vertheilt zu sein scheinen. Man kann dies nicht so machen, dass man sich den Raum aus lauter gleichen Tetraederr zusammengesetzt denkt 3), in deren Ecken die Sterne ständen, die dann von allen benachatten gleichweit entfernt wären, da aneinandergelegte Tetraeder einen Raum nicht völlig zu erfüllen im Stande sind, sondern muss mit Seeliger 3) die Wahrscheinlichkeitsrechnung anwenden. Werden dann 6000 Sterne bis 6^m vorausgesetzt und die Parallaxe der Sterne 6^m zu $0^{\prime\prime\prime}\cdot02$ angenommen, so ist der durchschnittliche Abstand zweier von diesen 6000 in die Kugel mit dem Radius 10 eingeschlossenen Sternen $=\frac{1}{20\cdot35}$ von diesem Radius also etwa $0\cdot5$, halb so gross wie der Abstand der Sterne erster Grösse oder mit anderen Worten:

gross wie der Abstand der Sterne erster Grösse oder mit anderen Worten: durchschnittlich erscheint im Complex der Sterne bis 6²⁰ jedem Stern sein allernächster Nachbar 4 Mal so hell wie ein Normalstern, und dieser Nachbarstern hat die Parallaxe 0"·41. Das sind Zahlen, die bei uns für Sirius ungefähr zutreffen.

Denkt man sich nun die Masse dieser 6000 Sterne gleichmässig über den Raum verbreitet, so erhält man die mittlere Dichte, mit der der Weltraum mit Masse erfüllt ist. Wir haben aber Ursache, die mittlere Masse eines Sternes grösser als die Sonnenmasse anzunehmen einmal, weil die meisten Massenbestimmungen, die wir in Doppelsternsystemen von bekannter Parallaxe aus der Umlaufszeit haben schliessen können, uns grössere Massenwerthe als die Sonne kennen gelehrt und dann, weil die Bestimmungen des Helligkeitsverhältnisses der nächsten Fixsterne zur Sonne gezeigt, dass die Leuchtkraft der Fixsterne durchschnittlich grösser sein muss als die der Sonne. Setzen wir also die

¹⁾ A. N. 8258.

²⁾ Wie dies Gore gethan hat (vergl. Knowledge 1893 Jan., Referat in Himmel und Erde 6 Jahrg., pag. 47).

³⁾ A. N. 3273.

Masse eines Sternes durchschnittlich zu 10 Sonnenmassen an, so werden 60000 Kugeln von einem Radius von sin 15' 59"·63, wenn wir den Erdhalbmesser als Einheit setzen, in einem Raume von einem Radius von $\frac{206264\cdot8}{0\cdot02}$ vertheilt.

Die mittlere Dichte wird also in Einheiten der Sonnendichte

$$\frac{60000 \cdot \sin^3 15' \cdot 59'' \cdot 63 \cdot (0.02)^3}{206264^3 \cdot 8} = [6.7410 - 30],$$

und da das specifische Gewicht der Sonne [0.1540] = 1.43 ist, würde die Materie mit einer mittleren Dichte von $[6.8950 - 30] = 7.85 \cdot 10^{-24}$ im Weltraum vertheilt sein. Anschaulicher wird diese unvorstellbar geringe Zahl, wenn man zum Vergleich bemerkt, dass sich dieselbe Dichte ergiebt, wenn man die Masse Wasser eines Würfels von 2^{mm} Seitenlänge auf einen Würfel von 100^{km} Kante vertheilt. Es ist kaum anzunehmen, dass die mittlere Dichtigkeit des Raumes, der die Sterne 6 sc einschliesst, so klein ist, und wir werden fast zur Annahme dunkler Weltkörper oder gasiger Massen, die dann freilich schon eine gewisse Extinction bewirken müssten, selbst in diesem innersten Theile des Milchstrassensystems getrieben.

Der Sonnensternhaufen.

Ist nun auch die Sonne das Glied eines Sternhaufens, wie wir deren mehrere auf den Stratonoff'schen Karten das Sternsystem zusammensetzen sahen? Der jüngere Herschel hat zuerst in seinen mehrfach citirten Results of Observations at the Cape of Good Hope« den Gedanken ausgesprochen, dass auf der südlichen Hemisphäre sich die helleren Sterne um einen Gürtel legen, der nicht mit der Milchstrasse zusammenfällt, und nachdem Gould denselben in einem kleinen Aufsatz1) >On the Number and Distribution of the Bright Fixed Stars« wieder aufgenommen, begründet er ihn eingehend in der Uranometria Argentina. Danach ist die Sonne zunächst ein Glied eines kleinen, gar nicht so zahlreiche Mitglieder umfassenden Sternhaufens, der vielleicht etwas über 400 Sterne zählen mag, deren mittlere Helligkeit 3.6 oder 3.7 für uns wäre. Die Sonne steht nicht allzufern seiner Mitte, und der Sternhaufen ist nicht kugelförmig, sondern der Milchstrasse ähnlich abgeplattet. Daher prägt sich für uns auch von ihm ein breiter Ring, der dichter mit Sternen besetzt ist, an der Sphäre aus, und dieser von Gould im Gegensatz zur Milchstrasse »galactic belt« genannte Gürtel durchzieht nicht als ein grösster, sondern als kleiner Kreis den Orion, den grossen Hund, die Taube, das Hintertheil und den Kiel des Schiffes, das Kreuz, den Centauren, den Wolf und den Kopf des Scorpions. Er ist dann weniger ausgeprägt im Ophiuchus und Hercules, doch seine Richtung ist auch an der nördlichen Hemisphäre festgelegt durch die hellen Sterne im Stier, dem Perseus, der Cassiopea, dem Cepheus, dem Schwan und der Leyer. Er bildet mit der Milchstrasse einen Winkel von weniger als 20° und schneidet sie im Kreuz und in der Cassiopea. Sein Pol mag zu etwa 11th 25m in R. A. und + 30° in Deklination angenommen werden, der sphärische Radius etwa zu 93°. Seine Existenz wird ausser durch den Augenschein auch dadurch bewiesen, dass von den 527 Sternen heller als 4. Grösse nur 306 der Milchstrasse näher als 30° Abstand, 330 aber diesem Gürtel näher als 30° liegen. Zählt man nun die Sterne nördlich und südlich, sowohl der Milchstrasse als des Gürtels ab, so ergiebt sich:

1) Von 281 Sternen, die weniger als 30 $^\circ$ sowohl von der Milchstrasse wie von dem Gürtel entfernt sind, liegen

¹⁾ Proceedings of the American Association for the Advancement of Science 1874, pag. 115.

$$\left. \begin{array}{c} 140 \ \text{n\"{o}\'rdlich} \\ 141 \ \text{s\'tdlich} \end{array} \right\} \ \text{des G\"{u}\'rtels}, \quad \left. \begin{array}{c} 107 \ \text{n\"{o}\'rdlich} \\ 174 \ \text{s\'tdlich} \end{array} \right\} \ \text{der M\'{i}lchstrasse}.$$

2) Von 355 Sternen, die entweder der Milchstrasse oder dem Gürtel sich auf mehr wie 30° nähern, liegen

$$\left. \begin{array}{c} 179 \text{ n\"{o}}\text{r\"{d}lich} \\ 176 \text{ s\"{u}}\text{d}lich \end{array} \right\} \text{ des } \left. \begin{array}{c} 146 \text{ n\"{o}}\text{r\"{d}lich} \\ 209 \text{ s\"{u}}\text{d}lich \end{array} \right\} \text{ der } \text{M\"{i}lchstrasse}.$$

3) Von den 330 Sternen, die dem Gürtel näher als 30° kommen, liegen

$$\left. \begin{array}{ll} 162 \ \text{n\"{o}\'rdlich} \\ 168 \ \text{s\"{u}\'dlich} \end{array} \right\} \ \text{des} \ \ G\"{u\'rtels}, \qquad \left. \begin{array}{ll} 129 \ \text{n\"{o}\'rdlich} \\ 201 \ \text{s\'{u}\'dlich} \end{array} \right\} \ \text{der} \ \ \text{M\"{i}lchstrasse}.$$

Es ist also die Milchstrasse keine Symmetrieebene für die Sterne heller als 4. Grösse, die zumeist südlich von ihr liegen, wohl aber theilt der Gürtel in allen 3 Fällen die Zahl der Sterne in nahezu gleiche Theile. Aber dieser Gürtel der helleren Sterne hat auch das mit der Milchstrasse gemein, dass er sich zweitheilt, indem er einen Ast nicht weit von α Centauri abspaltet, der die hellen Sterne des Schützen und des Schwanzes des Scorpions enthält, den Adler und Delphin durchquert und den Hauptzweig in der Andromeda trifft.

SECCHI¹) berichtet, dass wenn man Fomalhaut zum Pole eines grössten Kreises mache, dann die meisten Sterne bis zur 4. Grösse nur unbedeutend von dem Laufe dieses Kreises abweichen und berechnet ihre Abstände von dem selben, die nur in wenigen Fällen auf 45° steigen. Der Nordpol dieses Bandes der hellen Sterne käme in 10⁴ 45^m + 30°³) zu liegen, also nur in α etwas abweichend von Gould's Werth. Freilich braucht Seccht für die übrigen Sterne heller als 4^m noch ein zweites Lichtband, dessen Pol ungefähr α Cephei ist, und er will mehr beschreiben, während Gould in dem ganzen Complex der hellen Sterne die einheitliche Symmetrieebene sucht.

Hierher gehört auch die Schlussbetrachtung des V. Kapitels: »On the form of the galactic cluster, mit welcher Peirce seine Photometric Researches in Vol. IX der Annals of the Astronomical Observatory of Harvard College schliesst. Er theilt zunächst parallel der Milchstrasse die ganze Kugel in 7 Zonen, von ca. 26° Höhe, welche er vom Nordpole der Milchstrasse beginnend als Berenicean Pol, Berenicean Apogalactic, Berenicean Perigalactic, Engalactic, Magellanic Perigalactic, Magellanic Apogalactic und Magellanic Pol bezeicnet. Er stellt dann fest, dass die beiden perigalaktischen Zonen an Sternen der ersten 6 Grössenklassen nur minimal ärmer sind, als die engalaktische der Milchstrasse, und dass andrerseits die beiden Polgegenden ebenso reich an Sternen sind, wie die apo galaktischen Zonen. Die helleren Sterne sind also nicht in einem regelmässig mit höheren Breiten dünner besetzten Ellipsoid enthalten. Die Form, welche die Curven gleicher Dichtigkeit in Schnitten senkrecht zur Milchstrasse haben, bestimmt Peirce, indem er die mittleren Sterndichten der in Heis und Behr-MANN'S Atlanten enthaltenen Sterne in einem Würfel von einer der Entfernung der Sterne 1m entsprechenden Seitenlänge, wie folgt, berechnet:

Alcune ricerche di astronomia siderale relative specialmente alla distribuzione delle stelle nello spazio, memoria del P. ANGELO SECCHI. Memoria del Nuovo Osservatorio del Collegio Romano 1856-7. Roma 1857.

²⁾ Mit Verbesserung eines Fehlers von 12 Stunden bei SECCHI.

	1 ***	2 m	3m	4m	5.	6m
Galaktische Pole	0.52	0.23	0.30	0.18	0.39	0.30
Apogalaktische Zonen.	0.34	0.42	0 51	0.34	0.32	0.29
Perigalaktische Zonen .	0.69	0.54	0.39	0.49	0.46	0.37
Milchstrasse	1.21	0.62	0.60	0.49	0.52	0.37
Radienvektoren	1.27	2.80	4.06	5.81	8.15	12.9

Indem er nun die Dichtigkeiten in ein rechtwinkliges Coordinatensystem einträgt, das in einem Schritte senkrecht zur Milchstrasse die Sonne zum Ausgangspunkte hat, kann er die Curven gleicher Sterndichten ziehen, was er mit der Tendenz, möglichst elegante Figuren zu bekommen, thut. Er erhält so eine Schaar kassinischer Ovale, die auf Tafel III der citirten Annalen abgebildet sind. Sie drängen sich in einer dem Abstand der Sterne 2. Grösse entsprechenden Entfernung dicht zusammen und zeigen, dass hier die grösste Verdichtung eines Ringes der helleren Sterne liegt, der die Sonne zunächst concentrisch umgiebt, ohne sich weit über die Breite der Milchstrasse auszudehnen. Die Sonne liegt von der Ebene dieses Ringes aus nach der Seite der Berenice, ebenso wie sie über die Milchstrassenebene nach Norden erhoben ist. Der Umstand, dass die Sonne das Centrum all dieser Ovale bildet, zeigt indes, ein wie starker Zwang mit diesen regelmässigen Figuren der Wirklichkeit angethan ist. Nicht darum hat COPERNICUS die Erde als Mittelpunkt der Planetenwelt entthront, damit seine Jünger sie in den Mittelpunkt des Weltalls rücken sollten.

Dass die helleren Sterne lange nicht die gleiche starke Condensation zur Milchstrasse hin zeigen, wie die schwächeren, ergeben auch mehrere elementare Untersuchungen mit den Karten von Heis und Houzeau. Auf den Heis'schen Karten bedeckt nach Gore 1) die Milchstrasse 5340 Quadratgrade oder 25'88 des ganzen dargestellten Areals, es fallen aber in ihre Fläche nur 1199 oder 30'7 der dargestellten (dem unbewaffneten Auge sichtbaren) Sterne, also kaum mehr wie eine gleichförmige Vertheilung erwarten liesse. Andrerseits giebt Plassmann das gesammte Areal der Milchstrasse auf 4189 Quadratgrade oder 0:10155 der Kugel an, danach müssten auf den Houzeau'schen Karten von 5719 Sternen 580'76 in der Milchstrasse stehen, Gore 3) zählt dort 706, also wiederum nur wenig mehr als den Durchschnitt.

Wenn aber wirklich die Sonne zunächst ein Sternhausen umgiebt, der klein ist im Verhältniss zu dem gesammten Sternenheere, so können sich in der Verheilung der helleren Sterne gar nicht dieselben Gesetze ausprägen wie sür die schwächeren. Kobold benutzt in V. A. G. 34. Jahrgang, pag. 212 ein vollständiges Verzeichniss aller Sterne bis zur photometrischen Grösse 6:0 über den ganzen Himmel, das er sich nach der Harvard Photometry und der Southern Harvard Photometry angelegt, dazu, um dies zahlenmässig klar zu legen. Zunächst sind nach halben Sternklassen und nach den 9 Seeliger'schen Zonen getrennt, folgende Sternzahlen vorhanden:

i) Observatory 1889, pag. 370.

⁹⁾ Observatory 1890, pag. 149.

Zone	bis 2m	2m·5	3110	3m·5	4m·0	4m·5	5m·0	55	Summe	Areal in Grader
I	1	1	3	0	1	7	27	29	69	1243-9
11	6	4	5	11	16	26	54	90	212	3581.7
III	2	2	14	18	30	34	91	158	349	5487.5
IV	10	7	15	18	47	94	132	244	567	6731.7
v	23	12	28	42	61	109	268	316	859	7163.81
VI	14	8	15	28	68	93	173	290	689	6731.7
VII	3	3	10	16	27	60	88	169	376	5487.5
VIII	4	0	3	7	28	36	53	104	235	8581.7
IX	1	1	0	4	3	7	23	34	73	1243.9
Summe	64	38	98	144	281	466	909	1434	3429	41253.0

Damit ergiebt sich für die Zahl der Sterne auf 100 Quadratgraden

Zone	bis 2m	2m·5	31.0	3m·5	4m.0	4m·5	2m.0	5m·5	Summe
I	0.08	0.08	0.24	0.00	0.08	0.56	2.17	2.33	5.55
II	17	11	14	31	0.45	0.73	1.51	2.51	5.92
Ш	04	04	26	33	0.55	0.62	1.66	2.88	6.36
IV	15	10	22	27	0.70	1.40	1.96	3.63	8.42
v	32	17	39	59	0.82	1.53	3.74	4.41	11.99
VI	21	12	22	42	1.01	1.88	2.57	4.31	10-24
VII	05	05	18	29	0.20	1.09	1.60	3.08	6.85
IIIV	11	00	08	20	0.78	1.01	1.48	2.90	6.56
IX	08	08	00	32	0.24	0.56	1.85	2.73	5.87
Mittel	0.16	0.09	0.23	0.35	0.68	1.13	2.20	3.48	8.31

So zeigt sich also wohl ein Anwachsen der Sternzahlen gegen die Milchstrasse, bildet man aber Seeliger's a, die $\frac{A_m}{A_{m-\frac{1}{2}}}$, so hat man zunächst folgende Tafel der A_m

Zone	2m	2m·5	30	3m·5	4m.0	4m·5	5m·0	5.4.5
I	1	2	5	5	6	18	40	69
11	6	10	15	26	42	68	122	212
ш	2	4	18	36	66	100	191	849
IV	10	17	32	50	97	191	323	567
v	23	35	63	105	166	275	543	859
VI	14	22	37	65	133	226	399	689
VII	3	6	16	32	59	119	207	376
VIII	4	4	7	14	42	78	131	235
IX	1	2	2	6	9	16	39	73
Summe	64	102	195	339	620	1086	1995	3429

Aus derselben mögen der bequemeren Rechnung wegen nur die numerischen Werthe der α abgeleitet werden

¹⁾ V. A. G. 34. Jahrg., pag. 213 steht nur die Hälfte dieses Werthes.

Zone	a25	α3·0	a3 ·5	Mittel	α4:0	α4.5	α5·0	α ₅ ·5	Mittel	Gesammt mittel
I	2.00	2.50	1.00	1.83	1.20	2.17	3.08	1.72	2.04	1.95
II	1.67	1.20	1.73	1.63	1.62	1.62	1.79	1.74	1.69	1.67
III	2.00	4.20	2.00	2.88	1.83	1.52	1.91	1.83	1.77	2.23
IV	1.70	1.88	1.56	1.71	1.94	1.97	1.69	1.76	1.84	1.79
v	1.52	1.80	1.67	1.66	1.58	1.66	1.97	1.28	1.70	1.68
IV	1.57	1.68	1.76	1.67	2.05	1.70	1.77	1.73	1.81	1.75
VII	2.00	2.67	2.00	2.22	1.84	2.02	1.74	1.82	1.85	2.01
VIII	1.00	1.75	2.00	1.58	3.00	1.86	1.68	1.79	2.08	1.87
IX	2.00	1.00	3.00	2.00	1.50	1.78	2.44	1.87	1.90	1.94
Mittel	1.59	1.91	1.73	1.74	1.83	1.75	1.84	1.70	1.78	1.77

KOBOLD hat zunächst die ag. 5 bis ag. 5 und die ag. 6 bis ag. 6 gemittelt, um eine event. Verschiedenheit der allerhellsten Sterne gegen die schwächeren mit unbewaffnetem Auge sichtbaren zu untersuchen. Eine solche ist stellenweise vorhanden, namentlich in Zone III und VIII, doch verschwindet sie in den Mittelzahlen, die für die hellsten Sterne $\alpha = 1.74$, für die anderen 1.78 sind. Das allgemeine Mittel ist 1.76, wozu log a = 0.248 gehört; für die schwächeren Klassen der BD fand Seeliger im Generalmittel $\log a = 0.258$, also besteht nur ein unwesentlicher Unterschied. Jedenfalls liegt log a auch für die Sterne heller als 6m weit unter dem theoretischen Werth 0.3 und der Schluss, dass die Sternzahlen beträchtlich langsamer mit der Sterngrösse zunehmen, als eine gleichförmige Vertheilung und gleiche Leuchtkraft erfordert, gilt auch für die Sterne der ersten 6 Grössenklassen, wie dies aus Schiaparelli's schon erwähnten Untersuchungen ebenfalls hervorgeht. Betrachtet man aber den Gang der a in den 9 Zonen, so zeigt sich nicht das geringste Anwachsen gegen die Milchstrasse und fassen wir nach SEELIGER's Vorgang symmetrische Zonen zusammen, so erhalten wir noch folgendes Täfelchen:

Zone	$\alpha_0 \dots \alpha_{3\cdot 5}$	a4.0 a5.5	α ο αδ.δ	α0α90
I u. IX	1.92	1.97	1.95	1.73
II " VIII	1.61	1.89	1.77	1.75
III " VII	2.53	1.81	2.12	1.77
IV " VI	1.69	1.83	1.77	1.82
v	1.66	1.70	1.68	1.88

In den ersten 3 Columnen zeigt sich keineswegs das regelmässige Anwachsen der letzten, die die Ergebnisse Seelloer's für die BD-Sterne bis 9**0 enthält. Es ist also die Abnahme der hellen Sterne mit der Entfernung keine einfache Function der galaktischen Breite. Die helleren Sterne sind nicht dem gleichen Gesetz unterworfen wie die teleskopischen, dass die Abnahme der Sternzahlen mit wachsender Grösse um so rascher erfolgt, je grösser die galaktische Breite ist. Diese Sonderstellung der helleren Sterne verträgt sich gut mit der Annahme, dass ein wesentlicher Theil von ihnen einem die Sonne einschliessenden Sternhausen angehört, der in sich nicht dieselben Gesetze der Sternvertheilung befolgt, wie das ganze Sternenheer.

Das gleiche Ergebniss findet Seeliger in seiner Arbeit Zur Vertheilung der Fixsterne am Himmele 1). Zwar die $log \alpha_{60}$ und $log \alpha_{65}$, die er aus den Abzählungen der BD-Sterne $1-5^{m\cdot 5}$, $1-6^{m\cdot 0}$, $1-6^{m\cdot 5}$ erhält, nachdem die Werthe

¹⁾ Sitzungsber. der k. bayer. Academie d. Wiss. Bd. XXIX., Heft III.

101

daraufhin corrigirt sind, dass die BD-Grössen 5 m·5, 6 m·0, und 6 m·5 sich nicht um eine genaue halbe Grössenklasse, sondern um Beträge unterscheiden, die nach galaktischen Zonen verschieden sind, wie dies Seeliger früher (vergl. pag. 79) bestimmt hatte, zeigen einen ganz unregelmässigen Verlauf, aus dem eben nur soviel hervorgeht, dass die dadurch beabsichtigte Reduction auf photometrische Grössen für diese hellen Klassen eben doch nicht genügend herbeigeführt ist, und daher die BD-Grössen wegen der geringen Zahl der Sterne überhaupt für feinere Untersuchungen nicht geeignet sind. Sefliger nimmt also die Harvard-Photometry und zählt hier die Sterne 1"-5".5 und 1"-6".0 ab. Er erhält so nach Zonen

	$1 - 5m \cdot 5$	1-6***0	log 26.0
I	56	109	0.289
II	129	226	0.243
III	181	315	0.240
IV	229	385	0.225
V	314	495	0.198
VI	250	392	0.190
VII	106	183	0.237
VIII	24	44	0.263
Summe	1289	2149	0.222

Die Werthe für log aco dürfen noch nicht als definitive gelten, weil die Harvard Photometry in den Sternen bis 6m·0 der photometrischen Skala vielleicht nicht vollzählig ist, da ihr Programm die Sterne der BD nur bis zur Grösse 6m · 0 vollständig bildeten, und die Sterne der 6m · 1 und 6m · 2 meist, die schwächeren dagegen nur dann aufgenommen wurden, wenn Gründe bestanden, sie für mindestens 6 " O doch zu halten. SEELIGER berechnet nun, wie viele von den nicht in die Harvard Photometry aufgenommenen Sternen 6m-1 und 6m-2 der BD noch für 6m.0 oder heller nach der photometrischen Skala gelten dürfen, und findet dann als Gesammtzahl der Sterne bis 6m-0

Zone	$1 - 6m \cdot 0$	log a6.0	Zone	1-6***0	log 26.0
I	110	0.293	v	522	0.221
II	237	0.264	VI	409	0.214
Ш	322	0.250	VII	192	0.258
IV	397	0.239	VIII	46	0.283

Hier ist noch deutlicher als in den vorigen log a60 das Gesetz offenbart, dass nicht eine Zunahme gegen die Zone V stattfindet, sondern eine Abnahme. Dem Sternhaufen, der die Sonne zunächst umgiebt, und der eine besondere von der Milchstrasse losgelöste Stellung einnimmt, gehören also die Sterne bis 6 **-0 (photom.) grösstentheils ebenfalls noch an. Einen weiteren Beweis für die Existenz desselben liefern die Untersuchungen Kapteyn's über die Vertheilung der Sterne mit E. B. über 0".04, die noch ausführlicher zu besprechen sind; da eine starke Eigenbewegung ein sichererer Massstab für die kleine Entfernung eines Sterns ist als grosse Helligkeit und diese starkbewegten Sterne keine Anhäufung in der Ebene der Milchstrasse zeigen, so beweisen auch sie die Sonderstellung eines centralen Sternhaufens.

Vertheilung der verschiedenen Spectraltypen.

Nach den Untersuchungen über die Vertheilung der Sterne überhaupt wenden wir uns zu der von besonderen Klassen von Sternen und beginnen mit den verschiedenen Spectralklassen. Das Hauptmaterial zu allen einschlägigen Betrachtungen liesert der Draper-Catalogue der Harvard-Sternwarte, der in Band XXVII ihrer Veröffentlichungen aussührlich mitgetheilt, in Band XXVI aber eingehend besprochen
ist. Mit einem photographischen Objectiv, das bei 20 cm Oeffnung und 115 cm
Brennweite eine Fläche von 10 Quadratgraden ohne merkbare Distorsion aus
einmal abzeichnete, wurden von allen Sternen statt punktförmiger Bilder sosort
die Spectren erhalten, indem ein Prisma von 8 Zoll im Quadrat mit dem
brechenden Winkel von 13° vor das Objectiv gesetzt wurde. So wurde der
ganze Himmel bis — 25° Deklination mit Platten bei einer Expositionszeit von
5m bedeckt, nur in den Polgegenden wurde diese verlängert. Die erhaltenen
Spectra wurden nach Klassen, die mit dem Buchstaben A bis M bezeichnet
waren, mit folgender Bedeutung 1) abgetheilt.

erster Typus

- A. Die Spectra enthalten nur Wasserstofflinien und die Linie K (rein erster Typus).
- B. Es treten einzelne andere Linien daneben auf meist in 402·6 und 447·1 μμ.
- C. Die Wasserstofflinien G und h scheinen doppelt zu sein, sonst wie A.
- D. In Spectren des ersten Typus sind noch breite Banden vorhanden.
- E. Nur die Linien F, H und K sind sichtbar.
- F. Ausser F sind noch andere Wasserstofflinien neben H und K vorhanden.
 G. Es treten noch andere Linien hinzu.
- H. Das Spectrum ist heller für die Strahlen, deren Wellenlänge 431 $\mu\mu$ übersteigt.
- I. Wie H, nur treten noch mehr dunkle Linien auf.
- K. Bei wohldefinirten Spectren der Art H treten noch dunkle Banden auf. L. Andere Varietäten des Typus H.
- M. Dritter Typus. Die Strahlen von grösserer Wellenlänge als 476·2 μμ erscheinen abrupt schwächer als die von kleinerer Wellenlänge.

Die erste Untersuchung über die scheinbare Vertheilung der Sterne nach diesen Spectralklassen am Himmel macht Pickering selbst in Chapter VIII von Vol. XXVI. Er lässt die Klassen A, B, F, M für sich bestehen, bildet aus E und G eine fünfte, aus H, J und K eine sechste Klasse, und lässt die übrigen Klassen ausser Betracht, da sie zu wenig Glieder umfassen. Er theilt dann den Himmel zunächst durch die Parallelkreise + 30°, 0°, - 30° in 4 gleiche Theile, zieht aber innerhalb der Polcalotten noch den Parallel von 61°2'-7, der ein viertel von der ganzen Calotte um den Pol herum absondert. Die Circumpolarzone wird durch die Stundenkreise 04, 84, 164 in 3, die Zone zwischen 30° und 61° 2'-7 durch die Stundenkreise, welche, von 04 beginnend, 24 40m Abstand zwischen sich lassen, in 9, die äquatorealen Gürtel durch die graden Stundenkreise in 12 gleiche Theile getheilt. Der ganze Himmel hat ihrer 48, von denen aber bis zu dem Parallel von - 30° nur 36 in Frage kommen, davon durchschneidet die Milchstrasse 18 Regionen, während die anderen 18 nicht von ihr berührt werden. Die betr. Abzählungen nach halben Helligkeitsklassen getrennt sind in Tabelle XXXVIII bis XLI gegeben. Werden nun alle Sterne mitgenommen, und die 18 Milchstrassenregionen unter der Bezeichnung M, die 18 anderen unter der Bezeichnung N zusammengezählt, so findet sich

¹⁾ Annals of Harvard Coll. Vol. XXVII, pag. 3.

Spectraltypus	A	В	F	(E+G)	$(H + \mathcal{I} + K)$	M	übrige	Summe
M	3560	80	650	628	1275	40	18	6251
N	1658	19	430	643	1287	48	9	4094
Summe	5218	99	1080	1271	2562	88	27	10345
M:N	2.1	4.2	1.2	1.0	1.0	0.8	2.0	1.5

Werden aber alle Spectra weggelassen, welche unter der 6½. Grösse liegen, weil bei grösserer Lichtschwäche des Spectrums die Klassificirung oft nicht mehr einwandfrei geschehen kann und namentlich die Klassen A, E und H dann alle zweifelhaften Spectren zugewiesen erhalten, so ergiebt sich

Spectraltypus	A	В	F	(E+G)	$ (H + \mathcal{I} + K) $	M	übrige	Summe
M	1774	72	308	152	453	32	13	2804
N	855	16	205	€4	341	26	3	1530
Summe	2629	88	513	236	794	58	16	4334
M:N	2.1	4.2	1.5	1.8	1.3	1.2	4.3	1.8

Das erste Täfelchen zeigt, dass die Sterne der Klassen A und B in der Milchstrasse ein Uebergewicht von dem 2 resp. 4-fachen gegen die höheren galaktischen Breiten haben, die Classe F zeigt noch ein kleines Uebergewicht. Die anderen Spectralklassen indessen sind ohne Rücksicht auf die Milchstrasse angeordnet. Reiht man nun die zahlreichen Spectraltypen Pickering's in die bekannten 3 grossen Voget'schen Klassen, so würden A, B, C und D zur ersten E bis L zur zweiten und M zur dritten Spectralklasse gehören. Die Sonne gehört bekanntlich dem zweiten Spectraltypus an, und damit also einer Gruppe von Sternen, welche sich von dem Milchstrassensystem deutlich absondert. Diese Schlüsse werden allerdings durch das zweite Täfelchen etwas zu Gunsten der Milchstrasse verschoben, wenngleich das Uebergewicht derselben für die zweite Klasse ein geringeres bleibt als für die erste, in der dritten Klasse ist aber auch hier kaum eine Rücksichtnahme auf dieselbe zu finden.

Dieselben Verhältnisse illustrirt graphisch Boraston¹), indem er gleich die Klassen A und B zusammenfasst, EFG und HJK vorläufig getrennt lässt, dann aber zu einer Klasse E bis K vereinigt; M enthält zu wenig Sterne, um graphisch dargestellt zu werden, die nichterwähnten Klassen sind ebenfalls zu wenig zahlreich vertreten. Die Darstellung geschieht einmal für alle Grössen zusammen, dann für die Sterne bis zur 61., dann bis zur 51. und endlich bis zur 51. Grösse. Es zeigen sich dieselben Ergebnisse wie bei Pickering, nämlich deutliche Maxima der Curven für die Klassen A und B in der Milchstrasse, weniger oder gar nicht ausgesprochene für die anderen 3 Curven. Nur zeigen auf allen 4 graphischen Darstellungen die Sterne des zweiten Spectraltypus ein ausgeprägtes Maximum im Schützen, dessen Deutlichkeit Boraston zu einer schärferen Untersuchung veranlasst. Er sucht 43 der helleren Sterne der Gruppe heraus, deren Eigenbewegungen er den Greenwich-Catalogen, deren Helligkeit er der Harvard Photometry entnimmt 21 von diesen Sternen haben den Positionswinkel ihrer Eigenbewegung im 3. Quadranten liegen, und davon gehören nur 3 sicher, 2 zweiselhast dem ersten Spectraltypus an. Boraston glaubt also an die Existenz einer Sternschaar vom zweiten Spectraltypus, die hier mit gemeinsamer Bewegung der Sonne entgegensteuert, er glaubt auch einige der im ersten Quadranten

¹⁾ Astronomy and Astrophysics, Vol. XII, 1893, pag. 57-73.

sich bewegenden Sterne hinzurechnen zu dürfen, indem er ihnen nur so kleine motus peculiares anweist, dass die parallaktische Bewegung sie eben ins Gegentheil verkehrt habe, indessen dürfte letzteres bedenklich sein, da wir gewohnt sind, bei Sternsystemen sehr nahe die gleiche Translationsbewegung bei allen Gliedern des Systems anzunehmen. Auch andere Sternsysteme findet BORASTON ausgesprochen, so in Cassiopea und Camelopardalis, dann eine Gruppe von 150 schwachen Sternen zwischen Leier und Hercules. Andererseits zeigt er durch eine Karte der Gegend zwischen 51/4 und 61/4 und zwischen + 15° und - 30° Deklination im Einhorn, die von 300 überhaupt spectralanalytisch untersuchten Sternen die 45 den Klassen H, J und K angehörenden darstellt, wie diese Sterne eigenthümliche Configurationen bilden, namentlich ein ganz regelmässiges S, das von + 9° bis - 15° Deklination reicht. Weitere Sterngruppen findet er unter den 51 Sternen, von denen Vogel die Geschwindigkeit im Visionsradius bestimmt hat, allerdings lässt er auch hier sehr weite Grenzen für die Radialgeschwindigkeiten zu, sodass man sich des Eindrucks einer gewissen Willkür nicht erwehren kann.

Die Vertheilung der bewegten Sterne.

Kapteyn hat in einer aussührlichen Publication in den Verhandelingen der Koninglijke Akademie van Wetenschappen te Amsterdam unter dem 28. Januar 1893 seine Ansichten über die Vertheilung der Sterne mit Eigenbewegung und von verschiedenem Spectraltypus niedergelegt, die er selbst in der englischen Zeitschrift Knowledge 1) übersetzt hat. Um von den Annahmen über die Richtung der Sonnenbewegung, deren Zielpunkt er übrigens in $\alpha=276^\circ$, $\delta+34^\circ$ ansetzt, frei zu sein, betrachtet er ausser dem Gesammtbetrage der E. B. μ auch die auf der Richtung nach dem Apex senkrechte Componente derselben τ , welche vom motus parallacticus offenbar unabhängig ist. Theilt man dann die E. B. nach ihrer Grösse und zählt die Sterne nach Zonen galaktischer Breite ab, so ergeben sich für die beiden Haupttypen folgende Anzahlen berechnet für eine Fläche von je 1000 Quadratgraden

gala			Mittel	0 bis		0"-04 ь		0"∙06 ь	is 0"·07	0"·08 b	is 0"·15	0"·16 v	. darüber
E	Breit	c		I	П	I	11	I	II	I	11	I	II
60°	bis	90°	69°	18.6	14.9	9.6	12.7	8.5	14.3	17.0	13.8	6.4	28.7
50	11	60	55	19.3	18.6	10.6	11.8	7.5	6.2	14.9	26.1	6.5	19.3
40	21	50	45	24.6	15.8	8:4	9.9	7.9	6.4	15.3	23.7	6.4	22.7
30	,,	40	35	34.3	19.5	15.7	10.0	11.4	8.6	19 5	19.5	3.3	18.1
20	,,	30	25	48.1	27.8	26.2	14.4	8.0	6.9	19.8	20.3	4.8	20.8
10	-11	20	15	76.2	34.6	30.6	12.1	8.7	7.5	16.2	18.5	4.0	21.3
0	,,	10	5	85.8	48.6	27.6	10.8	12.0	6.0	13.2	15.0	7.2	18.6

Diese Tasel gilt sür die ganzen Eigenbewegungen µ, aber die aus ihr sosort zu solgernden Schlüsse werden nicht geändert, wenn man nur den Theil \tau der E. B., der senkrecht aus der Richtung nach dem Apex steht, in Betracht zieht, für den Kaptenn gleichsalls die Abzählungen mittheilt. Die gezogenen Folgerungen aber lauten:

Nur die schwach bewegten Sterne beider Typen²) ($\mu < 0^{\prime\prime}.03$) zeigen eine Condensation nach der Milchstrasse. Die stärker bewegten ($\mu = 0^{\prime\prime}.04$ bis $0^{\prime\prime}.05$)

¹⁾ Knowledge, Vol. XVI, pag. 114-118, nebst Druckfehlerberichtigung, pag. 133.

³) Dies widerlegt die Annahme Pickkring's in Vol. XXVI der Harvard Annals, welche pag. 103 referirt wurde.

105

des ersten Typus zeigen dieselbe ebenfalls noch, wenngleich in viel schwächerem Maasse, die des zweiten Typus aber nicht mehr. Die noch stärker bewegten Sterne (μ > 0".06) zeigen keine Zunahme gegen die Milchstrasse, ja stellenweise ist eine gewisse Abnahme bei dem II. Typus nicht zu verkennen. Mit der bekannten Thatsache zusammen, dass die scheinbaren Bewegungen der Sterne um so grösser sind, je näher ein Stern ist, beweist dies wiederum die Existenz einer gesonderten Gruppe von Sternen in nächster Umgebung der Sonne, der Sterne beider Typen angehören, doch mit Ueberwiegen des zweiten Typus, wie denn ja auch die Sonne diesen repräsentirt. In grösserer Entfernung (bei den kleinsten E. B.) aber sind die Sterne des ersten Typus ganz bedeutend zahlreicher vertreten. Da die Sterne, deren Spectraltypus bekannt ist, nur den helleren Klassen bis kaum unter die 6. Grösse angehören, so untersucht KAPTEYN ohne Rücksicht auf Spectraltypus die Vertheilung der Grösse der E. B. bei den Sternen bis zur 9m, indem er aus den von Boss 1) mitgetheilten E. B. die wahrscheinliche Zahl aller existirenden berechnet. Er findet dann, wenn er die E. B trennt in die mittelgrossen von 0".10 bis 0".20 jährlich, und die grossen von über 0".20, dass

in			ktischen	sich finden mit E. B. (na		und der Wahrschenach überhaupt vorhanden s	
	Bre	eite	von	0"10-0"-20	> 0"-20	0".10 0".20	> 0"-20
	55°	bis	65°	46	39	76	65
	39	11	55	45	32	71	50
	20	91	39	41	29	73	53
	0	,,	20	35	15	72	31

Die für die mittleren E. B. schwach, für die grösseren stark ausgeprägte Abnahme nach der Milchstrasse zu verschwindet für die mittleren E. B., wenn man die wahrscheinlichen Zahlen der dritten Columne betrachtet, bleibt aber für die starken E. B. auch für die wahrscheinlichen Zahlen bestehen. Die Erscheinung könnte reell sein, wäre dann aber schwer zu deuten, da wohl eine Unabhängigkeit der Anordnung der Sterne von einer bestimmten Hauptebene, vorstellbar ist, nicht aber ein Grund angebbar scheint, warum gerade in dieser Hauptebene die E. B. kleiner, resp. die grossen E. B. weniger zahlreich sein sollten, als zu deren beiden Seiten. Die Erscheinung kann aber auch nur scheinbar sein, und verschwindet, wenn man nur annimmt, dass die Sterngrössen in der Milchstrasse 0·2 Grössenklassen systematisch zu hell geschätzt sind, da dann die E. B. in eine zu kleine Entfernung versetzt werden, also kleiner erscheinen als sie sind. Bestehen bleibt dann nur die Thatsache von der Unabhängigkeit der Vertheilung der stärker bewegten Sterne von der Milchstrasse.

Die Ansicht STRUVE's, dass gleichhelle Sterne in allen Richtungen gleichweit entfernt seien, die SERLIGER's Untersuchungen schon widerlegt, lässt sich auch in folgender Weise beseitigen. Die Grösse der Sonnenbewegung, rechtwinklig betrachtet, erscheint durchschnittlich

336 Sternen des I. Typus in > 40° galaktischer Breite unter dem Winkel von 0"·0355
405 ,, I. ,, < 30° ,, ,, ,, ,, ,, ,, ,, 0 ·0250
449 ,, ,, II. ,, ,, > 40° ,, ,, ,, ,, ,, ,, ,, ,, 0 ·0583
285 ,, ,, II. ,, ,, < 30° ,, ,, ,, ,, ,, ,, ,, ,, ,, 0 ·0451.

Da die durchschnittliche Helligkeit der benutzten Sterne die gleiche ist, so ist hieraus klar, dass in höheren Breiten die Sterne beider Typen uns durch-

¹⁾ Astronomical Journal, No. 200.

schnittlich näher stehen, als in der Milchstrasse, dass also eine Tendenz bei der Weltbildung vorlag, in der Hauptebene grössere Kugeln zu formen, und dass andererseits wieder gleichhelle Sterne des zweiten Typus uns näher sind, als die des ersten.

Die Verhältnisse der beiden Sterntypen zu einander aber werden gut illustrirt durch eine Abzählung der Sterne gleich grosser E. B. nach beiden Typen. Bezeichnet Q das Verhältniss der Zahl der Sterne des zweiten Typus zum ersten, so wird folgende Tafel klar die Auskunft ergeben

100 μ	100 μ Mittel		Sterne des II. Typus	Q
0"- 3"	1".5	553	324	0.59
4 - 5	4.5	233	150	0.64
6 - 7	6.2	118	104	0.88
8 — 9	8.5	85	90	1.06
10 15	12	130	162	1.25
16 - 19	17	29	61	2.1
20 - 29	24	25	86	3.4
30 - 49	37	13	71	5.2
> 50	102	3	58	19.3
	Sum	me 1189	1106	0.93

Wenn wir die zunehmende Grösse der E. B. als ein sicheres Zeichen der immer kleineren Entsernung der Sterne betrachten, so ist der regelmässige Verlauf der Q höchst instruktiv. Er zeigt uns, dass in grösseren Entfernungen (d. h. tiberhaupt nicht sehr grossen, da es sich um lauter bewegte Sterne handelt) die Sterne des ersten Typus noch doppelt so zahlreich sind, als die des zweiten. Für eine Entfernung, der eine E. B. von 0".08 entspricht, haben beide Typen gleichviel Vertreter, in grösserer Nähe überwiegt der zweite Typus und zwar zuletzt kolossal. Ergiebt sich daraus mehr als die Nothwendigkeit, die Umgegend der Sonne stärker mit Sternen des II. Typus besetzt zu denken, ergiebt sich vielleicht der Schluss eines rein aus Sternen des II. Typus bestehenden Sternhautens um die Sonne? Letzteres verneint KAPTEYN. An und für sich sind wir gewohnt die verschiedenen Spectraltypen als Entwickelungsstationen eines und desselben Individuums zu betrachten, die jeder Stern von seiner Geburt bis zum Tode durchlaufen muss, andererseits zeigt aber z. B. die Gruppe der Hyaden, in welcher alle Sterne gleiche und gleichgerichtete E. B. haben, und die daher unzweifelhaft ein physisches System bilden, Sterne beider Typen durcheinander, wobei es noch besonders merkwürdig ist, dass die hellsten Sterne gerade dem zweiten Typus angehören. Da auch ausgeprägte Sternhaufen wie z. B. die Präsepe Sterne beider Spectraltypen durcheinander beherbergen, so werden wir bloss schliessen, dass von dem Sonnensternhaufen nur bedeutend mehr Glieder dem zweiten als dem ersten Typus angehören.

Auch die Frage nach der Vertheilung der bewegten Sterne lässt sich lösen. Betrachtet man die Entfernungen der Sterne einfach umgekehrt proportional der Grösse der E. B., so lassen sich die Räume berechnen, welche die Sterne mit einer bestimmten Grösse der E. B. enthalten, und aus der Zahl der Sterne ihre Dichtigkeit entnehmen. Die folgende Tafel ist so angelegt, dass das die Sterne mit E. B. > 1" enthaltende Volumen = 1 gesetzt ist, und andererseits die Zahl der Sterne mit E. B. zwischen 0"155 und 0"195 = 10 gesetzt wurde, dann findet sich:

100 μ	Raum	Anzahl	Anzahl der Sterne in der Raus I. Typus					
		bis 5m·0	bis 6m·5	bis 9m·0	bis 6m·5			
9".5 — 15".5	898.5	_	0.7	0.4	0.4			
15 .5 — 19 .5	133.6	1.0	1.0	1.0	1.0			
19 .5 29 .5	85.9	2.0	1.3	1.2	2.2			
29 .5 — 39 .5	32.8		1	1	3.3			
39 .5 - 49 .5	7.9	1.9	1.5		5.8			
49 .5 — 99 .5	7.3	119	13	1.1	11.9			
>99 .5	1.0	J] J	IJ	39.2			
Z	ahl der St	erne 46	200	(282)	438			

Während also die Sterne des I. Typus ziemlich gleichmässig durch den Raum vertheilt sind, um so gleichmässiger, je weiter wir die schwachen Sterne berücksichtigen, sind die Sterne des zweiten Typus stark gegen die Sonne zusammengedrängt. Es ist also nicht eine Sterngruppe, die wir eine Sonderstellung im Gesammtsternenheere schon mehrfach haben einnehmen sehen, welcher auch die Sonne zugehört, sondern ein regulärer Sternhaufen mit ausgeprägter centraler Verdichtung, um den es sich handelt. Und die Sonne steht im dichtesten Theile desselben. Bildet sie etwa das Centrum selbst?

Das lässt sich nur so untersuchen, dass die Sphäre in verschiedene Abschnitte zerlegt wird, und der Abschnitt herausgesucht wird, der das stärkste Ueberwiegen des zweiten Typus, resp. die grösste Gesammtzahl der Sterne bis 6 m·5 zeigt. Denn wenn die Sonne selbst das Centrum bildete, würden alle Theile der Sphäre, soweit sie gleichweitentfernte Sterne tragen, auch gleiche Verhältnisse offenbaren. Kapten untersucht die nachstehend bezeichneten Trapeze, für welche Q das Verhältniss der Sterne des zweiten zu denen des ersten Typus, naber die Sternzahl pro 1000 Quadratgrade bedeutet.

Grenzen in 8		Gren	zen	in α		Q	n
	23/	6m	bis	2	53"	1.88	48.9
	2	53	,,	6	12	0.82	46.1
	6	53 12	,,	9	46	0.89	43.7
- 30° bis + 20°	9	46 18	,,	14	18	0.80	41.0
	14	18	**	16	54	0.71	39.0
	16	54	,,	20	6	1.12	40.6
	20	6	,,	23	6	0.93	39.3
1	22		,,	3	29	1.43	57.7
+ 20° bis + 60° {	3	29	**	8	15	0.90	31.7
+ 20° bis + 60°	8	15	,,	13	25	0.64	42.7
	13	25	,,	17	59	0.71	55.8
	17	59	,,	22	42	1.07	48.4
+60° bis +90°	0	0	,,	24	0	1.64	47.5

Die Werthe von Q und n sind also recht wenig verschieden und schwanken innerhalb sehr enger Grenzen, sodass die Sonne von dem Centrum ihres Sternhaufens nur sehr wenig entfernt sein kann, die grössten Werthe von Q und von n finden sich in der Nähe von 0^k , eine Ausgleichsrechnung unter dem Gesichtspunkte, dass von dem gesuchten Mittelpunkte gleiche Q und gleiche n auch den-

108

selben sphärischen Abstand haben sollen, liefert Kapteyn für die Coordinaten desselben

aus den
$$Q$$
 die Werthe $A = 0^k \cdot 9$ $D = +21^\circ$
,, ,, n ,, ,, $A = 23^k \cdot 3$ $D = +62^\circ$
also im Mittel ... ,, $A = 0^k \cdot 0$ $D = +42^\circ$,

Die galaktische Breite dieses Punktes ist - 20°.

Die Bestimmung der Richtung nach dem Schwerpunkt des Sternhaufens aus so grossen Flächen kann natürlich nicht übermässig genau werden. Immerhin stimmt der Werth genügend mit dem von Ristenpart (Veröff, der Sternwarte Karlsruhe, Heft IV, pag. 265) abgeleiteten Schwerpunkt freilich desg anzen Sternsystems der $BDA = 20\frac{1}{4}$, $D = +40^{\circ}$ (Entfernung desselben gleich den Sternen 5m·9), wenn man erwägt, dass letzterem damals die Bedingung aufgezwungen wurde, in der Ebene der Milchstrasse zu liegen. Die Kapteyn'sche Annahme, welche das Centrum des Sonnensternhaufens in die Cassiopea verlegen würde, stimmt nach ihm auch mit der Thatsache, dass die Milchstrasse in ihren südlichen Parthieen glänzender ist, denn wir würden ja dann denselben näher stehen, wenn wir vom Schwerpunkt nach Süden, dieser von uns nach Norden liegt. Andererseits bedeutet die südliche galaktische Breite des Schwerpunkts von der Sonne aus gesehen, eine reelle Erhebung der Sonne nach Norden über die Milchstrassenebene, woraus die oben mehrfach hervorgehobene Erscheinung der Milchstrasse als eines kleinen Kreises mit über 90° Nordpoldistanz folgt. Allerdings sind solche Schlüsse von dem Sonnensternhaufen, für den wir eine gesonderte Stellung beanspruchen, auf die Erscheinungen der ganzen Milchstrasse nur sehr bedingt zulässig.

Kapteyn zeigt noch, dass gleich grosse E.B. bei beiden Spectraltypen auf gleiche Entfernung hinweist, unter anderm, indem er die Sterne mit bekannter Parallaxe nach beiden Sterntypen trennt. Es haben nämlich im Mittel

sodass kein Unterschied der Parallaxen für diese gleichstark bewegten Sterne verbürgt erscheint. Dagegen entsprechen gleichen Grössen bei den Sternen des zweiten Typus bedeutend grössere E. B. Leitet man aus den Sternen einer bestimmten Grössenklasse die Grösse der Sonnenbewegung ab und trennt nach Spectraltypen, so findet sich:

Grösse	Typus I	Typus II	II : I
2.3	0''-105	0''.312	3.0
3.3	064	145	2.3
4.3	034	100	2.3
5.3	031	092	3.0
6.3	027	067	2.5
		Mitte	1 2.7

Die Sterne des II. Typus sehen also bei gleicher Helligkeit die Sonnenbewegung etwa 2.7 mal so gross als die des ersten, sind also 2.7 mal näher. Die Leuchtkraft der Sterne des ersten Typus ist demnach durchschnittlich (2.7) mal oder 7.3 mal so gross als die der Sterne des zweiten Typus. Da log 7.3 = 0.863 ist, so ist von 2 gleichweit entfernten Sternen beider Typen, der des zweiten durchschnittlich 2.1 bis 2.2 Grössenklassen schwächer als der des ersten.

Diesem Umstande, dass ein Stern vom ersten Typus (ein Siriusstern) durchschnittlich 7 mal so hell leuchtet, als ein solcher des zweiten Typus (ein Sonnen-

100

stern), schreibt Monck1) es zu, dass in der Milchstrasse die Siriussterne so ausserordentlich überwiegen2). Ein Fernrohr, welches z. B. bis zur 12. Sterngrösse in den Raum vordringt, sieht in grossen galaktischen Breiten, wo es die Grenze des Sternsystems erreicht, unter den Sternen 12. Grösse keinen Siriusstern mehr, da die entferntesten derselben um 2 Grössenklassen heller sind, also 10. Grösse erscheinen, unter den schwächsten Sternen in hohen Breiten werden also die Sonnensterne überwiegen. In der Milchstrasse aber werden neben den Sonnensternen 12. Grösse auch jene Siriussterne als 12. Grösse erscheinen, welche in Wahrheit in der Entsernung der Sonnensterne 14. Grösse stehen, also an Zahl bei gleicher Vertheilung die Sonnensterne um das 15-fache übertreffen. Daher also, dass das Fernrohr die Sonnensterne, die in gleicher Entfernung wie die schwächsten Siriussterne stehen, überhaupt nicht mehr sieht, rührt der ungeheure Reichthum der Milchstrasse an Sternen des I. Typus, daher auch das rein weisse Licht, welches uns der Anblick der Milchstrasse bietet. Monck hat in verschiedenen Aufsätzen in Astronomy und Astrophysics und auch in Knowledge, Juni 1803, über die Beziehungen zwischen Sterntypus und E. B. Untersuchungen mitgetheilt, er neigt stellenweise dazu, bei den Siriussternen wirklich grössere motus peculiares zu vermuthen, widerlegt dies aber selbst, indem er die 51 Sterne, von denen Vogel die Geschwindigkeiten in der Gesichtslinie bestimmt hat, nach Typen sondert⁸); für 27 Sterne des ersten Typus ist die mittlere Radialgeschwindigkeit 10·8, für 20 des zweiten Typus 10·9 km also völlig gleich. Und trotz des kleinen Materials überzeugen diese Translationsgeschwindigkeiten, welche nicht so wie die seitlichen mittels der unbekannten Entfernung auf lineares Maass reducirt werden müssen, uns davon, dass das Alter der Oberfläche eines Sterns, das durch seinen Spectraltypus repräsentirt wird, auf seine räumliche Bewegung ohne Einfluss ist. Es ist aber hier nicht der Ort, näher auf die Monck'schen Arbeiten einzugehen, da er nicht so allgemeine Schlüsse über Sternvertheilung wie Kapteyn daraus gezogen hat und diese allein hier interessirt.

Auch die Vertheilung der Sterne nach Spectralklassen führt Stratonoff's Atlas in Tasel 10 und 11 dem Auge vor, nachdem er im Appendix III seiner Etudes die Abzählungen der Typen nach seinen Trapezen gegeben, deren Numerirung leider völlig unübersichtlich ist. Die 10. Karte zeigt, dass die Sterne des ersten Typus sich zwar wie bekannt der Milchstrasse entlang anordnen, dass aber verschiedene Verdichtungen austreten, eine in Schwan und Leier, dann eine zweite stärkste um den Weltpol, also 20° nördlich der Milchstrasse (siehe aber unten), die sich dann zur Cassiopea nach Süden zieht, und von da weiter zum Perseus bis hin zu den Pleiaden; eine letzte Verdichtung am Nordhimmel liegt dann bei 64 und geht in der Oriongegend über den Aequator herunter. Stratonoff's 11. Karte, welche die zweite Spectralklasse berücksichtigt, zeigt sosort, dass die Milchstrasse hier gar nichts mit diesen Sternen zu thun hat. Es ist vielmehr in grossen Zügen eine Anordnung vorhanden, die in den Weltpol das Maximum dieser Sterne legt, deren Zahl mit der Deklination abnimmt. Dies kann natürlich kaum der Wirklichkeit entsprechen, und rührt daher, dass

¹⁾ Astronomy and Astrophysics, Vol. XI, 1892, pag. 89.

⁹) Nur im Sobieski'schen Schilde überwiegen die Sonnensterne bedeutend, gerade an der Stelle, wo der Ring der hellen Sterne eine Verdoppelung zeigt, die vielleicht nicht physisch ist, sondern nur durch die grosse N\u00e4he dieses Ringes bei der Sonne vorget\u00e4uscht wird.

³⁾ Astronomy and Astrophysics, Vol. XI, 1892, pag. 200.

PICKERING in der Nähe des Poles 10—15th lang exponirte, in niedrigeren Deklinationen aber nur 5th lang. Er erhielt also in der Nähe des Pols die Spectra von viel schwächeren Sternen mit, also viel mehr Spectra als in kleineren Deklinationen. Es ist daher eigentlich unzulässig, die Vertheilung der Gesammtzahl aller Spectren des Draper-Catalogues zu betrachten (also auch nicht für die erste Spectralklasse), sondern man muss wie Boraston nach den Helligkeiten sondern. Das Vorhandensein dieses systematischen Fehlers wird offenbar, wenn man die Vertheilung der Sterne in den 4 Pickering'schen Zonen betrachtet und die Zahl der Spectra in der Polarzone dabei gleich 10 setzt, dann sind vorhanden:

8	bis zur Grösse 54	bis zur Grösse 53	his zur Grösse 61	überhaupt
+ 60° bis 90°	10	10	10	10
+30 ,, 60	13	15	11	5
0 ,, 30	13	15	11	3
-30 , 0	17	20	11	3

Für die Sterne bis $5\frac{1}{4}$. Und $5\frac{3}{4}$. Grösse sehen wir also ein Zunehmen gegen den Aequator, für die Sterne bis $6\frac{1}{4}$. Grösse sind überall gleich viel Spectren vorhanden, und nur die Gesammtheit zeigt die starke Zunahme gegen den Pol, ein deutlicher Beweis, dass die durch längere Expositionen am Pol hinzugewonnenen ganz schwachen Spectra das Uebergewicht dort veranlassen, welches eine scheinbare kolossale Anhäufung der II. (und der I.) Spectralklasse um den Weltpol erzeugt. Sehen wir davon ab, so offenbart die Stratonoffsche Karte reelle Anhäufungen der Sterne des II. Typus bei $18^4 + 45^\circ$ zwischen Leier und Herkules, bei $9^4 + 45^\circ$, bei x und t des grossen Bären gegen den Krebs hin; gleich einer Insel ragen ferner die Hyaden, wie oben besprochen, überwiegend als Vertreter des II. Typus aus leerer Umgebung auf. Eine weitere Verdichtung zeigt die Cassiopea.

Ueber die Vertheilung der rothen Sterne nach dem Cataloge von Birmingham¹), wenigstens der nördlichen, berichtet Doberck kurz in A. N. 2234. Nach him stehen von 7 rothen Sternen 4 in oder dicht bei der Milchstrasse, doch sind einzelne Gegenden ausserhalb derselben reicher an rothen Sternen, so die nördliche Krone, der Pegasus und der nördliche Theil der Jungfrau. An andern Stellen selten sind. Da die rothen Sterne schwächer leuchten als die ungesärbten Sterne der gleichen Grösse, so kennen wir wohl überhaupt erst die uns nächsten derselben.

Eine besondere Lage nehmen die Wolf-Raver'schen Sterne ein, genannt nach ihren Entdeckern, die 1867 die 3 ersten im Schwan fanden. Sie sind von den übrigen Spectraltypen verschieden durch das Austreten von hellen Banden, stellenweise haben sie auch helle Banden und Linien über einem continuirlichen Spectrum. Camprell bespricht in einer Monographie in Astronomy and Astrophysics Vol. XIII 1894, pag. 448 ff. die bis dahin entdeckten 55 Sterne dieses Typus und giebt ausser ihren äquatorealen, auch ihre galaktischen Coordinaten an. Die galaktische Breite ist bei allen ausserordentlich klein und bleibt unter 9°, mit Ausnahme eines einzigen der 17 §° hat. Eine graphische Darstellung der 54 übrigen auf pag. 450 zeigt aber ausserdem, dass die Sterne die Tendenz haben, sich in der Milchstrasse zu Gruppen zusammenzudrängen; die grösste liegt in der Länge 255° unweit η Argus, der aber nicht hinzugehört, die zweit-

¹⁾ Transactions of the Royal Irish Academy Vol. XXVI, 1877.

grösste in 45° im Schwan, andrerseits sind die galaktischen Längen von 106° bis 202° und von 347° bis 32° ganz frei von solchen Sternen, ob in Wirklichkeit oder nur mangels ihrer vollständigen Kenntniss, muss die Zukunft lehren.

Dass die neuen Sterne alle unsern der Milchstrasse liegen, ist eine sehr bekannte Thatsache. Sie ist ausführlich kritisch behandelt von Seeliger¹), der zunächst die 15 bis 1898 erschienenen Novae nach ihren Coordinaten und der galaktischen Breite aufführt. Hinzuzussigen wäre wohl die Nova Sagittae vom 26., 27., 29. Juli 1783, welche von d'Agelet als No. 5057-59 seines Catalogs beobachtet ist mit einer galaktischen Breite von + 0°·6. Ferner kommt hinzu die Nova Persei 1901, aus deren

$$\alpha = 3^h 24^m 28^{s} \cdot 1$$

 $\delta = +43^{\circ} 33' \cdot 9$

mit dem von Seeliger sonst verwandten Houzeau'schen Pole die Breite - 10°.7 folgt. Mit diesen beiden wird die mittlere Breite aller 17 Sterne 11°-5. SEELIGER zeigt nun erstens, dass, wenn die neuen Sterne aus ganz beliebigen Gründen irgendwo auftreten, dass dann nach seinen Untersuchungen über die Vertheilung der Sterne im Raume, 62.75% aller dieser Vorgänge sich in der galaktischen Zone V abspielen müssen, wenn die schwächsten HERSCHEL'schen Sterne die Grösse 13.5 haben, aber 55.67 %, wenn diesen Sternen die Grösse 14.5 zukommt. Die mittlere galaktische Breite der neuen Sterne würde sich dann aus einer sehr grossen Zahl derselben unter der ersten Annahme zu 13°.9, unter der zweiten zu 15°.6 ergeben. Sind aber die neuen Sterne das Ergebniss irgend eines Zusammenstosses, also einer Bewegungserscheinung, so ist die Häufigkeit ihres Austretens nicht von der ersten, sondern etwa der zweiten Potenz der Sterndichte abhängig, und es ergiebt sich unter der Annahme ganz zusälliger Vertheilung und Bewegungsrichtung gleich grosser Weltkörper, dass der Wahrscheinlichkeit nach in die galaktische Zone V 75 f resp. 69.4 all dieser Zusammenstösse fallen müssten und die mittlere galaktische Breite der Orte dieser Collisionen würde resp. 10.2° und 11.4° sein. Wenn nun aber das Phänomen der neuen Sterne, wie es wohl wahrscheinlich ist, erzeugt wird durch das Eindringen dunkler oder schwachleuchtender Körper in grosse kosmische Staub- oder Gaswolken, so wäre einerseits die absolute Wahrscheinlichkeit für das Entstehen neuer Sterne erhöht, andrerseits würde für die Milchstrasse, in deren Windungen wir doch mannigfach noch ausgedehnte Gasmassen vermuthen, die relative Wahrscheinlichkeit noch höher und die mittlere galaktische Breite noch kleiner. Immerhin sind aber auch die Zahlen der zweiten Hypothese schon nahe genug den beobachteten Werthen.

Die Vertheilung der Nebelflecke und Sternhaufen.

Die Untersuchung der Vertheilung der Nebelslecke leidet in noch höherem Grade, als die der Spectralklassen an der Ungleichsörmigkeit der Bekanntschaft mit dem Material. Am nördlichen Himmel ist es mehr Sache des Zufalls, welche Gegenden eingehender und welche obersächlicher nach Nebeln durchforscht sind, am Südhimmel aber sind namentlich die höheren südlichen Breiten noch keiner ausgedehnten systematischen Aussuchung von Nebelslecken unterworsen worden. Es ist ausserdem sehr schwierig, wenngleich nicht unmöglich, die Nebelslecken nach Grössenklassen abzusondern, jedenfalls ist es noch nicht oder noch nicht genügend geschehen. Dennoch ist es eigentlich nicht zu um-

¹⁾ Bemerkungen über die neuen Sterne A. N. 3598.

gehen, die Vertheilung der so verschiedenartigen Objecte, die in diese grosse Klasse gehören, nach Unterabtheilungen getrennt zu untersuchen, und da ist bei der Eintheilung nicht jede Willkür zu vermeiden. Das Grundgesetz, dass die Nebelflecke im Gegensatz zu den Sternen nicht nach der Milchstrasse hin zunehmen, sondern dorthin sogar ungewöhnlich stark abnehmen, war schon dem ersten systematischen Beobachter dieser Gruppe von Wesen des Weltalls, dem älteren HERSCHEL, nicht unbekannt geblieben. Sein Sohn benutzte die Vervollständigung der Nebelliste, welche seine Capreise gezeitigt, um die Frage eingehender zu untersuchen. Auf pag. 133 der »Results of Astronomical Observations made during the years 1834, 5, 6, 7, 8 at the Cape of good Hope, By Sir John F. W. HERSCHEL, London 1847s sind die Nebel zunächst des nördlichen Catalogs nach Rectascensionsstunden abgezählt, wobei das Ueberwiegen der Stunden 14 und besonders 134 in die Augen fällt. Die Vertheilung der Nebel über den ganzen Himmel zeigt die Plate XI am Ende des Werkes, wo die Kugel abgebildet ist auf zwei Kreise und in die durch die Stundenkreise der ganzen Stunden und die je 15° entfernten Parallelkreise entstehenden Trapeze die Gesammtzahl der Nebel eingeschrieben ist. HERSCHEL constatirt 2 Hauptregionen der Nebelflecke, erstlich die des Nordpoles der Milchstrasse in den Sternbildern des grossen und kleinen Löwen, der Jagdhunde, des Haares der Berenice und der Jungfrau nebst den angrenzenden Parthieen der diese einschliessenden Sternbilder; doch sind in dieser mehrere Hauptnebelcentren oder Nebelnester alle in 134 und in $+3^{\circ}$ bis $+10^{\circ}$, in $+12^{\circ}$ bis $+18^{\circ}$ und in $+28^{\circ}$ bis $+31^{\circ}$ vorhanden. Die zweite Region um den Stidpol der Milchstrasse ist weniger reich. HERSCHEL beschreibt sie nur bis zum Aequator, wo sie die Andromeda, den Pegasus und namentlich die Fische ausfüllt. Zwischen dieser Region der Fische und der andern der Jungfrau ist eine fast völlig leere Stelle. Und nur noch an zwei andern Punkten treten die Nebel gehäuft auf, in der grossen und kleinen Capwolke (auch Magellanische Wolken genannt). Diese beiden Wolken liegen wie losgelöste Stücke der Milchstrasse freilich in ziemlicher Entfernung von dieser, die kleinere in 04 28" bis 14 15" und - 72° bis - 75°, die grössere in 44 40" bis 64 0" und - 66° bis - 72°. Beide sind sehr reich an Nebeln, die grosse sogar reicher als die Regio Virginis. Im Gegensatz zu den Nebelflecken stehen die Sternhaufen fast ausschliesslich in geringen galaktischen Breiten.

J. Herschel hatte für diese Untersuchungen 3812 Objecte zur Verfügung, die ihm der 18½ zöllige Reflector zu Slough und Feldhausen gezeigt; als er dann aber 1864 seinen "General Catalogue of Nebulae and Clusters of Stars« mit 5079 Nummern herausgegeben hatte, veranlasste dies Cleveland Abbel) die Vertheilung dieser grösseren Schaar von Objecten mit entsprechenden Unterabtheilungen zu untersuchen und zwar eingetheilt in 1) Sternhaufen, 2) globulare, d. h. kreisförmig begrenzte Haufen, 3) jene globularen Sternhaufen, welche Herschel mit r, rr oder rrr bezeichnet hat, um den verschiedenen Grad ihrer Auflösbarkeit anzuzeigen, 4) auflösbare Nebel, 5) die unauflöslichen Nebel, von welchen er zum Schluss noch eine 6. Klasse, die planetarischen Nebel absondert. Eine ausführliche Tafel, mit Argumenten, die von 10° zu 10° in Poldistanz und 30 zu 30 in Rectascension fortschreiten und in welche die Contouren der 10° breit angenommenen Milchstrasse, sowie der beiden Wolken eingetragen sind, enthält die Zahlen der Glieder der 5. + 6. Klasse. Unter der Annahme einer 30° breiten Milchstrasse aber giebt folgende Tafel eine allgemeine Uebersicht:

¹⁾ On the distribution of the Nebulae in Space, Monthly Notices Vol. XXVII, pag. 257 ff.

		Flächen	Stern- haufen	Glob. Sternh.	r,rr,rrr	auflösb. Nebel	unauflösl. Nebel	Planetar. Nebel	Summen
nördl. der)	15	20	3	12	246	2206	9	2496
in der	Milchstrasse	8	434	14	29	35	234	21	767
südl. der)	11	26	11	16	73	1295	4	1425
grosse Ca	pwolke	1 1	52	0	14	36	248	_	350
kleine Ca	pwolke	1	3	3	0	7	25	-	38
	Summe	36	535	31	71	397	4008	34	5076

Die Sternhausen sind also in der Milchstrasse und beinahe ebenso stark in der grossen Capwolke zusammengedrängt (wie man sieht, wenn man mit der unter »Fläche« stehenden Zahl, welche das Grössenverhaltniss der abgezählten Flächen angiebt, dividirt), das gleiche gilt von den mit r versehenen globularen Sternhausen, während die sonstigen globularen Sternhausen an Zahl zu wenig sind, um Bestimmtes von ihrer Vertheilung sagen zu können, dagegen scheint trotz der kleinen Zahl der planetarischen Nebel ihr Uebergewicht in der Milchstrasse gesichert. Die auflösbaren Nebel aber ebenso wie die unauflöslichen vermeiden die Milchstrasse in auffallender Weise, sind dagegen in den beiden Capwolken sehr stark vertreten. Die Schlüsse, die Abbe weiterhin daraus zieht, dass die Zahl der Nebel südlich der Milchstrasse viel kleiner ist, sind jedenfalls unzulässig, da der südliche Himmel weder damals noch heute mit ebenso mächtigen Instrumenten durchmustert ist, wie der nördliche.

Die Abbe'schen Abzählungen kartiren PROCTOR 1) und WATERS 3), der erstere, indem er in isographischer Projection, in die 10° hohen, 30m breiten Trapeze soviel Punkte gleichmässig vertheilt, als dort Nebel stehen, und zwar trennt er zuerst in die nördliche und südliche Hemisphäre, dann aber in eine östliche und westliche derart, dass einmal die Stunden 124 und 244 den Mittelmeridian bilden, also die nebelreichsten Regionen in die Mitte der Darstellung kommen, das andere Mal die Stunden 184 und 64 vorn sind, sodass die Milchstrasse quer über die Mitte der Darstellung verläuft und es in die Augen springt, wie ihr parallel die an Nebeln arme Zone geht. Auf einer vierten Karte stellt PROCTOR neben den Nebeln die hellen Sterne dar, um etwaige Beziehungen zwischen beiden abzuleiten, er glaubt auch zu finden, dass da, wo die Nebel gedrängter stehen, auch mehr helle Sterne sich zusammendrängen und umgekehrt. WATERS pointirt die Oerter der Nebel genauer, unterscheidet sie in auflösbare und unauflösliche durch resp. rothe und grüne Punkte und fügt durch rothe Kreuze die Sternhaufen hinzu, alle Orte innerhalb ± 1° genau. Dann werden die bekannten Thatsachen der Ausstreuung der Sternhausen entlang, der Nebelflecke ausserhalb der Milchstrasse deutlich, weiter aber auch, dass die auflösbaren Nebel in ihrer Vertheilung den unauflöslichen sich eng anschmiegen.

Die zusammensassende Kenntniss der Nebelslecke und Sternhausen machte einen Schritt weiter durch Dreyer's > A New General Catalogue of Nebulae and Clusters of Stars being the Catalogue of the late Sir John F. W. Herschell, Bart, revised, corrected and enlargeds, Memoirs of the Royal Astr. Society Vol. XLIX, Part I London 1888, der nun schon 7889 Nummern umsasste. Bauschinger schliesst seinem anerkennenden Reserat über Dreyer's Arbeit in V. A. G., Band 24, pag. 43 ff. sosort eine auf diesem ausgedehnteren Material basirende Untersuchung über die Vertheilung desselben in 15° hohe, 12 breite Trapeze an,

¹⁾ Distribution of the Nebulae. Monthly Notices Vol. XXIX, pag. 337 ff.

³) The Distribution of Clusters and Nebulae. Monthly Notices Vol. XXXIII, pag. 558 ff.

indem er 4 Unterabtheilungen bildet, 1) die schwachen Nebel (pF bis eF) und Objecte mit *no description*, einschliesslich der ring- und spiralförmigen, 2) die hellen Nebel (pB bis eB) einschliesslich der sternartigen Nebel, 3) die (sicher) planetarischen Nebel, 4) die Sternhaufen und *globular clusters*. Die Unterscheidung der Nebel in die schwachen und helleren hatte den Zweck, zu entscheiden, ob die Fernhaltung der Nebel von der Milchstrasse einen physischen oder vielleicht nur optischen Grund habe, indem der helle Milchstrassenhintergrund die schwächeren Nebel überstrahlte; dann hätte sich die Abnahme der schwachen Nebel gegen die Milchstrasse als viel rapider ergeben milssen, als die der helleren.

Im Gegentheil aber findet Bauschinder in seinen Tafeln, in welchen der Verlauf der Milchstrasse, sowie die beiden Milchstrassenpole markirt sind, genau das gleiche Fernbleiben von der Milchstrasse für die hellen und schwachen Nebel. Die Nebel häufen sich um die Milchstrassenpole, in den Capwolken, ausserdem aber in der Andromeda in 1½½ + 32½°, dort nicht eben sehr weit von der Milchstrasse. Die planetarischen Nebel und die Sternhaufen liegen mit verschwindenden Ausnahmen in der Milchstrasse, letztere auch in den Capwolken.

Endlich hat sich Stratonoff für seine öfter citirten >Etudes sur la structure de l'Univers« den Dreyer'schen Catalog unter Benutzung von dessen von Dreyer selbst 1895 gegebenem Supplemente 1) und den seitdem neu gemachten Entdeckungen zu einer leider noch nicht allgemein zugänglichen Liste von 9943 Objecten ergänzt, unter denen 679 Sternhaufen sind. Er betrachtet und stellt in seinem Atlas in Bezug auf Vertheilung dar 5 verschiedene Klassen. Die fünfte bilden die Sternhausen. Für die Nebelflecke stellt er zwei principia divisionis auf, einmal die Helligkeit und so scheidet er in 7919 schwache und 1345 helle, dann die Ausdehnung und zerfällt danach die Nebel in 7541 kleine und 1723 ausgedehnte. Jedoch in allen Fällen zeigen sich die gleichen bekannten Vertheilungsgesetze übereinstimmend mit ganz geringen Unterschieden. Die Milchstrasse ist ganz frei von Nebeln. Der Nordpol der Milchstrasse zeigt eine mächtige Zusammendrängung aller Nebel, der Südpol ist viel weniger dicht besetzt, doch rührt das zweifellos von der mangelnden Kenntniss der südlichen Nebel her. Ausser der schon von Bauschinger angeführten Concentration der Nebel in der Andromeda findet sich eine weitere Verdichtung in 2^h 55^m + 40° im Perseus, wenigstens der kleinen und schwachen Nebel, nicht so sehr der grossen und hellen, und eine weitere in 234 + 10° im Pegasus. Betrachtet man, um von der Unsicherheit bezüglich der südlichen Nebel frei zu sein, nur die Vertheilung bis - 20° Deklination und setzt die Dichtigkeit in der Breite + 80° bis + 90° gleich 100, so ergeben sich folgende Uebersichten über den Reichthum der anderen Parallelzonen der Milchstrasse an den verschiedenen Nebelarten:

mittlere Breite	schwache	kleine	helle	gedehnte	mutlere Breite	schwache	kleine	helle	gedehnte
+85	100	100	100	100	- 85		_	-	
+ 75	64	72	136	106	- 75	43	53	45	18 -
+ 65	51	57	82	71	- 65	50	58	36	29
+ 55	37	44	64	41	— 55	55	62	54	47, 5
+ 45	36	39	27	35	- 45	36	42	18	18
+ 35	26	26	18	29	— 35	34	37	18	24
+ 25	16	18	9	12	- 25	27	29	18	24
+ 15	9	11	9	6	- 15	15	15	9	18
+ 5	2	3	9	12	- 5	4	4	9	6 -

¹⁾ Index Catalog of Nebulae found in the years 1888 to 1894. Mem. of the R. A. S., Vol. LI.

Zweierlei aber geht aus dieser vergleichenden Zusammenstellung hervor, erstens die nahezu gesetzmässige Abnahme der Nebelzahlen aller Kategorien mit abnehmender nördlicher Breite, während in stidlichen Breiten das Phänomen ebenfalls, aber lange nicht mit der gleichen Gesetzmässigkeit stattfindet; zweitens aber ist in der That bei den hellen und ausgedelnten Nebeln in der Milchstrasse, aber auch nur in ihr, bei Breiten unter ± 10° die Abnahme relativ geringer. Es mag also sein, dass in der Milchstrasse der Glanz des galaktischen Lichtes einige wenige schwache oder kleine Nebel überstrahlt und unserer Kenntniss entzogen hat. Das allgemeine Phänomen der regelmässigen Abnahme der Nebel nach der Milchstrasse hin ist aber kein optisches durch Auslöschen der Nebel in geringen Breiten erzeugtes, sondern ein physisches durch die räumliche Vertheilung der Nebel bedingtes.

Eine Untersuchung der Vertheilung der planetarischen und ringförmigen Nebel, sowie jener Nebel, deren Auflösbarkeit verschiedenen Grades in den Nebelcatalogen mit den Buchstaben r, rr, rrr bezeichnet ist, enthält dann die folgende Tabelle. Auf 100 Quadratgraden stehen

mittl. Breite	planetar. u. ringförm.	,	rr	rrr	mittl. Breite	planetar. u. ringförm.	r	rr	rrr
+ 85°	- 1	2.6	0.3	0.3	- 85°	- 1	0.3	_	Ī —
+75	-	6.4	_	0.4	— 75	-	1.0	_	0.1
+ 65	-	3.0	0.2	0.6	- 65	-	1.1	0.1	0.8
+55	0.05	3.1	0.2	0.3	— 55	0.10	1.2	_	0.1
+45	-	1.6	0.2	0.1	- 45	0.04	0.7	-	0.1
+35	0.07	0.9	0.0	0.5	- 35	0.03	0.8	0.1	0.1
+25	0.03	0.6	0.1	0.1	- 25	0.03	0.7	-	0.1
+15	0.26	0.3	0.1		- 15	0.20	0.4	_	0.1
+ 5	0.42	0.2	0.1	0.1	- 5	0.59	0.2	0.1	0.

Es geht daraus wieder hervor, dass, während die auflösbaren Nebel der verschiedenen Grade sich nicht anders verhalten, als die übrigen Nebel, die ringförmigen und planetarischen Nebel den Sternen ähnlich nach der Milchstrasse zunehmen. Auch von 32 spectroskopisch sicher als reine Gasnebel erkannten Objecten findet d'Arrest 1) 25 in der Milchstrasse und schliesst daher auf ihre Wesensähnlichkeit mit den planetarischen Nebeln.

Die Vertheilung der Sternhaufen aber, welcher die letzten beiden Karten STRATONOFF's gewidmet sind, giebt durch den Verlauf der Dichtigkeitscurven geradezu die Gestalt der Milchstrasse an. Fast überall ausserhalb der Milchstrasse ist die Zahl der Sternhaufen überhaupt Null. Nur die grosse Capwolke ist noch dichter als die Milchstrasse mit Sternhaufen besetzt, sie ist ja aber andererseits auch ein Sammelpunkt der Nebel und darin, dass sie diese beiden sonst einander vermeidenden Himmelswesen vereinigt, nimmt sie eine ganz eigenartige Stellung ein. Die kleine Capwolke ist in minderem Grade eine Condensation ebenfalls von Nebeln und Sternhaufen, sonst stehen noch Sternhaufen in einer geringen Dichte in dem Nordpol der Milchstrasse, in $5\frac{1}{2}^h-35^\circ$ und in $8\frac{1}{4}^h+15^\circ$.

Von der allgemeinen Betrachtung der Sternhausen müssen indessen die globularen getrennt werden und die folgende Tasel giebt für den Raum von 100 Quadratgraden die getrennten Zahlen:

¹⁾ A. N. Bd 80, pag. 189.

mittl. Breite	Globulare Haufen	sonstige	mittl. Breite	Globulare Haufen	sonstige
+ 85°	0.32	0.96	- 85°	0.32	_
+75	0.21	0.54	- 75	0.11	0.11
+ 65	_	0.07	— 65	-	_
+ 55	0.05	_	— 55	0.38	0.02
+45	0.16	0.12	— 45	0.12	0.12
+35	0.14	0.24	- 35	0.14	0.37
+25	0.12	0.22	— 25	0.15	0.37
+ 15	0.12	0.90	— 15	0.14	0.87
+ 5	0.11	5.35	- 5	0.17	5.94

Die Tafel zeigt zunächst wieder, dass die globularen Sternhaufen nicht wie die übrigen in der Milchstrasse vorherrschen, sondern in allen Breiten gleichhäufig vorkommen, dabei sind die scheinbaren Maxima an den Polen der Milchstrasse rein zufällig, da dort nur je ein globularer Hauten steht. Von den Sternhaufen im allgemeinen aber kann man, anstatt von einer Zunahme gegen die Milchstrasse zu sprechen, wohl richtiger sagen, dass ein kleiner Theil von ihnen zufällig da und dort vertheilt ist, dass aber der Haupttheil in der Milchstrasse steht.

Die Schlüsse, welche die neueren und neuesten Untersuchungen über die Vertheilung der Nebelflecke zeitigen, stossen aber die alte, von den beiden HERSCHEL begründete Ansicht um, dass die Nebelflecke, weil ihre Anordnung keine Rücksicht auf die Milchstrasse zu nehmen scheine, Welten ausserhalb der Milchstrasse seien, oder dass die Nebel nichts anderes seien als gleichberechtigte Systeme mit dem unsrigen, als Milchstrassen, die nur die ungeheure Entfernung zu kleinen Nebeln zusammenschrumpfen lasse. Noch CLEVELAND ABBE hält die Milchstrasse, die Nubeculae und die Nebel für coordinirte Systeme und meint die Nubeculae seien nur in Folge ihrer Nähe so gross, sonst aber gewöhnliche Nebel, im übrigen will er die verschiedenen Objecte in folgende Reihenfolge der Entiernung setzen, Sternhaufen, globulare Sternhaufen, auflösbare globulare Haufen, auflösbare Nebelflecke, Nebel. Die regelmässige Abnahme der Nebelflecke in den galaktischen Zonen der Stratonoff'schen Tasel führt aber zum ersten Male zwingend vor Augen, dass die Nebel eben grade in Bezug auf die Milchstrasse angeordnet sind, nur dass ihr Vertheilungsgesetz in grossen Zügen das umgekehrte ist, wie bei den Sternen. Das ist eine Ansicht, die PROCTOR in seinen Aufsätzen über das Universum in den Monthly Notices gegen heftigen Widerspruch hat verfechten müssen, da ihm die beweiskräftigen Zahlen unserer Tafel nicht zur Verfügung standen. Die Nebel gehören also je denfalls grossentheils zum Milchstrassensystem, ob einzelne besondere Formen derselben, wie die Spiral- oder die Ringnebel vielleicht ausserhalb desselben stehen, ist denkbar, nach der geringen Zahl der bisher davon der Statistik zugänglichen Objecte aber nicht zu entscheiden. Die Ansicht, dass sich die Nebelflecke allmählich zu Sternhaufen oder einzelnen Sternen entwickeln, kann nebenbei bestehen bleiben. Die enge Verwandschaft beider Weltenwesen geht ja aus dem Umstande hervor, dass in der grossen Capwolke sowohl die Nebel wie die Sternhaufen zahlreich nebeneinander vertreten sind. Man braucht, um den gegenwärtigen Zustand unseres Milchstrassensystems zu begreifen, nur anzunehmen, dass der Umwandlungsprocess von Nebel in Sternhaufen sich in der Nähe der Milchstrasse rascher vollziehen konnte und bereits vollständig vollzogen hat, dass er an den wenigen Stellen, wo sonst Sternhaufen ausserhalb der Milchstrasse stehen, eben-

falls gewirkt hat, dass er in den mit r, rr, rrr bezeichneten Nebeln wirksam ist, aber die grosse Masse der Nebel noch nicht ergriffen hat. Warum freilich dieser Prozess in niederen galaktischen Breiten sich so rapid rascher vollziehen musste, dafür ist kein Grund anzugeben, immerhin ist der Gedanke vorstellbar.

Was uns aber nun hauptsächlich fehlt, um anzugeben, in welcher Form der Anordnung die Nebelflecke die Milchstrasse zu beiden Seiten umgeben, ob in einer Kugel oder den Sternen gleich in einem Ellipsoid oder etwa in einer flachen Scheibe, ist eine genaue Bestimmung entweder ihrer Helligkeit oder ihrer Grösse; dann könnte man den analogen Schluss wie bei der Sternvertheilung machen und die durchschnittliche räumliche Entfernung der Objekte aus Helligkeit oder Grösse schliessen. Beide Aufgaben gehören indess zu den schwierigsten, aber auch zu den dankbarsten für die messende Astronomie. Genaue Grössenbestimmungen der von den Nebeln bedeckten Fläche wären vielleicht noch leichter auszuführen, zumal auf photographischen Platten, wenngleich nicht durch Messung der Dimensionen, sondern durch Schätzung der Fläche gegen äquidistante Etalons; die Helligkeit zu bestimmen, liesse sich vielleicht in der Weise ermöglichen, dass nach Ausziehen des Oculars der Nebel zwichen die gleichfalls nebelförmig gewordenen schwachen umgebenden Sterne eingeschätzt und diese dann photometrirt würden.

Die Ursachen des Milchstrassenschimmers.

Die Sternhaufen aber sind wesentliche Bestandtheile des Milchstrassensystems selbst, da sie fast ausschliesslich in den Windungen dieses grossen Lichtbandes liegen; über ihre Entfernung ist ebensowenig etwas bekannt; dennoch ist es für die Kenntniss der Structur der Milchstrasse von fundamentaler Wichtigkeit zu wissen, in welcher Entfernung wir uns die Bestandtheile zu denken haben, die uns als das optische Phänomen der Milchstrasse erscheinen. Die Ansicht, dass die Milchstrasse als ein oder zwei Ringe das ganze innere System umschlösse, event. gar mit einem leeren Raum dazwischen, nach Analogie der Saturnringe, ist ja längst aufgegeben und der anderen gewichen, dass entfernte Sterne des Systems selbst den Eindruck der grösseren oder geringeren Helligkeit der Milchstrasse erzeugen. Dass dies freilich nicht die dem unbewaffneten Auge sichtbaren Sterne sind, ist klar; aber auch nicht die helleren teleskopischen kommen dafür in Betracht. Die im Cataloge Cp 80 von STONE beobachteten Sterne, die nur in Ausnahmefällen unter der 7. Grösse sind, sind im Anhange in stereographischer Projection dargestellt. Man sieht dann auf den ersten Blick durch das Engerstehen der Sterne den grössten Kreis angedeutet, längs dessen die Milchstrasse verläuft, aber die Sternörter sind doch weit entfernt, alle Einzelheiten des Verlaufes der Milchstrasse selbst auszudrücken. Die Frage, ob und in wieweit die Bonner Durchmusterungssterne am galaktischen Schimmer betheiligt sind, behandelt erstmals PLASSMANN in einem Vortrage vor der Generalversammlung der V. A. P. in Münster 1). Er hat in den Trapezen der Seeligen'schen Abzählungen die Gesammtlichtstärke der vorhandenen Sterne in Einheiten der schwächsten BD-Klasse, der Grössenordnung 9m·1-9m·5 berechnet. Die um je eine halbe Grössenordnung helleren Klassen entsprechen dann dem resp. 1.58, 2.51, 3.98, 6.31, 10.00 fachen 2)

¹⁾ Mittheilungen der V. A. P. 1893, pag. 102.

⁹) Diese Zahlen bedürfen nach den Seeliger'schen Untersuchungen auf pag. 79 ff z. Thl. erheblicher Correcturen mit der galaktischen Breite.

dieser Lichteinheit, die letzte Klasse ist dabei die der Grössen 6.6-7.0; die noch helleren bereits scharfen Augen als isolirte Punkte sichtbaren Sterne werden absichtlich ausgeschlossen, bei der Berechnung des Lichtschimmers der Gesammtheit der teleskopischen. Addirt nun Plassmann die Beiträge, welche jede halbe Grössenklasse zu diesem Lichtschimmer giebt und multiplicirt er die Resultate mit sec & zur Reduction auf gleiche Flächen, so erhält er seine beigefügte Tafel der »Logarithmen der Sternfülle«. Diese Logarithmen schwanken zwischen den Extremen 2.720 in 4^{k} 0^m + $27\frac{1}{2}^{\circ}$ und 3.480 in 20^{k} 0^m + $37\frac{1}{2}^{\circ}$, sodass also die grösste Lichtmenge nicht einmal 6 Mal die kleinste übertrifft. Doch sind dies die alleräussersten Extreme. AMEKE hat dann die Resultate graphisch dargestellt und unter der Annahme, dass mit einer Sternfülle von 3.0 also mit 1000 Sternen der schwächsten BD-Grösse auf das Trapez (= 50 Quadratgrade) die Empfindungsschwelle überschritten sei, durch immer stärkere Blaufärbung der diese Grenzzahl überschreitenden Trapeze eine »theoretische Milchstrasse« hergestellt, von welcher in Band 1806 derselben Zeitschrift auf pag. 141 der äquatoreale Gürtel schematisch reproducirt ist. Mit dieser theoretischen Milchstrasse vergleicht nun Plassmann die wirklichen Milchstrassenzeichnungen von Boeddicker, Easton, HEIS, HOUZEAU, sowie unveröffentlichte von PANNEKOEK und findet an den meisten Stellen eine hinreichende Uebereinstimmung. Hieraus aber den Schluss zu ziehen, dass die teleskopischen Sterne der BD die Milchstrasse erzeugten, wäre offenbar verfehlt; denn in der »theoretischen Milchstrasse« sind stillschweigend die Beiträge übergegangen, die die noch schwächeren Sterne zur Sternfülle liefern und die offenbar beträchtlich, wahrscheinlich aber sogar den Glanz der mitgenommenen überwiegend sein müssen. Denn die Glieder der Reihe von Beiträgen zu dieser Sternfülle, an der Plassmann exemplificirt und die für den allgemeinen Verlauf thatsächlich typisch ist, lauten so:

Die Reihe der Beiträge ist vom zweiten Gliede an eine steigende und, ohne dass ihre Form irgendwie bekannt zu sein brauchte, lässt sich doch soviel erkennen, dass sie nicht mit dem sechsten Gliede abgebrochen und summirt werden darf, da die weiteren Glieder den Betrag des letzten und sehr möglicher Weise sogar der bisherigen Summe tibersteigen 1). Wenn aber die Beiträge der Sterne 9m·6 - 10m·0 u. s. w. zur Sternfülle so wesentliche und jedenfalls wesentlichere sind als die der bekannten Helligkeitsklassen, so hat eine Beziehung zwischen der Lichtfülle der BD-Sterne und der Milchstrasse nur den Werth, dass eine zufällige Uebereinstimmung der Lichtknoten der Milckstrasse und der Maxima der Sternfülle beweist, dass eben jene nicht berücksichtigten schwächeren Grössenklassen gegenüber den Nachbarsternen dort zufällig dasselbe Ueberwiegen zeigen wie die BD-Sterne über die umstehenden. Es folgt also aus Plassmann's Bestimmungen der Lichtfülle geradezu, dass im allgemeinen nicht die BD-Sterne den Glanz der Milchstrasse erzeugen. Es ist auch eine ganz willkürliche Annahme, dass bei Sternfüllenlogarithmen, die nur zwischen 2.72-3.48 schwanken, gerade bei dem Werthe 3.0 plötzlich die Empfindungsschwelle überschritten würde, sondern bei so kleinem Spielraum ist die Annahme

¹⁾ Das wird auch nicht viel anders, wenn man den Umstand richtig w\u00fcrdigt, dass die Zahl 399 der Klasse 9m·1 - 9m·5 besonders gross ist, weil diese Klasse nicht 5, sondern wohl 8 Zehntel der gleichf\u00f6rmigen Gr\u00fcssenskala enth\u00e4lt.

ebenso berechtigt, dass die Empfindungsschwelle überhaupt ausserhalb des Intervalles liegt, sodass entweder alle oder keine der Sternfüllen auf das Auge wirken. Erst die Verschiedenheit der wirkungsvollen Beiträge viel schwächerer Grössenklassen bringt die Differenzirung heraus. Das geringe Schwanken der Sternfüllen spricht aber wiederum für eine nahezu kugelförmige, schwach abgeplattete Form des Haufens der BD-Sterne.

Plassmann zeigt auch selbst, indem er das Zusammenfallen gewisser reicher Aichungen Efsten's (der Sterne bis 12m), die ihm handschriftlich mitgetheilt wurden, mit den Glanzstellen der Milchstrasse betont, (z. B. bei \(\text{PCygni} \)), das er doch an jene schwächeren und entfernteren Sterne als Ursachen des Milchstrassenschimmers denkt. In einwandfreier Weise aber hat Easton'd ide Frage gefördert, welche Sterngrösse vorzugsweise den Eindruck der Milchstrasse hervorruft, indem er eine Stelle im Adler auswählte, die er in 4 gleiche Trapeze A, B, C, D so zerlegte, dass A eine sehr schwache, B eine schwache, C eine hellere, D eine sehr helle Stelle der Milchstrasse enthält. In den gleichen Trapezen werden die B-D-Sterne und die Celoriasterne abgezählt und zunächst die beiden hellen den beiden schwachen, dann die hellste Parthie der schwächsten gegentlibergestellt. Es findet sich

gegenuberge	egenubergestent. Es indet sich						
Grösse	C + D	A + B	Ueherschuss von $C + D$ über $A + B$	D	A	Ueberschuss von D über A	
1-6.5 BD	9	8	+1	4	4	0	
6.6-7.0 "	17	11	+6	10	3	+7	
7.1-7.5 ,,	16	18	-2	11	6	· + 5	
7.6-8.0 "	27	36	-9	14	23	- 9	
8.1-8.5 "	64	78	-14	37	38	— 1	
8.6-9.0 "	185	171	+14	110	73	+ 37	
9.1-9.5 "	1035	955	+80	566	432	+ 134	
1-11? Cel.	4476	2924	+ 1552	2658	1189	+ 1469	
Milchstrasse	hell	schwach	+	sehr hell	sehr schwach	+	

Man sieht also, dass am Ueberwiegen der Stellen C + D des Milchstrassenlichtes über A + B, resp. von D über A die hellen Sterne gar nicht betheiligt sind, diese projiciren sich vielmehr zufällig auf die Milchstrasse. Die Sterne 8m·6-9m·0 fangen an, zum Milchstrassenschimmer beizutragen, die Sterne 9m·1-9m·5 sind noch stärker dabei wirksam, der Hauptantheil an dem verschieden hellen Schimmer fällt aber den Celoriasternen zu, was Easton noch bekräftigte, indem er mit Hilfe Pannekoek's Karten zeichnete, welche das Licht der einzelnen Grössenklassen der BD-Sterne, berechnet in Einheiten des Lichtes der Sterne 9m·1-9m·5 für die Seeliger'schen Trapeze durch kräftigere oder schwächere Nuancen wiedergeben, also ähnlich wie Plassmann dies gethan; nur findet Easton im Grossen und Ganzen keine Aehnlichkeit zwischen dem Verlauf der Milchstrasse und diesen Karten und auch ein anderer Versuch, durch Verkleinerung der ARGELANDERschen Karten, durch welche die Milchstrasse zieht, auf 1/5 ihres Maassstabes die Gruppirung der BD-Sterne besser zu überschauen, zeigt im allgemeinen nicht die Contouren und Lichtnuancen der Milchstrasse. Stellenweise allerdings ist die Uebereinstimmung vorhanden und frappant, und sogar die helleren Sterne zeigen dann eine deutliche Verknüpfung mit der Milchstrasse, so in den hellen Flecken bei 8, 19 und 64 des Adlers, wo auch das »Vorgebirge« des West-

¹⁾ Sur la distribution apparente des étoiles dans une partie de la Voie lactée A. N. 3270

zweiges bei 4 Aquilae ausgeprägt ist; ebenso sind die hellen Sterne selten an der dunkeln Stelle, die von 8 nach 35 und v des Adlers geht.

An der Gegend zwischen z und A Cygni, wo die Contraste gross sind, da auch der nördliche Kohlensack in sie eingeschlossen ist, zeigt EASTON noch deutlicher, indem er sie in 14 Felder von 6 verschiedenartigen galaktischen Helligkeiten zerlegt, dass die Sterne bis 9**0 eine andersartige Anordnung haben wie die Milchstrasse, dass aber die Grössenklasse 9**1-9**5 meistens dieselben Schwankungen in der Sterndichte zeigt, wie die Milchstrasse in der Helligkeit. In dieser Gegend kann aber EASTON noch welter entfernte Sterne mitsprechen lassen, zwar hat CELORIA hier keine Abzählungen, aber er konnte auf 2 Photographieen WOLF's, die in Knowledge 1891 reproducirt waren, auf der kürzer exponirten die Sterne bis zur 11**5, auf der länger exponirten die Sterne bis 13**5 abzählen, ausserdem 14 Aichungen EPSTEIN's, die bis 12** gehen, benutzen und die HERSCHEL'schen Aichungen hinzuziehen. Werden nun für ein Feld von 1400 Quadratminuten Mittelzahlen gebildet für 3 Stellen, an denen die Milchstrasse schwach, mittelheil und glänzend ist, so entstehen folgende Vergleichszahlen:

Milchstrasse	BD 1-9m-5	Worr 1-11"	EPSTEIN 1-12m	WOLF 1-18#51	HERSCHEL 1-15m(i)
Schwach	9	28	65.5	165	151
Mittelhell	12.7	52.3	85.7	297	1257
Glänzend	18.5	84.5	127.4	492.6	2115

Hier ist es nun sehr auffallend, dass die mit der Milchstrasse analoge Anordnung, die die Gesammtheit der BD-Sterne zeigt, sich fast in derselben Proportion bei all den schwächeren Sternen wiederholt, wenn man die erste Herschelsche Zahl auslässt. Easton glaubt danach die schwächsten Sterne, die theoretisch sich bis auf die 12 fache Entfernung der schwächsten BD-Klasse erstreckten, in engem Zusammenhang, also ungefähr in derselben Entfernung sich angeordnet denken zu müssen, wie die letzten BD-Sterne, als Theile derselben Condensationen, welche die Lichtknoten in der Milchstrasse erzeugen, nur als kleinere Glieder derselben. Denn wollte man selbst eine gleichförmige Anordnung der Sterne bis auf die 6fache Entfernung der BD-Sterne annehmen, so müsste man sie gleichzeitig in immer höher werdenden Schichten bis gleichfalls zur 6fachen Höhe sich vorstellen, je weiter der Visionsradius in den Kegel des Gesichtsfeldes dringt, also eine Anordnung in Bezug auf die Sonne, die doch undenkbar ist.

SEELIGER 1) indessen glaubt hei aller Anerkennung der EASTON'schen Arbeit dies Parallellaufen der Sternzahl für die BD-Sterne und die schwächsten Sterne überhaupt doch für ein lokales, nicht überall in der Milchstrasse auftretendes Phänomen halten zu sollen. Zum Beweise hat er in allen Feldern, in denen die beiden HERSCHEL im Bereiche der Durchmusterung geaicht, auch die Bonner Sterne abgezählt und findet, wenn nach der Zahl der HERSCHEL'schen Sterne geordnet wird, im Mittel

	für die	BD			für die	SD	
W. HER	SCHEL			J. Hers	CHEL		
Grenzen	Mittel	ED	E	Grenzen	Mittel	SD	
> 300	409	3.41	± 0.41	> 160	222	2.15	± 0.31
200-300	256	2.83	32	120-160	133	3.13	35
120-200	154	3.39	46	80-120	103	3.63	63
80-120	97	3.06	41	50-80	62	2.71	50
60- 80	69	2.38	31	20-50	31	2.70	56
< 60	43	2.37	34	< 20	11	1.63	51

¹⁾ Betrachtungen über die räumliche Vertheilung der Fixsterne, pag. 55 ff.

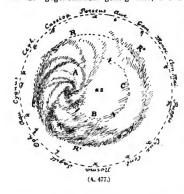
Ein Parallellausen der HERSCHEL'schen Sternzahlen mit den Durchmusterungen findet hiernach im allgemeinen nicht statt. An den nur 4 Stellen, wo W. HERSCHEL in der Zone CELORIA's geaicht hat, finden sich solgende Werthe, die einander gegenüber gestellt werden können.

HERSCHEL		CELORIA	BD
	217	10.6	5
	272	14.6	3
	311	17.5	2
	398	14.1	6
Mitte	299	14.2	4.0

Natürlich sind diese Werthe nicht zahlreich genug, um irgend welche Schlüsse zu ziehen, jedenfalls sprechen sie nicht gerade für ein Parallellaufen von HERSCHELund CELORIA-Sternen.

Sonach hält Seeliger es nicht gerade für wahrscheinlich, dass die Eastonsche Ansicht der Anhäufung der schwächsten BD-Sterne und der Herschelschen Sterne auf einen Raum von geringer Tiefenausdehnung ein allgemeines Phänomen sei, obwohl sie an gewissen Stellen denkbar wäre. Die Milchstrasse ist jedenfalls eine Gegend unseres Systems, wo die Sterne erheblich gedrängter stehen als anderswo. Dass die Lichtknoten und Sternhaufen in der Milchstrasse die Folgen von Anziehungskräften sind, welche bei der Masse der Objecte dort stärker walteten, als in dem übrigen, so überaus dünn mit Materie besetzten Raum, ist eine Möglichkeit der Vorstellung, weiter nichts. Es ist zwar sicher, dass die Milchstrasse rings um uns gelagert ist, aber sehr unwahrscheinlich, dass sie die Form eines Kreisringes hat, jedenfalls würde in einem solchen die Sonne ziemlich, wenn auch nicht übermässig excentrisch stehen.

Die Milchstrasse als Spiralnebel.


In einer jüngst erschienenen Publikation »A new theory of the Milky Way«1) kommt Easton auf den Gedanken einer engen Verknüpfung doch auch vieler selbst heller Sterne mit den Milchstrassengebilden erneut zurück. Er betont unter anderem als Beispiel die zweifellose Zusammengehörigkeit der Trapezsterne mit dem Orionnebel und der Plejaden mit den die einzelnen Sterne und die ganze Gruppe einhüllenden Nebelmassen. Stellen, die ähnliche Deutung fordern, sind der Lichtknoten zwischen a und A Cygni, und der im nördlichen Theile des grossen hellen Flecks zwischen γ und β Cygni. Entweder müssen wir hier gewaltige Sternanhäufungen voraussetzen oder die Gegend in solcher Nähe bei uns annehmen, dass auch die Zugehörigkeit der genannten Cygnus-Sterne zu ihr nicht mehr unwahrscheinlich ist. Wie schwach ist im Vergleich zu dieser Cygnus-Region, die 90° Länge davon entfernte des Perseus, nicht nur in den Milchstrassengebilden, sondern auch an Sternen, wenn wir von den allerhellsten absehen. In der Cygnus-Region herrscht aber nicht nur der grösste Reichthum an Durchmusterungssternen, der schon Ristenpart⁹) hier das Centrum der Milchstrasse suchen liess (in a = 20⁴ 20m, 8 = 40° und in der Entfernung der Sterne 5m.9), sondern auch HERSCHEL fand hier eine seiner grössten Sternzahlen mit 588 Sternen pro Feld und Epstein aichte bei γ Cygni 600 Sterne bis 12m in einem Raume, auf den sonst durchschnittlich 140 kamen. Zwar kommen auf der Südhalbkugel im Schilde und zwischen γ und μ des Schützen hellere Flecken vor, aber sie sind lange nicht so aus-

¹⁾ The Astrophysical Journal Vol. XII, pag. 137.

³⁾ Untersuchungen etc., pag. 263 ff.

T22 Universum.

gedehnt wie die Gegend im Schwan und kommen mehr auf die Rechnung einer Contrastwirkung gegen benachbarte ganz dunkle Stellen, während die Cygnusgegend von ziemlich hellen Flächen der Milchstrasse umgeben ist. Indem EASTON nun noch ausführlich die Lagerung der beiden Zweige der Milchstrasse neben einander betrachtet, kommt er nach allem auf den Gedanken, dieselben nicht neben- sondern hintereinander anzunehmen, wenngleich in Ebenen, die um 20° gegeneinander geneigt sind, und der ganzen Milchstrasse die Form eines

Spiralnebels anzuweisen, dessen Wirbelpunkt eben die Region im Cygnus Seine Abbildung ist hier als Fig. 477 reproducirt. S zeigt die Stellung der Sonne an. A ist eine ziemlich reiche Windung, die den Verlauf der Milchstrasse von der Cassiopea bis zu y Ophiuchi erzeugt, B dagegen rust den zweiten (reicheren) Zweig durch Schlange, Skorpion und Wolf hervor; den letzten Ausläufer von B, die matte und dünnbesetzte Windung C, hält EASTON für die Erzeugerin des Kranzes heller Sterne, des galactic belt Gould's, der den Centauren, das Kreuz, das Schiff und den grossen Hund durchzieht. Die verschiedenen weiteren Win-

dungen, die zwischen Adler und Cassiopea eingezeichnet sind, glaubt EASTON zur Darstellung der Lichtbrücken und Spalten in dieser Gegend nöthig zu haben, den Hauptverlauf der Milchstrasse aber ruft die grosse, alles umfassende Windung RR'R" in Erscheinung, die kurz vor dem Perseus endet, wo nur ein schmaler, vom Wirbelpunkt ausgehender Strom noch einigen Milchstrassenschimmer erzeugt.

Das ganz eigenartige und neue Bild, welches die Ideen Easton's von dem Weltgebäude entwersen, und welches er selbst nicht etwa als eine Darstellung, sondern nur als Typus der von ihm gedachten Form desselben angesehen wissen will, ist jedenfalls vorstellbar und seine mögliche Berechtigung erkennt man,

(A. 478.)

wenn man sich umgekehrt fragt, wie sich in einem Spiralnebel, dessen Typus wir hier in dem Object M 74 Piscium abbilden (Fig. 478), die Spiralen darstellen würden für einen Schauplatz unweit des Wirbelpunktes; man sieht sofort, dass, wenn alle Windungen in einer Ebene liegen, dann eine Milchstrasse in nur einem Zuge, aber von verschiedener, durch die Entsernung vom Beschauer bedingter Breite mit einem gewaltigen

Lichtknoten entstehen würde, sollten aber nicht alle Windungen in einer Ebene liegen, sondern sich einzelne darüber erheben, jedoch nicht um starke Neigungswinkel, so würden die grossen Trennungen in der Milchstrasse, Spalten und Lichtbrücken, in Erscheinung treten, die wir thatsächlich sehen. Gegen die Vorstellbarkeit der Spiralform der Milchstrasse wäre also a priori nichts einzuwenden, ausser einem Bedenken, das vielleicht nicht allzuferne Zukunst zerstreuen wird. Das Beispiel mit dem Spiralnebel M 74 Piscium behält nur dann seine Wirkung, wenn dieses Object und die Milchstrasse coordinitte Himmelswesen sind. Wir haben aber oben gesehen,

dass die Nebel im Allgemeinen als Angehörige des Milchstrassensystems betrachtet werden müssen, also dem ganzen untergeordnet sind, nur von den planetarischen, den ringförmigen und den Spiralnebeln liess sich das der geringen Anzahl dieser Objecte wegen nicht sicher erweisen. Nun hat der jüngst allzufrüh von dem Felde seiner astronomischen Entdeckungen abgerufene James KEELER mit dem CROSSLEY-Reflector der Lick-Sternwarte nicht nur eine ungeahnte Fülle neuer Nebel entdeckt, da sein Fernrohr weit tiefer als die früheren mit Hilfe der Photographie in den Raum eindrang, er hat die Zahl der in ihm sichtbaren Nebel für den ganzen Himmel auf 120000 geschätzt gegen die kaum 10000, über die Stratonoff bei seinen Untersuchungen verfügte; er hat aber vor allem gefunden, dass unter den neuentdeckten Nebeln die überwiegende Mehrzahl Spiralnebel waren und kommt zu dem Schlusse, die spiralige Structur für die vorherrschende oder fast für die typische Form der Nebel zu halten. Sobald nun die Fortsetzung der von KEELER begonnenen Entdeckungen neuer Nebel an dem so leistungsfähigen Instrumente uns mit nahezu allen von ihm erreichbaren Objecten bekannt gemacht haben wird, wird eine Untersuchung über die Vertheilung der Spiralnebel gesondert erfolgen müssen. Ergiebt diese dann eine Anordnung derselben ohne jede Rücksicht auf die Milchstrasse, sodass die Spiralnebel ihrerseits als selbständige Milchstrassensysteme gedeutet werden können, so ist die Annahme einer spiraligen Structur auch für unsere Milchstrasse nicht nur eine mögliche, sondern eine sehr wahrscheinliche Hypothese, dann würden sich die Spiralnebel (und die planetarischen Nebel) deutlich von den übrigen Nebeln sondern und nur letztere wären als Glieder unseres Milchstrassensystems anzusprechen. Ergiebt sich aber für die Vertheilung der Spiralnebel das gleiche Gesetz wie für die andern Nebel, so wären auch sie dem Milchstrassensystem zuzurechnen und der Easton'schen Annahme für die Structur der Milchstrasse fehlten dann jedenfalls die Analogieen.

Es ist klar, wie wichtig diese von der Fortführung der KEELER'schen Entdeckungen herbeizuführende Entscheidung auch noch in anderer Beziehung ist. Gehören nämlich alle Nebel auch zum Milchstrassensystem, so ist dieses das einzige Individuum, das wir kennen im endlosen Raum, dann bildet die ganze Welt der sichtbaren und unsichtbaren Sterne, der Milchstrassenwindungen, der Sternhaufen und Nebelflecke nur eine Insel im Weltall, und von andern Lebewesen des leeren Raums wissen wir entweder gar nichts, weil die OLBERS'sche Extinction des Lichtes (s. o.) uns jede Kunde von ihnen entzieht, oder es sind überhaupt keine da und die ganze Materie des Alls ist in dem einzigen Kosmos untergebracht, von dessen zahlreichen, längs einer Hauptebene neben- und hintereinander stehenden Sternhausen, einer auch unsere Sonne umschliesst. Sind aber die Spiralnebel coordinirte Glieder des Milchstrassensystems, so giebt es noch ausserhalb unserer Welteninsel andere im Ozean des Raumes zerstreute und den Weg, unter diesen die höhere Wesenseinheit, die Anordnung zu Milchstrassensystemen, aufzufinden, den die philosophischen Ueberlegungen Kant's und LAMBERT's einschlugen, wirklich zu betreten, steht den Entdeckungen der Zukunft bevor.

Heutzutage beschränkt sich ja unsere Kenntniss über die räumliche Anordnung von Himmelskörpern thatsächlich auf die Sterne der BD und SD, deren äusserste in dem 70fachen der Enternung der Sterne erster Grösse, hem 7 fachen des Abstandes der Sterne 6. Grösse, bis zu denen das unbewaffnete Auge reicht, liegen; die letzten Sterne Herschell's, wenn wir diese mit als äusserste Glieder des Milchstrassenhaufens betrachten wollen, würden aber mit

rund 700 Siriusweiten noch 10 mal weiter als die Bonner Sterne entfernt sein. Wäre die Milchstrasse in ihrem Längsschnitte ungefähr kreisförmig, so kennen wir also erst innerhalb des innersten Hundertels ihrer Hauptebene die Sternvertheilung genauer, von allen andern entfernteren Objecten kennen wir nur die Grundgesetze ihrer Anordnung oder können sogar diese nur muthmassen.

Annahme anderer Raumformen.

Die vorhin als event, mögliches Ergebniss der künftigen Nebelforschungen angedeutete Hypothese, dass alle sichtbaren Himmelsobjecte zusammen Mitglieder des Milchstrassensystems seien und sonach nur eine Stelle des unendlichen Raums mit Materie belegt erscheine, ist aber noch einer ganz andern Deutung fähig, wenn wir den Darlegungen Schwarzschild's auf der Heidelberger Astronomenversammlung folgen wollen 1). Sie kann nämlich auch aus der endlichen Ausdehnung des Raumes folgen. Nur zwei andere Raumformen kommen nach Schwarzschild neben dem euklidischen unendlichen in Betracht, der elliptische Raum, in dem jede gerade Linie in sich zurückläuft, in dem aber zwei gerade Linien nur einen Schnittpunkt haben (und nicht zwei wie im sphärischen); dieser Raum ist endlich und hat einen endlichen Krümmungshalbmesser R; zweitens der hyperbolische oder pseudosphärische Raum mit imaginärem Krümmungshalbmesser iR; er ist unendlich, und die Winkelsumme eines Drejecks in ihm ist kleiner als zwei Rechte. Kein geringerer als LOBATSCHEFSKIJ hat in seinem Werke »Ueber die Anfangsgründe der Geometrie«2) gleich die Frage erörtert, ob die Existenz des hyperbolischen Raumes irgendwie in Widerspruch mit astronomischen Parallaxenbestimmungen käme. Ist der Winkel zwischen Sonne und einem Fixstern zur Zeit der grössten jährlichen Parallaxe $\frac{\pi}{9}-2p$, so steht die Visierlinie nach dem Sterne ein halbes Jahr vor- resp. nachher senkrecht auf dem Erdbahnradius r. Dann ist dieser senkrechte Winkel $F\left(\frac{2r}{R}\right)$ in der hyperbolischen Geometrie $> \frac{\pi}{2} - 2p$ und ausserdem mit der

Länge des Erdbahndurchmessers 2r verknüpft durch die Gleichung:

$$tang \frac{1}{2} F\left(\frac{2r}{R}\right) = e^{\frac{-2r}{R}};$$
demnach $e^{\frac{-2r}{R}} > tang \left(\frac{\pi}{4} - p\right) \sum_{k=1}^{\infty} \left(\frac{1}{k} - tang p\right)$

woraus nach weiteren Umformungen

$$tang \ 2p > \frac{2r}{R}$$

LOBATSCHEFSKIJ musste sich mit ganz minderwerthigen Annahmen über die Parallaxen begnügen, z. B. für Sirius $2p = 1^{\prime\prime}\cdot 24$, für 29 Eridani $2p = 2^{\prime\prime}\cdot 24$ Dieselben ergeben resp. $\frac{2r}{R}$ < 0.000006012 und 0.000009696, also den Krümmungsradius des Raumes zu mindestens 330000 Erdbahnradien. Selbst für das Dreieck mit Sirius an der Spitze würde die Winkelsumme nur um 0".000003727 kleiner sein als 180° und die Hoffnung durch Widersprüche in den Beobach-

¹⁾ Ueber das zulässige Krümmungsmaass des Raumes. V. A. G. 1000, pag. 337 ff.

²⁾ Nikolaj Iwanowitsch Lobatschefskij. Zwei geometrische Abhandlungen, aus dem Russischen übersetzt, mit Anmerkungen und mit einer Biographie des Verfassers von FRIEDRICH ENGEL, Leipzig 1898, pag. 22 ff.

125

tungen diesen Winkel nachzuweisen, ist also ganz illusorisch. Schwarzschild schlägt einen etwas andern Weg zu dem gleichen Ziele ein. Ist d der Abstand eines Sternes gemessen auf dem Lichtstrahl, der von ihm zu uns dringt, p seine astronomisch bestimmte Parallaxe und r der Erdbahnradius, so gilt für den hyperbolischen Raum

 $\sin(hy\,p)\,\frac{d}{R} = \frac{r}{\sqrt{p^2\,R^2-r^2}}.$

Daraus folgt $p>\frac{r}{R}$, sodass jeder Stern des hyperbolischen Raumes auch bei noch so grosser Entfernung eine endliche Parallaxe zeigen muss, deren Minimum durch das Krümmungsmaass bestimmt ist. Nach den heutigen Beobachtungen können wir dieses Minimum der Parallaxe gewiss nicht über 0"·05 annehmen und kommen damit auf einen Mindestradius des hyperbolischen Raumes von 4 Millionen Erdbahnhalbmessern. Der Radius müsste entsprechend vergrössert werden, wenn mit Sicherheit Parallaxen unter 0"·05 nachgewiesen werden sollten. Jedenfalls ist er so gross, dass innerhalb der Dimensionen des Planetensystems sich keine Anomalien gegenüber der euklidischen Raumvorstellung zeigen können; da andererseits der pseudosphärische Raum gleich dem euklidischen unendlich ist, so können auch ungewohnte Erscheinungen des Fixsternsystems sich nicht darbieten.

Anders bei dem elliptischen Raum. Die analoge, Parallaxe und Entsernung verbindende Formel ist hier

cotang $\frac{d}{R} = \frac{R}{r} \cdot p$.

Es entspricht also jeder (auch noch so kleinen) Parallaxe eine reelle Entfernung d, welches Krümmungsmaass man auch annehmen mag. Welchen Werth man indessen für das Krümmungsmaass des elliptischen Raumes mindestens annehmen muss, ergiebt sich aus dieser Formel ebenfalls. $\frac{R}{L} = 30000$ z. B. giebt für

$$p = 1'' \cdot 0$$
, $0'' \cdot 1$, $0'' \cdot 0$: $\log \cot \arg \frac{d}{R} = 9 \cdot 1627$, $8 \cdot 1627$, $-\infty$, also $\frac{d}{R} = 81^{\circ} 43' \cdot 5$, $89^{\circ} 9' \cdot 0$, $90^{\circ} 0'$, oder $4903' \cdot 5$, $5349' \cdot 0$, $5400'$. Da nun $90^{\circ} = 5400' = \frac{\pi}{2}$ ist, werden die drei Distanzen für

$$p = 1^{"\cdot 0}$$
, $d = 0.908 \cdot R \cdot \frac{\pi}{2} = 42800$ Erdbahnradien $p = 0.1$, $d = 0.991 \cdot R \cdot \frac{\pi}{2} = 46700$,, $p = 0.0$, $d = 1.000 \cdot R \cdot \frac{\pi}{2} = 47100$,,

Es mag angenommen werden, dass es 100 Sterne mit Parallaxen über 0"·1 giebt und 100 Millionen mit Parallaxen unter 0"·1, daraus ergiebt sich die Unvorstellbarkeit des Resultates bezüglich der Entfernungen. Da wohl kein Stern eine Parallaxe über 1"·0 hat, so käme um die Sonne ein leerer Raum von 42800 Radien Abstand, dann ständen 100 Sterne in Entfernungen, die bis zu 3900 Radien grössere Abstände hätten als die Begrenzung des leeren Raumes und die übrigen 100 Millionen wären in Entfernungen zusammengedrängt, die nur bis zu 400 Radien kleiner wären, als die grösstmögliche Ent-

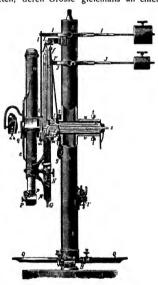
fernung $R = \frac{\pi}{2}$ überhaupt. Es muss also für R ein Werth angenommen werden,

der ungefähr das entfernteste Raumstück, in welchem die 100 Millionen Sterne stehen, 1000000 mal so gross macht, als das innere mit seinen 100 Sternen. Dieser Bedingung würde durch R = 160 Millionen Erdbahnradien ungefähr entsprochen und man käme damit auf eine Grösse des Raums etwa von der Grössenordnung, wie sie der von Seeliger angenommenen räumlichen Ausdehnung des Fixsternsystems entspräche, dann würde nur dieses und keine andere Welt in dem dann endlichen Raume Platz haben. Man kann natürlich R auch auf das 2 bis 3fache vergrössern oder verkleinern, ohne auf unzulässige Zusammendrängungen der Sterne gegen den »Rand« des elliptischen Raumes zu stossen. Der in sich selbst zurücklaufende Lichtstrahl macht die Reise um die Welts πR in 8000 Jahren und zur Beseitigung der einzigen sich ergebenden Schwierigkeit, nämlich der, dass wir am Nachthimmel der Sonne gegenüber das Bild der Rückseite der Sonne in Folge dieses in sich selbst zurückkehrenden Lichtstrahls erblicken müssten, muss nur angenommen werden, dass das Licht auf diesem ungeheuren Wege eine Absorption von 40 Grössenklassen erleidet. Eine andere Schwierigkeit der Vorstellung wird schon durch eine viel geringere Absorption behoben. Da nämlich ieder Lichtstrahl im elliptischen Raume wieder zu seinem Ausgangspunkte zurückkehrt, so würden auch alle durch unser Auge nach rückwärts gehenden Graden, die also Bilder von Punkten des Hinterkopfes, des Rückens etc. auf sich durch den Raum tragen würden, nach der »Wanderung um die Welt« dem Auge die Bilder der Rückseite seines Trägers bringen, und wenn wir uns einmal alle Objecte aus der Welt denken, würde das Auge am Firmament nichts erblicken, als die Rückseite des Subjects auf eine Halbkugel ausgebreitet. Nehmen wir nun die Objecte hinzu, so erscheinen natürlich diese dem Auge auf dem direkten Wege und verdecken die Punkte der Rückseite, deren Lichtstrahlen von ihnen abgefangen werden, alle von Objecten leer gelassenen Stellen des Gesichtskreises aber würden die Rückseite des Subjects zeigen - oder die eines andern Subjects oder Objects, welche vor 8000 Jahren dieselbe Stelle im Raum eingenommen haben, wenn diese nicht vielleicht damals leer war, da unser Träger, die Erde, sich natürlich ganz wo anders befand.

Ausser der euklidischen Raumvorstellung mit $R=\infty$ kommen also für die Vorstellung des Universums noch entweder ein pseudosphärischer Raum mit iR>4 Millionen Erdbahnradien, oder ein elliptischer Raum mit R>100 Millionen Erdbahnradien in Betracht, wenn man bei letzterem noch eine Lichtabsorption bei einem Umlauf um den Raum auf den 10^{16} . Theil des Ausgangswerthes annimmt.

Eine gleichförmige Vertheilung durchschnittlich gleichheller Sterne durch den euklidischen Raum würde bekanntlich die Sternzahlen bis zu den successiven Grössenklassen in constantem Verhältnis 3-982 zunehmen lassen. Im elliptischen Raume würde sie die Sternzahlen der schwächeren Klassen in weit stärkerem Maasse wachsen lassen, im pseudosphärischen Raum würde dagegen bei gleichförmiger Sternvertheilung die Sternzahl langsamer mit der Grösse zunehmen, als im euklidischen. Nun nimmt thatsächlich, wie die Seeligerischen Untersuchungen zeigen, die Sternzahl für die BD-Sterne langsamer zu, als es gleichförmige Vertheilung folgern würde. Daraus einen Vorzug für die Annahme eines hyperbolischen Raumes zu folgern, wäre natürlich durchaus verfrüht, weil die Hypothese gleichförmiger Vertheilung der Sterne und durchschnittlich gleicher Helligkeit für dieselben gewiss ganz willkürlich ist.

Es bleibt also die Bezeichnung eines Märchenlandese, die Schwarzschild für die beiden besprochenen Raumformen anwendet, kennzeichnend für die Stellung, die die Erfahrung gegenüber denselben einnimmt. Beide sind ebenso möglich als der euklidische Raum und die geringen Entsernungen, bis zu welchen die messende Astronomie in den Weltraum vorgedrungen ist, zeigen für keine der drei Raumformen bisher einen Widerspruch.


F. RISTEMPART.

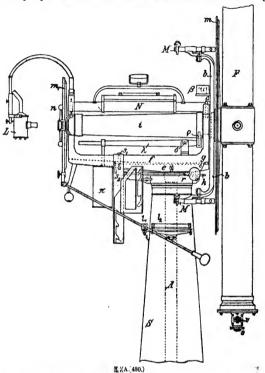
Verticalkreis. Ausser den Höhenkreisen (s. d. Artikel »Universalinstrument«) hatte man früher zur genaueren Bestimmung von Zenithdistanzen Instrumente, welche sich von jenen nur durch genauere Ausführung und grössere Stabilität unterschieden. Solche Instrumente waren die Verticalkreise. Sie waren gleich diesen auf verticalen Axen angebrachte Instrumente, die ebenso noch eine Drehung um diese Verticalaxe gestatteten, deren Grösse gleichfalls an einem

kleinen Einstellkreise mittels Nonien abgelesen werden konnte. Ein solcher Verticalkreis älterer Construction ist in Fig. 479 abgebildet. Die Azimuthalaxe E endigt an beiden Seiten in Zapfen, welche in Lagern eingebettet sind, die durch entsprechende Rectificationsschrauben behufs Verticalstellung eine Verschiebung der Axe am oberen Ende in zwei aufeinander senkrechten Richtungen gestatten. Die Verticalstellung wird durch das Niveau V controllirt. Zur Einstellung im Azimuthe dient ein Einstellkreis O.

Die Verticalaxe trägt die hohle Büchse u, mit welcher der fein getheilte Kreis G fest verbunden ist. In der Büchse bewegt sich die Höhenaxe s, an welcher das Fernrohr O und der mit demselben verbundene Nonienkreis H fest aufgesetzt sind. Das Gewicht des Instrumentes ruht zum grössten Theil auf den Rollen m, m', welche durch entsprechende Hebelwerke I, J und Gegengewichte zur Entlastung der Axe wirken.

Bei den späteren Verticalkreisen wurde die doppelte Lagerung der

(A. 479.)


Nach Ambronn, *Handbuch der astronomischen Instrumentenkunde*.

Azimuthalaxe ebenfalls durch eine einfache Lagerung in einer verticalen Säule ersetzt. Ein Beispiel dieser Einrichtung giebt die Fig. 480, welche den ERTELschen Verticalkreis der Sternwarte Pulkowa darstellt.

Die Azimuthalaxe A ist in der Säule S gelagert, und von unten durch entsprechende, in Hebeln wirkende Gegengewichte nach oben gedrückt, so dass die Drehung des Instrumentes im Azimuth, in Folge der Entlastung der Axe in hrem Lager, ohne Schwierigkeit vorgenommen werden kann. Die Säule S ruht auf drei Füssen, und kann die Verticalstellung mit Hilfe der beiden Libellen I_1 und I_2 bewerkstelligt werden.

128 Verticalkreis.

Die Azimuthalaxe A trägt auf einer massiven Platte e die Wiege f mit den Lagern g für die Höhenaxe i, welche mittels des Niveaus N und der Stellschrauben s_1 , s_2 senkrecht zur Azimuthalaxe und durch Verticalstellung dieser

Nach Ambronn, . Handbuch der astronomischen Instrumentenkundes,

horizontal gestellt werden kann. An den Lagern g sind die Mikroscopträger b mit den Mikroscopen M und auf der entgegengesetzten Seite die Nonien für den Aufsuchkreis m_1 und an einem Metallbügel die Beleuchtungslampe L angebracht, welche das Licht durch eine Bohrung der Axe i sendet.

Die Höhenaxe i ruht mit dem grössten Theil des Instrumentengewichtes auf Rollen ρ und wird durch das an dem längeren Hebelarme des Hebels λ' wirkende Gewicht π äquilibrirt. An der Axe i ist das Fernrohr F, der fein getheilte Kreis m und der Aufsuchkreis m_1 befestigt.

Die Stellung des Mikroscopträgers wird durch die Alhidadenlibelle β controllirt, bezw. durch die Ablesung an derselben auf eine Normalstellung reducirt.

Das Instrument ist, wie schon erwähnt, nichts anderes als ein Höhenkreis, bei welchem auf die Ablesung der Höhen eine besondere Sorgfalt aufgewendet wird. Es kann daher, bezüglich der Theorie desselben, auf das in dem Artikel >Universalinstrumente Gesagte verwiesen werden.

Durch Weglassung des Horizontalkreises und Aufhebung der Beweglichkeit im Horizonte erhält man ein in einer einzigen Verticalebene bewegliches Instrument, also den älteren Mauerkreis und ferner die neuen aus diesem hervorgegangenen Meridiankreise (s. diesen).

N. HERZ.

Zeit, Zeitbestimmung. 1) Zeitmessung, Sternzeit, wahre, mittlere Sonnenzeit. Astronomische Beobachtungen erfordern als eines der wichtigsten Bestimmungsstücke die Angabe des absoluten Zeitmomentes, zu welchem sie angestellt sind. In gewissen Beobachtungen ersetzt dieser Zeitmoment direkt die Beobachtung einer Coordinate, indem die gegenseitige Lage der Gestime an der Himmelskugel durch die Differenz der Zwischenzeiten an einem festen Instrumente gegeben sind (Passagen an festen Instrumenten oder an Mikrometern). In anderen Fällen sind die Beobachtungen, z. B. Messung von Distanzen oder Positionswinkeln beweglicher Gestirne, ja selbst Beobachtungen von physischen Veränderungen auf den Oberstächen der Gestirne werthlos weil unvergleichbar, wenn nicht der Moment jeder Beobachtung und damit die chronologische Reihensolge derselben setstgelegt wird.

Eigentlich handelt es sich dabei um die Vergleichung der Reihenfolge von verschiedenen Beobachtungen mit einer als Standard angenommenen, z. B. periodisch wiederkehrenden und stets leicht wieder aufzufindenden Reihenfolge von Erscheinungen. Ob es sich nun um die Abzählung der Anzahl Abläufe einer periodisch nach jedem Ablaufe sich umdrehenden Sand- oder Wasseruh, oder die Schwingungen eines Pendels oder einer Unruhe handelt: jede dieser Einrichtungen eignet sich gleich gut zur Zeitmessung, wenn die Bedingungen erfüllt sind, dass die Erscheinungen periodisch und gleichmässig verlaufen, leicht zu zählen sind, und an verschiedenen ähnlichen Instrumenten vergleichbar sind.

Unter allen periodisch wiederkehrenden, regelmässig verlaufenden Erscheinungen ist es vorzugsweise eine, welche die genannten Bedingungen am vollständigsten erfüllt und sich daher seit den ältesten Zeiten naturgemäss als Maass der Zeit dargeboten hat: der regelmässige Wechsel von Tag und Nacht, sowie von Sommer und Winter. Die Ungleichheit der Tages- und Nachtlänge hat aber frühzeitig daraufgeführt, zu vergleichbaren Maassbestimmungen die Länge von Tag und Nacht zusammen (Nychthemeren), d. i. von Sonnenuntergang bis Sonnenuntergang oder von Mitternacht zu Mitternacht oder aber von Mittag bis Mittag als Zeiteinheit zu wählen. Für kleinere Unterabtheilungen findet man schon in den ältesten Zeiten eine Theilung in 12 oder 24 Thle., mitunter auch in 60 Thle., von denen sich die Eintheilung in 24 Stunden, deren jede in 60 Minuten (minutae primae) à 60 Secunden (minutae secundae) getheilt wird, später bleibend erhalten hat. Bis in das späte Mittelalter wurde die Theilung nach dem Sexagesimalsystem noch weiter geführt, und man theilte die Secunde noch in 60 minutae tertiae, weiter ebenso diese in 60 minutae quartae u. s. w., von denen der minuta tertia als Terzie noch heute zeitweise Erwähnung geschieht. Erst zu KEPLER's Zeiten beginnt sich die Decimaltheilung der Secunde einzubürgern.

Die Zusammenfassung von mehreren Tagen zu Einheiten höherer Ordnung fand ebenfalls bis zu dieser Zeit nach dem Sexagesimalsystem statt, und man rechnete demzufolge mit 60^d, 3600^d als Einheiten höherer Ordnung. Doch war das Jahr mit seinen Unterabtheilungen in 12 Monate als Einheit höherer Ordnung, die dem allgemeinen Gebrauche entrommene, und daher nicht zu umgehende

Zusammenfassung, und mussten für den astronomischen Gebrauch die Jahre, Monate und Tage erst in Sexagesimae etc. umgewandelt werden.

Das Jahr bietet aber keine einheitliche Maassbestimmung, da dasselbe bei verschiedenen Völkern von verschiedener Länge angenommen wurde (vergl. den Artikel »Chronologie«); in allen Fällen muss daher die Jahreslänge durch die Anzahl der in demselben enthaltenen Tage ausgedrückt werden. In den wichtigsten älteren astronomischen Schriften findet man zumeist das ägyptische Jahr zu 365 Tagen und später das julianische Jahr zu 365 Tagen zu Grunde gelegt. Die Vergleichung der verschiedenen Zeitangaben geschieht jedoch am besten durch die Angabe der Tageszahl in der julianischen Periode (s. »Chronologies.

Wenn sich sonach als Maasseinheit höherer Ordnung das Jahr nicht eignet, und dasselbe ausschliesslich den praktischen Bedürfnissen der Datirung entspricht, so bleibt als Normalmaass für die Zeit nur der Tag. Der periodischen Wiederkehr von Tag und Nacht entsprungen, hat man hierbei zunächst nur an die Umdrehung der Erde um ihre Axe in der ursprünglichen Auffassung zwischen zwei Sonnenuntergängen zu denken. Da aber bald die Verschiedenheit dieser Tageslänge auffallen musste, allerdings ursprünglich nur durch den Unterschied in dem Beginne des Tagesanfanges, der Verspätung in der ersten Hälfte, der Verfrühung in der zweiten Hälfte des Jahres, so war die ungleiche Länge dieses Tages, wenn sie sich auch der unmittelbaren Beobachtung entzog, nicht zu übersehen, und so wie es sich um genauere Zeitangaben handelte, namentlich aber um die regelmässige Theilung des Tages durch Instrumente (Uhren), welche den Verspätungen bezw. Vertrühungen des Sonnenunterganges nicht folgen konnten, musste der Tagesanfang auf einen anderen Zeitmoment verlegt werden, bei welchem diese Unregelmässigkeiten nicht hervortraten, und dieses war der stets gleichmässig wiederkehrende Durchgang der Sonne durch den Meridian. Die durch Sonnenbeobachtungen stets leicht zu erhaltende Zwischenzeit zwischen zwei gleichartigen (oberen) Culminationen der Sonne wird ein wahrer Sonnentag genannt.

Hiermit war jedoch nur eine der gröbsten Ungleichheiten in der Zeitmessung eliminit; auch der wahre Sonnentag ist nicht constant. Die Zeitmessung ist ja eigentlich hierbei auf die Rotation der Erde um ihre Axe zurückgeführt, und es dient als Zeiteinheit die Zeit, welche die Erde zu einer vollen Umdrehung braucht. Eine solche Umdrehung, bei welcher irgend ein Halbmesser der Erde räumlich genau in dieselbe Richtung fällt, vollzieht sich aber nicht in einem Sonnentage, sondern, da die Richtung des Erdhalbmessers im Raume durch denjenigen Ort der Himmelskugel bestimmt ist, welchen dieser Halbmesser zwischen den Sternen trifft, in einer andern Zeit, nämlich in derjenigen, welche zwischen zwei gleichartigen (oberen) Culminationen eines und desselben Sternes versliesst. Diese Zeit nennt man einen Sterntag. Die in Stunden (24 teln des Sterntages) Minuten und Secunden ausgedrückte Zeit (z. B. von der Culmination eines bestimmten Punktes der Himmelskugel an gerechnet) heisst die Sternzeit; und demnach spricht man auch von Sternzeitstunden u. s. w.

Es mag an dieser Stelle kurz bemerkt werden, dass auch der Sterntag keine constante Grösse ist, sondern durch mechanische Einfülsse (die Flutwelle), die Contraction der Erdrinde, Niederschläge von kosmischem Staub u. s. w., vergl. den Art. Mechanik des Himmels«, die Tageslänge etwas veränderlich sein kann; ob die Secularacceleration des Mondes diesen oder anderen Umständen zuzuschreiben ist, ist bisher noch nicht mit Sicherheit entschieden.

Die Verschiedenheit von Sterntag und Sonnentag rührt davon her, dass sich die Sonne in Folge der Revolution der Erde um dieselbe, zwischen den Gestimen fortzubewegen scheint; da diese Bewegung von West nach Ost vor sich geht, während die tägliche Drehung des Fixsternhimmels in der entgegengesetzten Richtung, von Ost nach West stattfindet, so wird die Sonne nach einer vollen Umdrehung der Erde um ihre Axe, zwischen den Sternen etwas weiter gerückt sein und erst einige Zeit später culminiren, als derjenige Punkt (Stern). bei welchem sie während ihrer vorhergehenden gleichartigen Culmination stand: der Sonnentag ist etwas länger als der Sterntag.

Da die Sonne nach einem Jahre wieder zu demselben Punkte zurückkehrt, so wird sie jeden Tag um den 365-25ten Theil des ganzen Umkreises, also nahe 1°, d. i. 4th täglich, später culminiren, was dadurch in die Erscheinung titt, dass scheinbar die Fixsterne um diesen Betrag täglich früher culminiren. Man nennt diese Erscheinung die Acceleration der Fixsterne.

Der Betrag von 4^{ra} ist nur eine Näherung. Zu einem genauen Werthe gelangt man auf folgende Weise: Die Sonne gelangt nach 365-256358 Sonnentagen wieder in dieselbe Position zu den Fixsternen (siderisches Jahr), während welcher Zeit aber die Erde genau um eine Rotation mehr um ihre Axe, d. h. 366-256358 Rotationen gemacht hat. Eigentlich wäre daher das Verhältniss

Länge des Sonnentags: Länge des Sterntags = 366-256358: 365-256358.

Im Grunde wäre es gleichgültig, welchen Stern man hierbei als Zeitmesser gebraucht; für den Ansang des Sterntags müsste aber ein ganz bestimmter Stern gewählt werden, so dass der Sterntag stets und überall mit der Culmination dieses Sternes beginnen würde. Unter allen Punkten an der Himmelskugel ist nun ein besonderer, der in vielen Hinsichten eine bevorzugte Stellung einnimmt, nämlich der Frühlingspunkt, und es lag daher nahe, diesen als Ansangspunkt der Zählung zu wählen, so dass der Sterntag mit der Culmination des Frühlingspunktes beginnt. Dass hierdurch der Einfluss der Eigenbewegung der Fixsterne auf die Tageszählung wegfällt, kann kaum als Vortheil betrachtet werden, da sich selbst in historischen Zeiträumen in dieser Richtung keine Abweichungen ergeben würden. Hingegen hat diese Zählung mancherlei Nachteile, welche von dem Einfluss der Nutation herrühren, worüber später noch Einiges gesagt wird.

Zählt man nun aber den Sterntag von der Culmination des Frühlingspunktes, so dass 0th Sternzeit zur Zeit der Culmination, 1th, 2th, 3th . . . Sternzeit ist, wenn der Stundenwinkel des Frühlingspunktes 1th, 2th, 3th . . . beträgt, so ist der Einfluss der Präcession nicht zu übersehen. Das Zusammenfallen der Culmination der Sonne mit der Culmination des Frühlingspunktes findet (allerdings alljährlich nur für einen bestimmten Ort der Erde, s. den Artikel 20rte) in Zwischenzeiten statt, welche gleich sind dem tropischen Jahr; daher sind

365:242:201 Sonnentage = 366:242:201 Sterntage (1)

Die Bewegung der Sonne zwischen den Sternen ist aber nicht gleichmässig; sie ist schneller im Winter, langsamer im Sommer; sie findet ausserdem in der Ekliptik und nicht im Aequator statt, und eine selbst gleichförmige Bewegung in der Ekliptik würde sich nicht als gleichmässig auf den Aequator projiciren; die Intervalle zwischen zwei aufeinander folgenden gleichartigen Culminationen von einander gleichen Intervallen in der Ekliptik werden demnach nicht gleich lang sein, und umso länger, je grösser die Deklination des betrachteten Punktes ist. Um auf ein gleichförmiges Maass zu kommen, muss daher an die Stelle der ungleichförmigen Bewegung der Sonne eine gleichförmige substituirt werden,

so dass der Zeitraum zwischen zwei Durchgängen der Sonne durch den Frühlingspunkt dieselbe ist (366-242 201 Sterntage), dieses Intervall aber durch eine der wirklichen Anzahl der Sonnentage (365-242 201) gleiche Anzahl von eine ander völlig gleich langen Tagen dargestellt wird. Man nimmt also eine in gleichmässiger Bewegung im Aequator sich bewegende fingirte, an Stelle der wahren Sonne zu setzende an und nennt sie die mittlere Sonne, und die Zeit zwischen zwei auseinandersolgenden gleichartigen Culminationen der wahren Sonne einen wahren Sonnentag, die Zeit zwischen zwei auseinandersolgenden gleichartigen Culminationen der mittleren Sonne den mittleren Sonnentag. Die Culminationszeit der wahren, bezw. mittlerer Sonne wird als wahrer, bezw. mittlerer Mittag mit 04 wahre, bezw. mittlere Zeit bezeichnet, und die in Stunden (den 24 ten Theil des Intervalles zwischen zwei auseinandersolgenden wahren, bezw. mittleren Mittagen), Minuten und Secunden ausgedrückte, seit der letzten oberen Culmination versossenen Zeit die wahre Sonnenzeit, bezw. mittlere Sonnenzeit genannt.

Der Unterschied zwischen der wahren und mittleren Sonnenzeit heisst die Zeitgleichung.

II. Bürgerliche Zeit, Astronomische Zeit; Ortszeit, Weltzeit, Zonenzeit. In der bürgerlichen Zeitrechnung zählt man den Tag in zwei Abschnitten von 12⁴ oder 0⁴ Mittag bis Mitternacht, und ebenso von Mitternacht bis Mittag. Der Anfang des Tages wird in die Mitternacht verlegt, so dasse bin Datum dem Zeitintervall von einer Mitternacht zur nächsten entspricht. Für astronomische Beobachtungen würde dies den Nachtheil haben, dass man um Mitternacht, um welche Zeit die meisten Beobachtungen fallen, das Datum wechseln müsste. Man ist daher übereingekommen, die Zählung mit dem Mittag zu beginnen, so dass der Datumwechsel auf diesen fällt, und zwar so, dass jedes Datum um einen halben Tag später beginnt. Ueberdies aber wird die Zeit fortlaufend von 0⁴ bis 24⁴ gezählt. Es ist demnach

 $0^k - 12^k$ astronomisch = $0^k - 12^k NM(p \cdot m)$ bürgerlich; Datum identisch, $12^k - 24^k$ astronomisch = $0^k - 12^k VM(a \cdot m)$ bürgerlich; astronomisches Datum um 1 kleiner als das bürgerliche Datum. z. B.

Febr. 8, $7^{h}25^{m}18$ astr. = Febr. 8, $7^{h}25^{m}18^{t}NM$ (Abends) bürgerlich. Febr. 8, $18^{h}14^{m}38$ astr. = Febr. 9, $6^{h}14^{m}38^{t}VM$ (Morgens) bürgerlich.

Die Culminationszeit der wahren oder mittleren Sonne, eines Sternes oder des Frühlingspunktes gilt natürlich nur für einen Beobachtungsort, und man erhält demnach den wahren oder mittleren Mittag oder 0^4 Sternzeit des Beobachtungsortes, d. h. Ortszeit. Die Ortszeiten verschiedener Orte sind von einander verschieden und zwar um den Längenunterschied, ausgedrückt im Zeitmaasse. Ist θ_e die Ortszeit eines östlich gelegenen Punktes, θ_w die Ortszeit des westlich gelegenen, λ der Längenunterschied, ausgedrückt im Zeitmasse (also $\frac{1}{15}$ des im Gradmaasse ausgedrückten), so ist

$$\lambda = \theta_o - \theta_w,$$
 $\theta_o = \theta_w + \lambda; \quad \theta_w = \theta_o - \lambda.$ (2)

Zu beachten ist, dass die Längenunterschiede für die Verwandlung von Sternzeiten in Sternzeit, bei Verwandlungen von mittleren Zeiten in mittlere Zeit durch dieselbe Zahl λ ausgedrückt erscheinen, da sich der Längenunterschied von 24^k Sternzeit auf 360° vertheilt, ebenso aber auch der Längenunterschied von 24^k mittlerer Zeit.

Diese Beziehungen werden wichtig, wenn man aus den Astronomischen Ephemeriden (Berliner Astronomisches Jahrbuch, Greenwicher oder Washingtoner Nautical-Almanac, Pariser Connaissance des temps) gewisse Grössen (Sternörter, Monddistanzen etc.) für bestimmte Zeiten irgend eines Beobachtungsortes zu entnehmen hat. Die aufgenommenen, mit der Zeit veränderlichen Grössen sind meist tabulirt für den mittleren Mittag (mitunter auch für den wahren Mittag) der Ephemeride. Um nun die gesuchte Grösse für eine gewisse Zeit θ eines Beobachtungsortes zu finden, dessen Längenunterschied \(\lambda \) gegen den Meridian der Ephemeride (Berlin, Greenwich, Paris, Washington) ist, hat man die Zeit 0 durch Anbringung des Längenunterschiedes in Ortszeit der Ephemeride (Berliner, Greenwicher Zeit etc.) zu verwandeln. Wird der Längenunterschied à positiv gezählt, wenn der Beobachtungsort westlich von dem Meridian der Ephemeride liegt, so wird der Ortszeit θ des Beobachtungsortes die Zeit der Ephemeride $\theta + \lambda$ entsprechen, und die für diese Zeit der Ephemeride entnommene Zahl ist für die Ortszeit 8 des Beobachtungsortes gültig. Beispiele werden sich im Folgenden ergeben.

Diese Rechnungen würden wesentlich vereinfacht werden, wenn auf die Ortszeit verzichtet würde, und jede Uhr durch Anbringung des Längenunterschiedes sofort auf den Meridian einer Ephemeride reducirt würde. Die z. B. nach Greenwicher Zeit gestellten Uhren gäben dann an jedem Ort der Erde die Zeit des Normalmeridians, die sogen. Weltzeit. Mancherlei Uebelstände, welche bei einer solchen Unification unvermeidlich sind, namentlich der Umstand, dass 0 Uhr Weltzeit auf die verschiedensten Tageszeiten fallen könnte, brachten es mit sich, an Stelle der Weltzeit eine andere zu substituiren, welche von der Weltzeit um eine ganze Anzahl von Stunden differirt, daher leicht auf dieselbe reducirt werden kann, sich dabei aber der Ortszeit möglichst nahe anschliesst, die sogen. Zonenzeit. Für alle Orte, die etwa eine halbe Stunde Längendifferenz beiderseits vom Normalmeridian (Greenwich) haben, gilt die Zeit des Normalmeridians (Westeuropäische Zeit); für alle zwischen einer halben Stunde und 11 Stunden Längendifferenz liegenden gilt die um 1h vermehrte Zeit des Normalmeridians (Mitteleuropäische Zeit); für diejenigen Orte, die nahe zwischen 14 und 24 Stunden Längendifferenz gegen Greenwich haben, gilt die um 2 Stunden vermehrte Greenwicher Zeit (Osteuropäische Zeit). (Daraus folgt, dass WEZ gleich der Zeit des Normalmeridians (Greenwich) ist, MEZ auf die Zeit der Ephemeride durch Anbringung der Reduction - 14 verwandelt wird; OEZ endlich durch Anbringung der Correction - 2h. Unbequemlichkeiten gegen die bürgerliche Zählweise können dabei nicht entstehen, da die Unterschiede zwischen Ortszeit und Zonenzeit höchstens eine halbe Stunde erreichen können.

Schreitet man nun nach Osten weiter, so wird die Weltzeit dieselbe bleiben, aber die Zonenzeit fortschreitend um 1^k, 2^k, die Ortszeit sucessive, grösser werden. Nach Umschreiten der ganzen Erde würde demnach die Ortszeit in dem Mormalmeridian nächst gelegenen Orten um nahe 24^k grösser, d. h. das Datum um 1 grösser sein. Umgekehrt würde beim Fortschreiten nach Westen in derselben Weise die Zonenzeit um 1^k, 2^k kleiner werden, und demnach schliesslich die dem Normalmeridian nächstgelegenen östlichen Punkte ein um 1 kleineres Datum haben. Schreitet man nach beiden Seiten fort, so wird man hierbei zu Orten gelangen, bei denen das Datum zu beiden Seiten, je nach der Richtung in welcher man sich denselben nähert, oder ursprünglich genähert hat, eine Differenz von 1^d zeigen. Die Entdeckung der Inselwelt Polynesiens erfolgte meist gegen Westen hin (auf dem Wege über Amerika), während die an der Ostküste

Asiens gelegenen Inseln, der australische Continent mit den nächstgelegenen Inseln, also Borneo, Celebes, Neu-Guinea, Neu-Caledonien, Neu-Seeland auf dem Wege um die Südspitze von Afrika erreicht wurde. Die genannten Inseln hatten daher gegen die nächstgelegenen Philippinnen und allen von diesen östlich gelegenen ein um 1 verschiedenes Datum. Seit 31. December 1844¹) wurde aber die Datumgrenze dahin rectificirt, dass sie nunmehr fast genau 180° von Greenwich verläuft; nur zwischen Asien und Amerika, an der Behringsstrasse biegt sie etwas nach Osten ab, um nicht innerhalb Asiens zu gehen, und ebenso geht sie östlich an den Fidschi-Inseln vorüber, die sie daher den westlichen Inselgruppen zugesellt.

III. Zeitgleichung. Der Unterschied zwischen wahrer und mittlerer Sonnenzeit rührt von der ungleichförmigen Bewegung der Sonne einerseits und von der Neigung der Sonnenbahn gegen den Aequator andererseits her. Um die ungleichförmige Bewegung der Sonne in der Ekliptik auf eine gleichförmige im Aequator zu reduciren, hat man zu beachten, dass die wahre und die mittlere Sonne gleichzeitig durch den Frühlingspunkt gehen, und wegen des gleichförmigen Fortschreitens der mittleren Sonne im Aequator wird, in der Zeit t, ausgedrückt in mittleren Sonnentagen, der Abstand der mittleren Sonne im Aequator vom Frühlingspunkt, d. i. die Rectascension der mittleren Sonne gleich Mt sein, wenn M der Weg ist, um welchen die Sonne sich in einem Sonnentage von dem instantanen Frühlingspunkt entfernt?). M ist daher die mittlere tropische Bewegung der Sonne in einem Sonnentage, daher Mt die mittlere Länge der Sonne, woraus folgt, dass

Die Rectascension der mittleren Sonne = mittlerer Länge der (wahren) Sonne. Der wirkliche Abstand der wahren Sonne nach dieser Zeit t vom Frühlingspunkt ist aber ihre wahre Länge = L, und um den Unterschied zwischen der wahren Zeit und der mittleren Zeit zu finden, hat man die Zwischenzeit zwischen der Culmination der wahren und der mittleren Sonne zu suchen.

Die Zwischenzeit zwischen dem Momente der Culmination der mittleren Sonne und der Culmination des Frühlingspunktes ist durch ihre Rectascension

$$\theta_m = Mt \tag{3}$$

gegeben³). Ist M dabei, wie angenommen, die mittlere tropische Bewegung in einem mittleren Sonnentage, so ist θ_m bereits ein in mittlerer Zeit ausgedrücktes Intervall.

Um die Zeit der Culmination der wahren Sonne zu finden, hat man ihre Rectascension α zu dieser Zeit zu suchen. Man findet diese aus der wahren Länge L nach der Formel

 $tang \ a = tang \ L \ cos \ \varepsilon, \tag{3a}$

¹⁾ cfr. JEROLIM Freiherr v. BENKO, Das Datum auf den Philippinene, Wien 1890.

²) Bezüglich des Einflusses der Präcession, namentlich aber der Nutation vergl. das aut pag. 140 Gesagte. Hier mag noch erwähnt werden, dass man früher von einer zersten mittleren sonner, sprach, welche sich gleichmässig im der Ekliptik bewegte, und einer zweiten mittleren Sonner die sich gleichmässig im Aequator bewegt, so dass die Rectascension der zweiten mittleren Sonne gleich wäre der Länge der ersten mittleren Sonne. Man findet auch heute noch häufig diese Ausdrucksweise, welche nach obigem jedoch völlig unnöthig ist, und den Gegenstand durchaus nicht klarer macht.

³⁾ Eigentlich θ_m = M₀ + Mt, wenn M₀ die mittlere Länge für die Epoche ist, welche aber hier, da t von dem Durchgange durch den Frühlingspunkt an gerechnet wird, gleich Null ist.

wenn ϵ die Schiefe der Ekliptik ist. Die Zeitgleichung ist dann, wenn α und θ_m im Zeitmaasse (Stunden, Zeitminuten und Zeitsecunden) ausgedrückt werden:

$$Z = \alpha - \theta_m, \tag{4}$$

der Zeitunterschied, um welchen die wahre Sonne später culminirt als die mittlere Sonne, (welcher Betrag auch negativ werden kann), ausgedrückt in mittlerer Zeit, wenn auch α mit der mittleren Bewegung der Sonne in einem mittleren Sonnentage gerechnet wird. Z ist nach (4) der westliche Stundenwinkel der mittleren Sonne zur Zeit des Meridianganges der wahren Sonne, d. h. die Zeitgleichung ist die mittlere Zeit im wahren Mittage.

Nach LE VERRIERS Sonnentafeln ist

$$L = Mt + 6918'' \cdot 37 \sin(Mt - \pi) + 72'' \cdot 52 \sin 2(Mt - \pi) + 1'' \cdot 05 \sin 3(Mt - \pi) + \dots + \text{Störungsglieder.}$$

wobei π die Länge des Perihels der Erde bedeutet. Sucht man mit diesem Werthe von L nach (3a) den Ausdruck ißt α , so ergiebt sich eine Function von $sin\ M_1$, $cos\ M_1$, $sin\ 2\ M_1$, $cos\ 2\ M_1$..., deren Coëfficienten von π abhängig sind. Als Function von M_1 kann daher die Zeitgleichung mit dem Argumente t, d. i. von Tag zu Tag tabulirt werden. Sie ist aber selbstverständlich an demselben Tage verschiedener Jahre verschieden, und zwar 1) weil die mittlere Länge der Sonne für den Jahresanfang nicht für alle Jahre dieselbe ist, und 2) weil der Werth von π veränderlich ist. Genähert wird die Zeitgleichung für die einzelnen Daten aus der folgenden Tabelle entnommen werden können (der letzte des Monats unter der Rubrik 31. des Datums eingesetzt).

Datum	1	11	21	81
Januar	+ 3" 33"	+ 7"57"	+11"24"	+13"37"
Februar	+1345	+14 27	+13 53	+1250
März	+12 39	+10 19	+729	+ 4 26
April	+47	+ 1 13	-112	- 2 47
Mai	- 2 55	- 3 46	- 3 39	- 2 39
Juni	- 2 30	- 0 46	+ 1 22	+ 3 15
Juli	+ 3 27	+ 5 8	+ 6 8	+611
August	+68	+ 5 6	+ 3 8	+023
September	+ 0 4	— 3 15	- 6 45	- 9 50
Oktober	-10 10	-13 6	-15 13	-16 17
November	-16 20	-15 56	-14 9	-11 25
Dezember	-11 3	- 6 51	- 2 1	+ 2 55.

Die Zeitgleichung wird viermal im Jahre gleich Null, nämlich gegenwärtig am 15. April, 14. Juni, 1. September und 25. Dezember; sie erreicht vier Maxima (2 positive, 2 negative) und zwar gegenwärtig

die positiven Maxima: am 12. Februar + 14^m 27^s und am 26. Juli + 6^m 17^s, die negativen Maxima: am 15. Mai - 3^m 50^s und am 3. November - 16^m 22^s.

Die Folge der Verschiedenheit der wahren und mittleren Zeit ist zunächst eine scheinbar ungleiche Länge des Vor- und Nachmittags, vorzugsweise zu gewissen Jahreszeiten.

Als Maass der Zeit kann nur die mittlere Zeit angesehen werden, da der Voraussetzung nach alle mittleren Sonnentage einander gleich sind. Der wahre Sonnentag wird nun zu Zeiten länger, zu Zeiten kürzer sein als dieser. Er wird mit längsten, bezw. am kürzesten, wenn die Zeitgleichung sich am raschesten ändert; die Aenderung der Zeitgleichung hat ein positives Maximum am

23. December und zwar gleich 30°; daher die Dauer des wahren Tages 24° 0° 30°. Ein negatives Maximum fällt Mitte September; der Betrag der Aenderung beträgt hier — 21°, daher die Dauer des wahren Tages nur 23° 59° 39°.

In der Praxis fällt dieser Unterschied nicht auf; merklich hingegen wird der zweite Einfluss. Da nämlich am 12. Februar die Zeitgleichung + 14^m 27^a beträgt, so wird die wahre Zeit im mittleren Mittage gleich 0^b – Z = 11^b 45½^m. Die Culmination der wahren Sonne fällt daher schon in den Nachmittag, und diese (d. h. die Zeit vom mittleren Mittage bis zum Sonnenuntergange) ist um den doppelten Betrag der Zeitgleichung, d. i. um nahe eine halbe Stunde länger als der Vormittag. Am 3. November hingegen fällt die Culmination der wahren Sonne um 16^m 22^a vor dem mittleren Mittage; der Vormittag ist in Folge dessen um mehr als eine halbe Stunde länger als der Nachmittag. Beide Perioden fallen in die Zeiten der kurzen Tagebögen der Sonne, so dass hierdurch der ohnedies kurze Nachmittag des November und December noch kürzer und zwar ersichtlich kürzer erscheint als der Vormittag, wie eben auch die scheinbar späten Sonnenaufgänge des Monates Februar und die gegentüber den kurzen Vormittagen auffallend längeren Nachmittage hierin ihren Grund haben.

IV. Zeitverwandlungen.

a) Mittlere und wahre Zeit. Da Z denjenigen Zeitunterschied bedeutet, um welchen die wahre Sonne später culminirt, als die mittlere Sonne, so wird auch die wahre Sonne jeden Stundenwinkel um diesen Zeitunterschied später erreichen als die mittlere Sonne; daher wird in einem gewissen absoluten Zeitundenwinkel der wahren Sonne um diesen Betrag kleiner sein als der Stundenwinkel der mittleren Sonne, d. h. es ist, wenn man mit W die wahre Zeit, mit M die mittlere Zeit bezeichnet:

M-W=Z

oder

$$M = W + Z; \quad W = M - Z. \tag{5}$$

Diese Formeln dienen zur Verwandlung der mittleren und wahren Zeit ineinander.

Die Zeitgleichung ist natürlich aus den Ephemeriden zu entnehmen, und zwar aus den benachbarten Ephemeridenwerthen zu interpoliren, wobei, wenn die äusserste Genauigkeit erreicht werden soll, auch auf die zweiten Differenzen Rücksicht genommen werden muss.

Beispiele.

 1) 1901 März 6, 5^k 32^m 26^s·46 M. Z. Wien (k. k. militär-geographisches Institut, λ = - 11^m 50^s gegen Berlin) ist in wahre Zeit zu verwandeln. Man erhält mit dem angegebenen Längenunterschied:

5^h 32^m 26^r 46 M.Z. Wien = 5^h 20^m 36^r M.Z. Berlin = März 6·2226 M. Z. Berlin. Nach dem Berliner astronom. Jahrbuch ist für den mittleren Mittag:

1901 März 6:
$$Z = +11^m 34^n 42$$
 Δ' Δ'' Δ'' Δ'' 7: $+11 20 \cdot 18 -14 \cdot 24 -0^n 40$. 8: $+11 5 \cdot 54 -14 \cdot 64$ Da $n = +0.2226$, $\frac{n(n-1)}{2} = -0.0865$ ist, so folgt $n\Delta' = -3^{1/170}$, $\frac{n(n-1)}{2}\Delta'' = +0^{1/10}$ demnach die interpolitie Zeitgleichung für die ge-

fundene Zeit der Ephemeride, d. i. der gegebenen M. Z. Wien:

Margad by Google

$$Z = + 11^{m} 31^{s} 28$$

Wien, mittl. Zeit: $M = 5^{h} 32^{m} 26^{s} 46$
Wien, wahr. Zeit: $W = 5^{h} 20^{m} 55^{s} 18$

2) 1901 Februar 19, 3^h 7^m $36^t \cdot 18$ W. Z. Wien ($\lambda = -11^m$ 50^t) in mittlere Zeit zu verwandeln.

Das Berliner astronomische Jahrbuch giebt die Zeitgleichung für mittlere Zeit; um zu interpoliren, muss daher diese bekannt sein; man erhält leicht einen genülgend genäherten Werth durch Anbringung eines ersten genäherten Werthes der Zeitgleichung; sollte der resultirende Werth vom Ausgangswerth sehr verschieden sein, so muss die Rechnung wiederholt werden. In diesem Falle ist:

Wahre Zeit Wien 34
$$7m36t \cdot 18$$
Genäherte Zeitgleichung $+ 14 - 5$
Genäherte M. Z. Wien $34 \cdot 21m41^2$
 $\lambda = -11 - 50$
Genäherte M. Z. Berlin $34 \cdot 9m51^2 = \text{Februar } 19.1318.$

Nach dem Berliner Jahrbuche ist für den mittleren Mittag:

Februar 19:
$$Z = +14^{m} \cdot 5^{n} \cdot 82 \quad \Delta'$$

20: $+14 \quad 0 \cdot 00 \quad -5^{n} \cdot 82 \quad \Delta''$
21: $+13 \quad 53 \cdot 51 \quad -6 \cdot 49 \quad 0^{n} \cdot 67$

demnach interpolirt: Z = + 14m 5:09

und damit die mittlere Zeit 3h 21m 41s-27.

b) Sternzeit und wahre Zeit. Da die wahre Zeit gleich ist dem Stundenwinkel der wahren Sonne, so ist, wenn α_{\odot} die Rectascensionen der Sonne zur Sternzeit θ bedeutet.

$$\theta = \alpha_{\odot} + W; \quad W = \theta - \alpha_{\odot}.$$
 (6)

Für den Fall, als die Ephemeriden die Rectascensionen der Sonne im wahren Mittage geben, wird daher die Rechnung von θ sehr einfach; ist θ gegeben, so ist allerdings auch hier wieder eine genäherte Kenntniss von W nöthig; weil dann α_{\odot} mit dem Argumente W erhalten werden kann; diese Verwandlungen kommen aber in der Praxis kaum vor, und sollte dies der Fall sein, so wird man besser thun, die Verwandlung mit Hilfe der mittleren Zeit vorzunehmen; nothwendig wäre dies auch in dem Falle, der jetzt fast ausschliesslich vorkommt, dass die Rectascensionen der Sonne für den mittleren Mittag gegeben sind.

c) Sternzeit und mittlere Zeit. Da 365-242201 mittlere Sonnentage = 366-242201 Sterntage sind, so ist

1 mittl. Sonnentag =
$$\frac{366\cdot242201}{365\cdot242201}$$
 Sterntage = 1 Sterntag + 3^m 56°555 Sternzeit
1^k mittlere Zeit = (1^k + 9°85648) Sternzeit

1 Sterntag =
$$\frac{365 \cdot 242201}{366 \cdot 242201}$$
 mittl. Sonnentage = 1 mittl. Sonnentag = 3 m 55 · 909 mittl. Z.
1 Sternzeit = (1 - 9 · 82956) mittlere Zeit.

Um diese Rechnung zu vereinfachen, hat man Hilfstafeln, welche direkt aus jedem in mittlerer Zeit gegebenen Intervall das zugehörige Sternzeitintervall geben, und umgekehrt; eine solche hier zu geben ist unnöthig, da sie sich in allen Ephemeridensammlungen, deren man zu diesem Zwecke hier ohnedies bedarf, findet. Um nämlich die Zeitangaben seibst (nicht bloss die Zeitintervalle) zu verwandeln, ist es noch nöthig die Sternzeit im mittleren Mittage zu kennen. Kennt man dieselbe für irgend einen mittleren Mittag, so ist dieselbe natürlich für jeden

folgenden durch Addition des Betrages von 3^{rm} 56^r 555 zu erhalten. Da nach Hansen die mittlere Rectascension der Sonne für 1850 Januar 0, 0th mittlere Pariser Zeit 18th 39^{rm} 9^r 261 war, so ist damit die Sternzeit im mittleren Mittage für alle Folgezeit gegeben. Aus der Aenderung in einem Tage oder noch besser der mittleren tropischen Bewegung in einem Jahre erhält man die Aenderung der Sternzeit im mittleren Mittage

für 365 Tage gleich
$$23^k$$
 59^m $2^{s\cdot706} = -57^{s\cdot}294$ für 366 Tage gleich 24^k $2^{m\cdot}59^{s\cdot}261 = +2^m$ $59^{s\cdot}261$

und für einen Zeitraum von 4 Jahren, in welchem ein Schaltjahr ist gleich + 7º 379.

Diese Rechnung wird dadurch umgangen, dass die Ephemeridensammlungen die Sternzeit im mittleren Mittage für jeden Tag des Jahres geben. Der aufgenommene Werth θ_{00} ist jedoch die Sternzeit im mittleren Mittage für den Meridian der Ephemeride. Für irgend einen anderen Meridian ist dieselbe natürlich eine andere. Da sie sich bei der Aenderung der Länge um 24^{k} (einen Tag) um den vollen Betrag von 3^{m} 56^{t} : 55^{t} ändert, so ändert sie sich für jede

Stunde Längenänderung um $\frac{236\cdot 555}{24} = 9\cdot 856$ und zwar wird für westlich gelegene

Punkte die Sternzeit im mittleren Mittage grösser, weil die Sonne später culminirt. Es wird daher die Sternzeit im mittleren Mittage θ_0 für einen Ort, dessen Längenunterschied gegen den Meridian der Ephemeride λ ist, ausgedrückt in Stunden und positiv, wenn der Ort westlich liegt, gleich

$$\theta_0 = \theta_{00} + 9^{1.856} \lambda.$$

Das Berliner Astronom. Jahrbuch giebt diese Werthe in der Colonne Correct. der Sternzeit« in dem Verzeichniss der Coordinaten der Sternwarten«.

Zur Verwandlung von Sternzeit θ in mittlere Zeit ist zunächst $\theta-\theta_0$ das Sternzeitintervall seit dem vorhergehenden Mittage; dieses Intervall ist durch die Tafeln oder durch Subtraction von $9^{a}-82956$ für jede Stunde in ein mittleres Zeitintervall zu verwandeln, wodurch man sofort das in mittlerer Zeit ausgedrückte Intervall seit dem vorhergehenden Mittage, also die mittlere Zeit erhält. Es ist daher

$$M = (\theta - \theta_0) - (\theta - \theta_0)_{A} 9^{1.82956}. \tag{7a}$$

Umgekehrt, hat man mittlere Zeit M in Sternzeit zu verwandeln, so ergiebt sich zunächst für das seit dem vorhergehenden Mittage verflossene mittlere Zeitintervall M das zugehörige Sternzeit-Intervall gleich

$$M + M_h \cdot 9^{s} \cdot 85648$$
;

addirt man hierzu die Sternzeit θ_0 im vorhergehenden Mittage, so erhält man die gesuchte Sternzeit in dem gegebenen Moment, gleich

$$\theta = M + M_h \cdot 9^{1.85648} + \theta_0.$$
 (7b)

Beispiele.

1) Für Wien (Univ.-Sternwarte, $\lambda = -0^k 11^m 46^p 58$) ist die mittlere Zeit Mätz 19, 17^k 4^m 38^p 45 in Sternzeit zu verwandeln.

Für $\lambda = -11^m 46^n 58$ findet man (durch Rechnung oder aus dem Berliner Jahrbuche) die Correction der Sternzeit im mittleren Mittage $-1^n 93$.

Die angegebene mittlere Zeit ist astronomisch; (bürgerlich gleich März 20, 5* 4** 38: 45 Morgens) das Intervall seit dem vorhergehenden Mittage giebt, in ein Sternzeitintervall verwandelt, Mittlere Zeit. Marz 19: 17^k 4^m 38^c 45 Reduct. auf Sternzeit + 2 48:32

Sternzeit im mittleren Wiener 23 45 10 03

Sternzeit im mittleren Berl. Mittage März 19:

Sternzeit im mittleren Berl. Mittage März 19:

Berl. Mittage März 19:

Reduction auf Wien — 1:93

Sternzeit Wien 164 52m 36s 80.

 Sternzeit. Januar 27: 8^k 14^m 27. 18 Wien, Univ. Sternwarte in mittlere Zeit zu verwandeln.

Sternzeit. Januar 27: 8* 14m 27: 18

Sternzeit im mittleren Wiener 20 24 5 79 Sternzeit im mittleren 20* 24**7**72 Berl. Mittage Januar 27:

Sternzeitintervall

Reduction auf mittlere Zeit

11 50 21 39

- 1 56 37

M. Z. Wien, Univ. Sternwarte 11h 48m 25:02.

V. Zeitbestimmung. Von der durch die tägliche Umdrehung der Erde bestimmten Ortszeit (Sternzeit \theta, mittlere Zeit \(M \) ist die durch die Uhren angegebene Uhrzeit \(\nu\) verschieden. Man nennt den Betrag \(\nu\), welchen man zur Uhrzeit \(\nu\) hinzustigen muss, um die betressende, richtige Ortszeit zu erhalten, die Uhrcorrection oder den Stand der Uhr (gegen Sternzeit oder gegen mittlere Zeit).

Ist x der Stand der Uhr gegen $\{\begin{array}{l} \text{Sternzeit} \\ \text{mittl. Zeit} \ \}$ so ist $\theta = u + x$ die $\{\begin{array}{l} \text{Sternzeit} \\ \text{mittl. Zeit} \ \}$ in diesem Momente.

Ist x positiv, so ist die Uhr gegen die Ortszeit zurück; ist x negativ, so ist die Uhr der Ortszeit voran.

Der Stand der Uhr wird aber nicht constant bleiben, sondern sich von Tag zu Tag ändern. Ist x der Stand der Uhr an einem gegebenen Tage, $x + \Delta x$ am nächstfolgenden Tage um dieselbe Zeit, so nennt man Δx den Gang der Uhr in 24. Um denselben aus den Beobachtungen zu verschiedenen Zeiten abzuleiten, sei x der Stand der Uhr zur Uhrzeit u an einem gegebenen Tage, x' der Stand der Uhr zur Uhrzeit u' an einem um d Tage späteren Datum, dann ist

 $\Delta x = \frac{x' - x}{d + u' - u}$

der Gang der Uhr in der Zwischenzeit. Der Gang der Uhr ist positiv, wenn die Uhr zurückbleibt, er ist negativ, wenn die Uhr voraneilt.

Man berechnet den Gang stets für 24th Uhrzeit, da man den Uhrstand doch stets für eine gegebene Uhrzeit zu interpoliren hat.

Man erhält hieraus einen mittleren Gang der Uhr in der Zwischenzeit; die Erfahrung hat aber gezeigt, dass der Gang der Uhr durch äussere, meteorologische Einflüsse (Temperatur, Luftdruck, Feuchtigkeit) Veränderungen unterworfen ist, und man hätte demnach den Gang in möglichst kurzen Intervallen zu bestimmen. Dieses scheitert aber an dem Umstande, dass für zu kurze Intervalle der Nenner zu klein wird, daher Fehler in der Bestimmung des Uhrstandes einen zu merklichen Einfluss auf den Uhrgang haben. Bei einer längeren Reihe von Beobachtungen (z. B. am Passageninstrumente oder Meridiankreise) gelingt es häufig, den Uhrgang selbst mit zu bestimmen. In diesem Falle erhält man dann den für diese Beobachtungen geltenden Uhrgang.

Die Bestimmung der Zeit, Zeitbestimmung, erfordert daher die Aufsuchung der wahren oder mittleren Zeit oder der Sternzeit zu einer gegebenen Uhrzeit, d. i. des Stundenwinkels eines Gestirnes, dessen Rectascension bekannt ist. Man kann hierzu Beobachtungen im Meridian (Stundenwinkel gleich Null) anstellen, oder ausserhalb des Meridians, in welchem Falle der Stundenwinkel aus Durchgängen im Azimuthe oder aus Zenithdistanzmessungen berechnet werden kann. Zu bemerken ist noch, dass man den Stundenwinkel des wahren Frühlingspunktes sucht, in welchem Falle natürlich für die Rectascension der Gestirne deren wahre, mit Präcession und Nutation behasteten Orte zu verwenden sind. Allein die Nutation bewirkt, dass der Frühlingspunkt keine streng gleichförmige Bewegung hat und demzufolge das Intervall, an einer wirklich gleichförmig verlaufenden Bewegung gemessen, zwischen zwei Durchgängen des Frühlingspunktes nicht genau constant ist, sondern kleinen Schwankungen unterliegt. Der Gang der Uhren ist ein allerdings noch weniger gleichmässiger; vorausgesetzt aber, dass man völlig gleichmässig gehende Uhren herstellen könnte, so würden diese einen ungleichmässigen Gang zeigen, der aber nicht dem Gang der Uhr, sondern der Bewegung des Frühlingspunktes zufällt. Um ein Maass für den Stand und Gang von vollkommen gleichmässig gehenden Uhren zu erhalten. wäre es daher besser, die mittleren Rectascensionen der Sterne für das gegebene Datum zur Ableitung des Uhrstandes aus dem Stundenwinkel zu verwenden. Praktisch allerdings ist dieser Unterschied völlig belanglos, und die Verwendung der scheinbaren Sternörter erweist sich aus dem Grunde praktischer, weil man nebst den mittleren Sternörtern für den Jahresanfang die scheinbaren (nicht aber die mittleren) Oerter, namentlich aber die scheinbaren Deklinationen für die verschiedenen Daten braucht, da z. B. gemessene Zenithdistanzen nur mit diesen reducirt werden können.

Im folgenden sollen nun die wichtigsten Methoden der Zeitbestimmung kurz besprochen werden.

A. Zeitbestimmung aus den beobachteten Meridiandurchgängen der Sterne. Die vorzüglichste und in der astronomischen Praxis am häufigsten angewendete Methode der Zeitbestimmung ist diejenige durch die Beobachtung der Meridiandurchgänge der Gestirne. Da die Sternzeit der Beobachtung eines Gestirnes im Meridian gleich seiner Rectascension ist, so erhält man

$$u + x = \alpha$$
; $x = \alpha - u$,

wenn x der Stand der Uhr gegen Sternzeit ist; dies gilt, wenn man es mit fehlerfrei aufgestellten Instrumenten zu thun hat. Die hierzu dienenden Instrumente sind das Passageninstrument im Meridian und der Meridiankreis. Da nicht nur die Beschreibung dieser Instrumente, sondern auch die Methoden der Reduction der Zeitbestimmungen (Berücksichtigung der Instrumentalfehler) in diesen beiden Artikeln in aller Ausführlichkeit besprochen wurden, so wird es genügen, an dieser Stelle auf das dort Gesagte hinzuweisen.

B. Bestimmung der Zeit aus einer beobachteten Zenithdistanz. Die Beobachtung der Zenithdistanz z eines Sternes, dessen Rectascension α und Deklination δ sind, an einem Orte, dessen Polhöhe φ ist, ergiebt den Stundenwinkel des Sternes aus der Formel

$$cost = \frac{cosz - sin\varphi zin\delta}{cos\varphi cos\delta} \tag{1}$$

und daraus die Sternzeit 8 nach

$$\theta = t + a$$
.

Demnach ist, wenn u die Uhrzeit einer nach Sternzeit gehenden Uhr, also $u+x=\theta$ ist, der Uhrstand

 $x = t + \alpha - u. \tag{1 a}$

Ist bei einer nach mittlerer Zeit gehenden Uhr die Uhrzeit u_m , so hat man die Sternzeit θ in mittlere Zeit M zu verwandeln und erhält dann, da $u_m + x$ = M sein muss

$$x = M - u_m$$

Aus der Formel (1) leitet man auf einfache Weise (durch Bildung der Ausdrücke $1 - \cos t$ und $1 + \cos t$ und Division derselben) die für den logarithmischen Gebrauch bequemere Formel ab:

$$tang^{2} \frac{1}{2} t = \frac{sin (s - \varphi) sin (s - \delta)}{coss cos (s - z)}$$
(2)

wobei

$$s = \frac{1}{4} (\varphi + \delta + z)$$

ist. Diese Gleichung hat allerdings den Uebelstand, dass sie das Zeichen von / unbestimmt lässt; ein Zweisel kann jedoch nicht entstehen, da man jederzeit aus der Beobachtung selbst entnehmen wird, ob dieselbe auf der Ostseite oder Westseite des Meridians angestellt ist.

Es ist nicht gleichgültig, in welchem Punkte des Parallels der Stern beobachtet wird. Im Artikel >Polhöhenbestimmung« (III. Bd. 1. Hälfte, pag. 442) war die Formel abgeleitet:

$$dz = \cos a \, d\varphi - \cos q \, d\delta + \sin a \cos \varphi \, dt$$
,

wobei noch a das Azimuth und q den parallaktischen Winkel des Sternes bedeuten. Aus dieser Gleichung findet man, dass der Einfluss eines Fehlers in der Zenithdistanz auf die Polhöhe dq = see a ds am geringsten wird im Azimuthe a = 0, d. h. im Meridian. Für die Bestimmung der Zeit hat man den Einfluss von Fehlern der Beobachtung auf den Stundenwinkel zu suchen. Es wird aber aus derselben Formel gefunden:

$$dt = \frac{dz}{\sin a \cos \varphi} - \frac{d\varphi}{\tan g a \cos \varphi} + \frac{\cos q}{\sin a \cos \varphi} d\delta \tag{3}$$

Für eine gegebene Polhöhe wird daher ein Fehler der Zenithdistanzmessung und ebenso auch ein Fehler in der angenommenen Polhöhe von umso geringerem Einfluss auf die Zeitbestimmung, je grösser die Nenner sin a cos φ und tang a cos φ sind, was für $a=90^\circ$ eintritt. Für die Zeitbestimmung hat man daher die Zenithdistanzmessungen möglichst nahe dem ersten Vertical anzustellen. Je weiter weg vom ersten Vertical beobachtet wird, desto merklicher wird der Einfluss eines Fehlers der Zenithdistanz; in der Nähe des Meridians selbst würde die Messung der Zenithdistanzen für die Zeitbestimmung unbrauchbar.

Bezüglich der Wahl der Sterne ist zu beachten, dass Zenithnahe Sterne sehr kurze Zeit nach ihrem Meridiandurchgange in den ersten Vertical kommen, und daher für die Zeitbestimmung nicht verwendbar sind. Bei diesen Bestimmungen wird man sich daher in der Nähe des ersten Verticales, aber ziemlich weit weg vom Zenith halten müssen und daher Sterne von mässigen Deklinationen wählen¹).

$$dt = \frac{dz}{\cos \delta \sin \sigma}$$

¹⁾ Man findet gewöhnlich die folgende Ableitung. Der Coëfficient von dz in der Formel (3) lässt sich auch schreiben: $\sin a \cos \varphi = \cos \delta \sin q$, demnach ist mit alleiniger Berücksichtigung des von dz abhängigen Gliedes:

und man hätte, um den Einfluss von dz auf dt möglichst zu vermindern, $\cos \delta$ möglichst gross daher δ möglichst klein zu wählen. Diese Ableitung ist nicht richtig; denn da φ constant ist, so wird in Folge der Gleichung sin $a\cos \varphi = \cos \delta \sin q$ füt verschiedene Sterne im selben Azimuth a der Werth von q gleichzeitig mit δ zunehmen, und swar so, dass eben $\cos \delta \sin q$ im

Unter eine gewisse Grenze herabzugehen ist aber hier ebensalls nicht möglich; wählt man & nahe 0, also Aequatorsterne, so werden dieselben im ersten Vertical zu nahe dem Horizonte stehen, wo der Einfluss der Refraction die möglichen Fehler bedeutend erhöht. Sterne von 8 = 20°, 25°, 30°, 35° haben für die Polhöhe von Mitteleuropa (z. B. für $\varphi = 48^{\circ}$) die Zenithdistanzen im ersten Vertical etwa 62°, 55°, 48°, 40°, können also noch recht wohl verwendet werden. Beobachtet man in der Nähe des ersten Verticales vor dem Durchgange des Sternes durch denselben (Azimuth < 90°), so wird die Zenithdistanz noch grösser. und man kann selbst Sterne wählen, deren Deklination < 20° ist, ohne dass damit iedoch ein wesentlicher Vortheil verbunden ist. Man hat immer darauf zu sehen, dass die Zenithdistanzen möglichst sicher bestimmt werden können (Vermeidung der Beobachtungen in allzu grosser Nähe des Horizontes) und man sich nicht allzu weit vom ersten Vertical entfernt (Vermeidung von Sternen zu nahe dem Zenith). Im allgemeinen werden Zenithdistanzen zwischen 40 und 60° in den Azimuthen von etwa 70° bis 110° als die zur Bestimmung der Zeit günstigsten Beobachtungen zu betrachten sein.

Formel (3) zeigt übrigens, dass die Bestimmung der Zeit aus beobachteten Zenithdistanzen in hohen Breiten nicht zu empfehlen ist; wird nämlich φ sehr gross, so wird jeder Fehler der gemessenen Zenithdistanz sowohl als auch der Sterncoordinaten bedeutend vergrössert auf den Uhrstand übergehen. Am Pole selbst, d. h. für $\varphi=90^\circ$, wird diese Methode der Zeitbestimmung ja überhaupt unanwendbar; in der That bleiben am Pole die Sterne in ihrer scheinbaren täglichen Bewegung immer in derselben Höhe und in der Nähe des Poles sind die Grenzen, innerhalb deren die Zenithdistanz der Sterne sich bewegt, viel zu gering, um brauchbare Resultate zu geben.

Hat man zur Zeitbestimmung die Sonne verwendet, so erhält man durch die Rechnung den Stundenwinkel der Sonne, welcher mit Hilfe der Rectascension derselben die Sternzeit giebt, oder aber direkt als die wahre Zeit angesehen werden kann, welche mit Hilfe der Zeitgleichung auf mittlere Sonnenzeit zu reduciren ist. In diesem Falle muss aber der Stand der Uhr bereits genähert bekannt sein, damit man mit der corrigirten Uhrzeit (effektive Sternzeit oder mittlere Zeit) die Deklination der Sonne und deren Rectascension oder die Zeitgleichung aus den Ephemeriden entnehmen kann. Meist wird man einen hinreichend genäherten Stand durch Extrapolation erhalten; sollte das nicht der Fall sein, was natürlich nur bei See- oder Forschungsreisen der Fall sein könnte, so muss, wenn der schliesslich erhaltene Uhrstand von dem ursprünglich angenommenen zu weit abweicht, die Rechnung wiederholt werden.

Bei der Berechnung der Zeit hat man nicht die wahren, sondern die scheinbaren Sternörter zu verwenden; hierzu gehört, dass auch die Positionen wegen der täglichen Aberration zu corrigiren sind, welche in den Sternephemeriden wegen ihrer Abhängigkeit von der Polhöhe nicht berücksichtigt werden können. Correctionen $d\alpha$, $d\delta$ an den Positionen bringen aber wegen $dt = d\alpha$ in der Zenithdistanz die Correction

 $dz = -\cos q \, d\delta - \sin a \cos \phi \, d\alpha = -\cos q \, d\delta - \sin q \cos \delta \, d\alpha$ hervor, und da die Correction wegen der täglichen Aberration

selben Azimuthe für alle Sterne mit den verschiedensten Deklinationen constant bleibt. Die Veränderlichkeit beider Faktoren zu betrachten, ist aber unnöthig, wenn man wieder an Stelle des Ausdruckes cos b sin q den ihm gleichen sin a cos \(\varphi \) setzt, in welchen der eine Faktor cos \(\varphi \) für eine gegebene Polhöhe constant ist, und daher nur auf die Veränderlichkeit des Faktors sin a Rücksicht zu nehmen ist.

$$d\alpha = \mu \cos \varphi \cos t \sec \delta$$

$$d\delta = \mu \cos \varphi \sin t \sin \delta \qquad \mu = 0^{\prime\prime}.311$$

ist, so wird

$$dz = -\mu \cos \varphi [\cos t \sin q + \sin t \sin \delta \cos q]$$

d. i.

$$dz = -\mu \cos \varphi \cos z \sin a$$
.

Die daraus folgende Correction des Stundenwinkels ist nach (3)

$$dt = \frac{dz}{\sin a \cos \varphi} = -\mu \cos z;$$

demnach wegen $dt = d(\Delta u)$ die Correction des Uhrstandes wegen täglicher Aberration

$$d(\Delta u) = -0$$
"·311 cos z = -0 ··021 cos z.

In derselben Weise lässt sich auch eine etwaige Biegung des Fernrohres berücksichtigen. Sei dieselbe im Horizont b, so wird sie in der Zenithdistanz z: $dz = b \sin z$ und die daraus resultirende Correction des Uhrstandes, ausgedrückt in Zeitsecunden, wenn b in Bogensecunden gegeben ist.

$$d(\Delta u) = \frac{1}{15} \frac{b \sin s}{\sin a \cos \varphi}.$$

Beispiel: Als Beispiele will ich einige Beobachtungen mit einem kleinen Theodoliten anführen, welche Herr Hauptmann (jetzt Oberst) v. STERNECK im Jahre 1872 auf der Balkanhalbinsel ausführte.

1872 Juli 28 wurde der Stern α Cygni ($\alpha = 20^{4}$ 37 m 6 1 4, $\delta = 44^{\circ}$ 49 1 30 11) in Arnautlar ($\phi = 42^{\circ}$ 57 1 7 11) an einem nach Sternzeit gehenden Chronometer beobachtet.

Beobachtete Zenithdistanz 38° 45′ 13″ 9·04089

Correct. wegen Libelle — 1

Refraction
$$+44$$
 log $\cos(s-z) = 9\cdot95900$

Wahre Zenithdistanz $z = 38° 45′ 56″$ $\varphi = 42 57 7$ $\delta = 44 49 30$
 $s = 63° 16′ 16″$ log $\tan \frac{1}{2}t = 9\cdot42890$
 $(s-x) = 24 30 20$ $(s-\varphi) = 20 19 9$ $\theta = 16 57 58\cdot8$ log $\sin(s-\varphi) = 9\cdot54064$ log $\sin(s-\varphi) = 9\cdot54064$ log $\sin(s-\varphi) = 9\cdot54069$ $x = +34m21\cdot6$ log $\sin(s-\varphi) = 9\cdot04089$

C. Zeitbestimmung aus mehreren nach einander gemessenen Zenithdistanzen. Die Fehler, welche einer einzelnen Beobachtung anhaften, können
auch hier dadurch verkleinert werden, dass man eine Reihe von Zenithdistanzen
hinter einander beobachtet. Will man sich hierbei von der Uebereinstimme der Resultate überzeugen, so wird man jede Beobachtung für sich reduciren.
In diesem Falle wäre aber die Formel (1) praktischer als die Formel (2), weil
in derselben $sin \varphi sin \delta$ und $cos \varphi cos \delta$ für alle Beobachtungen constant ist. Doch
kann man diese Formel noch in eine andere Form bringen, welche diesen Vortheil mit der Formel (1) gemein hat, aber für die Rechnung etwas bequemer zu
sein scheint, zumal, wenn man mit Additions- und Subtractionslogarithmen
rechnet. Man erhält nämlich leicht aus (1):

$$\frac{1-\cos t}{1+\cos t} = \frac{\cos (\varphi - \delta) - \cos z}{\cos (\varphi + \delta) + \cos z},$$

welche für die praktische Berechnung am besten in der Form verwendet wird:

$$tang^{2} \frac{1}{2} t = \frac{\cos(\varphi - \delta)}{\cos z} - 1$$

$$\frac{\cos(\varphi + \delta)}{\cos(\varphi + \delta)} + 1$$
(4)

welche bei Verwendung von Additions- und Subtractionslogarithmen¹) fast so bequem wie (3) ist, dabei aber den Vortheil hat, dass nur $\cos z$ aufgeschlagen zu werden braucht, da $\cos (\varphi - \delta)$ und $\cos (\varphi + \delta)$ für alle Beobachtungen desselben Sternes constant sind, überdies aber hierbei der Stundenwinkel nicht durch den Cosinus, sondern durch die Tangente erhalten wird.

1872 Juli 19 wurde die Sonne zu Lailakioi ($\varphi = 43^{\circ}9'2''$) ebeníalls am Sternzeitchronometer beobachtet. Es ist für dieselbe $\alpha = 7^{h} 56^{m} 23^{r} \cdot 2$, $\delta = +20^{\circ}45'52''$. Es ist [die Reduction nach Formel (4) neu gerechnet]:

Kr.	Uhi	zeit		obacht. aithdist.	Li- belle		Vah nith z	re dist.	log cos z	$log \left[\frac{cos(\varphi - \delta)}{coss} \right]$	$log \left[\frac{cos(\varphi + \delta)}{cosz} \right]$	log Zähler
R	94 14	m 48s·8	319	17' 0'	- 7	31°	33'	7.	9.930524	0.035448	9.71264	8.92965
	15	18.8	31	21 13	-11	31	37	16	9.930202	0.035770	9.71296	8.93374
	15	42.0	31	$24 \ 32$	- 2	31	40	44	9.929932	0.036040	9.71823	8.93715
	16	4.4	31	2738	+ 6	31	43	58	9-929680	0.036292	9.71348	8.94030
	16	26.8	31	31 13	- 4	31	47	23	9.929412	0.036560	9.71375	8.94362
L	17	18.8	31	39 10	- 3	31	55	21	9.928787	0.037185	9.71437	8.95131
	17	49.2	31	43 55	+1	32	0	10	9.928407	0.037565	9.71475	8.95592
	18	16.4	31	47 45	+ 6	32	4	5	9.928098	0.037874	9.71506	8.95963
	18	41.6	31	51 47	- 4	32	7	57	9.927791	0.038181	9.71537	8.96329
	19	8.8	31	5527	+12	32	11	53	9.927479	0.038493	9.71568	8.96698
		Ref	ract	ion	+	31"				$\varphi - \delta =$	22° 23' 10'	•
		Para	alla	xe	_	4"				$\varphi + \delta =$	63 54 54	
		Hal	bme	esser	+ 15'	47"			log co	$rs(\varphi - \delta) =$	9.965972	_
					+ 16'	14"			log co	$s(\varphi + \delta) =$	9.643161	

log Nenner	log tang ² ½ t	log tang 1 t		4	t		1			θ		*	
0.18070	8.74895	9.37447	04	53m	1810	14	46m	361.0	94	42m	591.2	+28"	10s-4
0.18080	8.75294	9.37647	0	53	32.2	1	47	4.4	9	43	27.6	28	8.8
0.18090	8.75625	9.37812	0	53	44.0	1	47	28.0	9	43	51.2	28	9.2
0.18098	8.75932	9.37966	0	53	55.1	1	47	50.2	9	44	13.4	28	9.0
0.18107	8.76255	9.38127	0	54	6.6	1	48	13.2	9	44	36.4	28	9.6
0.18129	8.77002	9.38501	0	54	33.7	1	49	7:4	9	45	30.6	+28	11.8
0.18141	8.77451	9.38725	0	54	49.9	1	49	39.8	9	46	3.0	28	13.8
0.18152	8.77811	9.38905	0	55	3.1	1	50	6.2	9	46	29.4	28	13.0
0.18163	8.78166	9.39083	0	55	16.5	1	50	32.4	9	46	55.6	28	14.0
0.18173	8.78525	9.39262	0	55	29.3	1	50	58.6	9	47	21.8	28	13.0

¹⁾ Insbesondere die 6 stelligen Albrecht'schen Tafeln geben unmittelbar die hier benöthigten Werthe. Doch wird der Zähler (bei Benützung von ebensovielstelligen Logarithmen) etwas weniger genau.

Das Mittel ist bei
$$KR$$
: $x = +28^{m}$ 9:4
bei KL : $x = +28$ 13·1
Mittel $x = +28$ 11·3.

Der Unterschied in den Resultaten bei KR und KL rührt von einem kleinen Fehler in der Annahme der Zenithpunkte her.

Würden die Zenithdistanzen proportional den Stundenwinkeln wachsen, so wäre es das einfachste, das Mittel aus allen Zenithdistanzen: Z zu nehmen, ebenso das Mittel aus allen Uhrzeiten: U und die beiden so erhaltenen Mittel zur einmaligen Rechnung zu verwenden. Allein diese Proportionalität findet nicht statt, und es wird eine Correction an das Mittel der Zenithdistanzen anzubringen sein, so dass man eine Zenithdistanz erhält, welche zu dem Mittel der Uhrzeiten gehört, d. h. in Formel (2) verwendet, den zur Uhrzeit U gehörigen Stundenwinkel giebt; oder aber wenn man mit dem Mittel der Zenithdistanzen Z rechnet, hat man an die Uhrzeit eine Correction anzubringen, so dass die corrigirte Uhrzeit jene ist, zu welcher die Zenithdistanz Z des Gestirns gehört.

a) Reduction des Mittels der Zenithdistanzen auf das Mittel der Uhrzeiten. Seien $t_1, t_2, \ldots t_n$ die einzelnen Stundenwinkel, welche zu den Zenithdistanzen $s_1, s_2 \ldots s_n$ gehören, und T der dem Mittel der Beobachtungszeiten entsprechende Stundenwinkel. Da

$$u_1 + x = t_1 + \alpha$$
; $u_2 + x = t_2 + \alpha$... $u_n + x = t_n + \alpha$

und

$$Z = \frac{s_1 + s_2 + \dots + s_n}{n}; U = \frac{u_1 + u_2 + \dots + u_n}{n}; T = \frac{t_1 + t_2 + \dots + t_n}{n}$$

ist, so wird

$$U+x=T+\alpha$$

oder

$$x = T + \alpha - U$$

sein. Hätte man die Zenithdistanz ζ , welche zum Stundenwinkel T, d. h. zur Uhrzeit U gehölt, so würde man T aus ζ nach der Formel (1) oder (2) rechnen, d. h. nach

$$tang^{2} \stackrel{1}{=} T = \frac{sin (\Sigma - \varphi) sin (\Sigma - \delta)}{cos \Sigma cos (\Sigma - \zeta)} : \Sigma = \frac{1}{2} (\varphi + \delta + \zeta), \tag{5}$$

womit sofort U bekannt wird. Hier handelt es sich nun um die Bestimmung der Diflerenz $\zeta - Z$. Nun ist

Addirt man diese sämmtlichen Gleichungen, so erhält man mit Rücksicht auf

$$(t_1 - T) + (t_2 - T) + \dots + (t_n - T) = 0:$$

$$Z = \zeta + \frac{1}{2} \frac{d^3 z}{dt^2} \cdot \frac{(t_1 - T)^2 + (t_2 - T)^2 + \dots + (t_n - T)^3}{n}.$$

Da aber

$$t_1 - u_1 = t_2 - u_2 = \ldots = t_n - u_n = T - U$$

ist, so wird

$$t_1 - T = u_1 - U; \quad t_2 - T = u_2 - U \dots t_n - T = u_n - U$$

und man erhält & aus dem Mittel Z aller beobachteten Zenithdistanzen:

$$\zeta = Z - \frac{1}{2} \frac{d^2 z}{dt^2} \cdot \frac{(u_1 - U)^2 + (u_2 - U)^2 + \ldots + (u_n - U)^2}{n}.$$

Für die Berechnung der hier auftretenden zweiten Differentialquotienten von ζ hat man aus der Formel

cosz = sin v sin à + cos v cos à cost;

$$sinz \frac{dz}{dt} = cos \varphi cos \delta sint$$

und daraus

$$\sin z \, \frac{d^2 z}{dt^2} + \cos z \, \left(\frac{dz}{dt}\right)^2 = \cos \varphi \, \cos \delta \, \cos t \, = \sin z \, \cot \arg t \, \frac{dz}{dt} \, ,$$

folglich

$$\frac{dz}{dt} = \frac{\cos \varphi \cos \delta \sin t}{\sin z}; \quad \frac{d^2z}{dt^2} = \cot \arg t \frac{dz}{dt} - \cot \arg z \left(\frac{dz}{dt}\right)^2. \tag{6}$$

Die Ausdrücke werden scheinbar etwas einfacher durch Einführung des Azimuthes. Da nämlich

 $cos \delta sin t = sin \epsilon sin a$

ist, so wird

$$\frac{dz}{dt} = \cos\varphi \sin a \tag{6a}$$

und daraus

$$\frac{d^2z}{dt^2} = \cos\varphi\cos\alpha\,\frac{da}{dt}\,.$$

Da aber (vergl. den Artikel »Coordinaten«, I. Band, pag. 668.):

$$\frac{da}{dt} = \frac{\cos \delta \cos q}{\sin z} = \frac{\sin a \cos q}{\sin t}$$

st, so wird

$$\frac{d^9z}{dt^2} = \frac{\cos\varphi\cos a\sin a\cos q}{\sin t} = \frac{\cos\varphi\cos a\cos\delta\cos q}{\sin z},$$
 (6b)

welche Formel jedoch die Kenntniss des Azimuthes und des parallaktischen Winkels voraussetzt, welche erst berechnet werden müssen, während die in Formel (6) auftretenden Zenithdistanzen und Stundenwinkel (nebst φ und δ) ohnedies durch die Beobachtung gegeben sind.

In der Formel für ζ treten noch ausserdem die Quadrate der (u-U) auf, wobei der Faktor arc 1" hinzuzufügen ist, und (u, - U) im Bogenmaasse (nicht im Zeitmaasse) ausgedrückt gedacht werden muss. Um diese Berechnung zu umgehen, kann man die in vielen Tafelsammlungen, (z. B. den Albrecht'schen »Formeln und Hülfstafeln für geographische Ortsbestimmung«) aufgenommenen

Tafeln der $\frac{2\sin^2\frac{1}{2}\tau}{arc^{\frac{1}{1}}}$ verwenden; da nämlich (u_i-U) eine mässige Grösse ist,

so kann man

$$\frac{1}{2}(u_i - U)^2 \ arc \, 1'' = \frac{2 \sin^2 \frac{1}{2}(u_i - U)}{arc \, 1''}$$

setzen, und hat dann

$$\zeta = Z - \frac{d^2 z}{dt^2} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{2 \sin^2 \frac{1}{2} (u_i - U)}{arc 1''}, \tag{7}$$

wobei der Differentialquotient $\frac{d^3z}{dI^3}$ nach Formel (6) zu berechnen ist, und der Werth von $\frac{1}{n}\sum_{i=1}^{n}\frac{2\sin^2\frac{1}{2}(u_i-U)}{\cos^2\frac{1}{2}}$ das arithmetische Mittel der für alle einzelnen

Beobachtungen aus der Tafel zu entnehmenden Werthe ist. Hat man dann mit dem erhaltenen Werthe von ζ nach (5) T berechnet, so folgt

$$x = T + \alpha - U.$$

Die Formel ist jedoch nicht vollständig, da man eigentlich:

$$z_i = \zeta + \frac{dz}{dt}(t_i - T) + \frac{1}{2}\frac{d^3z}{dt^2}(t_i - T)^2 + \frac{1}{6}\frac{d^3z}{dt^3}(t_i - T)^3 + \frac{1}{24}\frac{d^4z}{dt^4}(t_i - T)^4 \dots$$

hat, und demnach

$$\zeta = Z - \frac{d^3z}{dt^3} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{2\sin^2\frac{1}{2}(u_i - U)}{arc1''} - \frac{d^3z}{dt^3} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{\sin_3\frac{1}{2}(u_i - U)}{arc1''} - \frac{d^4z}{dt^4} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{\sin^4\frac{1}{2}(u_i - U)}{arc1''} \cdot \dots$$

ist. Die Berechnung von $\frac{d^3z}{dt^3}$, $\frac{d^4z}{dt^4}$ wird ziemlich umständlich; in allen jenen

Fällen, in denen die als Faktoren austretenden Summen

$$\frac{1}{n} \cdot \sum_{\frac{1}{3}} \frac{\sin^3 \frac{1}{2} (u_i - U)}{arc \, 1''}; \quad \frac{1}{n} \sum_{\frac{1}{3}} \frac{\sin^4 \frac{1}{2} (u_i - U)}{arc \, 1''}$$

beträchtliche, nicht zu vernachlässigende Werthe erreichen, wird daher die Berechnung nach (5) bei Vernachlässigung der Zusatzglieder nicht genügend scharfe Resultate geben, und daher besser durch die gesonderte Berechnung der einzelnen Zenithdistanzen zu ersetzen sein. Nun findet man leicht die Werthe der in den Summen auftretenden Glieder aus der folgenden kleinen Tafel:

$u_i - U$	$\sin^3\frac{1}{2}\left(u_i-U\right)$	$\frac{1}{2} \sin^4 \frac{1}{2} (u_i - U)$
$u_i - v$	arc1"	3 arc1"
0m	0′′′000	0′′.000
1	0.003	0.000
2	0.023	0.000
3	0.077	0.000
4	0.183	0.001
5	0.357	0.002
6	0.617	0.004
7	0.997	0.007
8	1.462	0.013
9	2.081	0.020
10	2.855	0.031
11	3.800	0.046
12	4.933	0.065
13	6.272	0.089
14	7.833	0.120
15	9.633	0.158

Die Werthe der dritten Potenzen der (u_i-U) wachsen daher noch ziemlich rasch an, und erreichen schon bei einer Zwischenzeit von 7^m zwischen der äussersten Beobachtung und dem Mittel, also von etwa 14^m zwischen den äussersten Beobachtungen den Werth von 1". Nichtsdestoweniger kann man die hieraus entstehende Correction vernachlässigen, weil deren Werthe für die dem Mittel der Zeiten vorangehenden und folgenden Beobachtungen entgegengesetzt bezeichnet sind, und daher bei einer gleichmässigen Vertheilung der Beobachtungen sich im Mittel wegheben werden. Dieses gilt jedoch nicht für die vierten Potenzen, welche zu beiden Seiten des Mittels gleich bezeichnet sind. Erstrecken sich die Beobachtungen über einen Zeitraum von einer halben Stunde, so dass $u_i - U$ den Werth von 15^m erreicht, so werden die betreffenden Correctionen für die

beiden äussersten Beobachtungen schon über 0"-15 und daher nicht mehr zu vernachlässigen.

Es folgt hieraus, dass, wenn die vierten Potenzen vernachlässigt werden sollen, man die Zwischenzeit nicht länger als über etwa 10 bis 15^m auschehnen darf; für diesen Zwischenraum wird $(u_i - U)$ etwa 8^m , und das Correctionsglied der vierten Ordnung etwa 0"01 daher zu vernachlässigen. Ordnet man die zwischenliegenden Beobachtungen möglichst gleichmässig an, also in möglichst nahe gleichen Zeitintervallen, so werden auch die Glieder dritter Ordnung, die sonst bis auf 1"4 ansteigen können, gleich grosse positive und negative Werthe erhalten, und daher in der Summe wegfallen. In der Praxis wird ja meist ohnedies die Zwischenzeit den Betrag von 15^m nie übersteigen.

b) Reduction des Mittels der Uhrzeiten auf das Mittel der Zenithdistanzen. Hat man zum Mittel der Zenithdistanzen Z nach der Formel

$$tang^{\frac{1}{2}}\frac{1}{2}\vartheta = \frac{\sin\left(S - \varphi\right)\sin\left(S - \delta\right)}{\cos S\cos\left(S - Z\right)}; \quad S = \frac{1}{2}\left(\varphi + \delta + Z\right) \tag{8}$$

den Stundenwinkel θ gesucht, so gehört dieser nicht zum Mittel U der Uhrzeiten, sondern zu einer anderen Uhrzeit v, für welche

$$\frac{Z-\zeta}{\upsilon-U} = \frac{dz}{du} = \frac{dz}{dt}$$

ist. Substituirt man hier für Z- C den Wert aus (7), so erhält man

$$v-U=\frac{1}{\frac{d}{dt}}\cdot\frac{d^2s}{dt^2}\cdot\frac{1}{n}\sum \frac{2\sin^2\frac{1}{2}\left(u_i-U\right)}{arc\,1''}$$

oder, wenn man für $\frac{d^2z}{dt^i}$: $\frac{dz}{dt}$ seinen Wert aus (6) substistuirt:

$$v = U + \frac{1}{15} \left(\operatorname{cotang} t - \operatorname{cotang} z \cdot \frac{dz}{dt} \right) \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{2 \sin^3 \frac{1}{2} (u_i - U)}{\operatorname{arc} 1''}, \tag{9}$$

wobei der Factor $\frac{1}{15}$ daher rührt, dass v, U im Zeitmaasse ausgedrückt sind und daher sin^{2} $\frac{1}{2}$ $(u_{i}-U)$ durch arc $1^{i}=15$ arc $1^{i'}$ zu dividiren ist.

v ist die Uhrzeit, welche zum Mittel der Zenithdistanzen Z, d. h. zu dem aus (8) folgenden Stundenwinkel ϑ gehört, so dass

wird. $x = \theta + \alpha - v \tag{10}$

Beispiel. 1886 Mai 21 beobachtete ich mit einem Sextanten (dessen Indexfehler + 16"9 war) an einer nach mittlerer Zeit gehenden Uhr die Sonne:

0	Einstellung	Uhrzeit V. M.	Uhrzeit N. M.	Libelle	Mittlere 1) Refraction
OR	54° 0′	8h 11m 42s	4h 0m 16s	-8".3	+80"1
	53 40	13 43	3 58 12		+79.2
	53 20	15 46	56 11		+78.2
UR	53 20	8 18 57	3 52 58		+76.7
	53 0	21 1	50 54		+75.8
	52 40	23 4	48 52	- 7"4	+74.9

Horizontalparallaxe der Sonne: 8"·74
Parallaxe für die Beobachtung: 7"·0
Halbmesser der Sonne: 15' 49"·3

¹⁾ Durch einen Defect im Manuale sind die Aufschreibungen über meteorologische Instrumente nicht vorhanden. Für den vorliegenden Zweck ist dieser Mangel jedoch ohne Bedeutung.

Die Berechnung ergiebt nun:

8" 17	π 221.17	$\frac{2 \sin^2 \frac{1}{2} \tau}{arc 1''}$	3" 5	τ 33583	$\frac{2\sin^2\frac{1}{2}\tau^4)}{arc\ 1''}$
5m	40s-17	63".11	5**	425.17	63".86
3	39.17	26.20	3	38.17	25.96
1	36.17	5.04	1	37.17	5.15
1	34.83	4.91	1	35.83	5.01
3	38.83	26.12	3	39.83	26.36
5	41.83	63.73	5	41.83	63.73
\sum_{i}	sin ² ½ τ arc 1"	= 31".52	$\frac{1}{n}\sum_{i}$	2 sin ² ½ τ arc 1"	= 31".68.
	8 ⁴ 17 5 ^m 3 1 1 3 5 2 2	5 ^m 40°17 3 39°17 1 36°17 1 34°83 3 38°83 5 41°83 2 2 sin² ½ τ arc 1"	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ 8^{4} 17^{m} 25^{n} 17 $ $ \tau $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Die Vor- und Nachmittagsbeobachtungen geben die Uhrzeit der Culmination 0* 5 m 58; daher der Stand der Uhr gegen wahre Zeit – 5 m 58; es folgt daher: Genäherte wahre Zeit der Beobachtung 8 11 m 24 3 44 8 m 36;

Zugehörige Berliner wahre Zeit

7 59
$$38 = -0^{d} \cdot 1506$$
 3 36 $50 = +0^{d} \cdot 1506$
- $3^{m} \cdot 39^{s} \cdot 73$ - $3^{m} \cdot 38^{s} \cdot 59$

Damit: Zeitgleichung Deklination der Sonne

$$-3^{m} 39^{s} \cdot 73 -3^{m} 38^{s} \cdot 59$$

$$\delta = +20^{\circ} 11' 3'' \cdot 2 +20^{\circ} 14' 54'' \cdot 1.$$

Hiermit folgt für die Berechnung der Reduction des Mittels der Zeiten auf das Mittel der Zenithdistanzen für die Vormittagsbeobachtungen:

Ebenso findet man für die Reduction der Nachmittagsbeobachtungen: +0.335.

Daher die auf das Mittel der Zenithdistanzen reducirten Mittel der Uhrzeiten:

8h 17m 21v:84 3h 54m 34v:16.

Die Mittel der Zenithdistanzen erhält man nun aus den Beobachtungen:

 Mittel der Lesungen
 53° 20' 0"·0

 Indexfehler
 + 16·9

 Libellencorrection
 - 7·8

 Mittlere Refraction
 + 1 17·5

 Parallaxe
 - 7·0²)

 Mittel der Zenithdistanzen
 53° 21' 19"·6

¹⁾ Hat man keine Hilfstafeln, welche die Werthe von $\frac{2 \sin^2 \frac{1}{2} \tau}{arc 1''}$ geben, so rechnet man z. B. $\tau = 5m \frac{42r \cdot 17}{2r^2 1''} = 1^{\circ} \frac{25' \cdot 32'' \cdot 5}{2r^2 1''} = 5132'' \cdot 5$ $\log \tau = 371033$ $\log \tau^2 = 7'42066$ $\log \frac{\tau^2}{2arc 1''} = 1.80520$ $\frac{\tau^2}{2arc 1''} = 63'' \cdot 86.$

²⁾ Der Halbmesser f\u00e4llt heraus, da die H\u00e4lfte der Beobachtungen sich auf den oberen, die andere H\u00e4lfte auf den unteren Rand beziehen.

Rechnet man mit dieser Zenithdistanz, der Polhöhe $\varphi=48^{\circ}$ 12' 46"·8 und den zu den Vormittags- bezw. Nachmittagsbeobachtungen gehörigen Deklinationen der Sonne: $\delta=+20^{\circ}$ 11' 3"·2 und 20° 14' 54"·1 die Stundenwinkel nach Formel (8), so erhält man:

1 =	: 34	48"	27:-81	34	48~	445.65
Wahre Zeit:	8	11	32.19	3	48	44.65
Zeitgleichung:	_	- 3	39.73	_	- 3	38.59
Mittlere Zeit:	8	7	52.46	3	45	6.06
Reducirte Uhrzeit:	8	17	21.84	3	54	34.16
Uhrstand: $x =$	= -	- 9m	291.38	_	- 9m	28: 10.

Nach den Aufzeichnungen der meteorologischen Centralanstalt, Wien, war für 1886 Mai 21: Barometerstand 748mm; Temperatur der Luft: Vormittags + 15° (für die Zeit der Beöbachtungen); die Reduktion wegen des Unterschiedes in der Seehöhe beträgt — 9mm; man hat daher anzunehmen

$$B = 739^{\text{mm}}$$
; Thermometer + 17° bezw. + 25°.

Ninmt man die Temperatur des Quecksilbers (inneres Thermometer) gleich derjenigen der Luft (äusseres Thermometer), so wird die Summe der Correctionen der Logarithmen der mittleren Refraction — 2010 bezw. — 3242, und damit die Correction der mittleren Refraction nach meinen Tafeln (Publicationen der v. Kuffner'schen Sternwarte I. Bd., pag. 207): — 3"·5 bezw. — 5"·6. Die hieraus folgende Correction des Uhrstandes ist

The Correction des Unistances is
$$dz = dt = \left(\frac{dz''}{\sin A \cos \varphi}\right)'' = \left(\frac{\sin z \, dz''}{15 \, \sin t \cos \delta \cos \varphi}\right)^t$$
.

Die Rechnung ergiebt:

$$log \sin z = 9.9043$$

$$log \cos \varphi = 9.8237$$

$$log \cos \delta = 9.9724$$

$$log \sin t = 9.9241 \text{ (Nachmittags } 9.9243)$$

$$log \frac{1}{15} = 8.8239$$

$$log dz = 0.5441 \text{ (Nachmittags } \frac{0.7482}{9.7558}$$

$$log dt = 9.5521 = \frac{0.7482}{9.7558}$$
Correction von dx : $+ 0.857 = -0.9570$

Daher mit Rücksicht auf wahre Refraction die Uhrstände

$$x = -9^{m} 29^{s} 02$$
 und $x = -9^{m} 28^{s} 67$.

Das Universalinstrument giebt nicht unmittelbar die Zenithdistanzen an, sondern zur Bestimmung derselben ist die Kenntniss des Zenithpunktes oder die Beobachtung in beiden Kreislagen erforderlich. Da aber in der Zwischenzeit der Stern seine Zenithdistanz geändert hat, so wird man aus den aufeinanderfolgenden Beobachtungen, nicht unmittelbar den Zenithpunkt, daher auch nicht die Zenithdistanz ermitteln können. Es reicht jedoch aus, wenn man zu den Zeitbestimmungen einen genäherten Zenithpunkt verwendet, wenn man, nachdem man eine gewisse Zahl von Beobachtungen in der einen Kreislage gemacht hat, sodann das Fernrohr durchschlägt, und eine gleiche Zahl Beobachtungen in der anderen Kreislage macht. Denn ist der Zenithpunkt mit einem Fehler ΔL_0 behaftet, so werden alle Zenithdistanzen in der einen Kreislage den Fehler $+\Delta L_0$, in der anderen Kreislage den Fehler $+\Delta L_0$, haben, so dass der daraus resultiernde Fehler in der Zeitbestimmung, da das Azimuth sich nicht wesentlich geändert hat, nach der Formel (3)

$$+\frac{\Delta L_0}{\sin a \cos \varphi}$$
 und $-\frac{\Delta L_0}{\sin a \cos \varphi}$

wird, welche Fehler im Mittel wegfallen.

Kennt man den Zenithpunkt nicht, oder will man nicht jede einzelne beobachtete Zenithdistanz für sich anwenden, so wird man direkt in dieser Anordnung der Beobachtungen eine Zenithdistanz aus der ersten und letzten, eine zweite aus der zweiten und vorletzten, dann aus der rten und (n-r)ten Lesung (wenn n die Zahl der beobachteten Zenithdistanzen ist) ableiten, so als ob sich die Zenithdistanz des Sternes in der Zwischenzeit nicht geändert hätte; dieses Mittel der Zenithdistanzen wird wie früher auf das Mittel der Uhrzeiten reducirt, und kann zur Bestimmung des Stundenwinkels verwendet werden.

Sei die beobachtete Zenithdistanz zur Zeit u_1 gleich z_1 bei KL; diejenige zur Zeit u_n gleich z_n bei KR, und es sollen die beiden Zenithdistanzen auf das Mittel $u_{1,n}$ der beiden Uhrzeiten u_1 , und u_n d. h. auf die Zeit

$$u_{1,n} = \frac{u_1 + u_n}{2}$$

reducirt werden. Sei die Zenithdistanz zu dieser Zeit gleich ζ_{11 8}, so wird

$$\begin{split} z_1 &= \zeta_{1,\,n} - \frac{dz}{dt} \left(u_{1,\,n} - u_1 \right) + \frac{1}{2} \frac{d^2z}{dt^2} (u_{1,\,n} - u_1)^2 \\ z_2 &= \zeta_{1,\,n} + \frac{dz}{dt} \left(u_n - u_{1,\,n} \right) + \frac{1}{2} \frac{d^2z}{dt^2} (u_n - u_{1,\,n})^2 \;. \end{split}$$

Da aber $z_1=L_0-L_1$, $z_n=L_2-L_0$ ist, wenn die Lesungen in den beiden Kreislagen mit L_1 und L_2 bezeichnet werden [oder aber L_1-L_0 und L_0-L_2 bei umgekehrter Bezifferung], so erhält man durch Addition der beiden Gleichungen

 $\label{eq:continuous_loss} \tfrac{1}{2} \left(L_2 - L_1 \right) = \zeta_{1,\,n} + \tfrac{1}{2} \frac{d^2 z}{dt^2} \bigg(\frac{u_n - u_1}{2} \bigg)^2,$

daher

$$\zeta_{1,\,n} = \frac{1}{2} \left(L_2 - L_1 \right) - \frac{d^3 s}{dt^2} \cdot \frac{2 \sin^3 \frac{1}{2} \frac{u_n - u_1}{2}}{arc \, 1''} \; .$$

Die in dem letzten Gliede enthaltene Reduction wird daher in derselben Weise wie früher mit dem Argumente: »halbe Zwischenzeit zwischen den beiden combinirten Beobachtungen« vorgenommen. Zu berücksichtigen ist jedoch, dass man die Differenz der Lesungen L_2-L_1 um die Differentialrefraction für die beiden, etwas verschiedenen Zenithdistanzen zu corrigiren hat, wobei man, da die Zenithdistanzen nicht sehr verschieden sein werden, von der Correction wegen der meteorologischen Instrumente absehen kann.

Hat man in dieser Weise die Zenithdistanzen $\zeta_{1,n}$; $\zeta_{2,n-1}$; $\zeta_{3,n-2}$; abgeleitet, so wird man aus diesen das Mittel Z ziehen, und ebenso das Mittel U der Uhrzeiten $u_{1,n}$; $u_{2,n-1}$; . . . bilden, und schliesslich, nachdem das Mittel der Zenithdistanzen Z wegen wahrer Refraction corrigirt ist¹) nach dem früher erwähnten Verfahren, das Mittel der Uhrzeiten auf das Mittel der Zenithdistanzen oder das Mittel der Zenithdistanzen auf das Mittel der Uhrzeiten reduciren. Waren die Beobachtungen nahe gleichmässig vertheilt, so werden die einzelnen Mittelwerthe $u_{1,n}$; $u_{2,n-1}$; . . . nicht sehr weit von einander verschieden sein,

¹) Statt dessen kann man auch die sämtlichen Lesungen wegen Refraction vollständig corrigiren.

daher die Differenzen $U-u_{1,n}$; $U-u_{2,n-1}$; ... sehr kleine Beträge, für welche die Correction $\frac{d^2z}{dt^2}$ vernachlässigt werden kann, so dass man die Mittel Z und U als zusammengehörig ansehen kann.

D. Zeitbestimmung aus gleichen Höhen verschiedener Sterne zu beiden Seiten des Meridians. Betrachtet man die Zenithdistanz zweier Sterne, deren Rectascensionen und Declinationen bezw. a, & und a', &' sind, so kann man aus den beiden Gleichungen:

$$\cos z = \sin \varphi \sin \delta + \cos \varphi \cos \delta \cos t$$

$$\cos z' = \sin \varphi \sin \delta' + \cos \varphi \cos \delta' \cos t'$$
(11)

zwei Unbekannte bestimmen. Wählt man z = z' so kann man ohne die Kenntniss von z die Zeit ermitteln, indem dann in der Differenz der beiden Gleichungen cosz herausfällt. Es soll zunächst noch z und z' verschieden angenommen werden; dann erhält man durch Subtraction der beiden Gleichungen:

$$\cos z - \cos z' = \sin \varphi \left(\sin \delta - \sin \delta' \right) + \cos \varphi \left(\cos \delta \cos t - \cos \delta' \cos t' \right) \tag{12}$$

Ist θ die Sternzeit der Beobachtung des ersten Sternes, θ' die Sternzeit der Beobachtung des zweiten Sternes, so ist

 $\theta = t + \alpha$; $\theta' = t' + \alpha'$;

es wird demnach der Werth von

$$\tau = \frac{1}{2} (\ell' - \ell) = \frac{1}{2} (\theta' - \theta) - \frac{1}{2} (\alpha' - \alpha),$$

$$\tau = \frac{1}{4} [(u' - u) + \Delta u] - \frac{1}{4} (\alpha' - \alpha), \tag{13a}$$

wobei u'-u die Differenz der Uhrzeiten, und Δu die Verbesserung derselben wegen des Uhrganges in der Zwischenzeit, also $(u'-u) + \Delta u$ gleich der Differenz der Sternzeiten ist, eine bekannte Grösse. Hingegen wird

 $y = \frac{1}{4}(t' + t) = \frac{1}{4}(\theta' + \theta) - \frac{1}{4}(\alpha' + \alpha)$

d. i.

$$y = \frac{1}{2}(u' + u) + x - \frac{1}{2}(\alpha' + \alpha), \tag{13b}$$

wegen des unbekannten Werthes des Uhrstandes x unbekannt. Sobald aber auf irgend eine Weise $\frac{1}{2}(\ell'+\ell)$ gefunden wird, erhält man aus (13b) sofort den Werth von x. Nun wird

$$cost' = cos(y + \tau) = cosy cos\tau - siny sin\tau$$

 $cost = cos(y - \tau) = cosy cos\tau + siny sin\tau$.

Setzt man diese Ausdrücke in die Gleichung (11) ein, so erhält man:

$$2 \sin \frac{z'-z}{2} \sin \frac{z'+z}{2} + \sin \varphi \left(\sin \delta - \sin \delta' \right) + \cos \varphi \cos z \cos \zeta \left(\cos \delta - \cos \delta' \right) + \cos \varphi \sin z \sin \zeta \left(\cos \delta + \cos \delta' \right) = 0.$$

Setzt man hier, ebenso wie bei der Bestimmung der Zeit und des Azimuthes aus gleichen Azimuthen (vergl. den Artikel »Universaltransit«):

$$p \sin P = \cos \tau (\cos \delta - \cos \delta')$$

$$p \cos P = \sin \tau (\cos \delta + \cos \delta')$$
(14)

so folgt

$$2\sin\frac{z'-z}{2}\sin\frac{z'+z}{2}+\sin\varphi\left(\sin\delta-\sin\delta'\right)+\rho\sin\left(P+y\right)\cos\varphi=0$$

demnach

$$\sin\left(P+y\right) = \frac{\tan q \,\varphi}{p} \left(\sin \delta' - \sin \delta\right) - \frac{2 \sin \frac{z'-z}{2} \sin \frac{z'+z}{2}}{p \cos \varphi} \,. \tag{15}$$

Fitr s' = s wird hieraus

$$\sin\left(P+y\right) = \frac{\tan q}{p} \left(\sin \delta' - \sin \delta\right),\tag{15a}$$

aus welcher Gleichung y bestimmt werden kann. Will man dann die Zenithdistanzen selbst bestimmen, so kann dieses aus einer der beiden Gleichungen (11) geschehen. Zur Erhaltung des Fernrohres in derselben Zenithdistanz kann das als Almucantar bezeichnete Instrument dienen (vergl. auch hierüber den Artikel >Almucantars).

Differenzirt man die Gleichungen (11), so folgt:

$$dz = \cos a \, d\varphi - \cos q \, d\delta + \cos \varphi \sin a \, (du - d\alpha + dx)$$

$$dz' = \cos a' \, d\varphi - \cos \varphi' \, d\delta' + \cos \varphi \sin a' \, (du' - d\alpha' + dx),$$

wobei wieder a, a' die Azimuthe und q, q' die parallaktischen Winkel der beiden Sterne bedeuten. Durch Subtraction der beiden Gleichungen erhält man

$$\begin{split} dx &= \frac{\cos a - \cos a'}{\cos \varphi \left(\sin a' - \sin a \right)} \, d\varphi + \frac{\sin a}{\sin a' - \sin a} (du - d\alpha) - \frac{\sin a'}{\sin a' - \sin a} (du' - d\alpha') - \\ &- \frac{\cos q}{\cos \varphi \left(\sin a' - \sin a \right)} \, d\delta + \frac{\cos q'}{\cos \varphi \left(\sin a' - \sin a \right)} \, d\delta' + \frac{dz' - dz}{\cos \varphi \left(\sin a' - \sin a \right)} \, . \end{split}$$

Der Einfluss von Fehlern in den Uhrzeiten sowohl als in den Sternpositionen und in der Polhöhe wird umso kleiner, je grösser die Differenz $sin \, a' - sin \, a$ ist, d. h., wenn die Sterne zu beiden Seiten des Meridians möglichst nahe dem ersten Vertical beobachtet werden. Da der Coëfficient von $d\phi$ auch geschrieben werden kann

$$\frac{\tan g \frac{1}{2} (a' + a)}{\cos \varphi} d\varphi,$$

so sieht man, dass ein Fehler der Polhöhe vollständig verschwindet, wenn (a' + a) gleich Null ist, d. h. die beiden Sterne zu beiden Seiten des Meridians im gleichen Azimuthe die gleiche Höhe erreichen, also auch nahe dieselben Declinationen haben.

Für Sterne verschiedener Declinationen wird es nöthig, die Zeit vorauszuberechnen, zu welcher ihre Höhen zu beiden Seiten des Meridians nahe dieselben werden. Hierzu hat man u=u' zu setzen, und, da es sich nur um eine genäherte Lösung handelt, x=0 und hat dann:

folglich

$$\tau = \frac{1}{2} (\alpha - \alpha'); \quad y = u - \frac{1}{2} (\alpha' + \alpha),$$

$$p \sin P = (\cos \delta - \cos \delta') \cos \frac{1}{2} (\alpha - \alpha')$$

$$p \cos P = (\cos \delta + \cos \delta') \sin \frac{1}{2} (\alpha - \alpha')$$

$$\sin (P + y) = \frac{\tan g \varphi}{\rho} (\sin \delta' - \sin \delta)$$

$$u = \frac{1}{2} (\alpha + \alpha') + y.$$

Die zugehörige Zenithdistanz findet man dann aus den Gleichungen (11), in denen $t=u-\alpha$, $t'=u'-\alpha'$ gesetzt wird, und die Azimuthe aus

$$sin a = \frac{cos \delta sin t}{sin z}; sin a' = \frac{cos \delta' sin t'}{sin z}.$$

Die Lösung wird wesentlich einfacher, wenn $\delta' = \delta$ ist; dann wird nämlich sin $\langle P + y \rangle = 0$, y = -P;

Da aber hierfür auch sin P = 0 wird, so folgt y = 0 demnach

$$x = \frac{1}{2} (a' + a) - \frac{1}{2} (u' + u). \tag{15b}$$

Es ist jedoch nicht nöthig, Sterne von genau gleicher Declination zu nehmen, welche Forderung übrigens kaum jemals zu erfüllen ist; sei $\delta' - \delta$ eine mässige Grösse, so wird man die Gleichungen (14) und (15) leicht in die folgende Form bringen können:

$$sin(P+y) = \frac{tang \varphi cos P}{\rho cos P} \cdot 2 sin \frac{\delta' - \delta}{2} cos \frac{\delta' + \delta}{2}$$

$$= \frac{tang \varphi}{sin \tau} \cdot cos P tang \frac{\delta' - \delta}{2}$$

$$tang P = tang \frac{\delta' - \delta}{2} tang \frac{\delta' + \delta}{2} cotang \tau,$$

demnach

$$\frac{\sin(P+y) - \sin P}{\cos P} = \sin y - \tan P (1 - \cos y) =$$

$$= \sin y - 2 \tan P \sin^2 \frac{1}{2} y = \left(\frac{\tan \varphi}{\sin \tau} - \frac{\tan \varphi}{\tan \varphi}\right) \tan \varphi \frac{\delta' - \delta}{2}. \quad (16)$$

Ist nun & - & klein, so wird auch y eine kleine Grösse sein, unter der Voraussetzung, dass $\tau = \frac{1}{2}(t'-t)$ nicht sehr klein wird. Für kleine Unterschiede der δ und gleiche Zenithdistanzen wird aber τ nur dann gross sein können, wenn gleiche Zenithdistanzen zu verschiedenen Seiten des Meridians genommen sind; in diesem Falle wird dann die zweite Potenz von y vernach-

lässigt werden können, und an Stelle von $\sin y$ und $\tan g \frac{\delta' - \delta}{9}$ können die Bögen gesetzt werden, so dass

$$y = \left(\frac{\tan \varphi}{\sin \tau} - \frac{\tan \varphi}{1} - \frac{\delta' + \delta}{2}\right) \frac{\delta' - \delta}{2}$$
 (16 a)

Ist y nicht sehr klein, so erhält man leicht aus (16)

$$y - \frac{1}{2} tang P \cdot y^2 - \frac{1}{6} y^3 = T \left[\frac{\delta' - \delta}{2} + \frac{1}{3} \left(\frac{\delta' - \delta}{2} \right)^2 \right],$$

wobei

$$T = \frac{\tan \varphi}{\sin \tau} - \frac{\tan \varphi}{\frac{\delta' + \delta}{2}}$$
$$\tan \varphi = \frac{\tan \varphi}{1 + \frac{\delta' + \delta}{2}}$$

gesetzt ist. Durch Umkehrung der Reihe erhält man hieraus

$$y = T\left(\frac{\delta' - \delta}{2}\right) + \frac{1}{2} \tan g \ P \cdot T^{2} \left(\frac{\delta' - \delta}{2}\right)^{2} + \left[\frac{T - T^{3}}{3} + \frac{T^{3}}{2} \sec^{2} P\right] \left(\frac{\delta' - \delta}{2}\right)^{3}$$

$$(17)$$

und dann den Uhrstand

$$x = \frac{1}{2}(\alpha' + \alpha) - \frac{1}{2}(u' + u) + y$$

= $\frac{1}{2}(\alpha' + \alpha) - [\frac{1}{2}(u' + u) - y].$ (17a)

Sind die Zenithdistanzen nicht vollständig gleich, sodass die Differenz derselben z' - z nicht Null ist, so tritt die Gleichung (15) an Stelle der Gleichung (15a); wenn jedoch die Differenz eine sehr kleine ist, so kann man das Correctionsglied in der Form schreiben

$$-\frac{(z'-z)\sin z}{p\cos\varphi}$$

 $-\frac{(z'-z)\sin z}{p\cos \varphi}$ oder die Correction von $\frac{\sin(P+y)}{\cos P}$, d. h. das in (16) hinzutretende Correctionsglied

$$-\frac{(z'-z)\sin z}{\rho\cos\varphi\cos P} = -\frac{(z'-z)\sin z}{\cos\varphi\sin\tau(\cos\delta+\cos\delta')},$$

daher für nahe gleiche Deklinationen

$$-\frac{(z'-z)\sin z}{2\cos\varphi\sin\tau\cos\delta} = -\frac{z'-z}{2}\frac{\sin z}{\cos\varphi\cos\delta\sin\tau},$$
 (18)

wobei die Correction wegen der Factoren $(\delta' - \delta)$ und (z' - z) in Bogensecunden ausgedrückt erscheint. (Das zweite Glied in (17) ist natürlich mit arc 1", das dritte Glied mit arc 1" 2 zu multipliciren). Der Werth von z braucht hierfür nur genähert bekannt zu sein.

Die Zenithdistanzen z' und z können aus mehreren Gründen verschieden sein.

1) Die gemessenen Zenithdistanzen sind bei gleicher Einstellung am Sextanten vorgenommen (die Beobachtung der Uhrzeit, zu welcher die Zenithdistanz erreicht wird), der Glashorizont hat aber eine gewisse Neigung, und zwar sei i die Neigung des Horizontes für den ersten Stern, i für den zweiten, positiv, wenn die äussere (dem Stern zugekehrte) Seite die höhere ist; dann sind die gemessenen Zenithdistanzen um +i, bezw. +i zu corrigiren, um die wahren zu erhalten, und es ist

$$z'-z=i'-\iota$$

- 2) Die Zenithdistanzen sind gleich; die Beobachtungen sind am Universalinstrument (oder Almucantar) gemacht, und dabei hat sich die Lage der Fernrohraxe geändert, dann ist s'-z die Aenderung der Zenithdistanz) bestimmt mittels einer die Aenderung anzeigenden Libelle.
- 3) Die Zenithdistanzen sind gleich, aber die Refraction hat sich in Folge Aenderung des Standes der meterologischen Instrumente geändert. Dieses kann eintreten, wenn die Beobachtungen der Zeit noch etwas weiter auseinander liegen (die folgende Methode der correspondirenden Höhen); oder aber die Zenith-distanzen sind ebenfalls etwas verschieden, und in Folge dessen auch die Refractionen. Seien s, s' die gemessenen Zenithdistanzen, ρ , ρ' die zugehörigen Refractionen, also die wahren Zenithdistanzen $s + \rho$, $s' + \rho'$, so ist an Stelle von s' s in Formel (18) zu setzen:

$$(z'-z)+(\rho'-\rho).$$

Ist z'=z, so werden in der Differenz $\rho'-\rho$ die mittleren Refractionen unberücksichtigt bleiben können, und nur die Correctionen wegen der Aenderung im Stande der meteorologischen Instrumente auftreten.

E. Zeitbestimmung aus correspondirenden Höhen. Nimmt man $\delta = \delta'$ und $\alpha = \alpha'$, d. h. beobachtet man denselben Stern in derselben Zenithdistanz vor und nach dem Meridiandurchgange, wobei die Zwischenzeit zwischen den Beobachtungen gleich dem doppelten Stundenwinkel ist, so verschwindet die Correction γ und es wird einfach nach (15b):

$$x = \alpha - \frac{1}{2} \left(u' + u \right);$$

 $\frac{1}{2}(u' + u)$ ist hier die Zeit des Durchganges durch den Meridian, welche, wenn der Stand der Uhr 0 wäre, gleich der Rectascension des Sternes sein müsste; der Unterschied gegen die Rectascension giebt daher unmittelbar den Stand der Uhr.

Wählt man für diese Beobachtungen die Sonne, so wird man auf die Aenderung der Declination in der Zwischenzeit Rücksicht nehmen müssen. Die hieraus entstehende Correction ist durch die Gleichung (16a) gegeben; $\frac{\delta'+\delta}{2}$ ist dabei die Declination zur Zeit des zwischen den beiden Beobachtungen gelegenen Meridiandurchganges; sei diese δ , und führt man an Stelle von $\delta'-\delta$ die 48 stündige Aenderung μ der Declination der Sonne ein (von dem vorhergehen-

den zum nächstfolgenden Mittage) so ist die einstündige Aenderung $\frac{\mu}{48}$ und die Aenderung in der Zeit u'-u wird

$$\delta' - \delta = \frac{\mu}{48} (u' - u) = \frac{\mu}{48} \cdot 2\tau$$

demnach mit alleiniger Berücksichtigung der ersten Potenz von µ:

$$y = \left(\frac{\tan \varphi}{\sin \tau} - \frac{\tan \varphi}{\tan \varphi} \frac{\delta}{\tau}\right) \cdot \frac{\mu}{48} \tau,$$

welche Formel sich auch schreiben lässt

$$y = \left(tang \, \varphi \cdot \frac{\tau}{\sin \tau} - tang \, \delta \, \frac{\tau}{tang \, \tau}\right) \cdot \frac{\mu}{48},$$

wobei, wenn τ im Bogenmasse angesetzt wird, wegen μ (welches in Bogensecunden gegeben ist) der Ausdruck in Bogensecunden erhalten wird. Will man denselben in Zeitsecunden, um ihn direkt an die Zeit $\frac{1}{2}$ (u'+u) anzubringen, so wird man noch durch 15 dividiren, und erhält

$$y = \left(tang \ \varphi \frac{\tau}{sin \tau} - tang \ \delta \frac{\tau}{tang \ \tau}\right) \frac{\mu}{720}$$
 (19)

und dann:

$$x = \alpha - \left[\frac{1}{2}(u' + u) - y\right]$$

Beobachtet man Vor- und Nachmittags, so erhält man in dem Ausdrucke $\frac{1}{2}(u'+u)$ nicht die Uhrzeit des wahren Mittags; man nennt die so ermittelte Zeit den unverbesserten Mittag, die Correction — y die Mittagsverbesserung.

Die Berechnung des Ausdruckes y wird vereinsacht, wenn man Tafeln sür die Grössen

$$A = -\frac{1}{720} \frac{\tau}{\sin \tau}; \quad B = \frac{1}{720} \frac{\tau}{\tan g \tau}$$

mit dem Argumente τ gegeben hat; dann wird die Mittagsverbesserung z = -y: $z = A\mu \tan g \varphi + B\mu \tan g \delta \tag{20}$

und es wird schliesslich

$$x = \alpha - \left[\frac{1}{2}(u' + u) + z\right]$$
 (20a)

der Stand der Uhr gegen Sternzeit im wahren Mittage, welche durch die Rectacsension der Sonne zur Zeit des Meridiandurchganges gegeben ist. In diesem Falle aber hat man für τ den um die Aenderung der Rectascension in der Zwischenzeit: $\frac{1}{2}(\alpha'-\alpha)$, corrigirten Werth der durch die Sternzeituhr angegebenen Zwischenzeit zu setzen. (Vergl. Formel 13 a).

Handelt es sich aber um den Stand einer nach mittlerer Zeit gehenden Uhr, so hat man die Differenz Mittlere Zeit — Uhrzeit zu suchen; diese wird hierbei durch die Beobachtung für den Momen: des wahren Mittags (Meridiandurchgang der Sonne) gegeben; die mittlere Zeit im wahren Mittage ist aber die Zeitgleichung Z, daher der Stand einer nach mittlerer Zeit gehenden Uhr gegen richtige mittlere Zeit:

$$x = Z - \left[\frac{1}{2}(u' + u) + z\right]$$
 (20b)

wobei als Argument

$$\tau = \frac{1}{2} \left(t' - t \right) = \frac{1}{2} \left(u' - u \right)$$

die halbe Zwischenzeit der Beobachtungen zu setzen ist, da der Stundenwinkel der Sonne gleich ist der wahren Sonnenzeit. Es ist nämlich, wenn W, W' die wahren, M, M' die mittleren Zeiten der Beobachtungen sind:

$$t = W = M + Z; \ t' = W' = M' + Z$$

 $t' - t = M' - M = (u' - u) + \Delta u$

Tafeln für z wurden zuerst von Gauss gegeben, und wurden später in verschiedenen Tafelsammlungen aufgenommen, (z. B. Warnstorff's >Hilfstafeln;« Albrecht's Formeln und Hilfstafeln für die geographische Ortsbestimmung« etc.)

Um des Nachmittags rechtzeitig zur Beobachtung bereit zu sein, muss man die Zeit des Beginnes genähert vorausberechnen. Hierzu hat man die Uhrzeit im mittleren Mittage $12^k + x$, im wahren Mittage $12^k + x + Z$; ist die Uhrzeit der vormittägigen Beobachtung (bei einer Reihe von Beobachtungen, der letzten Beobachtung) u, so ist die Zwischenzeit:

$$12^{k} + x + Z - u;$$

Diese Zeit zur Uhrzeit im wahren Mittage hinzugegeben, giebt die Zeit der (ersten) Nachmittagsbeobachtung:

$$24^{h} + 2(x - M) - u - 12^{h} = 12^{h} + 2(x + Z) - u$$

Häufig wird es wegen der Witterungsverhältnisse erwünscht, Nachmittagsbeobachtungen mit daraustolgenden Vormittagsbeobachtungen zu verbinden; in diesem Falle wird;

$$t = IV = M + Z$$

$$t' = 24^{k} - W^{2} = 24^{k} - (M' + Z)$$

$$t' - t = 24^{k} - (M' - M) = 24^{k} - [(u' - u) + \Delta u]$$

daher der hier zu verwendende Werth τ'

$$\tau' = 12^k - \tau$$

wenn τ dieselbe Bedeutung wie früher hat; y wird daher

$$y = \left(\frac{\tan g \, \varphi}{\sin \tau} + \frac{\tan g \, \delta}{\tan g \, \tau}\right) \cdot \frac{\mu}{48} \, (12^h - \tau)$$

oder, da z = -y ist:

$$\begin{split} z &= + A \mu f \tan g \ \varphi - B \mu f \tan g \ \delta \\ f &= \frac{12^k - \tau}{\tau}; \quad \tau = \frac{1}{2} \left[(u' - u) + \Delta u \right] \\ x &= Z - \left[\frac{1}{2} (u' + u) + z \right]. \end{split}$$

Selbstverständlich sind hier δ und Z für den zwsichenliegenden Meridiandurchgang, d. h. für die zwischenliegende Mitternacht zu nehmen; $\frac{1}{2}\left(u'+u\right)$ ist die unverbesserte Mitternacht; z die Mitternachtsverbesserung.

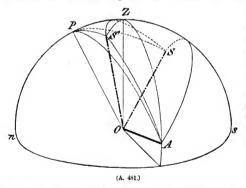
Beispiel. Das Beispiel auf pag. 148 gab als Mittel der Uhrzeiten

Vormittags: 8^h 17^m 22^s·17 Nachmittags: 3 54 33·83

halbe Zwischenzeit: $\tau = 3^h 48^m 35^s \cdot 8 = 3^h \cdot 810$.

Damit wird, da $\mu = +24' \cdot 14'' \cdot 9 = 1454'' \cdot 9$ ist:

Unverbesserter Mittag 0th 5th 58: 00 Mittagsverbesserung — 8:42


Uhrzeit im wahren Mittage 0 5 49:58

Zeitgleichung -3 39.16x = -9 % 28.74 F. Zeitbestimmungen durch Beobachtung von Sternen im Verticale des Polarsternes. (Döllens' Methode). Die Bestimmung der Zeit aus Durchgangsbeobachtungen im Meridian ist an die Bedingung geknüpft, dass man das Azimuth des Instrumentes durch Zuziehung eines Polsternes bestimmt. Allein die Zahl der polnahen Sterne ist nicht allzu gross; vollends am Tage, wie man dieses bei Beobachtungen für geodätische Zwecke häufig in die Lage kommt, zu thun, wird man auf Beobachtungen des hellen Polarsternes allein angewiesen sein, und hierdurch wird man in der Anordnung der Beobachtungen durch die den Zeitbestimmungen einzuräumende Zeit wesentlich behindert.

Man kann sich von dieser Beschränkung frei machen, wenn man ein Passageninstrument benützt, welches in einem beliebigen Azimuthe festzustellen ist (z. B. das Universaltransit, doch kann jedes beliebige Passageninstrument demselben Zwecke dienen, wenngleich für den vorliegenden Zweck die Verstellung rasch und sicher ausgeführt werden muss), dasselbe zu einer gegebenen Zeit in dasjenige Azimuth bringt, welches der Polarstern zu dieser Zeit hat, und man um diese Zeit einen oder mehrere Zeitsterne hinzuzieht, welche eben um diese Zeit dasselbe Azimuth erreichen.

Auf die ganze vorhandene Literatur über diese Methode kann hier nicht eingegangen werden; nebst den zahlreichen Arbeiten Döllens ist in erster Linie die erschöpfende Arbeit von Harzer »Ueber die Zeitbestimmung im Verticale des Polarsternes«, Publicationen der Sternwarte in Kiel, No. X. zu nennen, in welcher über manche Gegenstände, die hier nur kurz erwähnt werden können, nachgesehen werden kann.

Die Lösung der Aufgabe ist bereits in dem beim Universaltransit (s. dieses) gegeben Beispiel enthalten. Allein dort ist angenommen, dass das Instrument tehlerfrei und fehlerfrei aufgestellt ist. Dieses trifft aber nicht zu. Sei die

Höhenaxe um den Winkel i gegen den Horizont geneigt (positiv, wenn das westliche Axenende das höhere ist) und das Azimuth dieses Axenendes 90°-k. so wird man hier ebenfalls i als eine sehr kleine Grösse ansehen können: hingegen wird & beträchtliche Werthe erreichen. Sei A (Fig. 481) das westliche Axenende, Z

das Zenith, P der Pol, S' der Polstern, S ein Zeitstern, so wird $ZA = 90^{\circ} - i$; ferner, da S die Richtung gegen Süden ist, $4 \times SZA = 90^{\circ} - k$ sein. Sei weiters die Deklination des westlichen Axenendes n, der Stundenwinkel $90^{\circ} - m$, so ist $PA = 90^{\circ} - n$, $4 \times SPA = 90^{\circ} - m$.

Für den Zeitstern S, dessen sphärische Coordinaten, Rectascension und Deklination α und δ seien, ist der Stundenwinkel SPs = t (in der Figur negativ oder $360^{\circ} - t$) und $PS = 90^{\circ} - \delta$; für den Polstern S' dessen Coordinaten

 α' , δ' seien, ist der Stundenwinkel S'Ps = t' und $PS' = 90^{\circ} - \delta'$; endlich soll die Differenz der Stundenwinkel t' - t mit 2τ bezeichnet werden, also

$$t-t=2\tau$$

Der von der Absehenslinie OS beschriebene grösste Kreis wird nur dann durch das Zenith gehen, wenn der Collimationsfehler 0 ist; man kann nun aber annehmen, dass der Collimationsfehler nicht für beide Sterne derselbe ist (die beiden Sterne nicht am selben Faden beobachtet sind); sei derselbe für den Zeitstern S gleich C, für den Polstern S' gleich S', so wird S' = 90° + C, S' = 90° + C und der grösste Kreis S' geht nicht durch das Zenith).

Aus dem Dreiecke ASP mit den Seiten $90^{\circ} + C$, $90^{\circ} - n$, $90^{\circ} - \delta$ und dem der ersten Seite gegenüberliegenden Winkel: $90^{\circ} - m - t$ erhält man:

$$-\sin C = \sin n \sin \delta + \cos n \cos \delta \sin (m+t) \tag{21 a}$$

und aus dem Dreiecke AS'P mit den Seiten $90^{\circ} + C'$, $90^{\circ} - n$, $90^{\circ} - \delta'$ und dem der ersten Seite gegenüberliegenden Winkel $90^{\circ} - m - l'$:

$$-\sin C' = \sin n \sin \delta' + \cos n \cos \delta' \sin (m+t'). \tag{21b}$$

*) Als eine strenge Lösung der Aufgabe möge hier die folgende einfache Form angeführt werden: Sei die Entfernung SS' im grössten Kreise gleich d_i der Winkel PSS' gleich ξ , $ASS' = 90^{\circ} + \eta_i$, $APS = 90^{\circ} - y$, so erhält man:

1) Aus dem Dreiecke SPS' mit den Seiten: $90^{\circ} - \delta$, $90^{\circ} - \delta'$ und d und den gegenüberliegenden Winkeln:

•, ξ ; $360^{\circ} - t + t' = t' - t = 2\tau$:

$$\cos d = \sin \delta \sin \delta' + \cos \delta \cos \delta' \cos 2\tau$$

 $\sin d \sin \xi = \cos \delta' \sin 2\tau$ (a)

 $\sin d \cos \xi = \cos \delta \sin \delta' - \sin \delta \cos \delta' \cos 2\tau;$

2) Aus dem Dreiecke ASS' mit den Seiten: 90° + C, 90° + C', d und den gegenüberliegenden Winkeln: •, 90° + η, •

$$\sin \eta = \frac{\sin C' - \sin C \cos d}{\cos C \sin d};$$
 (b)

3) Aus dem Dreiecke APS mit den Seiten: $90^{\circ} - \delta$, $90^{\circ} - n$, $90^{\circ} + C$ und den gegenüberliegenden Winkeln:

•, $90^{\circ} + (\xi + \eta)$, $90^{\circ} - y$:

$$\begin{array}{ll} \sin n = -\sin C \sin \delta - \cos \zeta \cos \delta \sin (\xi + \eta) \\ \cos n \cos y = \cos C \cos (\xi + \eta) \\ \cos n \sin y = -\sin C \cos \delta + \cos C \sin \delta \sin (\xi + \eta); \end{array} \tag{c}$$

4) Aus dem Dreiecke APZ mit den Seiten: $90^{\circ}-i$, $90^{\circ}-m$, $90^{\circ}-\phi$ und den gegenüberliegenden Winkeln: $90^{\circ}-m$, $90^{\circ}+k$, •:

und daraus

$$sin m = -tang n tang \varphi + sin i sec n sec \varphi,$$
 (d)

m ist eindeutig bestimmt, da es kleiner als 90° ist, aber positiv oder negativ sein kann.

Da nu

$$t'-t=2\tau=(u'-\alpha')-(u-\alpha)$$

 $sin i = sin n sin \phi + cos n cos \phi sin m$

eine bekannte Grösse ist, so erhält man aus (a) die Grössen d, ξ ; aus (b) den Werth von η ; aus (c) weiteres n und y, endlich aus (d) den Werth von m, und da schliesslich

$$SPZ = 360^{\circ} - t = 4APS - 4APZ = (90^{\circ} - y) - (90^{\circ} - m) = m - y$$

ist, so wird

demnach, weil
$$x = t - u + \alpha$$
 ist:

$$x = \alpha - u + (y - m),$$
(c)

wobei y und m selbstverständlich im Zeitmaass auszudrücken sind. Diese strengen Formeln sind aber in der Rechnung sehr unpraktisch; man könnte aus ihnen wohl auch Näherungsformeln ableiten; doch wäre diese Ableitung weniger übersichtlich, und giebt nicht die einachsten Rechnungsmetho den, weshalb oben ein anderes Verfahren eingeschlagen wurde.

Die Grössen m und n sind aber leicht durch die auf den Horizont bezogenen Coordinaten i und k des westlichen Axenendes auszudrücken; man erhält aus dem Dreiecke APZ, in welchem

die Seiten
$$90^{\circ} - n$$
, $90^{\circ} - i$, $90^{\circ} - \varphi$, und die gegenüberliegenden Winkel $90^{\circ} + k$, $90^{\circ} - m$,

sind, die Gleichungen

$$sin n = sin i sin \varphi - cos i cos \varphi sin k
cos n cos m = cos i cos k
cos n sin m = sin i cos \varphi + cos i sin \varphi sin k.$$
(22)

Substituirt man die Formeln (22) in (21a), so folgt

und eine ähnliche Entwickelung für C', in welcher nur δ' , t' an Stelle von δ , t steht. Die Werthe von t, t' sind aber nicht bekannt; man hat

$$t = u + x - \alpha$$

$$t' = u' + x - \alpha'$$

wenn u, u' die Uhrzeiten der Beobachtung der beiden Sterne sind. Daher ist

$$t'-t=(u'-\alpha')-(u-\alpha)$$

eine bekannte Grösse. Schreibt man daher

$$t' - t = (u' - \alpha') - (u - \alpha) = 2\tau$$

$$t' + t = 2\theta,$$
(23)

so wird

$$t' = \theta + \tau, \quad t = \theta - \tau \tag{23a}$$

und die beiden Gleichungen für sin C, sin C werden 1)

$$\begin{array}{lll} -\sin C = \sin i \cos z & -\\ & -\cos i \sin k \left[\cos \varphi \sin \delta - \sin \varphi \cos \delta \cos \left(\theta - \tau\right)\right] +\\ & +\cos i \cos k \cos \delta \sin \left(\theta - \tau\right), \end{array}$$

wobei der Coeffizient von sini durch cosz ersetzt wurde, da wegen der Kleinheit von i ein genäherter Werth der Zenithdistanz genügen wird.

Diese und die analoge Formel für den zweiten Stern können nun geschrieben werden:

cos isink[cos φ sin θ — sin φ cos θ cos $(\theta - \tau)$] — cos icoskcos θ sin $(\theta - \tau)$ = sin θ C + sinicos θ cos isin θ [cos φ sin θ] — sin θ Cos θ cos θ 1 cos θ 2.

Sucht man aus diesen Gleiehungen einmal cos i sin k, dann cos i cos k, so erhält man:

$$\begin{array}{ll} N\cdot cos\, isin\, k = (sin\, C + sin\, icos\, z)\, cos\, \delta'\, sin\, (\theta + \tau) - (sin\, C' + sin\, icos\, z')\, cos\, \delta\, sin\, (\theta - \tau) \\ N\cdot cos\, icos\, k = (sin\, C + sin\, icos\, z)[cos\, \phi\, sin\, \delta' - sin\, \phi\, cos\, \delta'\, cos\, (\theta + \tau)] - \end{array} \tag{24}$$

$$-(\sin C' + \sin i \cos z')[\cos \varphi \sin \delta - \sin \varphi \cos \delta \cos (\theta - \tau)],$$

wobei

 $N = \cos \varphi \sin(\delta - \delta') \sin \theta \cos \tau + \cos \varphi \sin(\delta + \delta') \cos \theta \sin \tau - \sin \varphi \cos \delta \cos \delta' \sin 2\tau$ (24a) ist. Eine strenge Lösung würde hieraus erhalten, indem, wenn die rechten Seiten der beiden Gleichungen (24) mit A und B bezeichnet werden,

Man h\u00e4tte diese Formel auch aus der Betrachtung des Dreieckes zwischen dem Zenith Z, dem Stern S und dem Axenende A in der Form erhalten

 $^{-\}sin C = \sin i \cos x + \cos i \sin x \sin (k+a)$, wenn x, a Zenithdistanz und Azimuth des Sternes S sind; für a ist aber nunmehr der Stundenwinkel zu substituiren, was mittels der bekannten Formeln auf den obigen Werth führt.

$$N^2 = A^2 + B^2$$

wäre. Da aber rechts noch die Unbekannte 9 auftritt, so wäre dies dennoch nur eine indirekte Lösung, welche wesentlich vereinsacht werden kann, wenn man berücksichtigt, dass i, C, C' nur kleine Grössen sind. Für den Fall, dass i = C = C' = 0 ware, d. h. dass das Instrument tehlerfrei und auch fehlerfrei (ohne Axenneigung aber in einem beliebigen Azimuthe k) aufgestellt wäre, würde

$$N \cos i \sin k = 0$$

 $N \cos i \cos k = 0$

d. h. für jedes beliebige k der Werth

$$N = 0$$

folgen. Bestimmt man den hieraus folgenden Werth von θ , der mit θ_0 bezeichnet werden soll, so ist

 $\cos \varphi \sin (\delta - \delta') \sin \theta_0 \cos \tau + \cos \varphi \sin (\delta + \delta') \cos \theta_0 \sin \tau - \sin \varphi \cos \delta \cos \delta' \sin 2\tau = 0$

Setzt man behufs Auflösung dieser Gleichung

$$sin (\delta - \delta') cos \tau = m cos M$$

 $sin (\delta + \delta') sin \tau = m sin M,$ (25)

so erhält man zur Bestimmung von θo die Gleichung

$$m \sin (M + \theta_0) = tang \varphi \cos \delta \cos \delta' \sin 2\tau, \qquad (25a)$$

d. i. die aus Anlass derselben Aufgabe beim Universaltransit abgeleitete Gleichung. Sei nun

$$\theta = \theta_0 + 2\theta \tag{26}$$

also 28 die kleine an 80 anzubringende Correctionsgrösse, welche den richtigen Werth von 8 giebt, so ist

 $N = m \sin(M + \theta) \cos \varphi - \sin \varphi \cos \delta \cos \delta' \sin 2\tau$

oder da

$$0 = m \sin (M + \theta_0) \cos \varphi - \sin \varphi \cos \delta \cos \delta' \sin 2\tau$$

ist, auch

$$N = m \sin(M + \theta) \cos \varphi - m \sin(M + \theta_0) \cos \varphi =$$

$$= 2m \cos \varphi \sin \frac{\theta - \theta_0}{2} \cos \left(M + \frac{\theta + \theta_0}{2}\right)$$

oder da $\frac{\theta - \theta_0}{2} = \theta$ gesetzt wurde

$$N = 2 m \cos \varphi \sin \vartheta \cos (M + \Theta_0 + \vartheta). \tag{27}$$

Ferner ist

$$\cos \delta' \sin (\theta + \tau) = \sin z' \sin a'$$

$$\cos \varphi \sin \delta' - \sin \varphi \cos \delta' \cos (\theta + \tau) = -\sin z' \cos a'$$

$$\cos \delta \sin (\theta - \tau) = \sin z \sin a$$

$$\cos \varphi \sin \delta - \sin \varphi \cos \delta \cos (\theta - \tau) = -\sin z \cos a.$$

In denjenigen Ausdrücken, in denen sin i als Faktor auftritt, kann hier unbedenklich $a' = 180^{\circ} + a$ angenommen werden, und man erhält dann weiter: $N\cos i\sin k = -\sin i\sin a\sin(z'+z) + \sin C\cos \delta'\sin(\theta+\tau) - \sin C'\cos \delta\sin(\theta-\tau)$ N cos i cos $k = + \sin i \cos a \sin(z' + z) + \cos \varphi [\sin C \sin \delta' - \sin C' \sin \delta] -$

 $-\sin \tau [\sin C\cos \delta'\cos(\theta+\tau) - \sin C'\cos \delta\cos(\theta-\tau)]$

Diese Formeln wären anzuwenden, wenn C und C' grössere Werthe hätten also wenn Beobachtungen berechnet werden sollten, bei denen Polstern und Zeitstern jeder an einem anderen Seitenfaden beobachtet ist. Die Auflösung der Gleichungen wäre dann indirekt, indem zunächst für θ ein Näherungswerth θ_0 eingeführt würde, mit welchem die rechten Seiten von (28) zu berechnen sind. Damit folgen Werthe von N und k, (cos i kann unbedenklich gleich 1 angenommen werden), und mit dem so erhaltenen Werthe von N folgt aus (27) der Werth von θ , somit nach (26) ein besserer Werth für θ , mit welchem die Rechnung zu wiederholen wäre.

Dieser Rechnungsmechanismus wird aber aus zwei Gründen nicht praktisch; denn erstens wäre eben die Rechnung indirekt, und zweitens werden ja die Sterne nicht an einzelnen Fäden beobachtet, sondern an mehreren. Gerade dieser letztere Umstand, welcher speciell eine willkürliche Combination von Fäden des Polsternes und Zeitsternes erfordern würde, legt die Notwendigkeit einer anderen Lösung nahe. Auch hier wird es wieder praktisch, die sämmtlichen Beobachtungen auf einen Mittelfaden zureduciren, dessen Collmin ationsfehler möglichst klein gehalten werden kann. Wird dieses zunächst vorausgesetzt, d. h. sind u, u' die beobachteten Uhrzeiten am Mittelfaden, für welchen C = C' = c sehr klein ist, so kann man für die Coëfficienten von c dieselben Substitutionen vornehmen, wie dieselben oben für die Coefficienten von s i vorgenommen wurden, und man erhält dann, wenn noch cos i = 1 gesetzt wird:

N sin
$$k = -\sin i \sin(z' + z) \sin a - \sin c (\sin z' + \sin z) \sin a$$

N cos $k = +\sin i \sin(z' + z) \cos a + \sin c (\sin z' + \sin z) \cos a$,

aus welchen Gleichungen man N und k sofort ermitteln kann. Man findet leicht $N = \sin i \sin (z^i + z) + \sin c (\sin z^i + \sin z); \quad k = -a,$

wonach & aus der Gleichung folgt

 $2m\cos\varphi\sin\theta\cos(M+\theta_0+\theta)=\sin i\sin(z'+z)+\sin\epsilon(\sin z'+\sin z)$ (29) und mit Rücksicht auf die Kleinheit der Werthe von i und ϵ :

$$\vartheta = \frac{i \sin{(z'+z)} + c \left(\sin{z'} + \sin{z} \right)}{2 m \cos{\varphi} \cos{(M+\theta_0)}},$$

daher

$$\theta = \theta_0 + \frac{i \sin(z' + z) + c \left(\sin z' + \sin z\right)}{m \cos \varphi \cos(M + \theta_0)}.$$
 (30)

Diese Art der Auflösung knüpft sich aber an die Bedingung, dass die Collimationsfehler klein sind, d. h. dass die Seitenfäden auf den Mittelfaden reducirt sind. Sei also

$$C = c - f$$

wobei f der Abstand des Seitensadens vom Mittelsaden, positiv oder negativ ist, je nachdem der Seitensaden später oder früher als der Mittelsaden getroffen wird, so folgt aus (21), wenn man unter u die Reduction vom Seitensaden auf den Mittelsaden versteht, d. h. die Zeit, welche der Stern braucht, um vom Mittelsaden zum Seitensaden, oder von diesem zum Mittelsaden zu kommen:

$$-\sin c = \sin n \sin \delta + \cos n \cos \delta \sin (m+t)$$

$$-\sin (c-f) = \sin n \sin \delta + \cos n \cos \delta \sin (m+t+v).$$

Subtrahirt man hier die erste Gleichung von der zweiten, so erhält man $sinc - sin(c - f) = cos n cos \delta [sin(m + t + v) - sin(m + t)]$

oder

$$2\sin\frac{f}{2}\cos\left(\frac{f}{2}-c\right)=2\cos n\cos\delta\sin\frac{u}{2}\cos\left(m+t+\frac{u}{2}\right).$$

Da hier die Berechnung von n und m nöthig wäre, weil dessen Werthe wegen der Aufstellung des Instrumentes ausserhalb des Meridians nicht sehr klein vorausgesetzt werden dürfen, so ist es nöthig, statt derselben i und k einzuführen, zu welchem Zwecke rechts $cos\left(m+t+\frac{o}{2}\right)$ aufzulösen ist. Es wird:

$$2\sin\frac{f}{2}\cos\left(\frac{f}{2}-\epsilon\right)=2\cos\delta\sin\frac{\upsilon}{2}\left[\cos n\,\cos m\,\cos\left(t+\frac{\upsilon}{2}\right)-\cos n\,\sin m\sin\left(t+\frac{\upsilon}{2}\right)\right]$$

und durch Substitution der Ausdrücke aus (23) nach einiger Reduction:

$$2 \sin \frac{f}{2} \cos \left(\frac{f}{2} - \epsilon \right) = 2 \cos \delta \sin \frac{\upsilon}{2} \left\{ -\sin i \cos \varphi \sin \left(t + \frac{\upsilon}{2} \right) + \cos i \left[\cos \frac{\upsilon}{2} (\cos k \cos t - \sin \varphi \sin k \sin t) - \sin \frac{\upsilon}{2} (\cos k \sin t + \sin \varphi \sin k \cos t) \right] \right\}.$$

Ist nun a das Azimuth des Zeitsternes bei seinem Durchgange durch den Mittelfaden, so ist k=-a (die oben für den Mittelfaden abgeleitete Beziehung); da aber, wenn q den parallaktischen Winkel, im Momente des Sterndurchgangs durch den Mittelfaden bedeutet, die Beziehungen gelten:

so wird

$$sec \delta \sin \frac{f}{2} \cos \left(\frac{f}{2} - c\right) = \cos i \cos q \sin \frac{\upsilon}{2} \cos \frac{\upsilon}{2} \left[-\tan g i \frac{\cos \varphi}{\cos q} \frac{\cos \left(t + \frac{\upsilon}{2}\right)}{\cos \frac{\upsilon}{2}} + 1 + \frac{1}{2} + 1 + \frac{1}{2} \sin \delta \tan q \right].$$

Die Reductionen werden nun etwas verschieden für Zeit- und Polsterne sein.

1) Für Zeitsterne hat man, da $\sec \delta$ mässig ist, i sehr klein gehalten werden kann, und in der Nähe des Meridians auch q klein ist, v gegenüber f nur mässig vergrössert; man kann daher wegen der Kleinheit von c in diesem Falle $\cos \left(\frac{f}{2}-c\right)$ durch $\cos \frac{f}{2}$ ersetzen, und ebenso werden in dem Coëfficienten von i die $\cos \frac{v}{2}$ und $\cos \left(t+\frac{v}{2}\right)$ gleich 1 gesetzt werden können, und es wird daher $\sin f$ sec δ seci sec $q=\sin v\left[1+\sin \delta$ tang q tang $\frac{v}{2}-i$ arc 1" $\cos \varphi$].

Die Correction i arc 1" cos \(\phi \) wird nun selbst für grössere Deklinationen noch ausreichend in dieser Form berücksichtigt, während für kleinere \(\partial \) dieser Betrag auf die Correction von sin \(\phi \) einen merklichen Einfluss \(\partial \) berhaupt nicht hat, so dass man für Zeitsterne

$$sin v = \frac{sin f sec \delta sec q}{1 + sin \delta tang q tang \frac{v}{2}}$$

setzen kann. Das Auftreten des parallaktischen Winkels in dieser Formel berücksichtigt in der Reduction auf den Mittelfaden die Abweichung des Instrumentes vom Meridian. Für den Meridian selbst wird q=0; für Zeitsterne kann man übrigens noch genügend genau den Bogen mit dem Sinus vertauschen, und hat dann

$$v = \frac{f \sec \delta \sec q}{1 + 1 \cos in \delta \tan q}$$

oder

$$v = f \sec \delta \sec q - \frac{1}{2} f^2 \arcsin^{1/2} \cdot \tan g \delta \sec \delta \tan g q \sec^2 q$$
 (31a)
 $u_m = u_t - v_t$

wenn u_i die Antrittszeit des Sternes am Seitenfaden, und u_m die zugehörige Zeit des Mittelfadens ist.

Ein Stern, dessen Rectascension α ist, kommt für einen ganz bestimmten Stundenwinkel in den Vertical des Polarsternes, worüber unten gesprochen wird, diesem Stundenwinkel und seiner Deklination entspricht ein ganz bestimmter parallaktischer Winkel g; man kann demnach für jeden Zeitstern, ebenso wie man seine Reductionen auf den Mittelfaden für den Durchgang durch das Fadennetz eines Meridianinstrumentes bestimmen kann, auch die Reductionen ν ermitteln für den Durchgang durch den Vertical des Polarsternes. Diese werden hier aber nicht nur von seiner Deklination, sondern auch von seiner Rectascension abhängen, denn diese bestimmt das zugehörige Azimuth des Polarsternes und damit den Werth von g. Mit Berticksichtigung des zweiten Gliedes würden die Fadenreductionen etwas verschieden für beide Kreislagen. Die Formeln (31a) bestimmen nämlich die Reductionen vom späteren Seitenfaden auf den Mittelfaden ν). Für einen Faden, der vor dem Mittelfaden passirt wird, ist der Collimationsfehler C = c + f (gemessen vom westlichen Axenende); die Reduction ν ändert daher ebenso wie die Fadendistanz f das Zeichen, und es wird

$$v' = f \sec \delta \sec q + \frac{1}{2} f^2 \tan g \delta \sec \delta \tan g q \sec^2 q$$

$$u_m = u_r + v'.$$
(31b)

oder, wenn & wesentlich grösser wird:

$$sin v = \frac{sin f sec \delta sec q}{1 \mp sin \delta tang q tang \frac{v}{2}}; \quad u_m = u_t \pm v$$
 (31c)

wo die oberen Zeichen für vorangehende, die unteren für folgende Seitenfäden gelten²). Meist wird nun aber das zweite Glied in (31a), (31b) vernachlässigt werden, und dann ist die Reduction einfach

$$v = f \sec \delta \sec q \tag{31d}$$

HARZER schlägt vor, den Zeitstern nur an der einen Hälfte der Fäden zu beobachten, bis zu einer gewissen, nicht zu kleinen Entfernung vom Mittelfaden, dann rasch umzulegen, und den Stern neuerdings an denselben Fäden, jetzt in der anderen Kreislage zu beobachten. Da in diesen beiden Fällen das erste Glied der Reduction in (31a), (31b) oder (31d) das entgegengesetzte Zeichen erhält, so wird es im Mittel wegfallen, und man braucht die Reductionen auf den Mittelfaden überhaupt nicht zu rechnen, wenn man vom zweiten Gliede absehen kann. Ueberdies ist dann c = 0 zu setzen, da man auf einen ideellen Mittelfaden reducirt, dessen Collimationsfehler gleich Null ist. Geht dabei aber ein Faden auf der einen Seite verloren, so muss derselbe Faden auf der anderen Seite als unvollständig ebenfalls weggelassen werden. Diese Methode scheint daher gegen die von Döllen früher vorgeschlagene doch keine wesentlichen Vorzüge zu haben; selbst bei völlig sicherem Umlegen wird man stets in die Unannehmlichkeit versetzt, einen oder den anderen gut brauchbaren Faden weglassen zu müssen. Auch wird man bei kleinen Deklinationen weit vom Mittelfaden auf hören müssen, um Zeit zum Umlegen zu haben3). Wahrscheinlich

¹⁾ Dieser Seitenfaden liegt im Mikrometer des geraden Fernrohres östlich vom Mittelfaden.

³⁾ Dass f bei Aenderung der Kreislage dasselbe bleibt, aber der Faden in der einen Kreislage vor, in der anderen nach dem Mittelfaden angeterten wird, muss bei der Reduction selbstverständlich berücksichtigt werden; anders ausgesprochen: die Reihenfolge der Fäden kehrt sich beim Umlegen oder Durchschlagen des Fernrohres um.

³⁾ Ich beobachtete an einem Universalinstromente, dessen 9 F\u00e4den, Mittelfaden und 4 F\u00e4den beiderseits von Aequatorsternen in etwa 2n passiert wurden. Es war daher unm\u00f6glich umzulegen, oder selbst nur durchzuschlagen.

waren es diese Umstände (nicht aber, wie HARZER meint, die Abneigung Döllen's gegen das Umlegen), welche Döllen bestimmten, den Zeitstern völlig in einer Kreislage zu beobachten. In der That fällt die Mehrarbeit bei der Berechnung der Fadenreductionen fast nicht ins Gewicht, wenn man Tafeln für dieselben hat.

- 2) Für Polsterne hat man zu unterscheiden, ob man in der Nähe des Meridiandurchganges oder in der Nähe der grössten Digression beobachtet, was wieder von der Rectascension des Sternes abhängt. Für Zeitsterne, deren Rectascension zwischen 214 und 54, und zwischen 94 und 174 liegen, wird der Durchgang durch den Vertical des Polaris noch mässig weit von der grössten Digression desselben stattfinden; für Sterne hingegen, deren Rectascension zwischen 54 und 94 und zwischen 174 und 214 liegen, wird der Polarstern zur Zeit des Sterndurchganges sich in der Nähe der grössten Digression befinden.
- a) Im ersten Falle wird man den Polarstern an einem oder zwei Seitenfäden beobachten können. Statt der Seitenfäden kann auch nach Harzer's Vorschlag der Durchgang durch einen beweglichen Mikrometerfaden beobachtet werden, wenn die Stellung desselben durch die Lesung L an der Trommel ermittelt wird. Mit der Ablesung Lo für die Conicidenz des beweglichen Fadens mit dem Mittelfaden und dem Werth der Schraubenrevolution R ergiebt sich der Abstand des Mikrometerfadens vom Mittelfaden gleich $R(L-L_0)$; das Zeichen braucht nicht angesetzt zu werden, wenn man bei der Reduction berücksichtigt, ob der Fadenantritt vor oder nach dem Mittelfaden stattfindet.

Die zu verwendende Formel ist wieder (a). Da der Polstern nur in sehr geringen Entfernungen vom Mittelfaden beobachtet werden wird, so wird $\cos\left(\frac{f}{2}-\epsilon\right)$ wieder durch $\cos\frac{f}{2}$ ersetzt werden können, und es entsteht links 1 sin f sec 8; i beträgt nur wenige Bogensecunden, und selbst für die genaueste siebenstellige Rechnung kann cos i = 1 angenommen werden, so dass

$$sinv = \frac{sinf sec \delta sec q}{1 \mp sin \delta tang q tang \frac{\upsilon}{2} - i arc 1'' \frac{cos \varphi}{cos q} \frac{cos \left(t + \frac{\upsilon}{2}\right)}{cos \frac{\upsilon}{2}}$$
(32)

 $u_m = u_s \pm v$.

wird, wobei wieder die oberen Zeichen für vorangehende, die unteren für folgende Fäden gelten.

Für den Polstern kann q jeden beliebigen Werth annehmen; für die grösste Digression ist es 90°, und die Formel wird unanwendbar. Beschränkt man den Fall a) auf die oben angegebenen Grenzen, zwischen den Rectascensionen der Sterne von 21h und 5h und zwischen 9h und 17h, und nimmt, was ja durch die richtige Einstellung des Instrumentes zu erzielen ist, den Polarstern nahe dem Mittelfaden, so wird man die Formel (32) noch etwas vereinfachen können. Da nämlich v in Folge der Kleinheit von f ebenfalls noch klein ist, so kann man

in dem Faktor von i auch $\cos \frac{v}{2} = 1$, und $\cos t$ an Stelle von $\cos \left(t + \frac{v}{2}\right)$ setzen, und der Nenner wird:

$$1 \mp \sin \delta \ tang \ tang \ \frac{\omega}{2} - i \ arc \ 1'' \ \frac{\cos \varphi}{\cos q} \cos t$$
 ,

so dass v nur im ersten Zusatzgliede enthalten ist. Setzt man hier

$$tang \frac{\upsilon}{9} = \frac{1}{2} \sin \upsilon + \frac{1}{8} \sin \upsilon^3 ,$$

so wird, wenn für einen Augenblick Kürze halber

$$sinv = z, sin \delta tang q = \alpha$$

$$\frac{sin f sec \delta sec q}{1 - i \frac{cos \psi}{cos q} cos t} = \beta$$

gesetzt wird:

$$z\left[1\mp\left(\frac{z}{2}+\frac{z^3}{8}\right)\alpha\right]=\beta$$

und daraus durch Umkehrung der Reihe:

$$z=\beta\pm\frac{\alpha}{2}\,\beta^2+\frac{\alpha^2}{2}\,\beta^3\pm\frac{\alpha\,\beta^3}{8}\,,$$

oder mit Vernachlässigung der von \(\beta^8 \) abhängigen Glieder

rnachiassigning der von
$$\mathfrak{p}^*$$
 abhangigen Glieder
$$sinv = \frac{sinf see \delta see q}{1 - i \frac{\cos \varphi}{\cos \varphi} \cos t} \pm \frac{sin\delta t ang q}{2} sin^2 f see^2 \delta see^2 q.$$

Das von der Neigung abhängige Glied wird in den meisten Fällen wegen der Kleinheit von f vernachlässigt werden können. Setzt man

$$A = \frac{1}{15} \sec \delta \sec q$$

$$B = \pm \frac{1}{30} \tan g \delta \sec \delta \tan g q \sec^2 q \arctan^2,$$

$$v = Af + Bf^2 + Red.$$

so wird

wobei Red. die Reduction vom Sinus auf den Bogen bedeutet, und da von den Coëfficienten A, B bereits der 15. Theil genommen wurde, v in Zeitsecunden erhalten wird. Die Werthe von A, B können für eine gegebene Polhöhe und die verschiedenen Sterne (deren Rectascensionen den Stundenwinkel also auch q für den Polarstern bestimmen) nebst der Aenderung derselben mit der Zeit, welche aus der Aenderung der Deklination des Polarsternes und der Aenderung der Rectascensionen entspringt, tabulirt werden.

b) Die Beobachtung fällt in die Nähe der grössten Digression des Polarsterns. Reductionen auf den Mittelfaden werden hier unanwendbar. Die langsame Bewegung des Polsternes wird es hier erfordern, dass man den Polstern direkt am Mittelfaden einstellt und den Durchgang des Zeitsternes in dem eingestellten Azimuthe beobachtet.

Untersuchungen über die Fehler, über die zweckmässigste Wahl der Sterne u. s. w. müssen hier unterbleiben, und kann auf die diesbezügliche, bereits mehrfach erwähnte Abhandlung von Harzer verwiesen werden. Es genügt hier, die Resultate anzuführen: Ein merkbarer Einfluss der fehlerhaften Stellung der Fäden, der Fadenplatte oder des Objectivs auf die Resultate ist nicht zu befürchten (pag. 32); die Strahlenbrechung wird ebenso wie bei Meridiandurchgängen berücksichtigt, indem man unter Benutzung der wahren Sternörter die mit $(1+\frac{1}{2})$ multiplicirten Fadenabstände als wahre betrachtet (ibid., pag. 33) vergl. auch den Artikel "Meridiankreiss III. Band I. Hälfte, pag. 10.

Die Beobachtungen werden so angeordnet, dass zuerst der Polstern beobachtet wird¹), sodann der Durchgang des Zeitsterns durch die Fäden des im

¹⁾ Es ist praktisch, den Polstern zuerst zu beobachten, da eine m\u00e4ssige Anderung im Azimuth, die sich beim Zeitstern nicht sichtbar macht, den Polstern in gr\u00f6ssere Entfernung vom Mittelfaden bringt.

Azimuth unverändert gehaltenen Instrumentes, und schliesslich nochmals der Polstern; man kann hierbei, wenn die Bewegung des Sternes nicht zu schnell ist (nördlichere Sterne), auch nach der Beobachtung des Sterns an einer Reihe von Fäden vor dem Mittelfaden umlegen und weiter den Stern an denselben Fäden in der anderen Kreislage beobachten, oder aber, was in manchen Fällen noch vorzuziehen sein wird, den Zeitstern an sämmtlichen Fäden in derselben Kreislage beobachten; wenn keine weiteren Beobachtungen anschliessen, so erfolgt die Bestimmung des Collimationsfehlers durch anderweitige Beobachtungen.

Hat man während der Beobachtung des Zeitsterns umgelegt und nimmt man für den Zeitstern das Mittel der Uhrzeiten für jeden einzelnen Faden aus den beiden Kreislagen, so wird man zweckmässig für den Polstern die Durchgänge in der zweiten Kreislage ebenfalls bei denselben Trommelablesungen der Mikrometerschraube vornehmen, und dann fällt im Mittel auch der Collimationsfehler weg, da man hierbei gleichsam auf einen ideellen Mittelfaden, für welchen $\epsilon=0$ ist, reducirt.

Beobachtet man mehrere Zeitsterne, so kann jeder in dem ihm zugehörigen Azimuthe des Polarsternes beobachtet werden und dann wird zwischen zwei Sternen auch umgelegt (s. unten).

In allen Fällen bedarf man einer guten Vorausberechnung, um das Azimuth und die Zeit der Beobachtung zu kennen. Für diesen Zweck wird es am besten sein, eine Ephemeride des Polarsternes (Azimuthe und Zenithdistanzen mit dem Argumente Sternzeit) für die gegebene Polhöhe zu Grunde zu legen, aus welcher man für eine beliebige Sternzeit θ das Azimuth A_{ρ} und die Zenithdistanz Z_{ρ} des Polaris entnehmen kann 1). Für einen Stern S_{γ} dessen Rectascension α ist, ist die Aenderung des Azimuthes gegeben durch

$$\frac{dA}{dt} = \frac{\cos \delta \cos q}{\sin z} \,,$$

wofür man in der Nähe des Meridians ausreichend genau setzen kann:

$$\frac{dA}{dt} = \frac{\cos \delta}{\sin (\varphi - \delta)}.$$

Diesen Werth kann man mit dem Argumente δ für eine gegebene Polhöhe tabuliren; da aber A im Bogenmaasse, I im Zeitmaasse gegeben ist, so wird

$$\left(\frac{dA}{dt}\right)' = 15 \frac{\cos \delta}{\sin (\varphi - \delta)}.$$

die Aenderung des Azimuthes (in Bogenminuten) in einer Zeitminute. Noch besser wird es, den Werth von

$$\mathfrak{A} = 1: \left(\frac{dA}{dt}\right)' = \frac{1}{15} \frac{\sin (\varphi - \delta)}{\cos \delta} \tag{a}$$

zu tabuliren. Entspricht der Sternzeit α (Durchgang des Sternes durch den Meridian) das Azimuth A_{ℓ} des Polarsternes, positiv westlich, negativ östlich vom Meridian, so wird die Zeit x, welche der Stern braucht, um in dieses Azimuth zu kommen, durch die Gleichung bestimmt:

$$x = A_{\rho} : \left(\frac{dA}{dt}\right)'$$

$$x = \emptyset. A_{\rho} \tag{b}$$

oder

Diese Tafel wird zwar nicht immer gültig sein, aber immerhin durch etwa 10 Jahre,
 d. i. 5 der Epoche vorangehende und 5 folgende beibehalten werden können.

und es ist x gleichbezeichnet mit A_p , daher die Sternzeit des Durchganges des Sternes durch den Vertical des Polaris

$$\theta_* = \alpha - x \tag{c}$$

 $(\theta_* < \alpha$, wenn x positiv, nämlich der Polaris westlich, daher der Stern östlich vom Meridian ist; $\theta_* > \alpha$, wenn x negativ ist. Für Zeitsterne nördlich vom Zenith, die aber in der Praxis nicht gewählt werden, gilt wegen des negativen Zeichens von $\mathfrak A$ dieselbe Bezeichnung $\theta_* = \alpha - x$).

Die Werthe der $\mathfrak A$ lassen sich leicht in eine Tafel bringen. Ich habe eine solche Tafel für $\varphi=35^\circ$ bis 65° und für Zenithdistanzen von Sternen zwischen 20° bis 60° berechnet, und theile sie hier mit.

φ=	35°	36°	37°	38°	39°	40°	41°	42°	43°	44°	45°	46°	47°	48°	49°	50°
Flat.		-		1	-	-	21 =	0.0	-							
— 25°	637	643	649	655	661	667	1		1						1	l
- 20	581	588	595	602	608	614	620	626	632	638	643					
- 15	529	536	544	551	558	565	572	579	585	592	598	604	609	615	620	625
10	479	487	495	503	511	519	526	533	541	548	554	561	568	574	580	586
— 5	430	439	448	456	465	473	481	489	497	505	513	520	527	534	541	548
0	382	392	401	410	419	428	437	446	455	463	471	480	488	495	503	511
+ 5	335	345	355	364	374	384	393	403	412	421	430	439	448	456	465	473
+10	286	297	307	318	328	338	349	359	369	379	388	398	407	417	426	435
+15	236	247	259	270	281	292	302	313	324	335	345	355	366	376	386	396
+20	184	195	207	219	231	243	254	266	277	288	300	311	322	333	344	355
+ 25						190	203	215	227	239	252	264	275	287	299	311
+ 30											199	212	225	238	251	263
															1	
\					-			1							1	
8=	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	60°	61°	62°	63°	64°	65°
	50°	51°	52°	53°	54°	55°	1	57°	58°	59°	60°	61°	62°	63°	64°	65°
		51°	52°	53°	54°	55°	1	-	58°	59°	60°	61°	62°	63°	64°	65°
8=		L					1	-	58°	59°	60°	61°	62°	63°	64°	65°
-10°	586	592	598	603	608	613	U =	0.0				61°	62°	63°	64°	65°
$\frac{\delta = -10^{\circ}}{-5}$	586 548	592	598 561	603	608 574	613	¥ =	591	596	601	606					
- 10° - 5	586 548 511	592 555 518	598 561 525	603 567 532	608 574 539	613 580 546	% = 585 553	591 559	596 565	601 571	606 577	583	588	594	599	604
$\frac{\delta = -10^{\circ}}{-5}$ $\frac{0}{+5}$	586 548 511 473	592 555 518 481	598 561 525 489	603 567 532 497	608 574 539 505	613 580 546 513	% = 585 553 520	591 559 527	596 565 534	601 571 541	606 577 548	583 555	588 561	594 567	599 574	604 580
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	586 548 511 473 435	592 555 518 481 444	598 561 525 489 453	603 567 532 497 462	608 574 539 505 470	613 580 546 513 479	% = 585 553 520 487	591 559 527 495	596 565 534 503	601 571 541 511	606 577 548 519	583 555 526	588 561 533	594 567 541	599 574 548	604 580 554
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	586 548 511 473 435 396	592 555 518 481 444 406	598 561 525 489 453 415	603 567 532 497 462 425	608 574 539 505 470 434	613 580 546 513 479 444	% = 585 553 520 487 453	591 559 527 495 462	596 565 534 503 471	601 571 541 511 479	606 577 548 519 488	583 555 526 496	588 561 533 505	594 567 541 513	599 574 548 521	604 580 554 529
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	586 548 511 473 435 396 355	592 555 518 481 444 406 365	598 561 525 489 453 415 376	603 567 532 497 462 425 386	608 574 539 505 470 434 397	613 580 546 513 479 444 407	% = 585 553 520 487 453 417	591 559 527 495 462 427	596 565 534 503 471 437	601 571 541 511 479 446	606 577 548 519 488 456	583 555 526 496 465	588 561 533 505 475	594 567 541 513 484	599 574 548 521 493	604 580 554 529 502
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	586 548 511 473 435 396 355 311	592 555 518 481 444 406 365 322	598 561 525 489 453 415 376 334	603 567 532 497 462 425 386 345	608 574 539 505 470 434 397 357	613 580 546 513 479 444 407 368	% = 585 553 520 487 453 417 379	591 559 527 495 462 427 390	596 565 534 503 471 437 401	601 571 541 511 479 446 411	606 577 548 519 488 456 422	583 555 526 496 465 432	588 561 533 505 475 443	594 567 541 513 484 453	599 574 548 521 493 463	604 580 554 529 502 473
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	586 548 511 473 435 396 355 311 263	592 555 518 481 444 406 365 322 276	598 561 525 489 453 415 376 334 288	603 567 532 497 462 425 386 345 301	608 574 539 505 470 434 397 357 313	613 580 546 513 479 444 407 368 325	% = 585 553 520 487 453 417 379 337	591 559 527 495 462 427 390 349	596 565 534 503 471 437 401 361	601 571 541 511 479 446 411 373	606 577 548 519 488 456 422 385	583 555 526 496 465 432 396	588 561 533 505 475 443 408	594 567 541 513 484 453 419	599 574 548 521 493 463 430	604 580 554 529 502 473 441
- 10° - 5 0 + 5 + 10 + 15 + 20 + 25 + 30 + 35	586 548 511 473 435 396 355 311 263	592 555 518 481 444 406 365 322 276	598 561 525 489 453 415 376 334 288	603 567 532 497 462 425 386 345 301	608 574 539 505 470 434 397 357 313	613 580 546 513 479 444 407 368 325 278	% = 585 553 520 487 453 417 379 337 292	591 559 527 495 462 427 390 349 305	596 565 534 503 471 437 401 361 318	601 571 541 511 479 446 411 373 331	606 577 548 519 488 456 422 385 344	583 555 526 496 465 432 396 357	588 561 533 505 475 443 408 369	594 567 541 513 484 453 419 382	599 574 548 521 493 463 430 394	604 580 554 529 502 473 441 407

Diese Tafeln werden immer ausreichen. Eine grössere Genauigkeit würde erfordern, auch die Aenderung des Azimuthes des Polaris zu berücksichtigen. Sei dieselbe für den betrachteten Zeitmoment, d. h. für einen Zeitstern, dessen

Rectascension α ist, gleich $15\left(\frac{dA}{dt}\right)_p$, so wird das Azimutlı des Polaris zur Zeit $\alpha - x$ gleich

 $A_p = 15 \left(\frac{dA}{dt}\right)_p x$

und demnach müsste

folglich

$$A_{f} - 15 \left(\frac{dA}{dt}\right)_{f} x = 15 \left(\frac{dA}{dt}\right)_{\bullet} x,$$

$$x = \frac{1}{15} \frac{A_{f}}{\left(\frac{dA}{dt}\right)_{\bullet} + \left(\frac{dA}{dt}\right)_{\bullet}}.$$

sein. Endlich muss, da man Zeit- und Polstern nicht gleichzeitig beobachten kann, die Beobachtung des Polarsterns um Δ früher begonnen werden, so dass man als Zeit des Beginnes der Beobachtungen $\alpha-x-\Delta$ nehmen muss. Die Zenithdistanz des Polaris folgt aus der Ephemeride, für diejenige des Zeitsterns kann seine Meridianzenithdistanz

$$Z_{\bullet} = \varphi - \delta$$
 (d)

genommen werden. Der parallaktische Winkel des Zeitsterns folgt aus

$$\sin q = \frac{\cos \varphi}{\cos \delta} \sin A_{\rho} = \frac{\cos \varphi \sin t}{\sin z} \tag{e}$$

Da man nur $\cos q$ braucht, so wird die geringe Aenderung, welche aus der Einstellungsänderung $\left(\frac{dA}{dt}\right)_{*}$ folgt, belanglos; dann können die Fadenreductionen für ieden Stern nach

$$v = f \sec \delta \sec q \tag{f}$$

berechnet werden oder man rechnet eine Deklination de nach

$$\cos \delta_0 = \cos \delta \cos q$$
 (g)

und entnimmt die Fadenreductionen einer allgemeinen Tafel der Fadenreductionen mit der Deklination δ_0 [wegen $v = f \sec \delta_0$].

Die Werthe θ_{\bullet} , Z_{\bullet} , A_{fi} , Z_{f} , δ_{0} können für diejenigen Sterne, welche man für diese Beobachtungen wählt, für einen gegebenen Beobachtungsort tabulirt werden. Die Berechnung der Beobachtungen erfolgt nach

$$\tau = \frac{1}{2} \left[(u' - u) - (\alpha' - \alpha) \right]$$

$$m \cos M = \sin (\delta - \delta') \cos \tau$$

$$m \sin M = \sin (\delta + \delta') \sin \tau$$

$$m \sin (M + \theta_0) = \tan g \varphi \cos \delta \cos \delta' \sin 2 \tau$$

$$\theta = \theta_0 + \frac{i \sin (z + z') + c (\sin z + \sin z')}{m \cos \varphi \cos (M + \theta_0)}.$$

$$t = \theta - \tau; \quad x = t + \alpha - u$$
(A)

oder

$$x = (\theta_0 - \tau) + (\alpha - u) + \frac{i \sin(z + z') + c (\sin z + \sin z')}{m \cos \omega \cos(M + \theta_0)}.$$

Da $M+\theta_0$ nahe 180° und m nahe $\cos\delta$ ist, so kann man für dem Aequator nahe Sterne die Correction wegen Neigung auch einsach schreiben:

$$\frac{i\sin(z+z')}{\cos \varphi}.$$

Die Formeln (A) lassen sich noch in eine andere Form bringen, die mitunter vorgezogen werden kann. Man erhält nämlich durch Einführung der Poldistanz $p = 90^{\circ} - \delta'$ des Polaris

$$m \sin M = \sin \tau \cos (\delta - p)$$

$$m \cos M = -\cos \tau \cos (\delta + p).$$

Multiplicirt man diese Gleichungen mit $\cos \tau$ und $\sin \tau$ und addirt, so folgt $m \sin (M + \tau) = \sin \delta \sin \rho \sin 2\tau$,

während die Gleichung für 00 in

übergeht. Daraus folgt:

$$m\left[\sin\left(M+\theta_{0}\right)-\sin\left(M+\tau\right)\right]=2\,m\cos\left(M+\tau+\frac{\theta_{0}-\tau}{2}\right)\sin\frac{\theta_{0}-\tau}{2}=\\=\sin\rho\sin2\tau\,\frac{\sin\left(\phi-\delta\right)}{\cos\frac{\pi}{2}}.$$

Man sieht übrigens, dass M sehr nahe $180^{\circ} - \tau$ ist; setzt man daher $M = 180^{\circ} - \tau - \pi$,

so folgt durch einfache Umformung (Multiplication der beiden Gleichungen für $m \sin M$ und $m \cos M$ mit $\cos \tau$ und $\sin \tau$, bezw. mit $- \sin \tau$ und $\cos \tau$ und Addition):

$$m \sin \pi = \sin \delta \sin \rho \sin 2\tau$$

$$m \cos \pi = \cos (\delta + \rho) \cos^2 \tau + \cos (\delta - \rho) \sin^2 \tau$$
(A')

und dann

$$\sin\frac{\tau-\theta_0}{2}\cos\left(\pi+\frac{\tau-\theta_0}{2}\right)=\frac{\sin p\sin 2\tau\sin\left(\phi-\delta\right)}{2\,m\cos\phi}$$

oder

$$-\sin\frac{t_0}{2} = \sin\frac{\tau - \theta_0}{2} = \frac{\sin\pi\sin\left(\phi - \delta\right)}{2\sin\delta\cos\phi\cos\left(\pi + \frac{\tau - \theta_0}{2}\right)}. \tag{A"}$$

Meist wird auch π und $\frac{\tau - \theta_0}{2}$ so klein sein, dass man $m \cos \left(\pi + \frac{\tau - \theta_0}{2}\right)$ durch $m \cos \pi$ ersetzen kann, und es wird einfach

$$\sin \frac{t_0}{2} = -\frac{\sin p \sin 2\tau \sin (\varphi - \delta)}{2 \cos \varphi [\cos \delta \cos p - \sin \delta \sin p \cos 2\tau]}.$$

Bei passender Anordnung der Beobachtungen kann man auf Stationen diese Methode gleichzeitig zu Zeitbestimmungen, Polhöhenbestimmungen und Azimuthbestimmungen verwenden. Liest man nämlich bei jeder Einstellung des Fernohres auch den Horizontal- und Verticalkreis, so erhält man aus der Lesung des Verticalkreises die Polhöhe (Circummeridianzenithdistanzen) und aus den Lesungen des Horizontalkreises verbunden mit der genauen Berechnung des Azimuthes des Polarsterns (nachdem die Zeit aus den Durchgängen ermittelt ist) den Meridianpunkt des Kreises, wodurch die Einstellung auf ein irdisches Object sofort dessen Azimuth giebt. Das Schema für die Anordnung der Beobachtungen wird damit das folgende:

a) Polaris zwischen den Horizontalfäden; Uhrzeit und Lesung am Verticalkreise.

Polaris; Uhrzeit des Durchganges an 2 Seitensäden (2 Einstellungen des Mikrometersadens); Lesung am Horizontalkreise.

Erster Zeitstern im unveränderten Azimuthe; Durchgang durch alle Fäden; Einstellung am Mittelfaden zwischen den Horizontalfäden und Lesung am Verticalkreise.

b) Dasselbe für einen zweiten Zeitstern.

Umlegen.

c) Polaris und 2 andere Zeitsterne, wobei die Einstellung des Mikrometerfadens für die Polarisbeobachtungen dieselben sind wie oben, nur in umgekehrter Reihenfolge.

Ein solcher Satz giebt daher nebst der Zeitbestimmung 4 Zenithdistanzen des Polaris, 4 Zenithdistanzen von Studsternen (für die Breitenbestimmung ist es dabei gut, wenn die Zeitsterne nahe dieselbe Zenithdistanz haben wie der Polstern) und 4 Azimuthlesungen.

	Beispiel.	Für	die	Polhöhe	von	Wien	48°	12'-8	folgt	aus	der	Tafel	der	21
die	folgende Sr	ecial	tafel	:										

8	51	8	Ħ	8	20	8	91
10°	0.0575	00	0.0496	+ 10°	0.0419	+ 20°	0.0335
9	567	+ 1	488	11	411	21	326
8	559	2	481	12	403	22	317
7	551	3	473	13	395	23	308
6	543	4	466	14	386	24	298
- 5	0.0535	+ 5	0.0458	+ 15	0.0378	+ 25	0.0289
4	527	6	450	16	369	26	279
3	519	7	443	17	361	27	270
2	511	8	435	18	352	28	260
- 1	504	9	427	19	344	29	250
0	0.0496	+ 10	0.0419	+ 20	0 0335	+ 30	0.0240

Für die Berechnung der Ephemeride des Polaris kann man die Formeln benützen:

 $A = + I \sin t + II \sin 2t$; $z = 90^{\circ} - \varphi + I' \cos t + II' \sin^2 t$, wobei, wenn ρ die Poldistanz der Polaris ist:

I=-p sec φ , $II=-\frac{1}{2}p^2$ arc 1' sec φ tang φ ; I'=-p, $II'=+\frac{1}{2}p^2$ arc 1' tang φ .

Für a = 1^h 23^{m-0}, \hat{o} = + 88° 47'·7 wird der im Folgenden benöthigte Theil der Ephemeride:

θ	Ap	Z_p	9
104 23m 0	-1°16'	42° 40'	44° 3′
10 33.0	-1 13	42 42	41 36
10 43.0	-1 10	42 44	39 8
10 53.0	-16	42 46	36 41
11 3.0	-1 2	42 48	34 14
11 13.0	-0 58	42 50	31 47
11 23.0	-0 54	42 51	29 20
11 33.0	-0 50	42 53	26 53

Für die 4 Zeitsterne p, l, χ und σ Leonis eshält man hieraus l) die folgende Tabelle:

Sterr	1		Gr		θ.	1		A	,	Z	,	9.	sec 80	1	S .
p Leonis													0.00646		
1 Leonis			5.0	10	41.0	+37	8.7	1	10	- 42	44	0 47.5	0.00819	11	6
1 Leonis			4.8	10	57.0	+40	20.6	-1	5	- 42	46	0 43.7	0.00412	7	55
g Leonis		٠	4.1	11	13.4	+41	38.5	-0	58	- 42	50	0 38.9	0.00289	6	36

1901 April 3 beobachtete ich diese Sterne an einem 12-zölligen gebrochenen Universalinstrument von STARKE und KAMMERER auf der Sternwarte des k. u. k. militär-geographischen Institutes in Wien mit Auge und Ohr:

^{&#}x27;) Es ist z. B. für p Leonis: $\alpha = 10^3 \ 27^m$: $\beta = +9^{\circ} \ 49^{\circ}$; mit diesem Werthe von δ erhält man aus der Tafel der $\mathfrak{A}: \mathfrak{A} = 0.0421$; da das Azimuth des Polaris für $10^3 \ 28^m$ Sternzeit $-1^{\circ} \ 14^{\circ} = -74^{\circ}$ ist, so wird $\mathfrak{A}: A = -0.0421 \times 74 = -3^m 1$, um welchen Betrag der Stern früher in den Vertical des Polaris als in den Meridian kommt. Für p Leonis wird weiter

		Ocula	ar Ost			Ocula	r West	
	Schrau- benlesung	Uhrzeit	Schrau- benlesung	Uhrzeit	Schrau- benlesung	Uhrzeit	Schrau- benlesung	Uhrzeit
	R		R		R		R	
Polaris	11.527	10425m55	9.583	10439# 84	9.299	114 1# 44	10.810	11417#22
	11.418	26 26	9.430	39 43	9.436	2 18	10.948	17 53
	11.350	26 41	9.355	39 57	9.550	2 41	11.082	18 20
	20	0	zv.	0	ze.	0	w	0
Libelle	27.0	27.1	26.7	27.4	27.0	27:3	25.3	29.1
	24.4	29.7	23.5	30.7	21.5	32.9	23.0	31.6
Stern:	ρI	eonis	/ L	eonis	χI	conis	σL	eonis
1. Fader	104 3	5" 17:1	104 5	m 54s·3	114 6	m 91.0	114 25	2m 23:-7
2	3	5 5.0	5	1 41.8	6	21.4	2:	2 35.5
3	3-	4 52.1	5	1 29.0	6	34.0	2:	2 48.0
4	3	4 36.3	5	1 13.2	6	49.7	2	3 3.9
m	3-	4 23-1	5	1 0.1	7	2.8	2	3 16.8
6	3-	4 10.0	5	0 46.7	7	16.1	2	30.0
7	3	3 54.2	5	0 31.0	7	31.5	2	3 45.4
8	3:	3 41.9	5	0 18.3	7	44.1	2	3 58.0
9	3	3 29.0	5	0 5.8	7	56.6	2	4 10.7
Lesung am	9						Ì	
Horizontal kreise		8′ 53′′-2	273° 1	0' 43' .4	273° 2	0′ 21"·1	273° 2	4' 20".4

Coincidenz des beweglichen Fadens mit dem Mittelfaden 10.2251.

Da das Instrument bis dahin zu Messungen nach der Horrebow-Talcottschen Methode verwendet worden war, musste ich das Fadennetz um 90° drehen, weshalb die Fadendistanzen neu bestimmt werden mussten. Der Herr k. u. k. Hauptmann C. Gaksch, der die Freundlichkeit hatte, mir bei diesen Beobachtungen Assistenz zu leisten, durchmass am 2. und 3. April V.-M. das Fadennetz mit der Schraube; diese, sowie meine Beobachtungen von γ Cephei (U. C.) 4 H. Draconis (O. C.) ergaben mir den Werth einer Schraubenrevolution gleich 3·6423 (gegenüber dem früheren 3·649; vergl. v. Sterneck »die Polhöhe und ihre Schwankungen«) und für die Fadendistanzen in der Reihenfolge Ocular West, Obere Culmination

$$53^{s} \cdot 149$$
, $40^{s} \cdot 909$, $28^{s} \cdot 437$, $13^{s} \cdot 060$, —, $13^{s} \cdot 172$, $28^{s} \cdot 351$, $40^{s} \cdot 789$, $53^{s} \cdot 123$.

Als Beispiel für die Reduction der Polsterne auf den Mittelfaden hat man nun für die zweite Beobachtung von ρ Leonis:

$$\begin{array}{lll} \theta = 10^k \ 16^m \cdot 5; \ q = 45^\circ \cdot 40' \\ log \ sec \ q = 0.15563 \\ log \ sec \ \delta = 167253 \\ log \ are \ 0.07660 \\ log \ tang \ q = 0.01011 \\ log \ Zahler = 2.46614 \\ \end{array} \begin{array}{ll} log \ \frac{\upsilon}{2} \ sin \ \delta \ arc \ 1'' = 8.02668 \\ log \ Nenner = 9.99525 \\ log \ \upsilon = 2.47089 \\ \upsilon = 4^m \cdot 55^\circ \cdot 7. \end{array}$$

Für den Polaris ist

$$\alpha = 1^h 22^m 27^s \cdot 11$$
, $\delta = +88^\circ 46' 55'' \cdot 5$.

Man erhält damit die folgende Berechnung (die auf den Mittelfaden reducirten Fadenantritte für die Zeitsterne sofort zum Mittel vereinigt):

	p Leonis			/ Leonis			χ	Leo	nis	σ Leonis		
Polaris: BeobZeiten	104	31**	181.8	104	36m	451.8	114	5 <i>m</i>	3.8	114	15**	225 (
		31	21.7		36	49.2		5	7.7		15	25.8
		31	19.3		36	47.9		5	5.9		15	25.8
Polaris: Mittel	10	31	20.0	10	36	47.6	11	5	5.8	11	15	24.7
Zeitstern: Mittel	10	34	23.18	10	51	0.01	11	7	2.83	11	23	16.89
Neigung $i =$	- 0s·129			— 0s 188			- 0s ·279			- 0s ·295		

Es soll nun für ρ Leonis nach den Formeln (A), für χ Leonis nach (A') und (A'') weiter gerechnet werden

Man erhält nun in dieser Art für die 4 Sterne:

		x	Correct. wegen Libelle	Endgleichungen
0- 0	Jp Leonis	- 9 57 · 83 - 9 58 · 09	- 0s.19	$x + 1.974 c = -9m 58 \cdot 02$
				x + 1.956 c = -9 58.37
0 111	(X Leonis	- 9 54·12	- 0.41	x - 2.005 c = -9 54.53
Oc. W.	a Leonis	- 9 54·12 - 9 54·14	- 0.44	x - 2.027 c = -9 54.58

Aus den beiden Gleichungen (Mittel für Ocular Ost und Ocular West):

¹⁾ Die Formeln (A") pag. 170 zeigen, dass bei Anwendung der Formeln A', A", der Werth von τ nur genähert bekannt zu sein braucht. Die Zwischenzeiten u'-u werden, namentlich bei rascherer Aufeinanderfolge der Sterne, immer klein bleiben. 14m und selbst 8m sind bereits beträchtliche Werthe.

$$x + 1.965 c = -9^m 58^i \cdot 195$$

 $x - 2.016 c = -9 54.555$

erhält man

 $c = -0^{\epsilon} \cdot 9143$ (Die direkte Bestimmung durch Collimirung ergab $-0^{\epsilon} \cdot 908$) $x = -9^{m} \cdot 56^{\epsilon} \cdot 40$.

Nach der Formel sin A = sin t cos à cosec z erhält man

aus den		Correction ') der Lesungen	
Stundenwinke	In die Azimuthe	i cot z c cosec z	Meridianlesung
— 3m 13:·2	23 1° 16′ 37″-8	- 2".4 + 22".1	274° 25′ 11″-3
— 3 4·0	1 1 14 45.6	-3.7 + 22.7	25 10.0
- 2 48.5	9 1 4 29.3	- 4.9 - 21.2	25 16.5
-2 41.9	1 1 0 30.6	- 5·0 - 20·6	25 16.6

Zenithdistanzen wurden bei diesem Satze nicht gemessen, da das Instrument nicht durchgeschlagen, sondern umgelegt wurde.

Unter den verschiedenen Combinationen, welche die Bestimmung der Zeit, Polhöhe und der Azimuthe aus den Beobachtungen von Zenithdistanzen und Azimuthen zweier oder mehrerer Sterne gestatten, und welche ein mehr mathematisches Interesse beanspruchen, sind es vorzugsweise noch zwei, welche auch in der Praxis häufig angewendet werden, d. i. die Bestimmung der Zeit aus dem beobachteten Azimuthe und die Bestimmung der Zeit und Höhe aus zwei beobachteten Zenithdistanzen zweier Sterne.

G. Bestimmung der Zeit aus dem beobachteten Azimuthe. Aus den beiden Gleichungen

CH

$$sin z sin A = cos \delta sin t$$

 $sin z cos A = - cos \phi sin \delta + sin \phi cos \delta cos t$

folgt die Formel

$$tang A = \frac{\cos \delta \sin t}{-\cos \phi \sin \delta + \sin \phi \cos \delta \cos t}$$

und daraus

Setzt man hier

$$sin \varphi = m sin M,$$
 $cotang A = m cos M.$

so wird

$$m \sin (M - t) = \cos \varphi \tan g \delta$$
,

aus welcher Gleichung sich t bestimmt, sobald A bekannt ist. Der Werth von t giebt dann den Uhrstand

$$x = \alpha + t - u$$

Die Bestimmung des Azimuthes kann durch Einstellung an einem Universalinstrumente eifolgen, wenn man zur Bestimmung des Meridianpunktes das Azimuth eines terrestrischen Objectes kennt. Wäre dies nicht der Fall, so kann man das Azimuth auch durch Vergleichung der Lesung mit dem Azimuthe eines zweiten Sternes, eines Polsternes ermitteln. Bei letzterem wird man in erster Rechnung für die Bestimmung des Stundenwinkels einen genäherten Uhrstand annehmen können; weicht das Resultat der Zeitbestimmung stärker ab, so muss natürlich die Rechnung wiederholt werden.

Die Beobachtung gestaltet sich so, dass man das Azimuth eines Polsternes (am besten in der Nähe der grössten Digression, da hier der Fehler des Uhr-

¹) Die Correctionen sind mit dem angegebenen Zeichen an dem vom Süden gezählten Azimuthe 180° – A zu addiren, daher von dem angeschriebenen Azimuthe zu substrahiren.

standes den geringsten Einfluss hat) und eines Zeitsternes hintereinander am Universalinstrumente einstellt, und den Horizontalkreis jedesmal abliest. Dabei wird man zweckmässig eine Reihe von Einstellungen (z. B. 6) des Zeitsternes machen hierauf 2—3 Beobachtungen des Polsternes in derselben Kreislage, dann das Instrument durchschlagen, und in der zweiten Kreislage, erst eben so viele (2—3) Beobachtungen des Polsternes und schliesslich dieselbe Anzahl (6) Einstellungen des Zeitsternes in der zweiten Kreislage machen. Bei der Reduction der Beobachtungen, hat man auf die bei Azimuthbestimmungen wichtigen Correctionen (Neigung der Höhenaxe) entsprechend Rücksicht zu nehmen. Hat man in beiden Kreislagen des Instrumentes symmetrisch beobachtet, so wird der Collimationsfehler unschädlich gemacht.

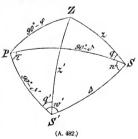
Hierhin gehört auch die folgende Methode der Zeitbestimmung, welche manchmal, wo es sich nicht um die grösste Genauigkeit handelt, recht gute Näherungen für den Uhrstand giebt:

H. Bestimmung der Zeit durch Beobachtung des Verschwindens eines Sternes hinter einem terrestrischen Objecte. Die Sternzeit eines Gestirnes, welche zu einem gegebenen Azimuthe gehört, ist unverändert dieselbe, so lange sich die Position des Gestirnes nicht ändert; kennt man daher die Sternzeit θ_0 des Verschwindens eines Gestirnes für ein gegebenes Gestirn hinter einem verticalen terrestrischen Object (Thurm, Mauer) für einen Tag, so kann damit nach OLBERS' Vorschlag der Uhrstand an einem beliebigen anderen Tage gefunden werden, wenn man die Uhrzeit u des Verschwindens des Gestirnes mit dieser Sternzeit vergleicht. Es muss

$$u + x = \theta_0$$
 demnach $x = \theta_0 - u$

sein. Streng genommen sind nun allerdings die Positionen der Gestirne nicht unveränderlich; einer Aenderung $\Delta\alpha$ der Rectascension entspricht die gleiche Aenderung des Stundenwinkels, daher die Aenderung der Sternzeit des Verschwindens $\frac{1}{15}$ $\Delta\alpha$; da weiteres

$$\frac{dt}{d\delta} = -\tan q \sec \delta$$


ist, so wird einer Aenderung $\Delta\delta$ der Declination eine Aenderung des Stundenwinkels, d. i. der Zeit des Verschwindens von

entsprechen. Demnach wird, wenn die Rectascension und Deklination des Gestirnes $\alpha+\Delta\alpha,\ \delta+\Delta\delta$ sind, nunmehr

$$\theta = \theta_0 + \frac{1}{15} \Delta \alpha - \frac{1}{15} \Delta \delta tang q sec \delta$$

die Sternzeit des Verschwindens sein.

I. Bestimmung der Zeit aus zwei beobachteten Höhen zweier Gestirne und der Zwischenzeit (ohne Kenntniss der Polhöhe). Seien die Coordinaten der beiden Gestirne α , δ ; α' , δ' ; die gemessenen Zenithdistanzen z, z'; die Zwischenzeit τ , so hat man im Dreiecke PSS' (Fig. 482): $PS = 90^{\circ} - \delta$, $PS' = 90^{\circ} - \delta'$ und den Zwischenwinkel $SPS' = \tau$ bekannt; zu suchen sind die gegenüberliegenden Stücke: PS'S = w'; PSS' = w; PSS' = w'; PSS' = w'. Die Gauss'schen Gleichungen geben:

$$\begin{array}{l} \sin\frac{1}{2}\Delta\sin\frac{1}{2}\left(w'-w\right)=\sin\frac{1}{2}\left(\delta'-\delta\right)\cos\frac{1}{2}\tau\\ \sin\frac{1}{2}\Delta\cos\frac{1}{2}\left(w'-w\right)=\cos\frac{1}{2}\left(\delta'+\delta\right)\sin\frac{1}{2}\tau\\ \cos\frac{1}{2}\Delta\sin\frac{1}{2}\left(w'+w\right)=\cos\frac{1}{2}\left(\delta'-\delta\right)\cos\frac{1}{2}\tau\\ \cos\frac{1}{2}\Delta\cos\frac{1}{2}\left(w'+w\right)=\sin\frac{1}{2}\left(\delta'+\delta\right)\sin\frac{1}{2}\tau \end{array} \tag{m}$$

Nunmehr sind in dem Dreiecke ZSS' die beiden Zenithdistanzen z, z' und die dritte Seite Δ bekannt, und man erhält damit die parallaktischen Winkel q und q', indem die beiden Dreieckswinkel, welche der Seite Δ anliegen w+q und w'-q' sind. Es ist, wenn

 $s = \frac{1}{2} (\Delta + z + z')$

gesetzt wird:

$$tang \frac{1}{2} (q + w) = \sqrt{\frac{\sin(s - \Delta) \sin(s - z)}{\sin s \sin(s - z')}}$$

$$tang \frac{1}{2} (q' - w') = \sqrt{\frac{\sin(s - \Delta) \sin(s - z')}{\sin s \sin(s - z)}}$$
(n)

Schliesslich giebt das Dreieck PZS, in welchem die Seiten $PS = 90^{\circ} - \delta$, ZS = z und der eingeschlossene Winkel q bekannt sind, und das Dreick PZS' in analoger Weise die übrigen Stücke nach den Formeln:

$$\cos (45^{\circ} - \frac{1}{2} \varphi) \cos \frac{1}{2} (A - t) = \cos \frac{1}{2} q \cos \frac{1}{2} (h - \delta)$$

$$\sin (45^{\circ} - \frac{1}{2} \varphi) \cos \frac{1}{2} (A + t) = \cos \frac{1}{2} q \sin \frac{1}{2} (h - \delta)$$

$$\sin (45^{\circ} - \frac{1}{2} \varphi) \sin \frac{1}{2} (A + t) = \sin \frac{1}{2} q \cos \frac{1}{2} (h + \delta)$$

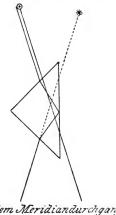
$$\cos (45^{\circ} - \frac{1}{2} \varphi) \sin \frac{1}{2} (A - t) = \sin \frac{1}{2} q \sin \frac{1}{2} (h + \delta)$$

$$\cos (45^{\circ} - \frac{1}{2} \varphi) \cos \frac{1}{2} (A' - t') = \cos \frac{1}{2} q \cos \frac{1}{2} (h - \delta)$$

$$\sin (45^{\circ} - \frac{1}{2} \varphi) \cos \frac{1}{2} (A' + t') = \sin \frac{1}{2} q \cos \frac{1}{2} (h - \delta)$$

$$\sin (45^{\circ} - \frac{1}{2} \varphi) \sin \frac{1}{2} (A' + t') = \sin \frac{1}{2} q \cos \frac{1}{2} (h + \delta)$$

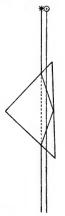
$$\cos (45^{\circ} - \frac{1}{2} \varphi) \sin \frac{1}{2} (A' + t') = \sin \frac{1}{2} q \sin \frac{1}{2} (h + \delta)$$


wo an Stelle der Zenithdistanzen z, z' die Höhen h, h' eingeführt sind, um nicht die Werthe $45^{\circ} \pm z$ benützen zu müssen. Hat man beide Male denselben Stern beobachtet, so vereinfacht sich die Lösung insofern, als $\delta = \delta'$, demnach w = w' ist, womit an Stelle von (m) die Gleichungen treten:

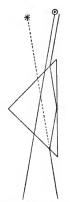
während die weitere Auflösung unverändert bleibt.

Eine wichtige Anwendung wird von dieser Aufgabe bei der Bestimmung von Zeit und Polhöhe zur See gemacht. Hierbei bedient man sich jedoch nicht dieser direkten Methode der Auflösung, sondern einer indirekten, welche in einer Näherungsrechnung besteht: Eine Sonnenhöhe wird in der Nahe des Meridians zur Polhöhenbestimmung, die zweite Sonnenhöhe ausserhalb des Meridians zur Zeitbestimmung genommen. Man geht dabei von einem genäherten Werth der Breite aus, welcher aus der Richtung und Geschwindigkeit des Schiffes (bestimmt durch Log und Compassstrich) bekannt ist. Mit diesem Werthe erhält man einen Uhrstand, der zur zweiten Bestimmung der Breite verwendet wird. In dieser Form würde eigentlich jede Höhe für sich benützt: die Meridianzenithdistanz zur Bestimmung der Polhöhe, die Zenithdistanz ausserhalb des Meridians zur Bestimmung der Zeit. Eine zweckmässige Combination der beiden Höben, bei welcher jedoch auch auf den Umstand Rücksicht zu nehmen ist, dass das Schiff inzwischen seinen Ort geändert hat, wobei also eine Reduction der einen gemessenen Zenithdistanz auf den Ort vorzunehmen ist, an welchem die

andere gemessen wurde, rührt von Dowes her, worüber in den Handbüchern der Schiffsahrtskunde nachgesehen werden kann.


Die beiden zuletzt erwähnten Methoden der Bestimmung der Zeit durch das Verschwinden von Sternen hinter terrestrischen Objecten und die Dowes'sche Methode der Zeit- und Polhöhenbestimmung gehören bereits in das Gebiet der Näherungsmethoden, von denen noch einige erwähnt werden sollen.

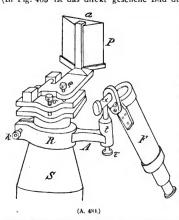
Vor dem Meridiandurchgang.


(A. 483 a.)

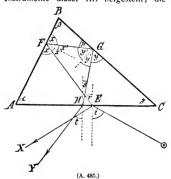
Dipleidoskop (Chronodeik) und Passagenprisma. Eine Vereinfachung der Durchgangsbeobachtungen ergiebt sich zunächst dadurch, dass man an Stelle der Durchgänge eines Sternes durch die Fäden eines Mikrometers den Moment des Meridiandurchganges auf andere Weise erhalten kann. Hierzu hatte DENT nach der Angabe von BLOXAM im Jahre 1843 ein kleines Instrument construirt, welches ursprünglich aus drei unter gleichen Winkeln gegen einander geneigten Glasplatten bestand, von denen die vordere (s. die Fig. 485) durchsichtig, die beiden hinteren amalgamirt waren. Zu den Beobachtungen konnte nur die Sonne verwendet werden, da andere Gestirne zu lichtschwach sind. An der vorderen Glasplatte entsteht durch einfache Reflexion ein Bild der Sonne; die beiden hinteren Spiegel geben ein anderes Bild durch zweimalige Reflexion, (vergl. Fig. 485). Die beiden Bilder bewegen

Meridiandurchgang.

(A. 483 b.)



Nach dem Meridiandurhgang.


(A. 483 c.)

sich in entgegengesetzter Richtung und fallen zusammen, wenn die Sonne durch jene Verticalebene geht, in welcher die einfach reflectirende Glasplatte liegt. Ist diese in der Richtung des Meridians orientirt, so erhält man auf diese Art — auf etwa 1^r genau — die Zeit des wahren Mittags.

STEINHEIL ersetzte die drei Glasplatten durch ein Glasprisma und nannte das Instrument Passagenprisma. Dasselbe ist ein rechtwinkelig gleichschenkliges Prisma, dessen Hypothenusenfläche in die Richtung des Meridians gebracht wird (s. Fig. 483), so dass das an der Hypothenusenfläche nach zweimaliger Brechung und einmaliger Reflexion entstandene Bild mit dem direkt gesehenen, sich in umgekehrter Richtung bewegenden zur Coincidenz kommt. (In Fig. 483 ist das direkt gesehene Bild durch Obezeichnet, seine Bewegung

dass die Absehenslinie stets durch das Prisma geht. Neuerer Zeit hat HEYDE Instrumente dieser Art hergestellt, die bei einem Preise von 180-200 Mk.

findet nach rechts statt, während das durch Reflexion entstandene, durch * bezeichnete sich nach links bewegt.) Plössl stellte das Instrument in der durch Fig. 484 angegebenen Form her. Das Prisma Pruht mittels des Ringes R auf der Säule S und kann durch die Klemme k so nach entsprechender Drehung des Ringes befestigt werden, dass die Fläche a des Prismas in den Meridian fällt. Durch die Schrauben o und o kann das Prisma in zwei aufeinander senkrechten Ebenen justirt werden. Der Arm A trägt den Träger t für das Fernrohr F, welches durch die Schraube t etwas gehoben oder gesenkt und durch das doppelte Charnier aß in verschiedene Zenithdistanzen so gebracht werden kann,

einem Preise von 180—200 Mk. eine Genauigkeit von 0°5 in der Zeitbestimmung zu erreichen gestatten sollen.

Wie die folgende Ableitung zeigt, ist es durchaus nicht nöthig, dass das Prisma gleichschenklig rechtwinklig oder gleichseitig sei.

Seien α, β, γ (Fig. 485) die Winkel derjenigen Schnittfläche ABC des Prismas, in welcher die Reflexionen und Brechungen stattfinden, i der Einfallswinkel, r der Brechungswinkel, und α, γ, α', γ' die an den beiden reflectirenden Flächen (in der ursprünglichen Dent'schen Anordnung) bei der Reflexion entstehenden Winkel; s

der letzte Incidenzwinkel an der Austrittsfläche und t der Austrittswinkel; dann hat man im Dreiecke AEF:

$$x = 180^{\circ} - \alpha - (90^{\circ} - r) x = 90^{\circ} - \alpha + r.$$
 (a)

Da

$$x' = 90^{\circ} - x = \alpha - r$$

ist, so folgt zunächst als erste Bedingung, dass $\alpha > i$ sein muss, da sonst die Reflexion auf die andere Seite erfolgen würde. Weiter ist aus dem Dreiecke BFG:

$$y = 180^{\circ} - \beta - x = 180^{\circ} - \beta - 90^{\circ} + \alpha - r$$

$$y = 90^{\circ} - \beta + \alpha - r.$$
 (3)

Da nun

$$y' = 90^{\circ} - y = \beta - \alpha + r = r - (\alpha - \beta) \tag{\beta}$$

ist, so folgt, dass für $\beta > \alpha$, $\beta - \alpha$ beliebig sein kann, hingegen für $\alpha > \beta$ die zweite Bedingung $\alpha - \beta < r$ sein muss, da sonst wieder Reflexion auf die andere Seite stattfindet. Endlich folgt aus dem Dreiecke GHC:

$$y + 90^{\circ} - s + (180^{\circ} - \alpha - \beta) = 180^{\circ}$$

$$90^{\circ} - s = \alpha + \beta - y = 2\beta + r - 90^{\circ}$$

$$s = 180^{\circ} - 2\beta - r.$$
(1)

Sollen nun der einfach reflectirte Strahl EX und der durch zweimalige Brechung und zweimalige Reflexion austretende Strahl HY parallel austreten, so muss der Austrittswinkel t gleich dem Einfallswinkel i, daher auch s=r sein; dieses findet statt, wenn 1)

$$180^{\circ} - 2r = 2\beta$$

$$r = 90^{\circ} - \beta.$$
 (8)

ist. Diese Bedingung ist erfüllt:

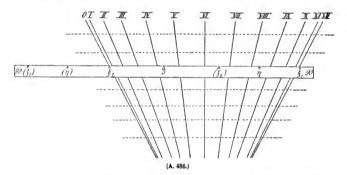
- 1) Für $\beta=45^\circ$, wenn $r=45^\circ$ ist; für r=i wäre dann die Fläche BC parailel zum Meridian. Da dann i für den Meridiandurchgang grösser als 45° ist, so wird es in diesem Falle praktisch, $\alpha>50^\circ$ zu nehmen (erste Bedingung). Die Wahl $\alpha=90^\circ$ erweist sich jedoch wegen der zweiten Bedingung unpraktisch.
- 2) Für $\alpha = \beta = \gamma = 60^{\circ}$, wäre $r = 30^{\circ}$, also wieder für r = i die Fläche BC parallel zum Meridian. Da dann auch für Prismen $\alpha > i$ und $\beta \alpha = 0$ ist, so sind beide Bedingungen erfüllt.
- 3) Allgemein für ein gleichschenkliges Dreieck, für welches $\beta = \gamma$ ist, wird BC für i = r in die Richtung des Meridians fallen nüssen, da $AEF = 90^{\circ} r = \beta = \gamma$, also $EF \parallel BC$, d. h. BC für den Moment der Coincidenz parallel der Richtung der Sonnenstrahlen wird.

Für ein Prisma, in welchem nun allerdings r von i verschieden ist, wird BC nicht genau in die Richtung des Meridians fallen, wird aber leicht durch eine gut gehende Uhr so gestellt werden können, dass die Coincidenz im Momente des wahren Mittags stattfindet. Der Vorzug der Anwendung dieser Prismen gegenüber der älteren Plösst'schen liegt darin, dass man das durch einfache Reflexion an der Vorderfläche bedeutend geschwächte Sonnenbild an Stelle des direkten beobachtet.

Eine andere Vereinfachung, welche wesentlich auf der Umgehung der Rechnung bei Zenithdistanzmessungen beruht, bringt der

EBLE'sche Sextant. Zunächst war die Berechnung der Refraction zu umgehen; dieses erreichte EBLE, indem er die Theilung an dem Sextanten gleich wegen Refraction corrigirte. Da der scheinbaren Zenithdistanz 60° die

12*


¹⁾ Hätte man pianparallele Glasplatten, so wäre r = i und es wäre $i = 90^{\circ} - \beta$.

mittlere Refraction 1'.7, also die wahre Zenithdistanz 59° 58'.3 entspricht, so würde die Theilung am Eble'schen Sextanten bei dem Winkel von 60° die Bezeichnung 59° 58'.3 tragen, oder die am Eble'schen Sextanten abgelesene Zahl von 60° entspricht einer scheinbaren Zenithdistanz (einem Winkel) von 60° 1'.7.

Um die Berechnung des Stundenwinkels aus den beobachteten Zenithdistanzen zu umgehen, dient sein \rightarrow Astronomisches Netz«. Der Deklination δ der Sonne entspricht in der Polhöhe ϕ

die Mittagshöhe
$$h_1 = 90^{\circ} - \varphi + \delta$$

die Mitternachtstiefe $h_2 = 90^{\circ} - \varphi - \delta$.

Man sucht nun auf einer, beiderseits gleichmässig bis 90° getheilten Schiene (vergl. Fig. 486) die Höhen h, und h, bei t, und t, auf, und bei n die ge-

messene Höhe \hbar . Die Schiene wird dann auf ein Netz gelegt, welches 12 convergente Linien hat, die den Stunden 0^{λ} , 1^{λ} ... 12^{λ} entsprechen (und dazwischen nach Maassgabe des Maassstabes des Netzes noch Unterabtheilungen) in der Art, dass die Punkte ξ_1 ξ_2 stets in derselben durch Querlinien 1) angedeuteten Richtung auf die äussersten Linien 0 und XII fallen. Der Nullpunkt der Theilung (Höhe 0 Grad) entspricht dann der Zeit des Aufganges; der Punkt η (entsprechend der gemessenen Höhe \hbar) giebt die zu dieser Höhe gehörige Zeit, und zwar Vormittag, wenn ξ_1 auf XII fällt (wachsenden Höhen entsprechen wachsende Zeiten vor 12^{λ}) und Nachmittag, wenn ξ_1 auf Null fällt, zu welchem Zwecke die Punkt in der durch (ξ_1) , (ξ_2) , (η) angegebenen Lage, also nach links hin aufgetragen werden.

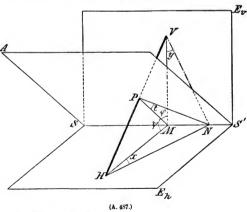
Die aus der gemessenen Zenithdistanz auf diese Art ermittelte Zeit ist die wahre Sonnenzeit, welche mittels einer Zeitgleichungstafel in mittlere Zeit verwandelt wird. (Bei seiner diesbezüglichen Publication giebt EBLE für die Jahre 1852-1863 die mittlere Deklination der Sonne für jede sechste Stunde der einzelnen Tage und ebenso eine Zeitgleichungstabelle.)

Endlich muss an dieser Stelle der

Sonnenuhren gedacht werden, welche direkt aus dem Sonnenstande die Uhrzeit abzulesen gestatten. Instrumente dieser Art waren schon im Alterthume im Gebrauch, wenn sie auch ausserdem zu anderen Zwecken dienten. Hierher

¹⁾ Auf die Construction dieses Netzes kann hier nicht eingegangen werden.

gehört das angeblich von dem Chaldäer Berosus um 600 v. Chr. erfundene Skaphium, ein halbkugelförmig ausgehöhlter Stein (α / α / α) = Trog, Becken, Mulde), bei welchem in der Mitte der Halbkugel ein kleines Kügelchen angebracht war, dessen Schatten in das Innere der Hohlkugel geworfen wurde. Aus dem Stande dieses Schattens konnte die Zeit abgelesen werden, zu welchem Zwecke die Wege des Schattens für verschiedene Jahreszeiten verzeichnet, und die den verschiedenen Tageszeiten entsprechenden Punkte des Schattens auf diesen Wegen eingetragen waren. Dieses Instrument diente übrigens in grösserer Ausführung auch zur Messung von Zenithdistanzen der Sonne.


Den Uebergang zu den eigentlichen Sonnenuhren bildet der von GEMMA FRISIUS 1548 beschriebene » Astronomische Ring = Annulus astronomicus«, ein in der Ebene des Aequators angebrachter Kreis, auf welchem eine Theilung in Stunden und Untertheilen angebracht war. Eine einen Deklinationskreis vorstellende Ebene war senkrecht zu diesem Ringe um einen zur Weltaxe parallelen Stift drehbar. Dieses Blatt, in die Richtung des Deklinationskreises der Sonne gebracht (in welchem Falle die Schatten nach keiner Seite geworfen wurden und daher verschwanden), zeigte sofort den Stundenwinkel der Sonne, daher die wahre Sonnenzeit an.

Dieses giebt bereits die Construction der Sonnenuhren: Jede Sonnenuhr besteht aus einem zur Weltaxe parallelen Stabe, dem Zeiger, dessen Schatten auf eine Fläche aufgeworfen, hier an einer entsprechenden Theilung die wahre Sonnenzeit abzulesen gestattet.

Die einfachste Form ist die Aequatorealsonnenuhr, bei welcher die Uhrstäche senkrecht zum Zeiger, also im Aequator liegt. Hier ist die Theilung gleichmässig anzubringen, da ebenso wie beim astronomischen Ring der Schatten des Zeigers mit diesem selbst die Ebene eines Deklinationskreises der Sonne vorstellt, daher in gleichen Zeiten sich um gleiche Stundenwinkel dreht. Die Theilung wird daher von der Meridianrichtung aus, welche zuvor zu ermitteln ist (die übrigens

auch schon behufs Aufstellung des Stabes in der Richtung der Weltaxe bekannt sein muss), in gleichen Intervallen fortschreiten. Einer Stunde entspricht dabei ein Winkel von 15°.

Complicirter sind die Horizontal- und Verticalsonnenuhren, bei denen die Uhr-

fläche bezw. horizontal oder vertical liegt.

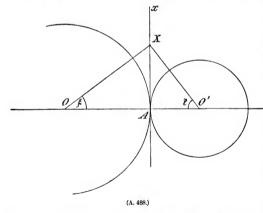
Sei VH (Fig. 487) die Richtung der Weltaxe, P der Durchschnittspunkt derselben mit der Ebene A, welche parallel zum Aequator liegt, E, eine verticale Ebene, Es eine horizontale Ebene, senkrecht auf der Meridianebene, und SS die gemeinsame Schnittlinie der drei Ebenen A, E, und Eh, so ist VMH die Ebene des Meridians, PM der Mittagsschatten des Zeigers VPH in der Aequatorebene, VM in der Verticalebene, und HM in der Horizontalebene. Einem Stundenwinkel t entspricht eine Drehung des Schattens nach PN, welcher die Zeit / Stunden Nachmittag (Sonne westlich) giebt.

$$\not\ll MPN = t^h = (15t)^0,$$

und der Schatten in der Verticalebene wird VN, in der Horizontalebene HN. Da

$$MN = MP tang t = MH tang x = MV tang y$$

und ferner


$$MP = MH\cos \psi$$
; $MP = MV\cos \varphi$

ist, wenn ψ, φ die Neigungswinkel der Ebene der Sonnenuhr gegen den Aequator sind, so folgt:

 $MP tang t = MP sec \psi tang x = MP sec \varphi tang y.$

Hieraus folgt: $tang x = tang t cos \psi$; $tang y = tang t cos \varphi$.

Gleichmässig wachsenden Stundenwinkeln t entsprechen daher ungleichmässig wachsende Winkel x auf der Horizontaluhr, und ungleichmässig wachsende Winkel y auf der Verticaluhr. Sie sind daher etwas weniger einfach, haben aber den Vortheil, dass sie den Zeiger und die Theilung nur auf einer Seite erfordern, während bei der Aequatorealuhr die obere (gegen V hin gelegene Seite) für

nördliche Deklinationen, die untere (gegen Hhin gelegene) für südliche Deklinationen zur Verwendung

kommt.

Die Gleichungen für x und v gestatten auch eine einfache Construction der Theilung: Auf der gemeinschaftlichen Tangente Ax (Fig. 488) zweier um O und O' gelegten.

sich in A berührenden Kreise wird ein Punkt X mit O und O' verbunden. Für die hieraus entstehenden Winkel & und t hat man: $AX = O'A tang t = OA tang \xi$

folglich wird

$$tang \xi = \frac{O'A}{OA} tang t$$
.

Macht man daher

$$\frac{O'A}{OA} = \cos \psi,$$

wenn 4 der Neigungswinkel der (hierbei ganz beliebig gedachten) Ebene der Sonnenuhr gegen den Aequator bedeutet, so erhält man die einem gegebenen Stundenwinkel zugehörige Richtung des Schattens in dieser Ebene, indem man den Stundenwinkel t von O'O aus in dem Kreise um O' aufträgt; theilt man den Kreis um O' in 24 gleiche Theile, zieht die Radien der Theilungspunkte bis zur Tangente Ax, und verbindet die Schnittpunkte mit O, so erhält man die zugehörigen Stunden 0, 1, 2, 3 12 (0), 11, 10.

Für die Verticaluhr ist der Neigungswinkel ψ gleich der Polhöhe φ, für die Horizontaluhr ist ψ gleich dem Complement der Polhöhe 90° - φ.

Dies gilt jedoch nur, wenn die Sonnenuhr in einer beliebigen, zur Ebene des Meridians senkrechten Ebene angebracht ist. Verhältnissmässig leicht ist es noch, die Theilung abzuleiten für eine Uhr, deren Ebene sonst ganz beliebig

ist, wenn nur der Zeiger in der Richtung der Weltaxe angebracht ist. Sei AA' (Fig. 489) der Aequator. OP die Rich tung der Weltaxe, also der Zeiger der Uhr, PM der Meridian; die Ebene OOE der (A. 489.) Sonnenuhr

schneide den Aequator in einem Punkte Q, welcher westlich in der Entsernung T liege, und schliesst mit der Ebene des Aequators den Winkel \u03c4 ein, so dass MQ = T; $\not < MQE = \psi$

sei; dann wird ON die Richtung des Meridianschattens in dieser Ebene sein, und die Entfernung $ON = \theta$ ist bestimmt durch

$$tang \theta = \frac{tang T}{cos \psi}$$
.

t Stunden Nachmittags falle der Schatten im Aequator in die Richtung Om, so dass $\not < MOm = t$ ist, so wird er in der Ebene E durch den Schnitt des Deklinationskreises Pm mit der Ebene, d. i. durch die Richtung On bestimmt. Dekinations reserve t and t folgt wieder t and t and t and t and t and t and t are t and t and t are t and t and t are t are t and t are t and t are t are t and t are t are t and t are t and t are t and t are t are t and t are t are t and t are t and t are t are t and t are t are t and t are t and t are t are t and t are t are t and t are t and t are t and t are t and t are t are t and t are t are t and t are t are t and t are t are t and t are t are t and t are t and t are t are t and t are t are t and t are t and t are t are t are t and t are t are t and t are t are t and t are t are t are t and t are t are t are t are t are t and t are t are t are t and t are t are t are t and t are t and t are t are t and t are t are t are t are t and t are t are t are t are t and t are t are t are t are t are t and

$$tang\left(\theta+x\right)=\frac{tang\left(T+t\right)}{\cos\psi}.$$

st 0 bestimmt, so folgt hieraus unmittelbar der Winkel x.

Das allgemeine Problem der Sonnenuhren muss jedoch auf verschiedene Lagen des Zeigers (nicht parallel zur Weltaxe) Rücksicht nehmen, wie dieselbe z. B. bei Sonnenuhren nöthig ist, welche an Ebenen angebracht sind, die in der Richtung des Meridians (Ost- oder Westseite einer im Meridian gerichteten Mauer) liegen; doch hat diese Art der Sonnenuhren nur sehr beschränkte Anwendung, da sie nur einen Theil des Tages anwendbar sind, und kann an dieser Stelle auf alle diese Einrichtungen nicht eingegangen werden. N. HERZ.

Zodiacallicht oder Thierkreislicht ist eine noch keineswegs sicher erklärte Erscheinung, welche sich als matte, allmählich verlaufende Lichtpyramide in gewissen Jahreszeiten dem ausmerksamen Beobachter, wenn er tern von störendem Licht den klaren Himmel beobachtet, zeigt. In unseren Breiten ist das Zodiacallicht am besten in den Monaten Januar bis März nach Sonnenuntergang, in den Herbstmonaten vor Sonnenaufgang zu sehen, und man erblickt es als eine schräg, nahe in der Ebene der Ekliptik liegende Pyramide. In den Tropen ist das Zodiacallicht während des ganzen Jahres ziemlich gleichmässig sichtbar. Zuerst wird es im 17. Jahrhundert von D. Cassini erwähnt, und es muss auffallen, dass es nicht im Alterthum beobachtet wurde. Immerhin darf hieraus nicht auf eine Unsichtbarkeit in jener weit zurückliegenden Zeit geschlossen werden. Wie bei so manchen Erscheinungen wird auch hier die doch keineswegs so auffallende Erscheinung der Aufmerksamkeit entgangen sein. Man hat wohl Anzeichen dafür zu beobachten geglaubt, dass das Zodiacallicht in veränderlicher Helligkeit glänzt. Und in der That muss dem aufmerksamen Beobachter die grosse Helligkeit auffallen, in der das Licht in gewissen Jahren im Vergleich zu anderen erscheint. Die einfache Erklärung der mehr oder minderen Durchsichtigkeit der Luft ist nicht ausreichend, denn in gleicher Weise müsste dann die Helligkeit der Milchstrasse beeinflusst worden sein, was aber keineswegs immer der Fall war. Nicht selten überstrahlt auch in unseren Breiten das Zodiacallicht den Schein der Milchstrasse ganz erheblich. Auch im Innern des eigentlichen Kegels sind hellere und mattere Streifen vermuthet worden, auch glauben manche Beobachter feine, neblige Lichtstreifen in der Nähe der Zodiacallichtpyramide und mit dieser in Zusammenhang stehend gesehen zu haben. Es ist aber ausserordentlich schwer, mit voller Sicherheit die Grenzen des Lichtkegels anzugeben, in der Regel ist die dem Horizont zugeneigte Seite nicht so weit von der Axe zu verfolgen wie die gegenüberliegende, was sich durch die Absorption in der Atmosphäre erklärt.

Der diffuse Charakter der Erscheinung ist die Ursache, dass trotz der sehr beträchtlichen Menge von Beobachtungen, welche namentlich im 19. Jahrhundert und besonders gegen Ende desselben durch Jul. Schmidt (Das Zodiacallicht, Braunschweig 1855), Heis (Zodiacallichtbeobachtungen 1847-75, Münster 1875), JONES (Observations on the Zodiacal Light, Washington 18:6; Observations at Quito, Americ. Journ. of Science 1857), SERPIERI (La luce Zodiacale, Memorie della Società degli Spettroscopisti 1876), SEARLE (The Zodiacal Light, Proceed. of the Americ Academy 1883; Researches on the Zodiacal Light, Annals of the Astron. Observ. of Harvard Coll. XIX, 2. Cambridge 1893), GRUEY (Observations de la Lumière Zediacale à Toulouse, Cpt. Rend. des séances de l'Acad. des sc. t. 79. 80 Paris), MARCHAND (Cpt. Rend. t. 121, Paris 1895), BARNARD (Astron. Journal), und viele Andere angestellt worden sind, eine ganz bestimmte Erklärung nicht hat gegeben werden können. Alle Angaben beruhen auf Einzeichnungen in Sternkarten oder sind solche über die Lage der Axe, der Ausdehnung des Kegels nach Schätzungen, deren Sicherheit von der Schärfe des Auges des Beobachters, von der günstigen Lage des Beobachtungsortes und anderen derartigen Umständen abhängt. Dass das Zodiacallicht nahe mit der Ekliptik zusammenfällt war längst angenommen worden, dennoch blieb aber zweifelhaft, ob man sich, wie Heis und Jones, einen Ring um die Erde nach Art des Saturnrings darunter zu denken habe, oder vielmehr einen in der Ebene des Sonnenäquators gelegenen sehr flachen meteorischen Ring, der sich von der Sonne bis etwas über die Erdbahn hinaus erstreckt. MARCHAND hat auf dem Pic du Midi, wo bei gewöhnlicher Durchsichtigkeit der Lust das Zodiacallicht das ganze Jahr hindurch sichtbar ist, seit 1892 vielfach die Erscheinung zu beobachten Gelegenheit gehabt und gefunden, dass das Licht »nicht nur aus den bekannten kegelförmigen Lichtsäulen besteht, die man am Horizont in der Nähe der Sonne nach dem Untergang und vor dem Aufgang derselben sieht, sondern auch aus einem schwachen, an den Rändern abgeblassten Lichtstreifen, der in der Verlängerung der Axe des am Horizont sichtbaren Lichtkegels die ganze Himmelskugel ungefähr nach einem grössten Kreis umspannte, womit gelegentliche frühere Beobachtungen bestätigt wurden. Ferner hat er aus seinen Beobachtungen ableiten können, dass das Zodiacallicht ein Breite von ca. 14° besitzt, dass seine Axe sehr nahe einem grössten Kreise liegt, der gegen die Ekliptik 6-7° geneigt ist, und für den der aufsteigende Knoten die Länge von 70° besitzt. Darnach stellt er als Thatsache fest, dass die Axe des Zodiacallichts ziemlich mit der Ebene des Sonnenäquators zusammenfällt, denn thatsächlich beträgt die Neigung dieser gegen die Ekliptik 7° und ihr aufsteigender Knoten hat eine Länge von etwa 74°.

Diese Resultate haben eine volle Bestätigung durch M. Wolf's Untersuchungen gefunden. (»Ueber die Bestimmung der Lage des Zodiacallichts und den Gegenscheine. Sitzber. d. Math. Phys. Classe d. K. B. Academie der Wiss., München 1900.) Er versuchte das Zodiacallicht zu photographiren und aus dem Bild die Axenlage zu bestimmen. Dazu waren aber die gewöhnlichen lichtstarken Objective nicht verwendbar. Er construirte einen besonderen Apparat, dem er den Namen »Schnittphotometer« beilegte. Es wurde von der Firma Zeiss in Jena ein Quarzobjectiv hergestellt, dessen Oeffnung 37 mm betrug, während die Distanz des Bildes von der vordersten Fläche nur 36 mm war. In der optischen Axe befindet sich unmittelbar vor der Bildebene ein solid mit dem Objectiv verbundenes Diaphragma mit ganz enger Oeffnung, und unmittelbar hinter diesem Diaphragma liegt die photographische Platte. Diese kann nun ihrer Länge nach in ihrer Ebene hinter dem Diaphragma vorbei geschoben werden und es können so auf der Platte eine Reihe von kleinen Bildern neben einander erzeugt werden. wobei jedes Bildchen genau in derselben Axe ausgenommen, und ein ganz bestimmter Punkt des Himmels ohne jede Abblendung und Lichtverlust der Linse abgebildet wird. Wird nun der Apparat mit einem astronomischen Axensystem, sei es mit einem Universalinstrument oder mit äquatorealer Montirung verbunden, so lässt sich auch der Punkt des Himmels, auf den das Quarzobjectiv gerichtet ist, genau bestimmen. So wurde jeweils eine kleine Stelle des Zodiacallichts auf der Platte aufgenommen, dann die Platte weiter geschoben, der Apparat auf eine andere Stelle des Zodiacallichts gerichtet und diese aufgenommen. Bei genau gleicher Expositionszeit sind die Helligkeiten der Bilder vergleichbar und es lassen sich auch die hellsten Punkte des Zodiacallichts bestimmen, durch Aufzeichnung und Verbindung der hellsten Stellen die Axenlage feststellen.

Schon die ersten Beobachtungen mit diesem Apparat ergaben Resultate, die genau mit dem von MARCHAND auf schätzendem Wege erzielten übereinstmeten, die aber des vollständig objectiven Vorgangs wegen, die bei der Wolle'schen Methode zur Anwendung kam, von wesentlich ausschlaggebenderer Bedeutung sind.

Die Schärfe der photographischen Aufnahmen ist bei dieser Gelegenheit noch in erhöhtem Maasse hervorgetreten. Zuerst von Brorsen, dann aber auch von anderen Astronomen, namentlich Barnard ist genau der Sonne gegenüberliegend zu Zeiten ein äusserst matter Lichtschimmer bemerkt worden, dem der Name des Gegenscheinse beigelegt ist. Wenn auch nach den visuellen Beobachtungen kaum mehr an der Realität der Erscheinung gezweifelt werden konnte, so ist es doch bei ihrer ausserordentlichen Schwäche von Wichtigkeit, dass auch der Gegenschein sich auf der photographischen Platte aufgezeichnet hat.

Nach diesen Beobachtungen ist es im höchsten Grade wahrscheinlich, dass das Zodiacallicht von einer sehr dünnen Materie gebildet wird, die in einem stark abgeplatteten Ellipsoid in der Ebene des Sonnenäquators um die Sonne gelagert ist und sich bis über die Erdbahn hinaus erstreckt. VALENTINER.

Anhang.

TAFELN.

VORBEMERKUNG.

Es war meine Absicht, in einem Anhang zum Handwörterbuch eine grössere Sammlung von Hülfstafeln zu geben, welche dem praktischen Astronomen zum Theil unentbehrlich, zum Theil für die verschiedensten Aufgaben angenehm und bequem sind. Da aber das Werk in seinem Text einen sehr viel grösseren Umfang angenommen hat, als beim Entwurf des Planes vorhergesehen werden konnte, glaube ich mich jetzt auf das Nothwendigste beschränken zu müssen. Es sind daher nur diejenigen Tafeln zum Abdruck gelangt, auf welche im Text direkt Bezug genommen worden ist. Ich hätte besonders gewünscht, Refractionstafeln nach RADAU beigeben zu können, für welche ein direktes Bedürfnis vorliegt, da die sie enthaltende Originalabhandlung nicht gerade leicht zugänglich ist. Indessen musste auch hiervon Abstand genommen werden, da durch die Uebertragung derselben in eine wirklich bequeme rechnerische Form ein sehr grosser durchaus nicht mehr verfügbarer Raum beansprucht worden wäre.

Tafel I.

Die Barker'sche Tafel zur Berechnung der wahren bezw. mittleren Anomalie für die in der Parabel sich bewegenden Kometen.

Sie ist in der Olbers'schen Form gegeben, wo $M=\frac{75\ kt}{\sqrt{2\ q^3}}$ ist, obwohl im Text zumeist die Oppolzer'sche Form, wo $M=\frac{t}{q_2^3}$ ist, zu Grunde gelegt wurde. Abgesehen vom Oppolzer'schen Werk hat sich die Olbers'sche Form in allen Werken über die Bahnbestimmung erhalten, ist insbesondere auch in die verbreitete neue Auflage des Klinkerfues'schen Werkes von Buchholz übernommen, es wird daher unter Benutzung des Handbuchs dem Berechner erster Bahnen, wozu auch die Beschränkung auf 6 Dezimalen genügt, in der Regel angenehmer sein, beim Uebergang zu genaueren Berechnungen dieselbe Form in den ausführlichen Werken zu finden.

Das Fortschreiten des Arguments von 100" zu 100" ist hauptsächlich aus typographischen Ursachen gewählt worden. Proportionaltäselchen sind bei den allzu rasch wachsenden Differenzen, wo man mit grösserem Vortheil die vierstellige Logarithmentasel verwenden wird, fortgelassen.

Die Tafel giebt für v von 0° — 20° M selbst, von 20° an $\log M$.

Tafel für $M = \frac{75 \text{ kt}}{\sqrt{2} \text{ g}^3}$

						V 24					
	(0		1°	5	50		3°	Proportional-		
υ	M	Diff.	M	Diff.	M	Diff. 1"	M	Diff.		theil	
0' 0"	0.00000	18.18	0.65453	12.10	1:30926	18 19	1.96439	18:21			
1 40	0.01818		0.67272	18:19	1.32745		1.98260	18 20		18.18	18.1
3 20	0:03636	18.18	0.69090	18.18	1.34565	18:20	2:00080	18:21	1	18:18	18.1
5 0	0.05454	18.18	0.70908	18.18	1.36384	18.19	2.01901		2	36.36	36.3
6 40	0.07272	18.18	0.72727	18.19	1.38203	18.19	2.03722	18.21	3	54.54	54.5
8 20	0.09090	18.18	0.74545	18.18	1.40022	18.19	2.05543	18.21	4	72.72	72.7
0 20	0 01.001.	18:18		18-18		18.20		18-20	5	90-90	90.9
		19.19		19.19		15.20		15 20	6	109 08	109-1
0 0	0.10908	18.18	0.76863	18.19	1.41842	18.19	2.07363	18:21	7	127.26	127-3
1 40	0.12726	18:18	0.78182	18-18	1.43661	18.20	2.09184	18-21	8	145 44	145.5
3 20	0.14544	18:19	0.80000	18-19	1.45481	18:19	2.11002	18-21	9	163.62	163-7
5 0	0.16363	18.18	0.81819	18.18	1.47300	18.19	2.12826	18:21			
6 40	0.18181	18.18	0.83637	18:19	1.49119	18.20	2.14647	18.21			
18 20	0.19999	10 10	0.85456	1013	1.50939	10 20	2.16468	10 21		18.50	18-2
		18.18		18.18		18.20		18.21	1	18.20	18-2
0 0	0.21817	10.10	0 87274	10.10	1.53759	18-19	2.18289	18:21	2	36.40	36.4
21 40	0.23635	18:18	0.89093	18.19	1.54578	18:20	2.20110	18-21	3	54.60	54.6
23 20	0.25453	18:18	0.90911		1.56398		2.21932		4	72.80	72.8
25 0	0.27271	18.18	0.92730	18:19	1.58217	18.19	2.23753	18.21	5	91.00	91.0
26 40	0.29089	18.18	0 94549	18.19	1.60037	18.20	2.25574	18.21	6	109.20	109.2
28 20	0:30907	18:18	0.96367	18.18	1.61857	18.20	2.27396	18.22	7	127.40	127.4
		18.18		18:19		18-20		18.21	8	145.60	145.6
30 0	0.32725		0.98186		1.63677		2.29217		9	163.80	163.8
31 40	0.34543	18.18	1.00005	18.19	1.65496	18.19	2.31038	18.21			
33 20	0.36362	18.19	1.01823	18:18	1.67316	18.20	2.32860	18.55		18.22	18.2
35 0	0.38180	18.18	1.03642	18:19	1.69136	18.20	2.34682	18.22			
36 40	0.39998	18.18	1:05461	18 19	1.70956	18.50	2.36503	18.21	1	18.22	18.2
38 20	0.41816	18.18	1.07280	18.19	1.72776	18:20	2.38325	18.22	2	36-44	36.4
10 20	0.41010		1 0120				- 000=0		3	54.66	54.6
		18.18		18.18		18.20		18.22	4	72.88	72.9
10 0	0.43634	18:18	1.09098	10.10	1.74596	18:20	2.40147	18-22	5	91.10	91.1
11 40	0.45452		1.10917	18 19	1:76416		2.41969	18-22	6	109.32	109-3
13 20	0.47271	18.19	1 12736	18.19	1.78236	18.20	2.43790		7	127.54	127.6
15 0	0.49089	18.18	1.14555	18.19	1 80056	18:20	2.45612	18-22	8	145.76	145.8
16 40	0.50907	18.18	1.16374	18.19	1.81876	18.20	2.47434	18 22	9	163.98	1640
18 20	0.52725	18.18	1.18193	18.19	1.83697	18.21	2.49256	18.22			
		18.18		18:19		18.20		18.22		18.24	13.2
0 0	0.54543	10.10	1.20012		1.85517	1020	2.51078	18-23	١.	10.04	18-9
51 40	0.56362	18:19	1.21831	18.19	1.87337	18-20	2.52901	18.23	1 2	18:24	36.5
53 20	0.58180	18:18	1.23650	18.19	1:89157		2.54723			36.48	
55 0	0.59998	18.18	1.25469	18.19	1.90978	18-21	2.56545	18.22	3	54.72	54.7
56 40	0.61817	18:19	1.27288	18.19	1.92798	18.20	2.58367	18.22	4	72.96	73.0
58 20	0.63635	18.18	1.29107	1819	1.94619	18.21	2.60190	18-23	5	91.20	91.2
		18.18		10.10		18:20		18:22	6	109 44	109.5
		19.19		18:19		15 20	1	10 22	7	127.68	127.7
60 0	0.65453		1.30926		1.96439		2.62012		8	145.92	146.0
				į					9	164.16	164.2

Tafel für $M = \frac{75 \, kt}{\sqrt{2 \, q^3}}$

		fo		5°		80	1	70			
Ð	M	Diff.	M	Diff.	M	Diff.	M	Diff,		Proportie theil	
0, 0"	2.62012		3.27665		3.93418		4.59292				
1 40	2.63835	18.23	3-29490	18.25	3.95246	18.28	4.61123	18:31		18:26	18:2
3 20	2.65657	18 22	3.31315	18.25	3.97074	18.28	4.62955	18 32	1	18:26	18-2
5 0	2.67480	18.23	8.83140	18.25	8.98903	18.29	4.64787	18.32	2	36.52	36.5
6 40	2.69303	18.23	3:34966	18.26	4.00731	18.28		18:32	3		
		18:22		18.25		18-29	4.66619	18:32		54.78	54.8
8 20	2.71125		3.36791		4:02560		4.68451		4	73.04	73.0
		18.23		18:25		18.28		18:33	5	91.30	91.3
10 0	2.72948		3:38616		4.04388		4.70284		6	109.56	109.63
11 40	2.74771	18:23	3.40442	18.26	4.06217	18.59	4.72116	18.32	7	127.82	127.89
	2.76594	18.23	3.42268	18.26		18.29		18:33	8	146.08	146.1
		18.23		18.25	4:08046	18.28	4.73949	18.32	9	164.34	164.43
15 0	2.78417	18:23	3.44003	18-26	4.09874	18-29	4.75781	18.33			
16 40	2.80240	18.23	3.45919	18.26	4.11703	18:29	4.77614	18:33			
18 20	2.82063	10 20	3.47745	1000	4.13532	10 20	4.79147	10 00		18.28	18:29
		18.24		18.26		13.30		18.33	1	18.28	18:25
20 0	2-83887		3.49571		4 15362		1.81280	1	2	36.26	36.5
21 40	2-85710	18.23	3.51397	18.26	4.17191	18.29	4.83113	18.33	3	54.84	54.8
23 20	2.87538	18.23	3.53223	18.56	4.19020	18:29	4.84946	18.33	4	73.12	73:10
25 0	2.89357	18.24	3.55049	18.26	4.20850	18.30	4:86779	18:33	5	91:40	91.4
26 40	2-91180	18.23	3.56875	18 26	4 20830	18 29		18:34			
		18-24		18.26		18:30	4.88613	18:33	6	109.68	109.7
28 20	2.93004		3.58701		4.24509	i	4.90446		7	127.96	128.03
		18.23		18.27	1	18.30		18:34	8	146.54	146.3
30 0	2.94827		3.60528		4.26339		4.92280		9	164.52	164.6
31 40	2.96651	18.24	3.62354	18-26	4.28168	18.29	4.94114	18:34			
35 20	2.98475	18.24	3 64181	18.27	4-29998	18.30	4.95948	18:34			
	3.00299	18.24	3.66008	18.27		18.30		18:34		18:30	18.3
		18.24		18.26	4:31828	18:31	4.97782	18:34	1	18:30	18.3
36 40	3.02123	18.24	3.67834	18.27	4.33659	18:30	4.99616	18:34	2	36.60	36.6
38 20	3.03947		3.69661		4.35489		5.01450	2001	3	54.90	54.9
		18:24		18.27		18:30		18.34	4	73.20	73.2
40 0	3.05771		3.71488		4.37319		5.03284		5	91.50	91.5
41 40	3.07595	18.24	3.78315	18.27	4:39150	18.31	5:05119	18.35	6	109.80	109.8
43 20	3.09419	18.24	3.75142	18.27	4:40980	18.30	5.06953	18:34			
-		18.24		18:27		18:31		18.35	7	128.10	128.1
45 0	3-11243	18-25	3.76969	18.28	4 42811	18:31	5.08788	18.35	8	146.40	146.4
46 40	3.13068	18.24	3.78797	18:27	4.44645	18-31	5.10623	18:35	9	164.70	164.7
48 20	3.14892	2021	3.80624	100	4.46473	100.	5.12458	1000			
		18.25		18.28		18.31		18:35		18:32	18:3
50 0	3.16717	18-24	3.82452	18-27	4.48304		5.14293				-
51 40	3.18541		3.84279		4.50135	18.31	5.16128	18.35	1	18.32	18.3
53 20	3.20366	18.25	3.86107	18-28	4.51966	18:31	5.17963	18.35	2	36.64	36.6
55 0	3.22191	18.25	3.87934	18.27	4.53797	18.31	5.19799	18.36	3	54.96	54.9
56 40	3.24015	18.24	3.89762	18.28	4.55629	18.32	5.21634	18.35	4	73.28	73.3
58 20	3.25840	18.25	3.91590	18.28	4.57460	18:31	5.23470	18:36	5	91.60	91.6
00 20	0 20040		0 21330		4 9 (400		0.294(0		6	109.92	109-9
		18.25		18.58		18.32		18.36	7	128.24	128.3
60-0	3.27665		3.93418		4.59292		5.25306		8	146.56	
									9	164.88	164-9
		,									

Tafel für $M = \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	9	0	9	0	16)0	1:	10	Proportional-		
v	М	Diff.	M	Diff.	M	Diff.	М	Diff.		theil	
0' 0"	5.25306		5.91481		6-57839		7.24400	10.50			
1 40	5:27142	18.36	5.93322	18.41	6.59685	18:46	7.26252	18.52		18.36	18.3
3 20	5.28978	18.36	5.95163	18:41	6.61531	18.46	7.28104	18.2	1	18.36	18:3
5 0	5.30814	18.36	5.97004	18.41	6.63378	18.47	7.29956	18.52	2	36-72	36.7
6 40	5.32650	18.36	5.98845	18.41	6.65224	18.46	7:31809	18.23	3	55.08	55.1
8 20	5.34487	18.37	6.00686	18.41	6.67071	18:47	7:33662	18.53	4	73.44	73.5
0 20	O O I I O I	40.00	0 00000			10.15		10.50	5	91.80	91.9
		18.36		18.42		18.47		18.52	6	110.16	110.3
0 0	5.36323	18:37	6.02528	18:41	6.68918	18.47	7.35514	18:53	7	128.52	128-7
1 40	5.38160		6.04369		6.70765	18:47	7.37367	18:54	8	146.88	147-1
3 20	5.39997	18 37	6.06211	18:42	6.72612	1	7.39221	18:53	9	165.24	165-5
5 0	5.41834	18:37	6.08023	18.42	6.74459	18 47	7.41074	18.54		100 51	
6 40	5.43671	18.37	6.09895	18:42	6.76307	18.48	7.42928				
8 20	5:45508	18:37	6.11737	18.42	6.78155	18.48	7.44781	18.53		18.42	18.4
		18:37		18:42		18:47		18:54	1	18:42	18:4
		100.	0.10***	10 12	6.80002		7-46635		2	36.84	36.9
0 0	5.47345	18.38	6.13579	18:43	6.81850	18.48	7.48489	18.54	3	55.26	55.8
21 40	5:49183	18:38	6-15422	18:42	6.83699	18-49	7.50344	18:55	4	78.68	73.8
23 20	5.21021	18:37	6.17264	18:43	6.85547	18:48	7:52198	18.54	5	92.10	92.5
25 0	5.52858	18:38	6.19107	18:43		18.48		18.55	-	1	
26 40	5.54696	18:38	6.20950	18.43	6.87395	18:49	7.54053	18.55	6	110-52	110.7
28 20	5.56534	1000	6.22793	10 10	6.89244		7.55908		7	128-94	129-1
		18.38		18:43		18.49		18.55	8	147·36 165·78	1660
30 0	5.58372		6.24636		6.91093		7:57763		9	169.19	100 0
31 40	5.60210	18.38	6.26480	18.44	6.92942	18:49	7.59618	18.55			
33 20	5.62049	18:39	6.58353	18.43	6.94791	18.49	7:61473	18.55		18:48	18:5
35 0	5.63887	18.38	6.30167	18:44	6.96640	18.49	7:63329	18.56			-
	5.65726	18:39	6.32010	18.43	6.98490	18 50	7.65185	18.56	1	18.48	18:
		18:39	6.33824	18.44	7.00339	18.49	7.67041	18.20	2	36.96	37-(
38 20	5.67565		0 00004		. 00000				3	55.44	55 3
	1	18.39		18.44		18.50		18.56	4	73-92	74.0
0 0	5.69404		6.35698		7.02189		7.68897	10.50	5	92.40	92.
11 40	5.71243	18.39	6.37543	18.45	7.04039	18:50	7.70753	18.56	6	110.88	1111
13 20	5.73082	18:39	6:39387	18:44	7.05889	18.50	7.72609	18.56	7	129.36	129-5
15 0	5.74921	18.89	6.41232	18.45	7:07739	18.50	7.74466	18.57	8	147.84	1480
16 40	5.76761	18:40	6.43076	18.44	7:09590	18.51	7.76323	18.57	9	166.32	166:5
18 20	5.78600	18:39	6.44921	18.45	7.11441	18.21	7.78180	18.57			
10 20	0 10000	18.40	0 11.11	18.45		18.50		18.57		18.54	18:3
	5.80440	10 10	6.46766	10 10	7:13291		7.80037				
0 0	5.82280	18:40	6.48611	18.45	7.15142	18.51	7.81895	18.28	1	18.54	18:5
51 40		18:40	6.20426	18:45	7:16993	18.51	7.83752	18.57	2	37:08	37.1
53 20	5.84120	18:40	6.2305	18.46	7:18845	18.52	7.85610	18.58	3	55.62	55.7
55 0	5.85960	18:40		18:45	7.20696	18.51	7.87468	18.58	4	74.16	74-2
66 40	5.87800	18:41	6.54147	18 46	7:20696	18.52	7.89326	18.58	5	92.70	92.8
68 20	5.89641		6.55993		122548		1 33325		6	111.24	11114
	1	18:40		18.46		18.52		18.58	7	129.78	129.9
50 O	5-91481		6.57839		7.24400		7.91184		8	148-32	148
U V	0 01401		01000					1 1	9	166.86	1

Tafel für $M = \frac{75 \, kt}{\sqrt{2 \, q^3}}$

			V 2 q *												
	15	0	18	30	14	10	15	0		Propertie	mal				
D	M	Diff.	M	Diff.	M	Diff. 1"	М	Diff.		theil					
0, 0,,	7.91184	18-59	8.58215	10.05	9.25512	18:73	9-93098	18:82							
1 40	7.93043	18.59	8.60080	18.65	9.27385	18 74	9.94980	18.82		18.60	18 63				
3 20	7-94902	18-59	8:61946	18.66	9.29259	18.74	9.96862	18.82	1	18:60	18:63				
5 0	7.96761	18.59	8.63812	18.67	9.81133	18.74	9.98744	18.83	2	37.20	37:26				
6 40	7.98620	18:59	8:65679		9:33007		10 00627	18.82	3	55.80	55:89				
8 20	8.00479	1000	8.67545	18.66	9.34881	18.74	10.02509	10.02	4	74:40	74:55				
		18.60		18:67		18:75		18.83	5	93.00	93.1				
10 0	8:02339		8-69412	10 01	9.36756	10 10	10.04392		6	111:60					
11 40	8:04198	18:59	8.71279	18.67	9.38630	18-74	10.06276	18.84	7		130-4				
13 20	8.06058	18:60	8.73146	18:67	1	18:75	10.08159	18.83	8		149.0				
15 0		18:60	8.75013	18.67	9:40505	18.76		18.84	9		167.6				
16 40	8.07918	18.60	8.76881	18.68	9.42381	18:75	10.110043	18.84			1010				
	8.09778	18.61		18.67	9.44256	18:76	10.11927	18.84							
18 20	8.11639		8.78748	1001	9.46132	10 10	10.13811			18:66	18.69				
		18.61		18.68		18.76		18.84	1	18.66	10.00				
20 0	8.13500		8.80616		9.48008		10.15695		2		18:6				
21 40	8.15360	18.60	8.82485	18.69	9.49884	18:76	10:17580	18.85		37:32	37.3				
23 20	8-17221	18.61	8.84353	18.68	9.51769	18:76	10.19465	18.85	3	55.98	56.0				
25 0	8-19083	18.62	8.86221	18.68	9:53637	18:77	10 21350	18.85	4	74.64	74.7				
26 40	8.20944	18:61	S-S8090	18:69	9.55518	18:76	10 21330	18.85	5	93.30	93.4				
28 20	8.22806	18.62	8.89959	18.69	9.55318	18.77	10 25255	18.86	6	111.96	112:1				
20 20	0 44000		0 00000		9.91930		10.23121		7	130.62	130.8				
		18.62		18.70		18.78		18.86	8	149.28	149.5				
30 0	8.24668		8.91829		9.59268		10-27007		9	167:94	168.2				
81 40	8:26530	18.62	8.93698	18.69	9.61145	18.77	10.28893	18.86							
33 20	8-28392	18.65	8.95568	18.40	9.63023	18.78	10:50779	18.86		1					
35 0	8:30254	18.62	8.97438	18.70	9.64901	18.78	10.32666	18.87		18.72	18:7				
36 40	8.32117	18:63	8.99308	18:70	9.66779	18:78	10:34553	18:87	1	18.72	15.7				
38 20	8.33980	18.63	9.01178	18.70	9.68657	18.78	10.36440	18.87	2	37:44	37.5				
0.5 20	0 00000		3 01110		2 00001		10 30-1-10		3	56.16	56 2				
		18.63		18.71		18.79		18.88	4	74.88	75:0				
40 0	8.35843	45.00	9.03049		9.70536		10.38328	10.00	5	93.60	93 7				
41 40	8:37706	18.63	9.04919	18:70	9.72415	18.79	10:40215	18:87	6	112.32	112.5				
48 20	8:39569	18.63	9.06790	18.71	9.74294	18:79	10.42103	18.88	7	131.01					
45 0	8.41433	18.64	9:08661	18:71	9.76173	18.79	10:43991	18.88	8	149.76	131.2				
46 40	8.43297	18.64	9.10533	18.72	9.78053	18.80	10.45880	18.89			150 0				
48 20	8.45161	18.64	9.12404	18:71	9.79933	18:80	10.47768	18.88	9	168:48	168.7				
		18.64		18.72		18.80		18.80							
50 0	8.47025		9.14276		9.81813		10:49657			18.78	18.8				
51 40	8.48889	18.64	9.16148	18.72	9.83693	18.80	10.51546	18.89	1	18.78	18.8				
53 20	8.50754	18.65	9:18021	18:73	9.85574	18.81	10.53436	18:90	2	37:56	37.6				
55 0	8.52619	18.65	9.19893	18:72	9.87455	18:81	10 55325	18 89	3	56.84	56:4				
56 40	8.54484	18,65	9-21766	18.73	9.89336	18:81	10.57215	18:90	4	75:12	75-2				
58 20	8.56349	18.65	9.23639	18.73	9.91217	18.81	10.59106	18.91	5	93.90					
00 20	3 00010		3 20003		1		10.99100		6	112.68					
		18.66		18.73		18.81		18:90	7	131.46	131.6				
60 0	8.58215	1	9.25512		9-93098		10.60996		8	150.24	150.4				
137							1		9						
1 2 2 1 1 2 1	4						4	1.	: J	169.02	1097				

Tafel für $M = \frac{75kt}{\sqrt{2q^3}}$

							V 2 q					
		16	0	1	70	13	30	19	0	,	Proportio	nal.
z	,	M	Diff.	M	Dift.	M	Diff.	M	Diff.	ľ	theile	
			1"		1"		1"		1"	L		
OF	0"	10.60996		11-29228		11.97816		12:66785	19:21			
1	40	10 62887	18.91	11:31128	19.00	11.99727	19:11	12:68706			18.84	18.8
	20	10.64778	18-91	11.33029	19 01	12:01638	19.11	12.70628	19.22	1	18:84	18.8
5	0	10.66669	18.91	11:34929	19:00	12:03549	19.11	12:72550	19 22	2	37.68	87.7
	40	10.68560	18.91	11 36831	19.02	12.05460	19.11	12.74473	19 23	3	56.52	56.6
	20	10.70452	18.92	11.38732	19.01	12.07372	19.15	12.76395	19.22	4	75.86	754
U	20	10 10102	18.92				10.10		19.23	5	94.20	94:3
			18.93		19-02		19:12		19.20	6	113.04	123.2
0	0	10.72344	18.92	11.40634	19.02	12.09284	19 12	12.78318	19.24	7	131.88	1320
1	40	10.74236	18.93	11:42536	19.02	12.11196	19.13	12.80242	19.23	8	150.72	150-9
3	20	10:76129	18.93	11:44438	19°C2	12:13109	19.13	12:82165	19:24	9	169-56	169.8
5	0	10.78022	18.93	11:46340		12.12025	19.13	12.84089	19.25	-	100 00	1000
6	40	10.79915	18.93	11:48243	19:03	12.16932	19:14	12.86014	19:24			
8	20	10.81808	10 00	11.50146	19.03	12.18849	19 14	12.87938	10 24		18.90	19-0
			18:94		19:04		19:13		19.25			40.0
			10.01		15 04		15 10	4.2.000000	10 20	1	18.90	191
0	6	10.83705	18.94	11:52050	19:03	12.20762	19:15	12.89863	19.25	2	37.80	384
1	40	10.85596	18-94	11.58953	19 04	12.22677	19:14	12.91788	19.26	3	56.70	574
3	20	10.87490	18.94	11.22824	19.05	12.24591	19:15	12 93714	19.26	4	75.60	76%
5	0	10.89384	18:95	11:57762	19:04	12:26506	19:15	12.95640	19.26	5	94.20	950
6	40	10.91279	18.95	11:59666	19 05	12-28421	19.15	12.97566	19:27	6	113.40	1141
8	20	10.93174		11:61571	15 05	12.30336	10.11	12-99493		7	132.30	1330
			18.95		19:05		19:16		19.26	8	151.20	1520
0	0	10-95069		11:63476		12:32252		13.01419		9	170.10	171 (
	0	10.96964	18.95	11.65381	19:05	12:34168	19:16	13:03347	19.28			
	40		18:96	11.67287	19:06	12:36084	19:16	13.05274	19.27		10.10	10.6
	20	10.98860	18:96	11.69193	19:06	12:38000	19:16	13:07202	19.28		19.10	19.2
5	0	11.00756	18:96	11.71099	19:06	12:39917	19:17	13.09130	19.28	1	19.10	19%
	40	11:02652	18:97	11.73006	19.07	12.41834	19:17	13.11058	19.28	2	38-20	38.4
8	20	11.04549		11 13000		12 41004		15 11000		3	57:30	571
			18.96		19.06		19.18		19:29	4	76.40	76-8
0	0	11:06445	10.07	11:74912	10.00	12.43752	10.17	13 2987	19.29	5	95.50	96.0
	40	11:08342	18.97	11:76819	19:07	12:45669	19.17	13.14916	19.29	6	114.60	115.5
	20	11:10240		11.78727	19:08	12:47588	19.19	13:16846		7	133.70	134
5	0	11.12137	18:97	11:80634	19:07	12:49506	19.18	13:18776	19:30	8	152.80	153-6
	40	11:14035	18.98	11.82542	19.08	12:51425	19:19	13:20706	19:30	9	171.90	172.8
	20	11.15933	18.98	11:84451	19:09	12.53344	19.19	13-22636	19.30	1		
-	- 0		18:99		19:08		19:19		19.31			
		14 17000		111.00070		12:55263		13:24567			19:30	194
0	0	11.17832	18.98	11.86359 11.88268	19.09	12:57182	19:19	18:26498	19:31	1	19.30	1914
	40	11.19730	18.99		19 09	12.59102	19:20	13.28429	19.31	2	38.60	38.8
	20	11.21629	18.99	11:90177	19.09	12.99102	19:21	13.30361	19:32	3	57:90	58-2
5	()	11.23528	19:00	11.92086	19:10		19 20	13.32293	19.32	4	77:20	77:€
	40	11.25428	19.00	11.93996	19.10	12:62943	19:21	13.34225	19:32	5	96.20	971
8	20	11.27328		11.95906		12:64864		15 54225		6	115.80	1164
			19.00		19.10		19.21		19.33	7	135.10	135.8
0	0	11-29228		11:97816		12-66785		13:36158		S	154:40	155-9
U	U	11 23220		11 21010		1.5 00.00				9	173.70	1

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, g^3}}$

		20)°	21	٥	25	0	28	30				
	υ		Dift		Diff.		Diff.	-	Diff.			rtiona	1-
		log M	1"	log M	1"	log M	1"	log M	1"		th	eile	
0	0.4	1-125858		1.147973		1.169149	-	1:189475		-	1		Ī
1	40	6486	6.28	8573	6.00	1.169725	5.76	1.190028	5.23	1	630	620	610
3	20	7113	6.27	9173	6.00	1.170300	5.75	0581	5.23	1	6.3	6.5	6.
5	0	7739	6.26	1.149772	5.99	0874	5.74	1133	5.52	2	12.6	1	4
6	40	8364	6.25	1.150370	5.98	1448	5.74	1685	5.25	3		12.4	12"
8	20	8989	6.25	0968	5.98	2021	5.73	2236	5.51		18.9	18.6	18:
			0.21			2021		2200		4	25.2	24.8	24
			6.24		5.97		5.72		5.20	5	31.5	31.0	30.
10	0	1.129613	6.23	1.151565		1.172593		1.192786		6	37.8	37.2	36
11	40	1.130236		2161	5.96	3165	5.72	3335	5.49	7	44.1	43.4	42
13	20	0858	6.22	2756	5.95	3736	5.71	3884	5.49	8	50.4	49.6	48
15	0	1480	6.55	3351	5.95	4307	5:71	4433	5.49	9	56.7	55.8	54
16	40	2101	6.51	3945	5.94	4877	5.70	4981	5.48				
18	20	2721	6.50	4538	5.93	5446	5.69	5528	5.47				
			2.40			0.10		0020			600	590	580
			6.19		5.93		5.69		5.47	1	6.0	5.9	5.8
20	0	1.133340	6.18	1.155131	5.92	1:176015		1.196075		2	12.0	11.8	11.6
21	40	3958	6.18	5723	0.0	6583	5.68	6621	5.46	3	18.0	17.7	175
23	20	4576	6:17	6314	5.91	7150	5.67	7167	5.46	4	24.0	23.6	23
25	0	5193		5905	5.91	7717	5.67	7712	545	5	30.0	29.5	294
26	40	5809	6.16	7495	5.90	8283	5.66	8256	544	6		35.4	34.
28	20	6424	6.12	8084	5.89	8848	5.65	8800	5.44	7	36.0		40.
			0.14					000			42.0	41.3	
			6.14		5.88		5.65		5.44	8	48.0	47.2	46.
30	0	1.137038	6.14	1.158672	5.88	1.179413	- 0.	1.199344		9	54.0	53.1	52.
31	40	7652	6.13	9260	5.87	1-179977	5.64	1.199887	5.43				
33	20	8265	6.13	1.159847		1.180541	5.64	1.200429	5.42		570	560	
35	()	8877	6.12	1.160433	5.86	1104	5.63	0970	5.41		370	960	550
36	40	1.139489		1019	5.86	1666	5.62	1511	5.41	1	5.7	5.6	5:
38	20	1.140100	6.11	1604	5.85	2228	5.62	2052	5.41	2	11.4	11.2	11:0
		1	6.10		5.84					3	17.1	16.8	16:
			0.10		9.94		5.61		5.40	4	22.8	22.4	22.0
40	0	1.140710	6.10	1.162188	5.84	1.182789	5:61	1.202592	5.39	5	28.5	28.0	27:
41	40	1320	6.09	2772	5.83	3350	5.60	3131		6	34.2	33-6	334
43	20	1929	6.08	3355	5.83	3910	5:59	3670	5.39	7	39.9	39.2	38:
45	0	2537	6.07	3938	5.82	4469		4208	5.38	8	45.6	44.8	44.
46	40	3144	6.06	4520	5.81	5028	5.59	4746	5.38	9	51.3	50.4	49
48	20	3750	6.00	5101	9.81	5586	5.58	5283	5.37		010	0.74	1.0
			6.05		5.80		5.57		5.37		540	530	T .W
50	0	1.144355	6.04	1:165681	F.0/	1.186143		1.205820					520
51	40	4959		6261	5.80	6700	5.57	6356	5.36	1	5.4	5.3	5.
53	20	5563	6.04	6840	5.79	7256	5.26	6891	5.35	2	10.8	10-G	10-
55	0	6167	6.04	7418	5.78	7812	5.56	7426	5.35	3	16.2	15.9	15.
56	40	6770	6.03	7996	5.78	8367	5.55	7960	5.34	4	21.6	21.2	20-
58	20	7372	6.02	8573	5.77	8921	5.54	8494	5.34	5	27.0	26:5	26
			0.01					01.71		6	32.4	31.8	31
			6.01		5.76	1	5.54	1	5.34				1
									00.	7	37.8	37.1	36
60	0	1-147973		1.169149		1.189475		1.209028	0.01	8	37·8 43·2	37·1 42·4	36°-

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2} \, q^3}$

		24	0	2!	0	26	0	2	70		Dear	ortiona	1.
		log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			eile	1.
		1	1"		1		1		1	_	1		_
(1	r 0"	1.209028	5.33	1.227874	5:14	1/246074	4:97	1-263680	4.81		530		520
1	-	1.209561	5.32	8388	5.13	6571	4.96	4161	4.80			525	
3	20	1210093	5:31	\$901	5.13	7067	4:96	4641	4.80	1	5.3	5.3	51
5	0	0624	5.31	9414	5.13	7563	4.95	5121	4.80	2	10.6	10:5	10-
G	40	1155		1.229927	5:12	8058	4.95	5601	4.80	3	15:9	15.8	150
8	20	1686	5.31	1.230439	9.12	8553	4 20	6081	4 00	4	21.2	210	200
			5:30		5:12		4.95		4.79	5	26.2	26.3	264
. 7.		1.31.331.0	0.00	1:230951	", "-	1:249048		1:266560		6	31.8	31.5	311
10		1.212216	5.29		5:11	1-249542	4.94	7038	4.78	7	37.1	36.8	36
11		2745	5-29	1462	5:11	1.250036	4.94	7516	4.78	8	42.4	42.0	41
13		3274	5:29	1973	5:10		4.93	7994	4.78	9	47:7	47.3	46:
15		3803	5.28	2483	5:10	0529	4.93		4.77				
	40	4331	5:27	2993	5:09	1022	4.92	8471	4.77				1
18	20	4858	0	3502	0	1514		8948			515	510	503
		1	5.27		5.08		4.92		4.77	1	5.2	5:1	5.
20	0 (1:215385		1-234010		1.25200G		1:269425		2	10:3	10.2	10-
21		5911	5.26	4518	5.08	2497	4.91	1-269901	4.76	3	15.5	15.3	15
		6437	5.26	5025	5:07	2988	4.91	1.270377	4.76		20.6	20:4	20
23	_	6962	5:25	5532	5.07	8479	4.91	0852	4:75	4	25:8	25.5	25
2.5			5.25		5.07	3969	4 90	1327	4.75	5			30
	40	7487	5.24	6039	5.06		5.90	1801	4:74	6	30.9	30.6	35
28	20	8011	0	6545		4459		1801		7	36.1	35.7	
			5.24		5:06		4.89		4.74	8	41.2	40.8	40
30	0	1:218535		1:237051		1:254948		1-272275		9	46:4	45.9	45
31		9058	5.23	7556	5.05	5437	4.89	2749	4.74	1			ĺ
8:3		1.219581	5.23	8061	5.05	5925	4.88	3222	4.73		200	100	490
3.5		1-220103	5.22	8565	5.04	6413	4.88	3695	4:73		500	495	4:30
	40	0625	5-22	1-239069	5.04	6900	4.87	4167	4.72	1	5.0	50	4.
38		1146	5:21	1.239573	5.04	7387	4.87	4639	4.72	2	10.0	9.9	9.
96	20	11110	i	200010		1001		1		3	15.0	14.9	14
			5.20		5:03		4.87		4.72	4	20.0	19.8	19
40	0	1:221666		1.240076	,	1.257874		1:275111		5	25.0	24.8	24.
41	40	2186	5.20	0578	5.02	8300	4.86	5582	4:71	G	30.0	29.7	29.
13	20	2706	5:20	1080	5.02	8846	4.86	6053	4:71	7	35-0	34.7	34
15	_	3225	5:19	1581	5.01	9331	4.85	6523	4.70	8	40.0	39.6	39-
46		3743	5:18	2082	5:01	1.259816	4:85	6993	4.70	9	45.0	44.6	44
	20	4261	5.18	2583	5.01	1.260301	4.85	7463	4.70		1		
			5.18		5.00		4.84		4.69		485	480	475
50	0	1:224779		1:243083		1.260785		1.277932					
51		5296	5.17	3583	5.00	1268	4.83	8401	4.69	1	4.9	4.8	4
53		5813	5.17	4082	4.99	1751	4.83	8870	4:69	2	9.7	9.6	9:
5.5		6329	5:16	4581	4.99	2234	4.83	9338	4.68	3	14.6	14-4	14:
90 56		6844	5:15	5079	4.98	2716	4.82	1:279805	4.67	4	19:4	19-2	195
	20	7359	5:15	5577	4.98	3198	4.82	1-280272	4.67	5	24.3	24.0	23.
43	20	1000		0.711						6	29.1	28.8	28
			5:15		4.97		4.82		4.67	7	34.0	33.6	33
GU	0	1.227874		1.246071		1:263680		1.280739		8	38.8	38.4	38
										9	43.7	43.2	42

Tafel für $\log M = \log \frac{75 \, kl}{\sqrt{2 \, q^3}}$

	28	30	29	0	30) 0	31	0		-		_
v	log M	Diff.	tog M	Diff.	log M	Diff.	log M	Diff.			ortiona icile.	ıl-
0' 0"	1.280739		1.297295		1:313385		1.329043		1	Ī	-	
1 40	1206	4.67	7748	4.23	3826	4.41	9472	4.29		470	465	460
3 20	1672	4.66	8201	4.23	4266	4.40	1.329901	4.29	1	4.7	4.7	4.6
5 0	2138	4.66	8653	4.52	4706	4.40	1.330329	4.28	2	9.4	9.3	9-2
6 40	2603	4.65	9105	4.52	5145	4.39	0757	4.28	3	14.1	14.0	13.8
8 20	3068	4.65	1.299557	4:52	5585	4.40	1185	4.28	4	18.8	18-6	18.4
		1.05						4.30	5	23.5	23.3	23.0
		4.65		4.21		4.39		4.28	6	28.2	27.9	27.6
10 0	1.283533	4.64	1.300008	4:51	1.316024	4.38	1.331613	4.27	7	32.9	32.6	32.2
11 40	3997	4.64	0459	4:51	6462	4.39	2040	4.27	8	37.6	37-2	36.8
13/20	4461	4.63	0910	4.50	6901	4:38	2467	4.27	9	42.3	41.9	41.4
15 - 0	4924	4.63	1360	4:50	7339	4.37	2894	4.26	9	42.9	41 3	21 2
16 40	5387		1810		7776		3320	4.26				
18 20	5850	4.63	2260	4:50	8214	4.38	3746	4'20		455	450	445
		4.62		4:50		4:37		4.26	1	4.6	4:5	4:5
20 0	1.286312		1:302710		1.318651		1:334172		2	9.1	9.0	8.9
21 40	6774	4.62	3159	4.49	9087	4.36	4597	4.25	3	13.7	13:5	13.4
23 20	7236	4.62	3607	4.48	9524	4.37	5022	4.25	4	18-2	18:0	17.8
25 0	7697	4:61	4055	4:48	1.319960	4.36	5447	4.25	5	22.8	22.5	22.3
26 40	8158	4.61	4502	4.47	1:320395	4.35	5872	4.25	6	27.3	27:0	26.7
28 20	8618	4.60	4949	4.47	0831	4.36	6296	4.24	7	31.9	31:5	31.2
		4:60		4.47		4:35		4.24	8	36.4	36.0	35·6
90 4	. 270070	4 60	. 00.0000	4.41		4.99		4 2 4	9	41.0	40.5	40-1
30 0	1.289078	4.60	1.305396	4:17	1.321266	4:35	1.336720	4.24				
31 40	9538	4:59	5843	4:46	1701	4:34	7144	4.23				
33 20	1.289997	4:59	6289	4:46	2135	4.34	7567	4.23		440	435	430
35 0	1.290456	4.58	6735	4:46	2569	4:34	7990	1.23	1	4.4	4.4	4:3
36 40	0914	4.58	7181	4:45	3003	4:33	8413	4.22	2	8.8	8.7	8.6
38 20	1372		7626		3436	1.00	8835		3	13.2	13.1	12.9
		4.58		4.45		4.34		4.22	4	17.6	174	17.2
40 0	1.291830		1.308071		1.323870		1.339257		5	22.0	21.8	21.5
41 40	2288	4.58	8516	4.45	4302	4.32	1.339679	4.22	6	26.4	26.1	25.8
43 20	2715	4.57	8960	4.44	4735	4.33	1:340101	4.22	7	30.8	30.5	30-1
45 0	3202	4:57	9404	4.44	5167	4.32	0522	4.21	8	35.2	34.8	34.4
46 40	3658	4.56	1.309848	4.44	5599	4.32	0943	4.21	9	39.6	39-2	38.7
18 20	4114	4.56	1:310291	4.43	6031	4.32	1364	4.21	."	0.0	0.7 2	00.
		4:55		4.43		4.31		4.20				
50 0	1-294569	1 00	1:310734	1.10	1:326462	4 51	1:341784	1 20		425	420	415
51 40	5024	4:55	1177	4.43	6893	4:31	2204	4.20	1	4.3	4.2	4.2
53 20	5479	4.55	1619	4:42	7324	4:31	2624	420	2	8.5	8-4	8.3
55 0	5934	4:55	2061	4:42	7754	4.30	3044	4.20	3	12.8	12.6	12.5
56 40	6388	4.54	2503	4:42	8184	4:30	3463	4.19	4	17-0	16.8	16:6
58 20	6842	4.54	2944	4.41	8614	4.30	3463	4.19	5	21.3	21:0	20.8
JO 20	0942		2.744		0014		9002		6	25.5	25.2	24.9
		4.53		4:41		4.29		4.19	7	29.8	29-4	29-1
60 0	1.297295		1.313385		1.329043		1:344301		8	34.0	33-6	33.2
	il .	1							9	38.3		37-4

Tafel für $\log M = \log \frac{75 \, kl}{\sqrt{2 \, q^3}}$

	3:	00	33	30	34	0	8.	,0				
v	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			eile.	1-
0, 0	1:344301	1	1:359186		1.373725		1.387942					1
1 40	4719	4.18	1.359594	4.08	4124	3.99	8332	3.90		418	415	412
3 20	5137	4.18	1.360002	4.08	4523	3.99	8723	3.91	1	4.2	4.2	4-
5 0	5555	4:18	0410	4.08	4922	3.99	9113	3.90	2	8.4	8.3	8.
6 40	5973	4.18	0818	4.08	5320	3.98	9503	3.90	3	12.5	12.5	12
8 20	6390	4.17	1225	4.07	5718	3.98	1-389892	3.89	4	16.7	16.6	16:
	1			1.05		0.00		0.00	5	20.9	20.8	20
	1	4:17		4.07		3.98		3.90	6	25.1	24.9	24
10 0	1:346807	4:16	F361632	4:07	1.376116	3.98	1.390282	3:89	7	29.3	29-1	28:
11 40	7223	4.17	2039	4:07	6514	3.98	0671	3.89	8	33.4	33.2	33
13 20	7640	4.16	2446	1.06	6912	3.97	1060	3.88	9	37.6	37.4	37
15 0	8056		2852	4.06	7309	3.97	1118	3.89	9	376	31.4	31
16 40	8471	4.15	3258		7706	3.96	1837	3.88				
18 20	8887	4.16	3664	4.06	8102	9.56	2225	3'55		409	406	403
	11 7	4:15		4.06		3.97		3.88	١.	-	4.1	41
20 0	1:349302		1:364070		1:378499		1-392613		1	4.1		8
21 40	1.349717	4:15	4475	1:05	8895	3.96	3001	3.88	2	8.2	8:1	12.
23 20	1:350132	4:15	4880	4.05	9291	3.96	3388	3.87	3	12.3	12.2	
25 0	0546	4:14	5285	4:05	1:379687	3.96	3776	3.88	4	16.4	16.2	16
26 40	0960	4.14	5689	1:01	1:380082	3.95	4163	3.87	5	20.5	20.3	20%
28 20	1374	4-14	6093	4:04	0477	3.95	4549	3.86	6	24.5	24.4	24
220	1011		0,0,10		Oatt		1010		7	28.6	28.4	28:
	1	4.14		1:04		8.95		3.87	8	32.7	32.5	32.5
30 0	1:351788	4.10	1:366497		1.380872	3.95	1.394936	0.0#	9	36.8	36.2	36:
31 40	2201	4:13	6901	1:04	1267	3:95	5323	3.87				
33 20	2614	4:13	7305	4:04	1662	3:94	5709	3.86		400	397	894
35 ()	3027	4.13	7708	4.03	2056		6095	3.86		_	-	-
36 40	3440		8111	1.03	2450	3:94	6480	3.85	1	4:0	4.0	3.
38 20	3852	4.12	8514	4 03	2844	3-94	6866	3.86	2	8.0	7.9	7:
	4	4.12		4:02		3.93		3.85	3	12.0	11-9	11:
10 0	1:354264	1 12	1:368916	3 02		0.00		0.00	4	16.0	15.9	15:
41 40	4676	4.12	9318	4.02	1:383237	3.94	1:397251	3.85	5	20.0	19-9	19.
13 20	5087	4.11	1:369720	4:02	3631	3.93	7636	3.85	6	24:0	23.8	234
45 0	5498	4.11	1:370122	4:02	4024	3.93	8021	3.85	7	28:0	27.8	27.0
46 40	5909	4:11	0523	4:01	4117	3.92	8406	3.84	8	32.0	31.8	31:
48 20	6319	4:10	0924	4:01	=4809 #200	3.93	8790	3.84	9	36.0	35-7	35%
10 20	1013		0.024		5202		9174					
		4.11		4.01		3.92		3.84		391	888	385
50 0	1:356730	4:10	1:371325	4.00	1.385594	0.02	1.399558					
51 10	7140	4:10	1726	4:01	5986	3.92	1.399942	3.84	1	3.9	3.8	3.5
53 20	7550		2126	4:00	6377	3.91	1:400326	3.84	2	7.8	7.8	7.1
55 0	7959	4.09	2526	4.00	6769	3.92	0709	3.83	3	11.7	11.6	11.6
56 40	8368	4:09	2926	4.00	7160	3.91	1092	3.83	4	15.6	15.5	15
58 20	8777	4.09	3326	4.00	7551	3.91	1475	3.83	5	19.6	19.4	19.
		4.09		3.99		3.91		9.09	6	23.5	23.3	23
20 0	1.020453	4.00		9.93		9.91		3.83	7	27.4	27.2	27.0
60 0	1:359186		1.373725		1.387942		1.401858		8	31.3	31.0	30-8
	9							. [9	35.2	34.9	34.7

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

							7 - 4					
	30	30	37	70	35	30	39) 0		D	ortiona	1
v	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			eile.	1-
0, 00	1.401858		1:415493		1.428866		1.441994					
1 40	2240	3.82	5868	3.75	9234	3.68	2356	3.62		382	379	376
3 20	2628	3.83	6243	3.75	9602	3.68	2717	3.61	١.	9.0	9.0	3.8
	3005	3.82	6617	3.74	1.429969	3.67	3078	3.61	1	3.8	3.8	7:
5 0	1	3.81		3.75		3.68		3.61	2	7.6	7:6	
6 40	3886	3.82	6992	3.74	1.430337	3.67	3439	3.60	3	11.5	11.4	115
8 20	3768		7366		0704		3799		4	15.3	15.2	15
		3.81		3.74		3.67		3.61	5	19.1	19.0	18:
10 0	1:404149		1.417740		1.431071		1.444160		6	22.9	22.7	55.0
		3.81		3.73	1438	3.67	4520	3.60	7	26.7	26.5	26.
11 40	4530	3.81	8113	3.74		3.67		3.60	8	30-6	30.3	30
13 20	4911	3.81	8487	3.73	1805	3.67	4880	8.60	9	34.4	34.1	33.8
15 0	5292	3.81	8860	3.73	2171	3:66	5240	3.60				
16 40	5673	3.80	9233	3.73	2537	3.66	5600	3.59				
18 20	6053	9.00	9606	0 10	2903	9 00	5959	0 00		373	370	367
		3.80		3.73		3.66		3.60			0.5	3.
		000	1.140000	0 10	1. 100.300	0 00	1 110010	0.00	1	3.7	3.7	
20 0	1.406433	3.80	1.419979	3.73	1 433269	3.65	1.446319	3:59	2	7.5	7.4	7.
21 40	6813	3.80	1.420352	3.72	3634	3.66	6678	3.59	3	11.2	11.1	111
23 20	7193	3.79	0724	3.72	40(8)	3.65	7037	3.59	-4	14.9	14.8	14
25 0	7572		1096	3.72	4365		7396	3.59	5	18.7	18:5	18.
26 40	7951	3.79	1468		4730	3.65	7755		6	22.4	22.2	22.0
28 20	8330	3.79	1840	3.72	5095	3.65	8113	3.58	7	26.1	25.9	25.
		3.79		3.71		3:65		3:59	8	29-8	29.6	29.
		9.19		2.11		9.03		3.99	9	33.6	33.3	33-0
30 0	1:408709	3.79	1.422211	3.72	1435460	3.64	1.448472	3.58				
31 40	9088	3.78	2583	3.71	5824	3.65	8830	3.58	1			
33 20	9466		2954		6189		9188	3.58		364	361	358
35 0	1.409845	3.79	3325	3:71	6553	3.64	9546					
36 40	1.410223	3.78	3696	3.71	6917	3.64	1.449903	3.57	1	3.6	3.6	3.
38 20	0600	3.77	1066	3:70	7281	3.64	1:450261	3:58	2	7.3	7.2	7:
									3	10.9	10.8	10.
		3.78		3.71		3.64		3.57	4	14.6	14:4	143
40 0	1.410978	0	1-424437	3.70	1.437645	3.63	1:450618	3:57	5	18.2	18-1	173
11 40	1355	3.77	4807	0.0	8008		0975		6	21.8	21.7	21:
43 20	1733	3.78	5177	3.70	8371	3.63	1332	3.57	7	25.5	25.3	25
45 0	2110	3.77	5547	3.70	8734	3.63	1689	3.57	8	29-1	28.9	28
46 40	2486	3.76	5916	8.69	9097	3.63	2046	3.57	9	32.8	32.5	32-
48 20	2863	3.77	6286	3.70	9460	3.63	2403	3.57	3	020	02.0	02
40 20	2000		0200		3400		2100					
		3.76		3.69		3.63		3.26	į	355	352	349
50 0	1-413239		1:426655	0.0	1:439823		1:452759	0.50				_
51 40	3615	3.76	7024	3.69	1.440185	3.62	3115	3:56	1	3.6	3.5	3.
53 20	3991	3.76	7393	3.69	0547	3.62	3471	3:56	2	7:1	7.0	74
55 0	4367	3.76	7761	3.68	0909	3.62	3827	3.56	3	10.7	10.6	105
56 40	4743	3.76	8130	3.69	1271	3.62	4183	3:56	4	142	14:1	141
	[3]	3.75		3.68	1633	3.62	4538	3.55	5	17.8	17.6	17:
58 20	5118		8498		1055		4008		6	21.3	21.1	20:
		3.75		3.68		3.61		3.55	7	24.9	24.6	24
60 0	1-415498		1:428866		1.441994		1:454893		8	28.4	28.2	27:
	. 419130		120000						9	32.0	31.7	31
J-Harri	8	1	1	1.	1		I		J	1020	91.1	191,

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

			,				V 2 9 -					
	40		4	0	45	0	43			Prone	ortiona	1_
z,	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			eile.	1-
0' 0"	1.454893	-	1:467578		1.480063		1.492360			1	Ī	1
1.40	5249	3.26	7928	3.50	0407	3.44	2699	3.39		356	354	352
3 20	5604	3.55	8277	3.49	0751	3.44	3038	3.39	1	3.6	3.5	3:5
5 0	5959	3.55	8626	3.49	1094	3.43	3376	3.38	2	7.1	7.1	7:0
6 40	6313	3.54	8975	3.49	1438	3.44	3715	3.39		1		
8 20	6668	3.55	9324	3.49	1782	3.44	4054	3.39	3	10.7	10.6	10.6
0 20	0000		3024		1102		40.74		4	14.2	14.2	14-1
		3:54	1	3.49		3.43		3.38	5	17.8	17.7	17.6
10 0	1:457022		1.469673		1:482125		1:494392		6	21.4	21.2	21.1
11 40	7376	3.54	1.470021	3.48	2468	3.43	4730	3.38	7	24.9	24.8	24.6
13 20	7730	3.24	0369	3.48	2811	3.43	5068	3.38	8	28.5	28.3	28.2
15 0	8084	3.54	0718	3.49	3154	3.43	5406	3.38	9	32.0	31.9	31.7
16 40	8438	3.24	1066	3.48	3497	3.43	5744	3.38				
18 20	8791	3:53	1414	3.48	3839	3.42	6082	3.38				
	0.01				0000		10002			350	348	346
	1	3.54		3.47		3.43		3.37	1	3.5	3:5	3.5
20 - 0	1:459145	0.00	1:471761	0.40	1:484182		1:496419	0.00	2	7.0	7.0	6-9
21 40	9498	3.53	2109	3.48	4524	3.42	6757	3.38	3	10.5	10:4	10.4
23 20	1:459851	3.53	2456	3.47	4866	3.42	7094	3.37	4	14.0	13.9	13.8
25 0	1.460204	3.53	2804	3:48	5209	3.43	7431	3.37	5	17:5	17.4	17:8
26 40	0557	3.53	3151	3.47	5550	3.41	7768	3.37	6	21:0	20-9	20.8
28 20	0909	3.52	3498	3.47	5892	3.42	8105	3.37	7	24.5	24.4	24.2
							0.00		8	28:0	27.8	27.7
		3.23		3.47		3.42		3.37	9	31.5		
30 - 0	1:461262	0.53	1:473815	3:46	1:486231	3.41	1.498442	0.00	3	31.9	31.3	31.1
31 40	1614	3·52 3·52	4191	3:46	6575		8778	3.36		1		
33 20	1966		4538	1	6917	3.42	9115	3.37		344	342	340
35 0	2318	3.52	4884	3.46	7258	3.41	9451	3.36	1	-		-
36 40	2670	3.52	5231	3:47	7599	3.41	1:499787	3.36	1	3.4	3.4	3.4
38 20	3021	3.21	5577	3.46	7940	3.41	1.500124	3.37	2	6.9	6.8	6.8
		9.73		9.10				0.00	3	10.3	10.3	10.2
		3.52		3.46		3.41		3.36	4	13.8	13.7	13.6
40 0	1:463373	3:51	1.475923	3.46	1:488281	3.40	1.200460	3.35	5	17.2	17.1	17.0
41 40	3724	3:51	6269	3.45	8621	3.41	0795	3.36	6	20.6	20.5	20.4
43 20	4075	3.51	6614	3.46	8962		1131		7	24.1	23.9	23.8
45 0	4426	3.51	6960	3:45	9303	3:40	1467	3.36	8	27.5	27.4	27.2
46 40	4777		7305		9643	3.41	1802	3.35	9	31.0	30.8	30.0
48 20	5128	3.21	7650	3.45	1.489983	3.40	2138	3.36		0.0	0	
		3:50		3.45		3:40		3.35				
		9.90		9.49		9.40		9.99		338	336	334
50 0	1:465478	3:51	1.477995	3:45	1.490323	3.40	1.502478	3.35		-		-
51 40	5829	3:50	8340	3:45	0663	3.39	2808	3.35	1	3.4	3.4	3.3
53 20	6179	3.50	8685	3:45	1002	3.40	3143		2	6.8	6.7	6.7
55 0	6529	3:50	9030	3.44	1342		3478	3.35	3	10.1	10.1	10.0
56 40	6879		9374		1681	3.39	3813	3.35	4	13:5	13.4	13.4
58 20	7229	3.20	1:479719	3.45	2021	3:40	4147	3.34	5	16.9	16.8	16.7
		3.49		3:44		3.39		3:34	6	20.3	20.2	20.0
20 0		0.40		0 11		0 00		9.94	7	23.7	23.5	23.4
60 0	1:467578		1.480063		1:192860		1:504481		8	27.0	26.9	26.7
	N .								9	30.4	30.2	30.1

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

							y 2 4					
	4-	0	43	50	46	; 0	47	0				
υ	log M	Diff.			rtiona eile.	1-						
0' 0"	1:504481		1:516439		1:528244		1.539905					
1 40	4816	3.35	6769	3.30	8569	3.25	1:540227	3.22		336	334	332
3 20	5150	3.34	7099	3.30	8895	3.26	0549	3.22	1	3.4	3.3	3.3
5 0	5484	3.34	7428	3.29	9221	3.26	0871	3.22	2)	6.7	6:7	6.6
6 40	5818	3.34	7758	3.30	9546	3.25	1192	3.21	3	10-1	10.0	10-0
8 20	6152	3.34	8088	3.30	1:529872	3.26	1514	3.22	4	13.4	13.4	13.3
0							.,,.,		5	16.8	16.7	16.6
		3.33		3.29		3.25		3.21	6	20-2	200	19.9
10 0	1:506485	3:34	1.518417	3-29	1.530197	3.25	1.541835	3.22	7	23.5	23.4	23.2
11 40	6819	3.33	8746	3.29	0522	3.25	2157	3.21	8	26.9	26.7	26.6
13 - 20	7152	3.34	9075	3.29	0847	3.25	2478	3.21	9	30.2	30:1	29-9
15 0	7486	3.33	9404	3.29	1172		2799	3.21	3	30/2	00.1	23 3
16 40	7819		1.519733		1497	3.25	3120					
18 20	8152	3.33	1.520062	3.29	1821	3.24	3441	3.21		330	328	326
		3.33		3.28		3.25		3.21	1	3.3	3.3	3.3
20 0	1:508485		1.520390		1:532146		1.543762		2	6.6	6.6	6:5
21 40	8818	3.33	0719	3.29	2471	3.25	4083	3.21	3	9.9	9.8	9.8
23 20	9150	3.32	1047	3.28	2795	3.24	4403	3.20	4	13.2	13.1	13:0
25 0	9483	3.33	1376	3.29	3119	3.24	4724	3.21	5	16.5	16.4	16.3
26 40	1:509816	3.32	1704	3.28	3443	3.24	5044	3.20	6	19-8	19-7	19.6
28 20	1:510148	3.32	2032	3.28	3768	3.25	5365	3.21	7	23.1	23.0	22.8
		3.32		3.28		3-23		3.20	8	26.4	26-2	26.1
		0 02		0.20		0 20		0 20	9	29.7	29.5	29.3
30 O	1:510480	3.32	1.522360	3.28	1.534091	3.24	1:545685	3.20	1			
31 40	0812	3.32	2688	3.27	4415	3.21	6005	3.20				
33 20	1144	3.32	3015	3.28	4739	3.24	6325	3.20		324	323	322
35 0	1476	3.32	3343	3:27	5063	3.23	6645	3.20		3.2	3.2	3:2
36 40	1808	3.31	3670	3-28	5386	3.24	6965	3.20	1		6:5	6.4
38 20	2139	001	3998	0 50	5710	0 24	7285	0.0	2	6·5 9·7	9.7	9.7
		3.32		3.27		3.23		3.19	3	13.0	12.9	12.9
40 0	1:512471		1.524325		1:536033		1:547604		5	16.2	16.2	16-1
41 40	2802	3.31	4652	3.27	6356	3.23	7924	3.20	6	19-4	19.4	19:3
43 20	3133	3.31	4979	3.27	6679	3.23	8243	3.19	7	22.7	22.6	22.5
45 0	3464	3.31	5306	3.27	7002	3.23	8563	3.50	8	25.9	25.8	25.8
46 40	3795	3.31	5633	3.27	7325	3.23	8882	3.19		29.2	29.1	29 (
48 20	4126	3.31	5960	3.27	7648	3.23	9201	3.19	9	29.2	23'1	237
		3.31		3.26		3.23		3-19				
50 0	1:514457		1.526286		1:537971		1:549520			321	320	319
51 40	4788	3.31	6613	3.27	8293	3.22	1:549839	3.19	1	3.2	3.2	3.2
53 20	5118	3.30	6939	3.26	8616	3.23	1550158	3.19	2	6:4	6.4	6.4
55 0	5449	3.31	7265	3.26	8938	3-22	0477	3.19	3	9.6	9-6	9.6
56 40	5779	3.30	7592	3.27	9261	3.23	0796	3.19	4	12.8	12.8	12.8
58 20	6109	3.30	7918	3.26	9583	3.22	1114	3.18	5	16.1	16.0	16-0
	0100		1010		3000		1114		6	19.3	19.2	19-1
		3.30		3.26		3.22		3.19	7	22.5	22.4	22.2
60 0	1.516439		1.528244		1.539905		1:551433		8	25.7	25.6	25.5
									9	28.9	28.8	28.7

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	48	30	45	0	50	0	51	0		D		
υ	log M	Diff 1"	log M	Diff.	log M	Diff.	log M	Diff.			ortions cile.	11-
0' 0"	1:551433		1.562836		1.574123		1.585303					
1 40	1751	3.18	3151	3.15	4435	3.12	5612	3.09		318	317	316
3 20	2069	3.18	3466	3.15	4747	3 12	5921	3.09	1	3.2	3.2	3:
5 0	2388	3.19	3781	3.12	5059	3.12	6230	3.09	2	6.4	6.3	6:
6 40	2706	3.18	4096	3.15	5371	3.15	6539	3.09	3	9.5	9.5	9:
8 20	3024	3.18	4410	3.14	5682	3 11	6848	3.09	4	12.7	12.7	120
		3.18		3.15		3:12		3.09	5	15.9	15.9	150
		3.10		0.19		012		3 03	6	19-1	19.0	194
10 0	1:553342	3.17	1.564725	3.15	1.575994	3.11	1.587157	3.08	7	22.3	22.2	22.
11 40	3659	3.18	5040	3.14	6305	3.12	7465	3.09	8	25.4	25.4	25
$13 \ 20$	3977	3.18	5354	3.14	6617	3.11	7774	3.08	9	28.6	28.5	28
15 0	4295	3.17	5668	3.15	6928	3.11	8082	3.09	1			1
16 40	4612	3.18	5983	3.14	7239	3.12	8391	3.08				1
18 20	4930	0.10	6297	0,14	7551	0.12	8699	0 0		315	314	313
	1	3.17		3.14		3.11		3.08	1	3.2	3.1	3.
20 0	1:555247		1:566611		1.577862		1.589007		2	6.3	6.3	6:
21 40	5564	3.17	6925	3.14	8173	3.11	9315	3.08	3	9.5	9.4	9.
23 20	5882	3.18	7239	3.14	8483	3:10	9623	3.08	4	12.6	12.6	12:
25 0	6199	3.17	7553	3.14	8794	3.11	1:589931	3.08	5	15.8	15.7	15.
26 40	6516	3.17	7866	3.13	9105	3.11	1.590239	3.08	6	18.9	18.8	18:
28 20	6833	3.17	8180	3.14	9416	3.11	0547	3.08	7	22.1	22 0	21:
20 20	0000		3130		7410		0.711			25.2		250
		3.16		3.14		3.10		3.08	8	28.4	25.1	
30 · 0	1.557149		1:568494		1.579726		1.590855	a ob	9	28.4	28.3	28:
31 40	7466	3.17	8807	3.13	1.580037	3.11	1163	3.08	ļ			ĺ
33 20	7783	3.17	9121	3.14	0347	3.10	1470	3.07		312	311	310
35 0	8099	3.16	9434	3.13	0658	3.11	1778	3.08		-	-	
26 40	8416	3.17	1:569747	3.13	0968	3.10	2086	3.08	1	3.1	3.1	3
38 20	8732	3.16	1.570060	3.13	1278	3.10	2393	3.07	2	6.2	6.2	6.
		3.16		3.13		3.10		3-07	3	9.4	9.3	9:
		9.10		9.19		9.16		301	4	12.5	12.4	12.
40 0	1:559048	3.16	1.570373	3.13	1.581588	3.10	1.592700	3.08	5	15.6	15.6	15
41 40	9364	3.16	0686	3.13	1898	3.10	3008	3.07	6	18-7	18.7	18
43 20	9680	3.16	0999	3.13	2208	3.10	3315	3.07	7	21.8	21.8	21.
45 0	1.559996	3.16	1312	3.13	2518	3.10	3622	3.07	8	25.0	24.9	243
46 40	1.560312	3.16	1625	3.12	2828	3.09	3929	3.07	9	28.1	28.0	27:
48 20	0628	3 10	1937	012	3137	0.00	4236	001				i
		3.16		3.13		3.10		3.07		309	308	307
50 0	1:560944		1.572250		1.583447		1:594543			-	-	_
51 40	1259	3.15	2562	3.12	3757	3.10	4850	3.07	1	3.1	3.1	3.
53 20	1575	3.16	2875	3.13	4066	3.09	5157	3.07	2	6.2	6.2	6.
55 0	1890	3.12	3187	3.15	4375	3.09	5463	3.06	3	9.3	9.2	9:2
56 40	2206	3.16	3499	3.12	4685	3.10	5770	3.07	4	12.4	12.3	12.
58 20	2521	3.12	3811	3.12	4994	3.09	6077	3.07	5	15.5	15.4	15
00 00			0011				1	0.0-	6	18.5	18.5	18
		3.15		3.12		3.09		3.06	7	21.6	21.6	21%
60 0	1.562836		1.574123		1.585303		1.596383		8	24.7	24.6	24.
	100			i				1	9	27.8	27.7	27.0

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

							y = 4					
	5	2°	5	3°	5	40	5.	5°				
υ		Diff.		Diff.		Diff.		Diff.			rtiona ieile	1-
	log M	1"	log M	1"	log M	1"	log M	1"		ti	iene	
0, 0,,	1.596383		1.607370		1.618272		1.629096	3.00				
1 40	6689	3.06	7674	3.04	8574	3.02	9396	2.99		306	305	304
3 20	6996	3.07	7978	3.04	8876	3.02	9695	3:00	1	3.1	3.1	3.0
5 0	7302	3.06	8282	3.04	9177	3.01	1.629995	2.99	2	6.1	6.1	6.1
6 40	7608	3.06	8586	3.04	9479	3.02	1.630294		3	9-2	9.2	9.1
8 20	7914	3.06	8889	3.03	1.619780	3.01	0593	2.99	4	12.2	12.2	12.2
		3.06		3.04		0.00		3.00	5	15.3	15.3	15.2
		300		304	4 4 1000 3	3.02		300	6	18.4	18-3	18:2
10 0	1.598220	3.06	1.609193	3.04	1.620082	3.01	1.630893	2.99	7	21.4	21.4	21:3
11 40	8526	3.06	9497	3 03	0383	3.01	1192	2.99	8	24.5	24.4	24-8
13 20	8832	3.06	1.609800	3.04	0684	3.01	1491	2.99	9	27.5	27.5	27.4
15 0	9138	3.06	1.610104	3.03	0985	3.02	1790	2.99		210	- 1 "	-
16 40	9444	3.06	0407	3.03	1287	3.01	2089	3.00				
18 20	1.599750	300	0710	300	1588	301	2389	000	ĺ	303	302	301
	B	3.05		3.04		3.01		2.99	١.	3:0	3.0	3.0
20 0	1.600055		1.611014		1:621889		1.632688		1		6.0	6.0
21 40	0361	3.06	1317	3.03	2190	3.01	2986	2.98	2	6.1	9.1	9.0
23 20	0666	3.05	1620	3.03	2491	3.01	3285	2.99	3	9.1	-	
25 0	0972	3.06	1923	3.03	2791	3.00	3584	2.99	4	12.1	12.1	12.0
26 40	1277	3.05	2226	3.03	3092	3.01	3883	2.99	5	15.2	15.1	15.1
28 20	1583	3.06	2529	3.03	3393	3.01	4182	2.99	6	18.2	18.1	18.1
28 20	1989		2529		3373		4102		7	21.2	21.1	21.1
		3.05		3.03		3.01		2.98	8	24.2	24-2	24-1
30 0	1-601888		1.612832		1.623694		1.634480		9	27.3	27.2	27-1
31 40	2193	3.05	3134	3.02	3994	3.00	4779	2.99				}
33 20	2498	3.05	3437	3.03	4295	3.01	5078	2.99	1		200	200
35 0	2803	3.05	3740	3.03	4595	3 00	5376	2:98		300	299	298
36 40	3108	3.05	4042	3.02	4896	3.01	5675	2.99	1	3.0	3.0	3.0
38 20	3413	3.05	4345	3.03	5196	3.00	5973	2.98	2	6.0	6.0	6.0
00. 20									3	9.0	9.0	8.9
		3.05		3.02		3.00		2.98	4	12.0	12.0	11:5
40 0	1.603718	204	1.614647	3.03	1.625496	3.01	1.636271	2.99	5	15.0	15.0	14.9
41 40	4022	3.04	4950	3.03	5797	3.00	6570	2.98	6	18.0	17.9	17:9
43 20	4327	3.05	5252		6097		6868	2.98	7	21.0	20.9	20%
45 0	4632	3.05	5555	3.03	6397	3.00	7166		8	24.0	23.9	23.8
46 40	4936	3.04	5857	3.02	6697	3:00	7464	2.98	9	27.0	26.9	26.8
48 20	5241	3.05	6159	3.02	6997	3.00	7762	2.98		210	200	-
		3.04		3.02		3.00		2.98				
50 0	1.605545		1:616461	001	1.627297	0.00	1.638060	3.00		1		
51 40	5850	3.05	6763	3.02	7597	3.00	8358	2.98				
53 20	6154	3.04	7065	3.02	7897	3.00	8656	2.98				
55 0	6458	3.04	7367	3.02	8197	3.00	8954	2.98				
56 40	6762	3.04	7669	3.02	8497	3.00	9252	2.98				1
58 20	7066	3.04	7971	3.02	8796	2.99	9550	2.98		1		
		3.04		3.01		3.00		2.98				
60 0	1.607370		1.618272		1.629096		1.639848					
	H	1		I								

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	5	6°	5	70	5	80	5	90			
t	log M	Diff.	Pı	theil							
01 04	1.639848		1.650534		1.661160		1.671733				
1 40	1:640145	2.97	0830	2.96	1455	2.95	2026	2.93		298	297
3.20	0443	2.98	1125	2.95	1749	2.94	2319	2.93	1	3:0	3.(
5 0	0741	2-98	1421	2.96	2043	2.94	2612	2.93	2	6.0	5-9
6.40	1038	2.97	1717	2.96	2338	2.95	2905	2.93		8.9	
8 20	1336	2.98	2013	2.96	2632	2.94	3198	2.93	3		8:
0 20	1000		2010		2002		9130		4	11.9	11:
		2.97		2.96		2.94		2.92	5	14.9	14:
10 0	1.641633		1.652309		1.662926		1.673490		6	17.9	17.8
11 40	1930	2.97	2604	2.95	3220	2.94	3783	2.93	7	20.9	20-8
13 20	2228	2.98	2900	2.96	3514	2.94	4076	2.93	8	23.8	23.8
15 0	2525	2.97	3196	2.96	3808	2.94	4369	2.93	9	26.8	26.
16 40	2822	2.97	3491	2.95	4102	2.94	4661	2.92	B		
18 20	3119	2.97	3787	2.96		2.94	4954	2.93			
18 20	5113		9191		4396		4954			296	293
	1	2.98		2.95		2.94		2.93	1	3.0	3.0
20 0	1:643417		1:654082		1:664690		1.675247		2	5:9	5.9
21 40	3714	2.97	4378	2:96	4984	2.94	5539	2.92	3		
23 20	4011	2.97	4673	2:95	5278	2.94	5832	2.93		8.9	8.9
25 0	4308	2.97	4968	2:95	5572	2.94	6124	2.92	4	11.8	11.8
		2.97		2.96		2.94		2.93	5	14.8	14.8
26 40	4605	2.97	5264	2.95	5866	2.94	6417	2.92	6	17.8	17:7
28 20	4902		5559	2 1.0	6160		6709		7	20.7	20-7
		2.96		2.95		2.93		2.92	8	23.7	23.0
30 0	1:645198		1:655854		1:666453		1:677001		9	26.6	26.€
31 40	5495	2.97	6149	2.95	6747	2.94	7294	2.93			
33 20	5792	2.97	6444	2.95	7040	2.93	7586	2.92	1		
35 0	6089	2.97	6739	2.95	7334	2.94	7878	2-92		294	29;
	6385	2.96		2.95		2.93		2.92	1	2.9	2:5
36 40		2.97	7034	2.95	7627	2:04	8170	2.93	2	5.9	5.5
38 20	6682		7329	2 00	7921		8463		3	8.8	8.8
		2.97		2.95		2.93		2.92	4	11.8	
40 0	1:646979		1:657624		1:668214		1:678755		4		11.7
41 40	7275	2.96	7919	2.95	8508	2.94	9047	2.92	5	14-7	14.7
43 20	7572	2.97	8214	2.95	8801	2.93	9340	2.93	6	17.6	17.6
		2.96		2.95		2.94		2.91	7	20.6	20%
45 0	7868	2.96	8509	2:95	9095	2.93	9631	2.92	8	23.5	23
46 40	8164	2.97	8804	9.94	9388	2.93	1.679923	2.92	9	26.5	26
48 20	8461		9098	2	9681	2 50	1.680215	202	13		
		2.96		2.95		2.93		2.92			
50 0	1:648757		1:659393		1:669974		1.680507		F F	292	291
51 40	9053	2:96	9688	2:95	1:670268	2.94	0799	2.92	1	2.9	2:
58 20	9349	2.96	1.659982	2:04	0561	2.93	1091	2.92	2	5.8	5.1
55 0	9645	2.96	1.660277	2.95	0854	2.93	1383	2.92	3	8.8	8.
		2.97		2:04		2.93		2.92	4	11.7	11:6
	1.649942	2.96	0571	2:95	1147	2.93	1675	2.91	5	14.6	14-6
58 20	1:650238		0866	2	1440	20	1966	201	6	17.5	
		2:96		2.94		2.93		2.92	7		17:
60 0	1:650534		1:661160	- 1	1,051555		1.682258			20-4	20-
00 0	1.000094		1 001160		1:671733		1 962238		8	23.4	23
	1								9	26-3	26-

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	60)	61)	62		63	-	_		
υ	log M	Diff.	log M	Diff 1"	log M	Diff.	log M	Diff.	Pr	oportio theile	
0' 0"	1.682258		1.692741		1.703187		1:713601				
1 40	2550	2.92	3032	2.91	3476	2.89	3890	2.89		292	291
3 20	2842	2.92	3322	2.90	3766	2.90	4178	2.88			
5 0	3133	2.91	3613	2.91	4056	2.90		2.89	1	2.9	2.9
6 40		2.92		2.90	l .	2.89	4467	2.89	2	5.8	5.8
	3425	2.92	3903	2.91	4345	2.90	4756	2.89	3	8.8	8.7
8 20	3717		4194		4635		5045	200	4	11.7	11.6
		2.91		2.90		2.89		3.89	5	14.6	14.6
0	1.684008		1:694484		1.704924		1.715334		6	17:5	17:5
1 40	4300	2.92	4775	2.91	5214	2.90	5622	2.88	7	20.4	20.4
3 20	4591	2.91	5065	2.90	5503	2.89	5911	2.89	8	234	23.3
5 0	4883	2.92	5356	2.91	5793	2.90	6200	2.89	9	26.3	26.2
5 40	5174	2.91	5646	2.90	6082	2.89	6489	2.89			
8 20	5465	2.91	5936	2.90	6372	2.90		2.88			
20	3403		9996		0012		6777			290	289
		2.92		2.91		2.89		2.89	1	2.9	2.9
0 (1:685757	2.91	1:696227	2.90	1.706661	3.00	1.717066	2.00	2	5.8	5.8
1.40	6048		6517		6951	2.90	7355	2.89	3	8.7	8.7
3 20	6340	2.92	6807	2.90	7240	5.89	7643	2.88	4	11.6	11:6
0	6631	2.91	7097	2.90	7529	2.89	7932	2.89		14:5	14:5
3 40	6922	2.91	7388	2.91	7819	2.90	8220	2.88	- 6 - 6	17.4	17:3
3 20	7213	2.91	7678	2.90	8108	2.89	8509	2.89	7		
	1270		1010				000.0			20.3	20.2
		2.91)	2.90		2.89	0	2.88	8	23.2	23.1
0	1.687504	2.92	1.697968	2.90	1.708397	2.90	1.718797	2.89	9	26.1	26.0
40	7796	2.91	8258	2 90	8687	-	9086				
3 20	8087		8548		8976	2.89	9374	2.88		288	
0	8378	2.91	8838	2.00	9265	2.89	9663	2.89		200	
40	8669	2.91	9128	2.90	9554	2.89	1 719951	2.88	- 1	2.9	
3 20	8960	2.91	9418	2.90	1:709843	2.89	1.720240	2.89	2	5.8	
		2.91		2.91		2.90		2.88	3	8.6	ĺ
		2 .71		201		2.00		2.90	4	11.2	
0 (1.689251	2.91	1:699709	2.89	1:710133	2.89	1.720528	2.89	5	14.4	
40	9542	2.91	9998	2.90	0422	2.89	0817	2.88	6	17:3	
3 20	1.689833	2.91	1:700288	2.90	0711	2.89	1105	2:88	7	20.2	
0	1.690124	2.91	0578	2.90	1000		1393		8	23.0	
6 40	0415	2.91	0868	2.90	1289	2.89	1682	2.89	9	25.9	
8 20	0706	2.91	1158	2.30	1578	2.89	1970	2.88		000	
		2.90		2.90		2.89		2.89			
0 0	1.690996	1	1:701448		1:711867		1.722259				
1 40	1287	2.91	1738	2.90	2156	2.89	2547	2.88			
3 20	1578	2.91	2028	2.90	2445	2.89	2835	2.88			
5 0	1869	2.91	2317	2.89	2734	2.89	3123	2.88			
3 40	2160	2.91	2607	2.90	3023	2.89	3412	2.89			
3 20	2450	2.90	2897	2.90	3312	2.89	3700	2.88			
5 200	2400		2891		5512		3700				
1		2.91		2.90		2.89		2.88			
0	1.692741		1.703187		1:713601		1.723988				
		1									

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

P	640		65°		66°		67°		Proportional	
	log M	Diff. 1"	log M	Diff.	log M	Diff.	log M	Diff.		aeile
0' 0"	1.723988		1.731354		1.744703		1:755041			
1 40	4276	2.88	4642	2.88	4990	2.87	5328	2.87		289
3 20	4565	2.89	4929	2.87	5278	2.88	5615	2.87	1	2-9
5 0	4853	2.88	5217	2.88	5565	2.87	5902	2.87	2	5.8
6 40	5141	2.88	5505	2.88	5852	2.87	6189	2.87	3	8-7
8 20	5429	2.88	5792	2.87	6140	2.88	6476	2.87	4	11.6
	0420		0102						5	14.5
		3.88		2.88		2.87		2.87	6	17.3
0 0	1:725717		1:736080	2.05	1.746427	2.87	1.756763	2.87	7	20-2
1 40	6005	2.88	6367	2.87	6714		7050	2:87	S	23.1
3 20	6293	2.88	6655	2.88	7001	2.87	7337		9	26:0
5 0	6581	2.88	6943	2.88	7288	2.87	7624	2.87	9	26'0
6 40	6869	3.88	7230	2.87	7576	2.88	7911	2.87		
18 20	7158	2.89	7518	2.88	7863	2.87	8198	2.87		288
		2.88		2.87		2.87		2.86		
		2.00		201		201	1.550101	-	1	2.9
20 0	1.727446	2.88	1.737805	2.88	1.748150	2.87	1.758484	2.87	2	5.8
21 40	7734	2.88	8093	2.87	\$137	2.87	8771	2.87	3	8.6
23 20	8022	2.88	8380	2.88	8724	2.88	9058	2.87	4	11.5
25 0	8310	2.88	8668	2.87	9012	2.87	9345	2.87	5	14-4
26 40	8598	2.88	8955	2.88	9299	2.87	9632	2.87	6	17.3
28 20	8886	2.99	9243	2.00	9586	201	1.759919	201	7	20.2
		2.87		2.87		2.87		2.87	8	23-0
30 0	1.729178		1:739530		1.749873		1.760206		9	25-9
31 40	9461	2.88	1.739818	2.88	1:750160	2.87	0493	2.87	-	
33 20	1:729749	2.88	1.740105	2.87	0447	2.87	0780	2.87		287
35 0	1.730037	2.88	0393	2.88	0734	2.87	1067	2.87		201
36 40	0325	2.88	0680	2.87	1022	2.88	1354	2.87	1	2.9
38 20	0613	2.88	0968	2.88	1309	2.87	1641	2.87	2	5.7
	0.010		111.110			0.00		1	3	8.6
		2.88		2.87		2.87		2.87	4	11.5
40 0	1:730901		1:741255	2.87	1:751596	2.87	1:761928	2.87	5	14.4
41 40	1189	2.88	1542		1883	2.87	2215	2.87	6	17-2
43 20	1476	2.87	1830	2.88	2170		2502	2.87	7	20.1
45 ()	1764	2.88	2117	2.87	2457	2.87	2789		8	23-0
46 40	2052	2.88	2405	2.88	2744	2.87	3076	2.87	9	25.8
48 20	2340	2.88	2692	2.87	3031	2.87	3362	2.86		
		2.88		2.87		2.87	i	2.87		286
50 0	1.732628		1:742979		1:753318	20"	1:763649	2.07	1	
51 40	2915	2.87	3267	2.88	3605	2.87	3936	2.87	1	2.9
53 20	3203	2.88	3554	2.87	3892	2.87	4223	2.87	2	5.7
55 0	3491	2.88	3841	2.87	4179	2.87	4510	2.87	3	8.6
56 40	3779	2.88	4129	2.88	4466	2.87	4797	2.87	4	11.4
58 20	4066	2.87	4416	2.87	4753	2.87	5084	2.87	5	14.3
	31700	Ĭ.	1110		1.00		1 0001	0.00	6	17-2
		2.88		2.87		2.88		2.87	7	20:0
60 0	1:734354		1.744703		1:755041	1	1.765371		8	22-9
									9	25.7

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	1	80	()	90		0.0	1	1 °	n .	
יד	log M	Diff.		ortiona heil e						
0, 0,,	1.765371		1.775699		1.786028		1.796365			
1 40	5658	2.87	5985	2.86	6315	2.87	6652	2.87		
3 20	5945	2.87	6272	2.87	6602	2.87	6940	2.88		
5 0	6231	2.86	6559	2.87	6889	2.87	7227	2.87		
6 40	6518	2.87	6846	2.87	7177	2.88	7514	2.87		
8 20	6805	2.87	7133	2.87	7464	2.87	7801	2.87		286
		2.87		2.87		2.87		2.88	1	2.9
10 0	1.767092		1.777420		1:787751		1.798089		2	5.4
11 40	7379	2.87	7707	2.87	8038	2.87	8376	2.87	3	8.6
13 20	7666	2.87	7994	2.87	8325	2.87	8663	2.87	4	11.4
7	4	2.87	8281	2.87		2.87		2.88	5	14.3
15 0	7953	2.87		2.87	8612	2.87	8951	2.87	6	17.2
16 40	8240	2.86	8568	2.86	8899	2.87	9238	2.88	7	20.0
18 20	8526	200	8854	- (10	9186	20.	9526	- 00	8	22.9
		2.87		2.87		2.87		2.87	9	25.7
20 0	1.768813	6.00	1.779141		1.789473		1.799813			
21 40	9100	2.87	9428	2.87	1.789760	2.87	1:800100	2.87		
23 20	9387	2.87	1.779715	2.87	1:790047	2.87	0388	2.88		287
25 0	9674	2.87	1.780002	2.87	0334	2.87	0675	2.87	1	2.9
26 40	1.769961	2.87	0289	2.87	0621	2.87	0962	2.87	2	5.7
28 20	1.770248	2.87	0576	2.87	0909	2.88	1250	2.88	3	8:6
2.17 2.17	1 110240		0010		0.00		12.70		4	11:5
-		2.87		2.87		2.87		2.87	5	14:4
30 0	1.770535		1.780863		1:791196	2.00	1.801537	200	6	17:2
31 40	0822	2.87	1150	2.87	1483	2.87	1825	2.88	7	20:1
33 20	1108	2.86	1437	2.87	1770	2.87	2112	2.87		
35 0	1395	2.87	1724	2.87	2057	2.87	2400	2.88	8	23.0
36 40	1682	2.87	2011	2.87	2344	2.87	2687	2.87	9	25.8
38 20	1969	2.87	2298	2.87	2631	2.87	2975	2.88		
1		2.87		2.87		2.87		2.87		288
40 0	1.772256		1.782585		1.792918		1:803262		1	2.9
41 40	2543	2.87	2872	2.87	3206	2.88	3550	2.88	2	5.8
43 20	2830	2.87	3159	2.87	3493	2.87	3837	2.87	3	8.6
45 0	3117	2.87	3445	2.86	3780	2.87	4125	2.88	4	11:5
46 40	3403	2.86	3732	2.87	4067	2.87	4412	2.87	5	14-4
48 20	3690	2.87	4019	2.87	4354	2.87	4700	2.88	6	17:3
10 20	30.70		4013		40.74		2100		7	20.2
		2.87		2.87		2.88		2.87	8	23.0
50 0	1.773977	0.07	1.784306	2.87	1.794642	2.87	1.804987	2.88	9	25.9
51 40	4264	2.87	4593		4929		5275		,	200
53 20	4551	2.87	4880	2.87	5216	2.87	5562	2.87		
55 0	4838	2.87	5167	2.87	5503	2.87	5850	2.88		
56 40	5125	2:87	5454	2.87	5791	2.88	6138	2.88		
58 20	5412	2.87	5741	2.87	6078	2.87	6425	2.87		
		2.87		2.87		2.87		2.88		
			1.786028		1.796365		2.806713		1	

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, g^3}}$

	7	20	7	3°	7	4°	7	5°	D	
υ	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.		ortional heile
0' 0"	1.806713	2.88	1:817077	2.88	1.827460	2:89	1.837869	2.89		how.
1 40	7001	2.87	7365	2.88	7749	2.89	8158	2.90		287
3 20	7288		7653		8038	2.89	8448	2.89	1	2.9
5 0	7576	2.88	7941	2.88	8327		8737		2	5.7
6 40	7864	2.88	8229	2.88	8615	2.88	9027	2.90	3	8.6
8 20	8151	2.87	8517	2.88	8904	2.89	9316	5.89	4	11.5
		2.88		2.89		2.89		2.90	5	14.4
	1 000 100	2 00	1:818806	2 00	1.829193	2 00	1.839606	200	6	17-2
10 0	1.808439	2.88		2.88	9482	2.89		2.90	7	20:1
11 40	8727	2.87	9094	2.88		2.89	1.839896	2.89	8	234
13 20	9014	2.88	9382	2.88	1.829771	2.89	1.840185	2.90	9	25.8
15 0	9302	2.88	9670	2.89	1.830060	2.89	0475	2.90		2.7
16 40	9590	2.88	1.819959	2.88	0349	2.89	0765	2.90		
18/20	1.809878	2.99	1.820247	2.00	0638	2 00	1055	2 30	1	288
		2.88		2.88		2.89		2.89	1	2.9
20 0	1.810166		1:820535		1:830927		1.841344		2	5.8
21 40	0453	2.87	0824	2.89	1216	2.89	1634	2.90	3	8.6
23 20	0741	2.88	1112	2.88	1504	2.88	1924	2.90	4	11:5
25 0	1029	2.88	1400	2.88	1794	2.90	2214	2.90	5	14.4
26 40	1317	2.88	1689	2.89	2083	2.89	2504	2.90	6	
28 20	1605	2.88	1977	2.88	2372	2.89	2794	2.90	7	17:8
20 20	1605		1511		2012		2109		8	20.2
		2.87		2.89		2.89		2.89	9	25.9
30 0	1.811892	2.88	1.822266	2.88	1.832661	2.89	1.843083	2.90		2.7
31 - 40	2180	2.88	2554	2.89	2950	2.89	3373	2.90		
33 20	2468	2.88	2843	2.88	3239	2.89	3663	2.90		289
35 0	2756	2.88	3131	2.88	3528	2.90	3953	2.90		-
36 40	3044		3419	-	3818		4243	2.90	1	2.0
38 20	3332	2.88	3708	2.89	4107	2.89	4533	2.30	2	5.8
		2.88		2.89		2.89		2.90	3	8.7
		2 00		2 0.7		2 00	. 044030	2 30	4	11.6
40 0	1.813620	2.88	1.823997	2.88	1.834396	2.89	1.844823	2.91	5	14.5
41 40	3908	2.88	4285	2.89	4685	2.90	5114	2.90	6	17:3
13 20	4196	2.88	4574	2.88	4975	2.89	5404	2.90	7	20.2
45 0	4484	2.88	4862	2.89	5264	2.89	5694	2.90	8	23.1
46 40	4772	2.88	5151	2.88	5553	2.90	5984	2.90	9	26.0
48 20	5060	2 00	5439	2 00	5843	2 00	6274	2 ,/(/		
		2.88		2.89		2.89		2.90		290
50 0	1.815348	2.88	1.825728	2.89	1.836132	2.89	1.846564	2.91		0.0
51 - 40	5686	2.88	6017	2.88	6421	2.90	6855	2.90	1	2.9
53 20	5924	2.88	6305	2.89	6711	2.89	7145	2.90	2	5.8
55 ()	6212	-	6594	-	7000	2.89	7435	2.90	3	8.7
56 40	6500	2.88	6883	2.89	7290	2.89	7725	2.90	4	11.6
58 20	6788	2.88	7172	2.89	7579	2.80	8016	2.91	5	145
	1	2.89		2.88		2.90		2.90	6	17.4
		2.99		2 00	1.007000	2 00		2 30	7	20.3
60 0	1:817077		1.827460		1.837869		1:848306		- 8	23.2
									9	26.1

Tafel für $\log M = \log \frac{75 \ kt}{\sqrt{2 \ q^3}}$

	76	D	77	,	78	0	79				
ν	log M	Diff.	Pr	oportic theile							
0, 0,	1.848306		1.858777		1.869286		1.879837	-		ĺ	1
1 40	8596	2.90	9068	2.91	9578	2.92	1.880131	2.94			
3 20	8887	2.91	9360	2.92	1:869871	2.93	0424	2.93			
5 0	9177	2.90	9651	2.91	1.870163	2.92	0718	2.94			
6 40	9468	2.91	1.859943	2.92	0456	2.93		2.94	İ	290	291
8 20	1.849758	2.90	1.860234	2.91	0749	2.93	1012	2.94	١.		
0 20	1 015150		1 000201		0.43		1306		1 2	2.9	2.9
		2.91		2:92		2.92		2.94	3	5.8	5.8
0 0	1.850049	201	1.860526		1.871041		1.881600			8.7	8.7
1.40	0340	2.91	0817	2.91	1334	2.93	1894	2.94	4	11.6	11.0
13 20	0630	2.90	1109	2.92	1627	2.93	2188	2.94	5	14.5	14.€
15 0	0920	2:90	1400	2:91	1919	2.92	2482	2.94	6	17.4	17:5
6 40	1211	2.91	1692	2.93	2212	2.93	2776	2.94	7	20.3	20.4
8 20	1502	2.91	1984	2.92	2505	2.98	3070	2.94	8	23.2	23.5
		2.90	1001	2.91	21/(4)	2.93	31710	2 94	9	26.1	26-2
20 0	1.851792		1.862275	2 (1)	1.050500	2 00	4.000004	201			
21 40	2083	2.91	2567	2.92	1.872798	2.93	1.883364	2.94			
23 20	R .	2.91		2.92	3091	2.93	3658	2.95		292	293
	2374	2.91	2859	2.92	3381	2:93	3953	2.94			
25 0	2665	2.90	3151	2.92	3677	2.98	1247	2.94	1	2.9	2.0
26 40	2955	2.91	3443	2.91	3970	2.93	4541	2.94	2	5.8	5.8
28 20	3246	- 0.1	3734	201	4263	2 00	4835	2 34	3	8.8	8.8
		2.91		2.92		2.93		2.95	4	11.7	11.7
30 0	1.853537		1.864026		1.874556			2.00	-5	14.6	14-7
31 40	3828	2.91		2.92		2.93	1.885130	2.94	- 6	17:5	17.6
33 20	4119	2.91	4318	2.92	4849	2.93	5424	2.95	7	20.4	20.5
	4410	2.91	4610	2.92	5142	2.93	5719	2.94	8	23.4	23.4
	1	2.91	4902	2.92	5435	2.93	6013	2.95	9	26.3	26.4
36 40	4701	2.91	5194	2.92	5728	2.94	6308	2.94		-00	
38 20	4992	201	5486		0.055		6602			on i	201
0 0	1.855283	2.91	1.865778	2.92	1.050015	2.93		2.95		294	295
1 40	5574	2.91	6070	2.92	1.876315	2.93	1.886897	2.94	I	2.9	3.0
3 20	5865	2.91		2.93	6608	2.91	7194	2.95	2	5.9	5.5
-		2.91	6363	2.92	6902	2.93	7486	2.95	8	8.8	8.5
5 0	6156	2.91	6655	2.92	7195	2.93	7781	2.95	4	11.8	11.8
16 40	6447	2.91	6947	2.92	7488	2.94	8076	2.94	-5	14:7	14.8
8 20	6738		7239		7782	2 04	8370	2.3%	6	17.6	17:7
0 0	1.055030	2.91		2.92		2.93		2.95	7 8	20.6	20-7
0 0	1.857029	2.92	1.867531	2.93	1.878075	2.94	1.888665	2.95	9	26.5	26.0
1 40	7321	2.91	7824	2.92	8369	2.93	8960	2.95		26.9	20'(
3 20	7612	2.91	8116	2.92	8662	2.94	9255				
55 0	7903	2.91	8408	2.93	8956		9550	2.95			
66 40	8194		8701		9250	2.94	1.889845	2.95			1
8 20	8486	2.92	8993	2.92	9548	2.93	1.890140	2.95			
		2.91	1	2.93		2.94		2.95			
0 0											

Tafel für $\log M = \log \frac{75 \ kt}{\sqrt{2 \ q^3}}$

	80		81 6		82		83		D-	mout'-	nal
v	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.	Pre	theile	
0' 0"	1.890435		1.901084		1.911789		1.922555	0.00			
1.40	0730	2.95	1381	2.97	2088	2.99	2855	3.00		295	296
3 20	1025	2.95	1677	2.96	2386	2.98	3155	3.00	1	3.0	3-0
5 0	1320	2.95	1974	2.97	2684	2.98	3455	3.00	2	5.9	5.5
6 40	1616	2.96	2271	2.97	2982	2.98	3755	3.00	3	8-9	8:
8 20	1911	2.95	2568	2.97	3281	2.99	4055	3.00	4	11.8	11:
0 20	1011		2011(1		0.01		1550		5	14.8	14:
		2.95		2.96		2.98		3.00	6	17.7	17:
10 0	1.892206		1.902864	2.00	1.913579	2.00	1.924855	3:01	7	20-7	20
11 40	2501	2.95	3161	2.97	3878	2.99	4656		N .		
13 20	2797	2.96	3458	2.97	4176	2.98	4956	3.00	8	23.6	23
15 0	3092	2.95	3755	2.97	4475	2-99	5256	3.00	9	26-6	264
16 40	3388	2:96	4052	2.97	4773	2.98	5557	3.01			1
18 20	3683	2.95	4349	2.97	5072	2.99	5857	3.00	i	297	298
10 20	E 0.100									294	298
		2:96		2.97		2.99		3.01	1	3-0	3-
20 0	1:893979		1.904646	2.04	1.915371	2.00	1.926158	3:00	2	5.9	6-
21 40	4274	2:95	4943	2.97	5670	2.99	6458		3	8-9	8-
23 20	4570	2:96	5240	2.97	5968	2-98	6759	3.01	4	11.9	11-
25 0	4866	2:96	5538	2.98	6267	2.99	7059	3.00	5	14-9	14-
26 40	5161	2:95	5835	2.97	6566	2:99	7360	3.01	6	17.8	17
28 20	5457	2.96	6132	2.97	6865	2.99	7661	3.01	7	20.8	20.
211 211	0101				0.2.10				S	23.8	23.
		2.96		2:97		2.99		3.01	9	26.7	26
30 0	1.895753		1:906429		1.917164	2.00	1.927962	0.01	9	20.7	26
31 40	6049	2:96	6727	2.98	7463	2:99	8263	3.01			
33 20	6345	2:96	7024	2.97	7762	2.99	8563	3.00		299	300
35 0	6640	2:95	7322	2.98	8062	3.00	8864	3:01	1	-	-
36 40	6936	2.96	7619	2.97	8361	5-55	9165	3.01	1	3.0	3.
88 20	7232	2:96	7917	2.98	8660	2.99	9467	3.02	2	640	6*
010 211	1202		1					0.01	3	9.0	9*
		2:96		2.97		2.99		3.01	4	12.0	12-
10 0	1.897528		1:908214	N 4000	1:918959	9.00	1.929768	3:01	5	150	15
11.40	7825	2.97	8512	2.98	9259	3.00	1.930069		6	17-9	18-
13 20	8121	2.96	8810	2:98	9558	2-99	0370	3.01	7	20.9	21-
45 0	8417	2:96	9108	2.98	1:919858	3.00	0671	3.01	8	23.9	24.
1G 40	8713	2:96	9405	2.97	1.920157	5-99	0973	3.02	9	26.9	27-
18 20	9009	5:50	1:909703	2.98	0457	3.00	1274	3.01		200	
								0.00			1
		2.97		2.98		2.99		3.02		301	302
50 0	1:899306		1:910001	100	1:920756	0.00	1.931576	2.01			
51.40	9602	2:96	0299	2.98	1056	3.00	1877	3.01	1	3.0	3
53 20	1:899898	2:96	0597	2.98	1356	3:00	2179	3-02	2	6.0	6-
55 0	1:900195	2.97	0895	2:98	1655	2.99	2480	3.01	3	9.0	9.
56 40	0491	2:96	1193	2.98	1955	3.00	2782	3.02	4	12-0	12.
58 20	0788	2:97	1491	2:98	2255	3.00	3084	3.02	5	15.1	15
= (*	0100		1.41.1		w w-50				6	18.1	18
		2:96		2.98		3.00		3.01	7	21.1	21.
30 0	1:901084		1:911789		1.922555		1.933385		8	24-1	24
									9	27.1	27

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	84	0	8.	0	86	0	87	0			
tr		Diff.		Diff.		Diff.		Diff.	Pr	oportio	
	log M	1"		theil	e						
0' 0"	1:933385	0.00	1:944286	00	1.955260		1:966314				1
1 40	3687	3.02	4589	3.03	5566	3.06	6622	3.08	1	303	30
3 20	3989	3.02	4893	3.01	5872	3.06	6931	3.05	1	3.0	3.0
5 0	4291	3.02	5197	3.04	6178	3.06	7239	3.08	2	6.1	6.
6 40	4593	3.02	5501	3.04	6484	3.06	7547	3.08	3	9.1	9.
8 20	4895	3.02	5805	3.04	6791	3.07	7856	3.09	4	12-1	12.
		3.02		0.01		0.04	1	0.00	5	15:2	15
		3.02		3.04		3.06		3.08	6	18.2	18:
10 0	1.935197	3.02	1.946109	3:04	1.957097	3.06	1.968164	3.09	7	21.2	211
11 40	5499	3.02	6413	3.05	7403	3.07	8473	3.09	8		
13 20	5801	3.03	6718	3:04	7710	3.04	8782	3.09	9	24.2	24:
15 0	6104	3.02	7022		8016		9091		3	27:3	27
16 40	6406		7326	3.04	8323	3.07	9399	3.08			
18 20	6708	3.02	7631	3.05	8629	3.06	1:969708	3.09		305	30
		3.03		3.04		3.07		3.09	ı	3:1	3.
20 0	1.937011		1.947935		1.958936		1.970017		2	6.1	6.
21 40	7313	3.02	8240	3.05	9243	3.07	0326	3.09	3		
23 20	7616	3.03	8544	301	9549	3.06	0635	3.09		9.2	9.
25 0	7918	3.03	8849	3.05	1:959856	3.07	0944	3.09	4	12.2	12
26 40	8221	3.03	9154	3.05	1.960168	3.07	1254	3.10	5	15.3	15
28 20	8524	3.03	9459	3.05	0470	3.07	1563	3.09	6	18.3	18
-0 -0	0.024		0400		0440		1363		7	21.4	21
		3.02		3.04		3.07		3.09	8	24.4	24.
30 0	1.938826	3.03	1.949763		1.960777		1.971872		9	27.5	27.
31 40	9129		1.950068	3.05	1084	3.07	2182	3.10			
33 20	9432	3.03	0373	3.05	1391	3.07	2494	3.09		307	30
35 0	1.939735	3.03	0678	3.05	1698	3.07	2801	3.10		904	301
36 40	1.940038	3.03	0983	3.05	2006	3.08	3110	3.09	1	3.1	3.
38 20	0341	3.03	1288	3.05	2313	3.07	3120	3.10	2	6.1	Gr
		3-03		0.00		0.00		0.10	3	9.2	9:
		505		3.05	1	3.07		3.10	4	12.3	12%
40 0	1.940644	3.03	1.951593	3.06	1.962620	3.08	1.973730	3.10	5	15.4	15
41 40	0947	3.04	1899	3.05	2928	3:07	4040	3.09	6	18-4	18:
43 20	1251	3.03	2204	3.05	3235	3.08	4349	3.10	7	21.5	219
45 0	1554	3.03	2509	3·06	3543	3.08	4659		8	24.6	24.
46 40	1857	3.03	2815	3.05	3851	3.07	4969	3.10	9	27.6	27
48 20	2160	3.03	3120	3.09	4158	3.04	5279	3.10			
		3.04		3.06		3.08		3.11	5	309	31
50 0	1.942464	3.03	1.953426	3:05	1.961466	3:08	1.975590	2.10			-
51 40	2767	3.04	3731	3.06	4774	3.08	5900	3.10	1	3.1	3.
53 20	3071	3.03	4037		5082		6210	3.10	2	6.2	6:
55 0	3374		4343	3.06	5390	3.08	6521	3.11	3	9.3	9-
56 40	3678	3.04	4649	3.06	5698	3.08	6831	3.10	4	12.4	12
58 20	3982	3.04	4954	3.05	6006	3.08	7141	3.10	5	15.5	15
		3.04		3.06		3.08		9.11	6	18.5	18
		5.04		9.00		3.08		3.11	7	21.6	21.
60 0	1.944286		1.955260		1.966314		1.977452		8	24.7	24
	A .			l	l	1			9	27.8	27.

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	88	30	89	0	90) 0	9.	0		Prope	ortiona	1.
υ		Diff.		Diff.		Diff.		Diff.			eile	
	log M	1"	log M	1"	log M	1"	log M	1"			iene	
0' 0"	1.977452		1.988679		2.000000	3.16	2.011420	3.19				
1 40	7763	3.11	8992	3.13	0316		1739			311	312	318
3 20	8073	3.10	9305	3.13	0632	3.16	2058	3-19	1	3.1	3.1	8-
5 0	8384	3.11	9619	3.14	0948	3.16	2377	3.19	2	6.2	6.2	65
6 40	8695	3.11	1.989932	3.13	1264	3.16	2696	3.19	3	9.3	9-4	9.
8 20	9006	3.11	1.990246	3.14	1580	3.16	3015	3.19	4	12-4	12.5	12.
8 20	17000	-	1 000210		1.00	0		3.19	5	15.6	15.6	15.
		3.11		3.13		3.16		3.19	G	18-7	18.7	18
10 0	1.979317		1.990559	9.11	2.001896	3.17	2.013334	3.19	7	21.8	21.8	21.
11 40	9628	3.11	0873	3.14	2213		3653	3.19	S	24.9	25.0	254
13 20	1.979939	3.11	1186	3.13	2529	3.16	3972		9	28-0	28.1	28
15 0	1.980250	3.11	1500	3.14	2846	3.17	4292	3:20	9	25.0	20.1	20.
16 40	0561	3.11	1814	3.14	3162	3:16	4611	3.19				
18 20	0873	3.12	2128	3.14	3479	3.17	4930	3.19		314	315	316
10 20	0.010	3.11		3.14		3.17		3.20		3.1	3.2	35
		0	1.00 1143	0.1	2.003796		2.015250		1	6:3	6.3	6:1
20 0	1.981184	3.12	1.992442	3:14	4112	3.16	5570	3.20	2 3		9:5	
21 40	1496	3.11	2756	3.14		3.17	5889	3.19		9-4		9.3
23 20	1807	3.12	3070	3.14	4429	3.17		3.20	4	12.6	12.6	124
25 0	2119	3.12	3384	3.15	4746	3.17	6209	3.20	5	15.7	15.8	15
26 40	2431	3.11	3699	3.14	5063	3.17	6529	3:20	6	18.8	18.9	194
28 20	2742	0 / 1	4013	0.1	5380		6849		7	22.0	22.1	22.
		3.12		3.14		3.17		3.20	8	25.1	25-2	25:1
30 0	1.983054		1.994327		2.005697		2.017169		9	28.3	284	28
31 40	3366	3.15	4642	3.12	6015	3.18	7489	3.20				
33 20	3678	3.12	4957	3:15	6332	3.17	7810	3.21		917	318	319
35 0	3990	3.12	5271	3-14	6649	3.17	8130	3.20		317	515	013
36 40	4302	3.12	5586	3.12	6967	3.18	8450	3.50	1	3.2	3.2	3:
38 20	4614	3.12	5901	3:15	7285	3.18	8771	3.21	2	6.3	6.4	6-
oo 20	4014	i .	0001		1 200		0,,,,		3	9.5	9.5	9.0
		3.15		3.15		3.17		3.21	4	12.7	12.7	12:
40 0	1.984926		1.996216	0.45	2.007602	0.10	2.019092	3.20	5	15.9	15.9	16-6
41 40	5239	3.13	6531	3.15	7920	3.18	9412		6	19-0	19-1	19-
13 20	5551	3.15	6846	3.12	8238	3.18	2.019733	3.21	7	22.2	22.3	22-1
45 0	5864	3.13	7161	3.12	8556	3.18	2:020054	3.21	8	25.4	25.4	25:
46 40	6176	3.15	7476	3.15	8874	3.18	0375	3.21	9	28.5	28-6	28.
48 20	6489	3.13	7791	3.15	9192	3.18	0696	3.21				-
		3.12		3.15		3.18		3.21		320	321	322
50 0	1.986801		1.998106		2.009510	0	2.021017	0.01		-		
51 40	7114	3.13	8422	3.16	2:009828	3.18	1338	3.21	1	3.2	3.2	3-
53 20	7127	3.13	8737	3.15	2.010146	3.18	1659	3.21	2	6.4	6:4	6.
55 0	7740	3.13	9053	3.16	0465	3.19	1981	3.22	3	9.6	9.6	9.
56 40	8053	3.13	9369	3.16	0783	3.18	2302	3.21	4	12.8	12.8	12:
58 20	8366	3.13	1.999684	3.15	1102	3.19	2624	3.22	5	16.0	161	16
JG 20	(5011)		. 500001					0.00	6	19.2	19.3	19-
		3.13		3:16		3.18		3.21	7	22.4	22.5	224
GO 0	1.988679		2.000000		2.011420		2.022945		8	25.6	25.7	25
									9	28.8	28.9	294

Taiel für $\log~M = \log \frac{75~kt}{\sqrt{2~q^3}}$

_	_												
		92	0	98	30	94	٥	93	50		Prope	ortiona	1.
	v	log M	Diff.	log M	Diff.	los M	Diff.	log M	Diff.			icile	
0,	0"	2.022945		2.034580		2.046330		2 058201					
1	40	3267	3.22	4905	3.25	6658	3.28	8532	3.31		323	324	325
3	20	3589	3.22	5229	3.24	6986	3.28	8864	3.32	1	3.2	3.2	3.3
5	0	3910	3.21	5554	3.25	7314	3.28	9195	3.31	2	6:5	6.5	6.5
6	40	4232	3.22	5879	3.25	7643	3.29	9527	3.32	3	9.7	9.7	9.8
8	20	4554	3.22	6205	3.26	7971	3.28	2.059859	3.32	4	12.9	13.0	13.0
		1	3.22		9.35		9.50		3.32	5	16.2	16-2	16.3
			3.22		3.25		3.29		3.95	6	19.4	19:4	19.5
10	0	2.024876	3.23	2.036530	3.25	2.048300	3.28	2.060191	3.32	7	22.6	22.7	22.8
11	40	5199	3.22	6855	3.26	8628	3.29	0523	3.32	s	25.8	25.9	26.0
13	20	5521	3.22	7181	3.25	8957	3.29	0855	3.33	9	29.1	29.2	29.3
15	0	5843	3.23	7506		9286		1188		.,	201	20 4	200
16	40	6166		7832	3.26	9615	3.29	1520	3.32	1			
18	20	6488	3.22	8157	3.25	2.049944	3.29	1853	3.33		326	327	328
			3.23		3.26		3.29		3.32	1	3.3	3.3	3.3
20	0	2.026811		2.038483		2.050273		2.062185		2	6.5	6.5	6.6
21	40	7134	3.23	8809	3.26	0602	3.29	2518	3.33	3	9.8	9.8	9.8
23	20	7456	3.22	9135	3.26	0931	3.29	2851	3.33	4	13.0	13.1	13.1
25	0	7779	3.23	9461	3.26	1261	3.30	3184	3.33	5	16.3	16.4	16.4
26	40	8102	3.23	2.039787	3.26	1590	3.29	3517	3.33	1	19.6	19.6	19.7
28	20	8425	3.23	2.040114	3.27	1920	3.30	3850	3.33	6		22.9	23.0
20	217	0120		2 010111		1.720		D(a)()		8	22.8	26.2	26.2
			3.23		3.26		3.30		3.33	9	29.3	29.4	29.5
30	0	2.028748	0.04	2.040440	0.20	2.052250	0.00	2.064183	0.00	9	29.3	204	20.0
31	40	9072	3.24	0766	3.26	2579	3.29	4516	3.33				
33	20	9395	3.53	1093	3.27	2909	3.30	4850	3.34		329	330	331
35	0	2.029718	3.23	1419	3.26	3239	3.30	5183	3.33		323		
36	40	2.030042	3.24	1746	3.27	3569	3.30	5517	3.34	1	3.3	3.3	3.3
38	20	0365	3.23	2073	3.27	3899	3.30	5851	3.34	2	6.6	6.6	6.6
	-								0.00	3	9.9	9.9	9.9
			3.24		3.27		3.31		3.33	4	13.2	13.2	13.5
40	0	2.030689	3.24	2.042400	3.27	2.054230	3.30	2.066184	3.34	5	16.5	16.5	16.6
41	40	1013	3.24	2727	3.27	4560	3.31	6518	3.34	6	19.7	19.8	19.9
43	20	1337	3.24	3054	3.27	4891	3.30	6852	3.34	7	23.0	23.1	23.2
45	0	1660		3381		5221		7187		8	26.3	26.4	26.5
46	40	1984	3.24	3708	3.27	5552	3.31	7521	3.34	9	29.6	29.7	29.8
48	20	2309	3.25	4036	3.28	5883	3.31	7855	3.34				
			3.24		3.27		3.30		3.34		ana	999	334
50	0	2.032633	0.0	2.044363		2.056213	0.0:	2.068189	0.05		332	333	
51	40	2957	3.24	4691	3.28	6544	3.31	8524	3.35	1	3.3	3.3	3.3
53	20	3281	3.24	5018	3.27	6875	3.31	8859	3.35	2	6.6	6.7	6.7
55	0	3606	3.25	5346	3.28	7207	3.32	9193	3.34	3	10.0	10.0	10.0
56	40	3930	3.24	5674	3.28	7538	3.31	9528	3.35	4	13.3	13.3	13.4
58	20	4255	3.25	6002	3.28	7869	3.31	2-069863	3.35	5	16.6	16.7	16.7
		1	0.00		0.3-		00.		0.0*	6	19.9	20.0	20.0
		1	3.25		3.28		3.32		3.35	7	23.2	23.3	23.4
60	0	2.034580		2.046330		2.058201		2.070198		8	26.6	26.6	26.7
		1							1	9	29.9	30.0	30.1

Tafel für $\log M = \log \frac{75 \ kt}{\sqrt{2 \ q^3}}$

							1 4 4					
	9	3 0	9	70	98	.0	99	90			ortiona	
y	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			neile	11-
0 0	" 2·070198	-	2-082328	NAME OF TAXABLE PARTY.	2.094597	-	2-107011	- Mich	!	1	-	
1 40		3.35	2667	3.39	4940	8.43	7358	3.47		335	336	337
		3.35	3006	3.39	5283	3.43	7705	3.47		-		-
3 20	1	3.36		3.39		3.43		3.47	1	3.4	3.4	3.
5 0	li li	3.35	3345	3:40	5626	3.43	8052	3.47	2	6.7	6.7	6.
6 40		3.36	3685	3.39	5969	3.43	8399	3.48	3	10.1	10.1	10
8 20	1875	0.00	4024	0.00	6312	0.10	8747	0 10	4	13.4	13.4	13
		3.35		3.39		3.44		3.47	5	16.8	16.8	16
10 0	2.072210		2.084363		2:096656		2-109094		6	20.1	20.2	20
10 0		3:36	4703	3:40	6999	3:43	9442	3.48	7	23.5	23.5	23
11 40	. 11	3.36	5042	3.39	7343	3.44		3.48	8	26.8	26.9	27.
13 20		3:36		3:40		3.44	2:109790	3.48	9	30-2	30-2	30-
15 0		3.36	5382	3.40	7687	3.44	2:110138	3:48		00.	002	1
16 40		3.36	5722	3.40	8031	3.44	0486	3:48	1		1	
18 - 20	3890	0 00	6062	0 10	8375	0 11	0834	0.10		338	839	340
		3:36		3:40		3:44		3:48				
	.2.074226		2:086402		2:098719		2-111182	0.40	1	3.4	3.4	3.
20 0		3.37		340	9063	3.44		3.48	2	6.8	6.8	6.
21 40		3:36	6742	3:41		3.44	1530	3.49	3	10.1	10-2	10-
23 20		3.37	7083	3:40	9407	3.45	1879	3:49	4	13.5	13.6	13
25 - 0	1	3:37	7423	3.41	2:099752	3.44	2228	348	5	16.9	17.0	17-
26 40		3.36	7764	3:40	2:100096	3:45	2576	3:49	6	20.3	20.3	20-
28 20	5909	0 00	8104	0 40	0441	0.19	2925	0 10	7	23.7	23.7	23
	1	3.37		3.41		3:45		3:49	8	26.0	27.1	27.
	1070110		2.088445		1.100F0C	0.10	3.11.937.1	0.10	9	80.4	80.5	30-
30 0	ř.	3:37	8786	3.41	2·100786	3:44	2.113274	3:49		1		
31 40		3:37		3.41	4	3:45	3628	3.49				
33 20		3.38	9127	3.41	1475	3.15	3972	3.20		341	342	343
35 ()		3.37	9468	3.11	1820	3.46	4322	3.49	١.	0.1		0.
36 40		3.37	2-089809	3.41	2166	3:15	4671	3.50	1	3.4	34	3.
38 20	7932	0.01	2.090150	0 11	2511	0 10	5021	0.00	2	6.8	6.8	6.
	1	3:38		3.12		3:45		3:49	3	10.2	10.3	10:
		0.0.	2-090492			0 10		0.13	4	13.6	13.7	13
10 0		3.37		3.41	2:102856	3:46	2.115370	3:50	5	17:1	17.1	17:
41 10	8607	3.38	0833	3:12	3202	3-16	5720	3.50	6	20.5	20.5	20-
43 20		3.38	1175	3.42	3548	3:46	6070	3:50	7	23.9	23.9	24-
45 - 0		3.38	1517	341	3894	3.45	6420	3.50	8	27.3	27.4	27-
46 40	9621	3.38	1858	3:42	4239	3:46	6770		9	30-7	30.8	30-
48 - 20	2:079959	0.00	2200	0.45	4585	9.40	7121	3.51				
		3.38		3:42		3.47		3.50				
	2 0000 200	000	2:002542	0.15		0.41		5 50		344	345	346
50 0	2:080297	3.38		3.13	2.104932	3:46	2.117471	3:51	1	3.4	0.5	3.
51 40	0635	3:39	2885	3.42	5278	3:46	7822	3:50			3.2	
53 20	0974	3.38	3227	3.12	5624	3:47	8172	3:51	2	6.9	6.9	6:
55 0	1312	3:39	3569	3.13	5971	3:46	8523		3	10-3	10-4	10-
56 40	1651	3:38	3912	3.42	6317		8874	3.51	4	13.8	13.8	13
58 20	1989	3.99	4254	9.45	6664	3.47	9225	3.21	5	17.2	17.3	173
		3:39		3:43		3.47		3:51	6	20.6	20.7	20.
		9:93		0.49		9.41		9,91	7	24.1	24.2	24-
GO O	2:082328		2:094597		2.107011		2.119576		8	27.5	27.6	27.
					1				9	31-0	81-1	31.

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	10	00°	10	10	10	20	10	3°				
υ	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			ortions neile	ıl-
0' (2-119576		2.132299		2.145187		2.158246		<u>"</u>	T	1	T
1 40		3.51	2655	3.56	5547	3.60	8611	3.65	1	348	350	352
3 20		3.52	3011	3.26	5908	3.61	8977	3.66	1	3:5	3.5	3:
5 (3.21	3367	3.56	6268	3.60	9342	3.65	2	7:0	7:0	7:0
6 40	0982	3.52	3723	3:56	6629	3.61	2.159708	3.66	3	10:4	10:5	10:
8 20		3.51	4079	3.56	6990	3.61	2.160074	3.66	4	13.9	14.0	14
	1			0.50	3,01.0		100011		5	17.4	17:5	17:0
		3.52		3.26		3.61		3.66	6	20.9	21.0	21
10 (3:52	2.134435	3:57	2.147351	3.61	2.160440	3.00	7	24.4	24.5	24.0
11 40	11	3:52	4792	3:56	7712	3.62	0806	3.00	8	27.8	28.0	280
13 20	11	3.53	5148	3.57	8074	3.61	1172	3.67	9	31:3	31.5	31
15 0	4	3.52	5505	3.57	8435	3.62	1539		9	91.9	91.9	31.
16 40	3094		5862	3.57	8797		1905	3.66				
18 20	3446	3.52	6219	9.91	9158	3.61	2272	3.67		354	356	358
		3.53		3:57		3.62		3.67			-	
20 (2.123799	0.00	2:136576	0.01	A 1 407 NO	0 02	1.0.0000		1	3.5	3.6	3.6
21 40	4152	3.53	6933	3:57	2.149520	3.62	2·162639 3006	3.67	2	7.1	7:1	7.2
		3.53		3:58	2-149882	3.63		3.67	3	10.6	10.7	10.2
	1	3.53	7291	3:57	2.150245	3.62	3373	3.67	4	14.2	14.5	14.5
25 0		3.53	7648	3.58	0607	3.62	3740	3.67	5	17.7	17.8	17:9
26 40		3.53	SOOG	3:58	0969	3.63	4107	3.68	6	21.2	21.4	21:0
28 20	5564		8364	0	1332	0,	4475		7	24.8	24.9	254
	1	3.53		3.58		3.62		3.67	8	28.3	28.5	28.0
30 0	2.125917		2.138722		2.151694		2:164842		9	31.9	32.0	32.2
31 40	11-	3:53	9080	3.58	2057	3.63	5210	3.68				
33 20		3.54	9438	3.58	2420	3.63	5578	3.68				
35 0	1	3.54	2.139796	3:58	2783	3.63	5946	3.68		360	362	364
36 40	H	3.54	2.140155	3.59	3147	3.64	6314	3.68	1	3.6	3.6	3.0
38 20	1	3.54	0513	3:58	3510	3.63	6683	3.69	2	7.2	7.2	7:
., 20	1000		(,		0010		0000		3	10.8	10.9	10.5
		3.54		3.59		3.63		3.68	4	14:4	14:5	14.6
(O (2.128040	3:54	2.140872	3.59	2:153873	0.01	2.167051	3-69	5	18:0	18:1	18:2
11 40	8394	3.55	1231		4237	3.64	7420		6	21.6	21.7	21.8
13 20	8749	3:54	1590	3:59	4601	3.64	7789	3.69	7	25-2	25.3	25.5
15 0	9103	1	1949	3.59	4965	3.64	8158	3.69	8	28.8	29.0	29-1
46 40	9458	3:55	2308	3.59	5329	3.64	8527	3.69	9	32.4	32.6	32.8
18 20	2.129812	3.54	2667	3.59	5693	3.64	8896	3.69		1		
	1	3.55	1	3.60		0.01		3.69	ĺ			
		3.99		9.00		3.64		9.69		366	368	370
50 C		3.55	2.143027	3:60	2.156057	3.65	2.169265	3.70	1	3.7	3.7	3.7
51 40		3.55	3387	3.59	6422	3.64	2.169635	3.69	2	7:3	7:4	7.4
53 20		3.56	3746	3.60	6786	3.65	2:170004	3.70	3	11:0	11.0	11:1
55 C	1	3:55	4106	3:60	7151	3.65	0374	3.70	4	14.6	14.0	14:8
56 40	1	3.55	4466	3.60	7516		0744	3.70				
58 20	1943	3.56	4826	0.00	7881	3.65	1114	0.10	5	18.3	18.4	18:
00 20										1 27:25:43		3.7
00 20		-		3.61		3.65		3.70				
60 (2.132299		2:145187	3.61	2:158246	3.65	2:171484	3.70	7	25·6 29·3	25·8 29·4	25·9

Tafel für $\log M = \log \frac{75 \, kl}{\sqrt{2 \, q^3}}$

		10	10	10	5°	10	60	10	70		Dani		1
21		log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			rtiona cile	1-
	0"	3 171 101		3.101000		2.100520	-	212010		-	1		
		2-171484	3.71	2-184909	3:76	2.198528	3.81	2.212349	3.87		370	372	374
1 4		1855	3.70	5285	3.76	8909	3.82	2736	3.87				_
3 2		2225	3.71	5661	3.76	9291	3.81	3123	3.87	1	3.7	3.7	3.
	0	2596	3.71	6037	3.76	$2 \cdot 199672$	3.82	3510	3.88	2	7.4	7.4	7.
6 4		2967	3.71	6413	3.76	2.200054	3.82	3898	3.87	3	11.1	11.2	11-
8 2	0	3338	9.11	6789	5.10	0436	0.05	4285	901	4	14.8	14.9	15
		1	3.71		3.76		3.81		3.88	5	18.5	18.6	18
			0 11	2:187165	010		001	1 24 4 0 8 0	000	6	22.2	22.3	22
10	0	2.173709	3.71		3.77	2.200817	3.83	2.214673	3.88	7	25.9	26.0	26
	10	4080	3.71	7542	3.77	1200	3.82	5061	3.88	S	29.6	29.8	29
	20	4451	3.72	7919	3.76	1582	3.82	5449	3.88	9	33.3	38.5	33
15	0	4823	3.72	8295	3.77	1964	3.83	5837	3.89	3	000	000	00
16	10	5195		8672		2347		6226	3.88				
18 9	20	5566	3.71	9050	3.78	2730	3.83	6614	3.00		376	378	384
			3.72		3.77		3.82		3.89		-		
10	0	2.175938	0 12	2.189427		2-203112	0 (12	2.217003	0.00	1	3.8	8.8	3
20			3.72	2.189804	3.77		3.83		3:89	5	7.5	7.6	7
	40	6310	3.73		3.78	3495	3.84	7392	3.89	3	11.3	11.3	11
	20	6683	3.72	2.190182	3.78	3879	3.83	7781	3.89	4	15.0	15.1	15
25	0	7055	3.73	0560	3.78	4262	3.83	8170	3.89	5	18.8	18.9	19
26 -	10	7428	3.72	0938	3.78	4645	3.84	8559	3.90	6	22.6	22-7	22
28 9	20	7800	0.12	1316	0.10	5029	9.04	8949	3 50	7	26-3	26.5	26
		1	3.73		3.78		3.84		3.89	8	30.1	30.2	30
30	0	2.108173		2.191694		2.205413		2-219338		9	33.8	34.0	34
	10	8546	3.73	2072	3.78	5797	3.84	2.219728	3.90				
	20	8919	3.73	2451	3.79	6181	3.84	2-220118	3.90				
	0	9292	3.73		3.79	6565	3.84	0508	3.90		382	384	38
35		2.179666	3.74	2830	3.78	6950	3.85	0899	3.91	1	3.8	3.8	3
	10		3.73	3208	3.79		3.85		3.90	2	7.6	7.7	7
38 :	30	2.180039		3587		7335		1289		3	11.5	11.5	11
			3.74		3.79		3.84		3.91	4	15.3	154	15
10	()	2.180413		2-193966		2.207719		2.221680		5	19.1	19-2	19
	10	0787	3.74	4346	3.80	8104	3.85	2071	3.91	6	22.9		
	20	1161	3.74	4725	3.79	8489	3.85	2462	3.91	7		23.0	23
		1535	3.74	1	3.80	8875	3.86	2853	3.91		26.7	26.9	27
15	()	1909	3.74	5105	3.80	9260	3.85	3244	3.91	8	30.6	30-7	30
	10	2283	3.74	5485	3.79	2.209646	3.86		3.92	9	34.4	34.6	34
18 2	20	2283		5864		2.209646		3636					
			3.75		3.81		3.85		3.91		388	890	39
50	0	2:182658	0.75	2.196245	0.00	2:210031	0.00	2.224027	0.00			-	-
51 4	10	3033	3.75	6625	3:80	0417	3.86	4419	3.92	1	3.9	3.9	3
	20	3408	3.75	7005	3.80	0803	3.86	4811	3.92	2	7.8	7.8	7
55	0	3783	3.75	7386	3.81	1190	3.87	5203	3.92	3	11.6	11.7	11
	10	4158	3.75	7766	3.80	1576	3.86	5596	3.93	4	15.5	15.6	15
58 :		4534	3.76	8147	3.81	1963	3.87	5988	3.92	5	19.4	19-5	19
r.,1	- 7			0111				0000		6	23.3	23.4	23
			3.75		3.81		3.86		3.93	7	27.2	27.3	27
()	()	2.184909		2-198528		2.212349		2.226381		8	31.0	31.2	31
										9	34.9	35.1	

Tafel für $\log M = \log \frac{75 \ kt}{\sqrt{2 \ q^3}}$

-	_							7 - 2					and the
		108	80	109	0	110)°	111	0		Prope	rtiona	L.
	v	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			neile	
0'	0"	2-226381		2.240631		2.255110		2-269826					
1	40	6774	3.93	1030	3.99	5515	4:05	2.270238	4.12		394	397	400
3	20	7167	3.93	1430	4.00	5921	4.06	0650	4.12	1	3.9	4.0	4.0
5	0	7560	3.93	1829	3.99	6327	4.06	1063	4.13	2	7:9	7.9	8.0
6	40	7953	3.93	2229	4.00	6733	4.06	1476	4.13	3	11.8	11.9	12-0
8	20	8347	3.94	2629	4.00	7139	4.06	1889	4.13	4	15.8	15.9	16-0
			3.94		3.99					5	19.7	19.9	20.0
			3.94		3.33		4.07		4.13	6	23.6	23.8	24.0
10	0	2.228741	3.93	2.243028	4:00	2.257546	4.06	$2 \cdot 272302$	4.13	7	27.6	27.8	28:0
11	40	9134	3.94	3428	4:01	7952	4.07	2715	4.14	8	31.5	31.8	32.0
13	20	9528	3.95	3829	4:00	8359	4.07	3129	4.14	9	35.5	35.7	36.0
15	0	2.229923	3.94	4229	4.01	8766	4.07	3543	4.14	3	000	00 1	000
16	40	2.230317	3.95	4630	4.01	9173		3957	4.14				
18	20	0712	9.99	5031	4.01	9581	4.08	4371	4.14		403	406	409
			3.94		4.01		4.07		4.14	1	4.0	4.1	4.1
20	0	2.231106		2.245432		2.259988		2.274785		2	8.1	8:1	8.2
21	40	1501	3.95	5833	4.01	2.260396	4.08	5200	4.15	3	12.1	12-2	12.3
23	20	1896	3.95	6234	4.01	0804	4.08	5614	4.14	4	16.1	16.2	16.4
25	0	2292	3.96	6636	4.02	1212	4.08	6029	4.15	5	20.2	20.3	20.5
26	40	2687	3.95	7038	4.02	1620	4.08	6444	4.15	6	24-2	24.4	24.5
-	20	3082	3.95	7440	4.02	2029	4.09	6860	4.16	7	28.2	28.4	28.6
	-		0.00							8	32.2	32.5	32.7
			3.96		4.02		4.08		4.15	9	36.3	36.5	36.8
30	0	2.233478	3.96	2.247842	4.02	2.262437	4.09	2.277275	4.16	3	000	00.0	00 ()
31	40	3874	3.96	8244	4.02	2846	4.09	7691	4.16		1		
33	20	4270	3.97	8646	4.03	3255	4.10	8107	4.16		412	415	418
35	0	4667	3.96	9049		3665		8523	4.16				
36	40	5063	3.97	9452	4.03	4074	4.09	8939		1	4.1	4.2	4.2
38	20	5460	3.31	2.249855	4.03	4484	4.10	9356	4.17	2	8.2	8.3	8.4
			3.96		4.03		4.09		4.16	3	12.4	12.5	12.5
10	0	2.235856	000	2.250258	100	2 224000	100	0.050550	110	4	16.2	16.6	16.7
40	_	h	3.97		4.03	2.264893	4.10	2.279772	4.17	5	20.6	20.8	20.9
41		6253	3.97	0661	4.04	5303	4.11	2.280189	4.17	6	24.7	24.9	25.1
43	20	6650	3.98	1065	4.03	5714	4.10	0606	4.18	7	28.8	29.1	29.3
45	0	7048	3.97	1468	4:04	6124	4.10	1024	4.17	8	33.0	33.5	33.4
	40	7445	3.98	1872	4.04	6534	4.11	1441	4.18	9	37.1	37.4	37.6
48	20	7843		2276		6945		1859	1.0			1	
			3.98		4.75		4.11		4.18		421	424	427
50	0	2.238241	3.98	2.252681	4.04	2.267356	4.11	2.282277	4.18	١.	4.2	4.2	4:3
51	40	8639	3.98	3085	4.05	7767	4.11	2695	4.18	1	8.4	8:5	8.5
53	20	9037	3.98	3490	4.04	8178	4.12	3113	4.18	2	1		12.8
55	0	9435	3.99	3894	4.05	8590	4.12	3531	4.19	3	12.6	12.7	
	40	2.239834	3.99	4299	4.06	9002	4.11	3950	4.19	4	16.8	17.0	17:1
58	20	2.240233	0 00	4705	4 00	9413	9 11	4369	4 13	5	21.1	21.2	21.4
			3.98		4.05		4.13		4.19	6	25.3	25.4	25.6
60	()	2-240631	0.00	2.255110		$2 \cdot 269826$	1 .0	0.004700	' ' '	7	29.5	29.7	29.9
00	0	2 240031		2 200110		2-269826		2.284788		8	33.7	33.9	34.2
		R	1	ı	I	I	1		1	9	37.9	38.2	38.4

Tafel für $\log M = \log \frac{75 \ kt}{\sqrt{2 \ q^3}}$

							V 2 9"					
	11:	0	113	3°	114	10	115	0		Drana	rtiona	1
υ	log M	Diff.	log M	Diff.	log M	Diff.	log M	Dift.			eile	1-
0' 0"	2-284788		2:300007	-	2.315493		2:331256		-			
1 40	5207	4.19	0433	4.26	5927	4.34	1698	4:42		418	421	424
3 20	5626	4.19	0860	4.27	6361	4.34	2141	4:43	l,	4.2	4.2	4.
5 0	6046	4:20	1287	4.27	6796	4:35	2583	4.42	2	8.4	8.4	8
6 40	6466	4.20	1714	4:27	7230	4:34	3026	4.48	3	125	12.6	12.
8 20	6886	4:20	2141	4:27	7665	3.35	3468	4.42				
8 20	0000		2141		100.		0400		4	16.7	16.8	17
		4.50		4.28		4.35		4.44	5	20.9	21.1	21.
10 0	2-287306		2.302569		2.318100		2.333912		6	25.1	25.3	25
11 40	7727	4:21	2997	4:28	8536	4.36	4355	4.43	7	29.3	29.5	29.
13 20	8147	4:20	3425	4:28	8971	4.35	4798	4.43	8	33.4	33.7	33.
15 0	8568	4.21	3853	4:28	9407	4.36	5242	4.44	9	37.6	37.9	38
	8989	4:21	4281	128	2:319843	4.36	5686	4:44				
		4.21	4710	4-29	2-320279	4.36		4:44				
18 20	9410		4410		2.250249		6130			427	430	433
		4.22		4:29		4.37		4:45		4:3	4.3	4:
20 0	2:289832		2:305139		2-320716		2:336575		2	8.5	8:6	8
21 40	2-290253	4:21	5568	4:29	1153	4:37	7019	4.44	3			
23 20	0675	4.22	5997	1.29	1589	4:36	7464	4:45		12.8	12.9	139
	1097	4:22	6426	4.29	2027	4:38	7909	4:45	1	17.1	17.2	17
25 0		4:23		4:30		4:37		4:46	5	21.4	21.5	21.
26 40	1520	4.22	6856	4:30	2464	4:37	8355	4:45	6	25.6	25.8	26
28 20	1942		7286		2901		8800		7	29.9	30.1	30.
		4.23		4:30		4:38		4:46	8	34.2	34.4	34
30 0	2-292365		2.307716		2:323339		2:339246		9	38.4	38.7	39-
31 40	2787	4.22	8146	4:30	3777	4.38	2:339692	4:46	R	i		l
		4.23	8576	4.30		4:38		4:46	H			
33 20	3210	4.24		4:31	4215	4:39	2 340138	4:47		436	439	44:
35 0	3634	4.23	9007	4:31	4654	4:38	0585	4:46	1	4.4	4.4	4
36 40	4057	4.24	9438	4:31	5092	4.39	1031	4.47	2	8.7	8.8	8
38 20	4481	1 24	2:309869	4.51	5531	1 0	1478				1	
		4.24		4:31		4:39	1	4.48	3	13.1	13.2	13
	2.20.1007		1.9109(4)		2:825970		5.9 Lune		-1	17.4	17.6	17
40 0	2-294905	4.24	2.310300	4:32		4:40	2:341926	4:47	5	21.8	22.0	22.
41 40	5329	4.24	0732	4:32	6410	4:39	2373	4:47	6	26.2	26.3	26
43 20	5753	4.24	1164	1.32	6849	4:40	2820	4:48	7	30.5	30.7	30
45 0	6177	4.25	1596	4.32	7289	4:40	3268	4:48	8	34.9	35.1	35
46 40	6602	4:25	2028	4.32	7729	4:40	3716	4.49	9	39-2	39.5	39
48 20	7027	4.59	2460	4.95	8469	4.40	4165	4.43	ľ			
		4.25		4.33		4.40		4.48				
		4 2.0		4 30		4 40		3 40		445	448	45
50 0	2-297452	4.25	2.312893	4.33	2.328609	4:41	2.344613	4:49	1	4:5	4:5	4.
51 40	7877	4.26	3326	4:33	9050	4.41	5062	4.49	2	8.9	9.0	9.
53 20	8303	4.25	3759	4.33	9494	4.41	5511	4.49				13:
55 0	8728		4192		2.329932	4:41	5960	4:50	3	13.4	13-4	
56 40	9154	4.26	4625	4.33	2.330373		6410		4	17.8	17.9	18
58 20	2-299580	4.26	5059	4:34	0815	4.42	6859	4.49	5	22.3	22.4	22
		1.00		4:34		4:41		4:50	6	26.7	26.9	27
		4.27		4.94		4.41		1.00	7	31.5	31.4	31.
60 0	2.300007	1	2.315493		2.331256		2.347309		S	35.6	35.8	36.
				1					9	40.1	40.3	40.

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

		116° 117°					7 - 7	- 1	.			
	1		1.1		11	80	11	90		Propo	ortiona	1-
υ	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			eile	
0' 0"	2.347309		2.363663		2.380329		2.397321		1			
1 40	7759	4.50	4121	4.58	0797	4.68	7798	4.77		454	457	460
3 20	8210	4.51	4580	4:59	1264	4.67	8275	4.77	1	4:5	4.6	4.6
5 0	8660	4.50	5039	4.59	1732	4.68	8752	4.77	2	9-1	9.1	9.2
6 40	9111	4.51	5499	4.60	2201	4.69	9230	4.78	3	13.6	13.7	13.8
8 20	2.349562	4.21	5958	4.59	2669	4.68	2.399708	4.78	4	18:2	18:3	18:4
		4.52		4:60		4.69		4.78	5	22.7	22.9	23.0
		4.95		4.00		4.03		4.19	6	27-2	27.4	27.6
10 0	2.350014	4.51	2.366418	4.60	2.383138	4:69	2.400186	4.78	7	31.8	32.0	32-2
11 40	0465	4.52	6878	4.61	3607	4.69	0664	4.79	s	36.3	36.6	36.8
13 20	0917	4.52	7339	4.60	4076	4.70	1143	4.78	9	40.9	41.1	41.4
15 0	1369	4.52	7799	4.61	4546	4.70	1621	4.80		100	71 1	71.7
16 40	1821	4.53	8260	4.61	5016	4.70	2101	4.79				}
18 20	2274	4 33	8721	4.01	5486	4 10	2580	110		463	466	469
		4.52		4.62		4.70		4.80	1	4.6	4.7	4.7
20 - 0	2.352726	4.53	2.369183	1.01	2.385956	4.71	2.403060	4.80	9	9.3	9.3	9.4
21 40	3179		2.369644	4:61	6427	4.71	3540	4.80	3	13.9	14.0	14.1
23 20	3633	4:54	2.370106	4.62	6898		4020		4	18.5	18.6	18.8
25 0	4086	4.53	0568	4.62	7369	4.71	4500	4.80	5	23.2	23.3	23:5
26 40	4540	4.24	1031	4.63	7840		4981	4.81	6	27.8	28.0	28.1
28 20	4994	4:54	1493	4.62	8312	4.72	5462	4.81	7	32.4	32.6	32.8
		4:54		4.63		4.72		4.81	8	37.0	37.3	37.5
30 0	2.355448	101	2.371956	1 00	2.388784	1	2.405943		9	41.7	41.9	42.2
	5902	4:54	2419	4.63	9256	4.72	6425	4.82				
31 40	6357	4.55	2882	4.63	2:389728	4.72	6907	4.82				
33 20	6811	4.54	3346	4.64	2.390201	4.73	7389	4.82	1	472	475	478
35 0	7267	4.56	3810	4.64	0674	4.73	7871	4.82	lı.	4.7	4.8	4.8
36 40	7722	4:55	4274	4.64	1147	4.73	8354	4.83	2	9.4	9.5	9.6
38 20	1122		4274		1144		8994		3	14.2	14.3	14.3
		4.55		4.64		4.73		4.82	4	18.9	19.0	19.1
40 0	2.358177		2.374738		2.391620		2.408836		5	23.6	23.8	23.9
41 40	8633	4.56	5203	4.65	2094	4.74	9320	4.84	6	28.3	28.5	28.7
43 20	9089	4.26	5667	4.64	2568	4.74	2.409803	4.83	7	33.0	33.3	33.5
45 0	2.359545	4.56	6132	4.65	3042	4.74	2.410287	4.84	8	37.8	38:0	38.2
46 40	2.360002	4.57	6598	4.66	3516	4.74	0771	4.84	9	42.5	42.8	43.0
48 20	0459	4.57	7063	4.65	3991	4.75	1255	4.84		120		1.,
		4:57		4.66		4.75		4.84	1	101	101	105
50 0	2.360916	4.57	2.377529	4.66	2:394466	4.75	2:411739	4.85	Ĭ.	481	481	487
51 40	1373		7995	1	4941		2224		1	4.8	4.8	4.9
53 20	1830	4:57	8461	4.66	5417	4.76	2709	4.85	2	9.6	9.7	9.7
55 - 0	2288	4.58	8928	4.67	5892	4:75	3194	4.85	3	14.4	14.5	14.6
56 40	2746	4.58	9395	4.67	6368	4.76	3680	4.86	4	19.2	19.4	19.5
58 20	3204	4.58	2.379862	4.67	6845	4.77	4166	4.86	5	24.1	24.2	24.4
		4.59		4.67		4.76		4.86	6	28.9	29.0	29.2
60 0	2.363663	. 00	2.380329		2.397321	1	2.414652		7	33.7	33.9	34.1
60 0	2 303003		2 380320		2 39 (321	1	2,414095	1	8	38:5	38.7	39.0
	R	1	I	i	ı	1	1	1	9	43.3	43.6	13.8

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

							y 2 q					
	1:	2()°	1	21°	1	22°	11	230				
0		Diff.		Diff.		Diff.		Diff.	l		ortions reile	11-
	log M	1"		11	ieile							
0" 0"	2:414652		2.432336	Ī	2.450387		2-468821		1	1		1
1.40	5138	4.86	2832	4.96	0894	5.07	9338	5.17		487	490	493
3 20	5625	4.87	3329	4.97	1401	5.07	2:469856	5.18	1	4.9	4.9	4-9
5 0	6112	4.87	3826	4.97	1908	5.07	2.470374	518	2	9.7	9.8	9.9
6.40	6599	4.87	4322	4.97	2416	5.08	0893	5:19	3	14-6	14.7	14-8
8 20	7087	4.88	4820	4.98	2924	5.08	1412	5:19	4	19.5	19.6	19-7
[5	24.4	24.5	24-7
1		4.87		4.98		5.08		5.19	6	29.2	29-4	29-6
1	2-417574	4.88	2.435318	4.98	2:453432	5.09	2.471931	5.20	7	34-1	34.3	
11 40	8062		5816	-	3941		2451		8		39-2	39
13-20	8551	4:89	6315	4.99	4450	5.09	2971	5.20	9	39-0	44.1	44.4
15 0	9039	4.88	6813	4.98	4959	5.09	3491	5.20	9	43.8	44.1	44.4
l6 10	2:419528	4.89	7312	4.99	5468	5-09	4011	5.20				
18 20	2:420017	1.89	7812	5.00	5978	5.10	4582	5.21		496	499	502
		4:90		4.99		5:10		5.21		2.0		-
20 0 5	2420507	4:00		4 33	2:456188	3 10		0 21	1	5.0	5.0	51
21 40	0996	4:89	2:438311	5:00		5:10	2.475053	5:21	2	9.9	10.0	10.0
		4:90	8811	5:00	6998	5:11	5574	5.22	3	14.9	150	15.1
	1486	4.90	9311	5:00	7509	5:11	6096	5-22	4	19.8	20.0	
	1976	4:91	2:439811	5 01	8020	5-11	6618	5.22	5	21.8	25.0	25
20 10	2167	4:91	2-440312	5:01	8531	5.12	7140	5.23	6	29.8	29.9	30-1
28 20 1	2958	4.91	0813	0.01	9043	0.12	7663	0.20	7	34.7	34.9	35-1
		4:91		5:01		5:12		5.23	S	39.7	39-9	40-2
30 0 :	2423419		2 441314	.,	2:459555		2.478186	0.00	9	44.6	44.9	45%
31 10	3940	4:91	1816	5:02	2.460067	5:12	8709	5.23	į			
13 20	1132	4.92	2318	5:02	0580	5.13	9233	5.24	1	1		
15 ()	1924	4.92	2820	5:02	1092	5:12	2.479757	5.24	l	505	508	511
16 10	5416	4.92	3322	5:02	1605	5:13	2.480281	5.24	llı.	5.1	3.1	5.1
18 20	5908	4.92	3825	5.03	2119	5:14	0805	5.24	2	10.1	10.2	10.5
			0020		2110		0800		3	15.2	15.2	15-8
		4:93		5.03		5.14		5.25	4	20.2	20-3	20-4
(0 n g	242610E		2:444328	5:03	2:462633		2:481330		5	25.3	25.4	25.6
11 10	6894	4.93	4831	5:04	3147	5:14	1855	5.25	6	30.3	30.5	30.7
13 20	7387	4:93	5335		3661	5:14	2381	5.26	7	35.4	35.6	35-8
lá 0	7881	4.91	5839	5:04	4175	5.14	2907	5.26	8	40-4	40-6	40-9
6 40	8375	1:91	6343	5:04	4690	5:15	3133	5.26	9	45:5	45.7	46-0
8 20	8860	4:94	6847	5.04	5206	5.16	3959	5.26	1	300	10 1	100
1		4:94		5:05		5:15		5.27				
0 0 2	1429363		2447852		2465721		2:484486			514	517	520
(40 2	129858	4:95	7857	5:05	6237	5:16	5013	5.27	1	5.1	5.2	5.2
3 20 2	430353	4:95	8363	5:06	6753	5:16	5540	5.27	2	10.3	10.3	10.4
a 0	0848	4:95	8868	5:05	7269	5:16	6068	5:28	3	15.4	15.5	15-6
6 10	1344	4:96	9374	5:06	7786	5:17	6596	5.28	4	20.6	20-7	20.8
8 20	1810	196	2:449880	5:06	8303	5:17	7124	5.28	5	25.7	25.9	26-0
							1124		6	30-8	31.0	31-2
		4.96		5:07		5:18		5.29	7	36-0	36-2	36.4
0 0 3	132336		2 150387		2468821	1	2.487653		8	41-1	41.4	41-6
	1								9	46.3	46.5	46.8
									10	* EU 12 1	W.71 C)	200

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	12	40	12	25°	12	26°	15	270		D		
υ	log M	Diff, 1"	log M	Diff.	log M	Diff.	log M	Diff. 1"			ortiona eile	1-
0, 0,	2-487653		2:506901	-	2.526581		2:546714				1	
1 40	8182	5.29	7441	5.41	7134	5.23	7279	5.65		525	530	53
3 20	8711	5.29	7983	5:42	7688	5.24	7846	5.67	1	5:3	5:3	5
5 0	9241	5:30	8524	5:41	8242	5.24	8412	5.66	2	10:5	10.6	10
6 40	2.489771	5.30	9066	5.42	8796	5.24	8979	5.67	3	15.8	15.9	16
8 20	2.490301	5.30	2.509608	5.42	9350	5.24	2.549546	5.67	4	21.0	21.2	21
0 20	2 4,70001		2 000000		11000				5	26.3	26.5	26
		5.31		5.42		5.22		5.68	6	31.5	31.8	32
0 0	2.490832	5.30	2.510150	5:43	2.529905	5.55	2:550114	5:68	7	36.8	37:1	37
1 40	1362		0693		2.530460	5.56	0682	5:69	1	42.0	42.4	42
3 20	1894	5.32	1236	5:43	1016		1251	5.68	8	47.3	47.7	
5 0	2425	5.31	1780	5:44	1571	5.22	1819		1 "	41.9	41.1	48
6 40	2957	5.32	2323	5.43	2128	5.57	2389	5.70				
8 20	3489	5.32	2867	5.44	2684	5.26	2958	5.69		540	545	55
		5.33		5.45		5.57		5.70	١.			-
	101000	000		0 10	2.533241		2.553528	0.0	1	5.4	5.5	5
0 0	2.494022	5.33	2.513412	5:45	3798	5.57	4098	5.70	2	10.8	10.9	11
1 40	4555	5.33	3957	5:45		5:58		5.71	3	16.2	164	10
3 20	5088	5.33	4502	5:45	4356	5.58	4669	5.71	4	21.6	21.8	2:
5 0	5621	5.34	5047	5.46	4914	5.58	5240	5.71	5	27.0	27.3	27
6 40	6155	5.34	5593	5.46	5472	5.59	5811	5.72	6	32.4	32.7	3;
8 20	6689		6139	0 10	6031	0.00	6383		7	37.8	38.2	38
		5.35		5.47		5.59		5.72	8	43.2	43.6	44
0 0	2.497224		2.516686		2.536590		2.556955		9	48.6	49.1	45
1 40	7759	5.35	7233	5.47	7149	5.59	7527	5.72	i			
3 20	8294	5.35	7780	5.47	7709	5.60	8100	5.73			* 40	-
5 0	8829	5.35	8327	5.47	8269	5.60	8674	5.74		555	560	56
6 40	9365	5.36	8875	5.48	8830	5.61	9247	5.73	1	5.6	5.6	!
8 20	2.499901	5.36	9423	5.48	9390	5.60	2.559821	5.74	2	11.1	11.2	1
0 20	2 433301		3420		0000	i	2 000021		3	16.7	16.8	11
		5.37		5.49		5.61		5.74	4	22.2	22.4	2:
0 0	2.500438	- 00	2.519972	- 10	2.539951		2.560395	5.75	5	27.8	28.0	28
1 40	0974	5.36	2.520521	5.49	2.540513	5.62	0970		6	33.3	33.6	33
3 20	1511	5.37	1070	5.49	1075	5.62	1545	5.75	7	38.9	39-2	35
5 0	2049	5.38	1620	5.50	1637	5.62	2121	5.76	8	44.4	44.8	43
6 40	2587	5.38	2170	5.20	2200	5.63	2696	5.75	9	50.0	50.4	50
8 20	3125	5.38	2720	5.20	2763	5.63	3273	5.77	"	000	00 1	0
		5.38		5.20		5.63		5.76				
0 0	2.503663	0 00	2.523270	3 30	2.543326	000	2:563849	0.0		570	575	58
		5.39		5:51		5.64		5.77	1	5.7	5.8	1
1 40	4202	5.39	3821	5.52	3890	5.64	4426	5.78	2	11.4	11:5	11
3 20	4741	5.39	4373	5.51	4454	5.64	5004	5.77	3	17.1	17:3	17
5 0	5280	5.40	4924	5.52	5018	5.65	5581	5.78	4	22.8	23.0	28
6 40	5820	5.40	5476	5.53	5583	5.65	6159	5.79	5	28.5	28.8	25
8 20	6360		6029		6148		6738		6	34.2	34.5	3
		5.41		5.52		5.66		5.79	7	39.9	40.3	40
0 0	2.506901		2.526581		2.546714		2.567317		8	45.6	46.0	46
	- 555557						[9	51.3	51.8	5

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	1:	28°	12	90	18	() °	13	31°				
z/	į.	Diff.		Diff.		Diff.		Diff.			ortiona	1-
	log M	1"	log M	1"	log M	1"	log M	1"		tì	reile	
0. 0"	2:567317		2:588411		2.610019		2.632162					
1 40	7896	5:79	9004	5.93	0627	6.08	2785	6.23		580	585	590
3 20	8475	5.79	2.589598	5.94	1235	6.08	3409	6.24	1	5.8	5.9	5
5 0	9055	5:80	2.590192	5.94	1843	6.08	4033	6.24	2	11.6	11.7	11.
6 40	2.569636	5:81	0786	5:94	2452	6.09	4657	6.24	3	17:4	17.6	17.
8 20	2.570217	5.81	1381	5.95	3062	6.10	5282	6.25	4	23.2	23.4	23.
			1		0				5	29.0	29.3	29
		5.81		5.95		6:10		6.25	6	34.8	35.1	
10 0	2.570798		2.591976		2.613672	4 . 0	2.635907	0.35				35
11 40	1379	5.81	2572	5.96	4282	6.10	6532	6.25	7	40.6	41-0	41
13 20	1961	5.82	3168	5.96	4892	6.10	7158	6.56	8	46.4	46.8	47
15 0	2543	5.82	3764	5.96	5504	6.15	7785	6.27	9	52.2	52.7	53.
16 40	3126	5.83	4361	5.97	6115	6.11	8412	6.27				1
18.20	3709	5.83	4958	5.97	6727	6.12	9039	6.27		595	600	60.
		5.84		5.98		6:12		6.28	1	6.0	6-0	6.
20 0	2:571293		2.595556		2:617339		2.639667		2	11.9	120	12.
21 40	4876	5.83	6154	5.98	7952	6.13	2.640295	6.28	3	17.9	18.0	18
23 20	5461	5.85	6752	5.98	8565	6.13	0923	6.28	4	23.8	24.0	24
25 0	6045	5.84	7351	5.99	9179	6.14	1553	6:30		29.8	30.0	
26 40	6630	5.85	7950	5.99	2.619793	6.14	2182	6.29	5			30-
28 20	7215	5.85	8549	5.99	2.620407	6.14	2812	6.30	6	35.7	36.0	36
20 20	1210		0.39.7		2.020404		2812		7	41.7	42-0	42
		5.86		6.00		6.12		6.30	8	47·6 53·6	48·0 54·0	48· 54·
30 0	2.577801	5:86	2.599149	6:01	2.621022	6.15	2.643442	6.31		00	0.0	.,,
31 - 40	8387	5.87	2.599750	6.01	1637	6.16	4073	6:32				
33 20	8974	5.87	2.600351	6.01	2253	6.16	4705	6:31		610	615	620
35 0	2.579561	5:87	0952	6:01	2869	6:17	5336	6.32				_
36 40	2.580148	1	1553		3486	6.17	5968		1	6.1	6.2	6.
38 20	0736	5.88	2155	6.05	4103	6-14	6601	6.33	2	12.2	12.3	12
		5.88		6.03		6:17		6.33	3	18.3	18.5	18
		0 00		6.05		011		0 33	4	24.4	24.6	24.
40 0	2.581324	5.88	2.602758	6.03	2.624720	6.18	2.647234	6:34	5	30.5	30.8	31-
41 40	1912	5.89	3361	6:03	5338	6.18	7868	6.34	G	36.6	36.9	37
43 20	2501	5.89	3964	6.04	5956	6.19	8502	6.34	7	42.7	43.1	43
45 0	3090	5.90	4568	6:04	6575	6.19	9136	6.35	8	48.8	49.2	49-
46 40	3680		5172		7194		2.649771		9	54.9	55.4	55
48 20	4270	5.90	5776	6:04	7814	6.20	2.650406	6.35				
	}	5.90		6.05		6.19		6.36		625	630	63.
50 0	2.584860	5.91	2.606381	6.05	2.628433	6:21	2.651042	0.90				
51 40	5451	5.91	6986	6.09	9054	6.21	1678	6.36	1	6.3	6.3	6.
53 20	6012		7592		2.629675	-	2315	6.37	2	12.5	12.6	12
55 - 0	6634	5.92	8198	6.06	2.630296	6.21	2952	6.37	3	18.8	18.9	15.
56 40	7226	5.92	8805	6:07	0918	6.55	3589	6.37	4	25.0	25.2	25.
58 20	7818	5.92	2.609411	6.06	1540	6.55	4227	6.38	5	31.3	31.5	31
		5.93		6.08		6.22		6.39	6	37.5	37.8	38
60 0	0.200111	0.20	2.010010	0.00	0.090100		0.05 1000	0 0.7	7	43.8	44.1	44
60 0	2.588411		2.610019		2.632162		2.654866		8	50.0	50.4	50
	i .	1	1		1 3		l		9	56.3	56.7	157

Tafel für $\log M = \log \frac{75 \ kt}{\sqrt{2 \ q^3}}$

			7-7									
	135	20	135	30	134	10	133	0		Prom	ortions	3
v	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			heile	.1-
0' 0"	2.654866		2.678155		2-702056		2-726599					
1 40	5505	6.39	8810	6:55	2729	6.73	7290	6.91		640	645	650
3 20	6144	6.39	2.679466	6:56	3403	6.74	7982	0.92	1	6.4	6:5	6:5
5 0	6784	6.40	2.680123	6:57	4077	6:74	8674	6.92	2	12.8	12.9	134
6 40	7424	6.40	0780	6-57	4751	6.74	2.729367	6.93	3	19.2	19.4	19.5
8 20	8065	6:41	1437	6.22	5426	6.75	2.730060	0.93	4	25.6	25.8	26-0
		0.11		0.50				201	5	32.0	32.3	32.5
		6.41		6.28		6.75		6.94	6	38:4	38.7	39-0
10 0	2 658706	6.41	2.682095	6:58	2.706101	6.76	2.730754	6:94	7	44.8	45.2	45.5
11 40	9347	6.43	2753	6:59	6777	6.77	1448	6.95	8	51.2	51.6	52.0
13 20	2:659990	6.42	3412	6.60	7454	6-77	2143	6.95	9	57.6	58.1	58:5
15 0	2.660632	6:43	4072	6:59	8131	6.77	2838	6.96	3	340	90.1	99.9
16 40	1275	6:44	4731	6:61	8808	6.68	3584	6.97				
18 20	1919	6.44	5392	9.91	2.709486	6.69	4231	6.97		655	660	665
		6.43		6.60		6.79		8.97	1	6.6	6.6	6.7
20 0	2.662562		2.686052		2.710165		2.731928		2	13-1	13.2	13.3
21 40	3207	6.45	6714	6.62	0843	6.78	5625	6.97	3	19.7	19.8	20.0
23 20	3852	6.45	7375	6.61	1523	6.80	6323	6.98	4	26.2	26.4	26.6
25 0	4497	6.45	8038	6.63	2203	6.80	7022	6.99	5	32.8	33.0	33.3
26 40	5143	6.46	8700	6.62	2883	6:80	7721	6.99	6	39.3	39.6	39.9
28 20	5789	6.46	2.689364	6.64	3564	G·81	\$420	6.99	7	45.9	46.2	46.6
		6:46		6:63		6.82		7:00	s	52.4	52.8	53.2
00 0		0.40		11 00	2 #4 4 2 4 2	11 02	. = 0	1 (00)	9	59.0	59.4	59.9
30 0	2-666435	6.48	2.690027	6.64	2.714246	6.82	2.739120	7.01		000		0.0
31 40	7083	6.47	0691	6.62	4928	6.82	2.739821	7.01				
38 20	7780	6.48	1356	6.65	5610	6.83	2.740522	7.02		670	680	690
35 0	8978	6:49	2021	6:66	6293	6.84	1221	7.02	1	6.7	6.8	6.9
36 40	9027	6.49	2687	6.66	6977	6.84	1926	7.03	2	13-4	13.6	13.8
38 20	2-669676	0.10	3353		7661		2629		3	20.1	20.4	20.7
		6.49		6.66		6.84		7.03	4	26.8	27.2	27.6
40 0	2.670325		2:694019		2.718345		2.743332		5	33.5	31:0	34.5
41 40	0975	6.20	4686	6:67	9030	6.82	4036	7.04	6	40.2	40.8	41.4
43 20	1625	6.20	5354	6.68	2.719716	6.86	4740	7:04				
45 0	2276	6:51	6022	6.68	2.720402	6.86	5445	7:05	7	46.9	47.6	48.3
46 40	2927	6.21	6690	6.68	1088	6.86	6151	7.06	8	53.6	51.4	55-2
48 20	3579	6.25	7359	6,65	1775	6:87	6857	7:06	3	60.3	61.2	62.1
		6.52		6.70		6.88		7:06				
50 0	2.674231	0.02	2-698029		2.722463	0.00	2.747563	1.00		700	710	720
51 40	4884	6.53	8699	6.70	3151	G:88	8270	7:07	1	7.0	7.1	7.2
53 20	5537	6.53	2.699369	6:70	3840	6.89	8978	7:08	2	14.0	14.2	14.4
55 0	6191	6.24	2.700040	6.71	4529	6.89	2:749686	7.08	3	21-0	21.3	21.6
56 40	6845	6.54	0712	6.72	4529 5218	6.89	2:749686	7.09	4	28:0	28.4	28.8
	7500	6.55	1384	6.72	5218 5908	6.90		7:09	5	35.0	35.5	36-0
58 20	(300		1003		53708		1104		6	42.0	42.6	43.2
		6.55		6.72		6.91		7.10	7	49.0	49.7	50:4
60 0	2.678155		2.702056		2.726599		2.751814		8	56.0	56.8	57.6
10.									9	63.0	63.9	64.8

Tafel für $\log M = \log \frac{75 \ kt}{\sqrt{2 \ q^3}}$

					V 24-									
	13	6°	13	70	13	80	135	0	1	Dana	4 !	,		
v	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.			ertions heile	-14		
	1.5	1"	1,45	1"	108 311	1"	105 11	1"						
$0^{\mu} - 0^{\mu}$	2.751814		2.777732	7.01	2.804390		2.831822	7-74						
1.40	2524	7.10	8463	7:31	5141	7:51	2596			710	720	78		
3 20	3235	7.11	9194	7:31	5893	7.52	3370	7.74	1	7:1	7-2	7		
5 0	3946	7:11	2.779925	7:31	6645	7.52	4145	7.75	2	14.2	14-4	14		
6.40	4658	7:12	2.780657	7:32	7398	7.53	4920	7:75	3	21.3	21.6	21		
8 20	5371	7:13	1390	7:33	8152	7:54	5696	7.76	4	28.4	28.8	29		
		7.10		E 00					5	35.5	36-0	36		
		7.13		7:33		7:55		7.77	6	42.6	43.2	43		
10 0	2.756084	7:13	2.782123	7:34	2.808907	7.55	2.836473	7.77	7	49.7	50.4	51		
11 - 40	6797		2857		2.809662		7250		,			58		
13 20	7511	7:14	3591	7:31	2.810417	7:55	8028	7.78	8	56.8	57.6			
15 0	8226	7:15	4326	7:35	1173	7.56	8806	7.78	9	63.9	64-8	65		
16 40	8941	7.15	5061	7:35	1930	7.57	2.839585	7.79	l					
18 20	2.759657	7:16	5797	7:36	2688	7:58	2.840365	7.80		740	750	76		
		7.16		7.37		7.58		7.81	1	7:4	7:5	7		
20 0	2.760373		2.786534		2.813446		2.841146		2		15.0	15		
21 40	1090	7:17	7271	7.37	4204	7.58	1927	7:81	3	14.8	22.5	10		
23 20	1808	7:18	8009	7:38	4963	7.59	2709	7.82		22-2	~ ~			
25 0	61	7.18	8748	7:39	5728	7:60	3491	7.82	-1	29.6	80.0	30		
	2526	7:18		7:39		7.61		7.83	5	37.0	37.5	38		
26 40	3211	7:19	2.789487	7.39	6484	7.61	4274	7.84	6	44.4	45.0	45		
28 20	3963		2.790226		7245	,	5058		7	51.8	52.5	53		
		7.20		7:40		7:62		7.84	8	59.2	60.0	60		
0 0	2.764683		2.790966		2.818007		2.845842		8	66.6	67.5	68		
31 40	5403	7.20	1707	7.41	8769	7.62	6627	7.85						
33 20	6124	7.21	2448	7.41	2.819532	7.63	7412	7:85						
35 0	6845	7.21	3190	7:42	2.820295	7.63	8199	7.87		770	780	79		
36 40	7567	7:22	3933	7.43	1059	7.64	8986	7.87	1	7.7	7.8	7		
		7.22		7:43		7.65		7.87	2	15.4	15.6	15		
8 20	8289		4676		1824		2.849773		3	23.1	23.4	23		
		7.23		7:44		7.66		7.88	4	30.8	31.2	31		
0 0	2.769012		2.795420		2.822590		2.850561		5	38.5	39.0	39		
1 40	2.769736	7.24	6164	7.44	3356	7.66	1350	7.89	6	46.2	46.8	47		
3 20	2.770460	7.24	6909	7:45	4122	7.66	2140	7.90						
5 0	1185	7:25	7654	7:45	4889	7.67	2930	7.90	7	53.9	54.6	55		
6 40	1910	7.25	8400	7:46	5657	7:68	3720	7.90	8	61.6	62.4	63		
8 20	2636	7.26	9147	7.47	6426	7.69	4512	7.92	9	69.3	70.2	71		
10 20	2000		3141		0420		4.712							
		7.26		7.47		7.69	2 24 4 2 2 4	7.92		800	810	82		
0 0	2.773362	7.27	2.799894	7.48	2.827195	7.70	2.855304	7.93	1	8.0	8.1	8		
1 40	4089	7:28	2.800642	7:48	7965	7.70	6097	7.93	2			16		
3 20	4817	7.28	1390	7:49	8735	7.71	6890	7.94	_	16.0	16.2			
5 0	5545	7.28	2139	7:50	2.829506	7.71	7684	7:95	3	24.0	24.3	24		
6 40	6273		2889	7:50	2.830277		8479		4	32.0	32-4	32		
8 20	7002	7.29	3639	6.90	1049	7.72	2.859274	7.95	5	40.0	40.5	41		
		7:30		7:51		7:73		7-96	6	48.0	48.6	49		
	, , , , , , , ,	1 00)	1.001000		200123	1 (0)	1.000	(-50)	7	56.0	56-7	57		
0 0	2.777732		2.804390		2.831822		2.860070		8	64.0	64.8	65		
								- 1	9	72.0	72.9	73		

Tafel für $\log M = \log \frac{75 \ kt}{\sqrt{2 \ y^3}}$

	14	40°	1-	10	14	2°	1.5	3°				
v		Diff.		Diff.		Diff.		Diff.			ortiona	1-
	log M	1"		ti	heile							
0. 0.,	2.860070		2.889175		2-919183		2.950142		1		1	
1.40	0867	7.97	2.889997	8.22	2.920030	8.47	1016	8.74		830	840	850
3 20	1664	7.97	2.890818	8.21	0878	8.48	1891	8.75	١.	0.0		-
5 0	2462	7.98	1641	8.53	1726	8.48	2767	8.76	1 2	8.3	8.4	8
6 40	3261	7.99	2464	8.53	2575	8.49	3643	8.76		16.6	16.8	17
8 20	4060	7.99	3288	8.24	3425	8.50	4520	8.77	3	24.9	25.2	25
	1000		0.00		0420		4320		4	33.5	33.6	34
		8.00		8.25		8.51		8.78	5	41.5	42.0	42.
10 0	2.864860	0.04	2.894113		2.924276		2.955398		6	49.8	50.4	514
11 40	5661	8.01	4938	8.25	5127	8.51	6277	8.79	7	58.1	58.8	59%
13 20	6463	8.02	5764	8.26	5979	8.52	7156	8.79	8	66.4	67:2	68
15 0	7265	8.02	6591	8.27	6832	8.53	8037	8.81	9	74.7	75.6	76%
16 40	8067	8.02	7418	8.27	7685	8.53	8918	8.81				
18 20	8871	8.04	8247	8.29	8540	8.55	2.959799	8.81				
			0241		0040		2.999199			860	870	880
		8.04		8.28		8.55		8.83	1	8.6	8.7	
20 0	2.869675		2.899075		2.929395		2.960682				1	8.8
21 40	2.870479	8.04	2.899905	8.30	2.930250	8.55	1566	8.84	2	17.2	17:4	17.6
23 20	1285	8.06	2.900735	8:30	1107	8.57	2450	8.84	3	25.8	26.1	26.
25 0	2091	8.06	1566	8.31	1964	8.57	3335	8.85	4	34.4	34.8	35%
26 40	2898	8.07	2398	8.32	2822	8.58	4221	8.86	5	43.0	43.5	44-(
28 20	3705	8.07	3230	8.32		8.59		8.86	6	51.6	52.2	524
20 20	3103		9290		3681		5107		7	60.5	60.9	61.6
		8.08		8.34		8.60		8.88	8	68.8	69.6	70-
30 0	2.874513		2.904064		2.934541		2.965995		9	77:4	78.3	79:
31 40	5322	8.09	4897	8.33	5401	8.60	6883	8.88				
33 20	6131	8.09	5732	8.35	6262	8.61	7772	8.89				
35 0	6941	8.10	6567	8.35	7124	8.62	8662	8.90		890	900	910
36 40	7752	8.11	7403	8.36	7986	8.62	2.969552	8.90	1	8.9	9.0	9.1
38 20	8564	8.12	8240	8.37		8.64		8.91	2	17.8	18:0	18:
00 20	-0004		0240		8850		2.970443	00.	3		27:0	
		8.13		8.37		8.64		8.93	1	26.7		27:
40 0	2.879376		2.909077		2.939714		2.971336		4	35.6	36.0	36.
41 40	2.880189	8.13	2.909916	8.39	2.940578	8.64	2229	8.93	5	44.5	45.0	45
43 20	1002	8.13	2.910754	8.38	1444	8.66	3122	8.93	6	53.4	54.0	54.0
45 0	1816	8.14	1594	8.40	2310	8.66		8.95	7	65.3	63.0	63.
46 40	2631	8.15	2434	8.40		8:67	4017	8.95	8	71.2	72.0	72:
48 20	3447	8.16		8.41	3177	8.68	4912	8.97	9	80.1	81.0	814
40 20	3441		3275		4045	Ų lie	5809	051				
		8.16		8.42		8.69		8.97			1	
50 0	2.884263		2.914117		2.944914		2.976706	001		920	930	940
51 40	5080	8.17	4960	8.43	5783	8.69		8.98	1	9.2	9.3	9
53 20	5898	8.18	5803	8.43		8:71	7604	8.98	2			
55 0	6716	8.18	6647	8.44	6654	8.71	8502	9.00	3	18.4	18.6	180
56 40	7535	8.19	7492	8.45	7525	8.71	2.979402	9.00		27.6	27.9	28
58 20	H .	8.20		8.45	8396	8.73	2.980302	9-01	4	36.8	37.2	37
00 20	8355		8337	1	2.949269	0.10	1203	301	5	46.0	46.5	474
		8.20		8.46		8.73		9.02	6	55.2	55.8	56
60 0	2.889175		2.919183	"	2.950142	0.0	1.00010*	3 02	7	64.4	65.1	653
	- 000110		2010100		4 900142		2.982105		8	73.6	74.4	75:
	1	1	1 .	Ι.	1				9	82.8	83.7	81.

Tafel für $\log M = \log \frac{75 \, k \text{/}}{\sqrt{2 \, q^3}}$

	14	40	14	5°	14	60	14	170		Propo	rtional	1.
v	log M	Diff.			eile							
0' 0"	2.982105		3.015128		3-049273	9.65	3.084607	9.99				
1 40	3008	9.03	6061	9.33	3.050238	9:66	5606	1		950	960	970
3 20	3911	9.03	6995	9.84	1204	9.67	6606	10.00	1	9.5	9.6	9-7
5 0	4815	9:04	7930	9.35	2171	9.68	7607	10.01	2	19.0	19-2	19.4
6 40	5721	9.06	8865	9.35	3139	9.69	8609	10-02	3	28.5	28.8	29-1
8 20	6627	9.06	3.019802	9.37	4108	3.03	3.089613	10-04	4	38.0	38.4	38.8
0 20	0021			0.0=		9.70		10-04	5	47.5	48.0	48:
		9.06		9.37		2 10		10'04	6	57.0	57.6	585
0 0	2.987533	0.00	3.020739	9.39	3.055078	9.71	3.090617	10.05	7	66.5	67.2	67-9
1 40	8441	9.08	1678	9-39	6049	9.71	1622	10.06	8	76.0	76.8	77-6
3 20	2.989350	9.09	2617		7020	9.73	2628	10.07	9	85.5	86.4	87-1
5 0	2-990259	9-09	3557	9:40	7993	9.73	3635		3	99.9	56.4	31.6
6 40	1169	9.10	4498	9.41	8966		4643	10.08				
8 20	2080	9.11	5439	9.41	3.059940	9.74	5651	10.08	1	980	990	100
0 20	-			0.10		9.76		10-10		350	330	
		9.12		9.43		3 10		10.10	1	9.8	9.9	10.0
0 0	2-992992	9.12	3.026382	9.44	3.060916	9.76	3.096661	10.11	2	19.6	19.8	20-0
1 40	3904		7326	9:44	1892	9.77	7672	10.12	3	29.4	29.7	30-0
3 20	4818	9.14	8270		2869	9.78	8684	10.13	4	39.2	39.6	40-0
5 0	5732	9.14	3.029215	9.45	3847	9.79	3.099697		5	49.0	49.5	50.0
6 40	6647	9.15	3-030161	9:46	4826		3.100711	10.14	6	58.8	59.4	60-0
8 20	7563	9.16	1108	9.47	5806	9.80	1726	10.15	7	68:6	69.3	70-0
		0.15		0.10		9.81		10.10	8	78-4	79.2	80-0
		9.17		9.48		9.91		10.16	9	88-2	89-1	90-6
0 0	2.998480	9-18	3.052056	9-49	3.066787	9.82	3.102742	10-17	1	00 2	00 1	000
1 40	2.999398	9.18	3005	9.50	7769	9.83	3759	10-18				
3 20	3.000316		3955		8752	9.84	4777	10-19		1010	1020	103
5 0	1236	9.20	4906	9:51	3.069736	9.84	5796	10.13			-	_
6 40	2156	9-50	5857	9.51	3.070720	9.86	6816		1	10.1	10.2	10-1
8 20	3077	9:21	6810	9.53	1706	9.86	7837	10.21	2	20-2	20.4	20-0
		0.30		0.50		9.87		10.22	3	30.3	30.6	80-9
		9.22		9.53		001		10-22	4	40.4	40.8	41.5
0 0	3.003999	9-23	3.037763	9.54	3.072693	9.87	3.108859	10-23	5	50.5	51.0	51-
1 40	4922	9.23	8717	9.55	3680	9.89	3:109882	10.24	6	60.6	61.2	61.8
3 20	5845		3.039672		4669	9.89	3.110906	10.24	7	70.7	71.4	72.1
5 0	6770	9.25	3.040628	9.56	5658	9.91	1931	10.25	8	80.8	81-6	82-4
6 40	7695	9.25	1585	9.57	6649	9.91	2957		9	90.9	91.8	92.
8 20	8621	9.26	2543	9.58	7640	9.91	3984	10.27				
		9-27		9.59		9.93		10.28	-			
0 0	3.009548	3.24	3.043502	000	3-078633		3.115012	10 20		1040	1050	106
		9.28		9.59	3:079626	9.93	6041	10.29	1	10.4	10.5	10-6
1 40	3.010476	9-29	4461	9.61	3.080620	9.94	7071	10.30	2	20.8	21.0	21.5
3 20	1405	9-29	5422	9.61		9.95		10.31	3	31.2	31.5	31.8
5 0	2334	9.31	6383	9:63	1615	9-97	8102	10.32	4	41.6	42.0	42.4
6 40	3265	9.31	7346	9.63	2612	9.97	3-119134	10.34	5	52.0	52.5	53.0
8 20	4196	001	8309	0	3609		3.120168		6	62.4	63.0	654
		9.32		9.64		9.98		10.34	7			
	3.015128	0 02	3-049273		3-084607		3.121202		8	72·8 83·2	73·5 84·0	74 5
0 0												

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

						`	V2 q3					
	1-	180	1-	190	1.	50°	13	51°		Duon		,
v	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff,			ortiona eile	1-
0^i 0^{ii}	3-121202	10.05	3-159137	1	3.198498	1	3-239382			T =		
1 40	2237	10.35		10.73	13:199613	11.15	3.240540	11.58	1	1070	1080	1090
3 20	3273	10.86	1285	10.75	3-200729	11.16	1700	11.60	1	10.7	10·S	10-
5 . 0	4311	10.38	2361	10.76	1846	11-17	2861	11.61	2	21.4		21:
6 40	5849	10.38	3438	10.77	2964	11.18	4023	11.62	3	32.1	32.4	32
8 20	6389	10-40	4516	10.78	4083	11.19	5186	11.63	4	42.8	43.2	
	1	10:40		10-80					5	53.5	54.0	43
	0.105100	10.40		10.30		11.21		11.65	6			54
10 0	3-127429	10.42	3.165596	10.80	3-205204	11.22	3.246351	11.66	7	64.2	64.8	65
11 40	8471	10.42	6676	10.81	6326	11.23	7517	11.67			75.6	76%
13 20	3.129513	10.44	7757	10.83	7449	11.24	8684	1	8	85.6	86.4	87:
15 0	3.130557	10.44	8840	10-84	8573		3.249853	11.69	9	96.3	97-2	98.
16 40	1601	10.46	3·169924	10.84	3.209698	11.25	3.251023	11.70				
18 20	2647	10 30	3.171008	10.94	3.210825	11.24	2194	11.71		1100	1110	110
		10.47		10:86		11.27		11.74			1110	1120
20 0	3-133694		3.172094	1000	0.011053	112		11 14	1	11:0	11.1	11:
21 40	4742	10.48		10.87	3.211952	11.29	3.253368	11.71	2	22.0	22.2	22.
23 20	5790	1048	3181 4270	10.89	3081	11:30	4539	11.75	3	33.0	33.3	334
25 0	6840	10.50	1	10.89	4211	11.32	5714	11.77	4	44.0	44.4	44:
		10.51	5359	10.90	5343	11:32	6891	11.77	5	55-0	55.5	564
26 40	7891	10.52	6449	10.92	6475	11.34	8068	11.79	6	66.0	66.6	67:
28 20	8943		7541		7609	11.01	3.259247	11 13	7	77-0	77-7	78.
		10-54		10.93		11.35		11.80	8	88.0	88.8	894
30 0	3-139997		3.178634		3.218744		3.260427		9	99.0	99.9	100-3
31 40	3-141051	10-54	3-179727	10.93	3.219880	11.36	1608	11.81				
33 20	2106	10.55	3.180822	10.95	3.221017	11:37	2791	11.83				
35 0	3162	10.56	1918	10.96	2156	11.39	3975	11.81		1130	1140	1150
36 40	4220	10.58	3016	10.98	3296	11:40	5160	11.85	1	11.3	11-4	11:
38 20	5278	10.58	4114	10.98	1437	11:41	6347	11.87	2	22.6	22.8	23.0
			1		1101		0941		3	33.9	34.2	34:3
		10.60		11.00		11:42		11.88	4	45.2	45.6	464
0 0	3.146338	10.60	3.185214	11:00	3.225579		3.267535		5	56.5	57.0	57:
11 40	7398	10.62	6314	11.02	6722	11.43	8724	11.89	6	67.8	68-4	69:0
13 20	8460	10.63	7416		7867	11.45	3.269914	11.90	7	79-1	79.8	80-2
15 0	3.149523		8519	11.03	3-229013	11:46	3.271106	11.92	8	90.4	91.2	924
6 40	3.150587	10.64	3.189623	11.04	3.230160	11.47	2299	11.93	9		102-6	
8 20	1652	10.65	3-190729	11.06	1308	11.48	3494	11.95	J	101-1	102.6	109.5
		10.66		11.06		11.50		11.05				
0 0	3.152718		3.191835		0.000450	11 00	0.051030	11.95		1160	1170	1180
1 40	3785	10.67	2943	11.08	3.232458	11:51	3-274689	11.98		11.0	11.0	
3 20	4853	10.68	4052	11.09	3609	11.52	5887	11.98	1	11.6	11.7	11.8
	5922	10.69		11.10	4761	11.53	7085	12:00	2	23.2	23.4	23.6
-		10-71	5162	11-11	5914	11:56	8285	12.00	3	34.8	35.1	35
6 40	6993	10.71	6273	11.12	7070	11.55	3:279486		4	46-4	46.8	47:
8 20	8064		7385	1	8225	11 00	3.280688	12.02	5	58.0	58.5	59.0
		10-73		11.13		11:57		12:04	6	69.6	70.2	70.8
0 0	3-159137		3-198498		2.239382		3.281892	A.W 1018	7	81.2	81.9	82.6
1			10100		200002		0 201502		8	92.8	93.6	94
				1				1	9	104.4	105.3	106:5

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, g^3}}$

			1		V 2 9			
	155		15		15	1	15	,
υ	log M	Diff.	log M	Diff.	log M	Diff.	log M	Diff.
0, 00	3-281892	12.05	3-326145	12.55	3.372268	13:10	3-420406	13:68
1.40	3097	12:05	7400	12:57	3578	13.11	1774	13-69
3 20	4304	12:07	8657	12:58	4889	13.12	3143	13.71
5 0	5512	12:09	3.329915	12:60	6201	13.14	4514	13.75
6 40	6721	12:10	3.331175	12:61	7515	13:15	5886	13.7
S 20	7931	12.10	2436	12 61	3.378830		7260	
		12.12		12.62		13.17		13.76
10 - 0	3.289143	12:14	3.333698	12.65	3.380147	13:19	3.428636	13.7
11 40	■ 3·290357	12:14	4963	12.65	1466	13.20	3-430014	13.7
13 20	1571	12.14	6228	12.67	2786	13.22	1393	13.8
15 0	2787	12.18	7495	12.68	4108	13.24	2774	13.8
16 40	4005	4 - 4 - 1	3.338763	12.68	5432	13.25	4157	13.8
18 20	5223	12.18	3.340033	12.10	6757	19.29	5541	100
		12.20		12.72		13.26		13.8
20 0	3.296443	12-22	3.341305	12.73	3.388083	13.28	3.436927	13:8
21 40	7665		2578	12.74	3.389411	13:30	8315	13.9
23 20	3.298888	12.23	3852		3.390741	4 0 10 1	3.489705	13-9
25 0	3:300112	12.24	5128	12.76	2072	13.31	3:441096	13.9
26 40	1338	12.26	6405	12:77	3405	13.33	2489	
28 20	2565	12.27	7684	12.79	4740	13.35	3884	13-93
		12.28		12:80		13.36		13:96
80 0	3.303793	1200	3:348964	12.82	3.396076	13:38	3.445280	13-98
31 40	5023	12:30	3.350246		7414		6678	1440
33 20	6254	12.31	1529	12.83	3.398753	13.39	8078	14:0:
35 0	7487	12.33	2814	12.85	3.400091	13.41	3.449480	
36 40	8721	12:34	4100	12.86	1437	13.43	3.450884	14.0
38 20	3:309956	12.35	5388	12.88	2781	13.44	2289	14.03
		12.37		12.89		13.46		14.0
40 0	3-311193		3.356677	4.1.04	3.404127	13:48	8.453696	14-05
41 40	2431	12.38	7968	12.91	5475	10000	5105	14-10
43 20	3670	12:39	3.359261	12.93	6824	13.49	6515	
45 0	4912	12.42	3.360555	12.94	8175	13.51	7928	14-13
46 40	6154	12.42	1850	12.95	3.409527	13.52	3.459342	14.1
18 20	7398	12.44	3147	12.97	3.410881	13.54	3-460758	14-1
		12.45		12.98		13.56		14-1
50 0	3-318643	12.47	3.364445	13:00	3.412237	13:57	3.462175	14-20
51 40	3.319890	12.48	5745	13.02	3594	13.59	8595	14.2
53 20	3:321138		7047	13.03	4953	13.61	5016	14.2
55 0	2387	12-49	8350	13:05	6314	13.63	6439	14-2
56 40	3638	12.51	3.369655		7677		7864	14-2
68 20	4891	12.53	3:370961	13.06	3.419041	13.64	8.469291	14.2
		12.54		13:07		13.65		14.2
60 0	3.326145		3.372268		3.420406		3.470719	

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	15	6°	15	7°	15	8°	15	90
υ	log M	Diff.	log M	Diff.	log M	Diff. 1"	log M	Diff.
0, 0,,	3.470719		3.523388		3.578615	15.70	3.636635	16:54
1 40	2150	14.31	4886	14.98	3.580188	15.73	8289	16:57
3 20	3582	14.32	6387	15.01	1763	15.75	3.639946	
5 0	5016	14.34	7889	15.02	3340	15.77	3.641604	16.58
6 40	6451	14.35	3.529394	15.05	4920	15.80	3265	16.61
8 20	7889	14.38	3.530900	15.06	6501	15.81	4929	16.64
		14.40		15:09		15.84		16.66
0 0	3.479329		3.532409	17.10	3.588085	15.86	3.646595	16.68
11 40	3.480770	14.41	3919	15.10	3.589671		8263	16.71
3 20	2213	14.43	5431	15.12	3.591259	15.88	3.649934	16.72
5 0	3658	14.45	6946	15.15	2849	15.90	3.651607	
6 40	5105	14.47	8462	15.16	4441	15.92	3282	16.75
8 20	6554	14.49	3.539981	15.19	6036	15.95	4960	16.78
		14.50	i	15.21		15.97		16.80
20 0	3.488004		3.541502		3.597633	1 00	3.656640	16.85
21 40	3.489457	14.53	3024	15:22	3.599232	15.99	3.658323	
23 20	3.490912	14:55	4549	15.25	3.600833	16.01	3.660008	16.83
25 0	2367	14.55	6075	15.26	2437	16.04	1696	16.88
26 40	3825	14.58	7604	15.29	4042	16.05	3386	16:90
28 20	5285	14.60	8.549135	15.31	5650	16.08	5079	16.93
		14.62		15.33		16.11		16.9
30 0	3.496747		3.550668		3.607261	16.12	3.666774	16:97
31 40	8211	14.64	2203	15.35	3.608873		3.668471	17:00
33 20	3.499676	14.65	3740	15.37	3.610488	16.15	3.670171	
35 0	3.501144	14.68	5279	15.39	2105	16.17	1873	17:0:
36 40	2613	14.69	6820	15.41	3724	16.19	3578	17.03
88 20	4084	14.71	8363	15.43	5346	16.22	5286	17:08
		14.74		15:45		16.23		17:10
0 0	3.505558		3.559908		3.616969	16:26	3.676996	17:15
1 40	7033	14.75	3.561455	15:47	3.618595		3.678708	
3 20	8510	14.77	3005	15.50	3.620224	16.29	3.680423	17:13
5 0	3.509989	14.79	4556	15.21	1855	16.31	2141	17:18
6 40	3:511470	14.81	6110	15.54	3488	16.33	3861	17:20
8 20	2953	14.83	7666	15.26	5123	16.35	5583	17-2:
		14.85	·	15.58		16.37		17:23
0 0	3.514438		3.569224		3.626760	10.16	3.687308	17.0
1 40	5924	14.86	3.570784	15.60	3.628400	16.40	3.689036	17:28
3 20	7413	14.89	2346	15.62	3.630043	16.43	3.690766	17:30
5 0	3:518904	14.91	3910	15.64	1687	16.44	2499	17:33
6 40	3.520396	14.92	5476	15.66	3334	16.47	4234	17:33
8 20	1891	14.95	7045	15:69	4984	16:50	5972	17:38
		14.97		15.70		16.51		17:41
60 O	3.523388		3.578615		3.636635		3.697713	

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

3-697713 3-699456 3-701201 2950 4701 6454 3-708210 3-709969	0° Diff. 1" 17:43 17:45 17:49 17:51	3·762154 3995 5840	1° Diff. 1"	log M 3.830315	Diff. 1"	log M	63° Diff. 1"
3-697713 3-699456 3-701201 2950 4701 6454 3-708210	1" 17:43 17:45 17:49 17:51	3·762154 3995	1"				1
3·699456 3·701201 2950 4701 6454 3·708210	17:45 17:49 17:51	3995	18-41	3.830315			7
3·701201 2950 4701 6454 3·708210	17:45 17:49 17:51		18.41		19.50	3.902611	20.72
2950 4701 6454 3:708210	17·49 17·51	5840	10.15	2265	19.54	4683	20.75
4701 6454 3:708210	17:51	00.10	18.45	4219		6758	
6454 3·708210		7687	18:47	6175	19.56	3.908837	20.79
3.708210		3.769537	18.50	3.838135	19.60	3.910919	20.8
	17.53	3.771390	18.53	3.840098	19.63	3006	20.87
	17.56		18.55	0.043005	19.67	0.015005	20.89
3:709969	17:59	3.773245	18.59	3.842065	19:69	3.915095	20:9
	17.62	5104	18.62	4034	19.73	7189	20.9
3.711731	17:64	6966	18.64	6007	19.76	3.919286	21:0
3495	17:66	3.778830	18.68	7983	19.80	3.921387	21:0
5261	17:70	3.780698	18.70	3.849963	19.82	3491	21.0
7031		2568		3.851945		5599	
	17.72		18.74		19.86		21.1
3.718803		3.784442	40.50	3.853931	10.00	3.927711	31.1
3.720578	17.75	6318	18.76	5921	19.90	3.929826	21.1
2355	17.77	3.788198	18.80	7913	19.92	3.931945	21.1
4135	17.80	3.790080	18.82	3.859909	19.96	4068	21.2
5918	17.83	1965	18.85	3.861909	20.00	6195	21.2
7704	17.86	3854	18.89	3911	20.02	3.938325	21.30
	17.88		18-91		20.06		21.3
	17.01		10.04		90:00		21.3
							21.4
		3.799537					21.4
		3.801437				6885	21.4
6672		3341		3975		3.949034	
3.738474	18.02	5247	19.06	5998	20.23	3.951187	21.5
	18.05		19.10	0.000001	20-26		21.5
	18:07		19:13		20:30		21.6
							21.6
							21.6
							21.7
							21.7
3.749344	-	6751		3.888207		4188	
3:751166	18-22	3-818680	19.29	3-890254	20.47	8-966368	21.8
	18-24		19.31		20.51		21.8
	18-27		19.34		20.54		21.8
	18:30		19.38		20.58		21.9
	18.33		19.41		20.61		21.9
	18.36	3.828368	19.44	3.900543	20.65	7329	22.0
0.100010						1	1
0 100010	18.38		19.47		20.68		22.0
	7704 3·729492 3·731283 3077 4873 6672	3-729492 3-731283 3077 4873 6672 3-738474 18-05 3-740279 2086 3-897 5710 3-749344 18-12 3-749344 18-12 3-749344 18-12 3-749344 18-12 3-749344 18-12 3-749344 18-12 3-749344 18-12 3-751166 2990 4817 6647 18-30 3-760316	3:718 17:86 3854 3:729492 17:91 3:795745 3:731283 17:91 7639 3:731283 17:94 3:799537 4873 17:96 3:801437 4672 18:92 3341 3:738474 18:02 3:807157 3:740279 18:03 3:807157 38:07 18:11 3:80985 5710 18:16 3:80985 3:749344 18:18 6751 18:22 3:818680 3:82861 3:751166 2990 18:24 3:828611 4817 6647 18:33 6424 3:758480 3:758480 3:82868 3:760316 18:36 3:82868	17-86	17-86	17-86	17-86

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

	16	40	16	5°	16	6°	167°		
υ	log M	Diff.	log M	Diff 1"	log M	Diff.	log M	Diff.	
0, 0,	3.979533	22.08	4.061667	39.00	4.149720	27.20	4.244554	97.11	
1 40	3.981741		4030	23.63	4.152258	25.38	4.247295	27:41	
3 20	3953	22.12	6397	23.67	4802	25.44	4:250041		
5 0	6170	22.17	4.068768	23.71	7350	25.48	2794	27.53	
6 40	3.988390	22.20	4.071144	23.76	4.159905	25.55	5554	27.60	
8 20	3.990614	22.24	3525	23.81	4.162464	25.59	4.258319	27.6	
		22.29		23.86		25.65		27.71	
10 0	3.992843		4.075911	20.00	4.165029	25.70	4.261090	27.78	
11 40	5075	22.32	4.078301	23.90	4.167599		3868		
13 20	7312	22.37	4.080695	23.94	4.170174	25.75	6652	27.84	
15 0	3.999553	22.41	3095	24.00	2755	25.81	4.269442	27.90	
16 40	4.001798	22.45	5499	24.04	5341	25.86	4.272238	27.96	
18 20	4047	22.49	4.087908	24.09	4.177933	25.92	5041	28.03	
		22.53		24.14		25.97		28.09	
20 0	4.006300	02.55	4.090322		4.180530	20.02	4.277850	28-15	
21 40	4.008557	22.57	2740	24.18	3132	26-02	4.280665	28-22	
23 20	4.010819	22.62	5163	24.23	5740	26.08	3487		
25 0	3085	22.66	4.097591	24.28	4.188354	26.14	6315	28-28	
26 40	5355	22.70	4.100024	24.33	4.190973	26.19	4.289150	28:35	
28 20	7629	22.74	2462	24.38	3598	26.25	4.291991	28.41	
		22.79		24.42		26.30		28.47	
30 0	4.019908	22.83	4.104904	24.47	4.196228	26:36	4.294838	28.54	
31 40	4.022191		7351		4.198864		4.297692	28.61	
33 20	4478	22.87	4.109804	24.53	4.201505	26.41	4.300553	28.67	
35 0	6769	22.91	4.112261	24.57	4152	26.47	3420	28.74	
36 40	4.029065	22.96	4723	24.62	6805	26.23	6294		
38 20	4.031365	23.00	7190	24.67	4.209464	26.59	4.309174	28.80	
		23.04		24.72		26.64		28.88	
40 0	4.033669	23:09	4.119662	24.77	4.212128	26:70	4.312062	28.93	
41 40	5978	23.13	4.122139	24.82	4798	26.76	4955	29.01	
43 20	4.038291	23.18	4621		4.217474	26.81	4:317856	29.07	
45 0	4.040609		7108	24.87	4.220155		4.320763		
46 40	2931	23.22	4.129600	24.92	2843	26.88	3678	29.1.	
48 20	5257	23.26	4.132097	24.97	5536	26.93	6598	29.20	
		23.31		25.02	100	26.99		29.28	
50 0	4.047588	23.35	4.134599	25.07	4.228235	27:05	4.329526	29.35	
51 40	4.049923	23.40	7106	25.13	4.230940	27:11	4.332461	29.42	
53 20	4.052263		4.139619		3651	27:16	5403	29.48	
55 0	4607	23.44	4.142136	25.17	- 6367		4.338351		
56 40	6956	23.49	4659	25.23	4.239090	27.23	4.841307	29.56	
58 20	4.059309	23.53	7187	25.28	4.241819	27:29	4269	29.6:	
		23.58		25.33		27.35		29.70	
60 0	4.061667		4.149720		4.244554		4.347239	1	

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2} \, q^3}$

	1.0	8°	16	90	170°			
υ		Diff.		Diff.	10	Diff.		
	log M	1"	log M	1"	log M	1"		
0, 0,	4:347239	20.55	4.459124	0155	4.581945	01.0		
1 40	4.350216	29.77	4.462379	32.55	5533	35.8		
3 20	3199	29.83	5642	32.63	4:589131	35.9		
5 0	6190	29.91	4:468914	32.72	4.592740	36-0		
6 40	4:359188	29.98	4.472195	32.81	6359	36.1		
8 20	4.362194	30.06	5484	32.89	4.599988	36-2		
		30.12		32.97		36.4		
10 0	4.365206	30.20	4.478781	33.06	4.603628	36.5		
11 40	4.368226	30:27	4.482087	33:15	4.607278	36.6		
13 20	4.371253	30.35	5402	33.24	4.610939	36.7		
15 0	4288	30:41	4:488726	33.32	4611	36.8		
16 40	4.377329		4:492058	33.42	4.618293	36.9		
18 20	4.380378	30-49	5400	33'42	4.621986	36.8		
		30.57		33.50		37.0		
20 0	4.383435	30:64	4:498750	33:59	4.625689	37:1		
21 40	6499	30.72	4.502109	33.68	4.629404	37-2		
23 20	4.389571	30.79	5477	33.77	4.633129	37:3		
25 0	4.392650	30.87	4.508854	33.86	4.636866	37.4		
26 40	5737	30.95	4.512240	33.96	4:640613	37:5		
28 20	4.398832		5636		4372			
30 O	4.401934	31.02		34.04		37.6		
	5043	31.09	4.519040	34.14	4.648141	37.8		
31 40	4:408161	31.18	4.522454	34.23	4.651922	37.9		
33 20 35 0		31.25	5877	34.32	5715	38-0		
	4:411286	31.33	4.529309	34.42	4.659518	38.1		
36 40 38 20	4419	31.41	4:532751	34:51	4.663333	38-2		
38 20	4.417560		6202		4.667160			
		31.49		34.60		38.3		
10 0	4.420709	31:57	4.539662	34:70	4.670998	38:5		
41 40	3866	31.65	4.543132	34.80	4848	38.6		
13 20	4:127031	31.72	4.546612	34.89	4.678709	38.7		
15 0	4.430203	31.81	1.550101	34.99	4.682583	38.8		
46 40	3384	31.89	3600	35.08	4.686468	38.9		
48 20	6573		4.557108	0.0 1.0	4.690365			
50 0	4:439770	31.97		35.18		39-0		
51 40	4:442975	32.05	4.560626	35:29	4.694274	39.2		
53 20		32.13	4155	35:38	4.698195	39-3		
11	6188	32-22	4:567693	35.48	4.702128	39.4		
.,	4:449410	32:30	4:571241	35:58	4.706073	39.5		
56 40	4:452640	32.38	4799	35.68	4.710031	39.7		
58 20	5878		4.578367		4001			
		32:46		35.78		39.8		
30 0	4.459124		4.581945		4.717984			

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

0" 0' 4-7 20 1 4-7 20 2 2 40 2 2 40 40 4 29 40 4 0 4 4-7 20 40 4 0 5 4-7 20 6 4-7 20 6 4-7 20 6 4-7 20 6 4-7 20 7 20 8 20 40 9 4-7 20 10 20 40 11 20 40 11 20 40 11	v 171°		15'	1	71° 15′ –	- 30'	17	1° 30′ -	45'	171° 45′ — 60′			
20 40 4-73 20 40 2 40 0 2 20 40 0 4 0 0 4 0 4 4-73 20 40 4-73 40 0 7 20 40 7 20 40 8 20 40 8 20 40 40 4-73 40 0 10 20 40 11 20 40 11 20 40 11 20 40 0 12 40 0 13 4-7 20 40 0 13 4-7 20 40 0 13 4-7 40 0 13 4-7 40 0 11	90	log M	Diff.	" פי	log M	Diff.	v'	log M	Diff.	v'	log M	Diff.	
40	0.4	1.717984	00.0	15'	4.754398	41-1	30'	4.791885	42.3	45	4.830507	43.6	
0 1 4-73 20 40 0 2 20 40 0 3 4-73 20 40 4 29 40 6 4-73 20 40 7 20 40 7 20 40 7 20 40 10 20 40 11 40 11 20 40 11 40		8782	39-9		5219			2730			1378	43.7	
0 1 4-73 20 40 0 2 20 40 0 3 4-73 20 40 4 29 40 6 4-73 20 40 7 20 40 7 20 40 7 20 40 10 20 40 11 40 11 20 40 11 40	4	1.719580	39-9		6041	41-1		3577	42.4		2251		
20	- 11	720379	40.0	16	6863	41-1	31	4423	42.3	46	3123	43.6	
40 0 2 2 4-73 40 0 12 4-73 40 0 12 4-73 40 0 13 4-73 20 40 11 20 40 0 13 4-73 20 40 0 13 4-73 20 40 0 13 4-73 20 40 0 13 4-73 20 40 0 14 40 0 15 4-73 20 40 0 15 4-73 20 40 0 16 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 4-73 40 0 17 4 40 0 17		1179	40.0		7686	41.2		5270	42.4		3997	43.7	
0 2 2 4-7: 40 0 13 4-7: 20 40 0 10 20 40 0 11 20 40 0 13 4-7: 20 40 0 11 20 40 0 13 4-7: 20 40 0 13 4-7: 20 40 0 13 4-7: 20 40 0 13 4-7: 20 40 0 14 40 0 15 4-7: 20 40 0 15 4-		1979	40.0		8509	41.2		6119	42.5		4871	43.7	
20 40 3 4-73 20 40 4-73 20 40 7 20 40 8 20 40 0 10 20 40 0 11 20 40 0 12 4-7 20 40 0 12 4-7 20 40 0 13 4-7 20 40 0 13 4-7 20 40 0 14 4	.	2779	40.0	17	4.759333	41.2	32	6967	42.4	47	5746	43.8	
40	2		40-1	11	1	41.3	02	7816	42.5	-41	6621	43.8	
0 3 4-73 20 40 4 29 40 5 4-73 20 40 7 20 40 7 20 40 8 20 40 8 20 40 10 20 40 11 20 40 11 20 40 13 4-7 20 40 0 13 4-7 20 40 0 13 4-7 20 40 0 14		3580	40.1		4.760158	41.2			42.5		7497	43-8	
20 40 4 20 40 6 4 73 40 6 10 10 11 20 40 0 13 4 7 20 40 0 13 4 7 20 40 0 13 4 7 20 0 14 40 0 13 4 7 20 40 0 14 40 0 15 40 0 15 40 0 16 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 40 0		4382	10.1	l	0982	41.3		8666	42.5		(43)	43.8	
20 40 4 20 40 6 4 73 40 6 10 10 11 20 40 0 13 4 7 20 40 0 13 4 7 20 40 0 13 4 7 20 0 14 40 0 13 4 7 20 40 0 14 40 0 15 40 0 15 40 0 16 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 20 40 0 17 40 0		.505101	40.1	18	4.761808	41.9	33	4.799516	420	48	4.838373		
40	3 4	725184	40.1	19		41.3	00	4.800367	42.6	413	4.839250	43.9	
0 4 4 4 7 4 7 4 7 5 4 7 7 9 4 7 9 4 7 9 4 7 9 4 7 9 4 7 9 4 7 9 9 4 7 9 9 4 7 9 9 4 7 9 9 4 7 9 9 4 7 9 9 4 7 9 9 4 7 9 9 4 7 9 9 4 7 9 9 4 7 9 9 9 9		5986	40.2		2634	41.3			42.6	ű		43.9	
20 4-73 20 4-73 20 40 7 20 40 11 20 40 0 13 4-7 20 40 0 13 4-7 20 0 14 40 0 13 4-7 20 0 14 40 0 15 40	-1	6789	40.2	1	3460	41.4		1218	42.6		4.840128	43.9	
40	4	7593	40.2	19	4287	41.4	34	2070	42.6	49	1006	44-0	
0 5 4-73 20 40 0 6 4-73 20 40 0 7 20 40 0 8 20 40 0 9 4-73 20 40 0 10 20 11 20 40 0 12 4-7 20 40 0 13 4-7 20 40 0 13 4-7 20 40 0 13 4-7 20 0 14		8397	40.2		5115	41.4		2922	42.7		1885	44.0	
20 40 20 6 4-73 20 40 20 40 40 40 40 40 40 40 40 40 40 40 40 40	4	729201	40.3	į.	5943	41:5		3776	42.7	l	2765	44.0	
40	5 4	730006	40.3	20	6772		35	4629	42.7	50	3645	44.0	
40		0812			7601	41.5		5483	42.8		4525	44.1	
0 6 4.73 20 40 7 20 40 8 20 40 9 4.73 20 40 10 20 40 11 20 40 11 20 40 12 40 0 13 4.7 20 40 0 13 4.7 20 40 0 14		1618	40.3		8431	41.5		6338	42.9		5407	44.1	
20 40 7 20 40 10 20 40 11 20 40 0 13 4-7 20 40 0 13 4-7 20 40 0 14 40 0 14			40.4	1		41.5			42.8			44.1	
20 40 7 20 40 10 20 40 11 20 40 0 13 4-7 20 40 0 13 4-7 20 40 0 14 40 0 14	6 4	732425		21	4:769261		36	4.807193	120	51	4.846289		
40	1	3232	40.4		4.770092	41.6		8049	42.8		7171	44.1	
0 7 20 8 20 40 8 20 40 9 40 40 10 20 40 11 20 40 11 20 40 12 40 0 12 4.7 20 40 40 40 40 40 40 40 40 40 40 40 40 40		4039	40.4		0923	41.6		8905	42.8	1	8054	44.2	
20 40 8 20 40 10 20 40 11 20 40 0 13 4-7 20 40 0 14 40 0 14 40 0 15 4-7 20 40 0 14 40	-	4847	40.4	99	1755	41.6	37	1.809763	42.9	52	8938		
40 8 20 40 9 4-7: 20 40 0 12 4-7: 20 40 0 13 4-7: 20 40 0 13 4-7: 20 40 0 14 40 0 14	1	5656	40.4	24	2587	41.6		4.810620	12.9		4.849822	44.2	
0 8 20 40 9 4-7: 20 40 11 20 40 0 12 4-7: 20 40 0 13 4-7: 20 40 0 13 4-7: 40 0 14		1	40.5			41.7		1479	43.0		4.850707	44.3	
20 40 9 4-7: 20 10 20 11 20 40 0 12 4-7: 20 40 0 13 4-7: 20 40 0 13 4-7: 40 0 14		6465	40.5	20	3420	41.7	38	2337	42.9	53	1593	14.3	
40 9 4-7: 90 4-7: 40 10 20 40 11 20 40 0 12 4-7: 20 40 13 4-7: 20 40 0 13 4-7: 20 40 0 14	8	7275	40.5	23	4254	41.7	0.0		43.0	99	2479	44.3	
0 9 4-7. 20 4-7. 40 0 10 20 40 0 11 20 40 0 12 4-7 20 40 0 13 4-7 20 40 0 14		8085	40.6		5088	41.7		3196	43.0			44.4	
90 4-7 40 10 20 40 11 20 40 0 40 0 12 4-7 20 40 0 13 4-7 20 4-7 40 0 14		8896			5922		li .	4056			3366	44.4	
90 4-7 40 10 20 40 11 20 40 0 40 0 12 4-7 20 40 0 13 4-7 20 4-7 40 0 14			40.6			41.8			43.1		4.0* 40*9		
40 0 10 20 40 0 11 20 40 0 12 40 0 12 40 0 13 4-7 20 40 0 13 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7 4-7		1-739707	40.6	24	4.776757	41.8	39	4.814917	43.1	54	4.854253	44-4	
0 10 20 40 11 20 40 0 12 4.7 20 40 0 13 4.7 20 40 0 14	14	1.740519	40.6		7593	41.9	i	5778	43.1	ĺ	5141	44.5	
20 40 0 11 20 40 0 12 4·7 20 40 0 13 4·7 4·7 4·7 4·7 4·7 4·7 4·7 4·7		1331	40.7		8430	41.9		6640	43-1		6030	44.5	
40 0 11 20 40 0 12 4-7 20 40 0 13 4-7 20 40 0 14	0	2144	40.7	25	4.779267	41.9	40	7502	43.2	55	6919	44.5	
0 11 20 40 0 12 4-7 20 40 0 13 4-7 20 4-7 40 0 14		2957	40.7		4.780104			8365	43.2		7809	44.5	
20 40 0 12 4.7 20 40 0 13 4.7 20 40 0 14		3771			0941	41.9		4.819229)	8699	44.6	
20 40 0 12 4.7 20 40 0 13 4.7 20 40 0 14	1	4585	40.7	26	1780	42.0	41	4.820093	43.2	56	4.859591	44.6	
0 12 4·7 20 40 0 13 4·7 20 4·7 40 0 14		5400	40.8		2619	42.0	i	0957	43.2		4.860483	44.6	
0 12 4·7 20 40 0 13 4·7 20 4·7		6216	40.8		3458	42.0		1822	43.3		1375	44.0	
20 40 0 13 4·7 20 4·7 40 0 14		0210	40.8		Ottos	42.1	ŀ	1044	43.3			44-7	
20 40 0 13 4·7 20 4·7 40 0 14	9 4	4-747032		27	4.781299		42	4.822688		57	4.862268		
40 0 13 4·7 20 4·7 40 0 14	-	7848	40.8	- 1	5139	42.0		3554	43.3		3161	44.7	
0 13 4·7 20 4·7 40 0 14		8665	40.9		5980	42.1		4421	43.4	1	4056	44.8	
20 4.7 40 0 14	9	1.749482	40.9	28	6822	42.1	43	5289	43.1	58	4951	44.8	
0, 14	- 1		40.9	20		42.1	40		43.4	33	5846	44.8	
0. 14	1	1.750300	40-9		7664	42.2	1	6157	43.4		6743	44.9	
	. 1	1118	41.0		8508	42.2	1	7025	43.5			44.8	
90	4	1937	410	29	4.789351	42.2	4.4	7895	43.5	59	7639	14.9	
	31	2757	41.1		4:790195	42.3		8765	43.6		8537	44.9	
40	1	3577			1040	1	1	4.829636			4.869434		
0 15 4.7	20	754398	41-0	200	4.791885	42.3	45	4.830507	43.6	60	4.870333	4.50	

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, g^3}}$

v	1	72° 0′ —	15'	1	72° 15′ –	~ 30'	17	$72^{\circ} 30' -$	45'	17	172° 45′ —		
υ ^{tt}	v	log M	Diff.	v'	log M	Diff.	v'	log M	Diff.	ν	log M	Diff.	
04	0,	4.870333	45.0	15'	4.911441	46.5	30°	4.953913	48-0	45	4.997842	49-7	
20		1233	450		2370			4873		}	8835	49.8	
0		2133			3299	46.5		5834	48-1		4-999830		
0	1	3033	45.0	16	4229	46.5	31	6795	48.1	46	5.000824	49.	
20		3934	45.1		5160	46.6		7758	48.2		1820	49-8	
10		4836	45.1		6091	46.6		8721	48-2		2817	49	
	2	5739	45.2	17	7023	46.6	32	4.959684	48-2	47	3814	49-1	
0	-	6642	45.2	111		46.7	02		48.2	41	4813	50H	
20			45.2		7956	46.7		4.960648	48.3			504	
10		4.877546			4.918889	100		1613			5-005812	*0.	
	- 0	1.070.150	45.2			46.8			48.3			501	
()	3	4.878450	45:3	1.8	4.919824	46:7	33	4.962579	48-4	48	5-006S11	50	
20		4.879355	45.3		4.920758	46.8		3546	484		7812	50-	
10		4.880261	45.3		1694	46.8		4513	48-4		8813	50-	
0	4	1167	45.4	19	2630	46.9	. 34	5481	48.5	49	5:009815	50	
20		2074			3567	46.9		6450			5.010818	50-	
10		2981	45.4		4504			7419	48.5		1821		
0	5	3890	45.5	20	5443	47.0	35	8389	48.5	50	2826	50%	
20		4799	45.5		6381	46:9		4.969360	48.6	0.0	8831	50	
		4.885708	45.5		4.927321	47:0		4.970332	18.6		5.014837	50%	
10		4 000 (00	45.5		4 32 (021	47:0		4.240997	48.6		3 014001	50%	
0	6	4.886618		21	4-928261		36	4.971304		51	5.015844		
20		7529	45.6	~ 1	4.929202	47-1		2277	48.7		6851	501	
10		8441	45.6		4.930144	47-1		3251	48.7		7859	50%	
	7	4.889353	45.6	2.3		47-1	37		48.8		8869	50	
0	1		45.6	22	1086	47.2	91	4226	48.8	52		50%	
20		4.890265	45.7		2029	47.2		5201	48.9		5-019879	50%	
40		1179	45.7		2978	47.2		6177	48.8		5.020889	50%	
0	8	2093	45.8	23	3917	47:3	38	7154	48.9	53	1901	50%	
20		3008	45.8	4	4863	47:3		8132	48.9	1	2913	50-	
10		4.893923		1	4.935808			4.979110		1	5.023926		
		1.001000	45.8			17:4			49-0			50	
0	9	4.894839	45.9	24	4.936755	47:4	39	4.980089	49-0	54	5.024940	50-	
20		5756	45.9		6702	47:4		1069	49.1	1	5955	50.	
10		6678	45.9		8650	47:5		2050	49.1	1	6970	50	
0	10	7591		25	4.939599		40	3031		55	7986	1	
20		8510	45.9		4.940548	47.5	1	4013	49-1		5-029004	50	
10		4.899429	46.0		1498	47.5		4996	49.2		5-030022	50	
0	11	4.900319	46.0	26	2449	47:6	41	5980	49-2	56	1040	50	
20	111	1270	46.1	-0	3400	47.6	**	6964	49.2	00	2060	51	
		4.902191	46.1		4.944353	47.7	1	4.987949	49.3		5-033080	51	
40		9 302131	46-1		4.344993	47.6	1	4.001040	49.3		9 000000	51.	
0	12	4.903113		27	4.945305		42	4.988935	1	57	5.034101		
20		4036	46:2	1 - 1	6259	47.7	1 ""	4.989922	49.4	01	5123	51	
		4959	46.2		7213	47.7		4.990909	49.4		6146	51	
40	13	5883	46.2	200		47.8	1 ,0		49.4			51	
0	13		46.3	- 28	8168	47.8	- 43	1897	49.5	58	7170	51	
20		6808	46.3		4.949124	47:8		2886	49.5	1	8194	51	
40		7733	46:3		4.950080	47.9		3876	49.5	1	5.039219	51	
()	14	8659		29	1037	47.9	11	4866		59	5.040245	51	
20		4:909586	46.4		1994			5857	49.6		1272		
40	II.	4.910513	46.4		4.952953	48.0	1	4.996849	49.6	1	5.042300	51	
			46.4			48.0			49.7	1		51	
0	15	4.911441		30	4.953913	1	45	4.997842		60	5.043329	1	

Tafel für $log M = log \frac{75 kt}{\sqrt{2 q^3}}$ 173° 15' — 30' 173° 30' — 45'

173° 0' -- 15' 173° 45' -- 60' v Diff. Diff Diff. Diff. D'I vª log M log M log M log M 1" 100 1" 1" Ou 5-043329 5.000486 30 5.139440 45' 5.190331 584 57.7 20 4358 1554 5.140550 51.5 53.5 57.8 40 5388 2623 1660 2640 51.6 53.5 55.6 57.9 0 6419 16 3692 2771 3797 46 51.6 53.6 55.6 57.9 20 7451 4763 3883 4954 51.7 53.6 57.9 40 8484 5834 4997 6112 51.7 58.0 2 5-049517 0 6907 32 6111 47 7271 51.7 53.7 55.8 58.1 20 5.030551 7980 7226 8432 51.8 55.8 58:1 40 1587 5:099054 5.148342 5.199593 51.8 53.8 55.9 58.1 0 5.052623 5:100129 33 5.149459 48 5.200755 51.8 53.8 55.9 58.2 20 3659 1205 5:150577 1919 51.9 53.9 56:0 58.2 40 4697 2282 3083 1696 520 53.9 56.0 58.3 4 5736 19 3359 84 2816 49 4249 51.0 56.1 58.4 20 6775 4438 3937 5416 52.0 54.0 56.1 58.4 40 7815 5518 5059 6583 52.1 54.0 56:1 58.5 0 5 8856 20 6598 50 52.1 54.1 56.2 58:5 20 5.059898 7679 7305 5-208922 54.2 56.3 58.6 40 5.060941 5.108762 5.158430 5.210093 52.2 54.2 56.3 58.6 0 6 5-061984 5.211265 5.109845 36 5.159556 52.3 56:4 54.2 58:7 20 3029 5.110929 5-160683 2438 52.3 54.3 56:4 58.7 40 4074 2014 3612 1810 52.3 54.3 56.5 58.8 0 7 4787 5120 3100 2939 52 52.4 54.4 56.5 58.8 20 4187 4069 52.4 54:4 56.6 58.9 40 5274 7140 7215 5200 56.6 59.0 54.5 0 S 8264 53 52.5 56.6 54.5 20 5.069313 5.219498 7453 7464 52.6 56.7 59.1 54.5 40 5.070364 5.118543 5.220679 5.16859852.6 56.8 59.1 54.6 0 9 5.071415 24 5.119634 5:169733 54 5.221860 52.6 59.2 54.7 56.8 20 2467 5:170869 3043 52.7 59.2 54.7 56.8 40 3520 4227 1820 2005 59.7 56.9 54.7 59:3 0 4574 25 5412 10 2914 40 3143 52.8 57.0 54.8 59.3 20 5629 4010 4282 6598 52.8 54.8 57.0 59.4 40 6684 5106 7785 5422 57:0 59.4 54.9 7741 0 41 6562 56 5.228973 57:1 59.5 54.9 20 8798 7301 5.230162 7704 52.9 59.5 54.9 40 5.079856 5-128399 5:178847 53.0 55:0 57.2 59.6 12 5.080915 5-129499 5.179991 5.232543 0 53.0 59.6 1975 5:130600 20 5:181136 53-1 59.7 55·1 3036 4930 40 2282 53.1 57.3 59.8 4098 2804 3428 13 58 53.1 55.2 57.4 59.8 20 5160 3908 4576 53.2 55.3 57.5 59.9 40 6224 5013 8518 53-2 59.9 55.3 0 7288 29 6118 14 9875 14 53.3 55.4 59.9 20 8026 5.240915 55.4 60.0 40 6.089419 5.138332 5.189178 53.4 55.4 60.1 0 15 5.090486 30 5.139440 45 60 5-243317 5.190381

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, g^3}}$

v	1	74° 0' —	15'	1	74° 15′ –	- 30'	17	74° 30'	45'	17	4° 45′ —	60'
ייי	v4	log M	Diff. 1"	21	log M	Diff.	"ני	log M	Diff.	v*	log M	Diff.
0"	04	5.243317	60-1	15'	5.298574	62:8	30'	5.856305	65.6	45	5.416738	68-8
20)	4519	60.2	-	5.299829	62.9	1	7617	65.7		8114	68-9
40		5723	60.2	i	5.301086	62.9	ll.	5.858931	65.8		5.419491	68:9
0	1	6927	60.4	16	2343	63.0	31	5.360247	65:8	46	5.420869	69-0
20	1	8134	60.4		3602	63.0	1	1563	65.9		2249	69-1
40	ł	5.249341	60:4		4862	63.1		2881	66.0		3631	69-2
0	2	5.250549	60.5	17	6124		32	4201		47	5014	69-2
20		1758		į.	7386	63.1		5522	66-1		6398	
40	ŀ	5.252969	60.6	ľ	5.308650	63.2		5.366844	66:1	1	5-427784	69.3
			60-6			63.3	1		66.2			69:4
0	3	5.254180	60.7	18	5.309915	63-4	33	5.368167	66-3	48	5-429171	69-5
20		5393	60-7		5.311182	63.4	1	5.369492	66.4	1	5.430560	69-6
40	İ	6607	60.8		2449	63.5		5.370818	66-4		1951	69-6
()	4	7822	60.8	19	3718	68:5	34	2146	66.5	49	3343	69-7
20		5.259038	60:9	B	4988			3475	66.2		4736	69.8
40		5.260255		h	6259	63.6		4805		i i	6131	
0	5	1474	61.0	20	7532	63.7	35	6136	66.6	50	7527	69.8
20		2693	61.0		5:318806	63.7		7469	66.7		5.438925	69-9
40		5.263914	61.1		5.320081	63.8		5.378804	66.8	N	5-440325	70-0
			61:1			63.8		0 010001	66.8			70 1
0	6	5.265136	01.0	21	5.321357	20.0	36	5.380140	00.0	51	5.441726	
20		6359	61.2		2635	63.9		1477	66.9		3128	70-1
40		7584	61.3		3914	64:0		2815	66.9		4532	70-2
0	7	5.268809	61.3	22	5194	64:0	37	4155	67-0	52	5938	70.3
20		5.270036	61.4		6475	64-1	1	5497	67:1		7845	70-4
40		1263	61.4		7758	64.2		6839	67.1		5-448753	70.4
0	8	2492	61.5	23	5.329042	64.2	38	8183	67.2	53	5.450163	70.5
20		3722	61.5	20	5.330327	64.3	00	5.389529	67.3	1	1575	70.6
40		5.274954	61:6		1614	64.4	H	5.390876	67.4		5.452988	70.7
		0 211001	61.6		101.1	64:4		0000010	67.4		9 402000	70-8
0	9	5.276186		24	5.332901		39	5.392224		54	5.454403	
20		7420	61:7	-	4191	64.5	1	3574	67.5		5820	70-9
40		8654	61.7		5481	64.5		4925	67.6		7237	70-9
0	10	5.279890	61.8	25	6773	64.6	40	6278	67.7	55	5:458657	71.0
20	10	5.281128	61.8	20	8066	64.7	40	7632	67-7	00	5:460078	71-1
40		2366	61.8	1	5.339360	64.7		5.398987	67.8	ľ	1500	71.1
0	11	3606	62.0	26	5.340655	64.8		5:400344	67.9	56	2924	71.2
20	11	4846	62.0	26	1952	64.9	41	1702	67.9	96	4350	71.3
40		5.286088	62.1		5.343250	64.9		5:403062	68-0		5.465777	71.4
10		3.790009	62-2	H	0.949590	65:0	}	3.409(WZ	68-1		9 409111	71.5
0	19	5.287831		27	5.344550		42	5:404423		57	5:467206	
20	12	8576	62.3	21	5851	65:1	42	5786	68-2	0.	5.168637	71.6
40		5.289821	62.3		7153	65-1	0	7150	68.2	1	5.470069	71.6
0	12	5.291068	62.4	. 28	8456	65:2		8515	68.3	58	1502	71.7
20	10	2316	62.4	28	5:349761	65:3	43	5:409882	68.4	00	2937	71.8
40		3565	62.5		5:351067	65:3		5:411250	68.4		4374	71-9
	14		62.5	200	2374	65:4			68.5	59	5813	72-0
0	11	4815	62.6	29	3683	65:5	44	2620	68.6	99	7253	72-0
20		6067	62:7			65:5		3991	68.7			72.1
40		5-297320	62.7		5.354993	65.6		5.415364	68-7		5-478694	72-2
0	15	5.298574	02 (30	5.356305	69.6	45	5-416738	00 1	60	5-480137	110

Tafel für $\log M = \log \frac{75 \, kt}{\sqrt{2 \, q^3}}$

175° 0' - 15' 175° 30′ — 175° 45' -- 60' 175° 15' - 30' 45' v Diff. Diff. Diff. Diff. 2/10 log M log MI Wg M log M 1" 1" 1" 1 " 0" 0 5-480137 15' 5.546806 301 5.617097 5:691424 72.8 85.1 76-1 80-3 8327 5.618703 20 1582 3125 72-4 76.2 80.4 85.2 40 3029 5.549850 5:620311 4828 72.4 76.3 80.6 85.3 5.551375 0 4477 6534 72.5 76.4 80.6 85.4 20 5926 2902 3534 8242 76.4 80.7 85.5 40 4430 5148 5.699952 72.7 76.6 80.8 85.6 0 2 5.488830 5961 32 6764 5.701664 72.8 81.0 85.8 20 5.490285 7493 3379 72.8 81.0 85.9 40 1741 5:559026 5.630003 5.705096 72.9 76.8 86.0 81.1 0 3 5-493199 18 33 5.631625 5.560562 5.706815 73-0 86-1 76.9 81.2 4658 2100 3249 20 5.708536 73.1 86.2 77.0 81.4 40 6119 3639 4876 5.710260 73.1 86.3 81.4 0 7582 19 5180 34 6504 73.2 864 77.2 81.6 20 5-499046 6723 8135 3714 73-4 77-3 86-6 81.6 40 5.500513 8268 5.639767 5445 73.4 77:4 86.7 81.8 5.641402 50 0 5.569815 7178 73.5 77.4 86.8 81.8 20 5.571363 3038 5.718913 3450 73.6 86.9 82.0 5:644677 40 5.504921 2914 5.720651 73-7 82.1 87.0 0 6 5.506394 5.571466 5.646318 5.72239173.7 77.7 87:1 82.2 7961 20 7868 6020 4133 73.9 77.8 87.3 82.3 40 5.509345 5:649606 5878 73.9 77.9 82.4 87.4 5.651253 0 7 5.510822 5.579134 74.0 78.0 87.5 2302 20 5:580694 2902 5.729374 74-1 78-1 82.6 87.6 3783 4553 40 2256 74.2 78.2 82.7 87.7 38 0 5266 23 3819 2880 74.3 82.8 87.8 6751 5385 7862 20 4636 74.3 78.4 82.9 88.0 5.518237 5.586952 5.659520 5.736395 40 78:5 83.0 74.4 88-1 0 9 5.519725 5.588521 5:661179 5.738156 74.5 78:G 83.1 88.2 20 5.521215 5.590092 2841 5.739920 74.6 78.7 83-2 88.3 2706 4505 40 1665 5.741686 74.7 78.8 83.3 88.4 4199 3240 40 6171 0 3454 74.8 78.9 83.5 88.6 20 5694 4817 7840 74.9 79.0 83.5 88.7 6396 5:669510 40 7191 74.9 79.0 88.8 83.7 O 11 5-528689 5.671183 5.748774 75.0 79.2 83.7 88.9 5-530189 5.599559 2857 5.750552 20 75.1 79.3 83.9 89.1 40 1691 5.601144 5.674534 75.2 79.3 84.0 89.2 12 5.533195 5.676213 0 5.602730 5.754116 75.3 79.5 89.3 84-1 20 4700 4319 5901 75.4 79.5 84.2 89.4 40 6207 5909 7689 75.5 79.6 89.6 84.3 7502 5.681264 0 5:759480 79.8 84.4 89.7 5.539226 5.609096 2951 5.761273 20 75.7 79.8 84.5 89.8 40 5.540739 5.610692 4641 3068 75.7 79.9 84.7 0 2253 2290 59 4866 14 80.1 75.8 84.7 90.0 20 3769 3891 8028 75.9 80.1 84.9 90-2 40 5.545287 5.615493 5.768469 80.2 85.0 0 15 5 546806 30 5.617097 45 5.691424 60 5.770275

Tafel zur Berechnung der wahren Anomalie, wenn sie sich 180° nähert.

$$\sin w = \sqrt[3]{\frac{200}{M}}; \quad v = w + \delta$$

70	8	Diff.	70	8	Diff.	w	8	Diff.	20	8	Diff
155° 0'	3' 23"-09	211.95	159°0'	1' 25" 10	10.67	163°04	0' 29"-62	00.70	167° 0'	0' 7"-75	0".4
5	19.74	3.31	5	23.43	1.65	5	28.90	0.70	10	7.27	0.46
10	16.43	3.26	10	21.78	1.62	10	28.20	0.69	20	6.81	0.44
15	13.17	3.22	15	20.16	1.59	15	27:51	0.68	30	6.37	0:41
20	9.95	3.18	20	18:57	1:57	20	26.83	0.67	40	5.96	0.35
25	6.77	3.14	25	17:00	1.55	25	26.16	0.65	50	5.57	0.3
30	3.63	3.09	30	15.45	1.52	30	25.51	0.63	168 0	0 5.20	0.30
35	3 0.54		35	13.93	1.49	35	24.88		10	4.84	0.3
40	2 57:49	3·05 3·01	40	12.44	1.47	40	24.25	0.63	20	4:51	0.3
45	54.48		45	10.97	1.44	45	23.64		30	4.20	0.30
50	51.51	2.97	50	9.53		50	23.04	0.60	40	3.90	0.28
55	48:58	2.93	55	8:10	1.43	55	22.45	0.59	50	3.62	0.28
		2.89			1.40			0.57			0.56
156 - 0	2 45.69	2.85	160 0	1 6.70	1.37		0 21.88	0.57	169 0	0 3.36	0.25
5	42.84	2.81	5	5.33	1.36	5	21.31	0.55	10	3.11	0.25
10	40.03	2.77	10	3.97	1.33	10	20.76	0.54	20	2.88	0.22
15	37.26	2.73	15	2.64	1.31	15	20.22	0.53	30	2.66	0.20
20	34.53	2.70	20	1.33	1.29	20	19.69	0.51	40	2.46	0.15
25	31.83	2.66	25	1 0.04	1.26	25	19.18	0.51	50	2.27	0.18
30	29.17	2.62	30	0 58.78	1.24	30	18.67	0.50	170 0	0 2.09	0.1
35	26.55	2.58	35	57:54	1.23	35	18.17	0.48	10	1.92	0.10
40	23.97	2.54	40	56.31	1.20	40	17.69	0.48	20	1.76	0.1
45	21.43	2.51	45	55.11	1.18	4.5	17.21	0.46	30	1.62	0.14
50	18.92	2.48	50	53.93	1.16	50	16.75	0.46	40	1.48	0-13
55	16:44		55	52.77		55	16.29		50	1.35	
		2.44		0 *1 00	1.14		A	0.44		0.4.30	0.15
57 0	2 14.00	2.41	161 0	0 51.63	1.13	165 0	0 15.85	0.44	171 0	0 1.23	0.11
5	11.59	2.37	5	50.50	1.10	5	15:41	0.43	10	1.12	0.16
10	9.22	2.33	10	49-40	1.08	10	14.98	0.41	20	1.02	0.05
15	6.89	2.31	15	48.32	1.06	15	14:57	0.41	30	0.93	0.08
20	4:58	2.27	20	47:26	1.05	20	14.16	0.40	40	0.84	0.08
25	2.31	2.23	25	46.21	1.02	25	13.76	0.38	50	0.76	0.08
30	2 0.08	2.19	30	45.19	1.01	30	13.38	0.38	172 0	0 0.68	0.0
35	1 57.89	2.17	35	44.18	0.99	35	13.00	0.37	10	0.61	0.0
40	55.72	2.15	40	43.19	0.97	40	12.63	0.37	20	0.55	0.0
45	53.57	2.11	45	42.22	0.96	45	12.26	0.35	30	0.49	0.05
50	51.46	2.07	50	41.26	0.93	50	11.91	0.35	40	0.44	0.0;
55	49.39	2.04	55	40.33	0.92	55	11.56	0.34	50	0.39	0.0
158 0	1 47:35		162 0	0 39.41		166 0	0 11.22		173 0	0 0.35	
5	45.84	2.01	5	38:51	0.90	5	10.89	0.33	10	0.31	0.0
10	43.35	1.99	10	37.62	0.89	10	10.57	0.32	20	0.27	0.0
15	41.39	1.96	15	36.75	0.87	15	10.26	0.31	30	0.24	0.0
20	39.47	1.92	20	35.90	0.85	20	9.95	0.31	40	0.21	0.03
25	37.57	1.90	25	35.06	0.84	25	9.65	0.30	50	0.19	0.03
30	35.70	1.87	30	34.24	0.82	30	9.36	0.29	174 0	0 0 16	0.03
	33.87	1.83	35	33.43	0.81	35	9.08	0.28	175 0	0 0 0 7	
35		1.81			0.79	40	8.80	0.28	176 0	0 0.02	
40	32.06	1.78	40	32·64 31·86	0.78	45	8.53	0.27	177 0	0 0 0 0 1	
45	30.28	1.76	45		0.76			0.27	16		
50	28.52	1.72	50	31.10	0.75	50	8.26	0.26	178 0 179 0	0.000	-
55	26.80	1.70	55	30.35	0.73	55	8.00	0.25	179 0	0.000	İ
	1 25.10	1 10	168 0	0 29.62	0 10	167 0	0 7.75	0 20	180 0	0 0.00	

111 Zeep, Google

Tafel II.

ENCKE'S Tafel zur Auflösung der Lambert'schen Gleichung. Vergl. Bd. I, pag. 504, 557.

η	log u	η	logu	Diff.	η	log µ	Diff.	η	log µ	Diff.
0.000	0	0.050	453	10	0.100	1815	07	0.150	4099	55
0.001	0	0.051	471	18	0.101	1852	37	0.151	4154	
0.002	1	0.052	490	19	0.102	1889	37	0.152	4209	55
0.003	2	0.053	509	19	0.103	1926	37	0.153	4265	56
0.004	3	0.054	528	19	0.104	1964	38	0.154	4322	57
0.005	4	0.055	548	20	0.105	2002	38	0.155	4378	56
0.006	6	0.056	568	20	0.106	2040	38	0.156	4435	57
0.007	9	0.057	589	21	0.107	2079	39	0.157	4493	58
0.008	12	0.058	610	21	0.108	2118	39	0.158	4551	58
0.009	15	0.059	631	21	0.109	2118	40	0.159	4609	58
0.000	10	() (A)	(101	21	0 103	2100	40	0 1.93	4003	58
0.010	18	0.060	652	22	0.110	2198	40	0.160	4667	59
0.011	22	0.061	674	23	0.111	2238	41	0.161	4726	60
0.012	26	0.062	697	22	0.112	2279		0.162	4786	60
0.013	31	0.063	719	23	0.113	2320	41	0.163	4846	60
0.014	35	0.064	742		0.114	2361	41	0.164	4906	
0.015	41	0.065	766	24	0.115	2403	42	0.165	4966	60
0.016	46	0.066	790	24	0.116	2445	42	0.166	5027	61
0.017	52	0.067	814	24	0.117	2487	42	0.167	5088	61
0.018	59	0.068	838	24	0.118	2530	43	0.168	5150	62
0.019	65	0.069	863	25	0.118	2573	43	0.169	1	62
0.01.7	0.5	0.003	000	25	0119	20 (3	44	0.109	5212	62
0.050	72	0.070	888	26	0.120	2617	44	0.170	5274	63
0.021	80	0.071	914	26	0.121	2661	44	0.171	5337	63
0.022	88	0.072	940	26	0.122	2705	45	0.172	5400	64
0.023	96	0.073	966	27	0.123	2750		0.173	5464	64
0.024	104	0.074	993	27	0.124	2795	45	0.174	5528	
0.025	113	0.075	1020		0.125	2840	45	0.175	5592	64
0.026	122	0.076	1047	27	0.126	2886	46	0.176	5657	65
0.027	132	0.077	1075	28	0.127	2933	47	0.177	5722	65
0.028	142	0.078	1103	28	0.128	2979	46	0.178	5787	65
0.029	152	0.079	1132	29	0.129	3026	47	0.179	5853	66
		0.010	1102	29	0 120	170.20	48	0113	3000	66
0.030	163	0.080	1161	29	0.130	3074	47	0.180	5919	67
0.031	174	0.081	1190	29	0.131	3121	48	0.181	5986	67
0.032	185	0.082	1219	30	0.132	3169	49	0.182	6053	67
0.033	197	0.083	1249	31	0.133	3218	49	0.183	6120	68
0.034	209	0.084	1280	31	0.134	3267	49	0.184	6188	
0.035	222	0.085	1311	31	0.135	3316		0.185	6256	68
0.036	235	0.086	1342	31	0.136	3365	49	0.186	6324	68
0.037	248	0.087	1373		0.137	3415	50	0.187	6393	69
0.038	262	0.088	1405	32	0.138	3466	51	0.188	6463	70
0.039	275	0.089	1437	32	0.139	3516	50	0.189	6532	69
				33			51			70
0.040	290	0.090	1470	32	0.140	3567	52	0.190	6602	71
0.041	304	0.091	1502	33	0.141	3619	52	0.191	6673	71
0.042	320	0.092	1535	34	0.142	3671	52	0.192	6744	71
0.043	335	0.093	1569	34	0.143	3723	52	0.193	6815	72
0.044	351	0.094	1603	35	0.144	3775	53	0.194	6887	72
0.045	367	0.095	1638	35	0.145	3828	54	0.195	6959	
0.046	383	0.096	1673	35	0.146	3882		0.196	7031	72
0.047	400	0.097	1708	35	0.147	3935	53	0.197	7104	73
0.048	417	0.098	1743		0.148	3989	54	0.198	7177	73
0.049	435	0.099	1779	36	0.149	4044	55	0.199	7250	73
	1			36	1	100	55		1200	74
0.050	453	0.100	1815		0.150	4099		0.200	7324	

η	log µ	Diff.	η	log p.	Diff.	7	log µ	Diff.	7,	log µ	Diff.
200	7324		0.250	11522	2000	0.300	16733		0.350	23010	
201	7399	75	0.251	11617	95	0.301	16848	115	0.351	23147	137
202	7473	74	0.252	11711	94	0.302	16963	115	0.352		137
203	7548	7.5	0.253	11806	95	0.303	17079	116		23284	138
204	7624	76	0.254	11901	95			116	0.353	23422	138
205	7700	76			96	0.304	17195	117	0.354	23560	139
		76	0.255	11997	96	0.305	17312	117	0.355	23699	139
206	7776	77	0.256	12093	97	0.306	17429	117	0.356	23838	139
207	7853	77	0.257	12190	97	0.307	17546	118	0.357	23977	140
208	7930	77	0.258	12287	97	0.308	17664	119	0.358	24117	141
209	8007	78	0.259	12384		0.309	17783		0.359	24258	
210	8085	78	0.260	12482	98	0.310	17901	118	0.360	24399	141
211	8163		0.261	12580	98	0.311	18020	119	0.361	24540	141
212	8242	79	0.262	12679	99	0.312	18140	120	0.362		142
213	8321	79	0.263	12778	99	0.313		120		24682	142
214	8400	79	0.264	12877	99		18260	121	0.363	21824	143
215	8480	80			100	0.314	18381	121	0.364	24967	143
		80	0.265	12977	100	0.315	18502	121	0.365	25110	144
216	8560	81	0.266	13077	101	0.316	18623	122	0.366	25254	144
217	8641	81	0.267	13178	101	0.317	18745	122	0.367	25398	145
218	8722	81	0.268	13279	101	0.318	18867	122	0.368	25543	
219	8803	82	0.269	13380		0.319	18989		0.369	25688	145
220	8885	100	0.270	13482	102	0.320	19112	123	0.000	20001	146
221	8967	82	0.271	13585	103		1	124	0.370	25834	146
222	9049	82			103	0.321	19236	124	0.371	25980	146
		83	0.272	13688	103	0.322	19360	124	0.372	26126	147
223	9132	84	0.273	13791	103	0.323	19484	125	0.373	26273	148
224	9216	84	0.274	13894	104	0.324	19609	125	0.374	26421	147
225	9300	84	0.275	13998	105	0.325	19734	126	0.375	26568	
226	9384	84	0.276	14103	104	0.326	19860	126	0.376	26717	149
227	9468	85	0.277	14207	106	0.327	19986		0.377	26866	149
228	9553	85	0.278	14313	105	0.328	20113	127	0.378	27015	149
29	9638		0.279	14418		0.329	20240	127	0.379	27165	150
19/1	0701	86	71 200		106			127			150
230	9724	86	0.280	14524	107	0.330	20367	128	0.380	27315	
231	9810	87	0.281	14631	107	0.331	20495	129	0.381	27466	151
232	9897	87	0.282	14738	107	0.332	20624	128	0.382	27617	151
233	9984	87	0.283	14845	108	0.333	20752	130	0.383	27769	152
234	10071	88	0.284	14953	108	0.334	20882		0.384	27921	152
235	10159	88	0.285	15061	108	0.335	21011	129	0.385	28073	152
236	10247	88	0.286	15169		0.336	21141	130	0.386	28226	153
237	10335		0.287	15278	109	0.337	21272	131	0.387	28380	154
238	10424	89	0.288	15387	109	0.338	21403	131	0.388	28534	154
239	10513	89	0.289	15497	110	0.339	21534	131	0.389		155
		90			111			132	0.999	28689	
240	10603	90	0.590	15608	110	0.340	21666	132	0.390	28844	155
241	10693	91	0.291	15718	111	0.341	21798	133	0.391	28999	155
242	10784	91	0.292	15829	112	0.342	21931		0.392	29155	156
243	10875	91	0.293	15941		0.343	22064	133	0.393	29311	156
244	10966	92	0.294	16053	112	0.344	22198	134	0.394	29468	157
245	11058		0.295	16165	112	0:345	22333	135	0.395	29626	158
246	11150	92	0.296	16278	113	0.346	22467	134			158
247	11242	92	0.297	16391	113	N.		135	0.396	29784	158
248	11335	93	0.291		114	0.347	22602	136	0.397	29942	159
249	11429	94	0.298	16505	114	0.348	22738	136	0.398	30101	159
	11423	0.2	0.233	16619	114	0:349	22874	136	0.399	30260	160
250		93	1								

Tafel zur Auflösung der Lambert'schen Gleichung. log μ in Einheiten der 7. Decimale.

η	log μ	Diff.	η	log µ	Diff.	η	log µ	Diff.	7)	logu	Dif
):400	30420	160	0.430	35445	176	0.460	40932	191	0.490	46906	20
0401	30580	161	0.431	35621	176	0.461	41123	192	0.491	47113	20
-402	30741	162	0.432	35797	176	0.462	41315	192	0.492	47322	20
1403	30903	161	0.433	35973	177	0.463	41507	193	0.493	47531	20
-404	31064	162	0.434	36150	177	0.464	41700	193	0.494	47740	2
405	31226		0.435	36327	178	0.465	41893	194	0.495	47950	2
406	31389	163	0.436	36505	178	0:466	42087	194	0.496	48161	2
407	31552	163	0.437	36683	179	0.467	42281	195	0.497	48373	- 2
408	31716	164	0.438	36862		0.468	42476	196	0.498	48585	2
409	31881	165	0.439	37042	180	0.469	42672	136	0.499	48797	- 2
		164			180			196			2
410	32045	165	0.440	37222	180	0.470	42868	196	0.50	49010	21
411	32210	166	0.441	37402	181	0.471	43064	197	0.51	51173	22
412	32376	166	0.442	37583	182	0.472	43261	198	0.52	53397	22
413	32542	167	0.443	37765	182	0.473	43459	198	0.53	55681	23
414	32709	168	0.444	37947	183	0:474	43657	199	0.54	58029	24
415	32877	168	0.445	38130	183	0:475	43856	199	0.55	60441	24
416	33045	168	0.446	38313	183	0.476	44055	200	0:56	62919	25
417	33213	168	0.447	38496	184	0.477	44255	201	0.57	65464	26
418	33381	169	0.448	38680	185	0.478	44456	201	0.58	68079	26
419	33550	100	0.449	38865	100	0.479	44657		0.59	70765	
		170			185			201			27
420	33720	170	0.450	39050	186	0.480	44858	202	0.60	73525	28
421	33890	171	0.451	39236	186	0.481	45060	203	0.61	76361	29
422	34061	171	0.452	39422	187	0.482	45263	204	0.62	79274	29
123	34232	172	0.453	39609	188	0.483	45467	204	0.63	82268	30
424	31404	172	0.454	39797	188	0.484	45671	204	0.64	85345	31
425	34576	173	0.455	39985	188	0.485	45875	205	0.65	88508	32
426	34749	174	0:456	40173	189	0.486	46080	205	0:66	91759	33
427	34923	174	0.457	40362	189	0.487	46285	206	0.67	95103	34
428	35097	174	0:458	40551	190	0.488	46491	207	0.68	98542	35
129	35271		0.459	40741		0.489	46698		0.69	102081	
		174			191			208			36
430	35445		0.460	-40932		0.490	46906		0.70	105723	

Wenn

$$(r_1 + r_3 + s_2)^{\frac{1}{2}} - (r_1 + r_3 - s_2)^{\frac{3}{2}} = 6 \, \dot{\kappa} (T_3 - T_1),$$

so wird, indem man setzt

$$\tau_2 = 2 k (T_3 - T_1)$$

und berechnet

$$\eta = \frac{\tau_2}{(r_1 + r_3)^{\frac{3}{2}}}$$

und mit diesem Werth von n aus vorstehender Tasel log u entnimmt

$$s_2 = \frac{\mu \cdot \tau_2}{(r_1 + r_3)^{\frac{1}{2}}}.$$

Tafel III.

Taseln zur Berechnung der Parallaxe sür Cometen- und Planetenbeobachtungen nach Hansen.

$$\begin{split} p_a &= a - a' = \frac{\pi \rho \cos \varphi' \sin t}{\Delta \cos \delta} \\ p_b &= \delta - \delta' = \frac{1}{\Delta} \left(- \pi \rho \cos \varphi' \cos t \sin \delta + \pi \rho \sin \varphi' \cos \delta \right). \end{split}$$

Die Tafel giebt mit dem Argument Stundenwinkel / für die bekanntesten

$$T_a = \pi \rho \cos \phi' \sin t$$

$$T_{\delta} = -\pi \rho \cos \varphi' \cos t$$

und unter dem Ortsnamen den Logarithmus von

$$T_{\delta}' = \pi \rho \sin \varphi'.$$

Dann ist

$$p_{\alpha} = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 $p_{\delta} = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}^{\dagger} \cos \delta).$

Die Sonnenparallaxe π ist su 8"-80 angenommen.

(Vergl. Bd. I, pag. 466, wo statt der hiesigen Bezeichnungen für

gesetzt sind

$$\rho$$
, ℓ , Δ , T_{α} , T_{δ} , T_{δ}

$$[\rho], \; \theta - \alpha, \; \rho, \; A, \; D_1, \; D_2.$$

	Argu	ment	Alba	пy	Algi	er	Allegi	eny	Alteni	ourg	Ann A	трог	Arco	tri			umen Te	t
	+	- 1	0.77	33	0.71	.89	0.75	44	0.85	328	0.77	01	0.78	22	1	_	7	_
04	()111	12h Om	0"-00	28	044-00	31	00.00	30	04-00	94	0"00	29	04-00	28	64	() <i>m</i>		
	10	11 50	0.58	29	0.31	31	0.30	29	0.24	21	0.29	28	0.28	28	5	50		10
	20	40	0.57	28	0.62	30	0.59	28	0.48	2.1	0.57	29	0.56	27	1	(40)		20
	30	30	0.85	27	0.92	30	0.87	29	0.72	23	0.86	27	0.83	27		30		31
	40	20	1.12	28	1.22	31	1.16	29	0.95	24	1.13	28	1.10	28		20		40
	50	10	1:40	28	1.53	91	1:45	2.7	1.19	2.4	1:41	20	1.38	20		10		50
				28		30		29		24		28		27				
1	0	11 0	1:68	27	1.83	29	1:74	28	1.43	23	1.69	27	1.65	26	5	0	7	(
	10	10 50	1.95	27	2.12	30	2.02	28	1.66	23	1.96	27	1.91	27	4	50		11
	20	40	2.22	26	2.42	28	2:30	27	1.89	23	2.23	27	2.18	26		40		21
	30	30	2:48	_	2.70	28	2.57	26	2.12	22	2.50	26	2.44	25		30		3
	40	20	2.73	25	2.98		2.83	_	2:34		2.76		2.69			20		40
	50	10	2.99	26	3.26	28	3.09	26	2.55	21	3.01	25	2.94	25		10		.H
	(),	10	- (25		27		26		21		25		24				
	0	10 0	3.24		3.53	26	3.35	24	2.76	20	3.26		3.18	24	4	0	S	(
	10	9 50	3.18	24	3.79	26	3:59	24	2:96	21	3:51	25	3:42	23	3	50		16
	20	40	3.72	24	4.05	-	3.83		3:17		3.75	24	3.65	23		40		2
	30	30	3.95	23	4:30	25	4:07	21	3.36	19	3.98	23	3.88	-		30		34
	40	20	4.17	22	4:54	24	4:30	23	3.55	19	4.20	22	4:10	22		20		41
	50	10	4.38	21	4.77	23	4.52	22	3.73	18	4:41	21	4.31	21	9	10		5
	.,,,,	10	4 ()	20		22	1.7-	22		18	1	20	1	19				
3	O	9 0	4:58	19	4.99	21	4.74	20	3.91	16	4:61	20	4:50	19	3	0	9	(
	10	8 50	4.77	19	5:20	21	4.94	20	1.07	16	4.81	18	1.69	18	2	50		1
	20	10	4:96	18	5:41	19	5:14	18	4.23	16	4.99	18	4.87	18		40		2
	30	30	5.14	17	5:60	19	5.32	17	4:39	13	5:17		5.05	16		30		3
	40	20	5:31		5.79	17	5:49	16	1.52	13	5.34	17	521	16		20		4
	50	10	5:46	15	5.96	1 4	5.65	10	4.65	10	5:50	16	5.37	10		10		5
				15		16		16		13		15		14				
1	0	8 0	5:61	14	6:12	1.1	5.81	14	1.78	12	5:65	1.1	5.21	14	2		10	-
	10	7 50	5.75	12	6:26	13	5:95	13	1.90	10	5.79	14	5.65	12	1	50		ŀ
	20	40	5.87	12	6.39	13	6.08	11	5:00	10	5:91	12	5.77	11		40		2
	30	30	5.99	10	6:52	11	6.19	11	5:10	9	6:02	11	5.88	10	}	30		3
	40	20	6.09		6.63		6:30	9	5.19	8	6.13	11	5.98	9	1	20		4
	50	10	6:17	8	6.73	10	6.39	9	5:27	0	6.21	8	6.07	.,	ð.	10		3
	0.,			8		9		8		G		8		-8				
5	0	7 0	6.25	7	6.82	7	6:47	7	5.33	6	6:29		6.15	G	1	0	11	1
	10	6 50	6:32	6	6.89	6	6:54	6	5.39	5	6:36	7	6.21	5	0	50	1	1
	20	40	6.38		6-95	5	6:60	5	5.44	4	6:42	6	6.26	5		40	!	2
	30	30	6:12	4	7:00		6:65		5:48	2	6.46	4	6:31	3		30		3
	40	20	6:15	3	7:03	3	6.68	3	5:50	2	649	3	6.34		1	20		4
	50	10	6:47	2	7:05	2	6.69	1	5:52	2	6.51	2	6.35	1		10		5
	.,,,	***		1	1	1		1		0		1		1				
6	0	6 0	6.48		7:06		6.70		5.52		6.52		6.36		0	0	12	

Wenn $t>12^k$ sind T_a und T_b mit dem Argument $t=12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}' \cos \delta)$.

	Argu für	ment /	Areq	uipa	Arma	gh	Ath	en	Baml	berg	Berl	lin	Besan	gon		Arg	ume 75	
	-		0.397	77 _n	0.85	25	0.73	312	0.82	260	0.84	120	0.80	83			1 -	+
()4	()///	124 Om	04-00	97	0"00) .)2	04-00	30	0,00	1.95	0"-00) -) 1	0.400	36	64	()en	6/	4 ().
	10	11 50	0.37	36	0.53	22	0.30	31	0.25	25	0.24	23	0.26	26	5	50		10
	20	40	0.73	37	0:45	22	0.61	30	0:50	25	0.47	23	0.52	26	9	40		20
	30	30	1:10	37	0.67	22	0.91	29	0.79	24	0.70	23	0.78	26	1	30		30
	40	20	1:47	36	0.89	22	1.20	30	()-99	23	0.93	23	1:04	26		20		40
	50	10	1.83	36	1.11	22	1.50	30	1.22		1:16	23	1.30	25		10		50
	73	11 0	2.19	30	1:33		1.80		1.46	24	1.39		1:55		5	0	7	0
1		11 0 10 50	-	35		21	2.09	29		24	1:61	5.5		25	1	50		10
	10		2.54	35	1.54	22	2.38	29	1:70	24		23	2:05	25	*	40	1	20
	20	40	2.89	34	1.76	21		28		23	1.84	22		24		30		30
	30	30	3.23	34	1.97	20	2.66	27	2.17	23	2.06	21	2.29	24				40
	40	20	3.57	33	2.17	20	2.93	27	2:40	22	2:27	21	2.53	23	Į.	20		
	50	10	3.90	32	2:37	20	3.20	27	2.62	21	2.48	20	2.76	23		10		50
-)	0	10 0	4.22	32	2:57	19	3.47	.10	2.83	22	2.68	20	2.99	22	1	()	8	0
	10	9 50	4:54	30	2.76	18	3.73	26	3.05		2.88	20	3.21	22	3	50		10
	20	40	1.84	.,	2.94		3.98	25	3.26	21	3.08	-	3.43			40		20
	30	30	5.14	30	3.12	18	4.23	25	3.46	20	3.27	19	3.64	21		30		30
	40	20	5.43	29	3.30	18	4:46	23	3.65	19	3.45	18	3.85	21	1	20		40
	50	10	5.71	28	3.47	17	4.69	23	3.84	19	3.63	18	4:04	19		10		50
				26		16		22		18		17		19				
3	0	9 0	5.97	26	3.63	16	4.91	21	4.02	17	3.80	16	4.23	18	3	0	9	0
	10	8 50	623	24	3.79	15	5.15	20	4.19	17	3.96	15	1.41	17	2	50		10
	20	40	6.47	23	3.94	14	5.32	19	4.36	15	4.11	15	4:58	17	ŀ	40		20
	30	30	6.70	22	4.08	13	5.21	18	4:51	14	4.26	14	4.75	15	1	30		30
	40	20	6.92	21	4.21	13	5.69	17	4.65	13	4.40	12	4.90	15	1	20		40
	50	10	7.13	19	4.34	11	5.86	16	4.78	13	4.52	12	5.05	13		10		50
4	0	8 0	7.32	-	4.45		6.02		4.91		4.64		5:18		2	0	10	0
•	10	7 50	7:50	18	4:55	10	6:16	14	5.03	12	4.76	12	5:30	12	1	50		10
	20	40	7:66	16	4.65	10	6.29	13	5.14	11	4.86	10	5.42	12		40		20
	30	30	7.80	14	4.74	9	6:41	12	5.24	10	4.96	10	5.52	10	1	30		30
	40	20	7.94	14	4.83	9	6:52	11	5.33	9	5.04	8	5.62	10	l l	20		40
	50	10	8:06	12	4.90	7	6.62	10	541	8	5.12	8	5.70	8	ķ.	10		50
	.,,,,			10		$_{\rm G}$		8	941	7	312	6		8				-
5	()	7 0	8.16	9	4.96	5	6.70	8	5.48	6	5.18	G	5.78	6	1	()	11	0
	10	6 50	8.25	7	5:01	5	6.78	G	5.54	5	5.24	5	5.84	6	()			10
	20	40	8.32	6	5:06	3	6:84	4	5:59	4	2.53	3	540	4		40		20
	30	30	8:38	1	5:09	3	6.88	3	5:63	3	5.32	2	5.94	2		30		30
	40	20	8.42	9	5:12	1	6.91	2	5.66	.,	5:34	.)	5.96	.)	1	20	1	40
	50	10	8:41		5.13		6.93		5.68		5:36	-	5.98	_	1	10		50
		1 4		1		1		1		0		1		1	í			
6	0	6 0	8:45		5:14		6.94		5.68		5:37		5:99		0	0	12	()

Wenn $t>12^k$ sind T_i und T_b mit dem Argument $t=12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}^{\dagger} \cos \delta)$.

	Argu für		Bethle	chem	Bor	in_	Borde	aux	Bres	lau	Brüs	sel	Cambri	dge E		Argu	mei Te	
	+	-	0.75	57	0.83	313	0.79	07	0.83	37	0.83	21	0.84	03		_		+
04	0:11	124 Om	0".00	30	000	9.4	0"-00) 98	000	95	0,00	95	0"-00	24	64	Ow	64	0
	10	11 50	0.30	29	0.24	25	0.28	27	0.25	24	0.25	24	0 24	23	5	50		10
	20	40	0.59	28	0:49	24	0.55	27	0.49	24	0.49	24	0.47	23	1	40		20
	30	30	0.87	29	0.73	23	0.82	26	0.73	23	0.73	23	0.70	23		30		30
	40	20	1.16	29	0.96	24	1.08	27	0.96	24	0.96	24	0.93	24		20		40
	50	10	1.45	28	1.20	24	1.35	27	1.20	23	1.20	24	1.17	23		10		50
1	0	11 0	1.73	28	1.44	24	1.62	26	1.43	23	1.44	23	1.40	22	5	0	7	0
	10	10 50	2.01	28	1.68	23	1.88	26	1.66	23	1.67	23	1.62	23	4	50		10
	20	40	2.29	27	1.91	23	2.14	26	1.89	23	1.90	23	1.85	22		40		20
	30	30	2.56	26	2.14	22	2.40	24	2.12	22	2.13	22	2.07	22		30		30
	40	20	2.82	26	2.36	22	2.64		2.34	22	2.35	22	2.29	21		20		40
	50	10	3.08	26	2.58	21	2.88	24 24	2.56	21	2.57	21	2.50	20		10		5 0
2	0	10 0	3.34	05	2.79		3.12		2.77		2.78		2.70		4	0	8	0
	10	9 50	3.59	25 25	2.99	20	3.35	23	2.97	20	2.99	21	2.90	20	3	50		10
	20	40	3.84	23	3.20	21	3.58	23	3.17	20	3-19	20	3.10	20		40		20
	30	30	4.07	_	3.40	20	3.80	22	3.37	20	3.39	20	3.29	19		30		30
	40	20	4.30	23	3.59	19	4.02	22	3.56	19	3.58	19	3.47	18	li	20		40
	50	10	4.52	22	3.77	18	4.23	21	3.74	18	3.76	18	3.65	18	ł	10		50
3	0	9 0		21		18		19		18	-	18		17				
3			4.73	20	3.95	17	4.42	18	3.92	16	3.94	17	3.82	16	3	0	9	0
	10	8 50	4.93	19	4.12	16	4.60	18	4.08	16	4.11	16	3.98	16	2	50		10
	20	40	5.12	18	4.28	14	4.78	17	4.24	15	4.27	15	4-14	15		40		20
	30	30	5.30	18	4.42	14	4.95	17	4.39	14	4.42	14	4.29	13		30	1	30
	40	20	5.48	17	4.56	14	5.12	15	4.23	14	4.56	14	4.42	13		20	ĺ	40
	50	10	5.65	15	4.70	13	5.27	14	4.67	12	4.70	12	4.55	12		10		50
4	0	8 0	5.80	14	4.83	12	5.41	13	4.79	11	4.82	11	4.67	12	2	0	10	0
	10	7 50	5.94	13	4.95	10	5:54	13	4.90	11	4.93	11	4.79	10	1	50	ĺ	10
	20	40	6.07	11	5.05	10	5.67	11	5.01	10	5.04	10	4.89	10		40	1	20
	30	30	6.18	10	5.12	9	5.78	10	5.11	9	5.14	9	4.99	8		30		30
	40	20	6.58	9	5.24	8	5.88	9	5.20	8	5.23	8	5.07	8	li	20		40
	50	10	6.37	9	5.32	7	5.97	7	5.28	7	5.31	7	5.15	7		10		50
5	0	7 0	6:46	7	5.39	6	6.04	6	5.35	6	5.38	6	5.22	5	1	0	11	0
	10	6.50	6.53	6	5.45	5	6.10	6	5.41	4	5.44	4	5.27	5	0	50		10
	20	40	6.59	4	5:50	3	6:16	4	5.45	3	5.48	3	5.32	4		40		20
	30	30	6.63	3	5.23	3	6.20	2	5.48	3	5.51	3	5.36	2		30	1	30
	40	20	6.66	2	5.26	1	6.22	1	5.51	1	5.54	2	5.38	2		20		40
	50	10	6.68	_	5.57	-	6.23	-	5.52		5.56		5.40	-		10		50
				1		1		1		1		1		0				
6	0	6 0	6.69		5 58		6.24		5:53		5.57		5.40		0	0	12	0

Wenn $t>12^k$ sind T_z und T_b mit dem Argument $t=12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_a}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_b \sin \delta + T_b^* \cos \delta)$.

	Argu		Cambi Mai		Charl	cow	Charlotteville	Chic	ago	Christ	iania	Cincin	nati		Arge	me 78	
	+	-	0.77	709	0.82	68	0.7319	0.76	64	0.87	98	0:74	24		-	-	+
04	()m	12k ()m	0.00) 99	0"-00	25	0"'00 31	011.00	29	0,00	19	0".00	30	GA	0.00	G4	()
	10	11 50	0.29	28	0.22	25	0.31 30	0.29	29	0.19	19	0.30	30	5	50		10
	20	40	0.57	29	0.50	25	0.61 30	0.58	29	0.38	20	0.60	29		40		20
	30	30	0.86	27	0.75	24	0.91 29	0.87	28	0.58	19	0.89	29		30		30
	40	20	1.13	28	0.99	23	1.20 30	1:15	27	0.77	18	1.18	30		20		40
	50	10	1.41	27	1.22	24	1.50 30	1.42	28	0.95	19	1.48	29		10		50
1	0	11 0	1:68		1.46		1.80	1.70		1.14		1:77		5	0	7	0
•	10	10 50	1:96	28	1.70	24	2:00 29	1.98	28	1.33	19	2.06	29	4	50		10
	20	40	2.23	27	1.94	24	9.28 29	2.25	27	1.51	18	2.34	28		40		20
	30	30	2.49	26	2.17	23	2.00 28	2.52	27	1.00	18	2.62	28		30		30
	40	20	2.75	26	2.40	23	9.93 27	2.78	26	1.87	18	2.89	27		20		40
	50	10	3.00	25	2.62	22	3.20 27	3.03	25	2.04	17	3.16	27		10		50
	50	10		25	2.02	21	27	3 00	25	201	17	0.10	26		10		
2	0	10 0	3.25	25	5.83	21	3.47 26	3.28	25	2.21	17	3.42	25	4	0	8	0
	10	9 50	3.50	23	3.04	21	3.73 25	3.53	24	2.38	16	3.67	25	3	50		10
	20	40	3.73	23	3.25	20	3.48	3.77	23	2.54	15	3.92	24		40		20
	30	30	3.96	23	3.45	19	1.02	4.00	22	2.69	15	4.16	24		30		30
	40	20	4.19	21	3.64	19	1.46	4.22	21	2.84	14	4.40	22		20		40
	50	10	4.40		3.83	1.7	4.68	4.43	-	2.98		4.62			10		50
3	0	9 0	4.60	20	4.01	18	4:90	4:64	21	3.12	14	4.83	21	3	0	9	0
3		8 50	4.80	20		17	5:11 21		20	3.26	14	5.04	21	2	50	3	10
	10		1	18	4.18	17	2	4.84	19		13		20	2			20
	20	40	4.98	18	4.35	15	5.32 19	5.03	18	3.39	12	5.24	19	H	40 30		30
	30	30	5.16	17	4:50	14	5.51 18	5:21	17		11	5.43	17		20		40
	40	20	5.33	16	4.64	13	5.69 17	5.38	16	3.62	11	5.60	16				
	50	10	5:49	15	4.77	13	5·86 15	5.54	15	3.73	10	5.76	16		10		50
4	0	8 0	5.64	14	4.90	12	6.01 14	5.69	14	3.83	9	5.92	14	2	()	10	0
	10	7 50	5.78	12	5.02	11	0.15	5.83	12	3.92	9	6.06	14	1	50		10
	20	40	5.90	12	5.13	10	1:)4	5.95	11	4.01	8	6.50	12		40		20
	30	30	6.03	10	5.23	9	6.40 12	6.06	11	4.09	7	6.35	10		30		30
	40	20	6:12	9	5.32	8	6:52 10	6.17	9	4.16	6	6.42	10		20		40
	50	10	6.21	8	5.40	7	6.62	6.26	8	4.22	5	6.25	8		10		50
5	0	7 0	6.29		5:47		0.70	6:34	7	4.27		6.60	7	1	0	11	0
	10	6 50	6.35	6	5.53	6	6.77	6.41		4.32	5	6.67		0	50		10
	20	40	6:41	6	5.58	5	0.83	6.46	5	4:36	4	6.73	6		40		20
	30	30	6:45	4	5.62	4	6:87	6:50	4	4:39	3	6.78	5		30		30
	40	20	6.48	3	5.65	3	6.91	6.53	3	4:41	2	6.81	3		20		40
	50	10	6:50	2	5.67	-2	6:93	6.55	2	4:42	1	6.82	1		10		50
	.,,,			1		()	1	1	1		0		1			1	
6	()	6 0	6:51		5:67		6.94	6:56		4.42		6.83		0	()	12	0

Wenn $t>12^4$ sind T_a und T_b mit dem Argument $t=12^4$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$z = \frac{T_s}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_b \sin \delta + T_b' \cos \delta)$.

	400	i hideti	Loutoba	Dens	er	Don	oat	Dubl	ai	Düsseld	lorf		Argu für	ment	t
		11.535	noot.	0.74	73	11.57	3-1	054	71	0.83	43	-	-	+	
,	4.5	11 (1) 1	o other			~ 8	1	11 481	23	04-00	24	GA	()m	GA	()n
1.1	-1.5	41.75	11.30	- :		1.	2	1123	23	0.24	24	5	50	1	10
11	111	11 11	(10			₹.		0146	23	0:48	24	1	40		20
1.1	la i	11-11		-	-,		+0	0.69	_	0.72			30	:	30
	1,1	1 -	~	-	-		4	0.91	22	0.95	23		20		10
f c1		1.	-		*	- 1	1.0	1.13	22	1-19	24		10		50
16.9	14						11.	1 10	23	1 10	24		10	•	,,,,
4.1								1.36	22	1.43		5	θ	7	0
, .					. `	1.00	241	1.58		1.66	23		50		10
	,				`	:	19	1.80	22	1.89	23	1	40		20
					-	1 77	19	2.01	21	2.12	23	1	30		30
					-	1:95	18	2.22	21	2.34	22		20		40
					-6.	214	19	2.43	21	2.55	21	1	10.		50
					247	- 11	18	2 40	20	2.55	21		10		
				14	23	2.32	17	2.63		2.76		4	0	. 8	0
			. `	11-8	25	2.49	16	2.82	19	2.96	20	3	50		1(
				- 1		2.65	- 1	3.01	19	3.17	21		40		20
			· 1	-13	51	2.81	16	3.20	19	3.36	19		30		30
				4 36	23	2.97	16	3.38	18	3.55	19	1	20		41
				158	22	3.12	15	3.55	17	3.73	18		10		50
				1 1/2	21	012	15	0 00	17	3 13	18	i	10		·M
				1.79	21	3.27	14	3.72		3.91		3	0	9	(
				5:00		3.41		3.88	16	4.07	16	2	50		10
			2	5 20	20	3.54	13	4.03	15	4.23	16	1	40		24
		`	11	5.38	18	3.67	13	4.17	14	4.38	15		30		30
			1.10	5:56	18	3.79	12	4.31	14	4:52	14		20	1	4(
		` -	l li	5172	16	3.90	11	4.43	12	4:65	13		10		50
			17	3 12	16	0 50	11	1 10	12	4.00	13		10		- M
			4.1	5.88		4:01		4.55		4.78		2	0	10	(
			16	6:02	14	4.11	10	4.66	11	4.90	12		50	1	10
			1.1	6:15	13	4.20	9	4.76	10	5.00	10	1	40	1	20
			(3	6:26	11	4.28	8	4.85	9	5.10	10		30	i	31
			06 13	6:37	11	4:35	7	4:94	9	5:19	9		20	:	40
			1.1	6:47	10	4:41	6	5:02	8	5.27	8	ŀ	10	1	50
			. 17	11:41	8	4.41	5	0.02	6	3.24	6		10	İ	JH
			7- 16	6:55		4:46		5.08		5.33		11	()	11	(
				6.62	7	4:51	ā	5.13	5	5.39	6	0	50	1	10
			41	6.68	G	4:55	-1	5.18	5	5.44	5	6	40		20
		à l	115	6:73	5	4:58	3	5-22	4	5:48	4	1	30		34
			- 245 A		3		2		2		2)	1	20	1	40
			EE 2	6.76	1	4.60	1	5-24	1	5:50	2				
			7:51	6.77	1	4.61	1	5.25	1	5.25	O		10		5
				1	1	1,00	1	5.26	1		U	0	0	12	
			7:52	6.78		4.62		9.50		5.52		10	U	112	,

 T_k and T_k mit dem Argument $t = 12^k$ und in beiden gang tem Vorzeichen zu nehmen.

Par. in
$$\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}' \cos \delta)$$
.

		ment	Edinb	urgh	Gei	ní	George	town	Glass	ow	Glasg		Göttir	ngen		Arg		
	für -	-	0.86	10	0.80	os	0.74	02	0.80	06	0.74		0.83	63		für —	To	+
1/4	0 m	124 0 %	0"-00	1	0"-00		0":00	-	00.00		0"-00		000	-		k ()m	-	0
,	10	11 50	0.22	22	0.27	21	0.30	30	0.22	25	0.30	30	0.24	24			0,	
	20	40	0.43	21	0.53	26	0.60	30	0.43	21	0.90	30	0:48	24	9	50	-	10
	30	30		22	0.80	27		29		22		29		24		40		20
			0:65	21		26	0.89	30	0.65	21	0.89	29	0.72	23		30		30
	40 50	20	0.86	20	1.06	26	1.19	29	0.86	21	1.18	30	0.95	24		20		40
	.00	10	1.06	21	1.32	26	1.48	29	1.07	21	1:48	29	1.19	23		10		50
1	0	11 0	1.27	21	1.58	25	1.77	29	1.28	21	1.77	29	1:42	23	5	0	7	0
	10	10 50	1.48	21	1.83		2.06	29	1.49	20	2.06		1.65		4			10
	20	40	1.69		2.09	26	2.35		1.69		2.34	28	1.88	23	*	40	1	20
	30	30	1.89	20	2.34	25	2.63	28	1.89	20	2.62	28	2.10	22		30		30
	40	20	2.09	20	2:58	24	2.90	27	2.09	20	2.89	27	2.32	22		20		40
	50	10	2.28	19	2.81	23	3:16	26	2.29	20	3.15	26	2.54	22		10	1	50
				19		24		26	"	19	0 10	26	2 04	20		10		JU
2	0	10 0	2.47	18	3.05	23	3.42	26	2.48	18	3.41	25	2.74	20	4	0	8	-0
	10	9 50	2.65	18	3.58	2.2	3.68	25	2.66	17	3.66	25	2.94	20	3	50		10
	20	40	2.83	17	3.20	21	3.93	24	2.83	18	3.91	24	3.14	20		40		20
	30	30	3.00	17	3.71	21	4.17	24	3.01	17	4.15	24	3.34	19		30		30
	40	20	3.17	16	3.92	20	4.41	22	3.18	16	4.39	22	3.53	18		20		40
	50	10	3.33	10	4.12		4.63	22	3.34	10	4.61	22	3.71	10	ľ	10		50
3	0	9 0	3.49	16	4.32	20	100	22	0.70	16		21		17				
0	0			15	4.50	18	4.85	20	3.50	15	4.82	21	3.88	17	3	0	9	()
	10	8 50	3.64	14		17	5.05	20	3.05	14	5.03	20	4.05	16	5	50		10
	20	40	3.78	14	4.67	17	5.25	19	3.79	14	5.23	19	4.21	15		40		20
	30	30	3.92	13	4.84	16	5:44	18	3.93	13	5.42	17	4.36	13		30		30
	40	20	4.05	12	5.00	14	5.62	17	4.06	12	5.29	16	4.49	13		20	1	40
	50	10	4.17	11	5.14	14	5.79	15	4.18	11	5.75	16	4.62	13		10		50
4	0	8 0	4.28		5.28		5.94		4-29		5.91		4.75		2	0	10	.0
	10	7.50	4.38	10	5:41	13	6.08	14	4:39	10	6.05	14	4.87	12	ī		10	10
	20	40	4.47	9	5:53	12	6:21	13	4.48	9	6.18	13	4.97	10	9 .	40		20
	30	30	4.56	9	5.64	11	6.33	12	4.57	9	6.30	12	5.06	9	1	30		30
	40	20	4.64	8	5.73	9	6.44	11	4.65	8	6.41	11	5.15	9		20		40
	50	10	4.71	7	5.82	9	6.54	10	4.72	7	6:51	10	5.23	8	ì	10		50
				6		7		8		5	001	8	0.0	7	1	10		.,,,,
5	0	7 0	4.77	5	5.89	7	6.62	7	4.77	5	6.59	7	5.30		1	()	11	0
	10	6 50	4.82	4	5.96	5	6:69	6	4.82	5	6.66	6	5.36	6	0	50	-	10
	20	40	4.86	3	6.01	4	6.75	5	4.87		6.72	5	5.40	4		40		20
	30	30	4.89	2	6:05	3	6.80		4.91	4	6.77		5.43	3	}	30	1	30
	40	20	4.91	1	6:08	9	6.83	3	4.93	- 1	6.80	3	5.46	3		20		40
	50	10	4.92	1	6.10	2	6.85	2	4.94	1	6.81	1	5.48	2	}	10		50
				1		0		1		0		1	, .0	1				.,
6	0	6 0	4.93		6:10		6.86		4.94		6.82		5:49		0	0	12	0

Wenn $t>12^k$ sind T_v und T_t mit dem Argument $t=12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}' \cos \delta)$.

		ment	Green	wich	Ham	burg	Heide	berg	Helsin	gfors	Jen	a	Kalo	çsa			umer	
	für -		0.83	359	0.84	180	0.8:	229	0.88	310	0.83	24	0.80	32		für	78	+
)-i		124 Om	0"-00		0 '00		0"-00		0,.00		0.400		00.00		GA	()·N	-	0
,	10	11 50	0:24	24	0.23	23	0.25	2.5	0.19	19	0.25	25	0.27	21		50	-	10
	20	40	0.48	24	0.46	23	0.50	25	0.38	19	0.49	24	0.53	26	1	40		20
	30	30	0.72	24	0.69	23	0.75	25	0.58	20	0.73	24	0.80	27		30		30
	40	20	0.95	23	0:91	22	0.99	24	0.77	19	0.96	23	1.06	26		20		40
	50	10	1.18	23		22	1.24	25	0.95	18	1.20	24	1.31	25		10	1	50
	90	10	1 10	24	1.13	20	1 24	24	0.55	18	1.20	24	1 01	26	1	10		00
1	0	11 0	1:42	23	1:35	99	1:48	24	1.13	19	1.44	23	1.57	25	5	0	7	0
	10	10 50	1:65	_	1:57		1.72	24	1.32		1.67	-	1.82	26	4	50	i	10
	20	40	1.88	23	1.79	22	1.96	24	1.50	18	1.90	23	2.08			40		20
	30	30	2.10	20	2.01	22	2-20	23	1.68	18	2.13	23	2.33	25		30		30
	40	20	2:32	22	2.22	21	2.43	23	1.85	17	2.35	22	2:57	24	i	20	1	40
	50	10	2.54	22	2.42	20	2.65	22	2.03	18	2.57	22	2.80	23		10		50
				21	2 42	20	- 00	21	1	17		21		23	ļ			
2	0	10 0	2.75	20	2.62	10	2.86	22	2.20	16	2.78	20	3.03	23	4	0	, 8	0
	10	9 50	2.95	20	2.81	19	3.08	21	2.36	16	2.98	20	3.26	20	3	50	1	10
	20	40	3.15	19	3:00	19	3.29	20	2.52	15	3.18	20	3.48	21		40		20
	30	30	3.34	19	3.19	19	3:49	-	2.67		3.38	19	3.69	21		30	1	30
	40	20	3.53	18	3.37	18	3.69	20	2.82	15	3.57	18	3.90	20		20		40
	50	10	3.71	10	3.54	17	3.88	19	2.96	14	3.75	10	4.10	20		10	ì	50
				17	-	17		18		14		18		19				
3	0	9 0	3.88	17	3.71	16	4.06	17	3.10	13	3.53	17	4.29	18	3	0	9	0
	10	8 50	4.05	16	3.87	15	4.53	17	3.23	13	4.10	16	4.47	17	2	50		10
	20	40	4.51	1.5	4.02	14	4.40	15	3.36	12	4.26	15	4.64	17	1	40	1	20
	30	30	4.36	14	4.16	1-4	4.55	15	3.48	12	4.41	14	4.81	16		30	1	30
	40	20	4.50	13	4.30	12	4.70	14	3.60	11	4.22	14	4.97	15	l	20	1	40
	50	10	4.63		4.42		4.84		3.71		4.69		5.15			10		50
				12		11		13		9		12		13			10	0
1	0	8 0 7 50	4.75	12	4:53	11	4.97	12	3.80	9	4.81	11	5.25	13	2	50	10	10
	10		4.87	10	4.64	11	5.09	11	3.89	9	4.92	11	5.38	12	1		ł.,	
	20	40	4.97	10	4.75	9	5.20	10	3.98	8	5.03	10	5:50	11	1	40		20 30
	40	30	5.07	9	4.84	S	5.30	9	4.06	7	5.13	- 9	5.61	9	1	30		
		20	5.16	8	4.92	7	5.39	8	4.13	G	5.22	8	5.70	8		20		40
	50	10	5.24	G	4.99	7	5.47	7	4.19	5	5:30	6	5.78	8		10		50
,	0	7 0	5.30		5.06		5:54		4.24		5.36		5.86	-	1	0	11	0
	10	6 50	5.36	G	5.11	5	5:60	6	4.29	5	5.42	6	5.93	7	10	50		10
	20	40	5:41	5	5.16	5	5.65	5	4.33	4	5.47	5	5.98	5		40		20
	30	30	5:44	3	5.19	3	5.69	4	4:36	3	5:50	3	6.02	4		30	1	30
	40	20	5.47	3	5-9-9	3	5.72	3	4:38	2	5.53	3	6:01	2		20	П	40
	50	10	5:49	-2	5-23	1	5.74	2	4:39	- 1	5.55	2	6.06	5	1	10		50
				0	., 20	1	9 12	0	1 000	0	,, 0,,	1		1			î.	.,,,,
;	0	6 0	5.49		5:24		5:74		4:39		5:56		6.07		0	0	112	0

Wenn $t>12^4$ sind T_2 und T_2 mit dem Argument $t-12^4$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}' \cos \delta)$.

		ment T _a	Kaps	tadt	Karls	ruhe	Kas	an	Ki	cl	Konig	sberg	Kopen	hagen		Arg	TE	
	-	_	0.68	89 _n	0.83	203	0.86	601	0.83	524	0.85	44	0.85	96			-	+
04	0	124 Om	000	32	0":00	26	0 '0) 22	0"00	23	04-00) ,,,	000	22	6	k ()m	64	0
	10	11 50	0.32	32	0.26	25	0.22	22	0.23	23	0.22	23	0.22	22	5	50		10
	20	40	0.64	31	0.51	25	0.44	21	0.46	22	0.45	22	0.44	22		40		20
	30	30	0.95	32	0.76	24	0.65	21	0.68	21	0.67	21	0.66	21	ì	30		30
	40	20	1.27	31	1.00	25	0.86		0.89		0.88		0.87	20		20		40
	50	10	1.58	31	1.25	20	1.07	21	1.11	22	1.10	22	1.07	20		10		50
			1	31		24		21		22		22		21	1			
1	0	11 0	1.89	31	1.49	24	1.28	21	1.33	22	1.32	21	1.28	21	5	0	7	0
	10	10 50	2.20	30	1.73	25	1.49	21	1.55	21	1:53	21	1.49	21	4	50		10
	20	40	2.50	29	1.98	24	1.70	20	1.76	21	1.74	21	1.70	20		40		20
	30	30	2.79	29	2.22	23	1.90	20	1.97	20	1.95	20	1.90	20		30		30
	40	20	3.08	29	2.45	22	2.10		2.17	20	2:15	_	2.10	20		20		40
	50	10	3.37	23	2.67	22	2.29	19	2.37	20	2.35	20	2.30	20	П	10		50
				28		22		19		20		20		19				
2	0	10 0	3.65	28	2.89	22	2.48	18	2.57	19	2.55	19	2.49	18	4	0	8	0
	10	9 50	3.93	26	3.11	21	2.66	18	2.76	18	2.74	18	2.67	17	3	50		10
	20	40	4.19	25	3.32	20	2.84		2.94	18	2.92	18	2.84	18		40		20
	30	30	4.44	25	3.52	20	3.02	18	3.12	18	3.10		3.02	17		30		30
	40	20	4.69	24	3.72		3.19	17	3.30	-	3.27	17	3.19			20		40
	50	10	4.93	24	3.91	19	3.35	16	3.47	17	3.44	17	3.35	16		10		50
				23		18	0.00	16		17		16		16				
3	0	9 0	5.16	23	4.09	17	3.51	15	3.64	16	3.60	16	3.21	15	3	()	9	0
	10	8 50	5.39	21	4.26	16	3.66	14	3.80	14	3.76	14	3.66	15	2	50		10
	20	40	5.60	20	4.42	16	3.80	13	3.94	14	3.90	14	3.81	14		40		20
	30	30	5.80	19	4.58	15	3.93	13	4.08	14	4.04	14	3.95	13		30		30
	40	20	5.99	18	4.73	14	4.06		4.22	12	4.18	12	4.08	12	ĺ	20		40
	50	10	6.17	10	4.87	14	4.18	12	4.34	12	4.30	12	4.20	12		10		50
				16		13		12		11		11		11				
1	0	8 0	6.33	15	5.00	12	4.30	10	4.45	11	4.41	10	4.31	10	2	0	10	0
	10	7 50	6.48	14	5.12	12	4.40	9	4.56	10	4.51	10	4.41	9	1	50		10
	20	40	6.62	13	5.24	10	4.49	8	4.66	9	4.61	9	4:50	9		40		20
	30	30	6.75	11	5.34	9	4.57	8	4.75	8	4.70	8	4.59	8		30		30
	40	20	6.86	11	5.43	8	4.65	7	4.83	7	4.78	7	4.67	7		20		40
	50	10	6.97	11	5.51	0	4.72	•	4.90	•	4.85	-	4.74	,		10		50
				9		8		7		6		7		6				
5	0	7 0	7.06	7	5.59	6	4.79	5	4.96	5	4.92	5	4.80	5	1	0	11	0
	10	6.50	7.13	7	5.65	5	4.84	4	5.01	5	4.97	4	4.85	4	0	50		10
	20	40	7.20	5	5.70	3	4.88	3	5.06	3	5.01	4	4.89	3		40		20
	30	30	7.25	3	5.73	3	4.91	3	5.09	3	5.05	2	4.92	3		30		30
	40	20	7.28	2	5.76	1	4.94	1	5:12	1	5.07	2	4.95	1		20		40
	50	10	7.30	2	5.77	1	4.95	1	5.13	1	5.09	2	4.96			10		50
				1		1		1		-1		0		1				
6	0	6 0	7.31		5.78		4.96		5.14		5.09		4.97		0	0	12	()

Wenn $t>12^4$ sind T_α und T_λ mit dem Argument $t=12^4$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_a}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_b \sin \delta + T_b' \cos \delta)$.

		iment	Kreinsmünster	Landstuhl	La Plata	Leiden	Leipzig	Lissabon		iment
	für -	+ .	0.8139	0.8229	0-6997 _n	0:8400	0.8351	0.7383	_ tar	Tt -
36	-	12h ()m	()**(8)	fall day	0 '00	0':00	- *-	() ⁽¹⁾ (*)	46 0 -	64 (4
,	10	11 50	026 26	025 25	0.20 32	0 00 24	0000 24	0.30 30		10
		40	26	~.)	32	200	0 24 24	30		-
	20	1	0.52 25	0:50 25	0.64 31	0:47 24	0:48 24	0.00 29	41)	-24.9
	30	30	0.77 25	0.75 24	0.95 30	0.71 23	0.72 23	0.59 30	251	30
	40	20	$\frac{1.02}{25}$	0.99 - 25	1 25 31	0:94 23	0.95 24	1:19 30	-6()	4()
	5()	10	1:27	1:24	1:56	1.17	1:19	1:49	14)	3.6
1	()	11 0	1.50	1:48		1 444	1.4.	1.7.	5 0	7 0
	10	10.50	1 2.)	1:72	1.87 31	2.5	1:42 23			
	20	40	2.1	21	2.18 29	143 22		2:07 29	4.50	. 10
	_	30	2-02 24	1:96 24	2:47 29	1.85 22		2.36 27	40	20
	30		2 26 23	2.20 23	2.76 29	2.07 22	2.11 22	$\frac{2}{63} \frac{63}{27}$	30	30
	40	20	2.49 22	2:43 22	3.05 28	2.29 21	2.33 22	2:90 27	20	40
	50	10	2.71	2.65	3.33	2.50	2:55	3.17	10	50
,	0	10 0	20.004	3.00	0.00	2.70 30		3.44 as	4 0	8 0
	10	9 50	3:16 22	3:08	24	20	A 414	215		
	20	40	22	21	3.87 27	2.90 20	43 5 15	3.70 25	3 50	10
	_	30	3.38 21	3:29 20	4.14 26	3.10 19		3.95 24	40	20
	30		3:59 20	3 49 20	4.40 24	3-29 19	3.35 19	4.19 23	30	30
	40	20	3.79 19	3-69 19	4.64 24	348 18	3:54 18	4:42 22	20	40
	50	10	3.98	3.88	4.88	3:66	3.72	4.64	10	50
3	0	9 0	4-17	f-fac	5.11	9.69	9.00	1.00	3 0	9 0
•	10	8 50	1.25	1.22 17	5:33	3:99 16	4:06	5.07 21	2.50	10
	20	40	651	teto 14	20	1.15	1.00	20	40	20
	30	30	1.07	4:55	5.73 20	4:15 15	1.95	5:46 19	30	30
	40	20	4.82 15	t-0 10	129	6.19 13	4.2.4	16	20	
	50	10	4:97	4:84	5·92 6·09	4.43 13	4:51 13 4:64	5:63 17		40
	30	100	13	13	16	4:56		5.80	10	50
ı	0	S O	5:10	1.07	con-	1.68	1.77	5.50	2 0	10 0
	10	7.50	5.00	5:00	c-10 10	1.70	1.00 11	C.11 10	1 50	10
	20	40	5.21	5:20	0.55	1.00	1.00	c.a2 12	40	20
	30	30 .	5-11	5,90	0.08	5.00	2.000	0.95 12	30	30
	40	20	5:54	5.90	0.79	1 - Ov	*.10	6.10	20	40
	50	10	5.62	5:47	6.88	5:16	5:25	6:56	10	50
	1,00	1	7	7	9	., 10		8	10	347
,	0	7 0	5:69	5:54	6:97 s	5-22	5.99	0.01	1 0	11 0
	10	6.50	5.75	5:60 6	-0- 8	Tarabal	5.98	0.71	0.50	10
	20	40	5.80	5:05	7.11	00	*. en 0	0.77	40	20
	30	30	5.63	5,00	7.10	*.0. 3	7.10	0.00	30	30
	40	20)	5.07 3	3	7.10	5.99 3	15-10	0.85	20	40
	50	10	5.89	5:74	7:21	540	5:50	6:86	10	50
		1 "	3 8.7	0	1		3.90	0.56	10	,,,,,
;	0	6 0	5:90	5:74	7-22	5:41	5:51	6:87	0 0	12 0
										"

Wenn $t>12^4$ sind T_z und T_b mit dem Argument $t=12^4$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$a = \frac{T_s}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_b \sin \delta + T_b' \cos \delta)$.

	für	ment Ta	Lune	_	Lussinp	iccolo	Lyc	on_	Madi	son	Mad	ras	Mad	rid			umei 73	
	-		0.859	6	0.78	883	0.79	71	0.77	67	0.25	61	0.75	40		_		+
14	0111	124 Om	0"-00	99	04.00	28	0"-0	1	04-00	200	0"-00	38	0"-00	30	6	k ()m	64	h ()
	10	11 50	Outs	22	0.28	27	0.27	27	0.28	28	0.38	37	0.30	29	5	50	1	10
	20	40	0.11	22	0.55	27	0.54	27	0.56	28	0.75	37	0:59	98		40		20
	30	30	Ore	21	0.82	27	0.81	26	0.84	27	1:12	37	0.87	29		30		30
	40	20	11.87		1.09	27	1.07	-	1.11		1:49	37	1.16	29		20		40
	50	10	1.07	20	1:36	21	1:33	26	1.39	28	1.86	91	1:45	20	ı	10		50
				21		27		26		28		36		29				
ı	0	11 0	1.28	21	1.63	26	1.59	26	1.67	27	2.22	36	1:74	28	5	()	7	()
	10	10.50	1 - 40	21	1.89	26	1.85	26	1.94	27	2.58	35	2.02	28	4	50		10
	20	40	1.70	-	2.15	_	2.11		2.21		2.93		2.30	27		40		20
	30	30	1.00	20	2.41	26	2.36	25	2.47	26	3.28	35	2.57	26	1	30		30
	40	20	2.10	20	2.66	25	2.61	25	2.72	25	3.62	34	2.83	26		20		40
	50	10	2.30	20	2.90	24	2.85	24	2.97	25	3.96	34	3.09	26	i	10		50
	.,			19		24	1	23		25		33		26			1	
,	0	10 0	2:49	18	3.14		3.08	23	3-22		4.29		3.35	25	4	0	8	- 0
	10	9 50	2.07		3.38	24	3.31		3:46	24	4.60	31	3:60	25	3	50		10
	20	40	-2.41	17	3.61	23	3.53	22	3.69	23	4:91	31	3.85	24	١.	40		20
	30	30	9.750	18	3.83	22	3.75		3.92	23	5-21	30	4:09	23		30		30
	40	20	2-19	17	4.04	21	3.96	21	4.14	22	5:51	30	4:32		ĺ	20		40
	50	10	3:35	16	4.25	21	4:16	20	4:36	22	5.80	29	4.53	21		10		50
				16	7 2.7	19		20		19	10	27		21				
3	0	9 0	3:51	15	4:44	10	4:36	18.	4:55	19	6:07		4.74	20	3	0	9	0
	10	8 50		15 15	4.63	19	4.54	17	4.74	19	6:32	25	4.94	20	2	50		10
	20	40 !	3.81		4:81	18	4.71	17:	4.93	18	6:56	24	5.14	19		40		20
	30	30	9.05	14	4.98	17	4.88	16	5.11	16	6.80	24	5.33	17		30		30
	40	20	1.0%	13	5:15	17	5.04		5:27		7:02	22	5:50	16	İ	20		40
	50	10	4:20	12	5:30	15	5:19	15	5:13	16	7:23	21	5.66	16		10		50
				11	., .,	11		14		15		20		15	1			
4	0	8 0	4:31	10	5:44	13	5.33	13	5.58	14	7:43	18	5.81	14	2	0	10	0
	10	7.50 (1:41	9	5.57	13	5.46	12	5.72	12	7.61	-	5.95	13	1	50		10
	20	40	4:50	59	5:70	11	5:58	11	5.84	11	7.77	16	6.08	11		40		20)
	30	30	1:59	S	5:81		5.69	10	5.95	10	7.92	15	6:19	11	1	30		30
	40	20	4:67	7	5:91	10	5.79	- 1	6.05		8.05	13	6.30	10		20		40
	50	10	4:74	-	6:00	9	5.88	9	6-14	9	8-17	12	6:40	10	1	10		50
				G		8		7		7		11		8	i		1	
5	0	7 0	4:80	5	6.08	7	5.95	7	6.21	7	8.28	9	6.48	7	1	0	,11	0
	10	6 50	4:85	4	6:15	5	6.02	5	6.28	6	8:37	7	6:55	G	()	50		10
	20	40	4.89	3	6.20	3	6.07	1	6:34	4	8:44	6	6.61	4		40		20
	30	30	4.92	3	6.53	3	6.11	3	6.38	3	8:50	4	6.65	3		30	A.	30
	40	20	4.95		6.26		6.14	- 1	6:41	9	8:54	2	6.68	9		20	1	40
	50	10	4.96	1	6:27	1	6.15	1	6:43	2	8:56	2	6.70	2		10		50
		•		1		1		1		0	1	1		1				
6	0	6 0	4.97		6.28		6.16	- 1	6:43		8.57		6.71		0	()	12	0

Wenn $t>12^k$ sind T_a und T_b mit dem Argument $t-12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}' \cos \delta)$.

	Argu für		Mail	and	Mars	eille	Melbo	ourne	Mt. Ha	milton	Mosk	au	Münc	hen		Arg	ume	
	-		0.79	054	0.77	86	0.72	99"	0.72	250	0.85	99	0.81	45		-		+
04	()111	12h ()m	04.00	97	0.4.00	28	0"-00	31	044-00	31	0000)) 1	04-00	26	6	(Om	6/	0
	10	11 50	0.27	27	0.28	28	0.31	31	0.31	30	0.21	22	0.26	26	5	50		10
	20	40	0.54	27	0.56	28	0.62	30	0.61	30	0.43	22	0.52	25	ı	40		20
	30	30	0.81	26	0.84	27	0.92	29	0.91	30	0.65	22	0.77	25	Ĭ	30		30
	40	20	1.07	26	1.11	28	1.21	30	1.21	30	0.87	21	1.02	25		20		40
	50	10	1.33	27	1.39	27	1.21	29	1:51	30	1.08	20	1.27	25		10		50
1	0	11 0	1.60		1.66	-	1.80		1.81		1.28		1.52		5	0	7	0
	10	10 50	1.86	26	1.93	27	2.09	29		30	1.49	21	1.77	25	4	-	'	10
	20	40	2.12	26	2.20	27		29	2.11	29	1.70	21		24	*	40		20
	30	30		25		26	2.38	28	2.40	28		20	2.01	24				-
			2.37	25	2.46	25	2.66	28	2.68	28	1.90	20	2.25	24		30		30
	40	20	2.62	24	2.71	2.5	2.94	27	2.96	27	2.10	19	2.49	23		20		40
	50	10	2.86	23	2.96	25	3.21	27	3.23	27	2.29	19	2.72	22		10		50
2	0	10 0	3.09	23	3.21	24	3.48	26	3.50	26	2.48	18	2.94	22	4	0	8	0
	10	9 50	3.32	23	3.45	23	3.74	25	3.76	26	2.66	18	3.16	21	3	50		10
	20	40	3.55	22	3.68	23	3.99		4.02	25	2.84	18	3.37	21		40		20
	30	30	3.77		3.91	-	4.24	25	4.27		3.02		3.58	20		30		30
	40	20	3.98	21	4.13	22	4.47	23	4.50	23	3.19	17	3.78	-		20		40
	50	10	4.18	20	4.34	21	4.70	23	4.73	23	3.35	16	3.97	19	l.	10		50
				20		19		22		22		16		19			1	
3	0	9 0	4.38	18	4.53	19	4.92	21	4.95	21	3:51	15	4.16	18	3	0	9	0
	10	8 50	4.56	17	4.72	19	5.13	20	5.16	20	3.66	14	4.34	16	2	50		10
	20	40	4.73	17	4.91	18	5.33	19	5.36	19	3.80	14	4.20	16		40		20
	30	30	4.90	16	5.09	16	5.52	18	5.55	19	3.94	13	4.66	16		30		30
	40	20	5.06	15	5.52	15	5.70	17	5.74	17	4.07	12	4.82	14		20		40
	50	10	5.21	14	5.40	15	5.87	16	5.91	16	4.19	11	4.96	13		10	ĺ	50
4	0	8 0	5.35	13	5.55	13	6.03	14	6.07	14	4.30	11	5.09	12	2	0	10	0
	10	7 50	548	12	5.68	13	6.17	14	6.21	13	4.41	9	5.21	12	1	50		10
	20	40	5.60	11	5.81	11	6.31	12	6.34	12	4.50	8		11		40		20
	30	30	5.71	10	5.92		6.43		6.46	12	4.58	8		9		30		30
	40	20	5.81		6.03	11	6:54	11	6.58		4.66	7	5.53	- 1		20		40
	50	10	5.89	8	6.12	9	6:64	10	6.68	10	4.73	6	5.61	8		10		50
5	0	7 0	5.97	1	6.19		6.72	8	6.76		4.79		5.68		1	0	11	0
	10	6.50	6.03	6	6.25	6	6.79	7	6.83	7	4.84	5	5.74	6	0	50		10
	20	40	6.09	6	6.31	6	6.85	6	6.90	7	4.88	4	5.79	5		40		20
	30	30	6.13	4	6.35	4	6.90	5	6.95	5	4.92	4	2.00	4	-	30		30
	40	20	6.16	3	6.38	3	6.93	3	6.98	3	4.94	2	5.86	3		20		40
	50	10	6.18	2	6:40	2	6.95	2	7:00	2	4.96	2	5.87	1		10		50
				0		1		1		0		0		1				
6	0	6 0	6.18		6.41		6.96		7:00		4.96		5.88		0	0	12	0

Wenn $t>12^k$ sind T_a und T_b mit dem Argument $t=12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}' \cos \delta)$.

	Argu			Nen	pel	Neucl	nåtel	NewH	laven	New Y	ork	Nicola	ijew	Niza	La		Argu		
	für -			0.75	80	0.80)65	0.76	319	0.77	570	0.80	63	0.78	19		für —	78	+
04	()m	124	0m	0".00	29	0"-00)	000	29	04.00	29	04.00	27	0"-00	28	6	() m	64	0,
	10	11 5	0	0.29	29	0.27	26	0.29	29	0.29	29	0.27	26	0.28	28	5	50		10
	20	4	0	0.58	29	0.53	26	0.58	29	0.58	29	0.53	26	0.56	28		40		20
	30	3	0	0.87	28	0.79	25	0.87	28	0.87	29	0.79	25	0.84	27		30		30
	40	2	o	1.15	29	1.04		1.15	28	1.16	29	1.04	26	1.11	27		20		40
	50	1	0	1.44	28	1.29	25 26	1.43	28	1:45	28	1.30	26	1.38	27		10		50
1	0	11	0	1.72		1.55		1.71		1.73		1.56		1.65	27	5	0	7	0
	10		0	2.00	28	1.80	25	1.99	28	2.01	28	1.81	25	1.92	-	4	50		10
	20	1	0	2.28	28	2.05	25	2.27	28	2.29	28	2.06	25	2.18	26	ľ	40		20
	30		o	2.55	27	2:30	25	2.54	27	2.56	27	2.31	25	2.44	26		30		30
	40		0	2.81	26	2.54	24	2.80	26	2.82	26	2.55	24	2.69	25		20		40
	50		0	3.07	26	2.77	23	3.05	25	3.08	26	2.78	23	2.94	25		10		50
2	0	10	0	3.33	26	3.00	23	3.31	26	3.34	26	3.00	22	3.18	24	4	0	8	0
2	10	9 5	- 1	3.58	25	3.22	22	3.56	25	3.59	25	3.23	23	3.42	24	3	50	0	10
	20		0	3.82	24	3.44	22	3.80	24	3.83	24	3.45	22	3.65	23	.,	40		20
	30		0	4.06	24	3.65	21	4.03	23	4.06	23	3.66	21	3.88	23		30		30
	40	_	0	4.29	23	3.86	21	4.26	23	4.29	23	3.87	21	4.10	22		20		40
	50		0	4.50	21	4.06	20	4:47	21	4:51	22	4.07	20	4:31	21		10		50
	30	'		4 50	21	3 00	19	1 2 21	21	4 31	21	101	19	4 01	19		117		.)()
3	0	9	0	4.71	20	4.25	17	4.68	20	4.72	20	4.26	17	4:50	19	3	0	9	()
	10	8 5	0	4.91	19	4.42	17	4.88	19	4.92	19	4.43	17	4.69	19	2	50		10
	20	4	0	5.10	18	4.59	17	5.07	18	5.11	18	4.60	16	4.88	18		40		20
	30	3	0	5.28	18	4:76	16	5.25	17	5.29	18	4.76	16	5.06	16		30		30
	40	2	0	5.46	16	4.92	15	5.42	16	5:47	16	4.92	15	5.22	15	ĺ	20		40
	50	1	0	5.62	15	5.07	13	5.28	15	5.63	15	5.07	14	5.37	15		10		50
1	0	8	0	5.77	14	5.20	12	5.73	14	5.78	14	5:21	13	5.2	13	2	0	10	0
	10	7.5	0	5.91	13	5.32	12	5.87	13	5.92	13	5.34	11	5.65	12	1	50		10
	20	4	0	6.04	12	5.44	10	6.00	12	6.05	12	5.45	10	5.77	11		40		20
	30	3	0	6.16	10	5.54	10	6.12	10	6.17	10	5:55	10	5.88	11		30		30
	40	2	0	6.26	9	5.64	9	6.22	9	6.27	9	5.65	8	5.99	9		20		40
	50	1	0	6.35	8	5.73	7	6.31	8	6.36	8	5.73	8	6.08	7		10		50
5	0	7	0	6.43	7	5.80	6	6.39	7	6.44	7	5.81	6	6.15	6	1	0	11	0
	10	6.5	0	6.50	6	5.86	6	6.46	6	6.51	6	5.87	6	6.21	6	0	50		10
	20	4	0	6.26	5	5.92	4	6:52	4	6.57	5	5.93	4	6.27	4		40		20
	30	3	0	6.61	3	5.96	2	6.56	3	6.62	3	5.97	3	6.31	3		30		30
	40	2	0	6.64	1	5.98	2	6.59	2	6.65	1	6.00	1	6.34	2		20		40
	50	1	0	6.62		6.00		6.61	-	6.66	1	6.01	1	6.36	0		10		50
6	0	6	0	6.66	1	6-01	1	6.62	1	6.67	1	6-02	1	6.36	4)	0	0	12	0
O	v	6	U	0.00		6.01		0.02		0.01		0.02		0.00		U	U	12	U

Wenn $t>12^k$ sind T_a und T_b mit dem Argument $t=12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}' \cos \delta)$.

	Argu für	ment Ta	North	field	Ode	ssa	O Gy	alla	Oxfor	d E	Oxford	Miss	Par	is			ume	
	-		0.78	377	0.80	28	0.81	26	0.85	376	0.69	38	0.81	91		-		+
()4	0,22	124 ()44	0000	28	04-00	27	0"-00	26	0"-00)	0"00	32	0"-00	25	G	5 Om	61	4 0
	10	11 50	0.28	27	0.27	26	0.26	26	0.24	24	0.32	32	0.25	26	5	50		10
	20	40	0.55	27	0.53	27	0.52	26	0.48	24	0:64	31	0.51	25.		40		20
	30	30	0.85	27	0.80	26	0.78	25	0.72	23	0.95	31	0.76	24		30		30
	40	20	1.09	27	1.06	25	1.03	25	0.95	23	1.26	31	1.00	25		20	1	40
	50	10	1.36	27	1.31	26	1.28	25	1.18	23	1:57	31	1:25	25		10	1	50
1	0	11 0	1.63		1.57		1:53		1:41		1.88		1:50		5	0	1 7	0
1	10	10 50	1.89	26	1.83	26	1.78	25	1:64	23		31	1.74	24	4	50	1 '	10
	20	40	2.15	26	2.08	25	2.02	24	1.87	23	2.19	30	1.99	25	4	40		20
	30	30	2.41	26	2.33	25	2.26	24	2.09	22	2.78	29	2.23	24		30		30
		20		25	2:57	24	1	24		22		29		23		20	1	40
	40		2:66	24	2.80	23	2.50	23	2.31	21	3.07	28	2:46	22				
	50	10	2.90	24	2.80	23	2.73	22	2.52	20	3.35	28	2.68	22		10	1	J()
2	0	10 0	3.14	24	3.03	23	2.95	22	2.72	21	3.63	27	2.90	22	4	0	8	0
	10	9 50	3.38	23	3.26	22	3.17	22	2.93	20	3.90	27	3.12	21	3	50		10
	20	40	3.61	22	3.18	21	3.39	21	3.13	19	4.17	25	3.33	20		40	1	20
	30	30	3.83	21	3.69	21	3.60	20	3.32	19	4.42	25	3.53	20		30		30
	40	20	4:04	21	3.90	20	3.80	20	3:51	18	4.67	24	3.73	19		20	1 .	40
	50	10	4.25	21	4.10	20	4.00	20	3.69	-	4.91	24	3.92	10		10	ì	50
				19		19		18		17		23		18			1	
3	0	9 0	4.44	19	4.29	18	1.18	18	3.86	16	5.14	22	4.10	18	3	0	9	0
	10	8 50	4.63	18	4.47	18	4.36	17	4.02	16	5.36	21	4.28	16	5,	50		10
	20	40	4.81	17	4.65	17	4.53	16	4.18	15	5.24	20	4.44	16		40		20
	30	30	4.98	17	4.82	15	4.69	15	4.33	14	5.77	19	4.60	15		30	1	30
	40	20	5.12	15	4:97	15	1.84	14	4.47	13	5:96	18	4.75	14		20	i	40
	50	10	5:30	14	5.12	14	4.98	14	4.60	12	6.14	15	4.89	13		10		50
4	0	8 0	5:11	13	5.26	13	5.12	12	4.72	12	6.29	15	5:02	13	2	0	10	0
	10	7 50	5.57	13	5:39	12	5:24	12	4.84	10	6:44	15	5.15	-	1	50		10
	20	40	5.70	11	5.51	11	5.36	10	4.94	10	6.59	13	526	11		40	,	20
	30	30	5.81	10	5.62	9	5:46	10	5.04	9	6.72	11	5:36	9		30		30
	40	20	5.91	9	5.71	8	5.56	8	5.13	7	6.83	10	5.45			20	1	40
	50	10	6.00	8	5.79	8	5.64	7	5.20	7	6.93	9	5.23	8		10		50
5	0	7 0	6.08	7	5.87	6	5:71	6	5:27	G	7:02	8	5:60	7	ı	0	11	0
	10	6.50	6:15	5	5.93	5	5.77	5	5.33		7:10	6	5:67	5	0	50	1	10
	20	40	6:20	3	5.98		5.82	4	5:37	4	7:16		5.72	3		40		20
	30	30	6.23		6.02	3	5.86	3	5:41	-	7.21	5	5.75			30		30
	40	20	6.26	3	6.05		5.89	_	5.44	3	7.24	3	5.78	3	t t	20		40
	50	10	6.27	1	6.06	1	5.91	2	545	1	7.26	2	5.80	2		10		50
				1	1	1		()		1		1	2 43	Ō				,,,,,
6	0	6 0	6.28		6.07		5.91		5.46		7.27		5.80		lo.	0	12	0

Wenn $t > 12^k$ sind T_0 und T_k mit dem Argument $t = 12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_a}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_b \sin \delta + T_b' \cos \delta)$.

	Argu			Philade	lphia	Pol	a	Potse	lam	Poughk	eepsic	Pra	g	Princ	eton		Argu	ame:	
_	+	_		0.74	98	0.79	08	0.84	12	0.76	508	0.82	73	0.75	34				+
()4	()m	124	One	04400	30	04-00) 98	011-00	94	0".00	99	04-00	25	011-00	30	64	()m	64	h ()n
	10	11 5	0	0.30	29	0.28	27	0.24	23	0.29	29	0.25	25	0.30	29	5	50		10
	20	4	0	0.59	29	0.55	27	0.47	24	0.58	29	0:50	24	0.59	29		40		20
	30	3	80	0.88	29	0.82	26	0.71	23	0.87	28	0.74	24	0.88	28		30		30
	40	2	0.	1:17	29	1.08	27	0.94	22	1:15	27	0.98	24	1.16	29	П	20		40
	50	1	0	1.46		1.35		1.16		1.42	21	1.22	24	1:45	23		10		50
			1		29		27		23		28		24		29				
1	0		0	1.75	28	1.62	26	1.39	23	1.70	28	1.46	24	1.74	28	5	0	7	()
	10	10 5	- 11	2.03	28	1.88	26	1.62	22	1.98	27	1.70	24	2.02	28	4	50		10
	20		0	2.31	28	2.14	26	1.84	22	2.25	27	1.94	23	2.30	27		40		20
	30		0	2.59	27	2.40	24	5.06	22	2.52	26	2.17	22	2.57	26		30		30
	40	2	0	2.86	26	2.64	24	2.28	21	2.78	26	2.39	22	2.83	27		20		40
	50	1	0	3.12	26	2.88	24	2.49	20	3.04	25	2.61	21	3.10	26		10		50
2	0	10	0	3.38		3.12		2.69		3.29		2.82		3.36		4	0	8	0
	10	9 5	0	3.63	25	3.35	23	2.89	20	3.54	25	3.03	21	3.61	25		50	0	10
	20		0	3.88	25	3.58	23	3.08	19	3.78	24	3.24	21	3.85	24	0	40		20
	30		30	4.12	24	3.80	22	3:27	19	4.01	23	3.44	20	4.09	24		30		30
	40		0	4:35	23	4.02	22	3.46	19	4.23	22	3.64	20	4.32	23		20		40
	50	_	0	4.56	21	4.23	21	3.64	18	4.44	21	3.83	19	4.53	21		10		50
_					21		19		17	, ,,,	21	0 00	18	4 30	21		10		JU
3	0		0	4.77	20	4.42	18	3.81	16	4.65	20	4.01	17	4.74	20	3	0	9	0
	10	8 5	- 1	4.97	20	4.60	18	3.97	16	4.85	19	4.18	16	4.94	20	2	50		10
	20		0	5:17	19	4.78	17	4.13	14	5.04	18	4.34	15	5.14	19	1	40		20
	30		0	5.36	17	4.95	17	4.27	14	5.22	17	4.49	14	5.33	17		30		30
	40	2	0	5.23	16	5.15	15	4.41	13	5.39	16	4.63	14	5.50	16		20		40
	50	1	0	5.69		5.27		4.24		5.22		4.77		5.66			10		50
4	0	8	0	5.85	16	5.41	14	4.66	12		15	1.00	13		16	1.	4.		
	10		0	6.00	15	5.54	13	4.78	12	5.70	14	4.90	12	5.82	14	2	()	10	()
	20	' "	12	6.13	13	5.67	13		10	5.84	13	5.02	10	5.96	13	1	50		10
	30		0	6.24	11	5.78	11	4.88	9	5.97	12	5.12	10	6.09	11		40		20
	40	_	- 2	6.34	10		10	4.97	9	6.09	10	5.22	9	6.20	10	ĺ	30		30
	50		0	6.44	10	5.88	9	5.06	8	6.19	8	5.31	8	6.30	9		20		40
	. JO	1	0	6.44	8	3.97	7	5.14	6	6.27	8	5:39	7	6.39	9		10		50
5	0	7	o	6.52	7	6.04	6	5.20		6:35	7	5.46	6	6.48	7	1	0	11	0
	10	6.5	0	6.59	6	6.10	6	5.25	5 5	6.42	6	5.52	5	6.55	6	0	50		10
	20	4	0	6.65	5	6.16	4	5:30	4	6.48	4	5.57	- 5 - 4	6.61			40		20
	30	3	0	6.70	3	6:20	2	5.34	2	6:52	3	5.61	-	6.66	5		30		30
	40	2	0	6.73	1	6.22	1	5.36		6:55	2	5.63	2	6.69	3		20		40
	50	1	0	6.74	-	6.23	1	5.37	1	6:57	2	5.65	2	6.71	2		10		50
			1		0		1		1		1		1		0		-		
6	0	6	0	6.75		6.24		5:38		- 6.58		5.66		6.71	10	0	0	12	0

Wenn $t > 12^k$ sind T_a und T_b mit dem Argument $t - 12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}' \cos \delta)$.

	Argu	ment	Pulk	owa	Rio o	l. J.	Roche	ester	Roi	m	S. Fran	cisco	Santi	ago		Argu	T	
	fur -	-	0.87	192	0.53	20,,	0.77	72	0.76	68	0.72	294	0.68	33 _n				+
()4	()m	124 Om	011-00	19	00.00	36	0"-00	28	04-00	20	0:000	21	01400	39	6/		6	· ()
	10	11 50	0.19		0.36	35	0.28	28	0.29	28	0:31	30	0.32	32	5	50		10
	20	40	0.38	19	0.71		0.56	-	0.57	29	0.61	30	0.64	31		10		20
	30	30	0.58	20	1.05	34	0.84	28 27	0.86	28	0.91	30	0.95	30		30		30
	40	20	0.78	20	1:40	35	1.11		1.14		1.21	30	1.27	32		20		40
	50	10	0.97	19	1.75	35	1.39	28	1.42	28	1:51	30	1:59	32		10		50
	.,		001	18	1 10	35		27		28		29		31)			
1	0	11 0	1.15		2:10	34	1.66	27	1.70	27	1.80	30	1:90	31	5	0	7	0
	10	10 50	1.33	18	2.44		1.93		1.97	28	2:10	29	2.21	31	1	50	1	10
	20	40	1.52	19	2.77	33	2.20	27	2.25	26	2:39	28	2.52	29	}	40	1	20
	30	30	1.70	18	3.10	33	2.46	26	2.51		2.67		2.81	29		30	1	30
	40	20	1.88	18	3.43	33	2:71	25	2.77	26	2.94	27	3.10	29		20		10
	50	10	2.05	17	3.75	32	2.96	25	3.03	26	3.21	27	3.39	20		10		50
	.)(1	10	2 (10)	17	0 10	31	2	25	., 0.0	25	9	27	.,	29	1		1	
•	0	10 0	2-22		4:06		3.21		3-28		3:48	26	3.68	27	4	0	8	0
-	10	9 50	2.39	17	4.36	30	3.45	24	3.52	24	3.74	26	3.95	27	3	50		10
	20	40	2.55	16	4.65	29	8:69	24	3.76	24	4.00		4.22	25		40		20
	30	30	2.70	15	4.93	28	3.92	23	3.99	23	4.25	25	4.47			30		30
	40	20	2.85	15	5:21	28	4.14	22	4.22	23	4:48	23	4.72	25		20		\$0
	50	10	3.00	15	5:48	27	4.35	21	4:43	21	4:70	22	4.96	24		10		50
	. je r	10	JIM	14	343	26	4 00	19	3.40	20		22		23				
3	0	9 0	3.14	13	5.74	24	4.54	19	4:63	20	4-92	21	5.19	99	3	0	9	()
	10	8 50	3.27		5.98	23	4.73	19	4.83	19	5:13	20	5.41	22	2	50		10
	20	40	3.40	13	6.21	-	4.92		5.02	18	5:33	19	5.63	20		40		20
	30	30	3.52	12	6.13	22	5.10	18	5.20	17	5.52	19	5.83	19		30		30
	40	20	3.64	12	6:64	21	5:27	17	5:37		5:71	17	6.02	17		20		40
	50	10	3.75	11	6:84	50	5.43	16	5.53	16	5.88	17	6:19	11		10		50
	.,	1		10		18		14		15		15		17	i			
4	0	8 0	3.85	9	7:02	17	5:57	13	5.68	14	6.03	15	6.36	16	2	0	10	0
	10	7 50	3.94	9	7.19	16	5.70	13	5.82	13	6.18	13	6-52	14	1	50		10
	20	40	4.03	8	7:35	14	5.83	12	5.95	11	6:31	12	6.66	13		40		20
	30	30	4.11	7	7:49	13	5.95	10	6.06	11	6:43	11	6.79	11		30		30
	40	20	4:18		7:62	-	6:05	9	6.17		6:54	10	6:90	10		20		40
	50	10	4.24	6	7:74	12	6-14	9	6.25	8	6:64	10	7.00			10		50
	0.0			5		10		7		8		8		10				
5	0	7 0	4.29	5	7:84	s	6:21	G	6.33	7	6.72	8	7:10	8	1	0	11	0
	10	6 50	4:34	4	7.92	6	6:27	6	6:40	6	6.80	6	7:18	6	0	50	1	10
	20	40	4.38	3	7.98	6	6.33	4	6:46	4	6:86	4	7.24	5		40		20
	30	30	4.41		8:04	3	6:37	3	6:50	3	6:90	3	7.29	3		30		30
	40	20	4.42	1	8.07	2	6:40	9	6.53	2	6.93	2	7.32	2		20		40
	50	10	4.43	1	8:09	2	6:42	2	6:55	- 7	6.95		7:34			10		50
				1		1		1		1		1		1			١	
G	0	6 0	4:44		8.10		6.43		6:56		6.96		7.35		0	()	12	0

Wenn $t>12^{\pm}$ sind T_a und T_b mit dem Argument $t=12^{\pm}$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_a}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_b \sin \delta + T_b^{\dagger} \cos \delta)$.

	Argu:			Stock	holm	Strass	burg	Sydr	ney	Tacul	paya	Tascl	kent	Tera	mo		Arg	me 78	
	+	-		0.87	73	0.81	74	0.68	80,,	0.40	32	0.76	19	0.77	32		_		+
04	()"		()m		20	00.00	26	000	32	0"-00	37	On-00	29	000		6/	()m	64	i ()
	10	11	50	0.20	19	0.26	25	0.35	32	0.37	36	0.29		0.29		5	50		10
	20		40	0.39	20	0.51	26	0.64	31	0.73	36	0.58	29	0.57	28		40		20
	30		30	0.59	20	0.77	24	0.95	32	1.09	35	0.87	29	0.84	27		30		30
	40		20	0.79	19	1.01	25	1.27	31	1.44	36	1.15	28	1.12	28		20		40
	50		10	0.98	18	1.26	25	1.28	31	1.80	35	1:43	28 28	1.40	28 28		10		50
1	0	11	0	1.16	19	1.51	25	1.89	31	2.15		1.71		1.68		5	0	7	0
	10	10	50	1:35	19	1.76	24	2.20	30	2.50	35	1.99	28	1.95	27	4	50	١.	10
	20		40	1.54	18	2.00	24	2.50	29	2.84	34	2.27	28	2.22	27	1	40		20
	30		30	1.72	18	2.24	23	2.79	30	3.18	34	2.54	27	2.48	26		30		30
	40		20	1.90	18	2.47	22	3.09	-	3.51	33	2.80	26	2.73	2.5		20		40
	50		10	2.08	17	2.69	22	3.38	29 28	3.83	32	3.05	25 26	2.99	26 25		10		50
2	0	10	0	2.25		2.91		3.66		4.15		3.31	- 1	3.24		4	0	8	0
	10	9	50	2.42	17	3.13	22	3.93	27	4.46	31	3.56	25	3.48	24	3	50	0	10
	20		40	2.58	16	3.34	21	4.20	27	4.76	30	3.80	24	3.71	23	0	40		20
	30		30	2.73	15	3:55	21	4.45	25	5.06	30	4.03	23	3.94	23		30		30
	40		20	2.89	16	3.75	20	4.70	25	5.34	28	4.26	23	4:16	22		20		40
	50		10	3.04	15	3.94	19	4.94	24	5.61	27	4.47	21	4.37	21		10		50
3	0	9	0	3.18	14	4.13	19		23		26		21		20				
	10	8	13	3.31	13	4.31	18	5·17 5·39	22	5.87	25	4.68	20	4.57	20	3	0	9	0
	20		40	3.44	13	4.47	16	5:60	21	6.12	23	4.88	19	4.77	19	2	50		10
	30		30	3.56	12	4.62	15	5.80	20	6.35	23	5.07	18	4.96	17		40		20
	40		20	3.68	12	4.77	15	5.99	19	6.58	22	5.25	17	5.13	17		30		30
	50		10	3.79	11	4.91	14	6.17	18	6.80	20	5.42	16	5.30	16		20		4(
					11		14		16	7:00	19	5.28	15	546	15		10		50
4	0	8	0	3.90	10	5.05	13	6.33	15	7.19	18	5.73	14	5.61	14	2	0	10	0
	10	1	50 40	4.00	8	5.18	11	6.48	14	7:37	16	5.87	13	5.15	12	1	50		10
	20 30		30	4.08	8	5.29	10	6.62	13	7:53	15	6.00	12	5.87	11		40		20
	40		20	4.16	6	5.39	9	6.75	12	7.68	13	6.13	10	5.98	11		30		30
	50		10	4.22	6	5.48	8	6.87	10	7.81	11	6.22	9	6.09	9		20		40
		_	1	4.28	6	5:56	7	6.97	9	7-92	9	6.31	8	6.18	7		10		50
5	0	7	0	4.34	5	5.63	7	7.06	8	8.01	9	6.39	7	6.25	7	1	0	11	=C
	10	6	50	4.39	3	5.70	5	7:14	6	8:10	7	6.46	5	6.32	5	0	50		10
	20		40	4.42	3	5.75	4	7.20	5	8:17	G	6:51	5	6.37	4		40		20
	30		30	4.45	2	5.79	2	7.25	3	8.23	4	6:56	3	6:41	3		30		30
	40		20	4.47	ī	5.81	1	7:28	2	8.27	9	6.59	1	6.44	2	1	20	1	40
	50		10	4.48	-	5.82		7:30	_	8-29	-	6.60		6.46			10		50
6	0	6	0	4.49	1	5.83	1	7:31	1	8:30	1	6.61	1	6.47	1	0	0	12	0

Wenn $t>12^k$ sind T_a und T_b mit dem Argument $t=12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_a}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_b \sin \delta + T_b' \cos \delta)$.

ı	für	112	50 40 30 20 10 0 50	0·32 0·63 0·93 1·24 1·55		0.78 0.28 0.56 0.83 1.10	-	0·75 0"·06 0·27 0·54		0"-00		0.8	*****	0.83		6	A ()m	<u> </u>	+
ı	10 20 30 40 50 0 10 20 30	11	50 40 30 20 10	0·32 0·63 0·93 1·24 1·55	32 31 30 31	0·28 0·56 0·83	28 27	0.27	27	1	J ., o	044-00)	0"-00		6	k Ow	1 6	h ()#
1	20 30 40 50 0 10 20 30	11	40 30 20 10	0·63 0·93 1·24 1·55	31 30 31	0·56 0·83	28 27	0.27	0-	0.00				0 00					. ()
1	30 40 50 0 10 20 30		30 20 10	0·93 1·24 1·55	30 31	0.83	27	0.54		0.28	27	0.19	19	0.24	23	5	50		10
	40 50 0 10 20 30		20 10 0	1·24 1·55	31				27	0.55	27	0.38	20	0.47	24	1	40		20
	50 0 10 20 30		10	1.22	-	1.10		0.81	26	0.82	26	0.58	19	0.71	23	l	30		30
1	0 10 20 30		0		91		28	1.07	26	1.08	27	0.77	18	0.94	23	8	20		40
	10 20 30			1.05	30	1.38	27	1.33	26	1.35	26	0.95	19	1.17	23		10		50
	10 20 30			1.85		1.65		1.59		1.61		1.14		1.40		5	0	7	0
	20 30			2.16	31	1.92	27	1.85	26	1.87	26	1.33	19	1.63	23	4	50	'	10
	30		40	2.46	30	2.19	27	2.11	26	2.13	26	1.51	18	1.85	22	١.	40		20
			30	2.74	28	2.45	26	2.36	25	2.38	25	1.69	18	2.07	22	Ī	30		30
			20	3.02	28	2.70	25	2.61	25	2.63	25	1.87	18	2.29	22		20		40
	50		10	3.30	28	2.94	24	2.85	24	2.87	24	2.04	17	2.50	21		10		50
					28		25		23		24		17		20	i			
2	0	10	0	3.58	27	3.19	24	3.08	23	3.11	23	2.21	17	2.70	21	4	0	8	0
	10	9	50	3.85	26	3.43	23	3.31	23	3.34	23	2.38	16	2.91	20	3	50		10
	20		40	4.11	25	3.66	22	3.54	21	3.57	22	2.54	15	3.11	19	l	40		20
	30		30	4.36	24	3.88	22	3.75	21	3.79	21	2.69	15	3.30	18		30		30
	40		20	4.60	23	4.10	21	3.96	20	4.00	21	2.84	14	3.48	18		20		40
	50		10	4.83	23	4.31	20	4.16	20	4.21	20	2.98	14	3.66	17		10	1	50
}	0	9	0	5.06		4.51		4:36		4.41		3.12		3.83		3	0	9	0
	10	-	50	5.27	21	4.70	19	4.55	19	4.59	18	3.26	14	3.99	16		50	1	10
	20	-	40	5.48	21	4.89	19	4.72	17	4.77	18	3.39	13	4.15	16	-	40		20
	30		30	5.69	21	5.06	17	4.89	17	4.94	17	3.51	12	4.30	15	1	30		30
	40		20	5.87	18	5.23	17	5.05	16	5.10	16	3.62	11	4.44	14		20		40
	50		10	6.04	17	5.38	15	5.20	15	5.25	15	3.73	11	4.57	13		10		50
					16		15		14		14		10		12				
ŀ	0	8	0	6.50	15	5.53	13	5.34	13	5.39	13	3.83	9	4.69	12	2	0	10	0
	10	7	50	6.32	14	5.66	13	5.47	12	5.52	12	3.92	9	4.81	10	1	50		10
	20		40	6.49	12	5.79	11	5.59	11	5.64	11	4.01	8	4.91	9		40		20
	30		30	6.61	11	5.90	10	5.70	9	5.75	10	4-09	7	5.00	9		30		30
	10		20	6.72	10	6.00	9	5.79	9	5.85	9	4.16	6	5.09	8		20		40
٠	50		10	6.82	9	6.09	8	5.88	7	5.94	7	4.22	5	5.17	6		10		50
,	0	7	0	6.91	8	6.17	6	5.95	7	6.01	6	4.27	5	5.23	6	1	0	11	0
	10	6	50	6.99	6	6.23	5	6.02	5	6.07	6	4.32	4	5.29	5	0	50		10
:	20		40	7.05	5	6.58	4	6.07	4	6.13	4	4.36	3	5.34	4		40		20
:	30		30	7.10	3	6.32	3	6.11	3	6.17	3	4.39	2	5.38	2		30		30
	10		20	7.13	2	6.35	2	6.14	2	6.50	2	4.41	1	5.40	1		20		40
	50		10	7.15	- 1	6.37	-	6.16		6.22		4.42		5.41			10		5 0
	0	6	0	7.16	1	6.38	1	6.17	1	6.23	1	4.42	0	5.42	1	0	0	12	0

Wenn $t>12^k$ sind T_a und T_b mit dem Argument $t=12^k$ und in beiden Fällen mit entgegengesetztem Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_a}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_b \sin \delta + T_b' \cos \delta)$.

	Argu für		Washin	ngton	Wi	en	Willian	nsbay	William	stown	Wine	lsor	Zür	ich			ment Tr
	-	-	0.74	02	0.81	50	0.7	725	0:75	736	0.68	51 _n	0.80	191		-	+
()-li	0m	124 Om	0"-00) 30	011-01	1 26	0#-00) 99	011-00	29	04-00	33	011-00	26	64	-	64.0
	10	11 50	0.30	30	0.26	25	0.29	28	0.29	28	0.33	20	0-26	26	5	50	10
	20	40	0.60	29	0.51	26	0.57	27	0.57	27	0.65	31	0.52	26		40	20
	30	30	0.89	30	0.77	25	0.84	28	0.84	28	0.96	31	0.78	25		30	30
	40	20	1.19	20	1.02	25	1.12	28	1.12	28	1.27	31	1.03	26		20	40
	50	10	1.48	29	1-27	25	1:40	28	1.40	28	1.58	31	1.29	25		10	50
1	0	11 0	1.77		1.52		1.68		1.68		1.89		1.54		5	0	7 0
	10	10 50	2:06	29	1.77	25	1.95	27	1.95	27	2.20	31	1.79	25	4	50	10
	20	40	2.35	29	2.01	24	2.22	27	2.22	27	2.51	31	2.04	25	l'i	40	20
	30	30	2.63	28	2.25	24	2:48	26	2:48	26	2.81	30	2.29	25		30	30
	40	20	2.90	27	2.49	24	2.73	25	2.73	25	3.10	29	3.50	24		20	40
		-	3.16	26	2.71	22	2.99	26	2.99	26	3.39	29	2.76	23		10	50
	50	10	9.10	27	2.11	22	2.33	25		25		28		22		10	
2	0	10 0	3.43	26	2.93	22	3.24	25	3.24	24	3.67	27	2.98	22	4	0	8 0
	10	9.50	3.69	25	3:15	22	3.49	23	3.48	23	3.94	27	3.20	99	3	50	10
	20	40	3.94	24	3.37	21	3.72	23	3.71	23	1.21	25	3.42	21		40	20
	30	30	4.18	23	3.58	20	3.95	22	3.94	22	1.46	25	3.63	21		30	30
	40	20	4:41	20	3.78	19	4.17	21	4.16	21	4.71	25	3.84	19		20	40
	50	10	4.63		3.97		4:38		4.37		4.96		4.03			10	50
3	0	9 0	4.85	22	4:16	19	4.58	50	4:57	20	5:19	23	1.22	19	3	0	9 0
O.			5.05	20	4.33	17	4.78	20	4.77	20	5:41	22	4.40	18	9	50	10
	10			20	1	16		19	4.96	19	5.62	21		17	-	40	20
	20	40	5.25	19	4.49	17	4.97	17	5:13	17	5.82	20	1:57	17		30	30
	30	30	5.44	18	4.66	15	5:14	17		17		19		15			
	40	20	5.62	17	4.81	14	5:31	16	5.30	16	6.01	17	4.89	14		20	40
	50	10	5.79	15	4.95	13	5:47	15	5.46	15	6.18	17	5.03	14		10	50
4	-0	8 0	5.94	14	5.08	13	5:62	14	5.61	14	6.32	16	5.17	12	2	0	10 0
	10	7.50	6.08	13	5.21	11	5:76	12	5.75	12	6.21	14	5.29	12	1	50	10
	20	40	6-21	12	5:32	11	5.88	11	5.87	11	6.62	13	5.41	10		40	20
	30	30	6:33	11	543	9	5.99	11	5.98	11	6.78	11	5.51	10		30	30
	40	20	6:44	10	5.52	8	6:10	9	6:09	9	6.89	10	5.61	9		20	40
	50	10	6:54	8	5.60	7	6:19	7	6.18	7	6.99	9	5.70	7		10	50
5	0	7 0	6.62	7	5:67	7	6.26	7	6.25	7	7.08	8	5.77	6	1	0	11 0
	10	6 50	6.69		5.74		6:33		6:32		7:16	6	5.83		0	50	10
	20	40	6.75	6	5.79	5	6.38	5	6:37	5	7.22		5.88	5		40	20
	30	30	6:80	5	5.83	4	6.42	4	6.41	4	7:27	5	5.92	4		30	30
	40	20	6.83	3	5.85	2	6:45	3	6:44	3	7:31	4	5.95	3		20	40
	50	10	6.85	2	5.87	2	6.47	2	6:46	2	7.33	2	5.97	2		10	50
				1		1		- 1		1		1		0			
G	0	6 0	6.86		5.88		6.48		6:47		7:34		5.97		0	0	12 0

Wenn $t>12^k$ sind T_a und T_b mit dem Argument $t=12^k$ und in beiden Fällen mit entgegengesetzten Vorzeichen zu nehmen.

Par. in
$$\alpha = \frac{T_{\alpha}}{\Delta \cos \delta}$$
 Par. in $\delta = \frac{1}{\Delta} (T_{\delta} \sin \delta + T_{\delta}' \cos \delta)$.

Tafel IV.

- 1) Anzahl der Tage vom Anfang des Jahres.
- Verwandlung der Decimaltheile des Tages in Stunden, Minuten, Secunden und umgekehrt.
- 3) Verwandlung der mittleren Zeit in Sternzeit.
- 4) Verwandlung der Sternzeit in mittlere Zeit.

1) Anzahl der Tage vom Anfang des Jahres.

		Gemeinjahr	Schaltjahr
Januar	0	0	0
Februar	0	31	31
März	0	59	60
April	0	90	91
Mai	0	120	121
Juni	0	151	152
Juli	0	181	182
August	0	212	213
September	0	243	244
October	0	273	274
November	0	304	305
December	0	334	335

2) Tafel zur Verwandlung der Decimaltheile des Tages in Stunden, Minuten, Secunden und umgekehrt.

					cehrt.	nge	d ı	u	ıden	un	ec	So					
				0.00			00	0		_	-						
		12:00	7"	50)r ·()()	()m	00		u () s	0"	1	124	00:50	a Oa	()#	04	00.00
		20.64	7	51	8-64	0	01		24	4	1	12	0.51	24	14	0	0.01
		29.28	7	52	-28	0 1	02		48	8	2	12	0.52	48	28	0	0.02
		37.92	7	53	.92	0 :	03		12	3	.5	12	0.53	12	43	0	0.03
		46.56	7	54	-56		04		36	7	1	12	0.54	36	57	0	0.04
		55.20	7	55	3.20		05		0	2	1	13	0.55	0	12	1	0.05
		3.84	8	56	-84		06		24	G	2	13	0.56	24	26	1	0.06
		12.48	8	57	148		07		48	0	4	13	0.57	48	40	1	0.07
		21.12	8	58	12	1	08		12	5	5	13	0.58	12	55	1	0.08
		29.76	8	59	.76		09		36	9		14	0.59	36	9	2	0.09
04-0000	_	20.40		an									0.00	0	24	2	0.10
0 0"-000		38.40	8	60	-40		10		0	4		14	0.60				0.10
1 0.864		47.04	8	61	:04		11		24	8		14	0.61	24	38	2	0.11
2 1.728		55.68	8	62	68		12		48	2		14	0.62	48	52 7	2	0.12
3 2.592		4.32	9	63	.32		13		12	7		15	0.63	12		3	0.13
4 3.456		12.96	9	64	96		14		36	1		15	0.64	36	21	3	0.14
5 4.320		21.60	9	6.5	.60	2	15		0	6		15	0.65	0	36	3	0.15
6 5.184		30.24	9	66	24		16		24	0		15	0.66	24	50	3	0.16
7 6.048	7	38.88	9	67	88	-	17		48	4		16	0.67	48	4	4	0.17
8 6.912	8	47.52	9	68	r52		18		12	9		16	0.68	12	19	4	0.18
9 7.776	9	56.16	9	69	16	2 4	19		36	3	3	16	0.69	36	33	4	0.19
		4.80	10	70	.80	2 5	20		0	8	4	16	0.70	0	48	4	0.20
		13.44	10	71	.44	3	21		24	2		17	0.71	24	2	5	0.21
		22.08	10	72	0.08	3 1	22		48	6	1	17	0.72	48	16	5	0.22
		30.72	10	73	.72		23		12	1	2	17	0.73	12	31	5	0.23
		39.36	10	74	-36		24		36	5	.9	17	0.74	36	45	5	0.24
		48.00	10	75	00		25		0	0		18	0.75	0	0	G	0.25
		56.64	10	76	-64		26		24	4	1	18	0.76	24	14	6	0.26
		5.28	11	77	-28		27		48	8	-	18	0.77	48	28	6	0.27
		13.92	11	78	.92	4	28		12	3	4	18	0.78	12	43	6	0.28
		22.56	11	79	1.56	4 1	29		36	7	ā	18	0.79	36	57	6	0.29
04-0000										ā			0.00				0.00
0 0"-000	0	31.20	11	80	20		30		0	2		19	0.80	0	12	7	0.30
1 0.0864		39.84	11	81	.84		31		24	6		19	0.81	24	26	7	0.31
2 0.1728	2	48.48	11	82	48	-	32		48	0		19	0.82	48	40	7	0.32
3 0.2592	3	57:12	11	83	-12		33		12	5		19	0.83	12	55	7	0.33
4 0.3456		5.76	12	84	76		34		36	9		20	0.84	36	9	8	0.34
5 0.4320	5	14:40	12	85	40)	35		0		2	20	0.85	0	24	8	0.35
6 0.5184		23.04	12	86	.04		36		24	8		20	0.86	24	38	8	0.36
7 0.6048	7	31.68	12	87	168		37		48	2		20	0.87	48	52	8	0.37
8 0.6912	8	40.32	12	88	3-32		38		12	7		21	0.88	12	7	9	0.38
9 0.7776	9	48.96	12	89	196	5 8	39		36	1	2	21	0.89	36	21	9	0.39
		57:60	12	90	60	5 4	40		0	6	2	21	0.90	0	36	9	0.40
		6.24	13	91	.24		11		24	()		21	0.91	24	50	9	0.41
		14.88	13	92	-88	6	12		48	4		22	0.92	48	4	10	0.42
		23.52	13	93	.52		43		12	9		22	0.93	12	19	10	0.43
		32.16	13	94	-16		44		36	3		22	0.94	36	33	10	0.44
		40.80	13	95	80		45		0	8		1 22	0.95	0	48	10	0.45
		49.44	13	96	-44		46		24	2	•	23	0.96	24	2	11	0.46
		58.08	13	97	-08		17		48	6	-1	23	0.97	48	16	11	0.47
		6.72	14	98	.72		18		12	1		23	0.98	12	31	11	0.48
		15.36	14		36	7	19		36	5		23	0.99		45	11	0:49

digration of Google

3) Tafel zur Verwandlung der mittleren Zeit in Sternzeit.

	Ta	fel 1							afel 2					Tafel	3
Red. :		Mittl	. 2	Zeit	Red.auf Sternzt.	Mittl.	Zeit	Red.auf Sternzt.	Mittl.	Zeit	Red.auf Sternzt.	Mittl.	Zeit	Red. auf Sternzeit	M. Zt.
-()vn	()4	04	()#	4 ()5	+0.0	(),,	()s	+45.0	24m	214	+8:0	48"	425	+0=01	Om 4.
0	10	1		52	0.1		37	4.1	24	58	8.1	49	19	0.02	0 7
0	20	2	1	45	0.2	1	13	4.2	25	34	8.2	49	55	0.03	0 11
0 :	30	3	2	37	0.3	1	50	4.3	26	11	8.3	50	32	0.04	0 15
0	40	4	3	30	0.4	2	26	4.4	26	47	8.4	51	8	0.05	0 18
0 3	50	5	4	22	0.5	3	3	4.5	27	24	8:5	51	4.5	0.06	0 22
					0.6	3	39	4:6	28	0	8.6	52	21	0.07	0 26
+1	Ō	6	5	15	0.7	4	16	4.7	28	37	8.7	52	58	0.08	0 29
	10	7	6	7	0.8	4	52	4.8	29	13	8.8	53	34	0.09	0 33
1 :	20	8	6	59	0.9	5	29	4.9	29	50	8.9	54	11	0.10	0 37
1	30	9	7	52							8				
1	40	10	8	44	+1.0	6	5	+5.0	30	26	+9.0	54	47		
1 3	50	11	9	37	1.1	6	42	5.1	31	3	9.1	55	24		
					1.2	7	18	5.2	31	39	9.2	56	0		1
+2	0	12 1	0	29	1.3	7	55	5.3	32	16	9.3	56	37		
2	10	13 1	Î	21	1.4	8	31	5.4	32	52	9.4	57	13		
2	20	14 1	2	14	1.5	9	8	5.5	33	29	9.5	57	50		
2 :	30	15 1	3	6	1.6	9	44	5.6	34	5	9.6	58	26		1
2 .	40	16 1	3	59	1.7	10	21	5.7	34	42	9.7	59	3		
2	50	17 1	4	51	1.8	10	57	5.8	35	18	9.8	59	39		
					1.9	11	34	5.9	35	55	9-9	60	1 G		
+3	0	18 I	5	44							1				-
3	10	19 1	6	36	+2.0	12	10	+6.0	36	31	1	:			
3	20	20 1	7	28	2.1	12	47	6.1	37	8					
3	30	21 1	8	21	2.2	13	23	6.2	37	44		i			İ
3 .	40	22 1		13	2.3	14	0	6.3	38	21	9	į			
3	50	23 2	U.	6	2.4	14	36	6.4	38	57		1			
					2.5	15	13	6.5	39	34		1			
1-1	0	24 2	0	58	2.6	15	49	6.6	40	10	i				
					2.7	16	26	6.7	40	47		ĺ			
					2.8	17	2	6.8	41	23	v.				1
					2.9	17	39	6.9	42	0	1				
					+30	18	16	+7.0	42	37					
					3.1	18	53	7.1	43	14					
					3.2	19	29	7.2	43	50	1				
					3.3	20	6	7.3	44	27	il i				1
					3.4	20	42	7.4	45	3					
		İ			3.5	21	19	7.5	45 .	40					
					3.6	21	55	7.6	46						
					3.7	22	32	7.7	46	53					
					3.8	23	8	7.8	47	29	J				
		1			3.9	23	45	7.9	48	6					

4) Tafel zur Verwandlung der Sternzeit in mittlere Zeit.

Ta	fel l					Т	afel :	2				Tafel	3	
Red. auf M. Zt.	Sterr	zeit	Red.auf M. Zt.	Ste	rnzeit	Red auf M. Zt.	Ster	nzeit	Red,auf M. Zt.	Ste	rnzeit	Red. auf M. Zt.	St	ernz
-0m 0s	04 0	m ()s	01·0	()	n ()s	-4:0	24m	25s	-81.0	48	50s	-0r·01	0	· 4
0 10	1 1	2	0.1	-0	37	4.1	25	2	8.1	49	27	0.02	0	7
0 20	2 2	5	0.2	1	13	4.2	25	38	8.2	50	3	0.03	0	11
0.30	3 3	7	0.3	1	50	4.3	26	15	8.3	50	40	0.04	0	15
0.40	4 4	10	0.4	2	26	4.4	26	51	8:4	51	16	0.05	0	18
0.50	5 5	12	0.5	3	3	4.5	27	28	8.5	51	53	0.06	0	22
			0.6	3	40	4.6	28	5	8.6	52	30	0.07	0	26
-1 0	6 6	15	0.7	4	16	4.7	28	41	8.7	53	6	0.08	0	29
1 10	7 7	17	0.8	4	53	4.8	29	18	8.8	53	43	0.09	0	33
1 20	8 8	19	0.9	5	30	4.9	29	55	8.9	54	20	0.10	0	37
1 30	9 9	22												
1 40	10 10	24	-10	6	6	-5.0	30	31	-90	54	56			
1 50	11 11	27	1.1	6	43	5.1	31	8	9.1	55	33			
			1.2	7	19	5.2	31	44	9.2	56	9	-		
-2 0	12 12	29	1.3	7	56	5.3	32	21	9.3	56	46			
2 10	13 13	31	1.4	8	32	5.4	32	57	9.4	57	22			
2 20	14 14	34	1.5	9	9	5.5	33	34	9.5	57	59		1	
2 30	15 15	36	1.6	9	46	5.6	34	11	9.6	58	36			
2 40	16 16	39	1.7	10	22	5.7	34	47	9.7	59	12			
2 50	17 17	41	1.8	10	59	5.8	35	24	9.8	59	49		1	
			1.9	11	36	5.9	36	1	9.9	60	26	1		
-3 0	18 18													
3 10	19 19		-2.0	12	12	-6.0	36	37						
3 20	20 20	48	2.1	12	49	6.1	37	14						
3 30	21 21		2.2	13	25	6.2	37	50					1	
3 40	22 22		2.3	14	2	6.3	38	27				lj a		
3 50	23 23	56	2.4	14	38	6.4	39	3	1					
			2.5	15	15	6.5	39	40						
-4 0	24 24	58	2.6	15	52	6.6	40	17						
			2.7	16	28	6.7	4()	53						
			2.8	17	5	6.8	41	30						
			2.9	17	42	6.9	42	7	1 1					
									1 1			t		
			-30	18	19	-7.0	42	44	1 6					
			3.1	18	56	7.1	43	21						
			3.2	19	32	7.2	43	57						
			3.3	20	9	7.3	44	34						
			3.4	20	4.5	7.4	45	10						
			3.5	21	22	7.5	45	47						
			3.6	21	59	7.6	46	24			4			
			3.7	22	35	7.7	47	0			3			
			3.8	23	12	7.8	47	37			1			
			3.9	23	49	7.9	48	14	1		- 1			

Tafel V.

Tafeln zur Reduction der Circummeridianhöhen.

a: von $t = 0^m$ bis $t = 20^m$ $m = 2 R \sin^2 \frac{1}{2} t$ $n = 2 R \sin^4 \frac{1}{2} t$ b: von $t = 0^m$ bis $t = 60^m$ $\log m = \log 2 R \sin^4 \frac{1}{2} t$ $\log n = \log 2 R \sin^4 \frac{1}{4} t$ ()s 0"-00

1 0.00

2 0.00

3 0.00

()m

1 111

1".96 7

7

2.03

2.10

2.16

m = 2	R sin	2 1 1
-------	-------	-------

311

17".67 20

17.87 20

18:07 20

18:27

2111

7".85 13

7:98 14

8-12 13

8.25

R = 206264.8

70"-68 39

40

71.07

71.47

71.86

5м

49".09 32

49.41 33

33

49.74

50.07

4m

31"-42 26

31·68 26 31·94 26

32.20 27

3	0.00	2.16 7	8.2	5 14	18:27	0 32	20 27	50.07	33 7	1.86 40
4	0.01	2.23 8	8.3	9 13		0 32	47 27		33 7	2.26 40
5	0.01	2.31 7		2 14		0 32	74 27		34 7:	2.66 40
6	0.02	2.38 7		6 14	10.07	0 33	$01 \frac{27}{26}$		33 7	2-4 M:
7	0.02	2.45 7	8.8	()	10.07	22.2	27 27		34 7	3.46 40
8	0.03	2.52 8	8.9	14		33			33 7	3.86 40
9	0.04	2.60	9.0	8 14	19.48	0 33	81 27	52.07	7	1.26 40
		7		14		1	28		34	40
10	0.05	2.67 8	9.2	2 14	19.69	1 34	09 27	52.41	34 7-	4.66 40
11	0.06	2.75 8	0.9	6 14		1 34	36 28		34 7.	5.06 41
12	0.08	2.83		0 14	·M)-11	34	64 27		34 7	5.47 41
13	0.09	2.91 8	0.0	4 15		1 34	91 28		34 7	5.88 41
14	0.11	2.99 8		9 15		35	19 27		34 7	6.29 40
15	0.12	9.07	9-9	1	-20-74	25	4.0		35 7	2.69
16	0.14	3.15	10.0	0 19		35	74 28	24.40		7-10 41
17	0.16	9.09	10.2	4 10		36	02 28		3-1	7.51 41
18	0.18	9.90	10.0	6 15	31.20	36	30 28	****	0.7	7.09
19	0.20	3.40	10.5		21.60	2 36	28	55.50		8:34 41
		9		15		2	29		34	41
20	0.22	3.49 9	10.6	9 15	21.82	36	87 28	55.84	35 7	8.75
21	0.24	3.58 9	10.8	4 16	110.00	2 37	15 29			0.16 41
22	0.26	3.67 9	11.0	0 10	.).)).	37	4.4		36	9.58 42
23	0.28	3.76 9	11.1	5 10	-)-)-47	2 37	72 28		3.)	0.00 42
24	0.31	2.00	11.0	1 16		38	01 29		3.)	1-19 42
25	0.34	9.04	11:4	7 10	22.00	2 90.	20 29	55.00	30	104 42
26	0.37	1.00	11.6	0 10	39.14	2 20.	29	57,00	96	1.00 42
27	0.40	4.10	11.7	0 10	49.97	0 90	00 20	50.90	00	1.09 42
28	0.43	1.00	11.9	5 10	22.00	3 90	1 - 20	50.00	00	1.10 42
29	0.46	4.32 10	12.1	10	23.82	2 39	.,,,	59.03	3.)	2.52 42
20	0.0	10		16		3	30		36	43
30	0.49	4.42	12.2		24.05	39	76	59.39		2.95
	-			n = 2	R sin 4 1	t		R =	= 20620	
CARLE TO	9							_	1-7-	
()4				- 1	04.00		0"-002	0":00		0"-012
10				i	0.001	1	0.003	0.008		0.013
20					0.005	- 1)-003	0.009		0.015
30	<u> </u>				0.002	_	0-004	0.010		0.016
				Pro	portional	theile				
	27	28	29	30	31	32	33	34	35	36
1	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6
2	5.4	5.6	5.8	6.0	6.2	6.4	6.6	6.8	7.0	7.2
3	8.1	8.4	8.7	9.0	9.3	9.6	9.9	10-2	10.5	10-8
4	10.8	11.2	11.6	12.0	12.4	12.8	13.2	13.6	14.0	14.4
5	13.2	14.0	14:5	15.0	15.5	16.0	16.5	17:0	17:5	18:0
6	16.2	16.8	17-4	18:0	18.6	19.2	19.8	20.4	21.0	21.6
7	18.9	19.6	20.3	21.0	21.7	22.4	23.1	23.8	24.5	25.2
8	21.6	22.4	23.2	24.0	24.8	25.6	26.4	27.2	28.0	28.8
9	24.3	25.2	26.1	27.0	27.9	28.8	29.7	30.6	31.5	32.4
				,	1		'			renormy G

				m=2	K stn' 1	,		R =	20620	54.8
1	()m	1111		2m	3m		4 <i>m</i>	5m		6 <i>m</i>
30±	0".49	4".42	0 12	27 16	24"05	3 39	"·76 ₂₉	59"-39	36 8	2".95 43
31	0.52	4.50		43 17	04.00		$05 \frac{29}{30}$	50.75	0	9.90
32	0.56	4 . (3.)	0 12	2:60 16		3 40	95	60.11	36 8	3.81
33	0.59		0 12	-76	34.74	10	00	60.47	90	1.02 42
34	0.63	4.89	19	.02	34.00	10	05	60.84	01	1.00 40
35	0.67	4.00	0 12	10 17	35.01	0 11	35 30	61.20	90	5,00 40
36	0.71	5-02	.1	11	35.45	9 1 41	00	61.57	01	5.50 40
37	0.75	5.12	12	11	05.00	11	05 00	61.94	91 0	5.05 40
38	0.79	5-24	1 19	.09	25.00	40	15 00		01	44
39	0.83	5.34	V I	1 (1 2			62.31	01	6.39 43
		1	1	17	1	42	31	62.68	37	6.82
40	0.87	5.45	1	17	26.40 2	4 42	30	63.05	37 8	7.26 44
41	0.91	5.56	1 14	13 18		4 43	06 31	63.42	37 8	7.70 44
12	0.96	5.67	1 14	31 18		4 43	37 31	63.79	37 8	8.14 43
43	1.01	5.70	2 14	149 18	07.10	5 43	68 31	64.16	38 8	8.57 44
1.4	1.06	5.00	1 14	67 18		4 43	99 31	64.54	37 8	0.01
45	1.10	C-O1	2 14	85 18	95.61	5 44	30 31	64.91	01 0	0.45
46	1.15	6.19		-02	27.90		.01	65.29	90	0.00 44
47	1.20	C - 9.4	1 15	.01	28.10	4.4	16 60	65.67	90	0.99 44
18	1.26	c.2c 1	1.5	.20 10	99.25 2	105	.02	66.05	00 0	0.79
49	1.31	6:48		557 18	28.60		55 31	66.43	00	1.23
	1 01		2	19		5 49	32	00 40	38	45
50	1.36	6.60	a 15	76 10	30.05	1 45	87	66.81	0	1 00
51	1.42	0.79	1.5	.05 19	20.10	10	16 01	67:19	38	0.10 44
52	1.48	6.94	2 16	-11	20.20	10	50 52	67.58	99	9.57
53	1.53	c.0c 1	2 10	.20 18	20.01	10	.00 02	67:96	99 6	9.00 40
54	1.59	7.00	0 10	43	20.00	17	1.1 32	68.35	99	9.47 40
55	1.65	7.01	2 10	10	20.10	47			99	4.0
56	1.71	7:34					46 33	68.73	93	3.92 46
	11		0 1	19	30.38 2	.0	79 32	69.12		4.38 45
57	1.77	7.47	0	08 20	30.64	6 48	- 52	69.51	59	4.83 46
58	1.83	7:60		28 19	30.90 2		43 33	69.90		5.29 45
59	1.89	7.72		47	31.16		76	70.29	9	5.44
20			3	20		26	33		39	46
60	1.96	7.85	17	1.67	31.42	-	09	70.68		6.50
or the sec			-	-	R sin4 1			R =	= 2062	64.8
30s				000-000	0".002		0004	0".01	0	0.4016
40				0:001	0.002	(0005	0.011		0.018
50				0.001	0.002	(1006	0.012		0.050
30				0.001	0.002	(007	0.012		0.022
		7.00		-	portional	theile				
	37	38	39	40	41	42	43	44	45	46
1	3.7	3.8	3.9	4.0	4.1	4.2	4.3	4.4	4.5	4.6
2	7.4	7.6	7.8	8.0	8.2	8.4	8.6	8.8	9.0	9.2
3	11.1	11.4	11.7	12.0	12.3	12.6	12.9	13.2	13.5	13.8
4	14.8	15.2	15.6	16.0	16.4	16.8	17.2	17:6	18.0	18.4
5	18:5	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0
6	22.2	22.8	23.4	24.0	24.6	25.2	25.8	26.4	27.0	27.6
7	25.9	26.6	27.3	28.0	28.7	29.4	30.1	30.8	31.5	32.2
	29.6	30.4	31.2	32.0	32.8	33.6	34.4	35.2	36.0	36.8
8										

1()m

11m

911

8m

130

12m

Os	96"	20 46	125"	65 52	159"	02 59	196"	·32 63	. 23	7".54	72	282"6	8 79	331"-7	4 85
1	96.6	r 41	100.	17 .72	159.6	. 39	196:		00	8.26		283-47	Ci	332-59	3.
2	97:1	.) 40	1000	00	160-2	0 99	197-6	19 61	, ,,,	8.98	72	284-26	79	383-44	8.3
3	97.5	8 40	1.074	52	160-8	60	198:	13 63	1 22	9.70	72 72	285.04	78	324-29	85
4	98:0	4 41	197.	99	161.3	0 99	1985	()(2	0.42	72	285-83	79 79	335-15	(71)
5	98.5	0 41	1900		161-9	6 99	199-6			1.14	73	286.62	79	336-00)
G	98-9	~ **	100.	99	162.5	6 60	200:		1 34	1.87	73	287.41	79	336-86	
7	99.4	3 40	1 1000	53	163-1	59	200-9	1.1	1 .14	2.60		288-20		337-72	(31)
8	99-9	0 41		53	163.7	60	201	69 66	-0.4	3.33	73 73	289.00	80	338:58	241
9	100-3	7 47	130		164:3	7 60	202"		24	4.06	(3	289.79	79	339-44	86
		47		54		60		67	7		73		79		86
10	100.8	4 47	130:	14 53	164.9	7 60	202:9	02 66	: 24	4.79	73	290.58	80	340.30	86
11	101.3	1 47		17 54	165.5	60	203:	8 6	3.4	5.52	73	291.38	80	341.10	86
12	101.7	8 47	1904	01 54	166-1	7 60	204%	25 6	3.4	6.25	73	292.18	80	342-02	86
13	102.2	5 47	1 2 2 1	55 54	166.7	7 60	204:9	02 6		6.98	74	292-98	80	342.88	87
14	102.7	2 48	1334	09 54	167:3	7 60	205%	63		7.72	73	293.78	80	343.75	87
15	103.2	0 47		33 54	167-9	7 61	206:2	26 6	-3.4	8.45	74	294:58	80	344.62	87
16	103.6	7 45		17 54	168.5	8 61	206:	03 63	-2.4	9.19	74	295.38	80	345.49	87
17	104-1	5 48	1 194.	71 54	169.1	9 61	2074	6	.2.4	9.93	74	296.18	81	346.36	87
18	104.6	3 47		25 55	169.8	0 61	208:	27 6		0.67	74	296.99	80	347-23	87
19	105.1	()	135	30	170-4	1	208:9	1-1	25	1.41	1	297:79		348-10	1
1		48	1	54		61		- 68			74		81		87
20	105.5		136-		171.0	111	209-6	110		2.15	74	298.60	80	348-97	21
21	106.0	44.3	1363		171.6		210:			2.89	74	299.40	81	349.84	
22	106-5	4.5	137	(1.1)	172.2	101	210:9	100		3.63	74	300-21	81	350.71	2.4
23	107.0		137:		172.8	0.2	211.0			4.37	75	301.02	81	351:58	
21	1075		138%	(1)	173.4	0.1	2124	137		5.12	75	301.83	81	352-46	22
25	107:9		1394	33	174.0	0.2	213.0	100	`	5.87	75	302-64	82	353.84	00
26	108-4	43	139-0	99	174.7	62	213.7	100		6.62	75.	303.46	81	354-22	40
27	108.9	40.7	140	(10)	175.3	0.2	2144	();		7:37	75	304-27	82	355.10	0.0
28	109:4	18.7	140.		175.9		2150			8.12	75	305.09	81	355-98	
29	109-9	49	141:	56	176.5	62	215-7	6!		8.87	75	305.90	82	356.86	88
30	110:4		1413		177-1		216-4			9.62	1.7	306.72	02	357:74	
- 130	1104	-	1 141			-			2.,	-	-				-
					n =	2 K st	n4 1 1					R =	206	264 8	
()-	0"	022	0"	038	0".	061	0"	.093	1	0".13		0"-1	14	0".2	67
10	0.0	24	0.0)41	0.0	66	0.0	999	()·146		0.50	5	0.58	1
30	0:0	26	0.0	145	0.0		0.1	106	1 (0.155		0.21	7	0.29	6
30	0.0	29	04)49	0:0	76	0.1	113	()·164		0.22	9	0.31	1
	-				Pr	oport	tionalt	heile							
	46	47	48	49	50	51	52	53	54	55	17,	56 58	60	62	64
	4:6	4.7	4.8	4.9	5.0	5.1	52	5.3	5.4	5.5		6 5.8	6.0	_	6:4
1	9-2	9.4	9.6	9.8	10.0	10.2	10:4	10.6	10.8	11:0	11		12.0	1	12.8
2 3	13.8	14.1	14.4	14.7	15.0	15:3	15.6	15.9	16.2	16.5	16		18-0	1	19-2
	184	18.8	19-2	19:6	20.0	20.4	20.8	21.2	21.6	4			24.0		25.6
4										1	1		1		
)	23:0	23.5	24.0	24.5	25.0	25.5	26:0	26.5	27.0	27.5	28	0 29.0	30.0	31.0	32.0
(i	27.6	28-2	28.8	29.4	30.0	30.6	31.2	31.8	1	1		6 34.8	36.0	37.2	38-4
4	32-2	32.9	33.6	34.3	35.0	35.7	36.4	37.1	37.8	4	1	2 40.6		43.4	
4	3628	37.6	38.4	39.2	40.0	40.8	41.6	424	43.2	44 (14	8 46-4	48.0	49.6	512
	1111	12.3	48-2	44.1	45.0	45.9	46.8	47-7	48.6	49.5	50	4 52.2	54.0	55.8	57.6

							2 -							
1	7	***	84	4	9	11	10	24	114	n	12"	4	13	APP
30±	1104	14 10	141"	55 55	177"	18 62	216"4	4 68	2594-6	2 75	306"-7	2 89	357***	74 s
31	110.9	3 50	142.40	56	177:8		217:12	69	260.37	75	307:54	82	358.6:	
32	111:4	3 49	142.90	56	178:4	3 62	217:81	69	261-12	76	308:36	82	359.5	1 ,
33	111.9	4.7	143:5:)	179.0		218:50	69	261.88	76	209.18	82	360-39	9 8
34	1124	9.7	144-08	, 96	179.6	8 63	219.19	1	262-64		310.00	82	361:28	$s = \frac{\epsilon}{s}$
35	112-9	4.7	144.6	96	180.3	0.2	219.88	63	263:39	(0)	310.82	1	362-1	7 '
36	113.40	0 .00	145:20	90	180-9	00	220.58	, 10	264.15	10	311.65	83	363.0	٠,
37	113-9	0.00	145.70	, 00	1815	, 110	221-27	. 4.7	264.91	10	312:47	82	363-9	
38	114:40	1 30	146.33	, 01	182.1	60	221.97		265.68	11	313:30	83	364.83	
39	114.9	.)()	146.85	.20	182.8		222.60	1077	266:44	40	314-12	82	365-7	
33	114 5	50	140 0.	57	1020	64	2-2 170	70	2007	76	01112	83	0.70	
40	115:4	0	147:40		183.4		223.30		267:20		314-95		366-6-	4 ,
41	115:9	00	148.03	, 94	184.0	tio:	224.00	. 10	267:96	46	315.78	83	367-53	9
42	116:4	0.00	148-60	1 94	184-7	0 00	224.70	, 10	268.73	6 6	316-61	88	368-4:	
43	116.9	0 30	149.1	7 31	185:3	(11)	225-40	. 10	269:49	40	317:44	83	369-3	1 (
44	1174	1 91	149.7	. 36	185.9	0 64	226:16	, 10	270.26	441	318-27	83	370-2	1
45	117.9	2 21	150.3	1 31	186.6	11.4	226.86	107	271:02	10	319-10	83	371.1	, ;
46	118.4	9 01	150.8	01	187-2	- 04	227.51	, 11	271.79	11	319.94	94	372.0	. '
47	118-9	4 91	151.4	. 01	187-9	1 04	228-27	. 10	272.56		320.78	84	372.9	. '
48	119-4	. 91	152.03	3 99	188.5	19.4	228-98	, (1	273:34	(0)	321.62	24	373-8	. '
49	119.9	.71	152.6		189-1	0.4	229-68	(1)	274-11	6.61	322.45	83	374.7	
4.5	1100	51	102 0	58	1001	64	-2.0	71	21711	77	0 10	84	0111	-
50	120:4	7	153:13)	189.8	3	230.39		274.88	77	323-29	0.1	375.6	2
51	120.9	0 01	153.7	- 00	190:4	7 04	231.10	(1)	275.65	11	324.13	94	376.5	2
52	121.4	0 91	154:3	. 38	191-1	65	231.81	71	276:43		324.97	84	377.4	3
53	122.0	. 02	154:93	2 99	191:7	c U+	232.5:	, (1)	277-20	44	325.81	94	378-3	4
54	122.5	0 02	155.5	1 .10	192.4	1 11.0	233-2	12	277.98	(9)	326-66	85	379-2	6
55	123.0	. 02	156:0	90	193.0	00	233-93	. (1	278-76	10	327:50	0.4	380.1	- 1
56	1235	_ 34	156.6	7 00	193.7	00	234.63	. (2	279.55	. (9)	328-35	00	381.0	8
57	124.0	0 92	157-2	,0	194.3	6 119	235:38	, 11	280.33	10	329-19	0.9	381.9	0
58	124.6	. 52	157.8	1 99	195.0	0.0	236-16	12	281-12	(3)	330 04	(3.)	382-9	ο '
59	125:1	- 52	158:4		195.6	(1.)	236.8:	12	281.90	15	330-89	85	383.8	2
0.		52		59		- 66		72		78		85		- !
60	125.6	5	159.0	2	196-3	2	237-5	1	282.68		331.74		384.7	4
					n =	2 R si	$n^4 \frac{1}{2} t$				R =	206	264.8	
30±	011.	029	0.44	049	0"	076	0 4	113	0".1	64	0'"	229	0".	311
40	0.0	32	0.0	53	0:0	81	0.1:	21	0.17	4	0.2	11	0.3	27
50	0.0	35	0.0	57	0.0	87	0.1:	29	0.18	4	0.23	54	0.3	43
60	0.0	38	0.0	61	0.0	93	0.13	37	0.19	4	0.20	67	0.3	59
					P	oport	ionalth	reile						
	66	68	70	72	74	76	78	80	82	84	86	88	90	
1	6.6	6.8	7:0	7.2	7.4	7.6	7.8	8.0	8.2	8.4	8.6	8.8	9.0	1
2	13.2	13.6	14.0	14.4	14.8	15.2	15.6	16.0	16.4	16.8	17:2	17.6	18.0	18
3	19.8	20.4	210	21.6	22.2	22.8	23.4	24.0	24.6	25.2	25.8	26.4	27:0	27
4	26.4	27.2	28.0	28.8	29.6	30.4	31.2	32.0	32.8	33.6	34.4	35.2	36.0	30
5	33.0	34.0	35.0	36.0	37.0	38.0	39.0	40-0	41.0	420	43.0	44.0	45.0	40
6	39.6	40.8	42.0	43-2	44.1	45.6	46.8	480	49-2	50:4	51.6	52.8	54.0	5:
7	46.2	47.6	49.0	50-4	51.8	53.2	54.6	56.0	57.4	58.8	60-2	61.6	63.0	64
			1			44.4					100.00	-0.4		-
8	52.8	54.4	56.0	57.6	59.2	60.8	62.4	64.0	65.6	67.2	68.8	70.4	72.0	75

1	14m			15m		16*	4	1	7111		18m		19*	r
()s	384"-74	۱.,	441	··63		502**46	101	567"	19	63	5".85		708"-4:	2
1	385.65	91	442	en '	131	503:50	104	568-3	0 11.	Ca	7.(10)	117	709-66	154
2	386.56	91	443	eo :	10	504.55	105	569.4	9 112	62	2.90	118	710-90	124
3	387:48	92	444		10	505.60	105	570-5	9 111	69	0.90	118	712-15	125
4	388-40	92	445	5e :	18	506.65	105	571.6	. 11:	0.4	0.50	118	713-39	124
5	389-32	92	446		139	507:70	105	572-7	0 11.	CI	1.74	118	714.64	125
6	390-24	92	447	5.4	33	508.76	106	573.8	0 112	0.4	9.09	119	715-89	125
7	391.16	92	448	.50	10	509-81	105	575-0	() 11.	0.4	4.11	118	717-14	125
8	392-09	93	449		18	510.86	105	576.1	9 112	CI	5.90	119	718:39	125
9	393.01	92	450		329 I	511.92	106	577-2	117	. 1	6.48	118	719-64	125
3	000001	93	4.70		00	011 02	106	0112	11:			119	110 104	125
10	393.94	0.3	451	50		512.98	1775	578-3	c	2.4	7.07	1	720.89	
11	394.86	92	452	.10	127	514.03	105	579.4	0 11:	C 4	0.00	119	722:15	126
12	395.79	93	453	400	137	515.09	106	580.0	, 114	er.	0.05	119	723-40	125
13	396.72	93	454	. 10	χ,	516.15	106	581.7	9 11:	2 00	1.01	119	724.66	126
14	397:65	93	455	4-	19	517:21	106	582.8	e 110	07	0.12	119	725.91	125
15	398-58	93	456	47 1	Α,	518-27	106	583-9	0 114	0 00	2.00	119	727-17	126
- 16	399.52	94	457	47	N)	519-34	107	585.1	3 114	0 05	4.00	120	728-43	126
17	400:45	93	458	17	11.5	520.40	106	586-2	5 110	417	0.01	119	729:30	126
18	401.38	93	459	47 1	H.F	521.47	107	587-8	110	00	7.01	120	730-95	126
19	402.32	94	460		R)	522.53	106	588:5			8.40	119	732-21	126
1.0	402 02	94	100		00	022 00	107	1,000	113			120		127
20	403.26		461	47		523.60	107	589-6		100	0.00		733.48	
21	404.20	94	462	. 10	01	524.67	107	590.7	- 114			120	734:74	126
22	405.14	94	463	.10	10	525.74		591.9	111	220	·)./W)	120	736.01	127
23	406.08	94	464	10	AT	526.81	107	593.0	5 11	ec.	910	120	737-27	126
24	407:02	94	465	.40	"1	527.89	108	594-1	0 110	3 100	1.40	120	738:54	127
25	407.96	94	466	51)	71	528-96	107	595.3	9 11.	0.0	5.01	121	739-81	127
26	408-90	94	467	. 21	"1	530.03	107	596.4	, 11.	CC	2.01	120	741.08	127
27	409.84	94	468	.50 11	71	531-11	108	597.6	11.	ce	0.00	121	742.35	127
28	410.79	95	469	.29	"	532-18	107	598-7	4 11.	CC	(1).)	120	743-62	127
29	411.73	94	470			533-26	108	599-8	1.13		0.43	121	744.89	127
		95		10			107		113			121		128
30	412.68		471	55		534:33		601:0	3	67	1.64		746.17	
					n =	2 R si	n4 1 1				R	= 20	6264.8	
():	0".35	0	1	0"478		0".(-		··780	1	0"-98	a) [1"	216
10	0.376		1	0.495		0:68			811		1.010		1.2	
20	0.394		2	0.517		0.00			843	i	1.054		1:30	
30	0.413			0.540		0.69			876		1.093		1.3	
	OTIC	_		0 0 10		-						-		
						, tobot						-	-	
1		14	96	98	100		104	106	108	110		114	116	118
1 1	9.2 9		9.6	9.8	10.0	10.2	10-4	10.6	10.8	11.0	11.2	11.4	11.6	11.8
2	18:4 18:		19.2	19.6	20.0	20.4	20.8	51.5	21.6	22.0	22.4	22.8	23-2	23.6
3	27.6 28		28-8	29.4	30:0	30%	31.2	31.8	32.4	33.0	33.6	34.2	34.8	35-4
4 1	36.8 37	·6 8	38-4	39.2	40.0	40.8	41.6	42.4	43.2	44.0	44.8	45.6		47-2
5	46-0 47	0 4	18:0	49.0	50.0	51.0	52.0	53.0	54.0	55.0	56.0	57.0	58-0	-59-0
6	55.2 56	4 8	57-6	58.8	60:0	61.2	62.4	63.6	64·8	66.0	67-2	68.4	69.6	170.8
7	64.4 65	8 (37.2	68-6	70.0	71.4	72.8	74.2	75.6	77-0	78-4	79.8	81.2	82.6
8	73-6 75	2 7	76·8	78.4	80-0	81.6	83.2	84.8	86.4	88.0	89.6	91.2	92.8	94.4
9	82.8 84	·6 8	36.4	88.2	90-0	91.8	93.6	95.4	97.2	99-0	100-8	102 6	104.4	10G-2
												2.0		

1	14	я	15"	. 1	16m	2	17m	T	18**	T	19"	
	-	-	***************************************	-			2014.03		0714.01	-	-	
30s 31	412***6		471":55	102	534"·33 535·41	100	601"·02 602·17	115		121	746"·17	124
32	414-5	36	473.58	101	536.50	109	603-32	115	C74:0C	121	748-72	128
33	415.5	90	474.60	102	537.58	108	604.47	115	075.00	122	750.00	128
34	416.4	0 99	475.62	102	538-67	109	605-61	114	070.10	121	751.28	128
35	417.4	90	476.64	102	539.75	108	606·76	115	077.70	121	752.56	128
36	418-4	30	477.65	101	540.83	108	607:91	115	070.00	122	753.84	128
37	419.3	5 90	478-67	102	541.91	108	609.06	115	cen-19	121	755-12	128
38	420-3	1 276	479.70	103	543.00	109	610-22	116	001.05	122	756.40	128
39	421.2		480.72	102	544.09	109	611.37	115	682.57	122	757.68	128
00	121 2	96	400 12	102	944 (13	109	011 01	116		122	131 00	129
40	422.2		481-74		545.18		612.53		000.70		758-97	
41	423.1	0 90	482.77	103	546.27	109	613-68	115	CDE.01	122	760.26	129
42	424.1	, 30	483.79	102	547.36	109	614.84	116	000.00	122	761.54	128
43	425.1	1 36	484.82	103	548.45	109	616.00	116	007.40	123	762.83	129
44	426-0	7 90	485.85	103	549.55	110	617:15	115	000.00	122	764-12	129
45	427.0	, 31	486.88	103	550.64	109	618:31	116	CQQ-Q1	123	765.41	129
46	428.0	1 91	487-91	103	551.73	109	619.48	117	691.13	122	766.70	129
47	428.9	, 96	488-94	103	552.83	110	620.64	116	692.36	123	768-00	130
48	429.9	9 90	489-97	103	553.93	110	621.80	116	693.59	123	769-29	129
49	430.9	27.6	491.01	104	555.03	110	622.97	117	694.82	123	770-58	129
	100 0	97		104	000 00	110	0	116	00.02	123		130
50	431.8	7 97	492.05	103	556.13	111	624.13	117	696.05	123	771.88	130
51	432.8	4 98	493.08	104	557.24	110	625:30	117	697.28	123	$773 \cdot 18$	130
52	433.8	2 97	494.12	103	558.34	110	626.47	116	698.51	124	774.48	130
53	434.7	9 97	495.15	104	559.44	111	627.63	117	699.75	123	775.78	130
54	435.7	6 97	496.19	104	560.55	110	628.80	118	700.98	124	777.08	130
55	436.7	3 98	497.23	105	561.65	111	629.98	117	702.22	124	778.38	130
56	437.7	1 98	498-28	103	562.76		631.15	117	703.46	123	779.68	130
57	438-6	9 98	499-32	105	563.87	111	632.32	117	704.69	124	780.98	131
58	439.6	7 98	500.37	104	564.98	110	633.49	118	705.93	124	782.29	130
59	440-6	5	501.41	104	566.08	110	634.67	110	707-17	124	783.59	
00	441.0	98	F00.40	105	5.05.10	111	095.05	118	700.40	125	701.00	131
60	441.6	3	502.46		567:19		635.85	_	708-42		784.90	-/
					=2Rs				-	-	06264-8	
301	0".		0".5		06		0".8		1"0		1".8	
40	0.4		0.26		0.72		0.91		1.13		1.38	
50	0.4		0.58		0.75		0.94		1.17	- 1	1:44	
60	0.4	73	0.61	2	0.78	-	0.98	0	1.21	;	1.49)3
					Propor	rtional	theile					
1	120	121	122	123	124	125	126	127		129	130	13
1	12.0	12.1	12.2	12.3	12.4	12.5	12.6	12.7	12.8	12.9	13.0	13
2	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8	26.0	26
3	36.0	36.3	36.6	36.9	37.2	37.5	37.8	38.1	38.4	38.7	39.0	39.
4	48.0	48.4	48.8	49.2	49.6	50.0	50.4	50.8	51.2	51.6	52.0	52.
5	60.0	60.5	61.0	61.5	62.0	62.5	63.0	63.5	64.0	64.5	65.0	65.
6	72-0	72.6	73.2	73.8	74.4	75.0	75.6	76-2	76.8	77.4	78-0	78
	84.0	84.7	85.4	86.1	86.8	87:5	88.2	88.9	89.6	90.3	91.0	91.
7												
8	96-0	96.8	97.6	98.4	99-2	100.0	100.8	101.6	102.4	103.2	104.0	104

1	0	10%	1"	3	2m		300		4mr		Son	
0=	- 00		0.29303	1436	0-89509	721	1-24727	481	1:49714	deca	1-69096	289
1	6-73673	60206	0-30739	1412	0.90230	715	1-25208	479	1-50075	90.0	1,00000	288
2	7:83879	85218	0.32151	1300	0.90945	709	1:25687	476	1-50435	950	1-69673	287
8	7.69097	24988	0.33541	1368	0.91654	703	1-26163	473	1-50793	200	1.63960	286
4	7-94085	19382	0.84909	1346	0.92357	698	1-26636	471	1-51150	955	1-70246	285
5	8.13467	15836	0.36255	1326	(r93055	692	1-27107	468	1.51505	354	1-70531	284
6	8-29308	13389	0.87581	1307	0.93747	687	1:27575	466	1.51859	352	1.70815	284
7	8:42692	11599	0.38888	1286	0.94434	681	1:28041	463	1.52211	351	1.71099	283
8	8:54291	10230	0.40174	1268	0.95115	676	1:28504	461	1.52562	350	1-71382	281
9	8:64521		0.41412		0.95791		1.28965		1.52912		1.71663	
1.0	O PROCES	9152	0.42000	1250	0.00103	671		458		315		281
10	8-78673	8278	0.42692	1233	0.96462	665	1.29423	456	1.53260	345	1-71944	279
11	8.81951	7558	0.43925	1215	0.97127	661	1.29879	453	1.53606	0.3400	1-72223	279
12	8-89509		0·45140 0·46338	1198	0.97788	655	1.30332	451	1.53952	344	1.72502	278
13	8-96461 9-02898		0.47519	1181	0.98443	651	1.30783	449	1.54296		1-72780	277
14	9-08891	11993	0.48685	1166	0:99740	646	1.31232	447	1:54639 1:54980	0.41	1.73057	276
16	9-14497	5000	0.49836	1151	1:00381	641	1.32123	444	1.55320	090	1·73333 1·73608	275
17	9-19763	326b	0.50971	1135	1.01017	636	1.32566	443	1.55659	000	1-73883	275
18	9-24727	4364	0.52092	1121	1:01649	632	1.33006	440	1.55996	001	1-74157	274
19	9-29423	4111111	0.53198	1106	1.02276	627	1.83448	437	1.56332		1.74429	272
		4456	0 00100	1093	1 00000	622	1 00110	435	2 00000	335	12700	272
20	9.33879	4238	0.54291	1079	1.02898	619	1.33878	433	1.56667	333	1-74701	271
21	9.88117	4040	0.55370	1066	1:03517	614	1.34311	432	1.57000		1.74972	270
22	9:42157	3861	0.56436	1053	1:04131	609	1.34743	429	1.57332	331	1-75242	269
28	9.46018	3697	0.57489	1040	1.04740	605	1:35172	426	1.57663	330	1.75511	269
24	9.49715	8546	0.58529	1028	1.05345	601	1.35598	424	1.57993	328	-75780	268
25	9.53261	8406	0.59557	1016	1.05946	597	1.36022	423	1.58321	327	1.76048	266
26	9.56667	3278	0.60573	1004	1:06543	593	1.36445	421	1.58648	326	.76314	266
27	9.59945	8159	0.61577	993	1:07136	589	1:36866	419	1.58974	825	.76580	266
28	9:63104	8048	0.62570	981	1:07725	585	1.37285	417	1.59299	323	76846	264
29	9-66152		0.63551		01880-1		1.37702		1.59622	1	.77110	
90	D. 60000	2945	0.01501	970	1.00001	581	1,90110	414	1.50045	828		263
30	9-69097		0.64521		1:08891		1.38116		1.59945] [.77373	

	$\log n = \log 2 R \sin^4 \frac{1}{2}$	1	R=2	06264.8
()r			7.3788	7.7664
20				
30			7.5834	7.9320

20		7:5834	7-9320
	Proportionaltheile		
	530 520 510 500 490 480 470 460 450 440	430 420 42	10 400 390
1	530, 520 510 500 490 480 470 460 450 440 4	430, 420, 41	U 40HO 39HO
2	1060 1040 1020 1000 980 960 940 920 900 880 8	86-0. 84-0 82	0 800 787)
3	1590 1560 1530 1500 1470 1440 1410 1380 1350 1320 12	29-0,126-0 123-	0 120 0 117 0
4	212 0 208 0 204 0 200 0 196 0 192 0 188 0 184 0 180 0 176 0 17	2-0 168-0 164	0 160-0 156-0
5	265 (0) 260 (0) 255 (0) 245 (0) 246 (0) 235 (0) 230 (0) 225 (0) 220 (0) 21	5 0 210 0 205	0.200-0.195-0
6	3180 3120 3060 3000 2940 2880 2820 2760 2700 2640 25	8-0 252-0 246	0.240-0.234-0
7	371-0 364-0 357-0 350-0 343-0 336-0 329-0 322-0 315-0 308-0 30	11-0 204-0 287	1) 28(1-0) 273-0
8	424-0 416-0 408-0 400-0 392-0 384-0 376-0 368-0 360-0 352-0 34	4-0 336-0 325-	0.320-0.312-0
9	$\begin{smallmatrix} 47770 \\ 4680 \\ 4590 \\ 4590 \\ 4500 \\ 4410 \\ 4320 \\ 4230 \\ 4140 \\ 4050 \\ 3960 \\ 380 \\ 4140 \\ 4050 $	70,3750,369	0.360-0.351-0

1	0		1111		2m		3m		4m		5m	
-	0		-				3/11	-	4***		9m	
301	9.69097	2848	0.64521	960	1.08891	577	1.38116	413	1.59945	321	1.77373	26
31	9.71945	2758	0.65481	950	1.09468	574	1.38529	411	1.60266	320	1.77636	26
32	9.74703	2673	0.66431	939	1.10042	569	1.38940	408	1.60586	318	1.77898	20
33	9.77376	2592	0.67370	929	1.10611	566	1.39348	407	1.60904	318	1.78160	20
34	9.79968	2518	0.68299	919	1.11177	562	1.39755	405	1.61222	316	1.78420	20
35	9.82486	2447	0.69218	909	1.11739	559	1.40160	403	1.61538	316	1.78680	2
36	9.84933	2380	0.70127	900	1.12298	555	1.40563	401	1.61854	314	1.78938	2
37	9.87313	2316	0.71027	891	1.12853	551	1.40964	400	1.62168	313	1.79197	2
38	9.89629	2257	0.71918	882	1.13404	548	1.41364	397	1.62481	312	1.79454	2
39	9.91886		0.72800		1.13952		1.41761		1.62793		1.79710	
40	9.94085	2199	0.73673	873	1.14407	545	1,40157	396	1.00100	310	1.50000	23
41	9.96229	2144	0.74537	864	1.14497	541	1.42157	394	1.63103	310	1.79966	23
42	9.98323	2094		856	1.15038	538	1.42551	392	1.63413	309	1.80221	23
43	0.00366	2043	0.75393	847	1.15576	534	1.42943	390	1.63722	307	1.80476	2
44	0.02363	1997	0.76240	840	1.16110	531	1.43333	389	1.64029	306	1.80729	25
		1952	0.77080	831	1.16641	528	1.43722	387	1.64335	306	1.80982	23
45 46	0.04315	1909	0.77911	823	1.17169	525	1.44109	385	1.64641	304	1.81234	2
		1868	0.78734	816	1.17694	522	1.44494	383	1.64945	303	1.81486	25
47	0.08092	1829	0.79550	808	1.18216	519	1.44877	382	1.65248	302	1.81736	23
48	0.09921	1791	0.80358	800	1.18735	515	1.45259	380	1.65550	301	1.81986	25
49	0.11712	1755	0.81158	794	1.19250	512	1.45639	379	1.65851	300	1.82236	24
50	0.13467		0.81952		1-19762		1.46018		1.66151		1.82484	
51	0-15187	1720	0.82738	786	1.20271	509	1.46395	377	1.66450	299	1.82732	24
52	0.16873	1686	0.83517	779	1.20778	507	1.46770	375	1.66748	298	1.82979	24
53	0.18528	1655	0.84288	771	1.21281	503	1.47143	373	1.67045	297	1.83225	24
54	0.20151	1623	0.85053	765	1.21782	501	1.47515	372	1.67341	296	1.83471	24
55	0.21745	1594	0.85812	759	1.22280	498	1.47886	371	1.67636	295	1.83716	24
56	0.23310	1565	0.86564	752	1.22775	495	1.48255	369	1.67930	294	1.83960	24
57	0.24848	1538	0.87310	746	1.23267	492	1.48622	367	1.68223	293	1.84204	24
58	0.26358	1510	0.88049	739	1.23756	489	1.48988	366	1.68515	292	1.84447	2
59	0.27843	1485	0.88782	733	1.24243	487	1.49352	364	1.68806	291	1.84690	2
00	021010	1460	0 00102	727	1 24240	484	1 43002	362	1 00000	290	1 04030	24
60	0.29303		0.89509		1.24727		1.49714		1.69096		1.84931	
			1	og n	= log 2.	R sin	4 1 2		R	= 20	06264.8	
30r									7.583	4	7.932	0
40												
50									}		ĺ	5
60									7.766	4	8.083	2
					Proport	ional	theile					
- 1	380 37	0 36	0 350	340	330 320	0 31	0 300	290	280 27	0 26	0 250	24
1	38.0 37	0 36	0 350	34.0	33.0 32	0, 31	0 300	29.0	28.0, 27	0 26	0, 25 0	24
2	76-0 74	0 72	0 70.0	68.0	66.0 64	0 62	0 60.0	58.0	56.0 54	0 52	0 50.0	48
3	114-0 111	0 108	0 105-0 1	02.0	99.0 96	0 93	0 90.0	87.0	84-0 81-	0 78	0 75.0	72
4	152-0 148	0 144	0 140-0 1	36.0	32.0 128	0 124	0 120.0 1	16.0	120 108	101	0 100.0	96
5	190-0 185	0 180	0 175-0 1	70.0	65.0 160	0 155	0 159-0 1	45.0	40.0 135	0 130	0 125.0 1	20
6	228-0 222	1					1 1	1		1		
7	266-0 259											
	201-0 200	1 300	0 200.0 2	70.0	C1.0 050.	0 010	0 24000	20.0				
8	304·0 296 342·0 333											

18*

4

5

6

7

1()#

9111

	0~		1""		O.		.,,		10-		11.0	
()s	1.84931		1.98320		2.09917		2.20146		2.29296		2.37574	
1		241	1.98526	206	2.10098	181 180	2.20307	161	2-29441	145	2.37705	131
2	1.85412	240	1.98732	206	2.10278		2.20467	160	2.29586	145	2.37836	131
3	1.85651	239	1.98937	205	2.10458	180	2.20627	160	2.29730	144	2.37967	131
4	1.85890	239	1.99142	205	2.10637	179	2.20787	160	2.29874	1.1.4	2.38098	131
5	1.86129	239	1.99347	205	2.10817	180	2.20946	159	2.30017	143	2.38229	
6	1 00000	237	1.99551	204	2.10995	178	2.21106	160	2.30161	144	2.38360	131 130
7	1 04000	237	1.99755	204	2.11174	179	2.21264	158	2.30304	143	2.38490	
8	1.86840	237	1.99958	203	2.11352	178	2.21423	159	2.30447	143	2.38619	129
9	1.87075	235	2.00161	203	2.11530	178	2.21581	158	2.30590	143	2:38749	130
v		235	2 00101	202	2	177		158	2 00000	142		130
10	1.87310	235	2.00363	202	2.11707	177	2.21739	158	2.30732	142	2.38879	130
11		234	2.00565	201	2.11884	177	2.21897	158	2.30874	142	2.39009	129
12		233	2.00766	201	2.12061	176	2.22055	157	2.31016	142	2.39138	129
13		232	2.00967	200	2.12237	176	2.22212	157	2.31158	142	2.39267	129
14			2.01167		2.12413	176	2-22369	156	2.31300		2.39396	129
15		232 232	2.01367	$\frac{200}{199}$	2.12589	175	2.22525	157	2.31441	141 141	2.39525	129
16			2.01566		2.12764		2.22682		2.31582	1	2.39654	128
17		230	2.01765	199	2.12939	175 175	2-22838	156	2.31723	141	2.39782	128
18		230 230	2.01964	199 198	2-13114	174	2-22994	156	2.31864	141	2.39910	128
19	1.89398	230	2.02162	198	2.13288	1 (4	2.23149	155	2.32004	140	2.40038	
		229		198		174		155		140		128
20	1.89627	228	2.02360	197	2.13462	173	2.23304	155	2.32144	140	2.40166	128
21		228	2.02557	196	2.13635	174	2.23459	155	2.32284	140	2.40294	127
22	1.90083	227	2.02753	197	2.13809	173	2.23614	154	2.32424	139	2.40421	127
23		226	2.02950	196	2.13982	172	2.23768	154	2.32563	140	2.40548	127
24		226	2.03146	195	2.14154	172	2.23922	154	2.32703	139	2.40675	127
25		225	2.03341	195	2.14326	172	2.24076	154	2.32842	138	2.40802	127
26	1.90987	225	2.03536	194	2.14498	172	2.24230	153	2.32980	139	2.40929	126
27		224	2.03730	194	2.14670	171	2.24383	153	2.33119	139	2.41055	126
28		224	2.03924	194	2.14841	170	2.24536	153	2.33258	138	2.41181	126
29	1.91660		2.04118		2.15011		2.24689		2.83396		2.41307	
		223		193		171		153		138		127
30	1.91883		2.04311	Total Control	2.15182		2.24842		2.33534		2.41434	
			los	n =	= log 2 R	sin4	11		R	= 2	06264-8	
Or	8.0832		8.350)	8.582	9	8-787	5	8.9705		9.1360	-
10									8.9991	286	9-1691	261
20					ĺ		'		8.0274	283	9-1879	258
30	8-2222		8.4708	3	8.688	2	8.981	4	9.0552	278	9.2132	253
Property and the second					Proport						-	
-	240 235	23	0 225	220	215 21	-	05 200	195	190 1	85 1	80 175	170
1	240 23:5			22:01	21:5 21:			19.5	19:0 18			17:0
2	48.0 47.0			44.0	43.0 42			39.0	38-0 37			34.0
3	72.0 70.5	1	1	66.0	64.5 63			58.5	57.0 55			51.0
	020 010	00	0 010	000	040 03	0 01		90 0	310 33	0 34	0 323	010

96.0 94.0 92.0 90.0 88.0 86.0 84.0 82.0 80.0 78.0 76.0 74.0 72.0 70.0 68.0

120-0 117-5 115-0 112-5 110-0 107-5 105-0 102-5 100-0 | 97-5 | 95-0 | 92-5 | 90-0 | 87-5 | 75-0

 $144 \cdot 0 | 141 \cdot 0 | 138 \cdot 0 | 135 \cdot 0 | 132 \cdot 0 | 129 \cdot 0 | 126 \cdot 0 | 123 \cdot 0 | 120 \cdot 0 | 117 \cdot 0 | 114 \cdot 0 | 111 \cdot 0 | 108 \cdot 0 | 105 \cdot 0 | 102 \cdot 0 | 102 \cdot 0 | 103$

 $168 \cdot 0 \cdot 164 \cdot 5 \cdot 161 \cdot 0 \cdot 157 \cdot 5 \cdot 154 \cdot 0 \cdot 150 \cdot 5 \cdot 147 \cdot 0 \cdot 143 \cdot 5 \cdot 140 \cdot 0 \cdot 136 \cdot 5 \cdot 133 \cdot 0 \cdot 129 \cdot 5 \cdot 126 \cdot 0 \cdot 122 \cdot 5 \cdot 119 \cdot 0$

 $\frac{192 \cdot 0}{216 \cdot 0} \frac{188 \cdot 0}{184 \cdot 0} \frac{186 \cdot 0}{186 \cdot 0} \frac{172 \cdot 0}{168 \cdot 0} \frac{168 \cdot 0}{166 \cdot 0} \frac{166 \cdot 0}{166 \cdot 0} \frac{152 \cdot 0}{152 \cdot 0} \frac{148 \cdot 0}{148 \cdot 0} \frac{144 \cdot 0}{140 \cdot 0} \frac{136 \cdot 0}{157 \cdot 5} \frac{166 \cdot 0}{158 \cdot 0} \frac{127 \cdot 0}{127 \cdot 0} \frac{166 \cdot 5}{162 \cdot 0} \frac{16$

Ingland by Google

t	(Çw.		7/1		8	}mi		911		i	Om	114	n
304	1.9188	33 0	22 24	04311	193	2.1518	2	2.	24842	152	2.3353	4 137	2.41434	10
31	1.9210	. 2.		04504	193	2.1535		0 3.	24994	152	2.3367		2.41560	12
32	1.9232	7 2	22 0.	04697		2.1552	3 16	U a.	25146		2.3380	100	2.41685	12
33	1.9254	10 2	21 0.	04888	191	2.1569	, 10	9	25297	151	2.3394	6 191	2.41811	12
34	1.9276	20	21 0.	05080	192	2.1586	v 10	9 3.	25449	152	2.3408	2 101	2.41936	12
35	1.9299	10	21 0.	05271	191	2.1602	v 10	Ja.	25600	151	2.3422	V 191	2.42061	12
36	1.9320	10 2	19 00	05462	191	2.1619	0 10	9 2.	25751	151	2.3435	7 131	2.42186	12
37	1.9342	10 2	10 34	05652	190	2.1636	. 10	0 1	25902	151	2.3449	100	2.42310	12
38	1.9364	0 2	10	05842	190	2.1653	. 10	0 3.	26052	150	2.3463	0 131	2.42435	12
39	1.9380	- 2		06031	189	2.1670		(26202	150	2.3476	130	2.42559	12
		2	18		189		16			150		135		12
40	1.9408	32 9	17 24	06220	189	2.1686	8 16	7 2.	26352	149	2.3490	1 136	2.42683	12
41	1.9429		16 20	06409	188	2.1703	$\frac{5}{16}$		26501	150	2.3503	7 135	2.42807	12
42	1.9451		16 24	06597	188	2.1720	2 16	10.0	26651	149	2.3517	2 135	2.42931	12
43	1.9473		15 24	06785	187	2.1736	8 16		26800	149	2.3530	7 135	2.43055	12
44	1.9494		15 24	06972	187	2.1753	4 16		26949	148	2.3544	2 135	2.43178	12
45	1.9510		14 24	07159	187	2.1770	0 16		27097	149	2.3557	7 135	2.43302	12
46	1.9537		14 2	07346	186	2.1786	5 16		27246	148	2.3571	2 134	2.43425	12
47	1.9558		13 24	07532	186	2.1803	0 16		27394	148	2.3584	6 134	2.43548	12
48	1.9580	141	12 24	07718	185	2.1819	4 16		27542	147	2.3598	0 134	2.43670	12
49	1.9601	4	24	07903		2.1835	9	2.	27689		2.3611	4	2.43793	
			12		185		16			147		134		12
50	1.9622			08088	185	2.1852			27836	148	2.3624		2.43915	12
51	1.9648	$\frac{1}{2}$	11 20	08273	184	2.1868	7 16	3 2.	27984	146	2.3638	1 134	2.44037	15
52	1.9664	19 2	11 24	08457	184	2.1885	0 16	3 2.	28130	147	2.3651	5 133	2.44159	15
53	1.9686	30 2	10 24	08641	183	2.1901	3 16	3 2.	28277	146	2.3664	8 133	2.44281	12
54	1.9707		09 2	08824	183	2.1917	6 16		28423	146	2.3678	1 132	2.44403	15
55	1.9727	19 20	09 24	09007	183	2.1933	$^{8}_{16}$	2 2.	28569	146	2.3691	3 133	2.44525	12
56	1.9748	38 2	09 24	09190	182	2.1950	0 16	9 2.	28715	146	2.3704	6 132	2.44646	12
57	1.9769	7 2	08 2.	09372	182	2.1966	$^{2}_{-16}$	2 2.	28861	145	2.3717	8 132	2.44767	12
58	1.9790			09554	181	2.1985	4 16	1 2.	29006	145	2.3731		2.44888	15
59	1.9811	2	24	09735		2.1998	5	2.	29151		2.3744	2	2.45009	
60	1.183:		08	09917	182	2.2014	c 16		29296	145	2.3757	132	2.45130	12
60	1.199	:0	12	_			-	-			2.9191	-	506264-8	,
					_	= log 2	-	11 2	-				-	_
304	8.2	222		8.470)8	8.6	882		8.881	14	9.055		9.2132	24
40	1		- 1								9.082	210	9.2381	24
50			- 1	0.500	20	0.5			0.050		9-109		9-2628	24
60	8.3	509		8.58:	29		875		8-970)5	9.136	0	9.2871	
						Propo	rtior	nalth	eile					_
	170	166	162	158	154		146	142	138	134	130		122 118	1
1		16.6	16.2		15.4		14.6	14.2	13.8	13.4	13.0		12.2 11.8	
2		33.2	32.4	31.6	30.8		29.2	28.4	27.6	26.8	26.0		24.4 23.6	
3		49.8	48.6		46.2	1	43.8	42.6	41.4	40.2	39.0		35.4	3
4	1	66.4	64.8		61.6		58.4	56.8	55.2	53.6	52.0		48.8 47.2	4
5	85.0	83.0	81.0	79.0	77.0	75-0	73.0	71.0	69.0	67.0	65.0	63.0	61.0 59.0	5
6	102.0	99.6	97.2	94.8	92.4	90.0	87.6	85.2	82.8	80.4	78.0	75.6	73.2 70.8	6
7	119.01	16.2	113.4	110.6	107.8	1050 1	02.2	99.4	96.6	93.8	91.0	88.2	85.4 82.6	7
	190-0 1	20.0	199.6	196.4	123.2	120.0 1	16.8	113.6	110:4	107-2	104-0	100.8	97.6 94.4	9
8	190.001	97.0	120 0	120 1			100							

1	12"		13m		14	m		15**		16	m		17m	
Oa	2.45130	120	2.52081	111	2.58516	103	2.6	4506	97	2.7010	9 91	2.7	5373	85
1	2.45250	120	2.52192	111	2.58619	103		4603	96	2.7020		2.7	5458	85
2	2.45371	121	2.52303	111	2.58722	103	2.6	4699	96	2.7029	1 90	2.7	5543	85
3	2.45491		2.52414	111	2.58825	103		4795		2.7038	1 90		5628	
4	2.45611	120	2.52525	111	2.58928	103		4891	96	2.7047	1 30	0.7	5713	85
5	2.45731	120	2.52635	110	2.59031	103		4987	96	2.7056	1 30	0.7	5798	85
6	2.45850	119	2.52746	111	2.59134	103	1	5083	96	2.7065	1 90	0.7	5883	85
7	2.45970	120	2.52856	110	2.59236	102		5179	96	2.7074	1 30	0.7	5967	84
8	2.46089	119	2.52967	111	2.59339	105		5274	95	2.7083	00	0.7	6052	85
9	2.46209	120	2.53077	110	2.59441	102		5370	96	2.7092			6136	84
	10200	119	- 00011	110	200111	102	-		96		90			84
10	2.46328	118	2.53187	110	2.59543	102	2.6	5466	95	2.7101	0 89	2.7	6220	84
11	2.46446	119	2.53297		2.59645	102	2.6	5561	95	2.7109	9 89		6304	84
12	2.46565		2.53406	109	2.59747	102		5656	95	2.7118		0.7	6388	
13	2.46684	119	2.53516	110	2.59849	102	2.6	5751		2.7127	8 89	0.7	6472	84
14	2.46802	118	2.53625	109	2.59951	102		5846	95	2.7136	7 00	9.7	6556	84
15	2.46920	118	2.53735	110	2.60052	101		5941	95	2.7145	c 00	0.7	6640	84
16	2.47038	118	2.53844	109	2.60154	102		6036	95	2.7154	5 00	9.5	6724	84
17	2.47156	118	2.53953	109	2.60255	101		6131	95	2.7163	, OU	0.7	6808	84
18	2.47274	118	2.54062	109	2.60357	102		6225	94	2.7172	2 03	0.5	6892	84
19	2.47392	118	2.54170	108	2.60458	101		6320	95	2.7181			6976	84
		117		109	- 00100	101			94		89			83
20	2.47509	117	2.54279	108	2.60559		2.6	66414	95	2.7190	00 89	2.7	7059	84
21	2.47626	117	2.54387	109	2.60660	100	2.6	66509	94	2.7198	39 88		7143	83
22	2.47743	117	2.54496	108	2.60760	$\frac{100}{101}$	2.6	66603	94	2.7207	77 88	0.5	7226	83
23	2.47860	117	2.54604	108	2.60861	100	2.0	66697	94	2.7216	35 89		7309	83
24	2.47977	117	2.54712	108	2.60961	101	2.6	66791	94	2.7225	64 88	9.5	7392	84
25	2.48094	116	2.54820	108	2.61062)	2.6	6885	94	2.7234	12 88	0.5	7476	83
26	2.48210	117	2.54928	107	2.61162	100	2.0	6979	94	2.7243	30 88		7559	83
27	2.48327		2.55035	108	2.61263		2.6	37073	93	2.7251	88		7642	82
28	2.48443	116	9.55142		2.61363	>	9.6	67166	94	2.7260	6 88	1 9.7	7724	83
29	2.48559	116	2.55250	107	2.61463			7260	94	2.7269)4	2.7	7807	89
		116		108		100			93		87			83
30	2.48675		2.55358		2.61563	3	2.0	37353		2.7278	31	2.7	7890	
			log	n =	log 2	R sin	1/2/				R =	2062	64.8	
Ot	9.2871	240	9.4261	221	9.5549	205	9.6	3747	191	9.7867	180	9.8	920	169
10	9.3111	237	9.4482	218	9.5754	203	9.6	3938	190	9.8047	179	9.0	089	168
20	9.3348	232	9.4700	217	9.5957	201	9.7	7128	188	9.8226	176		257	166
30	9.3580	202	9.4917	211	9.6158	3	9.	7316	100	9.8402	3 110	9.9	423	100
					Propo	rtion	althe	ile						
			118 116			110	108	106	104	102	100	98	96	9.
1	1		11.8 11.6			11.0	10.8	10.6	10.4	10.2	10.0	9.8	9.6	9.
2	1	- 1	23.6 23.2	6		22.0	21.6	21.5	20.8	20.4	20.0	19.6	19.2	18:
3			35.4 34.8			33.0	32.4	31.8	31.2	30.6	30.0	29.4	28.8	28:
4	48.8 4	8.0	47.2 46.4	45	6 44.8	44.0	43.2	42.4	41.6	40.8	40.0	39.2	38.4	37
5	61.0	0.0	59-0 58-0	57.	0 56.0	55.0	54.0	53.0	52.0	51.0	50.0	49.0	48-0	474
6	73.2 7	2.0	70.8 69.6	68	4 67.2	66.0	64.8	63.6	62.4	61.2	60.0	58.8	57.6	56.
	07.4 0	34.0	82.6 81.2	79	8 78.4	77.0	75.6	74.2	72.8	71.4	70-0	68.6	67.2	65
7	85.4 8	14 ()	02 01 2											
7 8	1		94.4 92.8				86.4	84.8	83.2	81.6	80.0	78.4	76.8	75

			_					-					_			
1	12m			13**		14m			15m		16m			17**		
304	2.486	75 113	2.5	5358	107	2.615	63 99	2.	67353	93	2.727	81 88		77890	83	
31	2.4879	00 110		5465	107	2.616	62 100	10.	67446	93	2.728	69 88	1 9.	77973	83	
32	2.4890	6 11	1.0.5	5572	107	2.617	62 99	0.	67539	94	2.729	57 87	9.0	78056	82	
33	2.490	21 11		5679	106	2.618	61 100		67633	93	2.730	44 88		781 3 8	82	
34	2.4913	36 11	10.5	5785	107	2.619	61 9	1 0.	67726	92	2.731	32 8	2.	78220	82	
35	2.492	11 11	10.5	5892	107	2.620	60 9	1 3.	67818	93	2.732	19 8		78302	83	
36	2.4936	66 11	1.3.5	5999	106	2.621	59 99	0.	67911	93	2.733	06 8	1 0.1	78385	82	
37	2.4948	31 113	10.5	6105	106	2.622	58 99	63.	68004	93	2.733	93 8		78467	82	
38	2.4959	6 11		6211	106	2.623	57 99		68097	92	2.734	80 8	9.1	78549	82	
39	2.4971	11	2.5	6317		2.624	56	2.	68189		2.735	67	2.	78631		
		11-			106		99			92		87			82	
40	2.498:	111		6423	106	2.625			68281	93	2.736		<i>(</i> '	78713	82	
41	2.4993	11.		6529	106	2.626		, ,	68374	92	2.737			78795	82	
42	2.5003			6635	105	2.627		5	68466	92	2.738	8	(1	78877	81	
43	2.5016	57 11	2.5	6740	106	2.628		,	68558	92	2.739	- 0		78958	82	
44	2.5028	11.)	6846	105	2.629			68650	92	2.740	201)	79040	81	
45	2.5039	⁹⁴ 11-	2.5	6951	105	2.630			68742	92	2.740	Ot.		79121	82	
46	2.5050	08 113	3 2.5	7056	105	2.631	45 98	3 2.	68834	92	2.741	Ot		79203	81	
47	2.5062	21 113		7161	105	2.632	:10	9	68926	91	2.742	0.1		79284	82	
48	2.5073	34 113	3 2.5	7266	105	2.633	41 9	2.1	69017	92	2.743	86		79366	81	
49	2.508	17	2.5	7371		2.634	38	2.	69109	1	2.744	32 86		79447	81	
50	3.700	113	3.5	7476	105	2.635	98		69201	92	2.745	10	0.0	79528		
	2.5096			7580	104	2.636	94 36	0.	69292	91	2.746	04	9.5	79609	81	
51 52	2.510	2 11.	2.5	7685	105	2.637	01 3	(a.	69383	91	2.746	90 00	0.0	79690	81	
53	2.5112	10 11	0.5	7789	104	2.638	28	9.	69474	91	2.747	75 00	9.0	79771	81	
54	2.514	11:	3.5	7893	104	2.639	05	· [5	69565	91	2.748	C1 OI	1 0.0	79852	81	
55	2.514	111		7997	104	2.640	.).)	1 3.	69656	91	2.749	47 00	0.0	79933	81	
56	2.5163	111	10.0	8101	104	2.641	10 "	· a	69747	91	2.750	93 00	1 0.0	30014	81	
57	2.5174	1 LT:	10.7	8205	104	2.642	10 9	.,,	69838	91	2.751	10	9.0	30094	80	
58	2.518	. 11:	0.5	8309	104	2.643	10 0	(a	69929	91	2.752	09 04	9.6	30175	81	
59	2.5196	11		8412	103	2.644		(70019	90	2.752	- 0:)	30255	80	
3.7	2 3130	11:		0412	104	2 044	96		10013	90	2 102	83		,0200	81	
60	2.5208			8516		2.645			70109		2.753	73	2.8	30336		
$log \ n = log \ 2 \ R \sin^4 \frac{1}{2} t \qquad \qquad R = 206264^{\circ}8$																
304	9.358	0	1 9.	4917		9.615	ō	100	7316		9.840	2	9.9	9423		
40	9.381	0 200		5130	213	9.635	e 198	0.	7502	186	9.857	c 165	9.6	0587	164 164	
50	9.403	228	0.	5341	211	9.655	, 19	0.	7686	184	9.874	0 110	9.0	9751		
60	9.426			5549	208	9.674			7867	181	9.892			9913	162	
	1				-	Propo	-		THE RESERVE	-						
	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	
1	9.4	9.3	9.2	9.1	9.0	8.9	8.8	8.7	8.6	8.5	8.4	8.3	8.2	8.1	8:0	
2	18.8	18.6	18.4	18-2	18.0	17.8	17.6	17:4	17.2	17:0		16.6	16.4	16.2	16.0	
3	28.2	27.9	27.6	27.3	27.0	26.7	26.4	26.1	25.8	25.5	25.2	24.9	24.6	24.3	24.0	
4	37.6	37.2	36.8	36.4	36.0	35.6	35.2	34.8	34.4	34.0	33.6	33.2	32.8	32.4	32.0	
5	47:0	46.5	46.0	45.5	45.0	44.5	44.0	43.5	43.0	42.5	42.0	41.5	41.0	40.5	40.0	
6	56.4	55.8	55.2	54.6	54.0	53.4	52.8	52.2	51.6	51.0	50-4	49.8	49.2	48.6	48.0	
7	65.8	65.1	64.4	63.7	63.0	62.3	61.6	60-9	60.2	59.5		58.1	57.4	56.7	56-0	
8	75.2	74.4	73.6	72.8	72.0	71.2	70.4	69.6	68.8	68.0		66.4	65.6	64.8	64-0	
9	84.6	83.7	82.8	81.9	81.0	80.1	79.2	78.3	1	76.5	1	1		72.9	72.0	
0	1 010	30 1	020	1010	1010	1001	100	100	1	1.00	1 0	1	,	1 0		

1	18"	•		19m		:	2()m		21m			22m		2	3111
Ot	2.80336	80	2.	85029	50	2.89	481		2.93717	00	2	97755		3.016	13
1	2.80416	80		85105	76	2.89		73	2.93786	69		97820	65	9.010	75 62
2	2.80496	80		85181	76	2.89		72	2.93855	69		97886	66	9.017	00
3	2.80576	80		85257	76	2.89		72	2.93923	68		97952	66	9.016	01 03
4	2.80656	80		85333	76	2.89		72	2.93992	69		98017	65	2.016	C4 63
5	2.80736	00		85409	76	2.89		72	2.94061	69		98083	66	2-010	00 62
6	2.80816	. 00		85485	76	2.89		72	2.94129	68		98148	65	2-010	20 00
7	2.80896	. 00		85561	76	2.89		72	2.94198	69		98214	66	9.000	60 63
8	2.80970	80		85636	75	2.90		72	2.94266	68		98279	6.5	2.001	14 62
9	2.81056			85712	76	2.90		72	2.94335	69		98344	65	3.021	
3	2 01000	79	-	00112	75	2 30	190	72	2.34000	68	2	30044	66		62
10	2.81135	80	2.	85787	76	2.90	202	72	2.94403	68	2	98410	65	3-022	39 63
11	2.81215	80	2	85863	75	2.90	274	72	2.94471	69	2	98475	65		02 62
12	2.81295			85938	76	2.90			2.94540			98540		9.009	e 4 62
13	2.81375	80		86014		2.90		71	2.94608	68		98605	65	9.004	00 62
14	2.81454	13		86089	75	2.90		72	2.94676	68		98670	65	2-094	60 09
15	2.81533	1.7		86164	75	2.90		71	2.94744	68		98735	65	2.005	5.1 62
16	2.81612	13		86239	75	2.90		72	2.94812	00		98800	65	2.000	12 62
17	2.81691	(9)		86314	75	2.90		71	2.94880	68		98865	65	2.000	75 02
18	2.81770	10		86389	75	2.90		71	2.94948	00		98930	65	2.000	97 62
19	2.81849	(2)		86464	75	2.90		71	2.95016	68		98995	65	3.027	
10	2 01040	79	2	00404	75	2 30	040	72	2.33016	68	2	90999	65		62
20	2.81928		2.	86539		2.90	917		2.95084		2.	99060		9.000	C1
21	2.82007			86614	75	2.90		71	2.95152	00		99125	65	2.000	02
22	2.82086	. 19		86689	75	2.91		70	2.95219	67		99189	64	2.000	05 62
23	2.82165	19		86763	74	2.91		71	2.95287	68		99254	65	3.030	47 62
24	2.82244	10		86838	75	2.915		71	2.95355	68		99319	65	9.091	00 02
25	2.82322	10		86912	74	2.91		71	2.95422	67		99383	64	2+021	71
26	2.82401	19		86987	75	2.91		71	2.95490	00		99448	65	9.096	20 01
27	2.82479	. 18		87061	74	2.91		71	2.95557	67		99512	64	2.029	04 62
28	2.82558	. 19		87136	75	2.91		71	2.95625	68		99576	64	3.033	62
29	2.82636	(5)		87210	74	2.91		71	2.95692	67		99641	65	3.034	
23	2 02000	78	2	01210	74	2.31))))	70	2-93692	67	2	33041	64		62
30	2.82714		2	87284		2.91	625		2.95759		2.	99705	-	3.034	
				los	, n =	= log	2 R	cin4						206264	
0:	9.9913		-			_	-						_		
10	0.0072	159		1003	152	0.17		144	0.2589	137		3396 3527	131		0 120
20	li .	159			150			143		136			130		
30	0.0231	157		1153	149	0.20		141	0.2862	135	ı	3657	129	0.441	
30	0.0999		0	1302		0.21	744		0.2997		0	3786		0.454	1
						Prop	orti	ona	theile						
	80	75		78		77		76	75	74		73		72	71
1	8.0	7.9		7.8	1	7.7		7.6	7.5	7.4		7.3	T	7.2	7-1
2	16.0	15.8		15.6	1	15.4		5.2	15.0	14.8		14.6		14.4	14.2
3	24.0	23.7		23.4		23.1		2.8	22.5	22.2	?	21.9		21.6	21.3
4	32.0	31.6		31.2	1 3	30.8	30)· 4	30.0	29.6	3	29.2		28.8	28.4
5	40.0	39.5		39.0	1	38.5	31	8-0	37.5	37-0)	36.5		36-0	35.5
6	48.0	47.4		46.8		16.2	4.	5.6	45.0	44-4		43.8		43.2	42.6
7	56.0	55.8		54.6	1	53.9	5	3.2	52.5	51.8	3	51.1		50-4	49.7
8	64.0	63.2		62.4		61.6	60	9.6	60.0	59.2	?	58.4		57.6	56.8
9	72.0	71.1		70.2		69.3		8.4	67.5	66.6		65.7	- 1	64.8	63.9

1	18***		19m	T	20	len .	21"		_	22m	_	9	3111
		-		-		-	-		-		- and	-	200701000
304	2.82714	78	2.87284	74	2.9162	4.1	2.95759			99705	64	3.034	b
31	2.82792	78	2.87358	74	2.9169	417	2.95827			9769	65	3.035	
32	2.82870		2.87432	74	2.9176	(1	2.95894			9834	64	3.036	b
33	2.82948		2.87506	74	2.9183	10	2.95961	0.4		99898	64	3.036	
34	2.83026	78	2.87580	74	2.9190		2.96028	0.4		19962	64	3.037	to:
35	2.83104	78	2.87654	74	2.9197		2.96095	61		00026	64	3.037	b
36	2.83182	78	2.87728	74	2.9204		2.96162			00090	64	3.038	· O
37	2.83260	77	2.87802	74	2.921		2.96229	0.4		00154	64	3.039	1
38	2.83337	77	2.87876	73	2.9218	88 70	2.96296	- 66		00218	64	3.039	70 6
39	2.83414	78	2.87949	74	2.9223	70	2.96362	67	3.	00282	64	3.040	31 6
40	2.83492		2.88023		2.9232	10	2.96429		3.0	20040		3.040	no
41	2.83570	18	2.88096	73	2.9239	10	2.96496	61		10100	63	3.041	63
42	2.83648	10	2.88170	74	2.9246	10	2.96563	01		M479	64	3.042	14
43	2.83725	11	2.88243	73	2.925	00	2.96630	67		10595	64	3.042	75 6
44	2.83802	"	2.88317	74	2.9260	10	2.96696	00		mem '	63	3.043	36
45	2.83879	11	2.88390	73	2.926	69	2.96763	61		meet.	64	3.043	07
46	2.83957	10	2.88463	73	2.927	7 10	2.96829	66		00500	64	3.044	50
47	2.84034	"	2.88536	73	2.9281	7 10	2.96896	01		Anna.	63	3.045	10
48	2.84111	11	2.88610	74	2.9288	00	2.96962	66		200==	64	3.045	60 6
49	2.84188	77	2.88683	73	2.9298		2.97028	1010		00855 00918	63	3.046	(1)
43	2.04100	76	2.99099	73	2.9200	69	2.91028	67	33	00918	63	3040	60
50	2.84264	77	2.88756	72	2.930:	25 69	2.97095	66	3.0	00981	64	3.047	01 6
51	2.84341	77	2.88828	73	2.9309	4 70	2.97161	66	3-(11015	63	3.047	62 6
52	2.84418	77	2.88901	73	2.9316	69	2.97227	66	3.0		63	3.048	23 6
53	2.84495	76	2.88974	73	2.9323	33 70	2.97293	66	3.(10000	63	3.048	83 6
54	2.84571	77	2.89047	72	2.9330	3 69	2.97359	66	3.0		64	3-049	44 6
55	2.84648	76	2.89119	73	2.933	2 69	2.97425	66	3.(21200	63	3.050	04 6
56	2.84724	77	2.89192	73	2.934	1 69	2.97491	66	3.0		63	3.050	65 6
57	2.84801	76	2.89265	72	2.9351	0 69	2.97557	66	3.(10.101	63	3.051	25 6
58	2.84877	76	2.89337	72	2.9357	9 69	2.97623	66	3.0		63	3.051	85 6
59	2.84953		2.89409	1	2.9364	18	2.97689		3.0	01550		3.052	46
20	0.05000	76	2.00401	72	2.0971	69	2.07777	66	2.6		63	3.053	60
60	2.85029		2.89481		2.9371		2.97755		30	01613	-	-	
			log	n =	10g 2	R sin	-	-		-	= :	206264	
304	0.0388	156	0.1302	48	0.2170	141	0.2997	134		3786	28	0.454	12
40	0.0544	154	0.1450	47	0.2311	139	0.3131	133		3914 1	28	0.466	123
50	0.0698	153	0.1597	45	0.2450	1.59	0.3264	132		1042	26	0.478	
60	0.0851	-==:	0.1742		0.2583		0.3396		0.4	1168	-	0.490	1
					Propo	rtiona	ltheile						
	70	65			67	66	65	64		63		62	61
1	7.0	6.5			3.7	6.6	6.5	6.4		6.3		6.5	6.1
2	14.0	13.8	1	1	3.4	13.2	13.0	12.8	- 1	12.6		12.4	12.2
3	21.0	20.7		1	0.1	19.8	19.5	19.2		18.9		18.6	18:3
4	28.0	27.6	27.2	20	5.8	26.4	26-0	25.6	6	25.2		24.8	24.4
5	35.0	34.5	34.0	3	3.5	33.0	32.5	32.0	0	31.5		31.0	30.5
6	42.0	41.4	40.8	40	0.2	39.6	39.0	38.4	1	37.8		37.2	36.6
7	49.0	48.3			3.9	46.2	45.5	44.8		44.1		43.4	42.7
8	56.0	55.9			3.6	52.8	52.0	51%		50.4		49.6	48.8
9	63.0	62.1		60		59.4	58.5	57.6	- 1	56.7		55.8	54.9

log m	=	log	2 R	sing	1/2	
	_	-	-	_	1	۰

R = 206264.8

1	24m		25m		26m		27m		28***		29m	
Os	3-053056	602	3.088479	579	3-122511	556	3.155255	535	3.186806	516	3.217246	49
1	3.053658	602	3.089058	577	3.123067	555	3.155790	536	3.187322	516	3.217745	49
2	3.054260	601	3.089635	578	3.123622	556	3.156326	534	3.187838	515	3.218243	49
3	3.054861	602	3.090213	577	3.124178	555	3.156860	535	3.188353	516	3.218741	49
4	3.055463	600	3.090790	577	3.124733		3.157395	534	3.188869	515	3.219238	49
5	3.056063	601	3.091367	576	3-125287	554	3.157929	533	3.189384	514	3-219735	49
6	3.056664	600	3.091943	576	3.125842	555	3.158462	534	3.189898	515	3.220232	49
7	3.057264	599	3.092519		3.126395	553	3.158996		3.190413	514	3.220729	49
8	3.057863		3.093095	576	3.126949	554	3.159529	200	3.190927		3.221225	
9	3.058462	599	3.093670	575	3.127502	553	3.160062	533	3.191441	514	3.221721	49
• •	0.050000	599		575		553		532		513	0.000015	49
10	3.059061	598	3.094245	574	3.128055	553	3.160594	532	3.191954	513	3.222217	49
11	3.059659	598	3-094819	574	3.128608	552	3.161126	532	3.192467	513	3.222713	49
12	3.060257	598	3.095393	574	3.129160	551	3.161658	531	3.192980	513	3.223208	49
13	3.060855	598	3.095967	573	3.129711	552	3.162189	531	3.193493	512	3.223703	49
14	3.061453	595	3.096540	573	3.130263	551	3.162720	531	3.194005	512	3.224197	49
15	3.062048	596	3.097113	573	3.130814	550	3.163251	531	3.194517	512	3.224692	49
16	3.062644	596	3.097686	572	3.131364	551	3.163782	530	3.195029	511	3.225186	49
17	3.063240	596	3.098258	572	3.131915	550	3.164312	530	3.195540	511	3.225680	49
18	3.063836	595	3.098830	571	3.132465	549	3.164842	529	3.196051	511	3.226174	49
19	3.064431		3.099401		3.133014		3.165371		3.196562		3.226667	
20	3.065025	594	2.000070	571	2.199504	550	2.105000	529	9.107070	510	3.227160	45
21	3.065619	594	3.099972	571	3·133564 3·134113	549	3.165900	529	3·197072 3·197582	510	3.227160	4:
22		594	3.100543	570	1	548	3.166429	529		510		45
	3.066213	593	3.101113	570	3.134661	548	3.166958	528	3.198092	510		45
23	3.066806	593	3.101683	570	3.135209	549	3.167486	528	3.198602	509		45
24	3.067399	593	3.102253	569	3.135758	547	3.168014	527	3.199111	509	3.229129	45
25	3.067992	592	3.102822	569	3.136305	547	3.168541	528	3.199620	508	3-229621	45
26	3.068584	592	3.103391	568	3.136852	547	3.169069	526	3.200128	508	3.230112	45
27	3.069176	591	3.103959	568	3.137399	547	3.169595	527	3.200636	509	3.230603	45
28	3.069767	591	3.104527	568	3.137946	546	3.170122	526	3.201145	507	3.231094	45
29	3.070358	591	3.105095	567	3.138492	546	3.170648	524	3.201652	508	3.231584	45
30	3-070949		3.105662	0.,,	3.139038		3.171174	-	3.202160		3.232074	
			log	n =	= log 2 R	sin4	1/2 /		R	= 2	06264.8	
Or	0.4907	120	0.5615	115	0.6296	111	0.6951	106	0.7582	103	0.8190	100
10	0.5027	119	0.5720	115	0.6407	110	0.7057	106	0.7685	102	0.8290	95
20	0.5146	118		114	0.6517	109	0.7163	106	0.7787	102	0.8389	98
30	0.5264	110	0.5959	114	0.6626	103	0.7269	100	0.7889	102	0.8187	00
					Proport	iona	ltheile					
Constitution of	600 59		92 588	584	580 57		72 568	564			52 548	5
				58.4	58.0 5	7.6 5	7.2 56.8	56.4			5.2 54.8	54
1	60.0 59	_	9.2 58.8									108
2	60·0 59 120·0 119	0.2 11	8.4 117.6	116.8	116.0 113	5.2 11						
	60·0 59 120·0 119 180·0 178)·2 11 3·8 17	8·4 117·6 7·6 176·4	116·8 175·2	116·0 113 174·0 175	5·2 11 2·8 17	1.6 170.4	169.2	168-0 166	3.8 16	5.6 164.4	163
2	60·0 59 120·0 119 180·0 178)·2 11 3·8 17	8.4 117.6	116·8 175·2	116·0 113 174·0 175	5·2 11 2·8 17	1.6 170.4	169.2	168-0 166	3.8 16	5.6 164.4	163
2 3	60·0 59 120·0 119 180·0 178 240·0 238	0·2 11 3·8 17 3·4 23	8·4 117·6 7·6 176·4	116·8 175·2 233·6	116·0 113 174·0 175 232·0 230	5·2 11 2·8 17 0·4 22	1·6 170·4 8·8 227·2	169·2 225·6	168-0 166 224-0 22	3·8 16 2·4 22	5·6 164·4 0·8 219·2	163 217
2 3 4 5	60·0 59 120·0 119 180·0 178 240·0 238 300·0 298	0·2 11 3·8 17 3·4 23 3·0 29	8·4 117·6 7·6 176·4 6·8 235·2 6·0 294·0	116·8 175·2 233·6 292·0	116·0 113 174·0 172 232·0 230 290·0 288	5·2 11 2·8 17 0·4 22 8·0 28	1·6 170·4 8·8 227·2 6·0 284·0	169·2 225·6 282·0	168-0 166 224-0 22 280-0 27	3·8 16 2·4 22 3·0 27	5·6 164·4 0·8 219·2 6·0 274·0	163 217 272
2 3 4 5	60·0 59 120·0 119 180·0 178 240·0 238 300·0 298 360·0 357	0·2 11 3·8 17 3·4 23 3·0 29 7·6 35	8·4 117·6 7·6 176·4 6·8 235·2 6·0 294·0 5·2 352·8	116·8 175·2 233·6 292·0 350·4	116·0 113 174·0 175 232·0 230 290·0 288 348·0 343	5·2 11 2·8 17 0·4 22 8·0 28 5·6 34	1·6 170·4 8·8 227·2 6·0 284·0 3·2 340·8	169·2 225·6 282·0 338·4	168·0 166 224·0 22 280·0 27 336·0 33	3·8 16 2·4 22 3·6 27 3·6 33	5·6 164·4 0·8 219·2 6·0 274·0 11·2 328·8	163 217 272 326
2 3 4 5	60 0 59 120 0 119 180 0 178 240 0 238 300 0 298 360 0 357 420 0 417	0·2 11 3·8 17 3·4 23 3·0 29 7·6 35 7·2 41	8·4 117·6 7·6 176·4 6·8 235·2 6·0 294·0	116·8 175·2 233·6 292·0 350·4	116·0 113 174·0 175 232·0 236 290·0 288 348·0 343 406·0 405	5·2 11 2·8 17 0·4 22 8·0 28 5·6 34 3·2 40	1·6 170·4 8·8 227·2 6·0 284·0 3·2 340·8 0·4 397·6	169·2 225·6 282·0 338·4 394·8	168·0 166 224·0 22: 280·0 273 336·0 333 392·0 38	3·8 16 2·4 22 3·0 27 3·6 33 9·2 38	5·6 164·4 0·8 219·2 6·0 274·0 11·2 328·8 6·4 383·6	163 217 272 326 380

		0				3.					
1	24m	25m		26m		27m		28***		29m	
304	3-070949 590	3.105662	567	3.139038	545	3.171174	526	3.202160	507	3.232074	490
31	3.071539 589	19.100000	567	3.139583	545	3.171700	525	3.202667	507	3.232564	490
32	3.072128 590	2.100700	566	3.140128	545	3.172225	525	3.203174	506	3.233054	489
33	3.072718 589		566	3.140673	545	3.172750	525	3.203680	507		489
34	3.073307 588	2.107000	565	3.141218	544	3.173275	524	3.204187	506	2.024020	489
35	3.073895 588		565	3.141762	544	3.173799	524	3.204693	505	9.094501	489
36	3.074483 588		565	3.142306	543	3.174323	524	3.205198	506	2.025010	488
37	3.075071 58	2.100602	564	3.142849	543	3.174847	523	3.205704	505	9.095 100	488
38	3.075658 58		564	3.143392	543	3.175370	523	3.206209	505	12.025.000	487
39	3.076245	3.110751		3.143935		3.175893		3.206714		3.236473	401
	58	1	564		542		523		504		488
40	3.076832 586	3.111315	563	3.144477	542	3.176416	523	3.207218	504	3.236961	487
41	3.077418 583	3.111878	563	3.145019	542	3.176939	522	3.207722	504	3.237478	487
42	3.078003 586	3.112441	562	3.145561	542	3.177461	522	3.208226	504	3.237935	487
43	3.078589 583	3.113003	563	3.146103	541	3.177983	521	3.208730	503	3.238422	486
44	3.079174 58	3.113566	560	3.146644	540	3.178504	521	3.209233	503	3.238908	486
45	3.080758 58	3.114127	562	3.147184	541	3.179025	521	3.209736	503	3.239394	486
46	3.080342 58.	3.114689	561	3.147725	540	3.179546	521	3.210239	502	3.239880	485
47	3.080926	3.115250	561	3.148265	540	3.180067	520	3.210741	502	3.240365	486
48	3.081510 585	3.115811	560	3.148805	539	3.180587	520	3.211243	502	3.240851	484
49	3.082092	3.116371		3.149344	539	3.181107	520	3.211745	502	3.241335	
50	3.082675	3.116931	560	3.149883		3.181627		9.010047		2.041000	485
51	3.083257 58	3.117490	559	9.150100	539	9.100140	519	0.010740	501	9.040905	480
52	3.083839 58	3.118050	560	3.150960	538	9.100000	519	9.019040	301	2.040790	484
53			559	3.151498	538	9.109104	519	3.213750	501	2.012072	484
54	0.005001	9.110107	558	3.152036	538	3.183702			500	0 010000	483
55	3.085582 58	3.119725	558	3.152573	537	3.184220	918	2.014750	500	0.044040	484
56	3.086162 586	3.120283			537	3.184738	010	3.215250	500	2.044700	483
57	3.086742	3.120841	558	3.153647	537	3.185255	914	3.215749	499	2.045005	402
58	3.087322 570	3.121398	557	3.154183	536	3.185772	317	3.216249	500	9.045000	483
59	3.087901	3-121954	556	3.154719	536	3.186289	517	3.216748	499	3.246170	402
	578		557		536		517		498		482
60	3.088479	3.122511		3.155255		3.186806		3.217246		3.246652	-
		log	n =	= log 2 R	sin4	1 1		K	=	206264.8	
301	0.5264 118	0.5959		0.6626	100	0.7269	105	0.7889	101	0.8487	00
40	0.5299		13	0.6735	109	0.7374	105	0.7990	101	0.8585	98 97
50	0.5100	0.0194	12	0.6843	108	0.7478	104	0.8090	100	0.8682	96
60	0.5615	0.6296	12	0.6951	108	0.7582	104	0.8190	100	0.8778	96
				Proport	iona	ltheile					
	540 536 3	532 528	524	520 51	6 5	12 508	504	500 49	6 4	92 488	484
1			52.4			1.2 50.8	50.4		-	9.2 48.8	48.4
2	108-0 107-2 10						100.8	100.0 99		8.4 97.6	96.8
3	162-0 160-8 1										145.2
4	216.0 214.4 2										193.6
5	270.0 268.0 26	66.0 264.0 2	62.0	260.0 258	3.0 25	6.0 254.0	252.0	250.0 248	3.0,24	6.0 244.0	242.0
6	324-0 321-6 3	19-2 316-8 3	14.4	312-0 309	-6 30	7.2 304.8	302-4	300.0 29	6 29	5.2 292.8	290.4
7	378-0 375-2 3										
8	432.0 428.8 4										
9	486-0 482-4 4										
-			_ 0	1 - 120	-1-0	- 2 - 3 - 3 - 3			-, -	-1	4

,	1 9	Om	7	31"		32"		33		9	1111		35#	_
or an inches	H	-	0.00				-	Commence		-	-	+		-
0 ^s	3·2466 3·2471	47	521	5091 5557	400	302624 303076		3·32930 3·32974	, 400				3·380322 3·380734	4
2	3.2476	:15	51 2.07	6023	400	303527	4311	3.33018	9 438	9.07.00	141	120	3.381147	4
3	3.2480	100	9.05	6489	400 9.	303978		3.33062			- 9	241		4
4	3.248			6954						3.3564		24	3.381559	4
	9	43	511			304429	4.00	3.33105	400	3.3568			3.381971	4
5	3.2490	47		7419	40.0	304879	4:01	3.33149	4.0	3.3573		E 23 HE II	3.382383	4
6	3.2495		511	7884	4(1.7)	305330		3.33193		3.3577	- 4	2.1	3.382795	4
7	3.2500			8349		305780		3.33236		3.3581	*	20	3.383206	4
8	3.2504	43		8813		306230		3.33280		3.3585	- 4	1241	3.383618	4
9	3.2509	118		9277	464	306679	450	3.33324	435	3.3590		123	3.384029	
10	3.2514		0.05	9741	9.	307129		3.33367		0.0504	01	1.	3.384440	4
11	3.2519	190 4	0.00	0205	404	307578	440	3.33411	400	9.0500	150	122		4
12	3.2524	115 4	9.00	0668	400	308027		3.33454	400		1 7	123	3.384851	4
13	3.2528	401	10 2.00	1131	400	308476	4411		4.5		- 4	221	3.385261	4
14	3.2533	70 4	78 3.20	1504	400		445	3.33498	4.0.	3.3606	4	23	3.385672	4
	N .		78 3·28	2057	400	308924	44:71	3.33541	4.7	3.3611		221	3.386082	4
15	3.2538	4		2057	4112	309373		3.83585		3.3615		211	3.386492	4
16	3.2543	- 4		2519	402	309821	444	3.33628	4.54	3.3619			3.386901	4
17	3.2548			2981	4112	310268	4.40	3.33672	4.04	3.3623	- 4		3.387311	4
18	3.2552			3443	402	310716		3.33715		3.3628			3.387720	4
19	3.2557	4		3905	461	311163	447	3.33758	8 434	3.3632			3.388130	
20	3.2562	200	2.99	4366	9.	311610	1	3.33802		9.9090	10	21	3.388539	4
21	3.2567	110 4	0 9.00	4828	402	312057	44 (3.33845	. 400	0 0010	900	21		4
22	3.2571	en 4	1 2.00	5289	461	312504	447	3.33888	400	0.0014			3.388947	4
23	3.2576	05 4	(0) 2.30	5749		212004			433	0.0044	91 4	120	3.389356	4
	3.2581			6210		312950		3.33932	433	3.3649	4	20	3.389764	4
24	3.2580		(0)			313396		3.33975		3.3653			3.390173	4
25		- 4	(.)	6670		313842		3.34018		3.3657	31 4	120	3.390581	4
26	3.2590			7130	4.7.7	314288		3.34061		3.3661	41 4	19	3.390989	4
27	3.2595	-	(3)	7589		314734		3.34105		3.3665		ZUI	3.391396	4
28	3.2600	4	(4)	8049		315179	440	3.34148	4.02	3.3670	- 4	11:21	3.391804	4
29	3.2605	4		8508	459	315624	445	3.34191	431	3.3674		119	3.392211	
30	3.2609			8967		316069		3.34234				- 1	9,900010	4
3 U	3 2000	700	10 20						0	3.3678	-	_	3.392618	_
_		-	-	-	<i>n</i> =	log 2 K	. sin*					= 2	06264-8	
O1	0.87			9347	93	0.9898	90	1.043		1.09		5	1.1452	8
10	0.88			9440	93	0.9988	90	1.051	81	1.10		4	1.1534	8
20	0.89	Ju) 1	9533	92	1.0078	89	1.060	00	1.11	- 0	4	1.1616	8
30	0.90	65	0.	9625		1.0167		1.069:	2	1.12	02		1.1698	_
					1	roport	ional	theile	-					
	482	479	476	473	470		464	The same of the same of	458	455	452	-	49 446	4
1	48.2	47.9	47.6	47.3	47.0		46.4		45.8	45.5	45.2		1.9 44.6	4
2	96.4	95.8	95.2	94.6	94.0		92.8		91.6	91.0	90.4		9.8 89.2	8
3	144.6	143.7	142.8	141.9	141.0		139.2		137.4		135.6	1		
4	192.8	191.6	190.4	189-2	188-0	186.8	185.6	184.4	183.2	182.0	180.8	175	9.6 178.4	17
5	241.0	239.5	238.0	236.5	235.0	233.5	232.0	230.5	2290	227.5	226.0	224	1.5 223-0	22
6	289.2	287-4	285-6	283.8	282.0	280.2	278.4	276.6	274.8	273.0	271.2	269	9.4 267.6	26
		335.3	333.2	331.1	329.0		324.8	1	320.6	1		1	1.3 312.2	
	3314											1000		21,
7 8	337·4 385·6	383.2	380.8	378-4		373.6			366.4	364-0	361-6	350	9-2 356-8	35

				wy.	<i>m</i> =	tog Z F	Sin-	2 4			A =	200204.9	
1	30"	1		31"		32m		3:	}in	3	4m	35m	
30r	3.26098	8 47	3.288	8967	459	3.316069	444	3.3423	46 431	3.3678	48 418	3.392618	40
31	3.26146	2 47	3.289	1426	458	3.316513	445	3.34277	77 431	3.3682	66	3.393025	40
32	3.26193	6 47	3.289	1884	459	3.316958	444	3.34320	08 431	3.3686	85 418	3.393432	400
33	3.26240	9 47		343	458	3.317402		3.34363	39	3.3691	03 418		400
34	3-26288	2 47	0.30	801	457	3.317846	112	3-34407	0 430	19.900	21 418		400
35	3.26335	5 47	10.001	258	458	3.318289		3:34450	100	0.0000	39 418	9.904050	400
36	3-26382	7 47	9,001	716	457	3.318733		3.34493	30	9.9709	57 41	9.905056	400
37	3.26430	0 47	19.000	2173	457	3.319176	449	3.34536	30 430	9.9707	74 418	2.205.4450	400
38	3-26477	2 47	9.00	2630	457	3.319619	443	3.34579	10 430	9.9711	92 41	9.905000	403
39	3.26524	3 41	3.293	3087	404	3.320062	440	3.3462:	20 400	3.3716	09 41	3.396273	40.
		47:	2		456		442		429		41	7	40
40	3.26571	5 47	3.298	3543	457	3.320504	4.19	3-34664	49 429	3.3720	26 410	3-396678	40.
41	3.26618	6 47		000	456	3.820946	442	3.34707	18 496	3.3724	42 41		40.
42	3.26665	7 47	2.004	456	456	3.321388	442	3.34750	07 429		59 416	19.907400	40
43	3.26712	8	13.294	912	455	3.321830	442	3.34793	36	3.3739	75	19.207200	40
44	3.26759	8 47	3.295	367	456	3.322272	441	3.34836	34 420	3.3736	91 416	12-202-007	40
45	3-26806	8 470		5823	455	3.322713	441	3.34879	02 428		07 410	19,900701	40
46	3.26853	8 470	: 2,000	278		3.323154	441	3.3492	$\frac{428}{428}$	9.9745			40
47	3.26900	0	20000		455	3.323595		3.3496	10 420	2.2740	20 416	2.200500	-
48	3.26947	0 41	9.00		404	3.324036	441	3.3500	428	0.0770	54 410	2.200012	40
49	3.26994	411	3.297		455	3-324477	441	3.35050	426	3.3757		3.400316	40
		469			454		440	o outco.	427		413		40
50	3.27041	6 46	3.298	8096	454	3.324917	440	3.35093	30 427	3.3761	84 41-	3.400719	40
51	3.27088	4	13.298	3550	453	3.325357		3.3513	27		98 41	19,401100	40
52	3.27135	3	3.74	M M 128	454	3.325797	100	3-35178	34	12.2770	13 41	19,401505	40
53	3-27182	1 40	3.299	457	453	3.326236	440	3.3522	11 426	2.2774	27 41	2.401000	40:
54	3.27228	9	3.299)!!!()	453	3.326676	439	3.35263	37 426	12.2772	41 41	2.409220	40
55	3.27275	6 40	3.300	0363	453	3.327115	439	3.35300	63 426		55 41	2.409722	40
56	3.27322	4 46		0816	452	3.327554	438	3.35348	89 426	2.2790	69 41	9.409195	40
57	3.27369	1 46	10.901	268	452	3.327992	439	3.35391	15 426	2.2700	82 41	2.402527	40
58	3.27415	2	2.201	1720		3-328431		3.3543	11	12.2704	O.C	9.409090	
59	3.27462	40	3.302		452	3.328869	438	3.3547	42.1	3.3799		3.404340	40
	i	46	6		452		438		425		413	3	40
60	3.27509	1	3.302	2624		3.329307		3.35519	91	3.3803	22	3.404742	
				log	n =	= log 2 A	R sin4	1/2 /			R =	206264.8	
30s	0.9065	95	0.90	525	91	1.0167	89	1.069	2 86	1.120	02 84	1.1698	81
40	0.9160	94	0.97	716	91	1.0256	88	1.077	8 86	1.128	86 83	1.1779	81
50	0.9254	93	0.98	207	91	1.0344	88	1.086	4 85	1.136	69 83	1.1860	80
60	0.9347	00	0.98	398	1	1.0432	00	1.094	9 83	1.143	52	1.1940	80
						Propor	tiona	ltheile					
1391360	440	437	434	431	1 4	28 425	42:	419	416	413	410	407 404	40
1	44.0	13.7	43.4	43.1	1 42	8 42.5	42.2	41.9	41.6	41.3	41.0 4	0.7 40.41	40
2		37.4	86.8	86.2	85		84.4	83.8	83.2	82.6		1.4 80.8	80
3	132.0 13	31-1 1	30.2	129.3	128		126.6	125.7				2.1 121.2	
4	9		1	72.4	171		168.8	167-6				2.8 161.6	
5	220.0 2	18.5	17.0	215.5	214	0 212.5	211.0	209.5				3.5 202.0	
	2040 20			258·6 301·7	256 299							4.2 242.4	
6	200.0				1-2-13-13	6 297.5	295.4	293.3	291.2	289.1 2	287.0 28	34.9 282.8	280
7													
	3520 3	19.6	347-2	311.8	342	4 3400	337.6	335-2	332.8	330.4 3	328.0 3:	25·6 323·2 6·3 363·6	320

			log	m =	= log 2 R	sin2	1/2 /		R	= 2	06264.8	
1	36m		37"		3811		39m		40m		41m	
Os	3.404742	401	3.428490	390	3.451602	380	3.474111	370	3.496047	361	3.517439	33
1	3.405143	401	3.428880	390	3.451982	380	3.474481	370	3.496408	361	3.517791	35
2	3.405544	401	3.429270	390	3.452362	0.00	3.474851	370	3.496769	360	3.518143	3
3	3.405945	400	3.429660	390	3.452741	280	3.475221	370	3.497129	361	3.518495	3
4	3.406345	401	3.430050	390	3.453121	379	3.475591	369	3.497490	360	3.518846	3
5	3.406746	400	3.430440	389	3.453500		3.475960	370	3.497850	360	3.519198	3
6	3.407146	400	3.430829	389	3.453879	270	3.476330	369	3.498210	360	3.519549	3
7	3.407546	400	3.431218	389	3.454258	379	3.476699	369	3.498570	360	3.519900	3
8	3.407946	400	3.431607	389	3.454637	379	3.477068	369	3.498930	360	3.520251	3.
9	3.408346		3.431996		3.455016		3.477437		3.499290		3.520602	
		399		389		378		369		359		3
10	3.408745	400	3.432385	389	3.455394	379	3.477806	368	3.499649	360	3.520953	3
11	3.409145	399	3.432774	388	3.455773	378	3.478174	369	3.500009	359	3.521304	3
12	3.409544	399	3.433162	388	3.456151	378	3.478543	368	3.500368	359	3.521654	3
13	3.409943	399	3.433550	388	3.456529	378	3.478911	368	3.500727	359	3.522005	3
14	3.410342	398	3.433938	388	3.456907	377	3.479279	368	3.501086	359		3
15	3.410740	399	3.434326	388	3.457284	378	3.479647	368	3.501445	359		3
16	3.411139	398	3.434714	387	3.457662	377	3.480015	368	3.501804	358	3.523055	3
17	3.411537	398	3.435101	388	3.458039	377	3.480383	367	3.502162	359	3.523405	3
18	3.411935	398	3.435489	387	3.458416	377	3.480750	368	3.502521	358	3.523754	3
19	3.412333	398	3.435876	387	3.458793	377	3.481118	367	3.502879	358	3.524104	3
20	3.412731		3.436263		3.459170		3.481485		3.503237	0.50	3.524453	
21	3.413128	397	3.436650	387	3.459547	377	3.481852	367	3.503595	358	3.524802	3
22	3.413525	397	3.437036	386	3.459923	376	3.482219	367	3.503953	358	3.525151	3
23	3.413922	397	3.437423	387	3.460300	377	3.482586	367	3.504310			3
24	3.414319	397	3.437809	386	3.460676	376	3.482952	366	3.504668	358	9.505010	0
25	3.414716	397	3.438195	386	3.461052	376	3.483319	367	3.505025	357	3.526198	3
26	3.415113	397	3.438581	386	3.461428	376	3.483685	366	3.505382	357	3.526546	3
27	3.415509	396	3.438967	386	3.461804	376	3.484051	366	3.505739	357	3.526895	3
28	3.415905	396	3.439352	385	3.462179	375	3.484417	366	3.506096	357	3.527243	3
29	3.416301	396	3.439738	386	3.462555	376	3.484783	366	3.506453	357	3.527591	3
29	3 410301	396	3 433 130	385	3 402333	375	3 404 103	366	0 000400	356	3 32 1331	3
30	3.416697		3.440123	_	3.462930		3.485149		3.506809		3.527939	
			log	n =	= log 2 R	sin4	1/2 /		R	= 2	206264.8	
Os	1.1940	80	1.2415	78	1.2877	76	1.3328	74	1.3766	72	1.4194	71
10	1.2020	80	1.2493	78	1.2953	76	1.3402	73	1.3838	72	1.4265	70
20	1.2100	79	1.2571	77	1.3029	75	1.3475	73	1.3910	72	1.4335	65
80	1.2179		1.2648	V.	1.3104		1.3548		1.3982		1.4404	
_					Proport	-				-		
	400 39	-	96 394	392	390 38		86 384	382	380 37		76 374	3
1	40.0 39	- (9.6 39.4	39.2	39.0 38		8.6 38.4	38.2	38.0 37	-	7.6 37.4	37
2	80.0 79		9.2 78.8	78.4	78-0 77		7.2 76.8	76.4	76.0 75	-	5.2 74.8	74
3	120-0 119				117.0 116					- 1	2.8 112.2	
4	II I				156.0 155	- 1	1 1			1	0.4 149.6	
5	200-0 199	0 19	8-0 197-0	196.0	195.0 194	0 19	3.0 192.0	1910	190-0 189	0 18	8-0 187-0	186
6	240-0 238	8 23	7.6 236.4	235.2	234.0 232	8 23	1.6 230.4	229-2	228.0 226	8 22	5.6 224.4	223
7	280-0 278	6 27	7.2 275.8	274.4	273-0 271	6 27	0-2 268-8	267.4	266.0 264	6 26	3.2 261.8	260
	320.0 318	. 4 91	0 0 015 3	212.0	2120 210	1 20	0.0 207.0	205.0	301-0 300	1 30	0.8 200.9	20.
8	11320101318	4 01	6.8 315.7	$a_{10.0}$	012 0 010	4 90	0 0 00 1 21	30.7 0	304 0 304	1 00	8.4 336.6	200

1	36m	37m	38**	39m	40m	41m
304	3.416697	3.440123 385	3.462930 97	3.485149	3.506809	3.527939 240
31			9. 109905 010	0.40***** 300	9.507100 501	9,500007 040
32	2.417400 000	2. 140002	2.402000 010	9.405000 300	2.507500 000	9,700091 041
33	0.417004 00.	2.141070 000	2.404054 319	9,100015 000	2,507070	2.530000 348
34	9.410070 000	9.111000 004	9.404400 010	9.404610 000	9.500094 000	2.500900 041
35	9.419674 33.	9.119017 08.	9.404009 014	9.400075 300	9.509500	2,500077 348
36	2.110000 00	2.140121 381	2.405.170	9.402990	2-500040	2.520024 341
37	2.410409 33	2.113015 009	9.405550 344	0.107701	9.500901 000	2.520271 041
38	2.410020 000	0.110100 009	9.405005 016	0 1000000	0 *000** 336	9.590510 041
39	3.419858 39	3.443583 384	3.466299 374	3.488433 365	3·509657 3·510012	3.531064 346
33	39-				3510012	347
40	2.420040	2.412000	2.100079	2.400707	2.510207	2.521411
41	2.421040 33	9.111950 004	2.407010 310	0.100101 304	2.510799 333	0.501777 346
42	9.401494 33	3.444733 383	9.107100 014	0.400"4" 304	9.511077 000	2.5.20102 040
43	2. 101907			3.489888 363	2.5.1.1423	3.532450 347
44	2.400001 59	2.115100 388	2.100100 373		3.511432 354	9,590700
	3.422221 393	3.445499 383	3.468166 372	3.490252 363	3.511786 355	040
45	3.422614 393	3.445882 382	3.468538 378	3.490615 363	3:512141 354	3.533141 346
46	3.423007 393	3.446264 382	3.468911 372	3.490978 363	3.512495 354	3.533487 346
47	3.423400 39:	3.446646 383	3.469283 373	3.491341 363	3.512849 354	3.533833 345
48	3.423792 393	3.447029 383	3.469656 372	3.491704 363	3.513203 354	3.534178 345
49	3.424185	3.447411	3.470028	3.492067	3.213227	3·534523 346
50	39: 3·424577 20:		2.170100	9,400490	353	
50	393	3.447793 381	3.470400 372	3.492430 362	3.513910 354	3.534869 345
51	3.424969 39:	3.448174 382	3.470772 371	3.492792 362	3.514264 353	3.535214 344
52	3.425361 392	3.448556 381	3.471143 372		3.514617 353	3.535558 345
53	3.425753 391	3.448937 381	3.471515 371	3.493516 362	3.514970 353	3.535903 345
54	3.426144 392	3.449318 381	3.471886 371	3.493878 362	3.515323 353	3.536248 344
55	3.426536 391	3.449699 381	3.472257 371	3.494240 362	3.515676 353	3.536592 345
56	3.426927 391	3.450080 381	3.472628 371	3.494602 361	3.216029 353	3.536937 344
57	3.427318 391	3.450461 380	3.472999 371	3.494963 362	3.516382 352	3.537281 344
58	3.427709 390	3.450841 381	3.473370 370	3.495325 361	3.516734 353	3.537625 344
59	3.428099	3.451222	3.473740	3.495686	3.517087	3.537969
	391	380		361	352	344
60	3.428490	8.451602	3.474111	3.496047	3.517439	3.538313
		log n =	= log 2 R sin	1 1	R = 2	206264.8
301	1.2179 79	1.2648 77	1.3104 75	1.3548 73	1.3982 71	1.4404 70
40	1.2258 79	1.2725 76	1.3179 74	1.3621 73	1.4053 71	1.4474 69
50	1.2337 78	1.2801 76	1.3253 75	1.3694 72	1.4124 70	1.4543 69
60	1.2415	1.2877	1.3328	1.3766	1.4194	1.4612
-			Proportiona	ltheile		
	370 368	366 364 3	62 360 358	356 354	352 350 3	48 346 344
1		36.6 36.4 36	A	35.6 35.4	35.2 35.0 34	
2	74.0 73.6	73-2 72-8 72	4 72.0 71.6	71.2 70.8	70.4 70.0 69	
3	111-0 110-4 1	09.8 109.2 108	6 108.0 107.4	106.8 106.2 1		4 103.8 103.2
4		46.4 145.6 144	8 144.0 143.2			2 138-4 137-6
5	185-0 184-0 1	83-0 182-0 181	0 180-0 179-0	178-0 177-0 1	76.0 175.0 174	0 173-0 172-0
6		19.6 218.4 217				
		56.2 254.8 253	1			8-8 207-6 206-4
7			1 1			3.6 242.2 240.8
8		92.8 291.2 289				3-4 276-8 275-2
9	333.0 331.2 3	29.4 327.6 325	9 324.0 325.5	[320.4 [318.6]3	315:0/313	2 311.4 309.6

		log m =	= log 2 R s	$\sin^2 \frac{1}{2} t$	R	2 = 206204.8
1	42m	43***	44m	45m	46**	47m
Or	3.538313	3.558692 336	3.578601	3.598059	201 3.617087	3.635703 207
1	3.538656 34		9.550000	9,500900	9.017401	314 2,020010
2			3:579256	3:598700	320 3.617714	313 3.636317 306
3	9,590919	9.550000 000	3.579584	$\frac{328}{328}$ 3.599021	9,019007	313 2,000000 300
4	3.539686 343	0.500004 000		$\frac{328}{327}$ 3.599341	320 3.618341	314 3·636930 307 313 3·636930 306
5	3:540029	3.560369 333	9.500000	327 3.599661	320 3.618654	
6	3.540372	3 3 5 6 0 7 0 4 3 3 5		328 3.599981	320 3.618967	313 3:637543 306
7	3.540715 34		2.500004	327 3.600301	320 3.619280	
8	3.541058 34	9.501974		327 3.600621	319 3.619593	
9	3.541401	3.561708	3.581548	3.600940	3.619905	3.638461
	34:	335		327	320	313 306
10	3.541743 345	3.562043 334	3.581875	326 3.601260	319 3.620218	312 300
11	3.542085 34:	9.500077	9.200001	327 3.601579	320 3.620530	919 909
12	3.542427 345	3.562711 334	3.582528	326 3.601899	319 3.620843	312 3.639378 306
13	3.542769 34:	3.563045 334	3.582854	327 3.602218	319 3-621155	312 3.639684 305
14	3.543111 34		9.509101	326 3.602537	319 3.621467	
15	3.543453 34:	3.563713 333	3.583507	$\frac{326}{326}$	319 3-621779	312 3 640295 305
16	3.543795 34	3.564046 334	9.509099	326 3.603175	318 3.622091	312 3.640600 305
17	3.544136 34	3.564380 333	3.584159	326 3.603493	319 3.622403	911 909
18	3.544477 34:	3.564713 334	3.584485	325 3.603812	318 3.622714	
19	3.544819	3.565047	3.584810	3.604130	3.623026	3.641515
90	9.515100	9.505900	9.505190	2.001110	2.002227	2.011920
20	9.545500 34	3·565380 333 3·565713 333		020 0.001707	318 0 030040	312 2.010104 304
21 22	9.545941			9,005095	310 2.033000	311 2-642420 303
23	2.540100 04	9.500979 002	2.500110	9,005,109	518 9.004071	311 2.010794 303
24	9.540500 040	3.566711 333	9.596497	220 2.005.791	010 9.004500	311 2.012029 304
25	2.510000 04			323 2.00000	010 9.001009	311 2.642249 304
26	2.547902	9.507970 002	2.507007	20000000	011 2.005002	310 2.042040 304
27	0.547549 040	9.507700 332	9.505110	2,000074	018 2.005514	011 9.042050 304
28	9.5.47009	2.5.00010 002	2.597796	9.000001	9.695995	311 2.044354 304
29	3.548223	3.568372 332	3.588061	3.607308	317 3.626135	310 3.644558 304
23	340			324	318	310 304
30	3.548563	3.568704	3.588385	3.607626	3.626445	3.644862
		log n =	= log 2 R s	in4 1	K	2 = 206264.8
Ot	1.4612 co	1.5010	1.5417	1.5907	c. 1.6187	63 1.6560 61
10	1.4000 00	1.5000	1,5102	1.5971	1,0950	1,0001
20	1.4740 09	1.5159	1,5548	1.5024	1.6219	1,0000 61
30	1:4817 68	1.5220 67	1.5613	1:5998	64 1.6374	62 1.6743 61
	1	1	Proportio			<u> </u>
-	344 842	340 338 336			326 324 33	22 320 318 316
1		34.0 33.8 33.6		NAME AND ADDRESS OF TAXABLE		2.5 35.0 31.8 31.6
2		68.0 67.6 67.2	66.8 66.4	1 1		1.4 64.0 63.6 63.2
3	000		100-2 99-6			3.6 96.0 95.4 94.8
4		36.0 135.2 134.4				3.8 128.0 127.2 126.4
5						1-0 160-0 159-0 158-0
						3-2 192-0 190-8 189-6
6 7						5.4 224.0 222.6 221.2
	240'8 233'4 2	79.0 970.1 979.9	267-9 265-6	261-0 269-1	260-8 259-9 255	7.6 256.0 254.4 252.8
8	215 2 215 6 2	12-0 2 (0-4 268-8	200-6 200-6	204 0 2024	999-1 991-6 980	0.8 288.0 286.2 284.4
9	1 203.6 20 1.8 3	00.0[904.5]905.4	1900.01299.9	231.0[233.2]	200 4 201 0 200	0 200 0 200 2 201 4

47m

45m

43m

42m

46m

				10	10	41
30s	3.548563	3.568704 332	3.588385 324	3.607626 217	3.626445	3.644862 202
31	3.548902 340	3.569036	3:588709	2.007042 014	3.626756 311	2.015105
32	3.549242 339	3.569367			3.627066 310	2:045400
33	3:549581	3:569699		9.000570 010	3.627376 310	
34	3.549920 339		2.500001 024	3.000000		
35	3.550259 339		2.500005	9,000010 011	2.027005	2-010270 000
36	3.550598 339		3.590329 324	2,000500 510	3.628305 310	2,040000 000
37	3.550937 339	3.571024 331	3.590652 323		3.628614 309	
38					3.628924 310	2.647369 303
39	3.551614 338	3.571685	3.591299 324	3.610475 316	3.629233	3·647288 303 3·647591
	339	331	323	316	3023233	302
40	3.551953 990	3.572016 330	3.591622 323	3:610791		9.047009
41	3.552291 338	3.572346	3.591945	3.611107	3.629851 309	
42	3.552629 338	3.572676 330	$3.592268 \begin{array}{l} 323 \\ 322 \end{array}$		3.630160 309	
43	3.552967	3.573007	3.592590 322		3.630469 309	
44	3.553305 338	3.573337 330	3:592913		3.630778 309	
4.5	3.553642 334	3.573667 330	3.593236 323	2-619260	3.631087 309	
46		3.573997 330	3.593558 322		3.631395 308	
47	9.554917 331	3.574326 329	3.593880 322		3.631704 309	2.050000 302
48	9.554055 000	3.574656 330	3.594202 322		3.632012 308	3.650009 302
49	3.554992 337	3.574985	3.594524	3.613630 315	3.632320 308	3.650311 301
	337	330	322	315	308	3.650612
50	3.555329 337	3.575315 200	3.594846 000	3.613945		9,050014
51	3.555666 337	3.575644 329	3.595168 000	3.614260	3.632936 308	
52	3.556003	3.575973 999	3.595490 322	3.614574 315	3.633244 308	
53	3.556339 336	9.770000 529	3.595812 322		3.633552 308	2.051212
54			3.596133 321		3.633859 307	
55	3.557012 336	3.576959 328	3:596454 321		3.634167 308	
56	9.557940 001		3.596775 321		3.634474 307	2-659791
57	2.557005 300	9,577010				
58	9,550001 336	9,577045 023	2.505410 021	0.010450 010	2,025000 001	2-052202 001
59	3.558357	3.578273 328	3.597738 320	3.616773 314	3.635396 307	3.653624 301
	335	328	321	314	307	300
60	3.558692	3.578601	3.598059	3.617087	3.635703	3.653924
Designation of the last		log n =	log 2 R sin			206264.8
				-	A = .	200204 8
30s	1.4817 67	1.5220 66	1.5613 65	1.5998 63	1.6374 62	1.6743 60
40	1.4884 68	1.5286 66	1.5678 64	1.6061 63	1.6436 62	1.6808 61
50	1.4952 67	1.5352 65	1.5742 65	1.6124 63	1.6498 62	1.6864 60
60	1.5019	1.5417	1.5807	1.6187	1.6560	1.6924
			Proportiona	ltheile		
	315 314 3	13 312 311	310 309 3	308 307 306	305 304 3	09 200 201
1		1.3 31.2 31.1		0.8 30.7 30.6		03 302 301
2		2.6 62.4 62.2		1.6 61.4 61.2		
3		3.9 93.6 93.3		2.4 92.1 91.8		
4		5.2 124.8 124.4				0.9 90.6 90.3
				3.2 122.8 122.4		1.2 120.8 120.4
5	157.5 157.0 15	6.5 156.0 155.5	155.0 154.5 15	4.0 153.5 153.0	152.5 152.0 15	1.5 151.0 150.5
6	189-0 188-4 18	7.8 187.2 186.6	186.0 185.4 18	4.8 184.2 183.6	183.0 182.4 18	1.8 181.9 180.6
7	220-5 219-8 21	9-1 218-4 217-7	217.0 216.3 21	5.6 214.9 214.2	213.5 212.8 21	2-1 211-4 210-7
8	252.0 251.2 25	0.4 249.6 248.8	248.0 247.2 24	6.4 245.6 244.8	244.0 243.2 24	9-4 941-6 940-9
9	283-5 282-6 28	1.7 280-8 279-9	279.0 278.1 27	7.2 276.3 275.4	274.5 273.6 27	2.7 271.8 270.0
VAL	ENTINER, Astronom			2 10 0 2 10 1	10 012 10 0121	
	assioned	11.			1	Digitized

90			log	m =	= log 2 R	sin	1 t		R	= 5	206264.8	
1	48m		49m		50m		51m		52m		53m	
0.	3.653924	901	3.671767	201	3.689247	288	3.706377	283	3.723173	277	3.739645	272
1	3.654225	301	3.672061	294	3.689535	288	3.706660	282	3.723450	277	3.739917	272
2	3.654525	300	3.672355		3.689823	288	9.500049		3.723727	277	3.740189	272
3	3.654825	300	3.672649	294	3.690111	288	3.707225	282	3.724004	277	3.740461	271
4	3.655125	300	3.672943	294 294	3.690399	288	3.707507	283	3.724281	276	3.740732	272
5	3.655425	300	3.673237	294	3.690687	288	3.707790	282	3.724557	277	3.741004	271
6	3.655725	300	3.673531	294	3.690975	288	3.708072	282	3.724834	277	3.741275	272
7	3.656025	300	3.673825	293	3.691263	287	3.708354	282	3:725111	276	3.741547	271
8	3.656325	299	3.674118	294	3.691550	288	3.708636		3.725387	277	3.741818	271
9	3.656624		3.674412		3.691838		3.708918		3.725664	070	3.742089	
		300		293	0.003430	288	. =00.00	281	0.505040	276	0.740900	271
10	3.656924	299	3.674705	293	3.692126	287	3.709199	282	3.725940	276	3.742360	271
11	3.657223	300	3.674998	293	3.692413	287	3.709481	282	3.726216	276	3·742631 3·742902	271
12	3.657523	299	3.675291	294	3.692700	287	3.709763	281	3·726492 3·726769	277	3.743173	211
13	3.657822	299	3.675585	293	3.692987	287	3.710044	282	3.727045	276	3.743444	211
14	3.658121	299	3.675878	292	3.693274	287	3·710326 3·710607	281	3.727320	275	2.742714	270
15	3.658420	299	3.676170	293	2.002040	287	3.710607	281	3.727596	276	2.742005	271
16	3.658719	298	3·676463 3·676756	293	9.004125	287	3.711169	281	3.727872	276	2.714056	2 (1
17	3·659017 3·659316	299	3.677048	292	9.004199	287	3.711450	201	3.728148	276	3.744526	210
18 19	3.659615	299	3.677341	293	3.694708	286	3.711731	281	3.728428	275	3.744796	
13	3 633013	298	3 01 1041	292	3 034100	287	5 111101	281	0 120120	276		270
20	3.659913	298	3.677633	292	3.694995	286	3.712012	281	3.728699	275	3.745066	271
21	3.660211	298	3.677925	293	9.005001	287	3.712293	281	3.728974	275	3.745337	270
22	3.660510	299	3.678218	293		286	3.712574	280	3.729249	276		270
23	3.660808	298	3.678510	292		286	3.712854	281	3.729525	275	3.745877	270
24	3.661106	298	3.678802	291	3.696140	286	3.713135	280	3.729800	275	3.746147	269
25	3.661404	298	3.679093	292	3.696426	286	3.713415	281	3.730075	275	3.746416	270
26	3.661702	297	3.679385	292	8.696712	286	3.713696	280	3.730350	275	3.746686	270
27	3.661999	298	3.679677	291	3.696998	285	3.713976	280	3.730625	274	3.746956	269
28	3.662297	298	3.679968	292	3.697283	286	3.714256	280	3.730899	275	3.747225	270
29	3.662595	205	3.680260	001	3.697569	200	3.714536	000	3.731174	054	3.747495	900
00	0.000000	297	0.000	291	0.005055	286	0 =1 1010	280	0.501440	274	9.747764	269
30	3.662892		3.680551		3.697855		3.714816		3.731448	-	3.747764	
			log	n =	= log 2 R	sin4	1/2 /		R	= 5	206264.8	
0^{n}	1.6924	60	1.7281	59	1.7630	58	1.7973	56	1.8309	55	1.8638	55
10	1.6984	60	1.7340	58	1.7688	57	1.8029	57	1.8364	55	1.8693	54
20	1.7044	59	1.7398	58	1.7745	58	1.8086	56	1.8419	55	1.8747	54
30	1.7103	_	1.7456		1.7803		1.8142	-	1.8474		1.8801	-
					Proport	iona	ltheile					
	299 298	1		295	294 29	-	92 291	290	289 28	1	87 1286	285
1	29.9 29.	-	29.6	29.5	29.4 29)	9.2 29.1	29.0	28.9 28		8.7 28.6	28.5
2	59.8 59.		9.4 59.2	59.0	58.8 58	1	3.4 58.2	58.0	57.8 57	1	7.4 57.2	57.0
- 19	89.7 89.	1	0.1 88.8	88.5	88.2 87		7.6 87.3	87.0	86.7 86		6.1 85.8	85.5
3	110 0 110		8 8 1 1 8 4 1	18.0	117.6 117	2 110	3.8 116.4	116.0	119.6 119	2 11	4.8 114.4	1140
- 19	119.6 119.	2 110	-	1								
3	119·6 119· 149·5 149·		1 1	47.5	147.0 146	5 146	3.0 145.5	145.0	144.5 144	0 14	3.5 143.0	142.5
3 4	149·5 149· 179·4 178·	0 148 8 178	3·5 148·0 1 3·2 177·6 1	77.0	176.4 175	8 173	5.2 174.6	174-0	173-4 172	8 17	2.2 171.6	1710
3 4 5	149·5 149· 179·4 178· 209·3 208·	0 148 8 178 6 207	3·5 148·0 1 3·2 177·6 1 7·9 207·2 2	77·0	176·4 175 205·8 205	8 173	174·6 1·4 203·7	174·0 203·0	173·4 172 202·3 201	8 17:	2·2 171·6 1 0·9 200·2	171 0 199 5
3 4 5 6	149·5 149· 179·4 178·	0 148 8 178 6 207 4 237	3·5 148·0 1 3·2 177·6 1 7·9 207·2 2 7·6 236·8 2	77·0 206·5 26·0	176·4 175 205·8 205 235·2 234	8 173 1 20- 4 233	5·2 174·6 1·4 203·7 :	174·0 203·0 232·0	173·4 202·3 201·2 231·2 230	8 17: 6 20: 4 22:	2·2 171·6 1 0·9 200·2 1 9·6 228·8	171 0 199 5 228 0

_				2		
1	48m	49m	50m	51m	52m	53m
30:	3-662892 207	3.680551 292	3.697855 285	3.714816 280	3.731448 275	3.747764 270
31	3.663189 297	3.680843 291	3.698140 285	3.715096 200	3.731723 274	2.748034 210
32	3.663486 298	19,001194	3.698425 286		3.731997 275	2.740202 203
33	3.663784 297	3.681425 291	3.698711 285	3.715655	3.732272	2.749579 200
34	3.664081 296	9.001710	3.698996 285	3.715935	3.732546	9.749941 200
35	3.664377 297	3.682007 290	3.699281 285	3.716214 290	2.729290	2.740110 209
36	3-664674 297	3.682297 291	3.699566 285			2.740270
37	3.664971 297	3.682588 291	3.699851 285	3.716773	3.733368	2.740049 200
38	3.665268 296	9.000070	3.700136 284	3.717052 279	3.733642 274	2.740016 200
39	3.665564	3.683169	3.700420	3.717332	3.733916	3.750185
	296	290	285	279	273	269
40	3.665860 297	3.683459 291	3.700705 284	3.717611 279	3.734189 274	3.750454 268
41	3.666157 296	3.683750 290	3.700989 285		3.734463 274	3.750722 269
42	3.666453 296		3.701274 284	3.718168	3.734737	
43	3.666749 296	3.684330 290	3.701558 284	3.718447 279	3.735010 273	
44	3.667045 296	19.004000	3.701842 285	3 118/26 278		2.751597
45	3.667341 296	3.684910 290	3.702127 284	3.719004 279	3.735557 273	9.751705
46	3.667637 295	3.685200 289	3.702411	3.719283	3.735830 273	9.753009
47	3.667932 296		3.702695 283	3.719561	3.736103	9.750991
48	3-668228 295	3.685779 289	3.702978 284	3.719840 278	3.736376 273	9.750500
49	3.668523	3.686068	3.703262	3.450118	3.736649	3.752867
**	296		284	278	273	
50	3.668819 295	3.686358 289	3.703546 283	3.720396 278	3.736922 272	3.753135 267
51	3.669114 295	3.686647 289	3.703829 284	3.720674 278	3.737194 273	3.753402 268
52	3.669409 295	3.686936 290	3.704113 283	3.720952 278	3.737467 273	3.753670 268
53	3.669704 295	3.687226 289	3.704396 284	3.721230 278	3.737740 272	3.753937 268
54	3.669999 295	3.687515 288	3.704680 283	3.721508 277	3.738012 273	3.754205 267
55	3.670294 295	3.687803 289	3.704963 283	3.721785 278	3.738285 272	3.754472 267
56	3.670589 295	3.688092 289	3.705246 283	3.722063 278	3.738557 272	3.754739 267
57	3.670884 294	3.688381 289	3.705529 283	3.722341 277	3.738829 272	3.755006 267
58	3.671178 395	3-688670 288	3.705812 283	3.722618 277	3.739101 272	3.755273 267
59	3·671473 294	3.688958	3.706095	3.722895	3.739373	3.755540 267
60	3.671767	3.689247	3.706377	3.723173	3.739645	3.755807
- 00	30011101					
-		1	= log 2 R sin			206264.8
30r	1.7103 60	1.7456 59	1.7803 57	1.8142 56	1.8474 55	1.8801 54
40	1.7163 59	1.7515 58	1.7860 56	1.8198 55	1.8529 55	1.8855 53
50	1.7222 59	1.7573 57	1.7916 57	1.8253 56	1.8584 54	1.8908 54
60	1.7281	1.7630	1.7973	1.8309	1.8638	1.8962
			Proportiona	ltheile		
	284 283 2	82 281 280	279 278 2	77 276 275	274 273 2	72 271 270
1	28.4 28.3 2	8.2 28.1 28.0	27.9 27.8 2	7.7 27.6 27.5	27.4 27.3 2	7.2 27.1 27.0
2	56.8 56.6 5	6.4 56.2 56.0	55.8 55.6 5	5.4 55.2 55.0	54.8 54.6 5	4.4 54.2 54.0
3	85.2 84.9 8	4.6 84.3 84.0	83.7 83.4 8	3.1 82.8 82.5	82.2 81.9 8	81.6 81.3 81.0
4	113.6 113.2 11	2.8 112.4 112.0	111.6 111.2 11	0.8 110.4 110.0	109.6 109.2 10	8.8 108.4 108.0
5	142.0 141.5 14	1.0 140-5 140-0	139-5 139-0 13	8.5 138.0 137.5	137.0 136.5 13	6.0 135.5 135.0
6	170-4 169-8 16	9-2 168-6 168-0	167-4 166-8 16	6.2 165.6 165.0	164.4 163.8 16	3-2 162-6 162-0
7						0.4 189.7 189.0
8						7.6 216.8 216.0
9						4.8 243.9 243.0
	1 -0	1202 - 1202 0		-	1 1 1 1 1	, = == = == =

1	54m		55m		56m		57m		58m		59m	
Qs	3.755807	267	3.771670	262	3.787244	257	3.802540	252	3.817567	248	3.832334	2
1	3.756074	267	3.771932	262	3.787501	257	3.802792	253	3.817815	248		2
2	3.756341	266	3.772194	261	3.787758	257	3.803045	252	3.818063	248	3.832822	2
3	3.756607	267	3.772455	262	3.788015	257	3.803297	253	3.818311	248	3.833066	2
4	3.756874	266	3.772717	262	3.788272	257	3.803550	252	3.818559	248		2
5	3.757140		3.772979		3.788529	257	3.803802	252	3.818807	248	3.833553	2
6	3.757407	267	3.773240	261	3.788786	257	3.804054	253	3.819055	248	3.833797	
7	3.757673	266	3.773502	262	3.789043		3.804307		3.819303		0.001010	2
8	3.757939	266	3.773763	261	3.789299	256	3.804559	252	3.819551	248	3.834284	2
9	3.758205	266	3.774024	261	3.789556	257	3.804811	252	3.819798	247	3.834527	2
	0.00200	266	0 111021	261		256	001011	252	0010100	248		2
10	3.758471	200	3.774285		3.789812	257	3.805063		3.820046	247	3.834771	
11	3.758737	266	3.774546	261	3.790069	256	3.805314	251	3.820293		9.097014	2
12	3.759003	266	3.774807	261	3.790325		9.005500	252	3.820541	248	3.835257	2
13	3.759269	266	3.775068	261	3.790581	256	3.805818	252	3.820788	247	3.835500	2
14	3.759535	266	3.775329	261	3.790838	257	3.806070	252	3.821035	247	3.835743	2
15	3.759800	265	3.775590	261	3.791094	256	3.806321	251	3.821283	248	3.835986	- 4
16	3.760066	266	3.775851	261	3.791350	256	3.806573	252	3.821530	247	3.836229	_ 2
	3.760332	266		260	3.791606	256	3.806824	251	3.821777	247	3.836472	2
17	3.760597	265	3·776111 3·776372	261	3.791862	256	3.807076	252	3.822024	247	3.836715	2
18	ll .	265		261	1	255		251		247	3.836958	
19	3.760862	265	3.776633	260	3.792117	256	3.807327	251	3.822271	246	3.836938	2
20	3.761127		3.776893		3.792373		3.807578		3.822517		3.837200	
21	3.761393	266	3.777153	260	3.792629	256	3.807829	251	3.822764	247	3.837443	2
	3.761658	265		260	3.792884	255	3.808080	251	3.823011	247	3.837685	- 2
22		265	3.777413	261	1	256		251		247		
23	3.761923	265	3.777674	260	3.793140	255	3.808331	251	3.823258	246	3.837928	- 2
24	3.762188	265	3.777934	260	3.793395	255	3.808582	251	3.823504	247	3.838170	- 2
25	3.762453	264	3.778194	260	3.793650	256	3.808833	251	3.823751	246	3.838413	5
26	3.762717	265	3.778454	259	3.793906	255	3.809084	251	3.823997	247	3.838655	2
27	3.762982	264	3.778713	260	3.794161	255	3.809335	250	3.824244	246	3.838897	2
28	3.763246	265	3.778973	260	3.794416	255	3.809585	251	3.824490	246	3.839139	2
29	3.763511		3.779233	250	3.794671	0	3.809836	0.0	3.824736	0.0	3.839381	
30	3.763775	264	3.779492	259	3.794926	255	3.810086	250	3.824982	246	3.839623	2
90	3 (00(10	-	-	** -	= log 2 R	cin4		-			206264.8	-
0.	1.0000			/-		-	-	-		_		-
()s	1.0015	53	1·9279 1·9331	52	1.9590 1.9642	52	1.9896	51	2·0197 2·0246	49	2.0492	4
10		53		52	1.9693	51	1.9997	50		50	2.0589	4
20	1.9068	53	1.9383	52		51		50	2.0296	49		4
30	1.9121	The same of	1.9435	-	1.9744		2.0047	-	2.0345		2.0638	
		1 .	am aac	207	Proporti	CZWIE		ahe	Arol be	010	rel aral	_
1	269 268		67 266	265 265	264 26		62 261 6.2 26.1	260	259 25 25·9 25		$\frac{57 + 256}{5 \cdot 7 + 25 \cdot 6}$	2
2	53.8 53		3.4 53.2	53.0	52.8 52		2.4 52.2	52.0	51.8 51	-	1.4 51.2	5
3	80.7 80		0.1 79.8	79.5	79.2 78	- 1	8.6 78.3	78.0	77-7 77	- 1	7.1 76.8	7
	107.6 107	-1									2.8 102.4	
4										- 1	1	
5	134.5 134	0 13	3.5 133.0	132.5	132-0 131	.5 13	1.0 130.5	130.0	129.5 129	0 12	8.5 128.0	12
	101.41200	8 16	0.2 159.6	159.0	158.4 157	8 15	7.2 156.6	156.0	155.4 154	8 15	4.2 153.6	15
6	101.4 100.											
	188-3 187						3.4 182.7	182.0	181.3 180	6 17	9.9 179.2	17
6 7 8		6 18	6.9 186.2	85.5	184.8 184	1 18						

1	54m		55*	4		56m	T	57	м		58m		59#	a .
30s	3.763775	265	3.779492	260	3.7945	026 .	255 3	810086	251	3.824	982	246	3.839623	242
31	3.764040	264	3.779752	259	3.795		255 3	81033	250	3.825		246	8.839865	242
32	3.764304	264	3.780011	260	3.795	12C	254 3	81058	000	3.825	474	246	8-840107	242
33	3.764568	264	3.780271	259	3.795	COO	255 3	81083	200	3.825	720	246	840349	241
34	3.764832	264	3.780530	259	3.7955	145	255 3	81108	950	3.825	966	246	8.840590	242
35	3.765096	264	3.780789	259	3.796		254 3	81133	250	3.826		246 3	8.840832	242
36	3.765360	264	3.781048	259	3.796		255 3	81158	250	3.826	450	345	841074	241
37	3.765624	264	3.781307	259	3.796	7(1)0	254 3	81183	250	3.826	702	246	8-841315	241
38	3.765888	263	3.781566	259	3.7969	363	254 3	812087	250	3.826	010	245	841556	245
39	3.766151	200	3.781825	200	3.797	217	3	812337	7 230	3.827	194	3	841798	242
		264		259			254		250			246		241
40	3.766415		3.782084		3.797			81258		3.827		40	8-842039	24
41	3.766678	264	3.782343	258	3.797		254 3	81283	249	3.827	COF	246 3	842280	241
42	3.766942	263	3.782601	259	3.7979	100	254 3	813086	250	3.827	091	245 3	842521	242
43	3.767205	263	3.782860	258	3.798;	224	253 3	813336	249	3.828	170	245 3	842763	241
44	3.767468	264	3.783118	259	3.798	187	254 3	813583	250	3.828	101	245 3	843004	240
45	3.767732	263	3.783377	258	3.798	741	254 3	813835	249	3.828	ccc	245 3	843244	241
46	3.767995	263	3.783635	259	3.798	195 ,	254 3	814084	249	3.828	011	45 3	843485	241
47	3.768258	263	3.783894	258	3.799		253 3	814333	249	3.829		245 3	843726	241
48	3.768521	263	3.784152	258	3.799	(10)	254 3	814582	249	3.829	401	245 3	843967	241
49	3.768784		3.784410		3.799	756	3	814831	1	3.829	646	3	844208	
		263		258			253		249		-	244		240
50	3.769047	262	3.784668		3.8000			815080		3.829			844448	
51	3.769309	263	3.784926		3.800;			815329		3.830		4.0	844689	241
52	3.769572	262	3.785184	201	3.8003		000	815578	243	3.830			844929	
53	3.769834	200	3.785441	200	3.800		203	815827	249	3.830	2	4.0	845170	240
54	3.770097	262	3.785699	200	3.8010	- 2	(66)	816076	243	3.830			845410	
55	3.770359	262	3.785957		3.801:			816325		3.831			845650	
56	3.770621	263	3.786214		3.801	2	130	816573	24.7	3.831	2	25.4	845890	241
57	3.770884	262	3.786472		3.801	2	(816822	240	3.831	2	44	846130	241
58	3.771146	262	3.786729		3.8020			817070		3.831			846371	240
59	3.771408	262	3.786987	257	3.802		253 3	817318	249	3.832		244	846611	240
60	3.771670		3.787244		3.802			817567		3.832	-		846851	240
00	0111010			-	= log :			t		0 002	12		06264.8	
30s	1.9121		1.9435		1.97	11	T	2.0047		2.08	4.5	T	2.0638	
40	1.0174	53	1.9487	52	1.97	05 3	-	2.0097	50	2.03	101	- 1	2.0686	48
50	1,0000	52	1.9539	52	1.98	10 0		2.0147	50	2.04	19 4	- 1	2.0734	48
60	1.9279	53	1.9590	51	1.98	9	0	2.0197	50	2.04	4	9	2.0782	48
00	10210		10000		Prop	-	nalth			201			20102	
	254 253	91	52 251	250	249	248	247		245	244	243	24:	2 241	240
1	25.4 25.3	-	5.2 25.1	25.0	24-9	24.8	24		24.5	24.4	24.3			24.0
2	50.8 50.		0.4 50.2	50.0	49.8	49.6	49		49.0	48.8	48.6	48		48
3	76.2 75.	1	5.6 75.3	75.0	74.7	74.4	54	1	73.5	73.2	72.9	72	1 1	724
4	101.6 101.			100.0	99.6	99.2	98		98.0	97.6	97.2	96		964
					1									
5	127.0 126.		- 1				1						1 1	
6	152-4 151-8													
7	177-8 177-1													
8	203.2 202.4	1 201	6 200-8	200-0	199.2	198.4	197	196.8	196.0	195.2	194.4	193	6 192.8	1924
9	228.6 227.													

Tafel VI.

Verzeichniss der Bahnelemente der Kometen.

Ueber die Bezeichnung (Col. 1) vergl. Bd. 2, pag. 52.

In der Columne »Name des Entdeckers« sind für die erste Zeit die Quellen angegeben, wo der betreffende Komet erwähnt worden ist; bei auffallenden Erscheinungen späterer Zeit, welche an verschiedenen Orten zugleich gesehen wurden, ist nur der eine oder andere Name des ersten Beobachters angeführt.

In der letzten Columne bedeutet:

- A. N. Astronomische Nachrichten.
- A. J. Astronomical Journal.
- B. A. Bulletin Astronomique.
- B. J. Berliner Astronomisches Jahrbuch.
- C. R. Comptes Rendus de l'Acad. Française.
- C. d. T. Connaissance des Temps.
- M. N. Monthly Notices of the R. Astron. Society.
- M. C. Zachs' Monatliche Correspondenz.
- Nat. »Nature« (London).
- Obs. »Observatory« ed. Greenwich.
- V. J. S. Vierteljahrsschrift der Astron. Gesellschaft.

Die übrigen Abkürzungen bedürsen keiner Erläuterung.

Be- zeich- nung	No. nach GALLE II.	Jahr	Durchgang durch das Perihel M. Zt. Paris	Argument des Perihels w	Länge des aufst. Knotens	Neigung i
		v. Chr.	Alter Stil			
1	1	372	Winter	120°	270° bis 330°	unter 150°
2	2	137	April 29	350	220	160
3	3	69	Juli	150	165	70
(19)	4	12	Octob. 8.80	108 .	28	170
		n. Chr.				
(19)	5	66	Januar 14.2	67° 40'	32° 40′	139° 30'
(19)	6	141	März 29·1	120 55	12 50	163 0
[a]	7	240	Novemb. 10:0	82	189	44
[b]	8	539	Octob. 20.62	255·5 od. 75·5	58 od. 238	10
[c]	9	565	Juli 14 [.] 5	79 30	159 30	121
4	10	568	August 29-33	24 20	294 15	4 8
5	11	574	April 7:29	15 22	128 17	46 31
6	12	770	Juli 6.65	86 46	88 54	129 29
(19)	13	837	März 1:00	277 30	206 33	170 od. 168
7	14	961	Decemb. 30·17	82 32	350 35	100 27
(19)	15	989	Septemb. 12.0	180	84	163
[4]	16	1006	März 22	94 bis 93	38	162 30
(19)	17	1066	April 1:0	120 55	25 50	163 0
8	18	1092	Febr. 15:0	30 40	125 40	28 55
9	19	1097	Septemb. 21:9	125 0	207 30	73 30
10	20	1231	Januar 30-307	121 18	13 30	6 5
11	21	1264	Juli 19:80	159 34	140 55	16 29
12	22	1299	März 31:318	103 48	1 107 8	111 3
	23	1301	Octob. 24:0	186	138	167
(19) 13	24	1337	Juni 15:08	90 41	93 1	139 32
[e]	25	1351	Novemb. 26:5	unbestimmt	unbestimmt	unbestimmt
14	26	1362	März 2:33	10	237	148
15	27	1366	Octob. 21:461	169 21	217 25	152 23
(19)	28 H	1378	Novemb. 8:77	107 46	47 17	162 4
16	29	1385	Octob. 16:27	166 44	268 31	127 45
(f)	30	1402	März 21	91	117	55
17	31	1433	Novemb. 7:7766	189 19:2	96 20.3	104 0:1
18	32	1449	Decemb. 9.3747	356 52.0	261 17.8	155 40-5
19	33 H	1456	Juni 8:20875	104 49 1	43 46 4	162 22 3
20	34	14571	Januar 17:9859	194 54.2	249 39.3	13 15.7

Be- zeich-	Log. der Periheldist.	Excentrici-	Nam	e des	Dauer der	Nachweis
nung	log q	e	Entdeckers	Berechners	Sichtbarkeit	der Berechnung
1	sehr klein		von Aristote-	Pingré		PINGRÉ I, 262, 6
2	0.0043		Chines. Beob.	PEIRCE		Americ. Alm. 184
3	9.90		Chines. Beob.	PEIRCE		Americ. Alm. 184
(19)	9.76			HIND		HIND, Kometen, pag. 142.
(19)	9.6480		Chines, Beob.	HIND		A. N. XXVII, 15
(19)	9.857			HIND	1	M. N. X, 57
[a]	9.570		Chines. Beob.	BURCKHARDT		M. C. X, 167
[b]	9.53307		Chines. Beob.	BURCKHARDT		M. C. II, 415. XVI, 498
[c]	9-92000		Chines. Beob.	BURCKHARDT		M. C. X, 162
4	9.95779		Chines. Beob.	LAUGIER		C. R. XXII, 156
5	9.9836		Chines. Beob.	Hind		A. N. XXI, 279. XXIII, 377
6	9.7801		Chines. Beob.	HIND		A. N. XXIII, 37
(19)	9.763428		Chines. Beob.	Prigré		l'ingré I, 340
7	9.7418		Chines. Beob.	HIND		A. N. XXIII, 37
(19)	9.7546		Chines. Beob.	BURCKHARDT		M. C. X, 167
[d]	9.76604			Pingré		PINGRÉ I, 364
(19)	9.857			HIND		M. N. X, 54
8	9.9676		Chines, Beob.	HIND		A. N. XXVII, 15
9	9.86832		Chines. Beob.	BURCKHARDT	Octob. 6-17	M. C. II, 417. XVI, 501
10	9-9767		Chines, Beob.	Pingré		Pingré I, 401
11	9.9164			Ноек	3 Monate	HOEK, De Kome ten, pag. 55
12	9.502330			Pingré		PINGRÉ I, 419
(19)	9.806			LAUGIER		C. d. T. 1846, 9
13	9.91815			LAUGIER		C. R. XXII, 153.
[e]	0.00		Chines, Beob.	BURCKHARDT	Nov. 24-30	M. C. II, 418. XVI 503
14	9.67214		Chines. Beob.	BURCKHARDT		M. C. X, 166
15	9-99114			HIND	1	Obs. IX, 283
(19)	9.76604		Chines, Boob.	LAUGIER		C. R. XVI, 1005
16	9.8886		Chines. Beob.	HIND		A. N. XXI, 279. XXIII, 377
[f]	9.58			Hind		Nat. XVI, 50
17	9.69264		Toscanelli	CRLORIA	Oct. 5-31	A. N. CIX, 110
18	9.51510		Toscanelli	CELORIA	1449 Dec. 26 bis 1450 Febr. 13	A. N. CIX, 269
19	9.76363	0.96783	TOSCANELLI	CELORIA	Juni 8-Juli 8	A. N. CXI, 70
					1 -	

e- eh- ng	No. nach GALLE II	Jahr	Durchgang durch das Perihel M. Zt. Paris		Perih w		Län aufst.	Kno		N	eigu i	ng
1	35	1457 11	August 8:0071	185°	8"	1	184°	24	2	90	51"	7
2	36	1468	Octob. 7:433	69	43		71	5	-	141	59	
3	37	1472	Febr. 29:94555	246	6	58"	285	53	25"	170	50	6"
4	38	1490	Decemb. 24:48	129	55		288	45		51	37	
()	39	1499	Septemb. 6.19	83	80		326	30		21		
)	40	1500	Mai 17	20			310			105		
5	41	1506	Septemb. 3.668	242	13		132	50		134	59	
9)	42 H	1531	August 25.799	104	18		45	30		163	0	
6	43	1532	Octob. 19:3389	24	25		87	23		32	36	
1)	44	1533	Juni 14.889	278	21		299	19		28	14	
7	45	1556	April 22:1911	100	52.6	6	175	13:	9	32	25.	7
8	46	1558	Septemb. 13:55	119	37		335	3		110	53	
9	47	1577	Octob. 26:9541	225	38	24	25	20	24	104	50	18
0	48	1580	Novemb. 28:49961	89	20	14	19	6	42	64	33	49
1	49	1582	Mai 6:4197 Neuer Stil	331	56	50	227	13	33	118	34	9
2	50	1585	Octob. 8:0327	331	24	10	37	44	15	6	5	52
3	51	1590	Febr. 8:03363	307	39	44	165	36	56	150	30	16
4	52	1593	Juli 18:575	12	4		164	15		87	58	
5	53	1596	Juli 25-2208	59	26	14	830	20	49	128	1	50
9)	54 H	1607	Octob. 27:0148	107	27	10	48	14	9	162	58	43
6	55	1618 I	Aug. 17:133	24	55		298	25		21	28	
7	56	1618 II	Novemb. 8-3572	287	21	11	75	44	10	37	11	31
8	57	1652	Novemb. 12:6593	300	8	40	88	10	0	79	28	0
9	58	1661	Januar 26:8875	33	22	8	81	54	0	33	0	55
0	59	1664	Decemb. 4.4898	310	33	15	81	15	52	158	41	48
,	60	1665	April 24:2253	156	7	30	228	2	0	103	55	0
2	61	1668	Febr. 28-8	80	15		357	17		144	2	
3	62	1672	März 1:45319	109	33	32	298	6	30	82	56	45
4	63	1677	Mai 6.0322	99	12	5	236	49	10	100	56	45
5	64	1678	August 18:3213	159	27	37	163	20		2	52	
6	65	1680	Decemb. 17.99409	850	89	86	272	9	29	60	40	16
9)	66 H	1682	Septemb. 14.80155	109	15	41	51	11	18	162	15	15
7	67	1683	Juli 18:09717	87	48	40	173	24	40	96	46	45
8	68	1684	Juni 8.269	330	20	41	268	10	32	65	25	8
	69	1686	Septemb. 15.8314	81	54	-	354	3		84	55.	

Be-	Log. der	Excentrici-	Nam	e des	Dauer der	Nachweis				
zeich- nung	Periheldist.	tät ¢	Entdeckers	Berechners	Sichtbarkeit	der Berechnung				
21	9.88106		Toscanelli	CELORIA	Juli 6- Aug. 4	A. N. CX, 173				
22	9-91893			VALZ		C. R. XXII, 425				
23	9.68654			CELORIA		A. N. CXII, 53				
24	9.8678		Chines. Beob.	HIND		A. N. XXIII, 377				
[g]	9.9795		Chines. Beob.	HIND		Par. Bull, 1861. 8. 9				
[h]	0.146		Chines. Beob.	Hind		Par. Bull. 1861. 8. 9				
25	9.58657		Chines. Beob.	LAUGIER	Juli 31 - Aug. 14	C. R. XXII, 154				
(19)	9.76338	0.967391	APIAN	HALLEY		HALLEY, Tab. astr.				
26	9.71535			OLBERS		HINDENB. Mag. 1787, 440				
(i)	9-514362			OLBERS		B. J. 1800, 126				
27	9.69092			Нокк	März 4 - April2 5	1				
28	9.4480		FABRICIUS	HOEK		A. N. LXVIII, 96				
29	9-24920		TYCHO BRAHE			A. N. XXIV, 7				
30	9.77986		TYCHO BRAHE			A. N. XLII, 173				
31	9-22716		Тусно Вкане	MARTH	Mai 12-18	Nat. XIX, 123				
32	0-0393531		Tycho Brahe	C. A. F. PETERS und Sawitsch	Octob. 19 bis Nov. 17	A. N. XXIX, 269				
33	9.7541386		TYCHO BRAHE	HIND	März 5-16	A. N. XXV, 131				
34	8-94994		RIPENSIS	LA CAILLE		M. d. Paris 1747, 562				
35	9.7537024		TYCHO BRAHE MOESTLIN	Hind		A. N. XXIII, 232				
(19)	9.766543	0.9674544	HARRIOT, LON- GOMONTAN	LEHMANN		A. N. XII, 391				
36	9.710100		Kepler	Pingré	Aug.25-Sept.25	PINGRÉ II, 4. 100				
37	9.590556			BESSEL.	1618 Nov. bis 1619 Jan. 21	B. J. 1808, 119				
38	9-928140		HEVEL	HALLEY		HALLEY, Tab. astr.				
39	9.646131		HEV., WELPER	MÉCHAIN	Jan. 29-März 28	Mém. X, 395				
40	0.010949		HEVEL	Lindelöf	1664 Nov. bis 1665 März	Diss. Helsingf. 1854				
41	9.027309		HEVEL	HALLEY	März-April 20	HALLEY, Tab. astr.				
42	7.68000	7		HENDERSON		A. N. XX. 335				
43	9.842271	1 2	HEVEL, CASSINI	BERBERICH		A. N. CXVIII, 70				
44	9.448072		HEVEL, FLAM-	HALLEY	April 29 - Mai 8	HALLEY, Tab. astr.				
45	0-0589182 0-626970 LA HIRE		LEVERRIER		A. N. XXVI, 383					
46	7-7939551 0-99998542 G. Kirch		ENCKE	1680 Nov. 13 bis 1681 März	Z. f. Astr. VI, 157					
(19)	9.7655898	0.96792019	FLAMSTEED, HEVEL	Rosenberger		A. N. XII, 190				
47	9.7478656		BIANCHINI	PLUMMER		M. N. XXX, 157				
48	9.98149		BIANCHINI	NEUGEBAUER	Juli 1 - 17	A.N. LXXXIV,144				
49	9.52686			HIND	Aug. 17-Sept. 15					

Be- zeich- nung	No. nach GALLEII.	Jahr	Durchgang durch das Perihel M. Zt. Paris	Arg des	rume Perih w		aufst.	ge d Kno Ω		No	igur <i>i</i>	g
50	70	1689	Novemb, 30·1654	78°	10'	39"	279°	24'	28"	63°	11'	304
51	71	1695	Novemb. 9.71	204			216			22		
52	72	1698	Octob. 17:0214	151	11		65	53		169	5	
53	73	1699	Jan. 13.4063	109	32.	7	321	41:3	5	109	23.4	
54	74	1701	Octob. 17:417	165	0		298	41		138	21	
55	75	1702	März 13:613	309	47	24	188	59	10	4	24	44
56	76	1706	Januar 30-2120	59	25	2	13	11	23	55	14	5
57	77	1707	Decemb. 11.9948	27	7	40	52	50	29	88	37	40
58	78	1718	Januar 14:91223	6	15	34	127	55	29	148	51	54
59	79	1723	Septemb. 27:63438	331	21	42	14	14	17	129	59	42
60	80	1729	Juni 16·15422	10	25	38	310	37	8	77	4	6
61	81	1737 I	Januar 30:3537	99	33	0	226	22	0	18	20	45
62	82	1737 II	Juni 2.2369	159	52	1	132	5.4	4	61	51.6	5
63	83	1739	Juni 17:4229	104	46	34	207	25	14	124	17	16
64	84	1742	Februar 8.6252	328	30	10	185	9	30	112	28	20
65	85	17431	Januar 8.20053	6	25	6	86	54	29	1	53	43
66	86	1743 II		119	2	8	6	2	14	134	22	55
67	87	1744	März 1.34628	151	26	55	45	44	53	47	7	19
68	88	1747	März 3·3056	230	16	50	147	18	50	100	53	40
69	89	1748 I	April 28:78715	17	28	21	232	51	50	94	31	37
70	90	1748 II	Juni 18.89401	245	38	41	33	8	29	67	3	28
71	91		Octob. 21:33611	268	45	10	214	12	50	12	50	20
		1757					200	• •		20		
72	92	1758	Juni 11:14375	36	48	0	230	50	0	68	19	0
(19)	93 H	1759 I	März 12:55827	110	39	59	53	50	27	162	23	8
73	94	1759 II	Novemb. 27:00830	273	54	38	139	39	41	79	6	38
74	95	1759111	Decemb. 16:84757	301	21	29	79	50	4	175	7	29
75	96	1762	Mai 28-3410	115	28	55	348	33	5	85	38	13
76	97	1763	Novemb. 1.8679	88	34	54	356	24	4	72	31	52
77	98	1764	Februar 12:57750	104	49	41	120	4	33	127	6	29
78	99	1766 I	Februar 17:36806	100	55	25	244	10	50	139	9	40
79	100	1766 11	April 26-99533	177	2	0	74	11	0	8	1	45
80	101	1769	Octob. 7:62689	329	7	29	175	3	59	40	45	50
81	102	1770 I	August 13:54735	224	17	55	131	58	56	1	34	28
82	103	1770 11	Novemb. 22-24167	260	19	26	108	42	10	148	34	5
83	104	1771	April 19-14144	76	8	10	27	53	12	11	15	53

Be-	Log. der	Excentrici-	Nam	e des	Dauer der	Nachweis
zeich- nung	Periheldist.	tät ¢	Entdeckers	Berechners	Sichtbarkeit	der Berechnung
50	8-90909			HOLETSCHECK	1689 Dec. bis 1690 Jan.	A. N. CXXIX, 325
51	9.9261		DELISLE	BURCKHARDT		C. d. T. 1817, 278
52	9.86252		LA HIRE, CASSINI	HIND	Sept. 2-28	Nat. XIV, 152
53	9.87426		FONTENAY, Cassini	HIND	Febr. 17 März 2	Nat, XX, 482
54	9.77278	- 1	PALLU, THOMAS	BURCKHARDT		C. d. T. 1811, 485
55	9.810790			BURCKHARDT		M. C. XVI, 511
56	9.630291	_	Cassini, Maraldi	STRUYCK		STRUYCK 1753, 53
57	9-934013		Manfredi	STRUYCK	1707 Nov. 25 bis 1708 Jan. 23	STRUYCK 1753, 54
58	0.010908		Kirch	ARGELANDER		A. N. VII, 495
59	9-9994743 0-607513 SARABAT			SPOERER		Diss. Berol, 1843
60	0.607513		SARABAT	HIND	1729 Juli 31 bis 1730 Jan. 18	
61	9.347960		BRADLEY	BRADLEY	Febr. 26-Apr. 2	Ph. Trans. XL, 111
62	9.92155		Chines. Beob.	HIND		Par. Bull. 1874 Sept. 17
63	9.828388		ZANOTTI	LA CATLLE	Mai 28 - Aug. 18	
64	9.886523		GRANT, CASSINI	BARKER	Febr. 5-Mai 6	Account p. 29
65	9.9352858	0.7213085	GRISCHOW	CLAUSEN	Febr. 12-28	A. N. X, 345
66	9.718496		KLINKENBERG	D'ARREST		A.N. XXXVII, 363
67	9.3467607		KLINKENBERG	PLUMMER		M. N. XXXIV, 85
68	0.342128		CHÉSEAUX	LA CAILLE	Aug. 13-Dec. 5	
69	9-924486		MARALDI	LEMONNIER		STRUYCK 1753, 95
70	9.7961280		KLINKENBERG	BESSEL.	Mai 19-22	B. J. 1809, 99
71	9-528328		Bradley	BRADLEY	Sept. 13 bis Octob. 18	Ph. Trans. L. I, 408. 13
72	9.333148		DE LA NUX	Pingré	Mai - Nov. 2	PINGRÉ II, 104
(19)		0-96768436	PALITZSCH	Rosenberger	1759 Juni 22	A. N. XII, 190
73	9.903844			Pingré	Jan.25 März 18	
74	9.9848692		CASSINI DE THURY	HIND	1760 Jan. 8 bis Febr. 8	
75	0.003912		Klinkenberg	BURCKHARDT	Mai 17 — Juli 5	Mém. de l'Inst. VII, 228
76	9.6974784	0.99868	MESSIER	BURCKHARDT		M. C. XXVI, 477
77	9.744462		MESSIER	PINGRÉ		Mém.d.P.1771,513
78	9·703570 MRSSIER		Pingré		PINGRÉ II, 106	
79	9.6009521	DER		BURCKHARDT	April 1-Mai 13	C. d. T. 1821, 293
80	9-0890392	0-99924901	MESSIER	BESSEL		B. J. 1810, 123; 1811, 197
81			MESSIER	LEVERRIER		C. R. XXVI, 468
82	9.722833			Pingré	1771 Jan. 9-20	
83	9.955127		MESSIER	KRRUTZ	April 1-Juli 17	A. N. CIII, 336

Be- zeich-	No. nach	Jahr	Durchgang durch das Perihel	Arg des	ume: Perih		Län aufst,	ge d Kno					
nung	GALLE 11.		M. Zt. Paris		w			Ω			i		
84	105 B	1772	Februar 16:66180	213°	2'	57"	257°	15'	38"	170	3'	8'	
85	106	1773	Septemb. 5-61330	314	5	28	121	5	30	61	14	17	
86	107	1774	August 15:8366	136	43	6	180	44	34	83	20	26	
87	108	1779	Januar 4:11157	62	12	22	24	57	18	32	31	7	
88	109	1780 I	Septemb. 30:93280	237	5	19	123	41	18	125	36	48	
89	110	1780 II	Novemb. 28:8514	254	9	0	141	1	0	107	56	30	
90	111	1781 I	Juli 7:19537	156	10	47	83	0	38	81	43	26	
91	112	1781 II	Novemb. 29:5297	61	19	48	77	22	55	152	47	56	
92	113	1783	Novemb. 19:93685	354	36	55	55	40	30	45	6	54	
93	114	1784	Januar 21:2061	336	4	57	56	49	21	128	50	48	
94	115	1785 I	Januar 27:33199	205	39	41	264	12	15	70	14	12	
95	116	1785 II	April 8:420486	127	10	34	64	41	5	92	37	48	
96	117 E	1786 I	Januar 30:88	182	30		334	8		13	36		
97	118	1786 II	Juli 8.57397	323	14	58	195	23	32	50	58	33	
98	119	1787	Mai 10:83194	99	7	26	106	51	35	131	44	9	
99	120	1788 I	Novemb. 10:31582	57	48	36	156	56	43	167	32	20	
100	121	1788 11	Novemb. 20:30903	30	25	28	352	24	26	64	30	24	
101	122	1790 I	Januar 16:79688	114	25	17	172	50	2	150	15	53	
102	123 Tu	1790 II	Januar 30:87628	207	5	26	268	36	34	54	6	26	
103	124	1790111	Mai 21-24740	119	27	35	33	11	2	116	7	33	
104	125	1792 I	Jan. 13:57240	154	16	33	190	46	15	140	13	5	
105	126	1792 11	Decemb. 27:26009	147	15	53	283	15	17	130	58	15	
106	127	17931	Novemb. 4:8479	239	47		108	29		119	39		
107	128	1793 11	Novemb. 20:33405	69	58	10	1	59	34	51	30	29	
(96)	129 E	1795	Decemb. 21:44748	182	1	58	334	39	22	13	42	30	
108	130	1796	April 2:83128	184	18	3	17	2	16	115	5	27	
109	131	1797	Juli 9·11147	279	48	29	329	15	37	129	19	26	
110	132	1798 I	April 4:51482	342	58	21	122	7	22	43	48	1	
111	133	1798 11	Decemb. 31-5474	215	0	56	249	30	44	137	36	35	
112	134	1799 I	Septemb. 7:19743	95	47	45	99	29	59	129	4	9	
113	135	1799 11	Decemb. 25:90289	136	28	59	326	49	11	102	58	22	
114	136	1801	August 8:5630	219	47	2	42	28	54	159	15	0	
115	137	1802	Septemb. 9:89752	21	53	25	310	15	39	57	0	47	
116	138	1804	Februar 13:59463	331	56	53	176	47	58	56	28	40	
(96)	139	1805	Novemb. 21:50638	182	27	14	334	20	10	13	33	30	

Referencies Lat	Be-	Log. der	Excentrici-	Nam	ie des	Dauer der	Nachweis	
Massier Burckhardt 1773 Oct. 12 bis 1774 April 14 M. C. X. 512 Sept. 174 April 14 M. C. X. 512 Sept. 174 April 14 M. C. X. 512 Sept. 174 April 14 M. C. X. 512 Sept. 1774 April 14 M. C. X. 512 Sept. 174 Sept. 174 Se	zeich- nung	Periheldist.		Entdeckers	Berechners		der Berechnung	
Mathematical Science Mathematical Science	84	9-99389	0.72451	MONTAIGNE	HUBBARD	Marz 8-April 1	A. I. VI. 114	
87 9-853160 80 80 8-9836418 0-9999460 Messier Cluver Oct. 26—Nov. 28 A. N. VI, 147 89 9-712041 9-888784 9-888784 9-888784 9-888784 9-888784 9-88784	85	0.051880		MESSIER	BURCKHARDT	1773 Oct. 12 bis		
Section Sect	86	0.1562065		MONTAIGNE	BURCKHARDT	Aug. 11-Oct. 25	C. d. T. 1821, 205	
Section Sect	87	9.853160		Воня	PACASSI		EULER Theor. mot.	
99 9-889784 MÉCHAIN MÉ	88	8-9836418	0.9999460	MESSIER	CLÜVER	Oct.26-Nov.28	A. N. VI, 147	
99 9-889784 MÉCHAIN MÉ	89	9.712041		MONTAIGNE	OI.BERS	Oct. 18-Oct. 26	Allg.G.Eph. IV. 40	
92 0-1641413 0-5524560 0-848946 0-848946 0-84836 0-952482 0-84836 0-952482 0-952482 0-9525763 0-953576 0-9535763 0-9535763 0-953576 0-9535763 0-953576	90	9.889784		MÉCHAIN MÉCHAIN		Juni 28- Juli 16	M d. P. 1782 182	
92 0-1641413 0-5524560	91	9.982721				Oct. q-Dec. 26	M d P 1780 71	
93 0-849946 94 0-0581975 95 9-6306715 96 9-52482 97 9-595763 98 9-5427145 99 0-0265381 100 9-873516 101 9-873516 102 0-9188593 103 9-9019814 104 0-111605 105 9-985106 106 9-6574 107 0-1744003 108 9-6574 109 9-65574 100 9-8488828 100 0-198151 100 0-198151 100 9-8488828 100 0-198151 100 9-8488828 100 0-198151 100 9-8488828 100 0-198151 100 9-85569 100 9-9242084 111 9-99242084 112 9-9242084 113 9-796437 114 9-40894 115 0-0238575 116 0-0238575 117 0-174003 118 9-796437 119 9-796437 110 0-174039 111 9-891917 112 9-9242084 115 0-0238575 116 0-0238575 117 0-174083 0-1744031 118 9-40894 119 0-174894 110 0-174894 110 0-174894 111 0-1748940894 111 0-174894 112 0-174894 113 0-174894 114 0-033061 115 0-0238575 116 0-0238575 117 0-174894 117 0-174894 118 0-17894 119 0-174894 110 0-174894 110 0-174894 110 0-174894 111 0-174894 111 0-174894 111 0-174894 111 0-174894 111 0-174894 111 0-174894 111 0-174894 111 0-174894 111 0-174894 111 0-174894 112 0-174894 113 0-174894 115 0-033061 116 0-0238575 117 0-174894 117 0-174894 118 0-178494 119 0-17489	92	0.1641413	0.5524560					
95 9-5306715 0-99646076 M&CHAIN	93	0-849946			1	1783 Dec. 15 bis	M. d. P. 1784, 363	
9-5306715 0-99646076 MÉCHAIN PS-52482 97 9-595763 0-84836 9-5427145 MÉCHAIN DE SARON DE SARON DE SARON SEDE DE SARON DE SEDE DE SARON SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SARON DE SEDE DE SED	94	0.0581975		MESSIER	MÉCHAIN	lan. 7—Febr. 8	R I 1989 .66	
96 9-52482 9-595763 9-595763 9-595763 9-5427145	95	9.6306715	0-99646076			März 11 — Apr. 16	Act. Soc. Fenn. IX,	
9.595763 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 9.59427145 0.6. Herschel Méchain Mé	96	9.52482	0.84836	MÉCHAIN	ENCKE	Ian. 17-10		
98 9-5427145 Méchain De Saron April 10—Mai26 B. J. 1791, 155 Messier C. Herschel Méchain De Saron Méchain Méchain De Saron Méchain Méchain Méchain Méchain Méchain Méchain Méchain De Saron Méchain Méchain Méchain Méchain Méchain De Saron Méchain Méchain Méchain Méchain Méchain Méchain Méchain Méchain	97	9.595763					Eph. Mediol. 1789,	
C. Herschel Méchain Dec. 21 - 1789 M. d. P. 1789, 68 Jan. 179 Jan. 178 Jan	98	9-5427145		Méchain	DE SARON	April:0-Mai26	B. J. 1791, 155	
C. Herschel Méchain Dec. 21 - 1789 M. d. P. 1789, 68 Jan. 179 Jan. 178 Jan	99	0.0265381		MESSIER	MÉCHAIN	Nov.25- Dec. 30	B. I. 1702 118	
102	100	9.8792757		C. HERSCHEL		Dec. 21-1789	M. d P. 1789, 684	
102	101	9.873516		C. HERSCHEL	DE SARON	Jan. 7-21	M. d. P. 1700. 212	
103	102	0.0188593	0.8193300	MÉCHAIN	TISCHLER	Jan. 9-Febr. 1	Diss. pag 22	
105 9-985106 Gregory Prosperii 1792 Jan. 25 1792 Jan. 25 1793 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan. 27 1794 Jan.	103	9-9019814		C. HERSCHEL	MÉCHAIN	Apr. 17 - Juni 29	M. d. P. 1790, 336	
106 9-60574 Messier De Saron Sept 27-1794 B. J. 1798, 243 Jan. 7 Sept 24-Dec. 8 Jan. 7	104	0.111605		C. HERSCHEL	MÉCHAIN	1791 Dec. 15 bis 1792 Jan. 25	C. d. T. 1793, 374	
107	105	9-985106		GREGORY	PROSPERIN	Febr. 19		
(96) 9-5243046 0-8488828 C. HERSCHEL ENCRE Nov. 7—27 B. J. 1822, 186 108 0-198151 OLBERS OLB	106	9.60574		MESSIER		Jan. 7		
(96) 9-5243046 0-8488828 C. HERSCHEL ENCRE Nov. 7—27 B. J. 1822, 186 108 0-198151 OLBERS OLB	107	0.1744003	0.9719946	PERNY	C.H. F. PETERS	Sept. 24-Dec. 8	Astr. Not. 10	
109 9-721489 BONVARD, C. HERSCHEL MESSIER BOUVARD BURCKHARDT Dec. 6-12 Allg. G. Eph. I, 36 111 9-9242084 MÉCHAIN TALLOUIST Aug. 6-Oct. 25 Diss. Aboae 182 18 113 9-796437 MÉCHAIN MÉCHAIN MÉCHAIN Dec. 26-1800 C. d. T. XII, 37 114 9-40894 Pons, MESSIER Pons Olberck O-0298575 Pons Gauss Mar 7 - April 1 M. C. VI, 59 C. IX, 433 C. IX, 434 C. IX, 444 C. IX, 444 C. IX, 444 C. IX, 444 C. IX, 444 C	(96)	9.5243046	0.8488828	C. HERSCHEL		Nov. 7-27		
109 9-721489 BONVARD C. HERSCHEL MESSIER HIND BURCKHARDT Dec. 6-12 398 111 9-9242084 Méchain Tallouist Aug. 6-Oct. 25 Diss. Aboac 1821 113 9-796437 Méchain Méchain Méchain Dec. 26-1800 Jan. 5 Juli 12-23 All. C. VI. 507 Conservation Order Street Order S	108			OLBERS	OLBERS	März 31 - Apr. 14	B. I. 1700, 106	
111 9-891917 BOUVARD BURCKHARDT Dec. 6 - 12 Allg. 6, Eph. II 398 398 188	109	9.721489			OLBERS	Aug.14-Aug.31	Allg. G. Eph. I, 366	
111 9-891917	110	9.685769		MESSIER	HIND	Apr. 12-Mai 24	Nat. XXIX 125	
112 9-9242084 MÉCHAIN TALLOUIST Aug. 6—Oct. 25 Diss. Aboac 1821	111	9.891917		BOUVARD	BURCKHARDT		Allg. G. Eph. III,	
114 9-40894 Pons, Messier Doberck Juli 12—23 A. N. LXXXI, 32 115 0-0298575 Pons Gauss Marz 7 - April 1 M. C. IX, 433	112	9.9242084		MÉCHAIN	TALLQUIST	Aug. 6-Oct. 25	Diss. Aboae '1825,	
114 940894 Pons, Messirr Doberck Juli 12—23 A. N. LXXXI, 32 O-039061 Pons Olbers Aug. 26—Oct. 3 M. C. VI, 507 O-0298575 Pons Gauss Marz 7 - April 1 M. C. IX, 433	113	9.796437		MÉCHAIN	MÉCHAIN	Dec. 26—1800	C. d. T. XII, 376	
115 0-039061 Pons Olbers Aug. 26—Oct. 3M. C. VI, 507 O-0298575 Pons Gauss Marz 7 - April 1 M. C. IX, 433	114	9.40894		PONS, MESSIER	DOBERCK		A. N. LXXXI	
116 0-0298575 Pons Gauss März 7 - April 1 M. C. IX, 433	115	0.039061						
	116	0.0298575		Pons	GAUSS	März 7 - April 1	M. C. IX 422	
	(96)	9.5320168	0.84617529	Pons	ENCKE			

Be- zeich- nung	No. nach Galle II	Jahr	Durchgang durch das Perihel M. Zt. Paris		gume Perih ω		aufst.	ige d Kno Ω		N	cigui	ng
(84)	140 B	1806 I	Januar 1:92396	218	12'	6"	2519	16'	19"	13°	36'	34'
117	141	1806 II	Decemb. 28:92943	225	19	52	322	23	16	144	57	27
118	142	1807	Septemb, 18:74537	4	7	30	266	47	11	63	10	28
119	143	1808 I	Mai 12-959	253	45	39	322	58	36	134	16	53
120	144	1808 II	Juli 12:17418	131	32	24	24	11	14	140	41	1
121	145	1810	Octob. 6:24442	114	56	13	308	50	31	62	55	39
122	146	1811 I	Septemb. 12-26278	65	23	46	140	25	15	106	57	18
123	147	1811 11	Novemb. 10:99698	314	25	35	93	1	52	31	17	11
124	148 P. Bs	1812	Septemb. 15:33210	199	19	4	253	0	44	73	57	36
125	149	1813 I	März 4:53300	350	52	16	60	48	24	158	46	27
126	150	1813 II	Mai 19:51720	205	3	23	42	40	12	98	52	32
127	151 0	1815	April 25:99943	65	33	16	83	28	47	44	29	51
[k]	152	1816	März 1:3521	304	20	37	323	14	56	43	5	26
[1]	153	1818 I	Februar 3-2245	180	17		256	1		34	11	
128	154	1818 II	Februar 25:96539	112	19	11	70	26	11	89	43	48
129	155	1818 111	Decemb. 5:03902	348	13	20	90	0	50	116	59	36
(96)	156 E	1819 I	Januar 27:95958	182	26	29	334	33	18	13	36	56
130	157	1819 II	Juni 27:72197	13	26	14	273	41	57	80	44	38
131	158 W	1819 III	Juli 18:90670	161	30	5	113	10	46	10	42	48
132	159	1819 IV	Novemb. 20:25203	350	4	51	77	13	57	9	1	16
133	160	1821	März 21:54305	169	11	31	48	40	56	106	26	53
134	161	1822 1	Mai 5:61250	344	43	5	177	26	56	126	22	36
(96)	162 E	1822 II	Mai 23:969940	182	47	10	334	25	9	13	20	21
135	163	1822 III	Juli 15:85069	237	44	54	97	44	18	143	42	30
136	164	1822 IV	Octob. 23:772734	181	4	38	92	44	23	127	20	48
137	165	1823	Decemb. 9:45058	28	28	31	303	3	0	103	48	3
138	166	1824 I	Juli 11:51423	334	2	37	234	20	41	125	23	15
139	167	1824 II	Septemb. 29:07294	85	15	22	279	16	44	54	35	32
140	168	1825 I	Mai 30:55278	106	11	7	20	6	8	123	18	54
141	169	1825 H	August 18:71754	177	18	15	192	56	10	89	41	47
(96)	170 E	$1825\ H1$	Septemb. 16:28190	182	47	36	334	27	30	13	21	28
142	171	1825 IV	Decemb. 10-69134	256	56	43	215	43	22	146	27	7
(84)	172 B	1826 I	März 18:45311	281	21	28	251	27	19	13	33	54
143	173	1826 H	April 21:92451	279	22	54	197	36	34	40	0	26
144	174	1826 111	April 29:04553	. 4	41	0	40	29	13	174	42	58

Be-	Log. der	Excentrici-	Nam	e des	Dauer der	Nachweis
reich- nung	Periheldist.	tät e	Entdeckers	Berechners	Sichtbarkeit	der Berechnung
(84)	9.9576440	0.7457068	Poss	Hubbard	1805 Nov. 9 bis	Astr. J. VI, 117
117	0.0341884	1.0101820	Pons	HENSEL	Dec. 9 Nov. 10-1807	A. N. LVIII, 92
118	9-8103158	0.99548781		BESSEL	Febr. 12	
		0 22340101		DESSEL	Sept. 9-1808 März 27	B. A. J. 1813, 188
119	9.59091		Pons	ENCKE	März 25-29	A. N. V. 7
120	9.783870		Pons	BESSEL	Juni 24-Juli 3	M. C. XVIII, 359
121	9.986603		Pons	THRAEN	Aug.22-Sept.21	A. N. XCIX, 348
122	0.0151133	0.9951240	FLAUGERGUES	N. HERZ	März 25-1812	Kuff, St. II, 241
123	0.1999359	0.98271088	Pons	NICOLAI	Jan. 11	w a
			10.85	MICOLAI	Febr. 16	M. C. XXVII, 215
124	9-8904903	0.9550842	Pons	SCHULHOF, Bossest	Juli 20-Sept. 27	A. N. CIII, 291
125	9-8445579		Pons	NICOLLET	Febr.4-März 11	C. d. T. 1820, 419
126	0.0846799		Pons	FERRER	April 2-Mai 17	M. R. A. S. III, 8
127	0.0837998	0.93114958	OLBERS	GINZEL		V. J. S. XVII, 111
[k]	8.68577		Pons	BURCKHARDT		OLB. BESSEL Briefe
[1]	9.84255		Pons	HIND	Febr. 23-27	II, 32, 434
128	0.0783711		Pons	ENCKE		M. N. XXXIII, 50 Z. f. Astr. V, 254
129	9-9319574	1.011617	Pons	Rosenberger , Scherk	Nov. 29-1819 Jan. 30	B. A. J. 1824, 145
(96)	9-5252819	0.8486190	Pons	v. ASTEN		M. d. Petersb. 1877
130	9.5332327		TRALLES	HIND		M. N. XXXVI, 309
131	9.8885382	0.75519035	Pons	ENGKE	Juni 12-19	Corr. Astr. III, 293
132		0.6867458	BLANFAIN	ENCKE	Nov. 27 bis 1820 Jan. 24	B. A. J. 1824, 220
133	8-9629523		NICOLLET, Pons	Rosenherger	Jan. 21-Mai 3	A. N. I, 425
134	9.7027863		GAMBART	NICOLLET	Maira End Inci	C. d. T. 1826, 278
(96)	9.5389209	0.8445061	DUNLOP	v. ASTEN	Juni 2-23	M. d. Petersb. 1877
135	9.92797		Pons	HIND		Nat XXII, 205
136	0.0588426	0.9963021	Pons	STICHTENOTH		Abh. Leipzig 1897
137	9.3550726			Encke	Dec. 30-1824	A. N. III, 113
138	9.771850		RÜMKER	DOBERCK	März 31	M. N. XXXIV, 426
139	0.0211211		SCHEITHAUER	ENCKE	Juli 23-Dec. 25	
140	9-9489616		GAMBART	CLAUSEN		B. A. J. 1828, 152
141	9.9461924		Pons	CLAUSEN	Aug. 9-26	A. N. IV, 327
(96)	9.5375192	0.8449296	VALZ	V. ASTEN	Inli 12 Sect "	M. d. Petersb. 1877
142		0.9954285	Pons	Hubbard		B. A. J. VI, 37
(84)	9.9554083	0.7466012	BIELA	HUBBARD		B. A. J. VI, 124
143	0.3027426		Pons	NICOLAI	1825 Nov. 7 bis	
144	9.2744275		FLAUGERGUES	CLÜVER	1826 April 11	
	ENTINER, ASID		LAUGERGUES	CLUVER	März 29 - April6	A. N. XII, 281

Be- zeich- nung	No. nach Galle II	Jahr	Durchgang durch das Perihel M. Zt. Paris		gume Perih ω		Län aufst.	ge d Kno		Neigung i			
145	175	1826 IV	Octob, 8:95873	139	41'	56"	440	61	28"	25°	57'	18"	
146	176	1826 V	Novemb. 18:41477	279	36	32	235	6	11	90	37	51	
147	177	1827 I	Februar 4.92808	150	57	33	184	27	49	102	24	25	
148	178	1827 II	Juni 7:84766	20	38	46	318	10	28	136	21	15	
149	179	1827 111	Septemb. 11.69936	258	41	59	149	39	11	125	55	18	
(96)	180 E	1829	Januar 9:74981	182	48	56	334	29	32	13	20	38	
150	181	1830 I	April 9:30158	5	49	47	206	21	33	21	16	32	
151	182	1830 11	Decemb. 27:6669	26	53	48	337	53	7	135	14	30	
(96)	183 E	1832 I	Mai 3.99229	182	49	26	334	32	10	13	22	12	
152	184	1832_II	Septemb. 25:58003	204	36	10	72	27	30	136	40	7	
(84)	185 B	1832 111	Novemb. 26:12337	221	45	7	248	15	18	13	13	31	
153	186	1833	Septemb. 10:40198	260	53	6	323	28	17	7	18	17	
154	187	1834	April 2:79907	50	9	18	226	33	12	5	59	20	
155	188	1835 I	März 27:211663	210	26	22	58	20	32	170	52	32	
(96)	189 E	1835 II	August 26:36831	182	49	4	334	35	0	13	21	19	
(19)	190 H	1835 III	Novemb. 15:94539	110	38	27	55	9	59	162	14	55	
(96)	191 E	1838	Decemb. 19:01616	182	50	57	334	36	42	13	21	32	
156	192	1840 I	Januar 4:47816	72	14	19	119	57	38	53	5	33	
157	193	1840 II	März 13:08212	156	35	58	236	5 0	10	120	47	1	
158	194	1840 111	April 2:44431	138	2	55	186	2	12	79	52	18	
159	195	1840 IV	Novemb. 13:67060	133	36	1	248	55	48	57	58	6	
(96)	196 E	1842 I	April 12:02583	182	50	50	334	39	11	13	20	30	
160	197	1842 II	Decemb. 15:96305	240	32	19	207	48	45	106	25	57	
161	198	1843 1	Februar 27:41702	82	34	38	1	14	55	144	19	21	
162	199	1843 II	Mai 6:06242	124	14	49	157	14	54	52	44	46	
163	200 F	1843 III	Octob, 17:13671	200	3	56	209	29	26	11	22	32	
164	201 d, V.	1844 I	Septemb. 2:48438	248	41	10	63	49	38	2	54	46	
165	202	1844 II	Octob. 27:35041	211	15	3	31	39	6	131	23	59	
166	203	1844 III	Decemb, 13:68127	177	42	56	118	19	22	45	38	47	
167	204	1845 I	Januar 8.16784	114	35	30	336	44	26	46	51	1	
168	205	1845 11	April 21-03748	205	26	33	347	6	45	56	23	36	
169	206	1845 III	Juni 5:67992	75	46	0	337	48	56	131	18	1	
(96)	207 E	1845 IV	August 9:60750	183	25	18	334	19	37	13	7	39	
170	208	1846 I	Januar 22:16659	338	0	22	115	5	38	47	28	6	
(84)	209 B	1846114	Februar 10:99966	223	8	38	245	54	15	12	34	53	

Be-	Log. der	Excentrici-	Nam	e des	Dauer der	Nachweis der
zeich- nung	Periheldist.	tät e	Entdeckers	Berechners	Sichtbarkeit	Berechnung
145	9-930852		Pons	ARGELANDER	Aug. 7-Dec.11	A. N. V. 358
146	8-4295811		Pons	GAMBART		M. R. A. S. III, 86
147	9-70460		Pons	v. Heiligen- stein	1826 Dec. 26 bis Ende Jan. 1827	A. N V, 435
148	9.907494		Pons	v. HEILIGENST.	Juni 20-Juli 21	A. N. VI, 305
149	9.1393857	0.99927305	Pons	C1.ÜVER	Aug. 2-Oct. 16	A. N. VII, 62
(96)	9.5383865	0.8446656		v. ASTEN	1828 Sept. 16 bis Dec. 27	M.d.Petersb. XXVI
150	9.9644594			SCHULZE	März 17_Aug. 17	A. N. LXXXII, 101
151	9-0999822		HERAPATH	WOLFERS	1831 Jan. 7 bis März 8	A. N. X, 68
(96)	9.5357772	0.8454533	Moscotti	V. ASTEN	Juni 1-Aug. 21	M.d.Petersb, XXVI
152	0.0729866		GAMBART	SCHULZE		A. N. LXXXII, 110
(84)	9.9440315	0.7514480		BARANOWSKI	Oct1833 Jan. 3	A. N. XIV, 177
153	9.666836		DUNLOP	HARTWIG	Octob. 1-16	A. N. XLVII, 37
154	9.710207		GAMBART	SCHULHOF	März 7-April 14	B. A. VI, 115
155	0.3096627		v. Boguslaws- ki	RECHENBERG	April20 - Mai 27	A. N. CILIII, 13
(96)	9.5369938	0.8450754	KREIL	v. Asten	Juli 22-Aug. 6	M.d.Petersb.XXVI
(19)	9.7683194	0.96739091	DUMOUCHEI.	WESTPHALEN	Aug. 5-1836 Mai 19	A. N. XXV, 189
(96)	9.5364926	0.8452181		v. ASTEN		M.d.Petersb.XXVI
156	9.7912921	0.9999128	GALLE	RECHENBERG	1839 Dec. 2 bis 1840 Febr. 9	A. N. CXXXI, 258
157	0.0866406	0.9949769	GALLE	Kowalczyk	Jan. 25-April 1	A. N. LXXXVII,
158	9.8741944		GALLE	KOWALCZYK	März 6-27	A. N. LXXXI, 133
159	0-1705856	0.9711151	BREMIKER	SCHULZ- STEINHEIL	Oct. 26-1841 Febr. 16	Schw.Akad XXIII,
(96)	9.5377181	0.8448313		V. ASTEN	Febr. 8-Mai 22	M.d.Petersb, XXVI
160	9.7027671		LAUGIER	SCHWARZ- SCHILD		A. N. CXXXVII,
161	7.7433765	0.99991572	RAY	HUBBARD	Febr. 27 - Apr. 19	A. J. II, 155
162	0.2085315	1.0001798	MAUVAIS	Goetze	Mai 3-Oct. 1	A. N. XXIII, 71
163	0.2284599	0.5558297	FAYE	A. MÖLLER	Nov. 22-1844 April 10	A. N. LXXIX, 121
164	0.0742006	0.6173720	DE VICO	BRÜNNOW	Aug. 22 - Dec. 31	Astr.Not. 1859,3. 4
165	9-9321644	0.9996083	MAUVAIS	PLANTAMOUR	Juli 7-1845 März 10	M d.GénèveXI,574
166	9.4009126	1.00035303		BOND	Dec. 16-1845 März 12	A. J. I, 103
167	9.9567491	1.0002467	D'ARREST	Doberck		M. N. XXXV, 104
168	0.0985330		DE VICO	FAVE	Febr. 25 - Mai 1	C. R. XX, 1115
169	9.603815	0.9898744	COLLA	D'ARREST	Juni 2-27	A. N. XXIII, 352
(96)	9.5289969	0.8474717		V. ASTEN	Juli 4-14	M d.Petersb. XXVI
170	0.1709043		DE VICO	JELINEK	1.	C. R. XXVI, 281
(84)	9-9326998	0.7566625		HUBBARD	1845 Nov. 26 bis April 27	A. J. VI, 131

ug ward by Google

Be-	No.		Durchgang durch		gume			ige i		N	eigur	ng
zeich-	nach	Jahr	das Perihel	des	Peri	hels	aufst.	Kn Ω	otens		i	
nung	GALLE II		M. Zt. Paris		ω	-		-		_		
(84)	209 B	1846 IIb	Februar 11:08264	223°	8'	37"	245°	54'	17"	12°	34'	55
171	210 Br.	1846 III	Februar 25:375	13	46	36	102	41	41	30	55	17
172	211	1846 IV	März 5:55237	12	53	27	77	33	16	85	6	27 48
173	212	1846 V	Mai 27:90234	78	44	48	161	18	40	122	23	
174	213	1846 VI	Juni 1·14095	339	37	44	260	23	53	30	40	10
175	214	1846 VII	Juni 5:48571	99	47	10	261	52	51	150	41	13
176	215	1846 VIII	Octob. 29.78372	93	58	16	4	41	24	49		
177	216	1847 I	März 30:29086	254	20	38	21	41	46	48	38	46
178	217	1847 II	Juni 4:69903	32	20	34	173	57	7	100	26	11
179	218	1847 III	August 9:34434	91	31	46	338	16	57	96	33	45
180	219	1847 IV	August 9:35158	55	26	6	76	42	58	147	21	10
181	220	1847 V	Septemb. 9:52209	129	18	5	309	50	23	19	9	0
182	221	1847 VI	Novemb. 14:40637	276	36	56	190	49	56	108	9	6
183	222	1848 I	Septemb 8:05177	260	57	36	211	31	43	95	36	34
(96)	223	1848 11	Novemb, 26:08795	183	25	30	334	22	18	13	8	41
184	224	1849 1	Januar 19:35431	208	1	22	215	12	54	85	2	54
185	225	1849 II	Mai 26:49906	33	10	17	202	32	45	67	9	55
186	226	1849 III	Juni 8:21014	236	34	8	30	32	0	66	55	19
187	227	18501	Juli 23:53445	180	31	37	92	53	28	68	11	24
188	228	1850 H	Octob, 19:34564	243	13	14	206	0	5	40	5	3
(163)	229 F	1851 I	April 1:94318	200	11	2	209	31	5	11	21	38
189	230 d'A.	1851 II	Juli 8:68045	174	31	0	148	23	18	13	55	12
190	231	1851 III	August 26:24113	87	18	16	223	40	33	38	9	2
191	232	1851 IV	Septemb. 30:80309	294	25	0	44	21	31	73	58	37
(96)	233	1852 I	März 14:71443	183	27	23	334	23	42	13	7	50
100	234	1852 H	April 19:59380	37	13	17	317	12	52	131	6	31
192 (84)	234	1852 III a	Septemb. 23:73388	223	16	51	245	51	26	12	33	16
(84)	235	1853 III b	Septemb. 23:06316	223	16	48	245	51	28	12	33	19
193	236	1852 IV	Octob. 12:75724	57	3	42	346	10	0	40	55	0
194	237	1853 I	Februar 24:01115	275	50	44	69	34	4	159	44	52
195	238	1853 II	Mai 9:83277	199	13	0	40	57	37	122	10	57
196	239	1853 III	Septemb. 1:71319	170	25	47	140	31	12	61	31	0
197	240	1853 IV	Octob. 16:61186	277	50	59	220	5	52	119	0	16
198	241	1854 I	Januar 3:94163	170	56	13	227	2	48	113	53	13
199	242	1854 H	März 24:01972	101	38	15	315	27	32	97	28	18

Be-	Log. der	Excentrici-	Nam	e des	Dauer der	Nachweis
zeich-	Periheldist.			1	Sichtbarkeit	der Berechnung
nung	log q		Entdeckers	Berechners		
(84)	9-9327097	0:7566060		HUBBARD	1845 Nov. 28 bis 1846 März 21	A. J. VI, 131
171	9.813000	0.793068	BEORSEN	BRUHNS		A. N. LXXI, 39
172	9.8220359	0.96291017	DE VICO	v. HEPPERGER		A. N. CXVII, 245
173	0.1386159		DE VICO	VOGEL		A. N. LXXI, 102
174	0.184487	0.7286044	C.H. F. PETERS	BERDERICH	Juni 26-Juli 21	A. N. CXVII, 251
175		0.9899389	BROKSEN	OUDEMANS		A, N. XXIV, 298
176	9-919428		DE VICO	S. Oppenheim	Sept. 23Ende	A. N. CXXV, 31
177	8:6293410	0-99990955	Hind	HORNSTEIN		A. N. LXXVII, 303
178	0.3253494		COLLA	ENGSTRÖM		V. J. S. XVII, 296
179	0.2470052	0-9985879	MAUVAIS	E. Gautier	Juli 4-1848 April 21	A. N. XXXVI, 8c
180	0.1716750		Schweizer	SCHUR	Aug. 30-Nov.	A.N . LXXXVIII
181	9.6886618	0.9739298	Broksen	Gout.b	Juli 20-Sept. 12	A. J. I, 145
182	9.5172278	1:0001727	Miss MITCHELL	PALMER	Oct. 1-Dec. 19	Trans. YaleObs.I, 4
183	9.5050777		PETERSEN	Визсног	Aug. 7-25	A. N. CXVII, 248
(96)	9.5275748	0.8478652	Bond	v. Asten	Aug.27-Nov.25	M. d. Petersb. XXVI, 2
184	9-9821497		Petersen	PETERSEN, SONNTAG	1848Oct.26-49 Jan. 26	A. N. XXIX, 320
185	0.0642320	1.0007079	Goujon	WEYER	Apr. 15-Sept. 22	A. N. XXXV, 212
186	9.951525	0.997830	SCHWEIZER	D'ARREST	April 1 1 - Aug. 26	A. N. XXX, 116
187	0.0340060	0.9988519	PETERSEN	CARRINGTON	Mai 1-Oct. 16	A. N. XXXVII, 46
188	9.7525112		BOND	Quirling, Götze	Aug. 29 - Nov. 13	A. N. XLI, 241
(163)	0.2304179	0.5548945	CHALLIS	A. MÖLLER	1850 Nov. 28 bis 1851 März 4	v. J. S. VII, 96
189	0.0694120	0.6592823	D'ARREST	LEVEAU		Ann.d.Par. XIV, 21
190	9.9931272	0.9968576	BRORSEN	BRORSEN	Aug 1-Sept. 30	A. N. XXXIII, 242
191	9.1520995		BROKSEN	ANDRIES	Oct. 22-Nov. 21	A. N. LXXXI, 57
(96)	9-5283414	0.8476025	Vogel	v. Asten	Jan. 9—Mairz 10	M. d. Petersb. XXVI, 2
192	9-9568433		CHACORNAC	v. ASTEN	Mai 15-Juni 14	A. N. XXXI, 43
(84)	9.9348021	0.7559217	Secon	HUBBARD	Aug 25_Sept. 28	
(84)	9-9348106	0.7558660	SECCIII	HUBBARD	Sept 15-Sept.28	
193	0.0968964	0.91903397	WESTPHAL	WESTPHAL	Juli 24-1853 Febr. 9	A. N. L, 49
194	0.0382717		Secciii	Hornstein	,	A.N.XXXVIII, 160
195	9.9584172	0.9892973	SCHWEIZER	G. RÜMKER	April 4-Juni 11	A. N. XLV, 284
196		1:00026085	KLINKERFUES	KRAHL		A. N. LXX, 24
197	9.2372363	1:0012289	BRUIIS	D'ARREST		A.N.XXXVIII,190
198	0.310618		ARSDALE	Rzepecki	1853 Nov. 25 bis 1854 März 1	A. N. XLVII, 178
199	9.4425800		DE MENCIAUX	H. Oppenheim	März23-Apr.28	Diss. Königsb. 1870
	1 1	1	,	I.	I	1

Be- zeich-	No.	Jahr	Durchgang durch das Perihel		gunio Peri		Lär aufst.	Kn		N	eigur	ng
nung	GALLE II		M. Zt. Paris		(U)			δ			i	
200	243	1854 III	Juni 22:00356	74°	34'	20"	347°	39'	43"	108°	41'	1'
201	244	1854 IV	Octob. 27:581706	129	55	39	324	27	12	40	53	44
202	245	1854 V	Decemb. 15.72473	287	1	41	238	7	35	14	9	15
203	246	1855 I	Februar 5:05384	323	5	59	189	43	33	128	35	41
204	247	1855 II	Mai 30·15396	22	36	28	260	18	53	156	53	10
(96)	248 E	1855 III	Juli 1:04121	183	26	56	334	26	16	13	8	5
205	249	1855 IV	Novemb. 25:39914	325	31	41	51	33	38	169	48	49
206	250	1857 I	März 21:37557	121	34	42	313	9	19	87	56	1
(171)	251 Br.	1857 II	März 29:2522	13	59	48	101	46	27	29	48	16
207	252	1857 III	Juli 17:98076	134	3	17	23	41	31	121	1	1
208	253	1857 IV	August - 24:00300	180	57	35	200	49	16	32	46	24
209	254	1857 V	Septemb. 30:88641	124	50	10	14	57	48	123	56	39
210	255	1857 VI	Novemb. 19:07778	95	5	26	139	18	42	142	11	5
(189)	256 d'A	1857 VII	Novemb. 28:19438	174	35	58	148	27	16	13	56	6
(102)	257 Tu	1858 I	Februar 23:52586	206	48	9	269	3	3	54	24	21
(131)	258 W	1858 II	Mai 2:04566	162	6	31	113	32	33	10	48	11
211	259	1858 III	Mai 2:97368	25	42	19	175	4	8	19	30	1
212	260	1858 IV	Juni 5.30209	98	52	3	324 209	58 39	8	99	57	18
(163) 213	261 F 262	1858 V 1858 VI	Septemb. 12:87919 Septemb. 29:97097	200 129	10 6	24 41	165	19	48 13	11 116	$\frac{22}{58}$	11 11
214	263	1858 VII	Octob. 12:83988	155	34	2	159	46	27	158	42	55
(96)	264 E	1858 VIII	Octob. 18:37209	183	29	0	334	28	1	13	4	17
215	265	1859	Mai 29.23263	282	0	13	357	20	44	95	28	16
216	266	1860 Îa	Februar 16:63141	209	46	8	324	3	40	79	39	5
216	266	1860 Ib	Februar 16:67621	209	41	50	324	3	19	79	36	1:
217	267	1860 II	März 5:57201	41	12	38	8	52	32	48	13	(
218	268	1860 III	Juni 16:06750	76	51	56	84	40	32	79	19	23
219	269	1860 IV	Septemb. 22:3184	311	57.	0	44	51.5		32	11:	
220	270	1861 I	Juni 3.39641	213	26	19	29	55	42	79	45	31
221	271	1861 II	Juni 11.51323	330	6	5	278	58	58	85	26	15
222	272	1861 111	Decemb. 7:18092	331	35	4	145	6	2	138	1	4
(96)	273 E	1862 I	Februar 6.25426	183	30	9	334	30	58	13	4	57
223	274	1862 II	Juni 22:03609	27	13	33	326	34	8	172	5	35
224	275	1862 III	August 22:91587	152	45	29	137	27	14	113	34	9
225	276	1862 IV	Decemb. 28:18060	230	34	31	355	46	2	137	31	23

Be-	Log. der	Excentrici-	Nam	e des	Dauer der	Nachweis
reich- nung	Periheldist.	tät e	Entdeckers	Berechners	Sichtbarkeit	der Berechnung
200	9.811650		KLINKERFUES	WINNECKE, Pape	Juni 4—Juli 30	A. N. XLII, 119
201	9-9023089	0.9924546	KLINKERFUES	BUSCHBAUM, STEINER	Sept. 11-Dec. 2	A. N. CILIX, 321
202	0.1327326	0.9863728	Winnecke	ELKIN	1855 Jan. 14 bis April 22	A. N. XCIV, 78
203	0.3411427	0.965185	SCHWEIZER	TIELE	April 11-Juni 5	A. N. LII, 38
204	9.753396		DONATI	SCHULZE	Juni 3-Juni 30	A. N. XLII, 200
(96)	9.5279347	0.8477306	MACLEAR	v. ASTEN	Juli 12-Aug. 16	
205	0.0902561		BRUHNS	SCHULZE	Nov. 12-1856 Jan. 3	XXVI, 2 A. N. XLIV, 85
206	9-8878947		D'ARREST	LOEWY		Wien, Ak. S. B. XXXV, 409
(171)	9.7997509	0.8017572	BRUHNS	BRUIINS	März 18 - Juni 22	A. N. LXXI, 40
207	9.5652983	0.0011012	KLINKERFUES	König	Juni 22 - Juli 19	A N.CXXVIII,391
208	9.873228	0.9803714	C.H. F. PETERS	MÖLLER	Juli 25 - Oct. 21	A. N. XLIX, 363
209	9.750428	0.9969135	KLINKERFUES	LINSSER	Aug. 20-Oct. 3	
210	0.003889	0 9969918	DONATI	AUWERS	Nov. 10 - Dec. 19	
(189)	0.0681871	0.6598645	VILLARCEAU	SCHULZE		A. N. LXV, 168
(102)	0.0109566	0-8212094	TUTTLE	RAHTS		A. N. CXIII, 194
(131)	9.8858985	0.7548575	WINNECKE	V. HAERDTL	März 8-Juni 22	Wien. Ak. LVI, 162
211	0.060401	0.673676	TUTTLE	SCHULHOF	Mai 2-Juni 1	
212	9.7358072		BRUHNS	AUWERS	Mai 21-Juli 15	A. N. LI, 124
(163)	0.2289334	0.5557886	BRUHNS	MÖLLER	Sept. 7-Oct. 16	V. J. S. VII, 96
213	9.7622804	0.9962933	DONATI	Hu.t.	Juni 2-1859 März 4	A. N. LXIV, 185
214	0.154330	0.99568	TUTTLE	WEISS	Sept. 5-Nov. 10	Wunder d. H. p. 1234
(96)	9.5324191	0.8463942	FOERSTER	v. Asten	Aug. 7-Oct. 7	
215	9.303265		TEMPEL.	HERTZSPRUNG	April 2 - Juni 30	A. N. LIII, 152
216	0.078774		LIAIS	PECHÜLE		A. N. LXXII, 236
216	0.078520		LIAIS	PECHÜLE		A. N. LXXII, 237
217	0.116164		RÜMKER	GYLDÉN	April 17 - Juni 11	B.d.Petersb.VI,363
218	9.4666978			AUWERS	Juni 18-Oct. 18	
219	9.83420		TEMPEL	KOWALCZYK		A. N. LXXV, 165
220	9.9641181	0.98346314	THATCHER	v. Oppolzer		A. N. LXII, 187
221	9-9150745	0.9850773	Теввитт	KREUTZ	Mai 13-1862 Mai 1	Diss. Bonn 1880, 146
222	9-9237761		TUTTER	NORTHER	Dec. 28—1862 Febr. 2	A. N. LXIX, 106
(96)	9.5314223	0-8467033	FOERSTER	v. ASTEN		M. d. Petersb. XXVI, 106
223	9-991814		SCHMIDT	CERULLI	Juli 2-Juli 30	A. N. CXVIII, 203
224	9.9834626	0.9603525	TUTTLE	HAYN	Juli 18-Oct. 27	A. N. CXXIII, 112
225	9.904844		RESPIGHT	KRAHL	Nov. 27-1863	A. N. LXV, 61
		1		1	Febr. 20	1

Be- zeich- nung	No. nach Galle II	Jahr	Durchgang durch das Perihel M. Zt. Paris		gume Peril		Läi aufst.	Kn Q		N	eigun	g
226	277	1863 I	Februar 3:49765	740	27'	12"	116°	55'	33"	85°	21'	56
227	278	1863 H	April 4:91081	4	0	0	251	15	35	112	37	47
228	279	1863 111	April 20:87116	55	36	36	250	10	5	85	30	1
229	280	1863 IV	Novemb. 9:48589	357	12	50	97	28	36	78	4	48
230	281	1863 V	Decemb. 27:76915	115	41	2	304	43	23	64	28	44
231	282	1863 VI	Decemb. 29:17306	78	5	55	105	1	24	83	19	17
232	283	1864 I	Juli 27:81825	346	5	44	174	58	56	135	0	()
233	284	1864 II	August 15:58310	151	2	50	95	14	32	178	7	50
234	285	1864 111	Octob. 11:41150	232	27	26	31	45	24	109	41	58
235	286	1864 IV	Decemb. 22:45755	118	27	50	203	13	11	48	52	39
236	287	1864 V	Decemb. 27:72616	178	30	46	340	54	22	162	52	37
237	288	1865 I	Januar 14:33180	111	44	6	252	56	27	92	29	52
(96)	289 E	1865 H	Mai 27:93101	183	31	10	334	32	39	13	3	51
238	290	1866 I	Januar 11:14037	170	57	58	231	26	3	162	41	55
(163)	291	1866 II	Februar 13:97996	200	14	19	209	41	55	11	22	9
239	292	18671	Januar 20-21367	357	31	15	78	27	35	18	12	34
240	293 T ₁	1867 11	Mai 23:93097	135	0	36	101	9	G	6	24	39
241	294	1867 111	Novemb. 6:96729	148	37	27	64	58	57	96	34	5
(171)	295 Br	1868 I	April 17:42866	1.4	48	6	101	14	3	29	22	26
242	296	1868 II	Juni 26:48275	126	37	24	52	15	22	131	32	57
(96)	297 E	1868 111	Septemb. 14:62045	183	39	45	334	31	34	13	6	41
(131)	298 W	1869 I	Juni 29:94976	162	22	9	113	33	9	10	48	20
243	299	1869 11	Octob. 9:86044	188	12	38	311	30	7	111	40	7
244 245	300 T ₃ -S 301	1869 III 1870 I	Novemb. 18:81503 Juli 14:08868	106 198	12 13	40	296 141	44	47	5 121	23 47	55 52
246	302	1870 11	Septemb, 2-2011072	354	56	57	12	56	19	99	21	4
(189)	303 d'A	1870 III	Septemb. 22:68595	172	16	10	146	25	24	15	39	30
247	304	1870 IV	Decemb. 19-88258	90	35	47	94	44	43	147	16	25
248	305	1871 T	Juni 10:60635	200	31	23	279	18	36	87	35	56
249	306	1871 H	Juli 27:04094	96	19	58	211	54	14	101	59	29
(102)	307 Tu	1871 III	Decemb. 1:80221	206	47	41	269	17	11	54	16	50
250	308	1871 IV	Decemb. 20:38754	242	53	17	147	6	12	98	19	32
(96)	309 E	1871 V	Decemb. 28:81359	183	38	49	334	34	25	13	7	24
240)	310 T ₁	1873 I	Mai 9.80024	159	19	5	78	43	48	9	45	59
(251	311 T ₂	1873 11	Juni 25:21431 ·	185	9	10	120	56	. 39	12	45	24

Be-	Log. der	Excentrici-	Name	e des	Dauer der	Nachweis
zeich- nung	Periheldist.	int e	Entdeckers	Berechners	Sichtbarkeit	der Berechnung
226	9-9002349	0.9999470	Bruins	ENGELMANN	1862 Nov. 30 bis 1863 März 12	A. N. LX, 151
227	0.0286067		KLINKERFUES	FRISCHAUP	1 1	A. N. LXII, 343
228	9.7984991	0.9990756	Respigiii	ERICSSON		A. N. CXVIII, 358
229	9.8191662	0.998985	TEMPEL	SVEDSTRUP		A. N. CXVII, 242
230	9.8873314		Respigiti	VALENTINER	Dec. 28—1864 März 1	Diss. Berlin 1869
231	0.1183045	1.0006499	BAEKER	Rosin	April 13	A. N. LXVIII, 159
232	0.7966480		DONATI	KOWALCZYK		A N. LXXIII, 84
233	9-9587029		Тъмгиъ	Kowalczyk		A. N. LXXV, 164
234	9.9690425		DONATI	v. Asten		A. N. LXVI, 123
235	9-8869027		Baeker	Kowai czyk	Dec. 15—1865 Febr. 25	A. N. LXXIII, 90
236	0.0471352		BRUINS	VALENTINER	Dec. 30-1865 Jan. 29	A. N. LXVIII, 119
237	8:4123528		Аввотт	Koerber	Jan. 17-Mai 2	Diss. Breslau 1887
(96)	9-5326964	0.8463048	BRUHNS	v. Asten	Febr. 13-Juli 23	XXVI, 106
238	9-9896818	0:9054198	Темпел	v. Oppolzer	1866 Febr. 9	A. N. LXVIII, 249
(163)	0.2258618	0:5575456	Tingle	Moller	1865 Aug. 22 bis 1866 Jan. 12	V. J. S. VII, 97
239	0.1978958	0:8653524	STEPHAN	L. Becker	Jan. 22-April 3	M. N. LI, 489
240	0.194111	0.509712	TEMPEL	R. GAUTIER	April 3-Aug. 21	XXIX, 12
241	9.5189867		BAEKER	Вкосн		A. N. CXXI, 356
(171)	9-7759988	0.8079728	Temps.	SCHULZE		A. N. XCIII, 183
242	9-7623600		WINNECKE	Karlinski		Annuaire 1885,214
(96)	1	0.8491280	WINNECKE	v. Asten	Juli 17-Sept. 3	XXVI, 106
(131)		0.7519281	WINNECKE	v. Haerdtl		Wien, Ak. LVI, 162
243	0.090174		TEMPEL	Kowalczyk		A. N. LXXXI, 143
244		0.6580921	TEMPEL	Bossert	Nov. 27-Dec. 31	
245	0.0037585		TEMPEL	SEYDLER		Wien, Ak, S. LXIV
246	0.2592768		Coggia	SCHOBLOCH		A. N. CILI, 402
(189)		0.6350207	WINNECKE	LEVEAU	Aug. 31—Dec. 20	
247	9.590242		WINNECKE	Schulhof		A. N. LXXXV, 323
248		0.997814	WINNECKE	HOLETSCHER		A.N. LXXXIV,330
249	0-0347741		TEMPEL	N. CRAMER	Juni 14 Sept. 20	Diss. Leiden 1875
(102)	0.0128807	7 0.8211096	BORELLY	RAHTS	Oct. 12—1872 Jan. 30	A. N. CXIII, 194
250	9-8396727	0.9964266	TEMPEL	Lindhagen		A. N. CXI, 112
(96)	9.5224697	0.8493318	STEPHAN	BACKLUND	Sept, 18-Dec. 10	M. d. Petersb, XXXIV, 8
(240)	0.2482603	0:4626205	STEPHAN	R. GAUTIER	April 3-Aug. 1	M. d. Génève XXIX, 12
251	0.128440	0.552604		SCHULHOF	Juli 3-Oct. 20	Annuaire 1884,229

Be- zeich- nung	No. nach Galle II	Jahr	Durchgang durch das Perihel M. Zt. Paris		gume Peril ω		Länge des aufst. Knoten			Neigung ;		
(163)	312 F	1873 III	Juli 18:49315	200°	23	56"	209°	38'	57"	110	21'	50
252	313	1873 IV	Septemb. 10-79020	193	47	12	230	35	24	95	58	31
253	314	1873 V	Octob. 1:76950	233	45	4	176	43	14	121	28	59
(171)	315 Br	1873 VI	Octob, 10:48509	14	49	37	101	12	31	29	24	30
254	316	1873 VII	Decemb. 1:39643	195	38	50	250	27	2	29	54	54
255	317	1874 I	März 9:94113	269	29	54	30	18	2	58	52	48
256	318	1874 11	März 13:94210	331	44	44	274	6	54	148	24	31
257	319	1874 111	Juli 8:86482	152	21	56	118	44	29	66	21	1:
258	320	1874 IV	Juli 17:70598	149	36	12	215	51	5	34	8	20
259	321	1874 V	August 26:85007	92	38	11	251	30	8	41	49	48
260	322	1874 VI	Octob. 18:94934	16	17	3	281	57	34	99	12	55
(131)	323 W	1875 I	März 12:10695	165	8	15	111	33	39	11	17	-
(96)	324 E	1875 11	April 12:99118	183	4()	13	334	37	0	13	7	20
261	325	18771	Januar 19:18514	347	10	10	187	15	2	152	54	2
262	326	1877 11	April 17:66268	63	7	54	316	27	20	121	s	3
263	327	1877 111	April 26:81233	116	46	28	346	4	49	77	10	3
(189)	328 d'A	1877 IV	Mai 10:48640	173	0	30	146	9	16	15	43	1
264	329	1877 V	Juni 27:07676	103	14	49	184	16	55	115	44	3
265	330	1877 VI	Septemb. 11-22471	143	13	16	250	59	47	102	13	5
266	331	18781	Juli 20:69724	177	34	28	102	15	50	78	10	5
(96)	332 E	1878Π	Juli 26·17398	183	40	18	334	39	13	13	6	3
(251)	333 T.	1878 III	Septemb. 7:26730	185	7	10	121	0	48	12	46	
(171)	334 Br	1879 I	März 30:54133	14	55	4	101	19	2	29	23	1
267	335	1879 II	April 27:42900	3	44	23	45	45	40	107	2	
(240)	336 T ₁	1879 111	Mai 7:12421	159	29	35	78	45	56	9	46	
268	337	1879 IV	August 29:28524	84	15	11	32	25	33	107	45	
269	338	1879 V	Octob, 4:63624	115	26	39	87	11	10	77	7	5
270	339	1880 I	Januar 27:62502	86	18	7	6	10	29	144	39	4
271	340	1880 11	Juli 1:74612	145	11	57	257	15	3	123	3	4
272	341	1880 III	Septemb. 6.94156	323	6	32	45	18	54	141	54	
(244)	342 T ₃ -S	1880 IV	Novemb. 8:00260	106	12	11	296	51	57	5	23	4
273	343	1880 V	Novemb. 9:42137	11	41	26	249	22	32	60	42	1
(163)	344 F	1881 I	Januar 22:67174	201	13	22	209	35	25	11	19	4
274	345	1881 II	Mai 20:44307	173	47	33	126	24	13	77	78	1
275	346	1881 III	Juni 16:44847	354	15	16	270	57	43	63	25	5

Be-	Log. der	Excentrici-	Nam	ie des	Dauer der	Nachweis
zeich-	Periheldist.	tiit		1	Sichtbarkeit	der Berechnung
nung	log q	•	Entdeckers	Berechners		
(163)	0.2259693	0.5573833	STEPHAN	MÖLLER	Sept. 3-Nov. 30	A. N. LXXX, 337
252	9.8998540	0.996471	BORELLY	R. GAUTIER	Aug.20 - Sept.20	A. N. XCII, 72
253	9.585297		R. HENRY	WEISS	Aug.23-Dec. 17	A. N. LXXXIII, 50
(171)	9.7736231	0.8088591	STEPHAN	E. LAMP	Aug. 31-Oct. 26	Kiel, Publ. VII, 56
254	9.8649197		Coggia	SCHULHOF	Nov. 10-16	B. A. III, 131
255	8:649025		Winnecke	WITTSTEIN	Febr. 20-25	A N. XCIV, 200
256	9.9473096		WINNECKE	WENZEL	April 1 1 - Juni 1 7	Wien, Ak S. LXXVI
257	9.8298069	0.99882015	Coggia	v. HEPPERGER	Apr. 17-Oct. 18	Wien, Ak. S. LXXXV
258	0.2273669	0.9628312	Coggia	HOLETSCHEK	Aug. 19 Nov. 14	Wien, Ak.S.LXXXV
259	9-9923984	0.9988309	BORELLY	GRUSS	Juli 25—Oct. 20	Wien, Ak. S. LXXXVIII
260	9-706057		Borelly	HOLETSCHEK	Dec. 6-1875 Jan. 7	A. N. XCIV, 190
(131)	9.9185773	0.7409983	BORELLY	v. HAERDTL	Febr. 1-16	Wien, Ak.D LVI, 162
(96)	9-5223870	0.8194024	Holden	BACKLUND	Jan. 26-Mai 17	M. d. Petersb. XXXIV, 8
261	9.907111		BORKLLY	THRÄN	Febr. 8-April 3	A N. Cl. 93
262	9-9777145	0.9987005	WINNECKE	PLATH	April 5 - Juli 13	Abh. pag. 45
263		0.9979243	Swift	POENISCH	April 11-Juni 4	A. N. CXV, 187
(189)	9.1199556	0.6278091	TEMPEL	LEVRAU	Juli 9-Sept. 10	A. N. CV, 22
264	0.0295666		TEMPEL	GRUSS	Oct. 2-14	Wien, Ak.S. LXXXV
265	0.1975297		Coggia	LARSSÉN	Sept. 13 - Dec. 10	A. N. CXVI, 25
266	0.1436288		SWIFT	BÜTTNER	Juli 7-23	A. N. XCVII, 278
(96)	9-5230694	0.8491543	Теввитт	BACKLUND	Aug. 3-Sept. 6	M. d. Petersb. XXXIV, 8
	0.126998	0.553691	TEMPEL.	SCHULHOF	Juli 19-Dec. 21	Annuaire 1884, 229
(171)	9.7707355	0.8098415	TEMPEL.	E. Lamp		Kiel, Publ. VII, 56
267	9.952573		SWIFT	KREMSER	Juni 16 - Aug. 23	A. N. CVIII, 102
(240)	0.2482463	0.4625512	TEMPEL	R. GAUTIER	April 24 - Juli 8	M. d. Génève XXIX, 12
268	9-996284		HARTWIG	Mili.osewich	Aug. 24 - Sept, 18	Mem. Spettr. Ital. XVII, 55
269	9.9954612		A. PALISA	A. PALISA	Aug. 21-Oct. 22	Wien, Ak. S. LXXXI
270	7:739478		Gould	KREUTZ	Febr. 4-19	A. N. CXIV, 73
271	0.2586566		SCHAEBERLE	J. MEYER	April 6-Oct, 11	Wien, Ak. S. LXXXIV
272	9.5497806		HARTWIG	MOLIEN	Sept.29-Nov.30	A. N. CVI, 121
(244)	0.0282447	0.6571935	SWIFT	Bossert	Oct. 10-1881 Jan. 20	B. A. III, 72
273	9.819274		Ресийля	BIGOURDAN	Dec. 16-1881 März 31	C. R. XCII, 172
(163)	0.2400848	0.5490171	Common	Möller	1	B. A. J. 1882 [138]
		7.5		1	-	
274	9.7716696		SWIFT	GRUSS	April30-Mai I I	A. N. CV, 315

Be- zeich-	No. nach	Jahr	Durchgang durch das Perihel		gume Peri		Läi aufst.			N	eigur	ng
nung	GALLE II		M. Zt. Paris		(U			8			i	
276	347	1881 IV	August 22:31248	1220	71	19"	970	21	37"	1400	13'	54
277	348	1881 V	Septemb. 13:3192	312	30	52	65	56	56	6	51	4
278	349	1881 VI	Septemb 14:37183	6	18	10	274	9	51	112	48	47
(96)	350 E	1881 VII	Novemb. 15:30270	183	55	12	334	31	28	12	53	7
279	351	1881 VIII	Novemb. 19:77791	118	0	37	181	25	19	144	50	16
280	352	1882 I	Juni 10:53612	208	59	38	204	56	27	73	48	39
281	353	1882 11	Septemb. 17:23051	69	34	35	346	0	43	141	59	45
282	354	1882 111	Novemb. 12:99363	254	18	45	249	7	11	96	9	2
283	355	1883 I	Februar 18:94856	110	53	22	278	8	36	78	-4	5
284	356	1883 H	Decemb. 25:3092	138	39	2	264	25	14	114	59	9
(124)	357 P-Bs.	18811	Januar 25:72388	199	11	33	254	5	42	74	2	36
285	358	1881 II	August 16:48583	301	1	59	5	8	59	5	27	38
286	359 Wo	1884 111	Novemb, 17:79370	172	42	31	206	18	31	25	15	41
(96)	360 E	1885 I	März 7:64113	183	55	49	334	36	56	12	54	1
287	361	1885 II	August 5:54394	178	27	1	92	17	10	80	39	26
288	362	1885 HI	August 10:44430	43	25	52	204	29	7	59	20	19
(102)	363 Tu	1885 IV	Septemb. 11:14915	206	46	57	269	42	1	54	19	45
289	364	1885 V	Novemb. 25:53442	35	38	42	262	13	21	42	26	32
290	365	1886 I	April 5:96890	126	35	26	36	22	39	82	37	17
291	366	1886 II	Mai 8-29332	119	36	29	68	19	10	84	26	5
292	367	1886 III	Mai 4:45145	38	33	33	287	45	33	100	12	7
293	368	1886 IV	Juni 6:69108	176	47	55	53	28	57	12	43	26
294	369	1886 V	Juni 7:39549	201	13	21	192	42	G	87	44	23
(131)	370 W	1886 VI	Septemb. 4:39181	172	2	7	104	7	30	14	31	40
295	371 Fi	1886 VII	Novemb. 22:39464	315	5	35	52	28	54	3	1	41
296	372	1886 VIII	Novemb, 28:38161	31	53	16	258	11	58	85	35	18
297	373	1886 IX	Decemb. 16:50319	86	20	18	137	22	34	101	37	31
298	374	1887 I	Januar 11:34421	65	22.9		339	88-1		137	37-3	
299	375	1887 II	März 17:37426	159	25	19	279	55	56	104	16	18
300	376	1887 111	März 28:43115	36	31	36	135	27	4	139	47	26
301	377	1887 IV	Juni 16:66988	15	8	3	245	13	22	17	33	9
(127)	378 O	1887 V	Octob. 8:48531	65	20	11	84	32	20	44	34	16
302	379	18881	März 17:00832	359	55	31	245	22	56	42	15	10
(96)	380 E	1888 II	Juni 27:99670	183	57	5	334	38	51	12	53	\mathbf{G}
303	381	1888 III	Juli 31·14287	59	12	8	101	29	51	74	11	41

Be-	Log. der	Excentrici-	Nam	ie des	Dauer der	Nachweis
zeich- nung	Periheldist.	tüt e	Entdeckers	Berechners	Sichtbarkeit	der Berechnung
276	9.8017757		SCHAEBERLE	STECHERT	Inline Control	A N. CUIT
277	9-860503	0.828377	DENNING	MATTHESSEN		A. N. CVIII, 43 Karlsruhe, Publ. III, 179
278	9.6524399		BARNARD	MILLOSEWICH	Sept 17-Oct. 27	
(96)	9-5357273	0.8458998	WINNECKE	BACKLUND	Aug. 20-Nov. 11	
279	0.2839578	0.973331	SWIFT	OLSSON	Nov. 16—1882 Jan. 12	A. N. CXIV, 201
280	8.7836376	0.99999454	WELLS	v. Rebeur- Paschwitz	März 17-Aug. 16	Karlsruhe, Publ.II
281	7:8889895	0.9999330		KREUTZ	Sept. 1-1883 Juni 1	Kiel, Publ. VI, 5
282	9.9802257	0.9992287	BARNARD	WOLYNCEWICZ	Sept. 13-Dec. 8	A. N. CIV, 219
283	9.8807707	0.9990853	Brooks	WINDELL	Febr. 23-April 24	Sid. Mess. V, 92
284	9-49094		Ross	H. Oppenheim	1884Jan 7-Febr. 19	A. N. XVII, 276
(124)	9.8897099	0-9549960	Вкрокѕ	Schulhof, Bossert	1883 Sept. 1 bis 1884 Jan. 2	A. N. CVIII, 16
285	0.1071271	0.5842139	BARNARD	BERBERICH	Juli 16-Nov. 20	A. N. CXXIII, 189
286	0.1964455	Ō·5609166	Wolf	THRÄN	Sept. 17—1885 April 6	A.N. CXXVIII,42
(96)	9.5344196	0.8457761	TEMPEL	BACKLUND	1884 Dec. 13 bis 1885 April 22	M. d. Petersb. XXXIV, 8
287	0.3992904	1:0028519	BARNARD	BELBERICH	Juli 7-Sept. 3	A. N. CXXIII, 40
288	9.877815		Brooks	GALLEN- MÜLLER	Aug. 31-Oct. 5	A. N. CXXX, 36
(102)	0.0106087	0.8215436	PERROTIN	RAIITS	Aug. 8-Sept. 16	A. N. CXIII, 200
289	0.0334633		Brooks	HACKENBERG	Dec, 26-1886Mrz.1	
290	9.807767		FABRY	SVEDSTRUP	1885 Dec. 1 bis 1886 Juli 30	A. N. CXIV, 15
291	9.6805802	1.00022860	Barnard	THRÄN	1885 Dec. 3 bis 1886 Juli 26	A. N. CXXXII, 28
292	9-925294		BROOKS	CELORIA	April 30-Juni 3	A. N. CXVII, 10
293	0.123107	0.5787392	BROOKS	S. OPPENHEIM		A.N.CXXVIII, 302
294	9.431999		BROOKS	KRÜGER	April 27-Juli 30	
(131)	9.9471854	0.7261780	FINLAY	v. Haerdti.	Aug. 19-Nov. 29	Wien, Ak. D. LVI 162
295	9-9989350	0.7178652	FINLAY	SCHULIIOF	Sept. 26 - 1887Apr.	A.N. CXXXIII, 5
296	0.170274		BARNARD	EGBERT	1887 Jan. 23 bis Mai 22	A. J. VII, 87
297	9.8217257	1.0003824	BARNARD	BUSCHBAUM	Oct. 4—1887 Juni 16	Diss. Göttingen 1889, 43
298	7.73914		Тноме	H. OPPENHEIM		
299	0.212202	0.9846095	BROOKS	STECHERT	Jan. 22-April 23	
300	0.0028251	1:0004192	Barnard	Heinricius	l'ebr, 16-April 10	
301	0.1442046	0.9960879	BARNARD	F. MULLER	Mai 12-Aug. 11	A. J. VIII, 56
(127)	0.0788620	9-9311297	Brooks	GINZEL	Aug. 24-1888 Juli 5	Berl.R.J.Publ.3, 3
302	9.8443367	0.9958467	SAWERTHAL.	TENNANT	Febr. 18-Sept. 7	M. N. XLIX, 28
(96)	9.5354100	0.8454694	TEBBUTT	BACKLUND		A. N. CXIX, 17
303	9.9553154	0-9999079	BROOKS	MILLOSEWICH		

Be- zeich-	nach Jahr das Perihel GALLE II das Perihel M. Zt. Paris 383 382 F 1888 IV August 1959 383 1888 V Septemb. 12-77 Januar 31:1785 385 1889 II Juni 10-77911			Peri		Läi aufst.			N	eigur <i>i</i>	ng	
nung	GALLE II		M. Zt. Paris		ω			v		-		
(163)	382 F	1888 IV	August 19-94	201°	13'	22"	2090	35'	25"	110	19'	40'
304	383	1888 V	Septemb. 12-7776	290	46	57	137	31	48	56	20	51
305	384	1889 I	Januar 31:17837	340	27	40	357	25	15	166	22	13
306	385	1889 11	Juni 10-77911	236	5	5	310	42	36	163	50	31
307	386	1889 111	Juni 20:75088	60	8	5	270	58	4	31	12	50
308	387	1889 IV	Juli 19:28009	345	51	58	286	9	47	65	58	41
309	388	1889 V	Septemb. 30:33971	343	35	51	17	59	4	6	4	7
310	389	1889 VI	Novemb. 29:54151	69	39	0	330	36	2	10	14	54
311	390	1890 I	Januar 26:487076	199	51	40	8	28	6	56	44	15
312	391	1890 11	Junt 1:54801	68	56	14	320	20	44	120	33	23
313	392	1890 III	Juli 8:54656	85	39	37	14	18	25	63	20	4
314	393	1890 IV	August 6:88918	331	15	4	85	22	5	154	18	27
(189)	394 d'A	1890 V	Septemb, 17:49316	172	58	2	146	16	32	15	42	41
315	395	1890 VI	Septemb. 24:51453	163	2	18	100	7	13	98	56	30
316	396	1890 VII	Octob. 26:12523	13	5	42	45	8	8	12	51	30
317	397	1891 I	April 27:5435	178	55	44	193	55	10	120	31	23
(286)	398 W	1891 11	Septemb. 3.43865	172	48	26	206	22	17	25	14	34
(96)	399 E	1891 III	Octob. 17:98599	183	57	20	334	41	27	12	54	58
318	400	1891 IV	Novemb. 12:9120	268	33	1	217	38	58	77	42	34
(244)	401 T ₃ -S	1891 V	Novemb. 14:95835	106	43	1	296	31	15	5	23	14
319	402	1892 I	April 6:65953	24	31	11	240	54	15	38	42	21
320	403	1892 11	Mai 11:231219	129	19	51	253	25	51	89	41	54
321	404	1892 111	Juni 13:485534	14	22	24	331	38	17	20	47	16
(131)	405 W	1003 111	Juni 30:89430	172	6	27	104	4	37	14	31	34
322	406 W	1892 IV 1892 V	Decemb. 11:13512	170	19	6	206	42	29	31	10	36
323	407	1892 VI	Decemb. 28·1044	252	42	35	264	29	32	24	47	47
324	408	1893 I	Januar 6:50236	85	13	19	185	38	28	143	51	49
325	409	1893 II	Juli 7:27794	47	7	46	337	21	24	159	58	2
(295)	410 Fi	1893 111	Juli 12:18195	315	31	51	52	27	43	3	2	2
326	411	1893 IV	Septemb. 19-2288	347	27	7	174	55	12	129	50	14
327	412	1894 I	Februar 9:53072	46	15	54	84	21	51	5	31	47
328	413	1894 11	April 18:5210	324	17	17	206	20	59	87	3	52
(251)	414 T,	1894 III	April 23:2493	185	4	55	121	10	5	12	44	22
	415	1894 IV	Octob. 12:19466	296	34	35	48	44	37	2	57	54
329												

himsed by Google

Be-	Log. der	Excentrici-	Nam	ie des	Dauer der	Nachweis
nung	Periheldist.	e tat	Entdeckers	Berechners	Sichtbarkeit	der Berechnung
(163)	0.2400848	0.5490171	PERROTIN	MÖLLER	Aug.9-1889Febr.7	A. N. CXX, 77
304	0.183996	9-991113	BARNARD	SEARLE	Oct. 30-1889Mai22	
305	0.2588515	1.0010863	BARNARD	BERBERICH	1888 Sept. 2 bis 1891 Mai 1	A. N. CXXIII, 28d
306	0.3532083	0.9995208	BARNARD	MILLOSEWICH	März 31—1890 Aug. 24	A. N. CXXV, 319
307	0.042338	0.956665	BARNARD	BERBERICH	Juni 23-Aug. 6	A. N. CXXIII, 7
308	0.016890	0.996504	DAVIDSON	BERBERICH	Juli 19-Nov. 21	A. N. CXXIV, 14:
309	0.2899980	0.4707799	Brooks	BAUSCHINGER	Juli 6-1891 Jan. 13	
310	0.1315170	0.6758467	SWIFT	HIND	Nov. 16-1890 Jan. 21	C. R. CXIII, 18.
311	9-4309823		BORELLY	RADELFINGER	1889 Dec. 12 bis 1890 Jan. 16	A. N. CILII, 65
312	0.280471	1:00037259	BROOKS	Визсног	Mrz.19 -1892Fbr.4	A. N.CXXVIII,20
313	9.8831669		Coggia	EBERT	Juli 18-Aug. 13	
314	0.311053	0-995872	Zona	VENTURI	Nov. 15-1891 Jan. 13	
(189)		0.6271251	BARNARD	LEVEAU	Oct. 6-Dec. 13	
315	0.100448	0.9991542	DENNING	BORKINSKOY	Juli 23-Nov. 7	
316	0.2595701	0:4727455	SPITALER	TENNANT	Nov. 16-1891Fbr.4	M. N. LII, 30
317	9.598826		BARNARD	BELLAMY	März 29 - Juli 9	A. J. X. 191
(286)		0.5571859	SPITALER	THRÄN	Mai 1 - 1892Mrz 31	
(96)	9.5320821	0.8464737	BARNARD	BACKLUND	Aug. 1-Octob, 12	
318	9.989838		BARNARD	FROEBE	Octob. 2-Dec. 6	
(244)	0.036071	0.6527024	BARNARD	Bossert	Sept. 27-1892 Jan. 21	A. N. CXXVII, 27
319	0.011499	0.998613	SWIFT	BERBERICH	Mrz.6-1893Fbr.16	A. N. CXXX, 21
320	0.2946197	1.000345	DENNING	STEINER	März 18-1893 Jan. 20	A. N. CILV, 24
321		0.4091581	HOLMES	Kohi schütter	Nov. 6-1893 April 6	Diss. Kiel 1896, A. N. CILI, 24
(131)	9.9477053	0.7259908	SPITALER	v. HAERDTL	März 18-Oct. 20	
322	0.1546264	0.5781439	BARNARD	PORTER	Oct. 12-Nov. 22	A. J. XIII, 186
323	9-989320		BROOKS	H. OPPENHEIM	Juli 18	A.N. CXXXI, 17
324	0.0774075		BROOKS		1892 Nov. 19 bis 1893 Juni	
325		0.9994621	SPERRA	Ккомм	Juni 19-Dec. 20	
(295)			FINLAY	SCHULHOF	Mai 17-Sept. 21	
326	9-909558	0.996489	Brooks	PEYRA	Oct. 16-1894 Jan. 26	A. N. CXXXVII
327	0.059676	0.6983456	DENNING	SCHULHOF	März 26-Juni 5	A. N CXXXVII
328	9-992741		GALE	KOHL- SCHÜTTER	April 1-Juli 31	
(251)	0.130530	0.5510772	FINLAY	SCHULHOF	Mai 8-Ende Jul	i B. A. XI, 254
329		0.5684393	SWIFT	CHANDLER	Nov. 20-1895 Jan. 29	A. J. XV, 10
(96)	9.532870	0.8462206	PERROTIN	BACKLUND	1894 Oct. 31 bi 1895 Jan. 25	A.N. CXXXVI,3

Directly Google

Be- zeich-	No.	labr	Durchgang durch das Perihel	Ar	gume		Lär aufst.	ge .		N	eigur	ıg
nung	GALLE II	Janr	M. Zt. Paris	des	reru	ieis	auist.	Ω.	otens	ĺ	i	
nung	GALLE II		M. Zd. Latis					86				
330	417	1895 H	August 20:85408	167°	47'	8"	170°	16'	17"	2°	59°	25"
331	418	1895 III	Octob. 4:059166	298	46	8	83	5	1	76	14	45
332	419	1895 IV	Decemb. 18:33319	272	40	23	320	30	48	141	36	39
333	420	1896 I	Januar 31.78360	358	20	15	208	50	25	155	44	49
(163)	421 F	1896 11	März 19·27	201	13	22	209	35	25	11	19	40
334	422	1896 III	April 17:6538079	1	44	24	178	14	51	55	34	25
335	423	1896 IV	Juli 10.95068	41	2	8	151	2	1	88	25	36
336	424	1896 V	Octob. 27:78528	140	23	17	193	16	10	11	23	7
(309)	425 Bs	1896 VI	Novemb, 4:15328	343	47	35	18	1	8	6	3	34
337	426	1896 _. VII	Novemb. 24:63499	63	54	2	246	37	12	13	40	17
338	427	1897 I	Februar 8:08808	172	17	39	86	28	31	146	8	44
(189)	428 d'A	1897 11	Mai 21:70528	173	4	12	146	21	19	15	43	30
339	429	1897 III	Decemb. 8:649077	65	53	58	32	3	9	69	35	58
340	430	1898 I	März 17:12544	47	18	20	262	26	4	72	31	56
(131)	431 W	1898 11	März 20:89849	173	21	10	100	51	46	16	59	34
(96)	432 E	1898 111	Mai 26:80928	183	58	57	334	46	43	12	54	37
(286)	433 Wo	1898 IV	Juli 4.56928	172	52	35	206	29	4	25	12	16
341	434	1898 V	Juli 25:51974	22	24	35	278	17	10	166	51	1
342	435	1898 VI	August 16:20628	205	36	24	259	6	12	70	1	37
343	436	1898 VII	Septemb. 14:050699	233	15	19	74	0	58	69	56	0
344	437	1898 VIII	Septemb. 20:08029	4	35	32	95	51	25	22	30	27
345	438	1898 IX	Octob. 20:54714	162	20	25	34	53	52	28	51	ì
346	439	1898 X	Novemb. 23:15918	123	32	()	96	18	23	140	20	54
347	440	1899 I	April 12:984212	8	41	56	24	59	18	146	15	28
(321)	441 Ho	1899 II	April 28:06138	14	4	21	331	43	32	20	48	10
(102)	442 Tu	1899 111	Mai 4:47438	206	39	9	269	49	54	54	29	16
(251)	443 T,	1899 IV	Juli 28:51428	185	36	20	120	57	56	12	38	53

Be-	Log. der	Excentrici -	Name	des	Dauer der	Nachweis
zeich-	Periheldist.	tät	Entdeckers	Berechners	Sichtbarkeit	der Berechnung
nung	log q	•	Entdeckers	Berechners		8
330	0.112686	0.647742	SWIFT	Berberich	Aug. 20-1896 Febr. 5	A. N. CXXXVIII, 367
331	9.9258452	i 1	BROOKS	WASSILIEF	Nov.21-Dec.20	A.N. CILIII, 229
332	9-283259		PERRINE	AITKEN	Nov. 16-1896 Aug. 9	
333	9.768889		PERRINE	Buchholz		A. N. CIL, 335
(163)	0.2400848	0.5490171	JAVELLE	MÖLLER	1895 Sept. 26 bis 1896 Jan. 15	B. A. J. 1882
334	9.7530356	1.0004757	SWIFT	AITKEN		A.N. CILVIII, 337
335	0.057853		SPERRA	LAMP	Aug. 31-Oct. 8	A. N. CILI, 357
336			GIACOBINI	GIACOBINI	Jan. 4	V. J. S. XXXII, 62
(309)			Brooks	JAVELLE	Juni 20-1897 Febr. 25	Ver. Berl. R. I. 8
337	0.045414	0.6792812	PERRINE	OSTEN	Dec. 8 bis 1897 März 3	A. N. CILV, 349
338	0.026336		Perrine	Möller	1857 Mai 5	Astr. Abh. A. N. No. 2
(189)	0.120979	0.6273078	PERRINE	LEVEAU	Juni 28-Oet. 3	
339	0.132477		PERRINE	WESSELL		A. N. CLI, 209
340	0.039459	0.954818	PERRINE	CURTIS		A. J. XIX, 195
(131)	9.965727	0.714763	PERRINE	CHANDLER	Jan. 1 -Febr. 28	A. J. XVIII, 127
(96)	9.532354	0.8463863	TEBBUTT	IWANOW	Juni 11-Juli 10	A. N. CILVI, 159
(286)	0.204943	0.5553371	Hussey	THRÄN	Juni 16-1899 März 10	A. N. CILVI, 11
341	0.176460		GIACOBINI	STICHTENOTH		A. N. CILVII, 123
342	9.796950		PERRINE	PERRINE	Juni 14-Aug. 10	A. J. XIX, 95
343	0.230859	1.0010336	Condington	MERFIELD	Juni 11-1899 Dec. 7	A. N. CLIV, 229
344	0.358758		CHASE	SPRAGEN	Nov. 14—1899 Juni 26	A. J. XX, 98
345	9.623749	1	PERRINE	BERBERICH	Sept. 12-Oct. 9	A. N. CILVII, 333
346	9.878535		Brooks	Pokrowski, Scharbe	Oct. 20 - Nov. 26	Λ. N. CILIX, 12;
347	9.513974	1.0003945	SWIFT	MERFIELD		A. N. CLI, 23
(321)	0.327992	0.4113460	PERRINE	Zwiers		A. N. CL, 341
(102)	0.008230	0.8217125	Woi.F	RAHTS		A. N. CILVIII, 389
(251)	0.142555	0.5421104	PERRINE	SCHULHOF	Mai 6-Nov. 22	A. N. CILIX, 375

Tafel VII.

Bahnelemente der Planeten.

Bei den Elementen der kleinen Planeten pag. 324-347 bedürfen nur die Columnen 2, 3 (m_0, g) der Erklärung, da die übrigen nach dem Text und den einschlägigen Artikeln nicht misszuverstehen sind.

Es bedeutet m_0 die mittlere Grösse, d. h. die, welche der Planet in seiner mittleren Entfernung a von der Sonne und der gleichzeitigen Entfernung a-1 von der Erde haben würde; ferner ist g eine Grösse, welche aus m_0 nach der Formel

$$g = m_0 - 5 \log a (a - 1)$$

berechnet ist und die dazu dient, für einen beliebigen geocentrischen Ort des Planeten seine Grössenclasse M zu berechnen. Ist dann Δ die Entfernung des Planeten von der Erde, r seine Entfernung von der Sonne, so ist seine Grösse

$$M = g + 5 (\log \Delta + \log r).$$

Die Elemente sind dem Berliner Astron. Jahrbuch für 1903 bezw. den Veröffentlichungen des Berliner Recheninstituts entnommen. Diejenigen kleinen Planeten, deren Beobachtungen nur zur Berechnung einer Kreisbahn ausreichten, — etwa 20 — sind nicht berücksichtigt worden. Das Zeichen < in der letzten Columne bedeutet, dass der Planet in mehr als 10 Oppositionen beobachtet worden ist.

Nummer und Name	m .	g	Epoche Osculat		Mittl. Aeq.		Λ	ď		ex			8	B
1 Ceres , .	7.4	4.0	1901 Nov.	4.0	d. Ep.	253	° 10	0' 8"-0	70	° 3	55''-6	80	°40	14"
2 Pallas	8.0	4.5	1 -			238	38	13.1	309	14	44.8	172	49	47.5
3 Juno	8.7	5.5				330	58	54.7	244	44	12.5	170	44	28.0
4 Vesta	6.5	4.0	-		d. Ep.			47.4			47.7			50.8
5 Astraea	9.9	6.9	1		,	224			1		42.1			29-0
6 Hebe	8.5	5.8	1900 Juli	3.0	1900-0	284	20	20.1	236	56	20.0	138	39	42.4
7 Iris	8.4	5.8	1900 Jan.	0.0	1900-0	9	5	20.1	141	31	26.9	260	33	44.3
8 Flora	8.9	6.8	1848 Jan.	1.0	d. Ep.	35	52	49.3	282	38	15.6	110	17	16.7
9 Metis	8.9	6.3	1858 Juni	30.0	d. Ep.	57	4	34.7	2	32	16.9	68	31	35.2
10 Hygiea	9.5	5.4	1898 Dec.	20.0	1900-0	291	20	17.9	308	58	5.7	285	48	45.5
11 Parthenope	9.3	6.5	1901 Octo	ь.26·0	1901.0	65	58	42.7	193	25	15.7	125	16	38.9
12 Victoria .	9.7	7.2	1851 Jan.	0.0	d. Ep.	66	2	39.9	66	4	43.3	235	34	41.7
13 Egeria	9.7	6.7	1850 Jan.	0.0	d. Ep.	210	46	34.3	76	58	23.7	43	11	34.5
14, Irene	9:7	6.6	1898 Octo	b. 1:0	1900-0	180	47	34.9	92	3	15.9	86	57	12.9
15 Eunomia ,	8.6	5:4	1854 Jan.	0.0	d. Ep.	122	. 5	31.5	93	59	46:0	293	52	14.5
16 Psyche	9.6	5.9	1899 Juli	27-0	1900-0	301		33.0	226	3	22.5	150	31	37-1
17 Thetis	10.1	7.3	1902 Jan.	14.0	1900-0	224	16	11.8		46	46.4	125	11	23.9
18 Melpomene	9.3	6.9	1854 Jan.	0.0	d. Ep.	80	4	37.0	225	1	41.3	150	3	49.7
19 Fortuna.	9.8	7.1	1901 Juni	8.0	1900-0	239	23	5.6	179	35	87.5			52.1
20 Massalia	9.2	6.5	1899 Marz	29.0	1900.0	76	24	22.5	253	50	39.9	206	37	45.2
21 Lutetia .	10-1	7.4	1853 Jan.		d. Ep.	1	20				10.2			48.5
22 Kalliope .	9.8	6.1	1898 Octo		1			37.0	1		41.4			27.0
23 Thalia	10.5	7.3	1900 Jan.		1900-0	337	2	-			46.7		-	20.9
24 Themis	10.8	6.7	1897 Dec.		1900-0	1	55				44.6			6.4
25 Phocaea .	10.5	7.9	1898 Aug.	2.0	1900.0	7	21	33.6	88	49	31.0	214	13	50.6
:) 🔩 -			20 1	1				-34	, :		111			
26 Proserpina.	10.5	7.3	1853 Juni -	11.0	d. Ep.	351	5	55.6	190	30	15.7	45	54	59.3
27 Euterpe	9.7	7.2	1873 Jan.	5.0	1870-0	90	32	27.0	354	8	6.0	93	51	20.1
28 Bellona	10.1	6.6	1898 Sept.	11.0	1900-0	258	21	43.7	338	30	59.1	144	43	16.1
9 Amphitrite.	9.0	6.1	1855 Jan.	0.0	1870.0	198	1	40.2	59	42	14.8	356	40	46.5
30 Urania	9.9	7.4	1890 Juni	5.0	1900-0	239	51	48.5	83	43	10.7	308	15	7.4
I Euphrosyne	11:0	C+0 :	1899 Octob	150	1900-0	207	7	12.3	60	92	37.9	31	45	6.4
2 Pomona	10.6	7.5			d. Ep.			39.3		-	53.4			55.2
3 Polyhymnia	11.8		1900 Jan.		1900.0			57.3			42.4	9		49.5
4 Circe	11.5	8.2	1897 Dec.		1900.0			37.6			59.7			41.0
5 Leucothea .	12.2		1898 Sept.	1	1900.0			38.2		-	19.6			23.7
6 Atalante .	12-0	8.6	1899 Mai	8.0	1900-0	179	27	12-1	44	26	45.4	359	6	46.3
7 Fides	10.4	7.2	1900 März	3	1900-0			55.9			12.4	8		10.9
8 Leda	11.4	1	1897 Febr.		1900-0			32.7	166			296		4.4
9 Lactitia .	9.5		1897 Jan.	- 1	1900-0			50.9	205		8.2	157		
O Harmonia .	9.2		1863 Jan.	1	d. Ep.			19.4			12.8			54.2
			j			-50			201					

No.		i			φ		μ	log a	Berechner	Jahr d. Entd.	Zahl der beob. Opp.
1	109	37'	20".7	4	30'	18"-5	771":1336	0.4419180	GODWARD	1801	< 10
2	34	41	24.6	13	45	49.5	769.0198	0.4427127	FARLEY	1802	< 10
3	13		35.7	14		14.4	813-8326	0.4263143	HIND	1804	< 10
4	7	8	18.6	5	7	11.3	977.7686	0.3731803	FARLEY	1807	< 10
5	5	20	7.2	11	1	8.5	858.1895	0.4109489	FARLEY.	1845	< 10
6	14	48	3.2	11	35	3.1	939-1860	0.3848366	R. LUTHER	1847	< 10
7	5	28	1.2	13	_	50.2	962:5828	0.3777123	RIEM	1847	< 10
8	5	53	7.3	9		54.4	1086:3382	0.3426943	DOWNING	1847	< 10
9	5	36	0.3	7	5	2.4	962.3390	0.3777857	Lesser	1848	< 10
10	3	48	49.8	6	53	27.8	639-1669	0.4962621	E. BECKER	1849	< t0
11	4		54.2	5	44	1.0	$923 \cdot 9058$	0.3895859	R. LUTHER	1850	< 10
12	8		17.7	12		44.9	994.8347	0.3681389	Brünnow	1850	< 10
13	16		24.6	4		47.3	857.9451	0.4110315	HANSEN	1850	< 10
14	9		32.2	9		51.3	851.4287	0.4132389	MAYWALD	1851	< 10
15	11	44	17.4	10	47	32.2	825.4550	0.4222090	SCHUBERT	1851	< 10
16	3		30.2	7		18.3	710.5554	0.4656058	SCHUBERT	1852	< 10
17	5		38.9	7	-	40.2	912.6523	0.3931342	MAYWALD	1852	< 10 ·
18	10		16.9	12		20.2	1020-1198	0.3609032	SCHUBERT	1852	< 10
19	1	33	1.6	9		40.0	$929 \cdot 1534$	0.3879461	BERBERICH	1852	< 10
20	0	41	11.9	8	17	46.2	949-0005	0.3818268	KUSTNER	1852	< 10
21	3	5	9.5	9	19	44.6	933:5544	0.3865780	Lesser	1852	< 10
22	13	43	36.7	5	38	34.5	714.4288	0.4640317	BERBERICH	1852	< 10
23	10	13	2.0	13	32	59.4	833.5369	0.4193879	SCHUBERT	1852	< 10
24	0	48	8.1	7	50	15.3	640.5990	0.4956138	KRUEGER	1853	< 10
25	21	36	44.5	14	39	21.4	954.0992	0.3802754	BERBERICH	1833	< 10
26	3	35	47.7	5	0	37.8	819-6847	0.4243399	Ноек	1853	< 10
27	1	35	30.4	10	0	56.0	986.6944	0.3705493	Ногра	1853	< 10
28	9	21	37.4	8	38	54.6	765.9782	0.4438601	v. D. GROEBEN	1854	< 10
29	6	7	4.6	4	15	25.3	869.0352	0.4073128	E. BECKER	1854	< 10
30	2	5	59.5	7	21	5.1	975:3144	0.3739080	GÜNTHER	1854	< 10
31	26	28	3.3	12	52	34.7	635.0803	0.4981187	SCHURERT	1854	< 10
32	5		49.9	4		43.1	852.5880	0.4128449	LESSER	1854	< 10
33	1		15.8	19		13.8	731.7057	0.4571134	NEWCOMB	1854	< 10
34	5	-	26.3	6		35.9	805:6011	0.4292575	AUWER5	1855	< 10
35	8	11	44.8	12	42	36.2	683.6866	0.4767663	TIETJEN	1855	< 10
36	18	-	39.3	17		19:0	777-3458	0.4395950	SCHUBERT	1855	< 10
37	3		14.1	10	15	7.8	826.9450	0.4216867	R. LUTHER	1855	< 10
38	6		52.6	8		45.4	781:8518	0.4379215	BERBERICH	1856	9
39	10		11.4	6		16.8	769-6407	0.4424791	TIETJEN	1856	< 10
40	4	15	48.4	2	40	13.6	1039.3353	0.3555000	SCHUBERT	1856	< 10

Nummer und Name	m ₀	g	Epoche Oscula		Mittl. Aeq.		M			w			Ω	
l Daphne .	10.5	7.0	1896 Dec	30-0	1900-0	278	7'	19".3	41	56'	43"-2	178	54'	57"
2 Isis	10.4	7.7	1901 Mär	20.0	1900-0	220	37	25.4	234	12	19.6	84	21	28.4
3 Ariadne .	10.0	7.9	1897 Octo	b. 6.0	1900-0	80	15	48.4	13	59	41.2	264	44	16:
4 Nysa	9.8	7.1	1891 Apri	1 1.0	1900-0	101	29	32.1	340	32	15.8	131	15	10:
5 Eugenia .	10.7	7.3	1890 Nov	. 12.0	1900-0	180	7	31.7	82	42	47.8	148	7	49.
6 Hestia	10.6	7.7	1901 Juni		1900-0		49	9.3	172	38	50.4	181	22	41:
7 Aglaja	11.2	7.5	1898 Dec	20.0	1900-0	193	12	16.1	310	0	51.6	4	3	41:
8 Doris	10.9	6.8	1890 Sept		1900-0		3	7.4	251	36	35.0	184	42	28
9 Pales	11.0	7.0	1898 Mär	15.0	1900.0	133	1	8.6	104	18	44.6	289	40	40
O Virginia .	11.7	8.2	1890 Apri	1 6.0	1900-0	193	9	42.2	196	47	34.5	173	47	19
l Nemausa .	9.8	7.3	1889 Nov		1900-0			43.1	358		23.3	175		45
2 Europa	10.3	6.2	1891 Apri					33.0	335		38.7	129		21
3 Kalypso .	11.5	8.4	1898 Sept				39	8.8	309	50	4.2	143		57
4 Alexandra.	10.9	7.6	1884 Aug					13.5	341		51.5	313		45
5 Pandora .	10.8	7.4	1885 Jan.	22.0	1900-0	263	33	12.6	0	46	45.4	11	5	29
6 Melete	11.3	8.2	1900 Dec	30.0	1901-0	157	16	2.5	101	6	10.5	194	3	16
7 Mnemosyne	10.7	6.5	1897 Juni		1900-0			17.6	210		12.7	200		43
8 Concordia .	11.6	8.3	1865 Jan.		d. Ep.		24	4.2	27		14.7	161	_	50
9 Elpis	10.9	7.6	1865 Jan.		1900-0			57.1	207		22.3	170		39
0 Echo	11.1	8.5	1897 Octo	- 1		1		22.3	267	58		191		22
I Danaë	11.0	7-1	1900 Apri	1 14.0	1900-0	244	20	50-4	8	27	33.5	334	15	0
2 Erato	12.3	8.2	1877 Sept	. 21.0	1900-0	358	43	44.3	273	16	41.1	125	59	38
3 Ausonia .	9.9	7.3	1898 Feb	. 3.0	1900-0	250	44	8.5	292	55	25.5	337	58	3
4 Angelina .	10.5	7.2	1898 Octo	b. 1·0	1900-0	239	38	51.2	173	37	28.8	310	50	59
5 Cybele	11.0	6.4	1901 Aug	. 27.0	1900.0	69	23	49.7	97	12	13:4	158	44	4
6 Maja	12.2	9.0	1897 Juli	18.0	1900-0	277	50	28.5	40	10	9.2	8	17	30
7 Asia	11.2	8.5	1897 Dec	5.0	1900-0	201	20	50.1	103	20	37.7	202	55	26
8 Leto	10.5	7.0	1898 Apri	1 24.0	1900-0	236	41	25.3	301		40.3	44	42	44
Hesperia .	10.7	6.8	1889 Jan.		1900-0			57.9	284		39.6	186		56
Panopaea .	10.9	7.8	1890 Dec	22.0	1900-0	305	21	16.5	252	49	22.9	48	15	50
l Niobe	10.7	7.3	1898 Octo					10.3	265		20.2	316	22	-
2 Feronia	11.2	8.9	1897 Dec		1900-0			16.3	100	_	36.6	207	54	6
3 Klytia	12.0	8.8	1898 Aug		1900-0			53.1	52		12.0	7	35	
4 Galatea	11.8	8.3	1897 Feb					45.2	171	0	3.8	197	44	
5 Eurydike .	11.6	8.4	1897 Octo	ъ.26·0	1900-0	32	23	13.9	335	34	2.0	359	58	28
6 Freia	12.0	7.4	1902 Feb		1900-0			47.7	236		56.1	212	10	7
7 Frigga	11.1	7.9	1897 Octo					52.7	56		27.7	2		10
8 Diana	10.6	7.5	1899 Sept		1900-0		25	1.6	148		27.0	333	51	
9 Eurynome . 0 Sappho .	10·5 10·6	7·8 8·2	1901 Aug 1896 Octo		1900:0			28·9 20·1	198 136		20·8 29·1	206 218	33 40	9 52
	1.00	-	-590 500					20.	200	o r	20 1	1		0.0

No.		i			φ		fr	log a	Berechner	Jahr d. Entd.	Zahl der beob. Opr
41	159	55	27"-6	159	27	11".7	770".8841	0.4420117	BERBERICH	1856	< 10
42	8	34	3.0	12	50	33.9	930-2275	0.3876117	L. BECKER	1856	< 10
43	3	27	42.6			32.6	1084.7577	0.3431159	PREY	1857	< 10
44	3	42	4.2	8	48	10.9	941.7363	0.3840515	POWALKY	1857	< 10
45	6		22.7	4		11.6	791.0695	0.4345280	RICHTER	1857	< 10
46	2		29.6	9		44.5	883:5543	0:4025156	KARLINSKY	1857	< 10
47	5		34.6	7		46.5	726:7211	0.4590926	POWALKY	1857	< 10
48	6		28.0	3		16.7	645.5014	0.4934063	POWALKY	1857	< 10
49	3	8	26.3	12	52	28.4	648.4530	0.4920854	POWALKY	1857	< 10
50	2	48	31.7	16	45	58.0	823:5561	0.4228757	POWALKY	1857	< 10
51	9		16.2	3		23.3	975:1593	0.3739540	BERBERICH	1858	< 10
52	7		18.3	6		44.8	651.8134	0.4905889	MURMANN	1858	< 10
53	5		29.0	11		45.7	837-9945	0.4178437	TIETJEN	1858	< 10
54	11		33.9	11		49.2	795.5362	0.4328971	SCHULTZ	1858	< 10
55	7	13	21.5	8	18	56.3	774.4612	0.4406713	A. MOELLER	1858	< 10
56	8		13.4	13		5.5	846-1114	0.4150527	R. LUTHER	1857	< 10
57	15		43.8	6		36.3	635.2903	0.4980229	ADOLPH	1859	< 10
58	5		50.5	2		21.8	799-5964	0.4314238	OPPOLZER	1860	< 10
59	8		57.8	6	44	2.7	793.9788	0.4334651	OPPOLZER	1860	< 10
60	3	35	6.7	10	34	22.7	958-2244	0.3790263	C. H. F. PETERS	1860	< 10
61	18		58.7	9		23.8	688-3554	0.4747959	R. LUTHER	1860	< 10
62	2		18.6	10		47.4	642-5659	0.4947260	OPPOLZER	1860	< 10
63	5		11.4	7		58.7	957:1671	0.3793459	TIETJEN	1861	< 10
64	1		34.2	7		59.7	807:9036	0.4284314	OPPOLZER	1861	< 10
65	3	28	54.7	5	46	30.1	557-9795	0.5355923	FRITSCHE	1861	< 10
66	3		58.6	10		43.4	824.7740	0.4224477	MAYWALD	1861	8
67	5		14.6			54.5	942.3560	0.3838611	FRISCHAUF	1861	< 10
68	7		21.8	10		16.0	763.4868	0.4448033	TH, WOLFF	1861	< 10
69	8	-	52.2	9	39	2.0	689.6731	0.4742422	KOWALCZYK	1861	< 10
70	11	38	20.8	10	22	15.9	838-9960	0.4174978	RICHTER	1861	< 10
71	23	-	53.8			51.8	775.1865	0.4404003	E. BECKER	1861	< 10
72	5		56.2	6		42.6	1040-3544	0.3552169			< 10
73	2		13.1	2	34	3.9	816-0117	0.4255401	POWALKY	1862	9
74	4		26.4	13	43		764.6230	0.4443728	MAYWALD	1862	< 10
75	4	59	51.2	17	45	42.2	812-4299	0.4268137	STOCKWELL	1862	< 10
76	2		45.0	9		30.3	562.3429	0.5333369	MURMANN	1862	< 10
77	2		29.8	7		43.5	813-8298	0.4263153	PLATH	1862	10
78	8		18.7	12	5	4.7	837-1977	0.4181191	Dubjago	1863	< 10
79	4		57.9	10		36.8	928-0790	0.3882811	LACHMANN	1863	< 10
80	8	37	21.0	11	34	29.9	1020-1090	0.3609067	v. d. Groeben	1864	< 10

Nummer und Name	mo.	8		oche i sculatio		Mittl, Aeq.		.11	,		0)			æ	-1
81 Terpsichore	11.8	8-2	1897	Juli	18:0	1900-0	260	37	9"-1	46	0 14	45"-4	29	26'	3".
82 Alkmene .	11.2	7.8	1901	Dec.	25.0	1900-0	337	58	9.6	107	1	28.4	26	30	38.7
83 Beatrix .	11.3	8.6	1891	Jan.	11.0	1900.0	295	16	6.4	163	24	10.4	27	39	29.7
84 Klio	11.3	8.8	1897	April	29.0	1900-0	252	50	4.7	12	50	33.4	327	31	22-2
8ā Jo	10.9	7.7				1900-0		9	35.1	120	16	29.3	203	46	47-4
86 Semelė .	12.4	8.3	1806	Mai	4.0	1900.0	203	38	24.5	300	25	0.9	87	54	38.5
87 Sylvia	11.9	7.2	1898	April	24.0	1900-0	236	42	47.7	265	34	8.9	75		59.9
88 Thisbe .	10.8	7.4	1889			1900-0	25	33	30.8	30	51	35.1	277	42	47-1
89 Julia	10.1	7.1	, .	Dec.		1900.0		15	2.3	42		30.0	311		22.1
90 Antiope .	11.6	7.5	1 -	April			277	45	51.5	231	43	15.5	71	13	4.8
91 Aegina .	11.3	8.2	1805	Octob	17:0	1900-0	301	7	37.1	71	47	2.1	10	57	44.3
92 Undina .	10-9	6.7		Sept.		1900-0		19	59.7	222	11	3.2	102		42-7
93 Minerva .	10.8	7.4				1900-0		22	8.2	270		58.5	4		14.6
94 Aurora ,	11.3	7:1	1883		12:0	1900-0	256	3	4.3	45	22	31.8	4	25	0.9
95 Arethusa .	11.3	7:3				1900-0		44	18.9	150		20.9	244		45.9
96 Aegle	11.4	7.4	1807	Sept.	16.0	1900-0	182	59	36.0	200	34	38.9	322	38	39-2
97 Klotho .	10.6	7.4				1900-0	21	4	31.9	264	36	3.6	160		52-0
98 Janthe .	11.6	8:3		Nov.		1900-0	f		20.7	155		36:5	354		48.6
99 Dike	14	10.5	1 / .				350		11	198	_	26	42		35
00 Hekate .	11.9		1898			1	156		38.0	176		22.9	128		46.9
101 Helena	10.7	7.6	1807	Aug.	27:0	1900-0	8	56	38.1	343	58	29.0	343	34	25.3
102 Miriam .	12.6	9.4				1900.0	319		42.8	143	39	2.3	211		18-2
103 Hera !	10.2	6.9		Febr.		1900-0			18.9	185		23.1	136	18	9.4
104 Klymene .	12.2	8.0		Dec.		1900-0	35		54.6	19		38.3	43		17:3
05 Artemis .	11.1	1	1897			1900-0	69		41.8	54		29.2	188		29.5
106 Dione	11.3	7.2	1901	Inni	98.0	1900-0	281	5	36.9	323	34	1.8	63	10	14.8
07 Camilla .	11.2	6.5		April		1900-0			57.4	293	58	0.6	176		37.5
108 Hecuba	11.7	7.4	1	Nov.		1900-0			15.0	174		32.5	352		14.1
109 Felecitas	12.0	8.7				1900-0			32.5	52	23	0.4	4	34	5.3
10 Lydia	10.5	7.1	1	*		1900-0			50.6	279		17.0	57		12.6
11 Ate	11.3	8.2	1890	Jan.	16.0	1900-0	91	26	4.4	163	35	29.2	306	30	48.3
12 Iphigenia.	11:5	8.8	1	Dec.		1900-0	88		11.4	14		43.2	324	4	8.9
13 Amalthea.	11.0	8.4	1901			1900-0	78	35	2.8	77		51.1	123		26.8
14 Kassandra	11.1	7.8				1900.0		30	3.4	348	_	21.0	164	-	42.0
15 Thyra	10.4	7.8					340		26.1	94		54.5	309		11.8
16 Sirona .	10.7	7.3	1889	Iuni	10:0	1900-0	158	3	13.7	89	5	27.1	64	3.1	59.8
17 Lomia .	11.4	7.5	/				332		55.4	48	_	21.5	349		55.0
118 Peitho	10.8	8.1				1900-0	14		47.6	31		50.2	47	35	0.7
119 Althaea .	10.8	7:5	1.0	Aug.		1900-0			34.0	168		13.5	203		19:0
20 Lachesis .	11.7	7.6					202		20.3	238		18.5	342		18.6
as Lacresis .	17.4	1 6	1097	. 101.	100	13000	202	13	200	200	91	100	342	91	100
		1				1				1					

No.		i			φ		İr	log a	Berechner	Jahr d. Entd.	Zahl der beob. Opp
81	7	55	0".8	120	11'	523	736"-4126	0.4552583	MAYWALD	1864	10
82	2	51	13.5	12	51	40.6	772.9356	0.4412422	W. LUTHER	1864	< 10
83	4	59	45.5	4	51	24.3	935-9122	0.3858476	E. BECKER	1865	< 10
84	9	21	24.6	13	40	0.3	977:4411	0.3732774	P.NEUGEBAUER	1865	< 10
85	11	53	51.6	11	10	33.7	821:0524	0.4237571	v. d. Groeben	1865	< 10
86			37:3	12		54.2	650:4530	0.4911938	v. d. Groeben	1866	< 10
87	10	53	1.0	5	_	44.5	545.3288	0.5422321	v. d. GROEBEN		< 10
88	5		53.7	9	26	6.4	771-1774	0.4419015	KOWALCZYK	1866	< 10
89	16		28.5	10		29.3	871.5645	0.4064714	TH. WOLFF	1866	< 10
90	2	16	17:0	8	53	22.1	632-5389	0.4992796	MAYWALD	1866	< 10
91	2		21.7	6	5	9.2	851:5394	0.4132012	v. d. Groeben		< 10
92	9		52.0	5		51.8	622.7897	0.5037768	Anderson	1867	< 10
93	- 8		23.4	8		55.7	775.6316	0.4402341	P, LEHMANN	1867	< 10
94	8		14.0	4		18.3	630-6584	0.5001416	LEPPIG	1867	< 10
95	12	55	10.2	8	49	13.9	661.2229	0.4864391	SCHUR	1867	< 10
96	16	-	20.5	7		35.3	663:1502	0.4855965	SCHULHOF	1868	9
97	11		33.9	14	51	9.7	813.5778	0.4264050	MAYWALD	1868	< 10
98	15		54.4	10		24.7	805:3408	0.4293513	v. d. GROEBEN		8
99	13	53		13	47		758-662	0.44664	LOEWY, TISSE-		1
100	6	23	10.8	9	31	58.5	653.5823	0.4898043	STARK	1868	< 10
101	10		28.2	8		10.2	854.8620	0.4120737	v. d. GROEBEN		< 10
102	5	_	28.2	14		31.2	817:8380	0.4248929	C. H. F.PRTERS	1868	8
103	5		36.7	4		21.3	798.0990	0.4319669	LEVEAU	1868	< 10
104	2		51.5	8	-	48.6	632.5948	0.4992527	BERBERICH	1868	< 10
105	21	30	59.6	10	6	59.0	970-4600	0.3753527	A. LEMAN	1868	10
106	4	36	7.8	9		29.1	628-6504	0.5010650	BERBERICH	1868	< 10
107 108	9		44·3 28·5	3		39.0	544-1827	0.5428412	MATTHIESSEN	1868 1869	< 10 < 10
	4	_		6	-		617:4171	0.5062849	SCHULHOF		
10	8 5		56·7 43·0	17 4	-	53·0 36·1	799·9088 785·9425	0·4313108 0·4364105	v. d. Groeben H. Oppenheim		9
	4	5.0	17.0	5	50	35.2	940,0719	0.4127240	HOLETSCHEK	1970	8
11	2	37	5.2	7		29.0	849·9712 934·8048	0.4137349	TIETJEN	1870 1870	8
13	5	2	8.7	5		24.3	968:4850	0.3759425	W. LUTHER	1871	< 10
14	4		58.4	7		32.6	810.5220	0.4274945	ANTON	1871	< 10
15	11		33.0	11	5	7.8	966:3219	0.3765898	WATSON	1871	< 10
16	3	35	8.7	8	3	59-9	770-3736	0.442203	H. Oppenheim	1871	< 10
17	14		16.5	1		51.9	685-2178	0.4761187	TIETJEN	1871	8
18	7		26.8	9		47:1	932.4602	0.3869176	HOLETSCHEK	1872	< 10
19	5		19.9	4		49-9	855.7364	0.4117777	BERBERICH	1872	< 10
	7		12.0	3	30	1.0	645.4399	0.4934339	PLATH	1872	< 10

Nummer und Name	m ₀	g		oche i sculati		Mittl. Aeq.		M	,		w			ω	
121 Hermione	11.2	6.6	1902	Febr.	3.0	1900-0	125	° 16'	52 14	280	14	16"2	769	41	56".
122 Gerda	11.5	7.2	1901	Aug.	7.0	1900-0	133	9	10.4	13	54	2.9	178	39	50.1
123 Brunhild .	11.8	8.5	1898	Juni	23.0	1900.0	210	35	25.0	122	14	47.2	308	29	36.1
124 Alkeste .	10.3	7.1	1890	Dec.	2.0	1900.0	180	26	7.9	58	14	55.4	188	28	29.7
125 Liberatrix	11.2	7.8	1897	Jan.	19.0	1900-0	202	46	5.6	104	32	50.8	169	28	0.9
126 Velleda .	11.5	8.8	1899	Dee.	150	1900.0	81	59	24.9	325	45	47:1	23	19	47.4
127 Johanna .	10.5	7.1	1890	Octob	. 3.0	1900.0	251	23	46.9	90	26	1.5	31	45	41-1
128 Nemesis .	10.6	7.2	1897	Jan.	19.0	1900-0	144	20	2.3	300	33	17:2	76	37	27.9
129 Antigone .	10.3	6.6	1897	Jan.	19.0	1900-0	253	10	()-2	103	42	13.1	137	50	3.1
130 Elektra .	10.6	6.5	1898	Aug.	22.0	1900-0	337	5	55.3	233	45	56.0	146	8	24.2
131 Vala	12.2	9.5		Dec.		1900-0			28.9	155	55	32.5	65	29	50-6
132 Aethra .	11.1	8.0	1	Nov.		1900-0			37.2	252	15	8.1	260		56.6
133 Cyrene .	11.3	7:3	1898			1900.0		4	53.4	283	57	53.9	321	17	10.0
134 Sophrosyne	11.1	8.1	1897			1900-0	235	51	37.8	81	26	4.1	346	19	4.3
135 Hertha .	10.5	7.8	1898	Octob	. 10	1900-0	33	3	56.2	337	8	16.8	344	4	53.8
136 Austria .	11.2	8.9				1900-0			20:2	130	29	0.4	186		30-0
137 Meliboea .	11.8	7.7	-			1900.0	80	12	0.8	105	36	1.8	203	39	7.8
138 Tolosa .	11.8	9.1				1900-0			49.0	258		25.2	54		47.0
139 Juewa	10.9	7:4	-			1900-0			11.9	162		46.4	2		42.8
140 Siwa	11.4	8.0	1898	Octob	. 10	1900-0	173	35	23.3	193	10	59.4	107	7	8.1
141 Lumen .	11.4	8.2		Aug.		1900:0			54.7	54		48.3	319	-	51.6
142 Polana .	12.2	9.5	1896			1900-0			47.7	290		26.5	291		30.9
143 Adria	12.4	9.0				1900.0	1		41.3				333		15.4
144 Vibilia .	10.7	7.5	1888	-	-	1900-0	1		28.9			14.9	76		48.3
145 Adeona .	11.3	8.1	1898	Aug.	25.0	1900-0	240	12	41.7	40	32	42.2	77	47	51.1
146 Lucina .	11.1	7.7	1898	Aug.	2.0	1900-0	89	1	10.5	140	57	15.8	84	18	41.5
147 Protogencia	12.5	8.4	1898	Sept.	11.0	1900:0	348	52	28.8	122	48	3.8	251	10	53.0
148 Gallia	11.0	7.5	1901	April	9.0	1900.0	154	35	46.7	250	52	40.1	145	10	53.4
149 Medusa .	12.9	11.0	1901	Dec.	5.0	1900-0	11	46	25.7	250	11	32.2	158	39	35.4
150 Nuwa	11.6	7.7	1893	März	10	1900-0	155	36	25.8	146	42	52.7	207	40	28-0
151 Abundantia		8.6		Nov.		1900-0			12.2	131		0.9	38		32.6
152 Atala	15.5	8.1	1899		-	1900-0	27	31	7:9	42	36	44.3	41	16	23.3
153 Hilda	12.6	7.3	1902	Febr.	53.0	1900-0	228	21	28.8	54	56	50.7	228	19	57.3
154 Bertha .	12.2	7.0	1901	April	29.0	1900.0	13	39	23.2	161	31	39.1	37	21	210
155 Scylla.	13.5	9.8	1875	Nov.	8.5	1890-0	339	4	47	39	9	28	43	4	14
156 Xanthippe	11.9	7.9		Nov.		1900-0		-	33.6	269	-	21.1	246		22.5
157 Dejanira .	14.7	11.6		Dec.		1900-0			39.7	43		50.3	62		20.9
158 Koronis .	12.3	8.7		Aug.		1900.0			53.8	138		33.9	280		33.3
159 Aemilia .	12.3	8.2		Dec.		1900.0	1		17.3	331		26.4	135	4	8.9
160 Una	11.8	8.4	1897	Dec.	25.0	1900.0	33	30	8.8	46	47	11.5	9	16	50.3
												1.11			

No.		i			φ		l r	log a	Berechner	Jahr d. Entd.		
121	7'	34	48"-1	89	0	12".3	554.6578	0.5873210	BERBERICH	1872	<	10
122	1	36	33.4	2	59	56.1	615.7958	0.5070466	LANGE	1872	<	10
123	6		24.3	7		21.7	802:5894	0.4303421	BERBERICH	1872		8
124	2		33.8	4		41.2	832-2976	0.4198186	HALL sen.	1872	<	10
125	4	38	1.7	4		45.0	780-9349	0.4382611	LANGE	1872		7
126	2	56	23.6	6	3	49-4	931:5174	0.3872104	v. d. Groeben	1872	<	10
127	8	15	390	3	47	29.9	775.8987	0.4401344	MAYWALD	1872		10
128	6	15	7.7	7	13	52.8	778.9624	0.4389934	DE BALL	1872	<	10
129	12	10	5.6	12	15	18.0	730.5585	0.4575677	AUSTIN	1873	<	10
130	22	58	6.0	12	29	21.9	646-4298	0.4929901	POWALKY	1873	<	10
131	4	57	45.6	3	51	52.5	935-8550	0.3858654	BERBERICH	1873		6
132	23	32	20.3	19	21	13.8	903.6882	0.3959920	W. LUTHER	1873	1	1
133	7	13	46.2	- 8	2	47.1	662.6045	0.4858348	v. d. GROEBEN	1873	<	10
134	11	36	9.5	6	43	11.6	864.4642	0.4088397	MAYWALD	1873	<	10
135	2	18	29.8	11	45	17.6	937-0637	0.3854917	MAYWALD	1874	<	10
136	9	33	16.6	4	52	0.8	1025-7532	0.3593092	H. OPPENHEIM	1874		7
137	13	21	11.9	12	46	22.0	645.4607	0.4934245	LANGE	1874	,	10
138	3	13	19.7	9	16	35.8	924.9117	0.3892709	v. d. Groeben	1874	<	10
139	10	55	14.3	9	57	48.4	764.0768	0.4445797	BERBERICH	1874		8
140	3	11	31.2	12	31	19.9	786-6737	0.4361413	v. d. Groeben	1874	<	10
141	11		35.4	12		57.4	814.6615	0.4260196	Berberich	1875		7
142	2		26.9	7		10.6	943.5246	0.3835023	L. BECKER	1875	i	10
143	11	30	8.9	4	8	20.2	773-3958	0.4410699	v. HAERDTL	1875		10
144	4	48	16.3	13	28	14.3	819.4849	0.4243104	POWALKY	1875	1	9
145	12	41	9.8	8	24	20.6	812-2212	0.4268915	TIETJEN	1875		7
146	13	5	8.8	3		14.6	791.4186	0.4344003	BERBERICH	1875		6
147	1		16.5	2	2	8.6	638.8069	0.4964247	L. BECKER	1875		10
148	25		52.7	10	-	20.0	769.9569	0.4426942	L. BECKER	1875	1	10
149	0		44.7	3	50	56.7	1106.4306	0.3373883	LANGE	1875		3
150	2	8	22.3	7	20	7.3	689-2534	0.474418	H. OPPENHEIM	1875		7
151	6		11.9	2	9	0.7	850 8980		v. d. Groeben	1875		9
152	12		18.0	4		12.4	637-2942	0.4971111	LANGE	1875		7
153	7		41.0	9		43.7	450.1177	0.5977869	KÜHNERT	1875		10
154	20		28.5	4	39	4.3	622.6360	0.5038483	ANTON	1875	<	10
155	14	4	25	14	49	28	713.7875	0.464292	SCHULHOF	1875		1
156	7		34.7	15		23.2	670-230	0.482522	SCHMIDT	1875		1
157	12	2	7.9	12		59.6	854.8040	0.4120934	A. LEMAN	1875	1	1
158	0	-	59.3	3		38.9	730.4848	0.4575969	MAYWALD	1876		9
159	6		58.6	5	37	45.9	647.4107	0.492551	BERBERICH	1876		10
160	3	51	17.9	3	45	8.1	787-7290	0.435753	NEUGEBAUER	1876		10

Nummer und Name	#1 ₀	g		oche i sculati		Mittl. Aeq.		M	,		w			B	
161 Athor	11.0	8-4	1806	Dec.	20:0	1900:0	1.195	201	14-6	991	184	21".8	180	10	494.
162 Laurentia.	12.3	8.4		Sept.		1900-0	215		54:3	106		12.0	38	S	9.9
163 Erigone .	12.0	9.5				1900-0	35		52.7	295		27.8	160		31-2
164 Eva	11:5	8:3				1900-0			33.8	281	_	25.2	77		11.2
165 Loreley .	11:1	7.0		April		1900.0			20.7	342		31.3	304		38.3
166 Rhodope .	12:5	9.2	1897	Juni		1900:0		52	27-9	261	28	34.0	129	31	20·S
167 Urda	130	9.4	1898			1900:0		17	5.7	121	7	27.8	166	80	4.3
168 Sibylla .	11.6	7.1	1899			1900-0			50.2	174	27	5.8	209		59.7
169 Zelia	11.3	8.8		Aug.		1900.0		1	8.3	332	-	48.0	354		46.7
170 Maria	11.7	8.7	1902	März	15.0	1900-0	81	35	514	155	41	38-1	301	23	23.6
171 Ophelia .	12.1	8.0				1900-0			17.5	50		52.0			12.2
172 Baucis .	10.4	7.8		Juni		1900-0			41:4	356		38.4	332	3	2.5
173 Ino	11.0	7.6	1897			1900-0	71		19.6	224		33.8	148		52.2
174 Phaedra . 175 Androma-	11.6	8:0	/ /			1500-0			10.1	286		28:5			(r4
che	12.3	8.0	1900	Sept.	1.0	1900:0	16	10	41.5	301	33	8.5	25	23	37-7
176 Iduna .	12.1	7.9	1002	Febr.	3:0	1900-0	94	59	7.9	182	36	38.8	201	0	5.4
77 Irma	12.4	9:0	1897	Jan.	19.0	1900:0	71	42	48.0	33	16	24.6	349	25	24.5
78 Belisana .	12.0	9.2		Febr.		1900:0	237	15	36.7	212	31	7.4	50		56-0
179 Klytaem-			1												
nestra	11.5	7.7	1897	Octob	. 6·0	1900-0	14	32	37.3	100	30	36.1	253	11	54.0
180 Garumna .	13:3	9.9	1899	Nov.	5.0	1900-0	308	53	34.6	169	15	49.3	314	38	27.4
ISI Eucharis .	11:5					1900-0			36.6	310		13.3		59	6.8
182 Elsa	11.0	8.3				1900-0			45.1	308		46.6	106	-	11.0
183 Istria	12.6	9.1		Dec.		1900.0	15		20.2	262		38.7			26.6
184 Dejopeia .	12.4	8.2		März	- (1		1		52.9	204		47.4	334	35	3:0
185 Eunike .	10.4	7:0	1889	Aug.	29.0	1900.0	328	8	9.8	221	35	39.2	153	54	58.7
186 Celuta .	11.4	8.9		Aug.		1900-0	2		38.6	313		19.9	14		38-0
187 Lamberta. 188 Menippe	11.4	8:0 9:6		Aug.		1900-0	94		50·1 52·2	192	37	34.6	22	45	21.7
189 Phthia.	11.5			Sept.		1897·0 1900·0	23		27.2	166		35.8	241		22.8
190 Ismene	12.0	8.8	1900			1900-0			50.5	286	16		176	-	84
130 Ismene .	12.0	0.1	1901	Aug.	270	1300.0	265	Э	30.9	286	16	4.1	176	90	5.4
191 Kolga	12.0	8.3	1897	Juli	18.0	1900-0	271	52	28.4	224	21	6.3	159	50	50.8
192 Nausikaa .	9.3	6.7	1888	Juli	25.0	1900-0	324	20	18:4	27	40	31.7	343	24	55.7
193 Ambrosia.	12.2	9.2	1879	März	25.5	1890.0	68	48	35.8	79	36	57.9	351	23	45.9
194 Prokne .	10.5	7.4	1899	Jan.	29:0	1900-0	130	9	24.2	160	37	14.6	159	20	49.2
195 Eurykleia.	12.3	8.6	1896	Nov.	20.0	1900-0	289	6	35.6	118	6	40.4	7	44	8.9
196 Philomela	10.3		1898			1900-0	81	59	4.9	237		16.3	73		8.1
197 Arete	12.7	9:3	1900			1900:0		40	9.5	243		16.7	- 82	_	18-3
198 Ampella .	11.1	8.3	1901	4		1900-0	145		12.0	87	26		268		0.7
199 Byblis	12.4	8.2	1901	März		1900.0		17	40.0	172	-	38.0	89		20.3
200 Dynamene	11.0	7.6	1889	Dec.	27:0	1900-0	30	58	9.6	82	42	28.9	325	26	20-0
	1														

No.		i			P		μ .	log a	Berechner		Zahl der beob. Or
161	99	3	13"-4	79	57	23"-4	967"-0645	0.3763675	TIETJEN	1876	< 10
162	6	5	2.6	10	31	5.3	676.5719	0.4797951	TIETJEN	1876	9
163	4	46	1.5	11	10	56.7	974.7193	0.3740846	BERBERICH	1876	4
164	24	24	25.5	20	19	21.4	831-1808	0.4202074	RICHTER	1876	10
165	11	12	2.0	3	54	10.6	641.1299	0.4953737	SAMTER	1876	: : 9
166	12	1	58.2	-12	13	13.9	806-7683	0.4288385	RICHTER	1876	. 6
167	2	10	50.3	1	59	3.7	736:5954	0.4551851	LANGE	1876	. 8
168	4	36	10.3	4	21	54.0	571.6864	0.5285658	V. D. GROEBEN	1876	< 10
169	5	30	46.5	7	31	33.7	979.6462	0.3726249	RICHTER	1876	. 8
170	14	22	3.9	3	44	13.9	869.4892	0.4071616	LANGE	1877	. 6
171	2	33	13.5	6	38	28.6	636-3859	0.4975241	BERBERICH	1877	10
172	10	2	6-0	6	32	18.8	965-9899	0.3766893	BERBERICH	1877	9
173	14	15	41.1	11	51	44.6	780.8006	0.4383110	BEČKA	1877	< 10
174	12	6	28.6	8	23	43.8	734.0156	0.456201	H. OPPENHEIM	1877	9
175	3	10	38.9	11	7	42.9	612-2868	0.508701	BERBERICH	1877	9
176	22	41	10.4	10	2	21.3	626-2160	0.5021883	P. NEUGEBAUER	1877	< 10
177	1	26	50.6	13	32	58.0	768:8406	0.4427802	RICHTER	1877	7
178	1	54	29.1	2	28	7.5	918:3646	0.3913276	BERBERICH	1877	8
179			53.7	6	37	0.0	692.8578	0.472908	II, OPPENHEIM	1877	8
180	0	53	37.2	9	46	17.7	790-4612	0.4347501	v. d. Groeben	1878	5
181	18	35	27.7	12	40	26.5	643.5438	0.4942856	DE BALL	1878	< 10
182	2	10	10.9	10	50	51.9	944.5132	0.3831990	SAMTER	1878	9
183	26	26	3.2	20	27	8.2	760.4634	0.4459522	PETRELIUS	1878	5
184	1	11	19.6	3	23	9.9	622-6844	0.5038304	THRAEN	1878	< 10
185	23	14	23.2	7	11	6.0	782-8646	0.4375466	v. d. Groeben	1878	9
186	13	11	7.2	8	41	21.3	977:5884	0.3732337	Tietjen	1878	6
187	10	41	20.6	13	36	43.5	785.6152	0.4365311	A. LEMAN	1878	7
188	11	44	38.6	10	15	28.9	792.712	0.441326	CONIEL	1878	2
189	5	8	58.3	2	4	18.4	924.2246	0.3894861	H. OPPENHEIM		< 10
190	6	8	23.2	9	35	35.0	455.1910	0.5945419	KÜSTNER	1878	< 10
191	11		30.2	5	13	5.0	720:0541	0.4617609	L. BECKER	1878	7
192	6		36.0	14		22.7	952.4502	0.3807762	LANGE	1879	< 10
193	11		37.1	16		52.0	858.2960	0.410913	A. LEMAN	1879	1
194	18	25	9.5	13		55.7	839.1447	0.4174465	TIETJEN	1879	7
195	7	0	5.6	2	25	31.5	727-0472	0.4589627	v. d. Groeben	1879	8
196	7	16	57.8	1		59.6	645-2604	0.4935145	TIETJEN	1879	< 10
197	8		20.6	9	_	12.5	782-6498	0.4376327	v. D. GROEBEN		6
198	9	18	55.2	13	6	24.6	920.1134	0.3907768	v. d. Groeben	1879	9
199	15	25	6.0	10		14.4	629.8661	0.5005057	TIETJEN	1879	7
200	6	54	42.4	7	1.7	34.1	783-2093	0.4374192	V. D. GROEBEN	1879	8

Nummer und Name	m ₀	g		oche i sculati		Mittl. Aeq.		M	•		ω			v	
201 Penelope .	11.9	8.6	1897	Nov.	15.0	1900-0	58	1	14.4.6	1779	48	7"-9	1579	9	13"-
202 Chryseis .	10.7	6.7	1896	Nov.	20.0	1900-0	296	12	57.2	355	17	6.8	137	46	20.6
203 Pompeja .	11.7	8.3	1899	Jan.	9.0	1900-0	65	39	8.5	53	45	40.9	348	38	9.2
204 Kallisto .	12.0	8.7	1888	Nov.	2.0	1900-0	140	55	19.4	51	16	43.4	205	53	55.1
205 Martha .	12.7	9.2	1886	Febr.	26.0	1900-0	139	40	10.2	172	8	57.2	212	26	1.6
206 Hersilia .	12.0	8.6	1887	Juni	21-0	1900-0	184	57	36.2	300	24	1.3	145	25	45-0
207 Hedda .	11.8	9.5	1898	Febr.	3.0	1900-0	280	15	16.2	190	38	9.4	28	58	10.3
208 Lacrimosa	12.1	8.4	1899	Nov.	25.0	1900-0	315	23	48.1	105	47	29.6	5	17	34.0
209 Dido	11.6	7.5	1897	Dec.	25.0	1900-0	222	33	3.9	249	37	7.2	2	0	10.2
210 Isabella .	12.5	9.1	1897	Octob	.26.0	1900-0	358	48	23.3	10	17	7.0	33	3	14.5
211 Isolda	11.5	7.5	1895	Nov.	26.0	1900-0	1	10	4.0	170	42	54.3	265	19	9-6
212 Medea .	12.2	8.1	1899	Juli	28.0	1900-0	276	2	57.4	101	16	47.5	315	6	54.5
213 Lilaea	11.7	8.3	1898	Febr.	23.0	1900-0	229	20	37.9	158	34	56.7	122	28	12.8
214 Aschera .	12.1	9.0	1897	April	9.0	1900-0	71	25	59.3	128	5	59.2	342	32	52.4
215 Oenone .	12.8	9.4	1891	Nov.	7.0	1890-0	55	44	10.3	314	3	11.3	25	14	14.4
216 Kleopatra	10.1	6.6	1886	Juni	26-0	1900-0	277	9	56.8	176	12	8.3	216	0	17.8
217 Eudora .	13.1	9.5	1900	Dec.	10.0	1900.0	75	4	1.8	150	32	40.3	164	1	10.0
218 Bianca .	11.3	8.1	1889	Octob	. 8.0	1900.0	134	31	18.9	59	2	8.1	171	2	560
219 Thusnelda	11.2	8.8	1889	Jan.	21.0	1900.0	130	33	20.7	140	3	56.2	200	56	29.1
220 Stephania	13.6	11.0	1887	Jan.	0.5	1881-0	131	12	41.6	75	9	17.1	258	26	26.6
221 Eos	11.2	7.3	1889	Juni	30.0	1900-0	322	54	24.2	187	21	38.9	142	39	44.8
222 Lucia	12.9	8.8	1898	Jan.	14.0	1900.0	225	34	56.4	175	50	37.7	80	22	0.5
223 Rosa	13.3	9.2	1891	Dec.		1900-0		11	14.5	58	36	24.6	48	42	6.0
224 Oceana .	11.7	8.5	1890	Febr.	5.0	1900.0	225	24	48.8	276	55	27.3	353	31	34.5
225 Henrietta.	12.7	8.2	1897	Dec.	5.0	1900-0	107	58	34.0	97	59	44.8	200	48	28.8
226 Weringia .	13.0			Aug.		1900-0	30		14.2	150	-	35.2	135	30	54.5
227 Philosophia		8.7		Dec.		1900.0			33.6	254		54.3	331		10.1
228 Agathe .	14.5	12.4		Nov.		1900-0	49		10.8	16		45.6	313	35	24.5
229 Adelinde.	13.5	8.9	1900			1900-0	1		57.4	302		27.5	30	51	0.6
230 Athamantis	10.3	7.7	1897	Octob	.26.0	1900-0	11	22	17.7	137	13	14.1	239	44	27.5
231 Vindobona	12.4	8.6				1900-0	1		38.2	263		47.9	352	16	1.4
232 Russia .	13.4	10.4	-	Dec.		1900-0	t		40.1	48		14.3	152		53.4
233 Asterope .	11.3	8.1		Aug.		1900.0	1		46.2	122	36	1.0	222		21.5
234 Barbara .	11.7	9.1				1900-0	33		10.0	190		49.6	144		54.2
235 Carolina .	12.2	8.5	1897	Sept.	16.0	1900-0	73	32	29.3	207	24	1.2	66	34	7.6
236 Honoria .	11.4	7.9		Aug.		1900-0			56.1	170		28.5	186		30.6
237 Coelestina	12.8	9.4	1897	März	20.0	1900-0	258	3	0.9	196	24	10.8	84	36	28.9
238 Hypatia .	11.7	8.0	1 -	Dec.		1900.0	54		11.3	206		38.6	184		40.0
239 Adrastea .	14.2	10.4		Dec.		1900-0	26	23	7.3	206	1	5.4	181		27.9
240 Vanadis .	12.5	9.3	1901	Juli	18.0	1900.0	262	20	44.1	298	15	16.1	114	49	1.0
												1			
	l	i	į.				4			l .					

No.		i			φ		fr	log a	Berechner	Jahr d. Entd.	Zahl der beob. Opp
201	5	43	19"-3	10	25	29"-0	809"-8341	0.4277403	RICHTER	1879	9
202	8	49	30.7	5	51	45.4	659.4551	0.4872142	BERBERICH	1879	9
203	3	12	15.3	3	28	23.6	783-8637	0.4371774	BERBERICH	1879	7
204	8	17	7.5	9	51	34.4	812-2343	0.4268835	PALISA	1879	9
205	10	39	57.5	1	54	54.4	765-9190	0.4438825	KÜSTNER	1879	6
206	3		29.5	2		59.5	782-3554	0.437735	STECHERT	1879	G
207	3		59-9	1	39	3.3	1027.9888	0.3586788	RICHTER	1879	8
208	1		10.4	0		11.9	721.0639	0.4613553	BERBERICH	1879	7
209	7		28.1	3	46	48.0	636.9545	0.4972654	v. D. GROEBEN	1879	8
210	5	18	7.1	7	6	30.8	790-0977	0.4348838	BERBERICH	1879	7
211	3	52	0.4	9		38-7	668-6041	0.4832250	v. d. Groeben	1879	8
212	4		51.0	6		42.2	647.3973	0.4925571	L. BECKER	1880	9
213	6		30.6	8		49.1	777:0010	0.4397237	A LEMANN	1880	- 6
214	3	-	33.7	1		49.3	840.5265	0.4169701	TIETJEN	1880	7
215	1	43	15.1	2	1	15.8	771.4078	0.4418151	v. d. Groeben	1880	9 -
216	13	-	25.9	14		20.7	759-7703	0.4462182	KNOPF	1880	1/9
217	10		35.6	17		25.1	727-0438	0.4589640	RICHTER	1880	3
218	15		16.9	G	40	5.1	815-0438	0.4258837	v. D. GROEBEN	1880	8
219	10		21.0	12		38-9	$982 \cdot 2924$	0.3718439	DARMER	1880	7
220	7	34	15.0	14	53	43.7	984-634	0.371154	Визснов	1881	1
221	10		15.2	5		34.9	678:2597	0.4790737	v. d. Groeben	1882	- G
222	2		46.6	8		39.8	641.7676	0.4950859	BERBERICH	1882	6
223	1		42.6	6	57	1.2	652.9374	0.4900900	v. D. GROEBEN	1882	6
224	5		23.2	2		51.0	824.6755	0.4224824	S. OPPENHEIM	1882	10
225	20	41	16-4	15	14	24.6	566.6635	0.531121	CERULLI	1882	9
226	15		34.2	11	43	4.3	793-2109	0.433745	KREUTZ	1882	< 10
227	9		55.8	12		39.9	637:0300	0.4972311	LANGE	1882	5
228	2		18-0	13	55	0.5	1086-2400	0.3427205	KREUTZ	1882	3
229	2		20.9	8	16	3.0	560.7202	0.5341736	BERBERICH	1882	7
230	9	25	13.5	3	32	52·8	964-9093	0.3770134	RICHTER	1882	7
231	5		13.8	8		36.2	711:1049	0.4653820	LANGE	1882	7
232	6		17.7	9		51.0	869-2983	0.4072251	v. d. Groeben	1883	4
233	7	39	7.6	5		43.8	817.9445	0.4248552	KNOPF	1883	6
234	15		18.3	14	7	1.5	962-6609	0.3776889	TIETJEN	1883	8
235	9	-1	1.8	3	31	18-9	725-2712	0.4596708	Tietjen	1883	8
236	7		53.0	10		45-4	758-1024	0.446853	Віресног	1884	6
237	9		48.8	4.		30.3	771.8775	0.4416388	SCHWARZ	1884	7
238	12		26.4	5		16.7	715.8679	0.4634491	BERBERICH	1884	8
239	6	9	5.6	13		23.1	693-1194	0.4727991	BERBERICH	1884	5
240	2	5	54.9	11	54	37.5	814-7558	0.4259861	BERBERICH	1884	7

	Name	,m0	g		oche u sculati		Mittl. Aeq.		M			w			B	i
241	Germania.	11.2	7.2	1901	Dec.	25.0	1900-0	99	10	12".0	739	20	31"-7	271	° 58'	55".
242	Kriemhild	12.6	9.0	1889	Dec.	27.0	1900.0	307	49	54.4	274	28	30.0	208	7	41-0
243	Ida	13.3	9.7	1901	März	20.0	1900.0	104	49	36.5	104	16	32.3	326	2	18.0
244	Sita	13.7	11.7	1900	Octob	.11.0	1900-0	6	53	37.6	164	28	34.6	208	39	16.0
245	Vera	12.5	8.5	1897	März	20.0	1900.0	141	1	15.6	326	19	24.6	62	1	46.7
246	Asporina .	11.7	8.4	1890	Jan.	16.0	1900-0	316	40	26.7	94	5	3.7	162	45	44.0
247	Eukrate .	11.0	7.6	1901	Sept.	26.0	1900-0	326	29	40.8	53	46	21.9	0	13	59.1
248	Lameia .	13.0	10.2	1901	Aug.	27.0	1900.0	65	40	25.3	1	34	55.9	246	37	48.6
249	Ilse	13.6	11.1	1900	Octob	.31.0	1900.0	20	18	47.9	39	53	36.2	334	41	56.1
250	Bettina .	11.7	7.6	1897	Nov.	15.0	1900.0	332	5	23.0	65	59	32.9	25	37	2.6
251	Sophia .	13.6		1900			1900-0		35	1.4	287		13.7	156		32.8
	Clementina	13.0			Febr.		1900.0	1		19.3	149		56.6	203		23.2
	Mathilde .	1	10.5	1 -	April		1900.0		52	2.1	153		22.3	180		57.3
	Augusta .		1	1887			1900-0			54.0	230		36.7	28		51.6
255	Oppavia .	13.8	10.4	1889	März	2.0	1900.0	267	18	9.8	149	8	2.5	14	13	57.4
256	Walburga	13.2	9.3	1901	Jan.	19-0	1900-0	270	52	48.2	43	29	43.1	183	37	31.9
257	Silesia .	12.8	8.7	1900			1900.0	20	15	5.9	25	40	8.1	35		59.6
	Tyche	11.1	8.0	1899			1899.0	1		31.4	152		29.2	207	44	4.1
	Aletheia .	12.1	8.0		Nov.		1900-0			23.4	156	52	8.4	88	29	6.3
260	Huberta .	13.9	9.2	1900	Dec.	10.0	1900-0	92	3	1.9	163	58	1.2	167	55	34.1
261	Prymno .	11.9	9.4	1897	Nov.	15.0	1900-0	275	46	18.1	63		35.9	96		56.7
262	Valda	14.1	11.1	1901	Mai		1900-0		4	51.8	22		32.0	38		44.8
	Dresda .	13.3	9.6		Aug.		1900-0			24.3	157		54.0	217		21.7
	Libussa .	12.1	8.6	1894			1900-0			49.9	336		29.0	50		47.6
265	Anna	13.8	11.1	1900	Octob	.31.0	1900-0	182	22	25.0	251	8	21.0	335	24	12.9
266	Aline	11.7	8.2	1901	Mai	19-0	1900.0	224	19	6.5	147	51	38.3	236	26	24.2
267	Tirza	14.0	10.5	1901	Juni	28.0	1900.0	4	14	46.5	193	22	8.4	74	3	41.2
268	Adorea .	12.5	8.5	1900	Nov.	20.0	1900-0	234	28	3.6	58	52	53.9	121	46	12.8
269	Justitia .	12.7	9.6	1900	Octob	.31.0	1900.0	91	35	3.3	115	30	59.1	157	29	1.3
270	Anahita .	11.0	8.9	1900	Sept.	21.0	1900-0	25	13	57.0	78	4	44.7	254	30	21.7
271	Penthesilea	12.8	8.9	1900	Febr.	13.0	1900-0	128	29	24.5	50	13	36.7	337		18-0
272	Antonia .	13.6	10.1	1899	Juli		1900.0		59	58.9	65	31	3 0·6	37	43	34.9
273	Atropos .	11.6	9.0	1888	März	9.5	1900.0	261	20	1.8	118		18.0	158		44.0
274	Philagoria	13.6	9.6		Aug.		1900-0			53.9	114		34.4	93	42	3.2
275	Sapientia.	12.0	8.2	1900	Nov.	20-0	1900-0	285	15	54.4	31	7	17.7	134	47	37.7
276	Adelheid .	11.2	7.7				1900-0	82		36.0	273	54	6.3	211		43.1
277	Elvira	13.1	9.4	_	Dec.		1900.0	57		41.0	132	-	56.6	233		17.3
278	Paulina .	12.7	9.3			- 1	1900.0			31.5	135		13.7	62	31	2.5
	Thule	13.8	8.1	_				155		48.8	233		26.5	75		38.2
280	Philia	14.4	10.6	1900	Febr.	13.0	19000	39	45	20.2	80	58	14.5	11	17	5.6

No.		i			φ		lv	log a	Berechner	Jahr d. Entd.	Zahl der beob. Opp
241	5	° 30	43".3	5	27	52"-6	665**2697	0.4846726	W. LUTHER	1884	< 10
242	11	16	55.9	7	5	15.3	732-9031	0.4566401	HERZ	1884	7
243	1	9	19.8	2	41	52.1	733.5335	0.4563911	BERBERICH	1884	6
244	2	49	41.0	7	52	37.8	1106.6376	0.3373341	BERBERICH	1884	5
245	5	11	18.2	11	37	34.2	651:4943	0.4907307	TIETJEN	1885	6
246	15	37	40.4	6	2	43.0	802-267	0.4304584	SEYDLER	1885	7
247	25	4	17.8	13	55	3.6	781.7726	0.4379507	W. LUTHER	1885	8
248	4		56.5	3	43	58.7	913.6905	0.3928050	BERBERICH	1885	7
249	9	40	8.4	12	26	51.9	967:7510	0.3761620	BERBERICH	1885	4
250	12	56	21.1	7	1	48.1	633.7875	0.4987086	MÖNNICH- MEYER	1885	7
251	10		30.6	5	31	47.2	648:5081	0.4920608	KNOPF	1885	4
252	10	-	12.8	4	27	58.2	633.3155	0.4989244	CHARLOIS	1885	5
253	6		21.2	15	-	16.9	824.9747	0.4223773	KNOPF	1885	G
254	4		59.3	6	58	7.6	1091 0836	0.3414323	SCHWARZ	1886	4
255	9	30	38.6	4	40	24.1	780-0705	0.4385818	LAVES	1886	3
256	13	18	0.1	3		47.3	682:4413	0.4772942	BERBERICH	1886	5
257	3	40	5.4	7		44.6	646:2769	0.4930586	BERBERICH	1886	4
258	14		46.5	11	48	8.5	838.4573	0.4176838	STECHERT	1886	< 10
259	10		44.1	6	-	43.1	635-21397	0.4980577	ERNST	1886	6
260	6	17	58.0	7	7	16.5	554.7196	0.5372887	v. d. Groeben	1886	3
261	3		28.8	5		55.6	996.7804	0.367605	v. d. Groeben	1886	7
262	7	44	1.3	12	14	5.8	869.5200	0.4071513	BERBERICH	1886	5
263	1		57.4	4		24.9	$723 \cdot 1695$			1886	5
264	10		47.9	7		36.5	757.4897	0.447087	CERULLI	1886	9
265	25	42	41.6	15	12	6.3	941 0582	0.384260	BERBERICH	1887	3
266	13		57.3	9		37.1	755.7966	0.4477344	Bekberich	1887	5
267	6		25.4	5		49.5	767:3626	0.4433373	V. D. GROEBEN		4
268	2		21.8	7		52.2	651.9940	0.4905087	BERBERICH	1887	5
269 270	5 2		53.7	12		39.7	838-9442	0.4175157	BERBERICH	1887	5
210	2	21	42.1	8	36	56.8	1088-6797	0.3420710	BERBERICH	1887	5
271	3		39.1	5		35.1	681:3226	0.4777693	Knopf	1887	3
272	4		27.5	1		56.3	767-2554	0.4433777	CHARLOIS	1888	3
273	20	24	5.4	9	19	0.4	955.4037	0.379880	LANGE	1888	4
274 275	3		49-2	7		39.3	669.5636	0.482810	BERBERICH	1888	3
213	4	44	45.9	9	26	50.3	769-4942	0.4425342	LANGE	1888	5
276	21		23.1	3		49.0	644.0120	0.4940751	HACKENBERG	1888	6
277	1		49.6	5	-	14.7	723.5294	0.4603670	BERBERICH	1888	5
278	7	49	9.6	7		10.1	775-6355	0.4402326	BERBERICH	1888	5
279	2		34.9	4		14.2	403.1860	0.629667	BIDSCHOP	1888	8
280	7	27	26.0	6	19	13.9	703-8816	0.4683380	BERBERICH	1888	2

Nu	mmer und Name	m ₀	g		oche u sculati		Mitil.		M			ω			υ	
281	Lucretia .	13.6	11.5	1888	Nov.	2.5	1900-0	353	48	12"-3	14	13	10"2	31°		
282	Clorinde .	13.3	10.8	1901	Juni	28.0	1900:0	218	52	39.5	294	15	35.9	144	39	58.5
283	Emma .	11.8	7.8	1901	Mai	19.0	1900-0	249	24	18.8	49	52	48.5	305		27.8
284	Amalia .	12.9	10.4	1901	Dec.	5.0	1900-0	126	5	38.5	55	32	55.5	233		36.9
285	Regina .	14.9	10-9	1889	Aug.	19.5	1900-0	357	36	27.2	12	29	9.3	312	10	29.6
286	Iclea	13.2	9.0				1900-0			47.4	238	-	45.5	149		55.4
287	Nephthys.	10.7	8.2				1900-0			37.9	117		24.7	142	-	45.7
	Glauke .	12.5	9.1				1901-0			11.0	80		34.7	120	59	8·1 11·3
	Nenetta .	12.5	8.8	1	März		1900.0			33.0	185	-	23.0	182	27	0.1
290	Bruna	13.9	11.2	1890	Mai	7.5	1900-0	56	49	22.1	103	32	37.8	10	21	0.1
291	Alice	13.6	11.4	-	Sept.		1900-0	-	29	2.6	330		51.4	161		55.7
292	Ludovica.	12.5	9.5	-	Dec.		1900-0			23.4	287		22.2	62		34·6 47·0
	Brasilia .	12.9	9.2		Juni		1900.0	92		41.4	82	22	8.5	136		41.7
294	Felicia .	14.3	10.2	1901	Aug.	7.0	1900-0	353		17.9	179		47.6			
295	Theresia .	13.5	10.0	1900	Dec.	10.0	1900-0	8	35	38.2	143	50	29.2	277	24	13.4
296	Phaëtusa .	13.3	11.1	1890	Aug.		1900-0				250	2	1.2	120		34.0
297	Caecilia .	13.3	9.1		Juni	-	1900-0			27.8	346		57.3	333		24.4
298	Baptistina	13.5	11.3		Sept.		1900:0		6	1.5	132		30.7	8		25.3
299	Thora	14.5	11.7	1892	März	6.0	1900.0	131		30.1	148	18	8.5	241		46.6
300	Geraldina	13.9	9.6	1895	Juli	9.0	1900-0	336	44	54.3	282	58	45.2	42	17	25.3
301	Bavaria .	12.7	9.3		Jan.		1900-0			21.8	121		54.1	142		50-9
302	Clarissa .	13.9	11.2		Febr.		1900-0			34.2	52		39.2	7		16.2
303	Josephina	11.9	7.7				1900.0			16.3	72		33.5	345	15	4.3
304	Olga	12.4	9.7				1900-0			26.2	169	48	6.5	158	-	27.9
305	Gordonia.	12.5	8.4	1900	Octob	0.1110	1900-0	310	27	46.5	251	2	32.9	211	2	22.8
306	Unitas	10.7	8.2	-	Dec.		1900-0	1		54.6	165	-	22.7	141		45.6
307	Nike	13.1	9.4	-	März		1900-0	74		39.6	320	15	5.6	101		16-0
308	Polyxo .	11.0	7.6	1901			1900-0			28.5	109	32	8.5	182	_	23.7
309	Fraternitas	12.7	9.5	1891			1900-0			580	332		11.1	357		42.1
310	Margarita.	13.5	10-1	1891	Jani	17.5	1900-0	48	49	25.4	320	42	21.0	230	33	51.3
311	Claudia ,	13.0	9.3		März		1900-0	37		15.1	54		29.3	81	7	5.7
312	Pierretta .	12.5	9.0	1901	Nov.	15.0	1900-0	149	15	57.6	256	32	39-2	7	32	24.1
	Chaldaea.	10.3	7.7	1901			1900-0			31·9 52·5	313 185		33·8 52·8	176 171		32·2 31·7
	Rosalia .	14.0	9.9	1891			1900-0	17			171		17.8	161		14.6
315	Constantia	14.0	11.8	1891	Sept.	. 4.9	1900-0	9	21	44.6	111	22	11.9	101	1.4	140
	Goberta .	13.3	9.1	1893			1900-0	11	29	4.9	307		10.6	124		14.0
	Roxane .	12.2	9.8	1901			1900-0		-	56.8	184		28.0	150		14.2
	Magdalena	13.2	9.0	1899			1900.0	0		58.5	273	-	45.8	162	52	3.9
	Leona	14.2	9.7	-	März		1900-0		27	1.7	218		42.0	189		49.7
069	Katharina	14.2	10.3	1891	1) 40	9.5	1900.0	23	36	28.6	142	54	36.1	221	- 3	52.6

No.		i			φ		ĺτ	log a	Berechner	Jahr d Entd.	Zahl der beob. Orr
281	5	• 19	33".9	7'	34	24"-3	1098"-5312	0.3394628	BERBERICH	1888	2
282	9	1	15.2	4	37	8.4	991:1276	0.3692514	BERBERICH	1889	5
283	8	2	26.7	8	46	12.1	668:5906	0.483231	BERBERICH	1889	6
284	8	3	56.4	12	47	16.8	979-2819	0.3727325	BERBERICH	1889	4
285	17	16	54.4	11	55	35.4	661:4827	0.4863254	CHARLOIS	1889	1
286	17	53	53.9	0	43	16.5	621:4852	0.5043838	BERBERICH	1889	4
287	10	1	24.1	1	19	35.4	982-6631	9.371735	CERULLI	1889	9
288	4	19	58.7	11	56	38.7	774.7296	0.4405709	R. LUTHER	1890	9
289	6	39	25.5	11	54	3.1	729.0809	0.4581539	BERBERICH	1890	2
290	22	13	23.6	15	4	22.7	995.1925	0.368066	S. OPPENHEIM	1890	1
291	1	50	37.0	5	21	59.6	1071:5861	0.8466530	BERBERICH	1890	4
292	14	52	9.0	1	37	40.9	881:0986	0.4033213	BERBERICH	1890	4
293	15	45	19.2	6	48	2.9	730.8370	0.4574574	CHARLEIS	1890	1
294	6	15	1.2	14	21	59.6	638:4006	0.496609	P. V. NEUGE- BAUER	1890	2
295	2	40	22.2	9	49	31.5	758-6107	0.4466584	BERBERICH	1890	6
296	1	44	50.1	9	6	25.9	1068-122	0.3475906	Coniel.	1890	1
297	7	34	45.1	8	4	51.7	629.7089	0.5005779	BERBERICH	1890	3
298	6	17	46.6	5	33	40.8	$1042 \cdot 0276$	0.3547517	BERBERICH	1890	3
299	1	35	18.9	3	29	56.6	934:3006	0.386346	BERBERICH	1890	2
300	0	47	2.3	2	26	41.4	617-2655	0.5063564	Rodin	1890	3
301	4		41.1	3	36	1.4	788:4820	0.4354765	BERBÉRICH	1890	5
302	3	-	12.4	6		28.4	950-0992	0.3814918	BERBERICH	1890	2
303	6		49.2	3		24.0	643-4679	0.4943198	MILLOSEVICH	1891	7
304	15		19.6	12		10.7	$952 \cdot 3591$	0.3808039	BERBERIBH	1891	4
305	4	25	0.1	11	31	26.6	654·1090	0.4895710	BERBERICH	1891	3
306	7	-	13.1	8	-	47.4	979-7942	0.3725813	MILLOSEVICH	1891	7
307	6		55.5	8		32.2	$716 \cdot 1102$	0.4633512	CAPON	1891	2
308	4		38.1	2		10.2	777-3977	0.4395756	Berberich	1891	6
309	3		13.6	5		56.0	831.679	0.420034	BERBERICH	1891	1
310	3	5	57.8	6	31	55.2	775.6563	0.440225	BERBERICH	1891	1
311	3		57.0	0		21.9	720-425	0.461612	BERBERICH	1891	3
312	9	4	58.6	9	13	39.5	765-2695	0.444128	P. V. NEUGE- BAUER	1891	3
313	11	35	4.4	10	21	11.1	968-1432	0.3760447	BERBERICH	1891	8
314	12	33	36.4	10	48	58.3	635.8075	0.497787	BERBERICH	1891	2
315	2	24	35.4	9	40	17.9	1057-2646	0.3505486	BOHLIN	1891	1
316	2		36.5	7		58.6	627:7382	0.501585	BERBERICH	1891	1
317	1		19.0	4	53	7:5	1025:8164	0.3592913	BERBERICH	1891	5
318			43.4	3		52.5	618.1074	0.505962	MADER	1891	4
319	10		18.7	12	37	2.6	563-3336	0.5328273	BERBERICH	1891	1
320	9	19	19.2	6	41	30.5	678.726	0.478875	BERBERICH	1891	1

Nummer und Name	m 0	3"		oche i sculati		Mittl, Aeq.		M			ω			Ω	
321 Florentina	13.2	9.5	1900	Aug.	12.0	1900-0	2489	16	46"-3	330	19'	27"-1	40	41'	1700
322 Phaco	12.3	8.8				1900-0	8		52.5	111		11.7	253		17.8
323 Brucia .	13.0	11.0	1892	Jan.	1.5	1891-0	43		42	292		48	97		30
324 Bamberga	9.9	6.6		März		1900-0			59.7	40		19.9	329		4.8
325 Heidelberga	12.4	8.1	1900			1900-0			50.1	74	13	0.3	345		17.6
326 Tamara .	11.1	8.7	1892	März	20.0	1900-0	298	49	14.0	236	57	27.0	32	0	53.7
327 Columbia.	13.0	9.5	1892	Juni		1900-0		51	46.7	301		49.3	355		43.7
328 Gudrun .	12.3	8.2	1901	Nov.	15:0	1900-0	344	17	58.7	102	39	49.7	353	8	36.5
329 Svea	12.1	9.3	1900	April	14.0	1900-0	351	50	59.3	39	59	14.8	178	23	29.0
330 Adalberta.	13:5	11.7	1892	März	20.5	1892.0	181	3	42	-	_	_	358	46	36
331 Etheridgea	12.5	8.5	1901	Jan.	19.0	1900-0	101	7	9.5	334	54	6.1	22	51	51.8
332 Siri	12.6	9.1	1901	Febr.	28.0	1900:0	188	54	13.4	295	41	6.6	31	57	11.9
333 Badenia .	12.7	8.6	1901	April	9.0	1900-0	180	13	39.0	15	11	39.7	355	16	19.6
334 Chicago .	12.0	6.8	1897	März	11:5	1900-0	185	10	37.3	234	36	57.3	134	18	23.6
335 Roberta .	11.6	8.8	1900	Octob	.31:0	1900-0	79	15	59.4	140	34	48.0	147	53	19-4
336 Lacadiera	11.8	9:6	1901	Jan.	19.0	1900-0	258	11	11:0	28	54	27.8	234	53	42.8
337 Devosa .	11.4	8.8	1901	Jan.	19.0	1900-0	27	7	6.0	95	40	15.9	355	32	57.4
338 Budrosa .	12.1	8.4	1899	Jan.	9.0	1900-0	72	15	37.1	106	31	43.7	288	30	530
339 Dorothea.	12.8	8.8	1901	Mai	19:0	1900-0	266	11	53.1	156	31	3.2	174	24	4.4
340 Eduarda .	12.9	9.5	1901	Sept.	16.0	1900-0	300	11	16.0	39	29	28.7	27	28	12.1
341 California	13:1	11.0	1893	Juni	29.0	1900-0	113	13	39.3	291	46	52.3	29	0	31.4
342 Endymion	12.8	9.8	1900	Sept.	21.0	1900-0	282	53	43.6	222	38	16.9	232	54	20.8
343 Ostara	13.5	10.9	1901	Febr.	28.0	1900.0	84	38	7.2	7	11	1.1	38	37	0.3
344 Desiderata	11.7	8.5	1900	Sept.	21.0	1900.0	40	22	44.1	233	23	40.5	49	1	18.1
345 Tercidina.	11.2	8.8	1901	März	28.0	1900-0	101	18	45.5	227	38	16-1	212	29	25.7
346 Hermenta-										-					
ria	11.5	8.0	1899			1900-0			38.3	287		50.3			14.7
347 Pariana .	12.0	8.8	1899	Juli	8.5	1900-0	114	13	11.1	83	20	9.8	85	57	52.6
348 May	12.9	9.1	1895	Mai	10.0	1900.0	143	13	20.2	4	55	49.6	90	37	54.3
349 Dembowska	9.8	6.0	1895	Mai	10.0	1900.0	229	5	49.2	340	37	27.8	33	3	23.2
350 Ornamenta	12.7	8.6	1901	Juni	28.0	1900-0	208	26	58.6	330	39	50.4	90	39	7.8
351 Yrsa	12-2	8.8	1892	Dec.	20.5	1900-0	330	42	48.8	28	8	55.8	99	40	8.4
352 Gisela	12.1	10.0	1901	Aug.	7.0	1900.0	300	15	35.5	142	16	22.1	247	10	41.4
353 Ruperta - Carola	14.2	10:9	1803	Febr.	22.5	1900-0	44	0	13.0	317	40	18.8	103	15	37.9
354 Eleonora	10.0	6:5	1894			1900.0	81		20:5	4	47	2.1	140		25.8
355 Gabriella .	13-1	10:1				1900-0	37		11.6	94		57.3	352		27.9
356 Liguria .	11.9	8:5	1900	Aug.	12:0	1900-0	271	36	54.7	74	39	1.9	356	9	12-1
357 (1893 /) .	12.2	8.0				1900.0		27	1.7	231		54.9	138		44.7
358 Apollonia	12.5	8.8	,	März		1893.0			43.5	248		54.5	172	54	2.8
359 (1893 1/)	13	9.5	,,,			1893 0			16		_		10	27	
360 (1893 N)	11.9	8.0				1900-0			10.8	284	2	41.3	133		48.4
		1													

No.	i	φ	l _T	log a	Berechner	Jahr d. Entd.	Zahl der beob. Off
321	2° 37′ 35″-1	2° 39' 26"-5	723"-7382	0.460283	BERBERICH	1891	4
322	7 58 53.4	14 9 38.4	763.9815	0.444616	BERBERICH	1891	3
323	19 20 54	15 57 36	1119.60	0.333960	BERBERICH	1891	1
324	11 18 26 0	19 46 43.8	808-2070	0.4283227	BERBERICH	1892	5
325	8 33 32.5	9 3 0.6	616.8237	0.5065637	BERBERICH	1892	3
326	23 47 18-7	10 48 17:5	1005:7638	0.365007	Віресног	1892	6
327	7 9 8.5	3 41 74	765.613	0.443998	Beeberich	1892	1
328	16 6 40 8	6 57 29.1	648.9169	0.491878	BERRERICH	1892	3
329	16 0 42.9	1 34 24-1	911:3780	0.3935387	PANNEKOEK	1892	6
330	19 58 36		1174:9	0.32000	Berberich	1892	1
331	6 4 55.2	5 46 18 6	674.4334	0.480712	BERBERICH	1892	3
332	2 52 32-4	5 11 8.7	768.6500	0.4428520		1892	2
333	3 50 33-2	10 9 36.1	645.3615	0.4934691	BERBERICH	1892	2
334	4 38 4.5	0 50 24 0	459-742	0.591661	BERBERICH	1892	7
335	5 5 53.8	10 15 32-7	911:5556			1892	4
336	5 38 39.4	5 27 10-8	1050-2797	0.3524677	BERBERICH	1892	4
337	7 51 51 7	7 57 52.0	964-4421	0.3771536		1892	4
338	6 2 39.2	1 12 38-1	713.531	0.464396	CONIEL	1892	3
339	9 53 33.9	5 57 21.0	680-3877	0.478167	BERBERICH	1892	2
340	4 42 21.0	6 37 28.1	780-3405	0.438481	BERBERICH	1892	3
341	5 40 11.8	11 8 58.9	1088-2433	0.3421871	BERBERICH	1892	1
342	7 20 30.9	7 26 1.0	862-1261	0.4096239	BERBERICH	1892	3
343	3 18 11.9	13 26 31 0	948-2008	0.382071	BERBERICH	1892	3
344	18 38 44-6	18 8 53-1	847.9673	0.4144183		1892	3
345	9 44 18-0	3 32 33.7	1000-9327	0.3664012	Viaro	1892	7
346	8 45 21.8	5 47 46.6	758-5325	0.446688	EHRENFRUCHT	1892	5
347	11 42 20.2	9 34 55-9	840.8521	0.416858	BOCCARDI	1892	4
					P. V. NEUGE-		
348	9 45 31.2	3 49 55.7	693.5928	0.472601	BAUER	1892	3
349	8 16 38.5	5 9 33.0	709.497	0.466038	RISTENPART	1892	6
350	24 48 42.0	8 55 29.8	643.0431	0.4945110	BERBERICH	1892	3
351	9 13 3.4	8 45 46.5	771:582	0.441750	BERBERICH	1892	2
352	3 22 0.1	8 34 55.0	1091:5751	0.341302	BERBERICH	1893	3
353	5 34 38.0	19 15 26.7	787:080	0.435992	Berberich	1893	1
354	18 22 13.8	6 31 10-4	757.5785	0.4470526	4	1893	7
35 5	4 21 1.7	6 12 55.9	876.580	0.404810	BERBERICH	1893	1
356	8 16 0.3	13 57 5.4	775-7399	0.4401937	BERBERICH	1893	3
357	14 5 32.7	1 31 16:0	632.836	0.499142	Conier	1893	1
358	3 31 52.7	8 26 24.1	725.563	0.459554	Coniel.	1893	4
359	4 59 38	A 10 05 "	760.70	0.44586	BERBERICII	1893	1
360	11 38 10:1	9 43 35.9	681.803	0.477565	CONIEL	1893	1

Nu	mmer und Name	m _o	8		oche u culatio		Mittl. Acq.		M			œ			Ω	
361	Bononia .	13.3	8.0	1893	März	12:5	1900-0	539	40'	44"-9	7.5	12	09	19	32	14".
362	Havnia .	11.1	8.0	1901	Febr.	28.0	1900-0	89	4	30.3	30	0	14.9	27	20	8.9
363	Padua .	11.6	8.2	1900	Octob	31.0	1900.0	46	22	15.8	293	16	2.4	65	0	57.4
364	Isara	11.7	9.5	1901	Sept.	16.0	1900-0	307	54	2.1	311	16	40.3	105		47:4
365	Corduba .	12.2	8.7	1900	Octob	.31-0	1900-0	0	28	36.9	209	42	37.8	185	46	27.3
366	Vincentina	12.3	8.2	1900	Aug.		1900-0	8		49.0	314		23.6	347		40.7
	Amicitia .	12.5	10.3	1897	-		1900.0	1		34.8	53		54.2	83		45.5
	(1893 AB)		9.5	1893			1900-0	317		49.4	85		25.1	229		56.3
	Aëria	12.9	9.5	-	April		1900-0			34.5	266		13.4	94	26	6.9
370	Modestia .	12.8	10.4	1893	Juli	14.5	1900-0	312	26	36.2	66	22	410	290	59	45.3
	Bohemia .	11.8	8.4	1899		-	1900-0	1		26.0	339	42	9.7	284		25.4
	l'alma	10.5	6.4		Febr.	-	1900.0	54		11.3	113		18.2	328		35.1
	Melusina .	12.8	8.7	1			1900.0	108		43.7	348		35.1	4		45.5
	Burgundia	11.7	8.2	1901			1900.0			28.3	23		16.3	219		47.8
375	Ursula .	11.0	6.9	1901	Jan.	19.0	1900-0	155	15	7.8	344	31	30.4	337	19	6.0
376	Geometria	11.8	9.4	1902			1900-0			26.1	314		32.0	302		52.5
	Campania	11.5	8.2				1900.0			43.1	192		58.3	210	36	8.4
	Holmia .	12.6	9.1				1900-0			19.7	152		17.3	233		27.8
	Huenna .	12.6	8.5		April		1900-0			25.9	177		12.5	172		39.2
380	Fiducia .	12.6	9.3	1894	Jan.	11.0	1900-0	129	98	51.0	237	2	49-6	95	15	11.7
381	Myrrha .	12.4	8.1	1901	April	9.0	1900-0	314	38	29.9	144	52	9.3	125		25.5
382	Dodona .	12.1	8.1	1901			1900-0	52		38.5	268	_	56.3	315	41	0.3
	(1894 AU)		9.2		März		1900-0		4	8.0	314	15	4.4	93		26.2
	Burdigala	11.7	8.5		April		1900.0			59.6	30	33	4.5	48		27-0
385	Ilmatar .	10-3	6.7	1897	Dec.	25.0	1900-0	280	40	33.7	115	6	38.3	345	44	42.1
386	Siegena .	10.5	6.8	1901	Aug.		1900-0			50.4	217	4	2.2	167		59.3
	Aquitania	9.8	6.4	1895	Juli		1900-0			10.2	153		24.0	128		56.0
	Charybdis	11.7	7.8		Aug.		1900-0	354		55.2	326		50.0	355		11.5
	Industria ,	11.1	8.0	1899	*	-	1900.0	63		27.4	262		47.8	282		51.2
390	Alma	13.5	10.0	1899	Mai	17.0	1900-0	88	15	19.6	188	31	26.0	305	25	32.1
391	Ingeborg .	13.4	11.0	1894	Nov.	6.0	1900-0	23		40.5	145	19	2.0	212	-	47.3
392	Wilhelmina		8.3		Nov.		1900-0	42		20.6	134	52	8.1	212	8	0.9
	Lampetia	11.0	7.6		Nov.		1900.0	67		29.0	85		13.6	215		40.2
	(1894 BH)		9.6		Nov.		1900.0	55		12.3	265		56.0	68		29.4
395	(1894 BK)	13.0	9.5	1894	Dec.	3.5	1900-0	136	43	41.3	20	40	2.1	259	52	27.5
396	(1894 BL)			1894	Dec.	-	1900-0		-	32.8	18		52.5	251	17	
397	Vienna .	12.6	9.4	1899	Jan.	9.0	1900.0	34	37	25.4	136	32	3.0	228	~ -	34.8
398	(1894 BN)	12.0	8.1	1895	Jan.	22.5	1895.0	187	25	12	-	-		284	14	
399	Persephone	13.0	9.0		März		1900.0			41.1	180			347		58.7
400	(1895 BU)	14.5	10.4	1895	März	18:5	1900.0	337	44	19.1	229	27	23.7	328	41	7.6

No.		i			φ		ļτ	log a	Berechner	Jahr d. Entd	Zahl der beob. ()PF
361	120	36	5419	119	47	42"-4	449"-924	0.597911	CONIEL	1893	2
362	8	4	20.0	2	38	24.1	857:0906	0.4113199	BERBERICH	1893	4
363	5	58	2.5	4	2	24.6	778.924	0.439008	ANTONIAZZI	1893	7
364	6	0	12.3	8	40	15.6	1072:5557	0.346391	BERBERICH	1893	4
365	12	43	27.0	8	20	45.5	755-7728	0.4477436	BERBERICH	1893	2
366	10		27.6	3		37.9	637-1196	0.497191	BOCCARDI	1893	4
367	2	-	49.2	5		23.5	1073.2216	0.346211	BERBERICH	1893	2
368	7		15.5	11		13.1	663.984	0.485231	BERBERICH	1893	1
369	12	43	49.3	5	-	44.4	824.5149	0.4225387	BERBERICH	1893	3
370	7	51	37.9	5	10	55.7	1001.5535	0.366222	BERBERICH	1893	2
371	7	23	6.7	3		34.2	787-7337	0.435752	MADER	1893	5
372	23	-	50.7	15		43.4	636.7006	0.4973809	BERBERICH	1893	4
373	15	27	36.4	8	24	4.4	645.0450	0.493611	BERBERICH	1893	2
374	8	57	58.5	4	30	52.0	765.3309	0.4441049	BERBERICH	1893	4
375	15	57	13.5	5	41	17:0	640.8169	0.4955151	Heuer	1893	5
376	5	25	29.2	9	50	37.9	1024-4381	0.359681	BERBERICH	1893	5
377	6	39	41.6	4	26	14.5	804.920	0.429503	CONIEL	1893	6
378	6	58	38.7	7		14.0	767.2482	0.4433805	BERBERICH	1893	4
379	1	36	35.3	11	5	26.6	641.8494	0.4950490	CONIEI.	1894	6
380	6	10	17.6	6	33	30.2	809.7820	0.427760	P. V. NEUGE- BAUER	1894	3
381	12	34	57.3	7	7	21.7	619.7394	0.5051983	BERBERICH	1894	5
382	7	25	52.9	10	5	38.1	643.9085	0.494122	BERBERICH	1894	3
383	2	39	30.9	10	19	59.5	642.0203	0.4949719	BERBERICH	1894	1
384	5	38	54.5	8	22	34.3	820-6462	0.423900	KROMM	1894	4
385	13	41	17.8	7	27	39.3	740-2412	0.453756	WILT	1894	5
386	20	15	37.0	9	34	26.7	719-2832	0.462071	BERBERICH	1894	6
387	17	57	55.2	13	47	16.3	782.6076	0.4376414	OGBURN	1894	6
388	6	30	19.1	3	33	38.0	681.8161	0.477560	BERBERICH	1894	3
389	8	7	7.3	3	53	14.7	842.4772	0.416299	PEVRA	1894	5
390	12	8	52.8	7	28	40.3	821.022	0.423768	CONIEL	1894	2
391	23	3	3.0	17		30-4	1003-286	0.365721	CONIEL	1894	2
392	16	-	33.5	11	12	8.1	683.267	0.476944	BERBERICH	1894	1
393	14		29.3	19		37.7	768-335	0.442971	BERBERICH	1894	1
394	6		38.1	13		32.3	771.095	0.441933	CONIEL	1894	1
395	3	31	42.3	7	16	9.6	764.391	0.444461	Capon	1894	1
396	2		51.3	10		30.4	782-986	0.437501	Coniei.	1894	1
397	12		58.2	14	23	37.9	829.8698	0.420664	MADER	1894	3
398	20	-	57	-	-		684.68	0.47634	CHARLOIS	1894	1
	13	8	20.1	3	51	5.6	664.6683	0.484935	BERBERICH	1895	1
399 400	10		51.4	5		50.9	641.871	0.495039	BERBERICH	1895	1

Nummer und Name	m 0	8		oche sculati		Mittl Aeq.		M			w			U	
101 Ottilin	12.6	8.2	1805	April	20.0	1900-0	324	31'	46"-8	181	20'	19.6	399	7	57".
02 Chloe	10.7	7.7				1895.0	28	44	8.7	12	26	1.5	129	29	53.1
03 Cyane.	12.0	8.5	1900			1900-0		14	7.2	248		33.2	245		28.6
04 Arsinoë	13.0	10-0				1900-0		15	43.9	117	40	9.2	92	49	16.2
105 Thia	11.0	8.0	1895	•		1895-0	73		35.0	305		42.1	255		27.9
106 (1895 B).	13.5	9.8	1895	Aug.	23.5	1900-0	350	1	59.3	33	31	31.4	317	15	49.5
07 Arachne .	11.9	8.7		Nov.		1900-0	17	44	21.6	79	37	50.6	295	9	45.6
08 Fama	13.4	9.2	1895	Octob	.15.5	1900-0	354	28	32.9	100	36	57.2	299	29	5.2
109 Aspasia .	10.7	7.6	1899	Nov.	19.0	1900.0	183	45	6.2	351	8	30.1	242	35	48.1
10 (1896 CH)	11.9	8.3	1896	Jan.	8.5	1900-0	245	34	9.5	143	52	48.7	96	24	55.9
11 (1896 CI)	12.5	8.5	1896	Jan.		1900-0			57.5	194	5	56.8	108	7	51.8
12 Elisabetha	12.1	8.5	1901	Jan.	19.0	1900.0			42.7	88	34	52.2	106		40.0
13 Edburga .	12.2	9.2	1896	Jan.		1900-0	72		21.0	248		28.4	105		28.9
14 (1896 CN)	13.4	8.6	1898	April		1900-0			33.5	299		38.6	113		46.1
15 Palatia .	11.6	8.1	1900	Jan.	0.0	1900.0	351	8	15.5	293	38	51-0	128	12	26.4
16 Vaticana .	11.5	8.0	-				262		31.7	195		14.1	58		36.8
17 Suevia .	12.7	9.2	1896			1900-0	30		55.3	344	-	18.1	200		24.1
18 Alemannia	12.6	9.5		Sept.		1900-0		51	7.9	123		40.4	249		42.0
19 Aurelia .	11.1	8.0	1901			1900-0	143		35.5	39		52.4	230		59.8
20 Bertholda	12.3	7.7	1901	Juni	28.0	1900.0	171	2	12.8	205	32	51.6	247	0	39-0
21 Zähringia.	14.2	11.2	1896			1900-0	1		19.7	205		58.6	187		15.4
22 Berolina .	13.4	11.2	1896			1900-0	43		30.9	333	4	9.3	8		34.1
23 Diotima .	11.2	7.2	1896			1900-0			21.6	199		29.5	70	_	35.0
24 Gratia	12.8	9.3	1900	Nov.	20.0	1900.0	337	10	36.9	330	4	3.9	99	26	22.9
25 Cornelia .	13-1	9.4	1897	Jan.	20.5	1900.0	295	5	56.3	118	47	55.3	61	36	47.8
26 (1897 DH)		7.8		Sept.		1900.0			55.2	221		54.7	311		22.1
27 (1897 DI)		9.3	1897			1897-0	26		44.7	5		12.6	298		30.8
28 Monachia.	13.5	11.1	1900			1900-0	l .		10.6	13		27.9	17		32.2
29 (1897 DL)		9.4		Nov.		1900-0	39		43.0	144		33.6	220		12.8
30 (1897 DM)	13-2	9.6	1898	Jan.	21.5	1898-0	15	12	12.0	174	56	47.0	249	49	46.5
31 (1897 DN)		8.5	1898			1898-0	97		58.4	209		51.4	117		55.6
32 Pythia	11.3	8.7	1902		-		219		45.8	172		12.2	88		33.1
33 Eros	9.7	10-6					304		44.7	177	39	6.2	303		45.6
34 Hungaria .	11.8	10.4	-			1900.0		-	32.3	122		44.7	174		15.2
35 Ella	12.1	9.3	1901	Mai	19.0	1900.0	250	33	56.4	330	53	45.9	23	ð	58.1
36 Patricia .	12.4	8.2		Sept,		1898-0			23.5	26		36.8	352		49.6
37 (1898 DP)				April		1900-0			13.6	58		25.4	263	41	2.5
38 (1898 DU)		1	1898			1900-0			28.7	80		25.2	49		23.3
39 Ohio	12.7	8.6	1900			1900-0	30		55.5	231		34.8	202		52.9
40 Theodora.	13.1	10.9	1808	Octob	18:5	1900.0	284	37	41.8	176	8	34.9	292	20	32.1

No.		i			φ		ļτ	log a	Berechner	Jahr d. Entd.	Zahl der beob. OPP
401	6	5	36"-0	2	18	503	584"-254	0.522270	BERBERICH	1895	2
402	11	50	10.2	- 6	24	49.0	868.759	0.407405	CONIEL	1895	3
403	9	8	11.3	5	42	4.0	752:5126	0.448995	BERBERICH	1895	4
404	14	4	2.5	11	58	51.3	851.8097	0.413109	BERBERICH	1895	2
405	11	48	18.6	14	32	24.7	856-814	0.411412	CONIEL	1895	5
406	4		31.9	10	31	6.1	714.568	0.463975	CAPON	1895	1
407	7		25.8	3		13.1	834.430	0:419078	BERBERICH	1895	3
408	9		11.5	7		31.1	627.210	0.501729	BERBERICH	1895	1
409	11		46.1	3		20.9	858.5857	0.410815	KROMM	1895	3
410	9	32	56.1	12	30	4.9	746.590	0.451283	BERBERICH	1896	1
411	19	-	26.9	13		34.4	720 - 585	0.461548	Berberich	1896	1
412	13		38.4	2	-	20.1	772-4798	0.4414130	BERBERICH	1896	4
413	18		26.6	19		23.0	856.555	0.411501	BERBERICH	1896	1
414	9	-	25.1	5		23.8	540.7539	0.544671	BERBERICH	1896	1
415	8	5	41.7	17	36	27.4	762:3720	0.445227	Coddington	1896	3
416	12		48.4	12		55.2	761-1473	0.445692	BOCCARDI	1896	4
417	6		34.4	7		44.5	757.116	0.447229	BERBERICH	1896	1
418	6		16.6	6		51.8	847.266	0.414658	BERBERICH	1896	1
419	3		35.4	14		59.8	850.3821	0.413595	Berberich	1896	4
420	6	39	28.1	2	39	15.5	560:3324	0.5343739	BERBERICH	1896	3
421	7		37.5	16		29.6	876-838	0.404725	BERBERICH	1896	1
422	5		12.9	12		39.2	1066-4426	0.348046	WITT	1896	1
423	11		35.1	2		42.4	663.033	0.485647	BERBERICH	1896	2
424	8	12	20.8	6	20	33.9	767-6515	0.4432283	V. NEUGE- BAUER	1896	2
425	4	4	22.5	3	26	47.8	724-2913	0.460062	Pourteau	1896	2
426	19		39.4	5		54.4	722-4562	0.460797	Pourteau	1897	ı
427	5	-	11.1	6		23.4	692-493	0.473061	CONIEL	1897	1
428	6	-	28.4	10		44.4	1009.005	0.364076	VILLIGER	1897	1
429	9		20.1	8		13.0	846-714	0.414845	CONIEL	1897	1
430	14	33	22.3	14	55	51.9	743-475	0.452494	Berberich	1897	1
431	1	49	1.4	9	-	27.5	642-4286	0.494788	Pokrowsky	1897	I
432	12	7	3.9	8	-	23.8	972:6761	0.374692	BERBERICH	1897	2
433	10		39.0	12		47.3	2015:2372	0.1637869	MILLOSEVICH	1898	4
434	22		59.5	4		44.0	1309.4115	0.2886203	BERBERICH	1898	2
435	1	50	18.2	8	57	53.9	925-9449	0.3889477	BERBERICH	1898	2
436	18	-	46.7			35.9	622-111	0.504093	Berberich	1898	1
437	7	-	38.8	14		14.9	964-3819	0.377172	BERBERICH	1898	1
438	6		43.8	9		43.2	792.554	0.433985	CONIEL	1898	1
439	19		11.6	4		33.9	640.6167	0.495606	Coddington	1898	9
440	1	35	46.4	6	11	19.0	1079.355	0.344562	Condington	1898	2

Nummer und Name		# o	8		oche i sculatio		Mittl. Aeq.		M			(1)			V	
441	(1898 ED)	-	_	1898	Dec.	9.5	1899-0	339°	42	50"-8	204°	54	44"-2	2540	10'	36"
442	Eichsfeldia	12.1	9.6	1901	Dec.	5.0	1900-0	218	2	30.0	81	43	34.4	134	39	40.8
443	Photogra-															
	phica			1 .	Marz		1900.0				345			175	-	36-4
	Gyptis	11-2	7.7	1899				229		50.7			57.8	196	-	20.8
445	Edna	13-1	8-9	1900	Jan.	0.0	1900-0	19	1	55.0	77	37	49.6	298	23	8.4
446	Aeternitas	11.6	8.1	1899	Octob	.30-0	1900-0	55	8	27:0	278	2	13.8	42	32	40.7
447	Valentine.	12.1	8.2	1901	Febr.	8.0	1900-0	86	59	26.6	318	57	42.9	72	20	34-2
448	Natalie .	13.7	9.3	1899	Nov.	29.5	1900-0	47	48	18.5	292	16	57.1	38	44	10-1
449	Hamburga	11.6	8.6	1901	Mirz	20.0	1900:0	36	3	58.8	45	48	34.6	85	56	38.2
450	Brigitta .	12.2	8.3	1899	Nov.	9.5	1900-0	19	17	44.8	358	38	48.4	15	29	41.4
451	Patientia .	10.7	6.7	1900	Jan.	0.0	1900-0	9	31	9.7	334	51	14.9	89	55	34.5
452	(1899 FD)	16.7	13.1	1899	Dec.	31.0	1900-0	296	42	7.9	46	39	31.5	92	44	39-0
453	(1900 FA;	-	_	1900	März	22.5	1900:0	296	57	8.8	217	38	48.2	11	29	24.8
454	Mathesis .	11.6	8.5	1900	April	28.5	1900-0	353	6	49.7	174	20	14.5	32	33	28.4
455	Bruchsalia	11.6.	8.3	1900	Juni	16.5	1900:0	296	11	7.0	265	40	36.3	77	42	6.2
456	(1900 FH)	12.4	8.9	1900	Juni	30.5	1900-0	18	21	9.8	7	54	52.1	229	27	0.6
457	Alleghenia	15.5	114	1900	Octob	.28.5	1900-0	351	0	33.8	129	8	30.3	250	37	59.4
458	(1900 FA")	14.2	10.3	1900	Octob	.28:5	1900:0	337	54	29.8	272	45	25.4	135	55	33.5
455	(1894 BD)	13.3	11.3	1894	Nov.	1.5	1900-0	337	18	8.4	356	39	18.9	72	35	44.3

Bahnelemente der

				Epoche und mittl, Aequin.	L	M	w
Mercur				1850 Januar 1:0	327° 7′ 47″-8	252° 0'33"9	28° 34′ 5′′-2
Venus				1850 Januar 1:0	245 30 17:5	116 3 3.0	54 7 22-2
Erde			.	1850 Januar 1:0	100 45 14.9	0 23 33.0	100 21 41.9
Mars			.	1850 Januar 1:0	83 39 33.4	110 21 39.7	284 54 0.6
Jupiter				1850 Januar 1:0	160 1 1.1	148 6 2.7	272 58 41.4
Saturn				1850 Januar 1:0	14 52 24.6	284 45 27.9	337 46 3.7
Uranus				1850 Januar 0:0	29 12 42:1	218 33 53.4	97 24 11.1
Neptun				1850 Januar 0:0	335 5 38-1	291 48 7.8	273 9 58.8

No.		i			φ		μ	log a	Berechner	Jahr d. Entd.	Zahl der beob. Opp
441	80	2	3311.9	50	4'	14"-4	751"-537	0.449370	CONIEL	1898	1
442	6	3	52.0	4	2	51.9	987.8288	0.370217	THAREN	1899	4
443	4	13	16.2	2	16	39.4	1077:6050	0.345031	THAREN	1899	1
444	10	13	43.5	9	59	24.0	769.234	0.442632	FABRY	1899	2
445	21	23	32.6	11	57	45.5	624.2829	0.503084	Coddington	1899	2
446	10	39	5.1	7	2	27.0	761.399	0.445596	PAULY	1899	2
447	4	49	23.1	2	36	20.3	687:3499	0.475219	KREUTZ	1899	2
448	12	41	49.2	9	54	2.5	636.068	0.497668	BERBERICH	1899	1
449	3	5	54.7	9	44	8.0	877-2944	0.404571	MÖLLER	1899	2
450	10	23	5.0	5	21	56.4	677.749	0.479292	PAETSCH	1899	1
451	15	14	8.6	4	29	58.9	662.7246	0.4857823	ROEDIGER	1899	2
452	3	13	15.8	1	13	23.3	736.622	0.455174	PALMER	1899	1
453	5	34	12.7	6	21	32.3	1098.58	0.339450	CHARLOIS	1900	2
454	6	19	15.0	6	18	51.5	833-1458	0.419523	E. BECKER, MILHAM	1900	2
455	11	47	15.6	17	56	49.4	797-919	0.432032	BERBERICH	1900	1
456	14	21	42.4	10	18	21.1	763·100	0.444950	Berberich	1900	2
457	12	52	30.6	10	20	2.3	651.8517	0.490572	PARTSCH	1900	1
458	12		38.0	14	11	27.8	684.198	0.476550	RIEM	1900	1
459	3	27	48.4	- 8	33	50.4	1104.735	0.337832	BERBERICH	1894	1

grossen Planeten.

			v			1	i		4	•	μ	log a	Autorität
Mercur		46°	33'	8".7	70	0,	7"·7	110	51'	53".7	14732"-41967	9.5878214	LEVERRIER
Venus.		75	19	52.3	3	23	34.8	0	23	31.5	5767-66982	9.8593366	LEVERRIER
Erde .		0	0	0.0	0	0	0.0	0	57	39.4	3548-19286	0.0000006	LEVERRIER
Mars .		48	23	53.1	1	51	2.3	5	21	4.5	1886-51831	0.1828932	LEVERRIE
Jupiter		98	56	17.0	1	18	41.4	2	45	56.5	299.12836	0.7162168	LEVERRIE
Saturn		112	20	53.0	2	29	39.8	3	12	51.7	120.45465	0.9802194	LEVERRIKE
Uranus		73	14	37.6	0	46	20.9	2	39	25.7	42.23079	1.2837100	NEWCOME
Neptun		130	7	31.8	1	47	1.7	0	29	12.5	21.53302	1.4787334	NEWCOME

Namen-Register.

Namen-Register.

(Die römischen Ziffern geben die Bände, die arabischen die Seiten an.)

D'ABBADIE, Horizontalpendel II 40. ABBB, CLEVELAND, Sonne III b 75; Universum IV 112 113 116. ABBE, E., Fernrohr I 706 707 708 721 731

732 739; Mikrometer IIIa 91 132. ABNEY, Astrospectroskopie I 397 428.

ABRAHAM, Chronologie I 614.

ABUL WEFA, Einleitung I 49 52.

ADAMS, JOHN COUCH, Einleitung I 139 159 160; Finsternisse I 813; Kometen und Meteore II 210; Mechanik des Himmels II 454 455 456; Planeten IIIa 399 413 431: Sterncataloge und Sternkarten IIIb 463.

AEPINUS, Einleitung I 118.

AGATHORIES, Mechanik des Himmels II 455. D'AGELET, JOSEPH LEPAUTE, Sterncataloge und Sternkarten III b. 478 479; Universum IV

D'AILLY, PIERRE, Chronologie I 615.

AIRY, GEORGE BIDDELL, Einleitung I 108 132 159; Altazimuth I 204 205; Bahnbestimmungen I 570; Bahnsucher I 574; Chronometer I 625; Finsternisse I 813; Mechanik des Himmels II 451 452 454 455; Mikrometer IIIa 166 200 203 204 205 206 207 209 212 213 214; Parallaxe III a 321; Persönliche Gleichung IIIa 376 382; Planeten III a 394 414 415 430 431; Eigenbewegung des Sonnensystems IIIb. 96 103 107 108 109; Sterncataloge und Sternkarten III b. 458 463 475 480; Uhr IV 25.

AITKEN, Kosmogonie II 247.

ALBATEGNIUS (MOHAMMED BEN GEBER ALBATANI), Einleitung I 49 50 51 61.

ALBERI, Fernrohr I 701; Uhr IV 4.

ALBRECHT, THEODOR, Abendweite I 164; Altazimuth 208; Azimuthbestimmung I 439; Längenbestimmung II 257 258 259; Mikrometer IIIa 191; Polhöhe IIIa 450 452 493; Strahlenbrechung III b 596; Zeitbestimmung IV 144 146 157.

D'ALEMBERT, JEAN LE ROND, Einleitung I 117 121 122 130 141 142 145 146; Mechanik des Himmels II 413 615.

ALEXANDER D. GR., Einleitung I 16; Chronologie I 609 610 611 612.

ALFONS X. VON CASTILIEN, Einleitung I 54 66. ALFRAGANUS, ACHMED MOHAMMED EBN KOT-HAIR, Einleitung I 49 51 61.

ALHAZEN, ABU ALI HASSAN, Einleitung I 52.

ALMAMON, Einleitung I 49.

ALMELOVEEN, Chronologie I 614. ALPETRAGIUS, Einleitung I 49 52 53.

AL-Sûfi, ABD-AL-RAHMAN, Astrophotometrie I 343 346 347; Sterncataloge und Stern-

karten III b 455; Sternhaufen III b 524. ALTOBELLI, HIERONYMUS, Planeten III a 428. AMBRONN, L., Heliometer II 13 20 21 22 23; Sternhaufen und Nebelflecke III b 527;

Sternwarten III b 539: Universalinstrument IV 42 44 45; Universaltransit IV 55; Verticalkreis IV 127 128.

AMEKE, Universum IV 118.

AMICI, GIOVANNI BATTISTA, Acquatoreal I 195; Astrophotographie I 246: Astrospectroskopie I 387 388; Mikrometer III a 199 200 201.

ANAXAGORAS, Kometen und Meteore II 50. ANAXIMANDER, Einleitung I 6 17. VON ANDERKO, Astrophotographic I 219.

ANDERLINI, F., Sonne III b 79.

ANDERSON, Astrophotometrie I 358.

ANDING, Uhr IV 16 20.

ANDRÉ, Sterncataloge und Sternkarten III b 517. ANDRIES, Sterncataloge und Sternkarten III b

ANGELITTI, Sterncataloge und Sternkarten III b

D'Angos, Planeten III a 432.

ÅNGSTRÖM, Astrospectroskopie I 394 395 396 397 398 399 405 428; Sonne IIIb 79; Strahlenbrechung III b 590.

ANIANUS, Chronologie I 610. ANTHELME, Astrophotometrie I 357 358. ANTOINETTE, Einleitung I 134. ANTONIADI, Planeten III a 423.

ANTONIAZZI, Sterncataloge und Sternhaufen III b

APRILES, Einleitung I 76.

APIANUS, PETRUS, Einleitung I 71; Kometen und Meteore II 55 68.

APOLLONIUS, Einleitung I 17 24 25 43; Kometen und Meteore II 50.

APPEL, D., Uhr IV 28 29.

ARAGO, Doppelsterne I 676; Kometen und Meteore II 104 116 162 180; Mikrometer IIIa 220 221 222 223; Mond IIIa 276; Planeten IIIa 431 434, Registrierapparate III b 33; Scintillation III b 51 55 56; Strahlenbrechung III b 553.

ARATUS, Sterncataloge und Sternkarten III b 455; Sternhaufen und Nebelflecke IIIb 524.

ARCHIMEDES, Einleitung I 18.

D'ARCY, Kosmogonie II 234. ARGELANDER, F. G. W., Einleitung I 162; Astrophotographie I 237 238; Astrophotometrie I 323 324 338 343 347 348 351 353 363; Kometen und Meteore II 119 120 122; Mikrometer IIIa 70; Persönliche Gleichung IIIa 369 381 382 383; Planeten III a 438; Eigenbewegung des Sonnensystems IIIb 93 94 98 99 103 107 108 109; Sternbilder IIIb 112 113 114 115; Sterneataloge und Sternkarten IIIb 458 464 470 472 475 476 484 486 490 491 496 497 502 514 519 520 521; Universum IV 62 63 65 66 69 72 119.

ARISTARCH, Einleitung I 18 30 58; Mond III a 250; Parallaxe III a 319 320.

ARISTOTELES, Einleitung I 15 16 17 72 76 77; Kometen und Meteore II 49 52 59; Mond III a 246; Scintillation IIIb 54.

ARISTYLL, Einleitung I 19 76; Aequatoreal I 179; Sterncataloge und Sternkarten IIIb 455.

ARNOLD, Chronometer I 625.

D'ARREST, Koineten und Meteore II 60 73 76 211 223; Mikrometer IIIa 244; Mond III a 280; Planeten III a 413 428 434 435; Sternhaufen und Nebelflecke III b 525; Sternwarten IIIb 530; Universum IV 115.

ARZACHEL (AL ZERKALI), Einleitung I 52 53. VON ASTEN, Einleitung I 160; Kometen und Meteore II 74 101; Mechanik des Himmels II 485; Planeten III a 389 390; Sterncataloge und Sternkarten IIIa 470 480.

ASTRAND, Azimuthbestimmung I 438 439. AUERBACH, Persönliche Gleichung III a 378. Augustus, Chronologie I 610 614.

AUSFELD, Astrophotometrie I 313 315 316. Austin, Sterncataloge und Sternkarten III 496.

AUWERS, ARTHUR, Einleitung I 162; Astrophotometrie I 342 357 358; Doppelsterne I 688 689; Finsternisse I 750 763 804 821; Heliometer II 11 12 13 16 21; Längenbestimmung II 272; Meridiankreis IIIa 17; Mond IIIa 276; Parallaxe III a 346; Planeten IIIa 418; Pracession III b 17; Registrirapparate III b 44; Sonne III b 77; Eigenbewegung des Sonnensystems IIIb 100 108; Sterncataloge und Sternkarten IIIb 459 460 462 464 465 471 472 473 474 477 478 480 481; Steinhaufen und Nebelflecke IIIb 525.

AUZOUT, Eindeitung I 98; Fernrohr I 703 720; Mikrometer III a 110 111 112 113; Planeten IIIa 393.

BABINET, Planeten IIIa 434 435.

BACKLUND, O., Einleitung I 160; Heliometer II 17; Kometen und Meteore II 74 101; Mechanik des Himmels II 413 492: Planeten III a 389 390.

BACON, ROGER, Chronologie I 615.

BADEN-POWELL, Mikrometer III a 219.

BAHLEY, Universum IV 78.

BAILLAUD, Sterncataloge und Sternkarten IIIb 517.

BAILLY, Einleitung I 5.

BAILY, Sterncataloge und Sternkarten IIIb 455 475 478 480 485. Batn, Uhr IV 39.

BAKHUYZEN, E. F. VAN DE SANDE, Polhöhe III a 493; Sterncataloge und Sternkarten III b 496.

BAKHUYZEN, G. H. VAN DE SANDE, Astrophotographie I 279 282 283; Biegung I 591; Mikrometer III a 207; Personliche Gleichung IIIa 374 375 381; Polhöhe IIIa 491; Strahlenbrechung III b 582 583 584 586; Universum IV 68

DE BALL, L. Kosmogonie II 229; Eigenbewegung des Sonnensystems III b 108; Sterncataloge und Sternkarten III b 501 505.

BALL, WILLIAM, Planeten III a 422.

BALMAIN, Astrophotographie I 237. BAMBERG, C., Aequatoreal I 184; Fernrolir I

738; Mikrometer IIIa 115 118 119; Polhöhe IIIa 465; Universaltransit IV 54. BARBER, Kometen und Meteore II 73.

BARKER, Bahnbestimmungen I 502 508 509 536 537 538 539 560 566 569; Mechanik des Himmels II 304 312 314.

BARKLEY, Doppelsterne I 674.

BARKOWSKY, Astrophotographie I 302. BARLOW, Astrophotographic I 223 224.

BARNARD, Bahnbestimmungen I 555; Finsternisse I 834 835; Kometen und Meteore II 52 56 62 63 74 76 77 94; Mikrometer IIIa 166; Planeten IIIa 418 427; Sternhaufen und Nebelflecke III b 525; Universum IV 70 71 76; Zodiakallicht IV 184 186.

BARRAL, Mikrometer III a 222.

BARRY. R., Sterncataloge und Sternkarten III b

BARTOLUS, DANIEL, Planeten III a 399.

BARTSCH, Sternbilder IIIb 168 218 235 248 277 297 299 333 338 356 374 415 416 444-

BATTERMANN, H, Aberration I 169; Finsternisse I 811; Heliometer II 24; Parallaxe III a 322; Sterncataloge und Sternkarten III b 460 509; Strahlenbrechung IIIb 601.

BAUMGARTNER, Fernrohr I 707. BAUSCHINGER, JULIUS, Biegung I 587 589 590 592; Kometen und Meteore II 77; Mechanik des Himmels II 336 396; Planeten IIIa 439; Sterncataloge und Sternkarten III b 461 462 502 508; Strahlenbrechung IIIb 562 583 585 587 588 591 598 599 601; Universum IV 113 114.

BAYER, JOH., Einleitung I 76; Sternbilder III b 109 111 112 124 218 221 235 248 277 297 299 374 415 416 444; Sterncataloge und Sternkarten IIIb 513.

BECKER, ERNST, Mikrometer IIIa 98 157; Persönliche Gleichung !II a 376; Sterncataloge und Sternkarten III b 498 504 505; Stern-warten III b 540; Uhr IV 20,

BECQUEREL, E., Astrospectroskopie I 428. BECQUEREL, HENRY, Astrospectroskopie I 397 429: Registrirapparate IIIb 53.

BEDA, Chronologie I 615.

BEER, Astrophotographie I 301; Mond IIIa 247 250 256 281; Planeten IIIa 398 402 415. BEHRMANN, Astrophotometric I 343 347; Steinbilder IIIb 112; Sterncataloge und Sternkarten IIIb 514; Universum IV 97.

BEKKER, ED., Scintillation IIIb 54.

BELLAMY, Planeten IIIa 414.

BELOPOLSKY, Astrophotometrie I 360; Astrospectroskopie I 422; Sonne IIIb 66 71; Sterncataloge und Sternkarten IIIb 502. v. BENKO JEROLIM, Zeitbestimmung IV 134.

BENOIT, Strahlenbrechung III b 553. BENTHLEY, Einleitung I 5.

BENZENBERG, Kometer, und Meteore II 110 112

113 115 154. BÉRARD, Kometen und Meteore II 178.

BERBERICH, Kosmogonie II 235; Planeten III a 440. BERGIUS, Bahnbestimmung I 570.

BERGQUIST, Personliche Gleichung III 378. BERNARD, Astrospectroskopie I 396. DE BERNARDIÈRES, Kometen und Meteore II

Bernoulli, Daniel, Einleitung I 117 145; Fernrohr I 705; Kosmogonie II 234; Sterncataloge und Sternkarten IIIb 475.

BERNOULLI, JOH., Einleitung I 121.

Berosus, Zeitbestimmung IV 181.

Bertholon, Kometen und Meteore II 106. BERTHOUD, LOUIS, Chronometer 1648; Uhr IV 3. BERTRAND, Doppelsterne I 676; Mechanik d.

Himmels II 456.

BESSARION, Einleitung I 55.
BESSEL, F. W., Einleitung I 92 158 159 162; Abendweite I 164; Aberration 170; Almucantar I 200 202; Astrophotographie I 288 291; Astrophotometrie I 326; Bahnbestimmung I 464 528 535 566 567 568 569 570 573; Biegung I 580 581; Doppelsterne I 677 687 688 689; Fernrohr I 705 706 707; Finsternisse I 760 762 764 765 766 789 793 800 807 811 813 814 822 839; Heliometer II 6 8 9 10 11 13 14 15 16 24; Kometen und Meteore II 57 58 69 87 88 101 118 136 137 139; Tafel III 146; Mechanik des Himmels II 308 311 312 374 381 592; Meridiankreis IIIa 7; Methode d. kleinsten Quadrate III a 30 32; Mikrometer III a 67

71 78 83 86 87 147 167 175 176 179 180 181 187 188 193 215 237 238 239 242 244; Mond III a 281; Multiplikationskreis IIIa 289; Nutation IIIa 303; Ortsbestimmung IIIa 310 312; Parallaxe IIIa 325 346 347 349 351 352; Passageninstrument III a 355; Personliche Gleichung IIIa 368 369 370 376 380; Planeten III a 391 394 399 414 415 418 421 424 428 431; Polhöhe III a 472; Pracession III b 16 17; Eigenbewegung des Sonnensystems IIIb 96 99 100 103 107 108 109; Sterncataloge und Sternkarten III b 457 458 459 462 463 470 475 481 482 485 487 493 515 516; Sternhaufen und Nebelflecke III b 527; Sternwarten III b 531; Strahlenbrechung IIIb 551 556 557 558 559 564 566 567. 571 576 577 582 594 597 598 600; Theilfehler IIIb 602 604 605 606 611 Uhr IV 18; Universum IV 62 63 64 65

BESSEL, W., Bahnbestimmung I 528 570. VON BEZOLD, Strahlenbrechung IIIb 579.

BIANCHI, Sonne III b 65; Sterncataloge und Sternkarten III b 483 486.

BIANCHINI, Planeten IIIa 394. BIDDER, G. P., Mikrometer IIIa 138.

BIDSCHOF, Sterncataloge und Sternkarten III b 493 507.

BIEDERMANN, Fernrohr I 701; Uhr IV 5. BIELA, Kometen und Mcteore II 60 73 90 94 101 209 211 212 218 223 224; Mikrometer Illa 158.

BIGELOW, Registrirapparate IIIb S1.

BIGOURDAN, G., Mikrometer IIIa 71 126 156 157 158 165 236; Uhr IV 41.

BINET, J. PH. M., Bahnbestimmung I 570 571. BIOT, Fernrohr I 731 732; Kometen und Meteore Il 51 104 106; Strahlenbrechung IIIb 553.

BIRD, Doppelsterne I 671; Mond III a 278; Sterncataloge und Sternkarten III b 480.

BIKKMAYER, L., Doppelsterne I 696. BIRMINGHAM, Astrophotometric I 357 358.

BIRT, Mond IIIa 247.

BISCHOF, Eigenbewegung des Sonnensystems IIIb 108 109.

BISHOP, Doppelsterne I 674; Sterncataloge und Sternkarten IIIb 516 518,

BLAIR, Fernrohr I 724.

BLANPAIN, Kometen und Meteore II 75.

BLOCK, E., Azimuthbestimmung I 439. BLOXAM, Uhr IV 27; Zeitbestimmung IV 177. Boas, Fernrohr I 749.

BODE, J E., Doppelsterne I 671; Mikrometer IIIa 114; Planeten IIIa 385 428 429

435; Sternbilder IIIb 109; Sterncataloge und Sternkarten IIIb 461 475 513; Universum IV 66.

BOECKH, A., Chronologic I 624. BOEDDICKER, Universum IV 68 118.

Boguslawski, Kometen und Meteore Il 54; Mikrometer III a 92; Mond III a 280.

BOHLIN, Mechanik des Himmels II 453. BOHNENBERGER, Finsternisse 1 760.

23

BOLTE, Eigenbewegung des Sonnensystems III b

BOMPAS, Kometen und Meteore II 163.

BOND, Astrophotographie I 300 303 304; Astrophotometrie I 332 341 342 363; Kometen und Meteore II 74; Mechanik des Himmels II 330; Planeten III a 423 424 425 426 427 428 431 432; Registrirapparate IIIb 33 34; Sternhaufen und Nebelflecke III b 525.

BONIFACIUS IV., Chronologie I 614. BONPLAND, Kometen und Meteore II 114.

BONTEMPS, Fernrohr I 706 707.

BORASTON, Universum IV 103 110. BORDA, Längenbestimmung II 275; Multiplikationskreis IIIa 288.

BORKLLUS, PETRUS, Fernrohr I 700.

BORELLY, Kometen und Meteore II 75; Sterncataloge und Sternkarten IIIb 517.

BÖRGEN, Sterncataloge und Sternkarten IIIb

Boscovich, R. J., Einleitung I 97 118 151 153; Bahnbestimmung I 568; Fernrohr I 705; Mikrometer III a 71 217.

Boss, Lewis, Kometen und Meteore II 71; Eigenbewegung des Sonnensystems IIIb 108; Sterncataloge und Sternkarten III b 473 474; Universum IV 105.

Bossert, M. J., Kometen und Meteore II 69 76; Sterncataloge und Sternkarten III b

472 480.

BOUGUER, Einleitung I 118 163; Astrophotometrie I 326 331 332 362; Heliometer II 4 5; Mikrometer III a 198.

BOUQUET, Persönliche Gleichung IIIa 382.

BOURDIN, Uhr IV 14.

BOUVARD, Kometen und Metcore II 74: Planeten IIIa 429 430 431.

BRADLEY, JAMES, Einleitung I 98 117 118 158 162; Aberration I 170; Altazimuth I 204; Doppelsterne I 671; Methode der kleinsten Quadrate IIIa 40; Mikrometer IIIa 67; Nutation IIIa 306; Parallaxe IIIa 346; Planeten IIIa 427 429; Präcession III b 16; Eigenbewegung des Sonnensystems IIIb 100 107 108; Sterncataloge und Sternkarten IIIb 457 458 459 460 462 473 475 478 487 498 504 515.

BRAHE, CHRISTINE, Einleitung I 67.

BRAHE, TYCHO 8. TYCHO.

BRANDER, Mikrometer III a 65.

BRANDES, Fernrohr I 722; Heliometer II 5; Kometen und Meteore II 110 112 113 115 116 126 133 135 136 146 160 162 163.

BRASHEAR, Astrophotographie I 222; Fernrohr I 748; Sternwarten III b 546.

Braun, C., Astrophotographie I 222; Kosmogonie II 229; Persönliche Gleichung IIIa 376; Theilfehler III b 611.

Bredichin, Th., Kometen und Meteore II 66 87 88 222; Planeten IIIa 417; Sterncataloge und Sternkarten III b 491 502.

BREEN, Planeten IIIa 429. BREGUET, Chronometer I 630 634.

BREITHAUPT, Astrophotographie I 267.

BREMIKER, Einleitung I 160; Längenbestimmung II 275; Sterncataloge und Sternkarten IIIb 516.

BRENDEL, M., Mikrometer IIIa 224 225 227 229 230 231 233 234 235.

BRETTNER, Kometen und Meteore II 116. BREWSTER, Mikrometer IIIa 112.

BRIGGS, H., Einleitung I 94.

BRINKLEY, Bahnbestimmung I 569; Sterncataloge und Sternkarten IIIb 480 481

BRINKMEIER, E., Chronologie I 624.

BRIOSCHI, Polliöhe IIIa 491; Sterncataloge und Sternkarten IIIb 482.

BRISBANE, Sterncataloge und Sternkarten III b 475 483.

BROOKS, Bahnbestimmung I 561; Kometen und Meteore II 52 62 69 77 94; Mechanik des Himmels II 336 343 351 358. BRORSEN, Kometen und Meteore II 70 75 94

95 218; Zodiakallicht JV 185.

BROWNING, JOHN, Astrophotographic I 221 230 246 251; Astrospectroskopie I 375 379 380 386; Mikrometer IIIa 138 201; Planeten IIIa 417.

BRUHNS, CARL, Konieten und Meteore II 74 75; Registrirapparate III b 43; Strahlenbrechung III b 557.

BRULOFF, Sternwarten III b 531.

BRUNNER, Aequatoreal I 194 195.

Brünnow, Balinbestimmung I 535 572 573; Kometen und Meteore II 71; Mechanik d. Himmels II 312; Methode d. kleinsten Quadrate III a 29 39; Mikrometer III a

BRUNO, GIORDANO, Einleitung I 72 78. BRUNOWSKI, JOHANN, Astrophotometrie 1 356 358.

BRUNS, II., Einleitung I 151; Methode der kleinsten Quadrate IIIa 32; Strahlenbrechung IIIb 549 552 571; Theilfehler IIIb 610 611.

BRYGIUS, Astrophotometrie I 357.

BUCHHOLZ, Finsternisse I 839; Planeten III a

BUCKINGHAM, Acquatoreal I 194; Kometen u. Meteore II 73.

BUFFON, Einleitung I 121; Kosmogonie II 246. BUGGE, Altazimuth I 204

BULLIALDUS, Einleitung I 96; Kometen und Meteore II 60.

BURATINI, Planeten III a 393.

BURCHELL, Astrophotometrie I 353.

BURCKHARDT, J. C., Bahnbestimmung I 569 570; Finsternisse I 813; Kometen und Meteore II 72; Mechanik des Himmels II 459; Mikrometer III a 68 104; Planeten III a 429; Präcession III b 17.

BÜRG, Finsternisse I 813; Mechanik des Himmels II 459.

BÜRGI, J., Einleitung I 72 94; Uhr IV 4. BURNHAM, Doppelsterne I 674 675 690; Mikrometer IIIa 128 132; Planeten III a 418; Sternbilder IIIb 112 113.

BURTON, CH. E., Mikrometer III a 136.

BUSAEUS, Einleitung I 76. Buscii, Heliometer II 10; Sterncataloge und Sternkarten IIIb 485.

CACCIATORE, Astrospectroskopie I 405; Sterncataloge und Sternkarten IIIb 480. CAESAR, JULIUS, Einleitung I 31; Chronologic

I 613 614.

CAGNOLL, Mikrometer IIIa 243; Sterncataloge und Sternkarten IIIb 479 480.

CALANDRELLI, Sterncataloge und Sternkarten IIIb 492.

CALANDRIN, Einleitung I 122.

CALIPPUS, Einleitung I 15 16 17.

CALLANDREAU, Kometen und Meteore II 93 219. CAMPANI, GIUSEPPE, Fernrohr I 702 719.

CAMPANI, MATTEO, Fernrohr I 702.

CAMPANUS, JOHANNES, Einleitung I 53.

CAMPBELL, Astrospectroskopie I 380 406 409; Kometen und Meteore II 56: Universum IV 110.

CAMPHAUSEN, L., Astrophotographic I 258; Astrospectros kopie I 370 389 428.

CAPELLA, MARTIANUS, Einleitung I 48 58. CAPELLI, Sterncataloge und Sternkarten III b

CAPOCCI, Kometen und Meteore II 211; Planeten III a 433.

CARDANUS, Chronometer I 634; Kometen und Meteore II 208.

CARL, PH., Fernrohr I 721 736; Mikrometer III a 126; Uhr IV 19.

CARLINI, Bahnbestimmung I 509; Sterncataloge und Sternkarten IIIb 485.

CARPENTIER, Uhr IV 40.

CARRINGTON, R. C., Sonne IIIb 63 65 66 72; Sterncataloge und Sternkarten III b 486 491 492 519.

CARTESIUS, RENATUS (DESCARTES), Einleitung I 116; Fernrohr I 700 701; Kosmogonie II 228.

CARUS, Kometen und Meteore II 107.

CARY, Sterncataloge und Sternkarten III b 481.

CASPAFI, Chronometer I 647 649. Cassegrain, Astrophotographie I 214 238 256; Fernrohr I 704 744 746; Mikrometer IIIa

CASSINI I 1625-1712 (JEAN DOMINIQUE) Einleitung I 96 97 117 118 120; Astrophotometrie I 357; Bahnbestimmung I 571; Kosmogonie II 243 244; Mechanik des Himmels II 605 609; Mikrometer IIIa 65 66 68 100 167; Mond IIIa 247 264 276 277; Parallaxe IIIa 328; Planeten IIIa 393 398 399 414 415 420 422 426 427 428; Sonne IIIb 65; Zodiakallicht IV 184.

CASSINI II 1677-1756 (JACQUES) Einleitung I 118 120; Planeten III a 393 425 428; Sonne III b 69.

CASSINI IV 1748-1845 (JEAN DOMINIQUE) Sterncataloge und Sternkarten III b 479. CASTOR, Doppelsterne I 677.

CATELL, Persönliche Gleichung III a 379.

CAUCHOIX, A equatoreal I 194.

CAUCHY, L. H., Einleitung I 156; Bahnbestimmung I 570 571; Mechanik des Himmels II 395; Strahlenbrechung III b 589.

CAUSLAND, Astrophotographic I 239 240. CAYLEY, A., Bahnbestimmung I 534 572;

Finsternisse I 813. CELORIA, GIOVANNI, Kometen und Meteore II 52; Universum IV 73 74 84 88 89 120 121.

CENSORINUS, Einleitung I 5 48.

CERASKI, W., Astrophotometrie I 344; Sterncataloge und Sternkarten IIIb 508.

CERULLI, Planeten III a 410; Sterncataloge u. Sternkarten IIIb 507.

CHACORNAC, Sterncataloge und Sternkarten III b 516 517 518; Universum IV 74.

CHALLIS, J., Einleitung I 159 571; Kometen und Meteore II 75; Planeten IIIa 431. CHAMBERS, Universum IV 70.

CHANCE, Fernrohr I 706 707.

CHANDLER, S. C., Almucantar I 196 197 202; Astrophotometrie I 350 364; Kometen u. Meteore II 65 66 72 92 93; Mechanik des Himmels II 604; Mikrometer III a 104; Polhöhe III a 493; Sternbilder III b 112 449; Sterncataloge und Sternkarten IIIb 461; Strahlenbrechung IIIb 598.

CHANTZIDAKIS, Kometen und Meteore II 161.

CHAPEL, Kometen und Meteore II 183. CHAPPUIS, Strahlenbrechung III b 553.

CHARLIER, Kometen und Meteore II 96 97.

CHARLOIS, Astrophotographic I 239; Kometen und Meteore II 62 63 75; Planeten III a 440.

CHASE, Heliometer II 23.

CHLADNI, Einleitung I 161; Kometen und Meteore II 51 105 106 108 110 111 112 113 114 115 116 126 159 208.

CHRISTIE, W. H. M., Astrophotometric I 316 363; Astrospectroskopic I 387 388 428; Personliche Gleichung IIIa 374; Planeten III a 409; Sterncataloge und Sternkarten IIIb sor.

CICERO, Einleitung I 31 53.
CLAIRAUT, A. C., Einleitung I 117 121 122 123 124 125 129 130 133 140 145 146 147 158; Mechanik des Himmels II 406 555 604.

CLARK, Acquatoreal I 194; Doppelsterne I 688; Fernrohr I 742; Mikrometer IIIa 115 127 128 132 133; Planeten IIIa 413; Sternbilder IIIb 113; Sterncataloge und Sternkarten IIIb 517.

CLAUSEN, TH., Bahnbestimmung I 519 571; Kometen und Meteore II 72 75 90 91; Mikrometer IIIa 218 219; Sterncataloge und Sternkarten III b 488.

CLEMENS, Sterncataloge und Sternkarten III b 522.

CLEMENT, Uhr IV 22.

Coggia, Kometen und Meteore II 70 94; Sterncataloge und Sternkarten IIIb 517.

COHN, FRITZ, Sterncataloge und Sternkarten IIIb 457 481.

COLLA. Kometen und Meteore II 94 218.

COMMON, Astrophotographie I 225; Kometen und Metcore II 75.

COMSTOCK, G. C., Sterncataloge und Sternkarten III b 502 503.
DE CONDORCET, J. M., Bahnbestimmung I

CONTARINO, Polhöhe III a 477 485 490; Sterncataloge und Sternkarten IIIb 500,

COOKE, Aequatoreal I 194 195; Astrophotographie I 243; Fernrohr I 735 737.

COOPER, Sterncataloge und Sternkarten III b 486 517.

COPELAND, Astrospectroskopie I 409 423 425; Planeten III a 389; Polhöhe III a 480; Sterncataloge und Sternkarten IIIb 486 499.

COPERNICUS, NICOLAUS, Einleitung I 57 58 59 60 61 62 63 64 65 66 67 72 73 74 75 77 78 79 80 93 95 96 97 98 99; Kometen und Meteore II 159; Mikrometer IIIa 91; Parallaxe IIIa 321 341; Pol-höhe IIIa 480; Universum IV 58 98.

COQUEBERT, EUGÈNE, Kometen und Meteore II 113.

CORDER, Kometen uud Meteore II 181 213. CORNU, A., Astrophotographie I 252; Astrospectroskopie I 396 399 426 429; Strahlenbrechung III b 590.

CORRIGAN, Kometen und Meteore II 211. CORVINUS, MATHIAS, Einleitung I 55. CÖSTER, Fernrohr I 701 702 703. COULVIER-GRAVIER, Kometen und Meteore II 158 159 160 163 164 169 184.

COUMBARY, Planeten III a 433. CRAIG, Astrophotographie I 301. CRASSUS, HORATIUS, Kometen und Meteure II

CRELLE, Methode der kleinsten Quadrate III a

CREW, Astrospectroskopie I 426.

CRISWICH, Personliche Gleichung III a 382. CROLL, Kosmogonie II 232. CROOKES, Astrophotographic I 301; Kosmogo-

nie II 230 231. CROSSLEY, Doppelsterne I 685; Universum IV

CROVA, Astrophotometrie I 331 363.

CRULS, Kometen und Meteore II 62. CUSA, NICOLAUS VON, Einleitung I 58; Chrono-

logie I 615. CYSATUS, Kometen und Meteore II 57 59; Sternhaufen und Nebelflecke IIIb 524.

CZAPSKI, S., Fernrohr I 706 708 721 722 723 726 727 737 738 739; Mikrometer III a 132 237

CZUBER, E., Methode der kleinsten Quadrate IIIa 30 39 58.

DAGUET, Fernrohr I 706 707. DALLMEYER, Astrophotographic I 235. DAMOISEAU, Einleitung I 158; Finsternisse I 813 838; Mechanik des Himmels II 449 454 455; Parallaxe IIIa 339.

DANCKWORTT, O., Chronologie I 602. DARBOUX, Doppelsterne I 676. DARWIN, CH., Kosmogonie II 229 230.

DARWIN, G. H., Finsternisse I 814; Horizontalpendel II 40; Kosmogonie II 233 242; Mechanik des Himmels II 601.

DAUBRÉE, Kometen und Meteore II 105 100 154.

DAVIDSON, Kometen und Meteore II 94 218. Davis, Sterncataloge und Sternkarten III b 480. DAVY, HENRY, Kometen und Metcore II 115 126

DAWES, W. R., Astrophotometrie I 316 321 363; Doppelsterne I 674 675; Mikrometer III a 163 200 201 223 224; Planeten IIIa 401 417 423 424 426; Sternbilder IIIb 113.

DECUPPIS, Planeten III a 433. DELAMBRE, Einleitung I 5; Bahnbestimmung I 465 546; Finsternisse I 838; Polhöhe IIIa 446; Sonne IIIb 65.

DELAUNAY, Ch., Einleitung I 132 139 159. Finsternisse I 813 814, Mechanik des Himmels II 451 452 454 455 456 458; Parallaxe III a 339.

Delisle, Kosmogonie II 230; Parallaxe III a 338.

DEMBOWSKI, Doppelsterne I 674 675; Mikrometer IIIa 163; Sternbilder III b 113. DEMOKRIT, Kometen und Meteore II 50 59;

Universum IV 57. DENKER, Uhr IV 20.

DENNING, Kometen und Meteore II 52 77 181 201 213; Planeten IIIa 417 420.

DENT, Chronometer I 639; Uhr IV 15 22 25; Zeitbestimmung IV 177 178. DENZA, Kometen und Meteore II 213.

DESLANDRES, Astrophotographie I 215 247. DESTOUCHES, Einleitung I 121.

DEWAR, Astrospectroskopie I 421. DIDEROT, Einleitung I 121.

Didion, Kometen und Meteore II 154 156

DIPPEL, Fernrohr I 722. DIOCLETIAN, Chronologie I 610 614.

DIODOR, Einleitung I 17.

DIOGENES LAERTIUS, Einleitung I 17; Kometen und Meteore II 50.

Dionysius, Exicuus, Chronologie I 614 615. Dirichlet, Methode der kleinsten Quadrate III a 30.

DITSCHEINER, Astrospectroskopie I 396. DITSCHENKO, Sterncataloge und Sternkarten

III b 509. DIVINI, EUSTACHIO, Fernrohr I 703.

DOBERCK, W., Planeten IIIa 430; Sterncataloge und Sternkarten IIIb 511; Uhr IV 20; Universum IV 110.

Döllen, Doppelsterne I 673; Sterncataloge u. Sternkarten III b 482; Zeitbestimmung IV 158 164 165.

Dellond, George, Mikrometer IIIa 202 223. DOLLOND, JOHN, Fernrohr I 705 718 724: Heliometer II 5; Mikrometer IIIa 198 199.

DOLLOND, PETER, Fernrohr I 705 706; Mikrometer III a 216. DONATI, Kometen und Meteore II 55 56 86 04 102. DOPPLER, CHRISTIAN, Einleitung I 163: Astrophotometrie I 359; Astrospectroskopie I 382 399 403 424 425 426 427 428; Doppelsterne I 675 690. DÖRFEL, Einleitung I 98. DOVE, Fernrohr I 706; Kometen und Meteore II 116. Dowes, Zeitbestimmung IV 177. DOWNING, Mechanik des Himmels II 573; Sterncataloge und Sternkarten IIIb 462 464 485. DRACHOUSOFF, Sterncataloge und Sternkarten III b 491. DRAPER, HENRY, Astrophotographic I 300 302 304: Astrospectroskopie I 391 396 397 423; Fernrohr I 747. DREVER, Polhöhe III a 480; Sternbilder III b 112 114 119 120 123 125 129 130 131 136 139 146 147 148 152 153 156 157 161 162 163 164 165 166 168 172 173 177 178 181 182 183 185 186 188 190 191 196 200 201 202 207 211 212 213 214 215 216 217 219 221 222 224 225 226 227 228 230 231 232 233 234 236 242 243 246 247 249 250 251 252 256 257 258 259 262 265 266 267 268 269 271 272 275 276 278 279 283 284 285 286 289 293 294 295 296 298 300 302 306 307 308 309 310 311 312 314 315 316 317 319 320 322 325 326 329 331 332 336 338 340 342 347 348 354 355 357 358 363 364 365 366 367 371 372 373 375 376 377 378 381 382 383 384 385 387 389 390 393 394 398 400 401 402 404 405 409 410 412 414 416 417 418 422 423 424 425 426 429 434 435 436 437 438 439 440 441 442 445 447 452; Sterncataloge und Sternkarten IIIb 499; Sternhaufen und Nebelflecke III b 525; Universum IV 113 114. Dubois, E., Bahnbestimmung I 458 572. DUFET, Strahlenbrechung IIIb 553 554. DUFOUR, Scintillation III b 51 52 53 54 56. DÜHRING, Kosmogonie II 234. DUMOUCHEL, Kometen und Meteore II 69. Dunér, Astrospectroskopie I 426 427; Doppelsterne I 674 675; Mikrometer III a 182 183: Sonne III b 71. DUNKIN, Persönliche Gleichung III a 382; Eigenbewegung des Sonnensystems III b 108. DUNLOP, JAMES, Kometen und Meteore II 74; Sternbilder IIIb 113; Sternhaufen und

E

Nebelflecke III b 524.

DUNTHORNE, Einleitung I 119.

DUTERTRE, Chronometer I 625 629.

DUPREL, Kosmogonie II 229.

EARNSHAW, Chsonometer I 625 626.
EASTMAN, Bersönliche Gleichung III a 374;
Sonne III b 76; Sterncataloge und Sternkarten III b 498.

EASTON, Universum IV 63 65 68 70 118 119 120 121 122 123. EBERHARD, G., Kosmogonie II 229 230 242.

EBERT, H, Kosmogonie II 228 230; Mond III a 248 286 287 288.

EBLE, Zeitbestimmung IV 179 180. EDER, J. M., Astrophotographie I 244 271. EGGER, Uhr IV 39.

EGOROFF, Astrospectroskopie I 399. EGTs, Uhr IV 38.

EHLERT, R., Horizontalpendel II 39 41. EICHENS, MARTIN, Acquatoreal I 194 195.

EIFFE, Chronometer I 625 643. ELGER, Planeten III a 426.

ELKIN, Heliometer II 11 17 23; Kometen u. Meteore II 60 61; Parallaxe IIIa 352; Sterncataloge und Sternkarten IIIb 463; Sternhaufen und Nebelflecke IIIb 527.

ELLERY, R. L. J., Sterncataloge und Sternkarten III b 501.

ELLIS, Persönliche Gleichung IIIa 382.

ELLS, Fersonince Geichung III a 362.

EKCKE, JUHANN, FRANZ, Einleitung I 92 155

160 163; Bahnbestimmung I 459 464

466 482 449 7504 505 546 547 551 552

557 570 571; Coordinaten I 665; Doppelsterne I 676; Finsternisse I 821 825;
Interpolation II 41; Kometen und Meteore II 60 68 69 74 75 86 90 94 101

102 227; Längenbestimmung II 275; Mechanik des Himmels II 307 330 485 402

493; Mechanische Quadratur II 618; Methode der kleinsten Quadratur II 618; Methode der kleinsten Quadratur III a 368;
Flancten III a 199; Parallaxe III a 368;
Flancten III a 389 390 414 422 423 424

425 426 427 428 436; Eigenbewegung
des Sonnensystems III b 107; Sterncataloge und Sternkarten III b 461; Sternwarten 531.

v. ENDR, Planeten IIIa 398. ENGEL, FR., Universum IV 124.

ENGELMANN, RUDOLIH, Astrophotometric I 342 363; Doppelsterne I 674; Heliometer II 6 13; Kometen und Meteore II 74; Kosmogonic II 236; Mikrometer IIIa 67 78 175 215 242; Planeten IIIa 399 418 419; Sterncataloge und Sternkarten III b 460 406 407.

ENGSTRÖM, Kometen und Meteore II 75. ENNUS, Mechanik des Himmels II 455. EPIGENES, Einleitung I 17; Kometen und Meteore II 50.

EPPS, Sterncataloge und Sternkarten IIIb 490.
EPSTRIN, Universum IV 119 120 121.

ERATOSTHENES, Einleitung I 18 30.

ERCK, Planeten IIIa 413.

ERMAN, Einleitung I 161; Kometen und Metore II 147 188 189 195 196 209; Eigenbewegung des Sonnensystems III b 107.
ERNST II. HERZOG VON GOTHA, Sternwarten

IIIb 531. ERTEL, Theilfehler IIIb 602 603 606; Verti-

calkreis IV 127.
ESPIN, Astrophotographie I 230; Astrospectro-

skopie I 422. ESSELBACH, Astrospectroskopie I 396. EUCLID, Mechanik des Himmels II 270. EUDOXUS, Einleitung I o 10 11 13 14 15 16 17 52; Sterncataloge und Sternkarten IIIb 455.

EULER, LEONH., Einleitung I 115 117 121 122 131 132 133 138 140 141 142 143 145 146 148 149 150 153 154 159 160; Astrophotometrie I 333 335 342 362; Bahnbestimmung I 504 515 531 559 Bahnbestimmung I 504 515 531 559 560 568 569 573; Fernrohr I 704 705; Kosmogonie II 234; Mechanik des Himmels II 298 301 366 372 565 567 602 603 604; Planeten IIIa 386; Strahlenbrechung IIIb 568.

EVERETT, Miss, Sterncataloge und Sternkarten

IIIb 522.

EWING, Horizontalpendel II 32. EXNER, K., Scintillation IIIb 51 55 57. EXNER, SIGM., Personliche Gleichung III a 375 377 378.

FARRICIUS, DAVID, Einleitung I 76 78 96; Astrophotometrie I 353 356; Sternbilder Illb 208.

FABRICIUS, JOHANNES, Einleitung 1 76; Sonne IIIb 60. FABRITIUS, W., Bahnbestimmungen I 452 464

496 569 573: Mikrometer III a 70 100; Ort IIIa 313: Sterncataloge und Sternkarten IIIb 502; Strahlenbrechung IIIb 562.

FALLOWS, F., Sterncataloge und Sternkarten IIIb 475 482 484.

FARADAY, Fernrohr I 706; Kosmogonie II 231. FASHENDER, Chronologic I 624.

FAUTH, Mikrometer IIIa 279; Planeten IIIa 415 416 423 424.

FAVE, Einleitung I 160; Kometen u. Metcore II 75 127 179 222 227 228; Kosmogonie II 228 235 240 241 243 244 245; Planeten IIIa 414; Polhöhe IIIa 491; Sonne IIIb 66 70 73 74 84; Strahlenbrechung IIIb 582.

FECHNER, Astrophotometrie I 322 323 324. FECKER, Registrirapparate IIIb 38 39. FEDORENKO, IVAN, Sterncataloge und Sternkarten IIIb 479.

FEIL, Fernrohr I 706 707 740. FELDT, L., Chronologie I 624; Kometen und

Metcore II 116 118 146. FERGOLA, Polhöhe III a 492.

FERGUSSON, Planeten III a 434 435. FERRARIS, Fernrohr I 706 736. FEUILLÉE, Doppelsterne I 671.

FIEVEZ, CH., Astrospectroskopie I 394 398 429. FINLAY, Heliometer II 23; Kometen und Me-

teore II 60 61 75 77. FISCHER, Methode der kleinsten Quadrate Illa

39. FITZ, Acquatoreal I 194 195.

FIZEAU, Planeten III a 410. FLAMMARION, C., Doppelsterne I 685 687.

FLAMSTEED, JOHN, Einleitung I 98; Kometen und Meteore II 68; Planeten III a 429; Sternbilder IIIb 109 111; Sterncataloge und Sternkarten 111b 456 475 478 479 513.

FLAUGERGUES, Mikrometer IIIa 68; Planeten III a 304: Sterncataloge und Sternkarten III b 479.

FLETSCHER, Doppelsterne I 674.

FLINT, ALBERT S., Sterncataloge und Sternkarten IIIb 509.

FOLIE, Eigenbewegung des Sonnensystems IIIb 108.

FONTANA, FÉLICE, Einleitung I 118; Mikrometer IIIa 116; Planeten IIIa 398 399

FORBES, Astrophotometrie I 331 363; Planeten IIIa 434.

FÖRSTER, W., Biegung I 583; Kometen und Meteore II 74; Mikrometer III a 132 134 140 144 191; Polhöhe III a 475 477 480; Sterncataloge und Sternkarten IIIb 461 471; Uhr IV 19; Universaltransit IV 54. FORSTER, Fernrohr I 746.

FOUCAULT, Astrophotographie I 230 231; Fern-

rohr I 708 745 747.

FOURIER, Einleitung I 146: Mechanik des Himmels II 308 492; Mechanische Quadratur II 637 642.

FRACASTOR, Einleitung I 71; Kometen und Meteore II 55.

FRANKLAND, Astrospectroskopie I 423; Sonne Шь 75

FRANZ, J., Heliometer II 9 11; Mechanik des Himmels II 609 612 618.

FRAUNITOFER, Einleitung I 163; Aequatoreal I 179 189 195; Astrophotographie I 258 302; Astrospectroskopie I 368 387 396 400 405 407 408 409 410 412 428; Doppelsterne I 673: Fernrohr I 707 722 724 726 727 728 738 739 741; Heliometer II 4 5 6 7 8 12 13 16 24; Mikrometer IIIa 69 70 71 90 91 114 115 118 119 121 122 126 127 128 129 144 162 189 199 237; Registrirapparate IIIb 34; Sonne III b 64 78 79; Strahlenbrechung III b 589.

FRIC, J., Astrophotographie I 222. FRIEDRICH, Personliche Gleichung III a 378. FRIEDRICH II. VON DÄNEMARK, Einleitung I 67. FRIEDRICH II. VON DEUTSCHLAND, Einleitung I 53.

FRIEDRICH II. VON PREUSSEN, Einleitung I 121 133; Chronologie I 616.

FRISCHAUF, J., Bahnbestimmung I 572. FRISIUS, GEMMA, Zeithestimmung IV 181.

FRITSCH, K., Fernrohr I 746; Planeten III a

FUESS, Astrophotographie. I 243 244; Mikrometer IIIa Tafel II Seite 134: Registrirapparate III b 38 40.

Fuss, Fernrohr I 705; Strahlenbrechung III b 563 595.

GAILLOT, Planeten III a 434. GAKSCH, C., Zeitbestimmung IV 172. GALE, Mikrometer III a 102.

VAN GALEN, Kometen und Meteore II 75.

Galilei, Galileo, Einleitung I 74 75 76 77 94 99 101; Astrophotographic I 256; Astrospectroskopie I 391; Fernrohr I 700 701; Mond IIIa 246 281; Parallaxe IIIa 349; Planeten IIIa 393 413 418 420

428; Sonne III b 60 61 69; Uhr IV 3 4 5 6; Universum IV 58.

GALILEI, VINCENZIO, Uhr IV S.

GALLE, Einleitung I 160; Kometen und Meteore II 52 200 211; Parallaxe IIIa 331; Planeten IIIa 423 424 425 427 431.

GALLET, Planeten IIIa 426,

Galloway, Eigenbewegung des Sonnensystems III b 108.

GAMBART, Kometen und Meteore II 73.

GASCOIGNE, WILLIAM, Einleitung I 98; Fernrohr I 720; Kometen und Meteore II 53; Mikrometer IIIa 110 111.

DE GASPARIS, A., Bahnbestimmung I 571. GASSENDI, Einleitung I 97; Planeten IIIa 420. GAUDIBERT, Mond IIIa 279.

GAUSS, CARL FRIEDRICH, Einleitung I 115 154
157 158 159 163; Balanbestimmung I
452 457 464 465 467 478 486 489 490
492 493 495 508 509 515 522 526 533
534 535 536 570 571 572 573; Chronologic I 619 621 624; Coordinaten I 662
663 665 667; Fernrohr I 705 710 715
722 723 724 726 728 736; Finsternises
I 828; Heliotrop II 27; Kometen und
Meteore II 73 210; Mechanik d, Himmels
II 302 303 312 374 395 397 576; Meridiankreis IIIa 10; Methode der kleinsten
Quadrate IIIa 29 34 49 51 52 54 55 63;
Planeten IIIa 385 414 435; Prācession
IIIb 4 8 9; Eigenbewegung des Sonnensystems IIII 107; Sterncataloge u. Sternkarten IIIb 481; Zeithestimmung IV 157.

GAUTITIER, Astrophotographie I 269 270; Sterncataloge und Sternkarten III b 508.

GAUTIER, Sonne IIIb 74.

GAY-LUSSAC, Strahlenbrechung IIIb 552 553

GEBAUER, Kometen und Meteore II 116. GEBLER, Fernrohr I 722.

Genler, Fernrohr I 737; Uhr IV 3 12 13 14

Getssler, Astrophotographie I 256 276; Astrospectroskopie I 377 409 410; Kometen und Meteore II 89.

GEIST, Uhr IV 34.

GELCICH, Chronometer I 649; Uhr IV 13 14. GEMMA, CORNELIUS, Kometen und Meteore II 54 56.

GENSICHEN, Kosmogonie II 228.

GEORG FRIEDRICH VON BRANDENBURG-ANSPACH, Einleitung I 76.

GEORG III. VON ENGLAND, Einleitung I 156. GERLAND, E., Fernrohr I 700 701 702 703; Uhr IV 5.

Gtacomelli, F., Sterncataloge und Sternkarten III b 506.

GIBBS, J. W., Bahnbestimmung I 573.

GIESE, TIEDEMANN VON KUIM, Einleitung I 66.
GILL, DAVID, Astrophotographie I 226 234 237
279 280 282 295; Heliometer II 17 22
23: Parallaxe IIIa 330 331 332 340 352;
Persönliche Gleichung IIIa 381; Stern

cataloge und Sternkarten IIIb 463 466 499 507 521; Strahlenbrechung IIIb 591 600.

Gilliss, Parallaxe IIIa 330; Sterncataloge u. Sternkarten IIIb 486 480.

GINZEL, F. K., Einleitung I 119; Chronologic I 601; Finsternisse I 797 816 817; Kometen und Meteore II 60.

GLASENAPP, Aberration I 171; Doppelsterne I 674.

GLEDHILL, Doppelsterne I 674 685.

Godin, Sterncataloge und Sternkarten IIIb 462.

GOLDSCHMIDT, Fernrohr I 722; Planeten III a 437; Sternhaufen und Nebelflecke III b 527.

GOODRICKE, Astrophotometrie I 350 351. GORDAN, Methode der kleinsten Quadrate III n

GORE, Astrophotometric I 350 364; Planeten

III a 385; Universum IV 95 98.
von GOTHARD, Astrophotographie I 219 221
222 223 225 226 227 228 229 234 235
236 237 239 241 242 244 245 246 247
248 249 251 253 254 255 256 263 270
271 273 277; Sternhaufen und Nebelflecke III b 527.

Gould, Benjamin A., Einleitung I 162; Astrophotographie I 304; Astro-photometrie I 343 347 340; Bahnhestimmung I 497; Kometen und Meteore II 55 70; Planeten III 4 437; Sternbider III b 111 112 126 141 167 189 341 377; Sterneataloge u. Sternkarten IIIb 464 479 499 503 514 521; Sternhaufen und Nebelflecke IIIb 527; Universum IV 66 67 68 69 70 77 96 97 122.

GRAHAM, Registrirapparate IIIb 46; Sterncataloge und Sternkarten IIIb 486 517; Uhr IV 14 23.

GRANJEAN, Chronometer I 648.

GRANT, ROBERT, Sterncataloge und Sternkarten IIIb 497 506.

GRASHOFF, Uhr IV 10 11 21. GRAU, Uhr IV 36.

GRAY, Horizontalpendel II 32.

GREEN, Universum IV 68.

GREG, Kometen und Meteore II 181 183 213. GREGOR XIII., Einleitung I 94; Chronologie I

615; Kometen und Meteore II 185. Gregory, D., Einleitung I 97; Fernrohr I 703 744.

GRIMALDI, Mond III a 246.

GRISCHOW, Kometen und Meteore II 72. GROOMBRIDGE, STEPHAN, Einleitung I 162; Sterncataloge und Sternkarten III b 475

476 480. GROSELANDE, Uhr IV 29.

GROSSMANN. E., Mikrometer III a 164; Uhr IV 13.

GROTEFEND, H., Chronologie I 624.

GRUBB, HOWARD, Acquatoreal I 194; Astrophotographie I 226 230; Astrospectroskopie I 386; Fernrohr I 746; Mikrometer III a 132 133 136.

GRUBER, Kometen und Meteore II 181 213.

GRUEY, Biegung I 501; Theilfehler IIIb 611; Zodiakallicht IV 184.

GRUTHUYZEN, Horizontalpendel H 28; Mond HI a 247; Planeten HI a 417 433. GRÜNWALD, Kosmogonie II 231.

GUILELMUS, ABBAS HIRSAUGIENSIS, Einleitung 1

53. GUINAUD, Fernroht I 706.

VON GUMPACH, JOHANN, Chronologie I 596 598.

GUSSEW, Personliche Gleichung III a 371.

VON GUTSCHOVEN, GERHARD, Fernrohr I 702. Gyi Dén, Hugo, Einleitung I 138 159; Aberration I 171; Astrophotometrie I 328; Bahnbestimmung I 573; Mechanik des Himmels II 395 446 457 493 494 497 498 499 505 510 513 514 517 519 520 601; Sterncataloge und Sternkarten III b , 472 499; Strahlenbrechung IIIb 558 559 560 561 562 563 564 565 566 577 587 589 596 597 598; Universum IV 95.

HADLEY, Einleitung I 117: Jacobsstab II 40: Niveau, Niveauprüfer III a 289; Planeten III a 425; Prismenkreis III b 18 20.

VON HAERDTL, Kometen und Meteore II 52; Planeten III a 390 415.

HAGEN, Horizontalpendel II 37; Methode der kleinsten Quadrate III a 30; Sterncataloge und Sternkarten IIIb 490.

HAHN, Sternhaufen und Nebelflecke IIIb 527. HAIDINGER, Kometen und Meteore II 150. HAKEM, Einleitung I 53.

HALE, G., Astrophotographie I 222 247.

HALL, A., Einleitung I 108; Doppelsterne I 674; Mikrometer IIIa 169 172; Planeten IIIa 399 413 420 421 425 426 439; Sternhaufen und Nebelflecke III b 526.

HALL, MAXWELL, Astrophotometrie I 340; Parallaxe IIIa 329.

HALLEY, Einleitung I 51 117 118 119 120 121 139 147 148; Astrophotometrie I 353; Finsternisse I 813; Kometen und Meteore II 52 57 68 69 88 94 111; Tafel III 218; Mechanik des Himmels II 304 403; Parallaxe III a 327 333 338; Sonne IIIb 75: Eigenbewegung des Sonnensystems III b 92; Sternbilder III b 109; Sterncataloge und Sternkarten III b 456; Sternhaufen und Nebelflecke IIIb 524.

HALM, Sterncataloge und Sternkarten III b 486, HALFHÉN, Doppelsterne I 676.

HAMBURGER, M., Chronologie I 624.

HAMILTON, Mechanik des Himmels II 289. HANKEL, Mikrometer IIIa 223.

HANSEN, PETER ANDR., Einleitung I 137 140 146 147 158 159 162; Astrophotographic I 216; Bahnbestimmung I 464 466 484 492 493 498 499 570 571 572 573; Bicgung I 580 581; Chronologie I 594; Finsternisse I 753 760 765 766 768 769

770 771 789 795 796 808 813 816 817 818 827 828; Heliometer II 6 24; Mechanik des Himmels II 311 330 343 372

374 396 415 416 418 419 421 422 426

428 429 430 444 451 453 454 455 456 459 460 478 638 643; Meridiankreis IIIa 8 14; Mikrometer IIIa 87 199 238; Mond IIIa 245; Parallaxe IIIa 325 326 338 339 340; Passageninstrument IIIa 355; Planeten III a 393 399; Registrirapparate IIIb 43 44 46; Sterncataloge und Stemkarten IIIb 470; Strahlenbrechung IIIb

551; Theilfehler III b 604 610 611; Zeit-

bestimmung IV 138. HARCOURT, Fernrohr I 739.

HARDING, Einleitung I 157; Planeten III a 390 391 398 414 418 419 436; Sterncataloge und Sternkarten IIIb 515 516.

HARKNESS, Biegung I 575; Persönliche Gleichung III a 374; Planeten III a 402; Sonne IIIb 77 79.

HARRISON, WILLIAM, Chronometer I 625; Uhr IV 12 32.

HARTENSTEIN, Kosmogonie II 228.

HARTING, P., Fernrohr I 700 702.

HARTMANN, J., Finsternisse I 751 757; Persönliche Gleichung IIIa 371 376 379 380.

HARTNUP, Chronometer I 625.

HARTSOEKER, Fernrohr I 701 703.

HARTWIG, Astrophotographie I 357 (vgl. Berichtigungen); Heliometer II 17; Kometen und Meteore II 62; Mikrometer IIIa 222; Planeten Illa 303.

HARZER, PAUL, Einleitung I 159; Mechanik des Himmels II 388 396 497 498 505 519: Sonne III b 66 81: Sterncataloge u. Sternkarten IIIb 467 504; Strahlenbrechung IIIb 549; Zeitbestimmung IV 158 164 165 166.

HASSAN, ISAAC BEN SAID, Einleitung I 54. HASSELBERG, Astrophotographic I 247; Astro-

spectroskopie I 405 408 409 410; Kometen und Meteore II 89; Sternhaufen u. Nebelflecke III b 530.

HASTINGS, Sonne III b 82.

HAUFF, Scintillation III b 51. HAUSDORFF, Strahlenbrechung IIIb 549.

HECKER, Horizontalpendel II 41.

HEFNER, Astrophotometrie I 306 333.

HEGEL, Planeten IIIa 435.

HEILBRONN, Kometen und Meteore II 116. HEINSIUS, Kometen und Meteore II 58.

HEIS, Astrophotometrie I 343 347; Kometen und Meteore II 117 118 119 132 146 180 181 183 184 211 213; Planeten IIIa 429; Sternbilder IIIb 112 116 126 132 150 154 158 169 175 179 184 187 189 192 203 209 223 229 231 233 236 246 253 261 272 279 301 303 313 316 323 327 333 343 351 359 369 379 390 402 406 413 419 428 431 445; Sterncataloge und Sternkarten III b 514; Universum IV 67 69 47 98 118; Zodiakallicht IV 184.

HELFENZRIEDER, Kometen und Meteore II 72. HELL, Sternbilder IIIb 109.

HELLER, Fernrohr I 702.

HELMERT, Mikrometer III a 165 166 190; Polhöhe IIIa 473; Sternhaufen und Nebelflecke IIIb 526; Strahlenbrechung III b 586.

HELMHOLTZ, Fernrohr I 706 738; Kosmogonie II 229 231 232 234 239 245 246; Mikrometer IIIa 219; Personliche Gleichung III a 378 380; Sonne IIIb of.

HENCKE, Planeten III a 436; Sterncataloge und Sternkarten IIIb 516,

HENDERSON, Parallaxe IIIa 346; Personliche Gleichung IIIa 382; Sterncataloge und Sternkarten IIIb 458 484 486.

HENGLER, L., Horizontalpendel II 28 29 30. HENNERT, J. F., Bahnbestimmung I 569.

HENRY, PAUL. Astrophotographie I 229. HENRY, PROSPER, Astrophotographic I 229 287:

Strahlenbrechung IIIb 589. HENRY, PAUL u. PROSPER, Acquatorcal I 192

194; Astrophotographie I 231; Biegung I 589; Kosmogonie II 241; Persönliche Gleichung IIIa 382; Sterncataloge und Sternkarten III b 517 518 522.

v. HEPPERGER, Strahlenbrechung IIIb 557. HERACLIDES, Einleitung I 16; Kometen und Meteore II 49.

HERMANN, Persönliche Gleichung IIIa 378 HERMITE, Mechanik des Himmels II 507. HERODOT, Einleitung I 3; Sonne IIIb 60.

HEROTIZKY, Uhr IV 39.

HERR, Methode der kleinsten Quadrate III a 29 35 39, Prismenkreis III b 25.

HERRICK, Kometen und Meteore II 159 179 211 213; Planeten III a 433.

HERSCHEL, ALEXANDER S., Kometen und Meteore II 125 163 211 212 213 220; Sonne Шь 7S.

HERSCHEL, CAROLINE, Einleitung I 156; Fern-

HERSCHEL, WILHELM, Einleitung I 156 162 163; Astrophotometrie I 343; Doppelsterne I

671 672 673 685; Fernrohr I 704; Kometen und Meteore II 55 89; Kosmogonie II 228 231 232 243; Mikrometer IIIa 112 113 114; Mond IIIn 276 280; Parallaxe IIIa 349; Planeten III a 394 400 402 419 420 425 427 428 429 430; Sonne IIIb 61 62 64 69 74; Eigenbewegung des Sonnensystems III b 92 94 107; Sternbilder IIIb 113 115; Sterncataloge und Sternkarten IIIb 475; Sternhaufen und Nebelflecke IIIb 524 525 526 528 529; Sternwarten IIIb 538, Universum IV 60 61 63 64 65 66 72 74 75 86 89 90 91 94 95 111 112 116 120 121 123. HERTEL, Heliometer II 17.

HERTZSPRUNG, Sterncataloge und Sternkarten

IIIb 478.

HERZ, NORBERT, Einleitung I 46 52 54 66 93; Kometen und Meteore II 54; Mechanik des Himmels (Verf.) II 604; Methode der kleinsten Quadrate III a 48 (Verf.); Niveau, Niveauprüfer IIIa 297 (Verf.); Sonne IIIb 74 (Verf.) 80 (Verf.); Zeitbestimmung IV 143 (Verf.) 148 (Verf.) 164 (Verf.) 168 (Verf.) 171 (Verf.) 172 (Verf.).

HEVEL, Einleitung I 97 98 120; Astrophotometrie I 356: Diopter I 670: Fernrohr I 702; Kometen und Meteore II 54 55 56 57 59 60 86; Mond IIIa 246 254 255 256 259 260 264 265 266 268 276 277 280 281; Planeten III a 390 420; Sternbilder III b 109 168 179 301 313 323 402 403 445; Sterncataloge und Sternkarten III b 456 475 513; Sternhaufen u. Nebelflecke III b 524.

HEYDE, Zeitbestimmung IV 178.

HILFIKER, J., Chronometer I 648; Sterncataloge und Sternkarten IIIb 506.

HILGER, ADAM, Astrophotographic I 276 277;

Astrospectroskopie I 379 380 387. HILL, Mechanik des Himmels II 505; Planeten III a 393 415

HILLER VON GAERTRINGEN, F. Freiherr, Einleitung I 31.

IIIND, Astrophotometrie I 357 358; Bahnsucher I 574; Kometen und Meteore II 68 73 224; Planeten III a 431 432; Sterncataloge und Sternkarten IIIb 462 516 517; Universum IV 74.

HIPP, MATHIAS, Mikrometer III a 130; Personliche Gleichung IIIa 371; Registrirapparate 111b 35 36 37 38 40 47; Uhr IV 20 36 37.

HIPPARCH, Einleitung I 19 20 25 27 30 33 34 36 47 48 50 76 93; Kometen und Meteore II 53; Parallaxe IIIa 319 320 326; Sternbilder IIIb 223; Sterncataloge und Sternkarten IIIb 455.

Hikn, Astrophotometrie I 336; Kosmogonie II 243; l'lancten IIIa 427.

HIRSCH, Astrophotometrie I 316 363: Personliche Gleichung III a 371; Uhr IV 20.

VON HOEGH, Fernrohr I 721 722. HOEK, Kometen und Meteore II 98.

HÖFFLER, Universum IV 60.

HOFFMANN, Astrospectroskopie I 378.

HOFMANN, A. W., Fernrohr I 700; Planeten IIIa 433; Uhr IV 3 5. HOHWÜ, Uhr IV 18 20.

HOLAGU ILEKHAN, Einleitung I 53.

HOLDEN, Astrophotographic 1 225; Kometen und Meteore II 74; Planeten III a 410 412; Sonne III D7 6 77 81 82; Sterncataloge und Sternkarten III b 503; Sternhaufen und Nebelflecke III b 525 529; Universum IV 71 74 75.

HOLMES, Kometen und Meteore II 52 77.

HOLWARDA, Astrophotometric 1 353. HOMANN, Eigenbewegung des Sonnensystems

HONISCH, Uhr IV 37.

HOOKE, Fernrohr I 702.

HORNE, Acquatoreal I 190.

HORNER, Astrophotometrie I 321.

HORNSBY, Sterncataloge und Sternkarten IIIb 479. IIORNSTEIN, C., Astrophotometrie I 313 363; Bahnbestimmung I 531 532 571; Kos-

mogonie II 240. HORREBOW, Mikrometer IIIa 112; Nutation IIIa 306 308; Passageninstrument IIIa 355; Planeten IIIa 398; Polhohe IIIa

467 476 479 485 486 491; Sonne IIIb 67; Strahlebrechung IIIb 601; Universaltransit IV 55; Zeitbestimmung IV 172. GRROX, Finsternisse I 821; Parallaxe III a 338.

HORROX, Finsternisse I 821; Parallaxe III a 338. HOUGH, Kometen und Meteore II 59; Planeten III a 415 416.

HOUZEAU, J. C., Einleitung I 138; Astrophotometric I 343 347; Bahnbestimmung I 571; Heliometer II 25; Sterncataloge u. Sternkarten IIIb 514; Universum IV 66 67 68 79 82 84 85 93 98 111 118.

HOWARD, CLOCK Co., Uhr IV 28.

HUBBARD, Kometen und Meteore II 60 73.
HUGGINS, Einleitung I 163; Astrophotographie
I 220 230 256; Astrospectroskopie I 391
396 404 406 407 408 409 423 427 429;
Kosmogonie II 235; Mond III a 279 280;
Sonne III b 62 78 79 80; Sternhaufen u.
Nebelflecke III b 520.

HUMBOLDT, A. VON, Kometen und Meteore II 51 113 115 159 179 181 186 187 211; Mechanische Quadratur II 618; Scintillation

IIIb 51 52 54 55.

Hussey, Planeten IIIa 394.

HUTH, Kometen und Meteore II 74.
HUYGHENS, CHRIST., Einleitung I 75 97 98 99
113; Fennfohr I 701 702 703 718 719
720 730 734; Mikrometer III a 112; Planeten III a 194 900 402 420 427 428;
Sternhaufen und Nebelflecke IIII 5 524;
Uhr IV 4, 5 6 7 9 10 11 20 32; Universum IV 58.

HUYGHENS, CONSTANTYN, Fernrohr I 702. HYPATIA, Einleitung I 48.

J

JACOB, Sterncataloge und Sternkarten IIIb 488 492.

JACOBI, Einleitung I 159; Mechanik des Himmels II 289 291 395 412 507 551 566; Methode der kleinsten Quadrate IIIa 45. JACOBY, H., Astrophotographie 1 279 282 286 292; Heliometer II 23 27; Sternhaufen und Nebelflecke III b 527.

JAHN, Sterncataloge und Sternkarten IIIb 515. JAMIN, Scintillation IIIb 57.

Janson, Astrophotometrie I 356 358.

Janssen, Astrophotographie I 213 218 220 226; Astrospectroskopie I 385 399; Sonne 111b 62 77 78.

JANSSEN, ZACHAR., Fernrohr I 700.

JAQUIER, Einleitung I 122.

JAVELLE, Kometen und Meteore II 75 77; Sternhaufen und Nebelflecke III b 525.

JEN JUNIS, Einleitung 1 53.

JELER, Chronologie I 603 624. JEAURAT, Sterncataloge und Sternkarten III b

462.

JEDRZCJEWICZ, Doppelsterne I 674.

JESSE, O., Bicgung I 586.

JNGHIRAMI, Sterncataloge und Sternkarten III b
516.

JOHANN III., Fernrohr I 705. JOHNSON, Einleitung I 162; Astrophotometrie

I 323; Heliometer II 16; Planeten III a 414; Sterncataloge und Sternkarten III b 462 475 484.

JOHNSTON, Astrophotographic I 243.

JOLY, Uhr IV 38.

JONES, Astrophotographic I 300; Mikrometer IIIa 202 204; Uhr IV 39; Zodiakallicht IV 184.

JONTE, Astrophotographie I 240.

JÜNGER, Acquatoreal I 195. JÜRGENSEN, URBAN, Chronometer I 648; Uhr IV 15.

JUST, Astrophotographie I 221.

JVORY, J., Bahnbestimmung I 570; Mechanik des Himmels II 535; Strahlenbrechung III b 559 560 561 562 564 567 587.

v

KASTNER, Astrophotometrie I 362.

KAISER, F., Doppelsterne I 674; Fernrohr I 702; Kosmogonie II 231 273; Mikrometer IIIa 126 166 170 181 182 199 206 207 212 213 214; Persönliche Gleichung IIIa 371 372 373 376; Planeten IIIa 389 393 399 400 401 402 414 426 427 431; Sternwarten IIIb 531; Theilfehler IIIb 608 611; Uhr IV 20.

KALIPPUS, Chronologie I 612.

KALTENBRUNNER, F., Chronologie I 624.

KAM, N. M., Sterncataloge und Sternkarten IIIb 477 492.

KAMMERER, Zeitbestimmung IV 171.

Kämtz, Scintillation IIIb 51.

KANT, Kometen und Meteore II 84; Kosmogonie II 228 229 230 231 232 233 234 237 238 239 241 242 243 244 245 246; Sonne III b 91; Universum IV 58 123.

KAPTEVN, J. C., Astrophotographic I 279 282 295 296; Parallaxe IIIa 350; Polhöhe IIIa 477 480 485; Sterncataloge u. Sternkarten IIIh 499 522; Universum IV 72 101 104 105 106 107 108 109. KARL DER GROSSE, Einleitung I 53. KATER, Planeten IIIa 422.

KATHARINA, Mond III a 246.

KATHARINA II., Einleitung I 121.

KAYSER, E., Astrophotometrie I 321; Astrospectroskopie I 398; Persönliche Gleichung III a 376; Strahlenbrechung III b 589.

KEELER, J. E., Astrospectroskopie I 408 421 422 427 429; Mechanik des Himmels II 563; Planeten III a 410; Universum IV 123.

KELLNER, Fernrohr I 730; Mond III a 279 KELVIN, Lord, Kosmogonic II 246, s. auch THOMSON W.

KEMPF, P., Astrophotometrie I 323 344 364; Astrospectroskopie I 394 429; Mikrometer III a 94 100; Planeten III a 415; Eigenbewegung des Sonnensystems IIIb 97; Universum IV 78.

Kepler, Einleifung 1 67, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 105, 156; Astrophotometric I 336; Bahnbestimmung I 455, 456, 457, 459, 462, 522, 524, 564, 569, 571, 572, 573; Chronologic I 615; Doppelsterne I 677, 678, 695; Fernrohr I 701; Finsternisse I 760; Kometen und Meteore II 68, 208; Kosmogonic II 235, 246; Mechanik des Himmels II 493; Parallaxe III a 319, 320, 321, 322, 325, 326; Planeten III a 413; Sonne III b 60, 61; Sternbilder III b 168; Universum IV 58; Zeitbestimmung IV 129.

KERBER, Fernrohr I 726.

KESSELS, Mikrometer III a 88; Uhr IV 13.
KING, EDUARD, Kometen und Meteore II 113.
KINNEBROOK, Persönliche Gleichung III a 386.
KIRCH, GOTTFRIED, Einleitung I 98 117; Astrophotometrie I 350; Kometen und Meteore
II 56 94 218; Mikrometer III a 111; Planeten III a 397.

Kirchhoff, Einleitung I 163; Astrospectroskopie I 421; Sonne III b 61 69 78 79 86; Uhr IV 7.

KIRKWOOD, Kometen und Meteore II 222 223; Kosmogonie II 239 240.

KITTEL, A., Chronometer I 634.

KLEIBER, Kometen und Meteore II 121 181; Kosmogonie II 243.

KLEIN, FR., Uhr IV 35 36 37 38 39. KLEIN, H. J., Mond III a 279; Universum

IV 68 69. Klingenstjerna, Fernrohr I 705.

KLINKERFUES, Einleitung I 163; Bahnbestimmung I 458 497 498 570 572; Doppelsterne I 676; Kometen und Meteore II 73 94 218; Ort III a 313; Sterncataloge und Sternkarten III b 494.

KLÜGEL, G. S., Bahnbestimmung I 569; Eigenbewegung des Sonnensystems IIIb 94 107.

KMETH, Sterncataloge und Sternkarten III b 481.
KNOBEL., Astrophotometrie I 317 363; Sterncataloge und Sternkarten III b 477.

KNOBLICH, Registrirapparate IIIb 35 42; Uhr IV 20.

KNOBLOCH, Chronologie I 624.

KNOFF, O., Mikrometer IIIa 91 132; Planeten IIIa 426; Sonne IIIb 87.

Kuorre, V., Bahnbestimmung I 478 572; Mikrometer IIIa 122, Tafel II, 134 135 191 224 225 227 228 229 233; Planeten IIIa 426; Sterncataloge und Sternkarten IIIb 517.

KOBOLO, Kometen und Meteore II 59; Mikrometer III a 9 1 150 161 167 196; Eigenbewegung des Sonnensystems III b 99 (Unterz.) 100 102 (Unterz.) 103 108 109; Sternhaufen und Nebelliecke III b 525; Universum IV 91 98 100.

KOCH, Sternhaufen und Nebelflecke IIIb 527. KÖHLER, Mikrometer IIIa 71; Mond IIIa 277. KOILEAUSCH, F., Fernrohr I 736; Persönliche Gleichung IIIa 378.

Kolb, Parallaxe III a 325.

Köller, Marian, Sterncataloge und Sternkarten III b 485.

KÖNIGK, JOH., Kometen und Meteore II 60. KÖNIGSEERGER, Mechanik des Himmels II 559.

v. KONKOLY, Astrophotographie I 217 218 (Verf.) 210 (Verf.) 220 (Verf.) 221 (Verf.) 227 (Verf.) 228 (Verf.) 226 (Verf.) 227 (Verf.) 228 (Verf.) 229 (Verf.) 230 (Verf.) 230 (Verf.) 237 (Verf.) 238 (Verf.) 239 (Verf.) 240 (Verf.) 241 (Verf.) 244 (Verf.) 245 (Verf.) 246 (Verf.) 247 (Verf.) 249 (Verf.) 252 (Verf.) 253 (Verf.) 254 (Verf.) 253 (Verf.) 254 (Verf.) 255 (Verf.) 266 (Verf.) 268 (Verf.) 271 (Verf.) 273 (Verf.) 277 (Verf.): Astrospectroskopie I 370 333 410 418 429; Fernrohr I 746; Kometen und Meteore II 181.

v. Kövesligkthy, Astrospectroskopie I 418. Kowalczyk, Sterncataloge und Sternkarten III b 502.

 KOWALEWSKY, S., Mechanik des Himmels II 563.

KOWALSKI, Strahlenbrechung IIIb 559. KRAEPELIN, Persönliche Gleichung IIIa 380. KRAFFT, Einleitung I 140.

KRAMP, Strahlenbrechung III b 568. KREIL, Kometen und Meteore II 74.

KREIL, Kometen und Meteore II 74. KREUTZ, Kometen und Meteore II 57 61 62 63 65 70 75 96.

v. KRIES, Persönliche Gleichung IIIa 378. KRILLE, Registrirapparate IIIb 35 36 42.

KRÜGER, A., Heliometer II 15; Kometen und Meteore II 71; Planeten IIIa 414; Sterncataloge nnd Sternkarten IIIb 519; Sternhaufen und Nebelflecke III b 526; Uhr IV 17.

KRÜGER, FR., Astrospectroskopie I 429; Sternbilder III b 113.

KRUSENSTEIN, Chronometer I 649. KRUSS, Fernrohr I 724.

KRZIZANOWSKY, Kometen und Meteore II-116.
v. KUFFNER, Astrophotographie I 279; Heliometer II-17; Kosmogonie II-220; Mori-

meter II 17; Kosmogonie II 229; Meridiankreis III a 2 14; Methode der kleinsten Quadrate III a 40; Nivcau, Nivcauprüfer III a 297; Sterncataloge und Sternkarten IIIb 507 511; Zeitbestimmung IV 150. KÜRNE, Persönliche Gleichung III a 378. KUUNERT, F., Bahnbestimmung I 573. KULLBERG, Chronometer I 643.

KUNOWSKI, Mond IIIa 277.

KUSTNER, Aberration I 177; Finsternisse I 811; Mikrometer III a 88; Parallaxe III a 322; Polhöhe IIIa 475 491; Sterncataloge u. Sternkarten IIIb 460 471 504 507 510 520.

DE LACAILLE, Einleitung I 150 162; Astrophotometrie I 353 362; Mikrometer III a 70 71; Parallaxe III a 325; Sternbilder IIIb 100 122 140 167 220 270 288 330 332 339 341 377 388 399 411; Sterncataloge und Sternkarten IIIb 475 478 487 500; Sternhaufen und Nebelflecke IIIb 524.

LAGOURNERIE, Heliometer II 5.

LAGRANGE, JOSEPH LOUIS, Einleitung I 109 117 133 138 139 140 141 142 145 146 147 152 153 154; Bahnbestimmung I 569: Fernrohr 1 732 736; Finsternisse I 760 828 830; Kosmogonie II 244; Mechanik des Himmels II 290 291 298 372 395 398 414 415 600 611; Parallaxe III a 335; Planeten III a 386; Strahlenbrechung HIb 567.

LAHIRE, Einleitung I 98 118; Kometen und Meteore Il 71; Mikrometer Illa 113; l'la-

neten III a 393. DE LALANDE, JÉR., Einleitung I 119 145 148 150 162; Heliometer II 5; Mikrometer IIIa 113; Mond IIIa 247; Planeten IIIa 429 431; Sonne IIIb 65 69; Eigenbewegung des Sonnensystems IIIb 107; Sternbilder III b 109 168; Sterncataloge und Sternkarten IIIb 462 470 472 476 478 479 480 498 500 515.

LAMANSKY, Astrospectroskopie I 397.

LAMB, Miss, Sterncataloge und Sternkarten III b 505.

LAMBERT, JOH. HEINR., Einleitung I 115 122 138 149 150 151 163; Astrophotometrie I 305 306 326 327 330 334 335 336 337 342 362; Bahnbestimmung I 452 486 504 531 532 533 534 569 570; Kosmogonie II 229; Mechanik des Himmels II 302; Mikrometer III a 65 199; Planeten III a 398; Universum IV 59 123. LAMEY, Kosmogonie II 241.

LAMONT, Astrophotometrie I 311 317 363; Mikrometer IIIa 138; Planeten IIIa 394 431; Sterncataloge und Sternkarten IIIb 477 485 489; Sternhaufen und Nebelflecke IIIb 526.

LAMP, E., Mikrometer IIIa 181. LAMPA, Kosmogonie II 229. LANCASTER, Einleitung I 138. LANDERER, Persönliche Gleichung III a 377.

LANE, Kosmogonie II 232, LANGE, Personliche Gleichung III a 379.

LANGLEY, Astrophotometrie I 322 331 333 363; Astrospectroskopie I 397 425 429; Scintillation IIIb 55; Sonne IIIb 62 64 75 77LANGRENUS, Mond IIIa 246. LANSBERG, Einleitung I 67 o6.

DELAPLACE, PIERRE SIMON, Einleitung I 138 139 141 155 156 157 158; Astrophotometrie I 326 327 330 331; Bahnbestimmung I 452 569 570 571 573; Finsternisse I 813 835; Kometen und Meteore II 67 72 84 93 97 115 209; Kosmogonie II 228 229 232 234 237 239 240 241 242 243 244 245 246; Mechanik des Himmels II 288 372 395 398 405 408 414 415 416 437 438 440 449 454 458 459 460 469 480 490 491 541 542 544 556 557 562 601: Methode der kleinsten Quadrate Illa 30; Planeten Illa 386 414 420 422 425 427 429; Sonne IIIb 91; Strahlenbrechung III b 558 559 576.

LARGETEAU, C. L., Chronologie 1 596 598.

LASSANCE, Uhr IV 37 38.

LASSELL, WILLIAM, Fernrohr I 704 747; Planeten IIIa 400 402 417 423 424 428 430 431 432; Universum IV 69.

LAUGIER, Kometen und Meteore II 68; Sonne IIIb 65; Sterncataloge und Sternkarten IIIb 462; Sternhaufen und Nebelflecke IIIb 525.

LAURENTIUS, Kometen und Metcore Il 179 184. LAUTH, Einleitung 1 4.

LAVOISIER, Kosmogonie II 246.

LECLANCHÉ, Uhr IV 36.

LEFAVOUR, Sterncatalog und Sternkarten III b 511.

LEFÈVRE, Sterncataloge und Sternkarten III b 462.

LEGENDRE, Einleitung 1 158; Bahnbestimmung I 452 570 571.

Dt LEGGE, A., Sterncataloge und Sternkarten IIIb 506.

LEHMANN, Chronologie I 599. LEHMANN-FILHÉS, Doppelsterne I 692; Kometen

und Meteore II 91 139 141 142 146 174 221; Mechanik des Himmels II 458. LEIBNITZ, Einleitung I 117.

LEMONNIER, Einleitung I 117 121; Planeten III a 429 430; Sternbilder IIIb 109; Sterncataloge und Sternkarten IIIb 475-LEONARDO DA VINCI, Mond III a 250.

LEONHARD, Astrophotometrie I 363.

LEOPOLD, Prinz von Medici, Uhr IV 4. LEOVITIUS, CYPRIANUS, Astrophotometrie I 356. LEPAUTE, Madame, Einleitung I 121 148.

LEREBOURS, Aequatoreal I 194. LEROY. PIERRE, Chronometer I 625 636 637.

LESCARBAULT, Planeten IIIa 433. LESSER, Mechanik des Himmels 11 374.

LEVERRIER, URBAIN JEAN JOSEPH, Einleitung I 158 159 160; Finsternisse I 753 770 771 819 820 823 831; Kometen und Meteore II 71 72 75 210; Kosmogonie II 241; Mechanik des Himmels II 302 372 395 396 416 429 456 585; Ort III a 311; Planeten III a 386 389 390 393 399 431 432 433 434 435 438; Pracession III b 6 17; Sterncataloge und Sternkarten IIIb 459; Zeitbestimmung IV 135.

LEWIS, Doppelsterne I 674. LEWITZKY, Persönliche Gleichung III a 382. Lexell, Einleitung I 140; Kometen und Meteore II 72 92 93; Mechanik des Himmels II 394.

LIAIS, Kometen und Meteore II 60.

LIANDRIER, Scintillation III b 55.

LIAPUNOW, Sternhaufen und Nebelflecke IIIb 526.

LICHTENBERG, Kometen und Meteore II 110; Planeten III a 433.

LIEBIG, Fernrohr I 707.

LIEDTKY, Kometen und Meteore II 116.

LIEUTAUD, Sterncataloge und Sternkarten III b
462.

LILIO, ANTONIO, Chronologie I 615. LILIO, LUIGI, Chronologie I 615.

LINDAUER, Astrophotometrie I 356. LINDELOEF, Längenbestimmung II 266 267 268. LINDEMANN, Astrophotometrie I 323 324 344; Universum IV 77 78.

v. LINDENAU, Parallaxe III a 346; Persönliche Gleichung III a 368.

LINDHAGEN, Uhr IV 33.

LINDSAY, Heliometer II 17; Längenbestimmung II 261.

LINDSTEDT, Einleitung I 138 159; Mechanik des Himmels II 505.

LIPPERSHEY, HANS, Fernrohr I 700.

LIPPICH, Fernrohr I 706.

LIPPMANN, Uhr IV 39.

Listing, Fernrohr I 706 711; Mikronieter III a 234.

LITTROW, KARL VON (1811-1877), Mikrometer IIIa 138; Uhr IV 3 15; Universum IV 72.

LITTROW, J. J. VON (1781—1840). Bahnbestimmung I 570; Fernrohr I 707 724; Polhöhe IIIa 450; Sterncataloge und Sternkarten IIIb 480.

LIVEING, Astrospectroskopie I 421.

LOBATSCHEFSKY, NIKOLAUS IWANOWITSCH, Universum IV 124.

LOCKYER, J. NORMAN, Astrospectroskopie I 385 407 415 416 423 429; Kosmogonie II 233; Planeten IIIa 400 401 402; Sonne IIIb 75 78 84; Uhr IV 14 17 27. LOFT, Planeten IIIa 433.

LOHRMANN, Kometen und Meteore II 116; Mond IIIa 247 249 251 253 254 260 262 263 271 272 273 274 277 278 279.

LOHSE, O., Astrophotographie I 216 221 225 236 237 240 268 269 270; Astrospectroskopie I 387 409 429; Mikrometer III a 224; Plancten III a 402 415 416 417.

LOMMEL, E., Astrophotometrie I 305 306 335 337 363; Mikrometer IIIa 69.

LONGMAN, Universum IV 68.

LONGOMONTAN, CHRISTIAN SEVERIN, Einleitung I 67 73 97; Kometen und Meteore II 68.

LOOMIS, Sonne IIIb 74. LORENZ, Strahlenbrechung IIIb 554.

LOSEBY, Chronometer I 643. LÖSKE, M., Chronometer I 636.

Lossier, L., Chronometer I 636.

LOUVILLE, Sonne IIIh 75.

LOWELL, PERCIVAL, Planeten III a 393 397.

LÖWENHERZ, Fernrohr I 706; Registrirapparate III b 40.

Löwy, M., Aequatoreal 1:92; Astrophotographie I 223; Biegung I 587 588 589; Fernrohr I 746 747; Sterncataloge und Sternkarten IIIb 505; Strahleubrechung IIIb 600

LUBBOCK, J. W., Bahnbestimmung I 570. LUMIÈRE, Astrophotographie I 213 239; Fernrohr I 749.

LUMMIS, Plancten IIIa 433.

LUNDAHL, Parallaxe IIIa 346; Eigenbewegung des Sonnensystems IIIb 108.

LUTHER, E., Sterncataloge und Sternkarten IIIb 487 493.

LUTHER, R., Sterncataloge und Sternkarten III b

LUTHER, W., Sterncataloge und Sternkarten III b 505.

M

MACII, Persönliche Gleichung III a 380. MAC CLEAN, Astrospectroskopie I 372 399.

MAC CORMICK, LEANDER, Sterncataloge und Sternkarten III b 491.

MAC LAURIN, Einleitung I 117; Astrophotographie I 293; Parallaxe IIIa 315; Polhöhe IIIa 445.

MACLEAR, THOMAS, Kometen und Meteore II 74; Sterncataloge und Sternkarten IIIb 487 488 493.

MAC LEOD, Planeten IIIa 426.

MADAN, I'laneten IIIa 413.

MADLER, Astrophotographie I 301; Doppelsterne I 674; Mikrometer III a 173; Mod III a 246 247 248 250 252 253 254 256 257 259 260 261 262 263 266 269 273 274 275 276 277 278 279 281; Planeton III a 385 393 394 398 400 402 404 411 414 415 430 431; Eigenbewegung des Sonnensystems IIIb 108; Sterncataloge und Sternkarten IIIb 471 487.

MAESTLIN, Einleitung I 78; Mond IIIa 250. MAGOLD, M., Chronologie I 624.

MAGRUDER, G. A., Sterncataloge und Sternkarten III b 489.

MAHLER, E., Chronologie I 624.

MAIN, Heliometer II 16; Planeten III a 414; Sternbilder IIIb 112.

MAIKAN, Sternhaufen und Nebelflecke III b 524. DE MAISTKE, XAVIER, Astrophotometrie I 321. MALVASIA, Mikrometer IIIa 65 113. MANILIUS, Einleitung I 31.

MARALDI, Astrophotometrie I 350; Planeten IIIa 418 422 425; Sterncataloge und

Sternkarten III b 462. MARCHAND, Zodiakallicht IV 184 185.

MARCUSE, Kometen und Meteore II 87; Polhöhe IIIa 475; Sterncataloge und Sternkarten IIIb 497.

MARKWICK, Kometen und Meteore II 62. MARIOTTE, Sternhaufen und Nebelflecke IIIb

552 553 554-MARIUS, SIMON, Einleitung I 76; Scintillation III b 49; Sternhaufen und Nebelflecke

III b 524. MARSH, V., Kometen und Meteore II So 89. MARTH, Biegung I 587 588 589; Planeten III a 413; Sterncataloge und Sternkarten IIIb 515; Theilfehler IIIb 611; Universum IV 69 70. MARTINS, Biegung I 591; Mikrometer III a

115 123; Theilfehler IIIb 602 603 608.

MASCARI, Planeten IIIa 397 426.

MASCART, Astrospectroskopie I 396; Sternhaufen und Nebelflecke IIIb 554.

MASKELYNE, Mikrometer Illa 215 216 217; Persönliche Gleichung IIIa 368; Planeten III a 429; Sterncataloge und Sternkarten III b 457 458 459 462 478 479 480.

MASON, Kometen und Meteore II 121 147. MATTHIAS, Einleitung I 78.

MATTHIESSEN, Sternhaufen und Nebelflecke

III b 527. MATZKA, W., Chronologic I 624.

MAUNDER, Astrospectroskopie I 406; Planeten

III a 400. MAUPERTUIS, Einleitung I 121.

MAURER, Astrophotometrie I 327 330 331 363 Strahlenbrechung III b 564.

MAURICE, Eigenbewegung des Sonnensystems IIIb 107.

MAXWELL, Astrophotometrie I 336; Kosmogonie II 243; Mechanik des Himmels II 563: Planeten IIIa 427.

MAY, Altazimuth I 204.

MAYER, ANDREAS, Planeten III a 398.

MAYER, CHRISTIAN, Doppelsterne I 671 672. MAYER, L., Sterncataloge und Sternkarten III b 483.

MAYER, ROBERT, Kosmogonie II 246; Sonne IIIb oo.

MAYER, TOBIAS, Einleitung I 117 119 120 122 138; Altazimuth I 204; Finsternisse I 751 813; Mechanik des Himmels II 413; Meridiankreis IIIa 6 13; Mikrometer IIIa 65; Mond IIIa 247; Planeten IIIa 429; Eigenbewegung des Sonnensystems III b 92; Sterncataloge und Sternkarten III b 475 478 504.

MAYR (u. WOLF), Registrirapparate III b 38.

MAYRHOFER, Uhr IV 33.

MÉCHAIN, Kometen und Meteore II 74 94; Sterncataloge und Sternkarten IIIb 462. MEDICI, Einleitung I 75.

MEDWEDEFF, Kometen und Meteore II 105.

Meidinger, Längenbestimmung II 257 258.

MEISEL, Fernrohr I 742 747. MENDELEJEFF, Kosmogonie II 231; Sternhaufen

und Nebelflecke III b 559. MENDENHALL, Astrospectroskopie I 396; Uhr

IV 41. MENELAOS, Sterncataloge und Sternkarten III b

MENGER, Uhr IV 36.

MERETT, Kometen und Meteore II 107.

MERKATOR, Planeten IIIa 402. MERLING, Uhr IV 36 37 39.

MERZ, Aequatoreal I 194 195; Astrophotographie I 223 226 235 258; Astrospectroskopie I 368 371 375 376 378 384; Fernrohr I 707; Heliometer II 15; Mikrometer IIIa 131 181 183 206 213.

Messier, Kometen und Meteore II 72 73 74

94 218; Planeten III a 433; Sternbilder IIIb 168; Sterncataloge und Sternkarten III b 475; Sternhaufen und Nebelflecke IIIb 524.

METIUS, JAROB, Fernrohr I 700.

METON, Einleitung I 7; Chronologie I 598 612. MEYER, A., Methode der kleinsten Quadrate

Illa 30 34 39 58.

MEYER, Kosmogonie II 241 243. MEYERSTEIN, Astrophotographie I 241 242.

MICHAL, M., Bahnbestimmung I 570. MICHELL, JOHN, Doppelsterne I 672; Univer-

sum IV 59 60. MICHELSON, Mikrometer IIIa 237 238.

MILLOSEVICH, Sterncataloge und Sternkarten III b 507 510.

MILNE, Horizontalpendel II 40.

MITCHEL, Kometen und Meteore II 86: Registrirapparate IIIb 33.

MITTENTZWEI, Fernrohr I 724.

Mönus, Fernrohr I 705.

MOBLER, Uhr IV 36.

MOESTA, Sterncataloge und Sternkarten IIIb 459 492 493. Moll., Fernrohr I 700.

MÖLLER, AXEL., Einleitung I 160; Kometen

und Meteore II 75: Planeten IIIa 414. MOLYNEUX, Aberration I 170: Chronometer I 643.

MOMMSEN, A., Chronologie I 624.

MONCK, Universum IV 109.

MONCKHOVEN, Astrophotographic I 219 243

MONTAIGNE, Kometen und Meteore II 73. MONTANARI, Einleitung I 117; Astrophotometrie

I 350; Mikrometer IIIa 65. MONTEIRO DA ROCCA, Mikrometer III a 68. MONTIGNY, Scintillation III b 50 51 52 53 54

56 57. Montojo, Sterncataloge und Sternkarten III b

485. MORINE, Sterncataloge und Sternkarten III b

509. MORITZ v. HESSEN, Einleitung I 72.

Morse, Registrirapparate III b 38. Moser, Fernrohr I 706 721.

Moscotti, Kometen und Meteore II 74; Scintillation IIIb 58.

MOTA BERTELLIO, BERNARDINA DA, Kometen und Meteore II 105.

MOUCHEZ, Chronometer I 649; Sterncataloge und Sternkarten IIIb 522.

MUDGE, Chronometer I 625; Uhr IV 26 27.

MULLER, BARBARA, Einleitung I 78. MULLER, G., Astrophotometrie I 316 323 326

327 328 329 330 331 337 338 339 340 342 344 363 364; Astrospectroskopie I 394 395 399 409 416 418 429; Mikrometer III a 176 186 188; Planeten III a 390 393; Universum IV 78.

MULLER, H., Personliche Gleichung III a 378.

N

NACHET, Astrophotographie I 273. NAPOLI, Uhr IV 36.

NASINI, R., Sonne III b 79. NASMYTH, Mond III a 276; Sonne III b 62. NASSIREDDIN, Einleitung I 53. NECKER Coordinaten I 665. NEPILLY, Kometen und Meteore II 116.

NEPER, J., Einleitung I 94; Präcession III b 11. NEUMANN, B., Mechanik des Himmels II 543

NEUMANN, C., Fernrohr I 706.

NEUMAYER, Chronometer I 647; Kometen und Meteore II 181 183 213.

Newcosis, Simon, Einleitung I 109 158; Aberration I 170 171; Acquatoreal I 193; Bahnbestimmung I 466 546; Finsternisse I 771 813 817 818; Kosmogonie II 236 247; Mechanik des Himmels II 391 416 464 467; Mikrometer III a 141; Parallaxe III a 326 332 333 338 339 340 341; Planeten III a 390 393 399 413 415 430 431 432 434 435; Präcession III b 17; Sonne III b 75 80 83; Steracataloge und Sternkarten III b 459 464 465 466 467 468 469 476 496.

NEWLAND, Kosmogonie II 231.

NEWTON, H. A., Kometen und Meteore II 106 121 122 125 146 147 163 168 169 180 185 186 209 210 216 222 224 225.

NEWTON, ISAAC, Einleitung I 77 95 97 99 101 102 103 104 105 106 107 109 110 112 113 114 115 116 117 118 120 121 122 129 130 131 133 143 148 150 152 160 161; Astrophotographie I 328; Bahnbestimmung I 452 458 463 568 570 571; Dopplesterne I 676 677 678; Ferntont I 703 704 705 742 744 747; Interpolation II 43 45; Kosmogonie II 228 230 238 239 243 244; Mechanik des Himmels II 278 279 286 298; Parallaxe IIIa 386; Planeten IIIa 414; Frismenkreis IIIb 18; Strahlenbrechung IIIb 555 558 559 576; Universum IV 58.

NICETAS, Einleitung I 17 58.

NICHOLSON, Scintillation IIIb 49; Uhr IV 13. NICOL, Astrophotometrie I 307 313 317 318 319 320; Fernrohr I 741.

NICOLAI, F. B. G., Bahnbestimmung I 570; Planeten III a 414.

Niessl, Einleitung I 161 162; Kometen und Meteore II 67 109 190 200 201 202 208.

Nikolaus II., Sternwarten IIIb 533.

NIPPOLDT, Uhr IV 18 19.

Nissen, Sterncataloge und Sternkarten III b 470.

NOBILE, Polhöhe III a 491. Noel, Astrophotometrie I 353.

NORDENSKJÖLD, Einleitung I 162; Kometen u.

Meteore II 105 109. Numa, Chronologie I 613.

NYLAND, Sternhaufen und Nebelflecke IIIb

Nyrén, Magnus, Aberration I 171 176; Mechanik des Himmels II 573 592; Sterncataloge und Sternkarten III b 502 510; Strahlenbrechung III b 583 584 585 586 596 598; Theilfehler III b 606 607 608 611. 0

OBERNETTER, Astrophotographic I 240.

OELTZEN, Sterncataloge und Sternkarten III b 470 476 477 483 486 493.

OHRT, Planeten IIIa 433.

OLBERS, HEINRICH WILIMEM, Einleitung I 115
154 155 157 158; Rahnbestimungen I
452 464 505 506 514 518 519 520 528
530 531 555 561 565 566 569 572 573;
Kometen und Meteore II 69 86 88 94
101 102 112 113 120 126 133 180 186
209; Kosmogonie II 240; Mikrometer
IIIa 71; Planeten IIIa 425 435 436;
Eigenbewegung des Sonnensystems IIIb
107; Universum IV 04 123 175.

DE OLIVEIRA-LACAILLE, Kometen und Meteore II 62.

OLMSTED, Kometen und Meteore II 108 113 116 117 119 178 179 180.

OLUFSEN, Parallaxe III a 325; Planeten III a 393; Sterncataloge und Sternkarten III b 481.

OMAR III., Chronologie I 622.

Oom, Sterncataloge und Sternkarten III b 494. Oppenheim, Astrophotographie I 279; Sternhaufen und Nebelflecke III b 527.

V. OPPOLZER, EGON, Sonne IIIb 86 87; Strahlenbrechung III b 551 553 554 (Verf.) 561 (Verf.) 564 (Verf.) 566 572 579 (Verf.) 580 582 583 584 585 586 594 600.

V. OPPOLZER, JOH., Einleitung I 159.

v. OPPOLZER, THEODOR, Einleitung I 119 158 159 160; Aberration I 172; Bahnbestimmung I 464 465 468 477 485 493 501 502 508 513 514 515 520 531 536 539 540 542 558 560 561 562 563 564 569 572 573; Chronologie I 598 600 601; Finsternisse I 753 766 770 771 797 816; Kometen und Meteore II 141 196 209 210 211 226; Kosmogonie II 243; Längenbestimmung II 250; Mechanik des Himmels II 304 305 312 313 327 334 343 347 356 431 435 456 477 486 490 580 586 587 593; Mechanische Quadratur II 618 620 627 631; Methode der kleinsten Quadrate III a 29 34 39; Nutation III a 302 303 304; Ort III a 313; Parallaxe III a 334; Planeten III a 433 434 438; Präcession IIIb 7 11 12 17; Registrirapparate III b 47: Sternhaufen und Nebelflecke III b 525; Strahlenbrechung IIIb 554 559 560 561 564 566 567 570 571 572 573 588 597.

ORIANI, Planeten IIIa 435; Sterncataloge und Sternkarten III b 481.

ORTEL, Sterncataloge und Sternkarten IIIb 472.

OSTWALD, Uhr IV 4.

OTTAWA, Kometen und Meteore II 116. ÖTTINGEN, Uhr IV 4.

OUDEMANS, Heliometer II 17; Mikrometer III a 209; Niveau, Niveauprufer III a 290; Planeten III a 389 415 426; Sterncataloge und Sternkarteu III b 487; Uhr IV 18.

PACCASSI, J. B. v., Bahnbestimmung I 568. PALISA, Sterncataloge und Sternkarten IIIb 507 517; Universum IV 74 75.

PALITZSCH, Astrophotometrie I 350; Kometen und Meteore II 68. PALLAS, Kometen und Meteore II 51 105 110

112. PALMIERI, Astrospectroskopie I 403; Sonne

III b 79. PANNEKOEK, Sterncataloge und Sternkarten

IIIb 515; Universum IV 70 118 119. PANODORUS, Chronologie I 610 614. PAPE, Kometen und Meteore II 122 211. PARKER, Kometen und Meteore II 178.

PARKHURST, Astrophotometrie I 322 337 340. PARMENIDES, Mond III a 246.

PASTORFF, Planeten III a 433. PAUL III., Einleitung I 66. PAUL V., Einleitung I 74.

PAULUS, Chronologie I 599.

PAULY, M., Astrophotographic I 248 258. PEARSON, Heliometer II 5; Mikrometer IIIa 117 202; Sterncataloge und Sternkarten

III b 484. PECKHAM, Scintillation III b 54.

PECHÜLE, Kometen und Meteore II 60.

Peirce, Astrophotometrie I 344 348; Kometen und Meteore !I 86 196; Längenbestimmung II 271; Planeten IIIa 427 431 432; Universum IV 97.

PÉRIGAUD, Biegung I 589; Theilfehler IIIb 608 611.

PERNTER, Scintillation IIIb 52. PERNY, Kometen und Meteore II 94. PERREAU, Strahlenbrechung III b 553. PERREY, ALEXANDER, Bahnbestimmung I 571.

PERRINE, Kometen und Meteore II 73. PERRON, Uhr IV 14.

PERROT, Horizontalpendel II 30.

PERROTIN, Kometen und Meteore II 74 75; Planeten IIIa 409 410.

PETER d. GR., Chronologie I 620.

PETERS, C. A. F., Einleitung I 145; Aberration I 171 174; Doppelsterne I 688; Heliometer II 14; Horizontalpendel II 31 37; Mechanik des Himmels II 573; Nutation IIIa 304; Parallaxe IIIa 346; Registrirapparate IIIb 34; Sterncataloge u. Sternkarten IIIb 459 463 466 472; Theilfehler IIIb 606 611; Universum IV 76 94.

PETERS, C. H. F., Kometen und Meteore II 76 94; Planeten IIIa 432; Sonne IIIb 63; Sterncataloge und Sternkarten IIIb 516 517; Universum IV 74 75.

PETERS, C. F. W., Chronometer I 646 647; Kometen und Meteore II 210.

PETERSEN, J. FR., Kosmogonie II 228; Planeten IIIa 391 431; Polhöhe IIIa 453; Sonne IIIb 65; Uhr IV 29.

PETZOLDT, Kometen und Meteore II 116. PEURBACH, GEORG, Einleitung I 51 55 56 66; Gnomon II 3.

PEYRA, Sterncataloge und Sternkarten IIIb 510.

PFLÜGER, Persönliche Gleichung III a 375. PHILIPP VON HESSEN, Einleitung I 72.

PHILIPP VON MACEDONIEN, Einleitung I 15 16. PHILIPPS, Astrophotographic I 301; Chronometer I 636 637 650.

PHILIPPUS ARIDAUS, Chronologie I 600.

PHILOLAUS, Einleitung I 9 17 58.

PIAZZI, Einleitung I 157 162; Astrospectroskopie I 405; Planeten IIIa 435; Präcession IIIb 16; Sterncataloge u. Sternkarten IIIb 457 475 480 515; Universum

PICARD, Einleitung I 98 101 117 118: Mikrometer IIIa 110 111 113; Sterncataloge u. Sternkarten IIIb 462.

PICKERING, Astrophotographic I 230 259; Astrophotometrie I 317 318 320 339 342 344 346 347 348 350 360; Astrospectroskopie I 369 411 413 414 416 417 418 419 420 422 428 429; Doppelsterne I 690; Planeten IIIa 411 413 429 430 432; Sonne III b 62; Universum IV 76 102 103 104 110.

Picus von Mirandula, Graf Johann, Einleitung I 95.

PIERSON, Kosmogonie II 237.

PIGOTT, Kometen und Meteore II 74.

PIHL, Mikrometer IIIa 109; Sternhaufen und Nebeltlecke III b 526.

PINGRÉ, Kometen und Meteore II 52. PIPER, F., Chronologie I 624.

PISTOR, Biegung I 586; Mikrometer III a 115 123; Theilfehler III b 602 603 608.

PLANA, Einleitung I 158; Finsternisse I 813; Mechanik des Himmels II 449 454 455; Parallaxe IIIa 339; Sterncataloge und Sternkarten III b 482.

PLANTAMOUR, E., Bahnbestimmung I 568 570 : Horizontalpendel II 40; Persönliche Gleichung III a 371; Sterncataloge u. Sternkarten IIIb 488.

PLASSMANN, J., Universum IV 70 98 117 118

PLATO, Einleitung I 9 15 58; Sterncataloge und Sternkarten III b 455.

PLINIUS Einleitung I 6 8 9 17 30 31 48 77; Fernrohr I 707; Universum IV 73; Zeitbestimmung IV 178 179.

PLUTARCH, Einleitung I 6 18 30 77; Kometen und Meteore II 50; Mond IIIa 246; Sonne IIIb 61.

POCZOBUT, Sternbilder IIIb 109.

Pogson, Astrophotonictric I 323 324 329; Kometen und Meteore II 73.

POINCARÉ, Einleitung I 129 159; Mechanik des Himmels II 520 521 523 551; Sonne Шь 82.

Poisson, Einleitung I 159; Kosmogonic II 247; Mechanik des Himmels II 299 399 541 543.

POND, Altazimuth I 204; Sterncataloge und Sternkarten IIIb 458 462 471 475 481 482 483 485.

Pons, Einleitung I 160; Kometen und Meteore

II 68 69 73 74 75 94 218; Planeten III a 433.

PONTÉCOULANT, Einleitung I 158; Bahnbestimmung I 570; Mechanik des Himmels II 416 449 454 492.

POOLE, Chronometer I 642 643.

POOR, C. LANE, Kometen und Metcore II 92. PORRO, Fernrohr I 736; Sterncataloge und Sternkarten III b 480.

DELLA PORTA, Scintillation III b 54.

PORTER, J. G., Sterncataloge und Sternkarten IIIb 504 506 509.

Posibonius, Einleitung I 30. POTHENOT, Einleitung I 29.

POTTIER, L., Finsternisse I 838.

POUILLET, Astrophotometrie I 327; Sonne III b 87 88 89.

POWALKY, Planeten III a 303.

PRAZMOWSKY, Persönliche Gleichung III a 371. PRECIITL, Fernrohr I 722 724.

PRESSLER, Kometen und Meteore II 116.

PREUSS, Doppelsterne I 673. PREVOST, Eigenbewegung des Sonnensystems

PERY, ADALBERT, Universum VI 82 83 85. PRITCHARD, CHARLES, Astrophotometrie I 321

331 344 345 346 364; Kometen und Meteore II 127; Mikrometer III a 134; Parallaxe III a 353; Sternbilder III b 112.

PRITCHETT, Kometen und Meteore II 62; Planeten III a 399 413.

v. PRITTWITZ, Kometen und Meteore II 116. PROCTOR, R. A., Bahnbestimmung I 572; Kosmogonie II 244; Planeten III a 402 403 404 409; Sonne IIIb 75; Universum IV 113 116.

PTOLEMAUS, CLAUDIUS, Einleitung I 8 14 20 24 25 29 30 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 60 61 62 63 64 66 72 73 74 77 78 97; Alhidade I 195; Armille 1 210; Astrophotometrie I 343 346 347; Chronologie I 608 609 616; Diopter I 570; Gnomon II 2 3; Parallaxe III a 320 321 326; Sternbilder III b 109 110 115 125 132 138 150 154 158 174 184 187 189 192 198 203 208 228 229 231 233 235 236 245 252 261 262 272 279 290 303 316 318 321 327 343 351 359 369 378 386 389 391 396 406 413 419 427 430: Sterncataloge und Sternkarten III b 455: Sternhaufen und Nebelflecke III b 524.

PTOLEMAUS, PHILADELPHUS, Einleitung I 18. PULSIFER, Astrospectroskopie I 402. PYTHAGORAS, Einleitung I 6 9 17.

QUETELET, Astrophotometrie I 321; Kometen und Meteore II 112 116 147 160 161 179 184 185; Planeten Ill a 422; Sterncataloge und Sternkarten IIIb 472.

QUETELET, ERNEST, Sterncataloge und Sternkarten IIIb 495.

VALENTINER, Astronomie, 1V.

RAAB, Uhr IV 40. RADAU, R., Bahnbestimmung I 573; Kosmogonie II 237 241; Mechanik des Himmels II 312 313; Strahlenbrechung III b 551 554 556 562 564 566 567 587 589 594

597 598. RADCLIFFE, Einleitung I 98; Sterncataloge und Sternkarten IIIb 476 482 487 493 497 506 511.

RAHTS, Kometen und Meteore II 75.

RAMBAUT, A. A., Doppelsterne I 692; Mikrometer III a 163; Sterncataloge und Sternkarten IIIb 479 504 506 511.

RAMON Y CAJAL, Persönliche Gleichung IIIa 377-

RAMSDEN. Acquatoreal I 170: Altazimuth I 204: Astrophotographie I 255; Fernrohr I 706 718 719 720 730 732 734 737; Mikrometer III a 202; Nonius III a 302. RAMSEY, Sonne IIIb 79.

RANCKEN, Eigenbewegung des Sonnensystems IIIb 107 108.

RANKINE, Kosmogonie II 247.

RANSOME, Altazimuth I 204.

RANYARD, A. C., Planeten IIIa 417; Universum IV 70.

RAYET, Astrospectroskopie I 413 415; Sonne IIIb 78; Sterncataloge und Sternkarten IIIb 507; Universum IV 110.

RAYLEIGH, Lord. Scintillation IIIb 56. READ, Astrophotographie I 301.

v. Rebeur-Paschwitz, E., Bahnbestimmung I 466; Horizontalpendel II 28 32 33 36 37 39 40; Mikrometer IIIa 151; Sternhaufen und Nebelflecke IIIb 527; Sternwarten IIIb 548.

REGIOMONTAN, (JOHANN MÜLLER), Einleitung I 55 56 93; Jacobsstab II 48; Kometen und Meteore II 50 51 52.

REGNAULT, Strahlenbrechung IIIb 556; Uhr IV 15.

REICHEL, Mikrometer III a 224; Polhöhe III a REICHENBACH, Altazimuth I 204; Biegung I 591;

Fernrohr I 706 707; Heliometer II 10; Sterneataloge und Sternkarten IIIb 481 480 493; Theilfehler IIIb 610; Universalinstrument IV 44.

REIMARUS, URSUS, Einleitung I 67 78.

REIMER, DIETRICH, Sterncataloge und Sternkarten III b 515. REINFELDER, Heliometer II 17.

REINHOLD, Einleitung I 66.

REINOLD, Kosmogonie II 230

REPSOLD, Aequatoreal I 179 191 194 195; Altazimuth I 205; Astrophotographie I 215 232 233 238 266 270 283; Bahnsucher I 575; Biegung I 580 582 591 592; Heliometer II 6 12 15 16 17 20; Horizontalpendel II 32 33; Längenbestimmung II 250; Meridiankreis IIIa t 14; Mikrometer Illa 71 115 119 120 121 124 125 126 128 Tafel I S. 129 130 132 184 186 194 199; Niveau, Niveauprüfer III a 290; Persönliche Gleichung III a 375 376; Polhöhe III a 461; Sterncataloge und Stern-

karten IIIb 474 493; Theilfehler IIIb 602 605 606 611; Universaltransit IV 55. RÉSAL, Mechanik des Himmels II 557.

RESPIGHT, Astrospectroskopie I 405; Planeten IIIa 426; Scintillation IIIb 50 56 58; Sonne IIIb 82 84; Sterneataloge und Sternkarten III b 498 501.

RETZIUS, Persönliche Gleichung IIIa 377. REUSCH, Kometen und Meteore II 109. RHAETICUS, Einleitung I 66.

RICCA Astrospectroskopie I 405.

RICCIOLI, Einleitung I 17; Mond IIIa 246 247 259 264 277; Planeten III a 399 420. Ricco, Kometen und Meteore II 63; Sonne

IIIb 72.

RICHER, Einleitung I 118: Parallaxe IIIa 332. RICHTHOFEN, Kometen und Meteore II 116. RIEFLER, Uhr IV 11 15 16 20 29 31 32.

RIEMANN, Kosmogonie II 247.

RIEWSKY, Sterncataloge und Sternkarten IIIb 508.

RIGAUD, Sterneataloge und Sternkarten III b 482. RISTEEN, Eigenbewegung des Sonnensystems IIIb 97.

RISTENPART, Kometen und Meteore II 73: Mikrometer IIIa 102; Eigenbewegung des Sonnensystems IIIb 96 107 108; Sterncataloge und Sternkarten IIIb 468 (Verf.) 470 (Verf.) 477 (Verf.); Universum IV 66 67 73 82 83 85 108 121.

RITTER, E., Bahnbestimmung I 571; Kosmogonie II 229 232 233 234 235 236 237 238 239 243 246 247; Planeten IIIa 433. RIVIÉRE, Strahlenbrechung III b 553.

ROBERT, S., Kometen und Metcore II 154 156

ROBERTS, Astrophotographie I 230; Kosmogonie II 232; Sternhaufen und Nebelflecke IIIb 528.

ROBERTSON, Sterncataloge und Sternkarten III b

482 517. ROBINSON, F. G., Sterneataloge und Sternkarten IIIb 408.

ROBINSON, E. R., Sterneataloge und Sternkarten ШЪ 486.

ROCHE, Kosmogonie II 241 242.

ROCHON, Mikrometer IIIa 219 220 221 224 229 230.

RODANET, Chronometer I 626, Tafel II.

ROGERS, J. A., Mikrometer IIIa 123. ROGERS, WILLIAM A., Sterneataloge und Stern-

karten III b 498 503. ROHLFS, GERHARD, Kometen u. Meteore II 108. ROHRBACH, Sterneataloge und Sternkarten III b

ROMBERG, H., Mikrometer III a 161; Sternca-

taloge und Sternkarten IIIb 477 494 497 498 507.

RÖMER, OLAUS, Einleitung I 98 118; Aequatoreal I 179; Altazimuth I 204; Mikrometer IIIa 112; Parallaxe IIIa 346; Passageninstrument IIIa 355; Polhöhe IIIa 467; Eigenbewegung des Sonnensystems III b 92.

ROMME, Chronologie I 623. Rose, Kometen und Meteore II 109 110. Rosén, Astrophotometrie I 323 344; Universum IV 77 78.

ROSENKRANZ, Kosmogonie II 228. ROSETTE, Fernrohr I 707.

RÖSLIN, Einleitung I 67 78.

Ross, Aequatoreal I 195; Kometen und Meteore

ROSSE, Earl of, Fernrohr I 704; Planeten III a 400 402; Sternhaufen und Nebelflecke III b 526 529; Universum IV 68.

ROTHMANN, Einleitung I 72; Sterncataloge und Sternkarten III b 455.

ROWLAND, Astrophotographie I 222 246: Astrospectroskopie I 394 395 398 426 429. ROYER, Sternbilder IIIb 109 338.

RUDOLF II., Einleitung I 67 78 92; Chronologie I 615.

DE LA RUE, WARREN, Astrophotographie I 264 300 301; Sonne IIIb 67 69.

RUFFERT, F. W., Uhr IV 26. RUMFORD, Einleitung I 163.

RUMKER, Einleitung I 162; Kometen und Meteore II 74; Sternbilder IIIb 113; Sterncataloge und Sternkarten III b 475 483 485 490; Sternhaufen und Nebelflecke III b 525.

RUNGE, Astrospectroskopie I 398; Strahlenbrechung IIIb 589 591.

RUSSELL, Horizontalpendel II 40; Planeten III a

RUTHERFURD, Astrophotographie I 246 256 270 304; Astrospectroskopie I 306; Heliometer II 27; Sternhaufen und Nebelflecke III b 527.

SABINE, Sonne III b 74.

SABINE VON WÜRTTEMBERG, Einleitung I 72. SABLER, Sterncataloge und Sternkarten III b 491. SACROBOSCO, JOHANNES a, Einleitung I 53.

SAFARIK, Fernrohr I 704 722 740 746; Horizontalpendel II 40; Planeten IIIa 398. SAFFORD, TRUMAN, H., Planeten III a 431; Stern-

cataloge und Sternkarten IIIb 495 504. SAINT-BLANCAT, Sterneataloge und Sternkarten IIIb 510.

SALIS, Einleitung I 149.

SALVATORI, Sonne IIIb 79.

Samuel, Chronologie I 620. SANTARELLI, Sterneataloge und Sternkarten IIIb

487. SANTINI, Gtovanni, Bahnbestimmung I 482:

Sterncatologe und Sternkarten III b 486 494 504. SARABAT, Kometen und Meteore II 53.

SAUSSURE, Scintillation III b 57.

SAUTTER, Fernrohr I 707.

SAVARY, FELIX, Einleitung I 163; Doppelsterne 1 676 696.

SAVERY, SERVINGTON, Einleitung I 118: Heliometer II 4; Mikrometer III a 198.

SAWERTHAL, Kometen und Metcore II 94. SCALIGER, JOSEPH, Einleitung I 94, Chronologie I 618 623.

SCALIGER, JULIUS, Chronologie I 618.

SCHAEBERLE, Biegung I 587 590; Kometen und Meteore II 61; Persönliche Gleichung III a 381; Planeten III a 410 412; Sterncataloge und Sternkarten IIIb 502.

SCHEINBERGER, Uhr IV 33.

SCHEINER, CHRISTOPH (1575-1650), Einleitung I 76; Fernrohr I 701; Sonne IIIb 60 65.

SCHEINER, J. (Potsdam), Astrophotographie I 259 260 274 279; Astrophotometrie I 359; Astrospectroskopie I 420 421 426 427 429; Sonne III b 82 86; Sterncataloge und Sternkarten IIIb 522; Sternhaufen und Nebelflecke III b 526 527; Strahlenbrechung IIIb 591; Universum IV 78.

SCHELL, Uhr IV 7.

SCHELLEN, H., Astrospectroskopie, I 428; Kosmogonie II 237; Sonne IIIb 63 72 75 76. SCHELLER, A., Sterncataloge und Sternkarten IIIb 510.

SCHERFER, C., Bahnbestimmung I 569.

SCHEUTEN, Planeten III a 433.

SCHIAPARELLI, Einleitung I 10 161; Doppelsterne I 674 675; Kometen und Meteore II 51 54 58 67 109 112 126 147 152 153 154 155 156 175 179 181 187 188 200 209 210 213 227; Kosmogonie II 240 243; Mikrometer IIIa 156 164 170 172 173 174: Planeten III a 391 392 397 401 402 403 405 406 407 408 409 410 412 426 430; Eigenbewegung des Sonnensystems IIIb 96; Universum IV 76 77 78 92 93 94 100.

SCHIELLERUP, Astrospectroskopie I 415; Mond IIIa 280; Eigenbewegung des Sonnensystems III b 107: Sternbilder III b 113: Sterncataloge und Sternkarten IIIb 477 495.

SCHINKEL, Sternwarten IIIb 531.

SCHLEUSSNER, Astrophotographic I 213 219 239 240 246.

SCHLÜTER, Heliometer II to 11.

SCHMIDT, Fernrohr I 722 723.

SCHMIDT, A., Chronologie I 624.

SCHMIDT, AUGUST, Horizontalpendel II 41; Sonne Шь 86 87.

SCHMIDT, J. F. J. (1825-1884), Astrophotometrie I 337 338 339 357 358; Kometen und Meteore II 62 75 76 86 103 117 119 120 121 122 123 124 125 126 131 132 146 148 159 160 161 162 170 173 180 181 183 184 185 190 213; Mond III a 247 259 271 272 273 274 275 277 278 279 280; Planeten III a 389 393 399 401 402 414 415 425 429 433; Stern-haufen und Nebelflecke III b 525; Universum IV 69; Zodiakallicht IV 184.

SCHMÖGER, F. v., Chronologie I 624. SCHNEIDER, Uhr IV 39.

SCHOLIERS, PETER, Fernrohr I 701.

SCHOLZ, Kometen und Meteore II 116.

SCHOMBERG, NIKOLAUS (von Capua), Einleitung

SCHONER, Einleitung I 66 72.

SCHÖNFELD, Einleitung I 162; Astrophotometrie I 343 350 363; Bahnbestimmung I 468; Planeten III a 397; Eigenbewegung des Sonnensystems III b 103 107; Sterncataloge uud Sternkarten III b 519 520 521; Sternhaufen und Nebelflecke IIIb 525; Sternwarten IIIb 531: Universum IV 72

SCHOPENHAUER, Kosmogonie II 229.

SCHORR, R., Sterncataloge und Sternkarten III1: 510.

SCHOTT, Fernrohr I 707 727 739 740 741. SCHRAM, ROBERT, Chronologie I 596 598 601 623 624; Finsternisse I 816.

SCHREIBER, O., Theilfehler IIIb 610 611. SCHREIBERS, Kometen und Meteore II 109.

SCHRÖDER, HUGO, Aequatoreal I 194 195; Fernrohr I 738 742 747; Mikrometer III a 117.

SCHRÖTER, J. H., Einleitung I 158: Fernrohr I 707; Kometen und Meteore II 54 57 86 So 120; Mikrometer IIIa 114; Mond III a 247 250 256 264 273 276 277 278 280 281; Planeten IIIa 390 394 398 414 415 417 418 419 425 426 428 435.

SCHUBERT, Kosmogonie II 228; Längenbe-

stimmung II 260.

SCHULHOF, Bahnbestimmung I 523; Kometen und Meteore II 69 71 76 93 95 223 224; Sterncataloge und Sternkarten III b 472. SCHÜLL, Fernrohr I 734.

SCHULTZ, Sterncataloge und Sternkarten IIIb 495; Sternhaufen und Nebelflecke IIIb

525 527; Uhr IV 20. SCHULZ, W., Astrospectroskopie I 428.

SCHUMACHER, C. D., Astrophotometrie I 321 363; Bahnbestimmung I 528; Biegung 1 582; Coordinaten I 665; Kometen und Meteore II 112 113 121 181; Längenbestimmung II 260 261; Mikrometer III a 138; Planeten III a 391 394; Polhöhe III a 453: Sterncataloge und Sternkarten III b 470 480; Uhr IV 20; Universum IV 69.

SCHUMANN, Astrophotographie I 244 245 247 271 278; Uhr IV 20.

SCHUR, Altazimuth I 205; Heliometer II 9 11 13 15 17 20 21 22 23; Planeten III a 414; Sterncataloge und Sternkarten IIIb 494: Sternhaufen und Nebelflecke III b

526; Theilfehler IIIb 611. SCHURIG, Sternbilder IIIb 112; Sterncataloge

und Sternkarten III b 514. SCHUSTER, Astrophotographie I 302.

SCHWABE, Mond IIIa 276; Planeten IIIa 425 426; Sonne III b 67.

SCHWARZ, Biegung I 591.

SCHWARZSCHILD, Mikrometer III a 238 239; Universum IV 124 125 127.

SCHWASSMANN, Sterncataloge und Sternkarten III b 522.

Schweizer, Aberration I 171; Kometen und Meteore II 94 218; Sterncataloge und Sternkarten IIIb 488; Uhr IV 34 36.

SCHWERD, Astrophotometrie I 312 363: Sterncataloge und Sternkarten III b 483.

SCHYRLAEUS, Fernrohr I 701. SCOTT, Planeten III a 433.

SEABROKE, Astrospectroskopie I 427; Doppelsterne I 674.

SEARLE, Astrophotometric I 334; Universum IV 70 71 76; Zodiakallicht IV 184.

Secchi, Einleitung I 163; Astrophotographie I 258 301; Astrophotometrie I 312 331

363; Astrospectroskopie I 368 370 375 379 388 406 410 411 412 414 416 428; Doppelsterne I 674; Kometen u. Meteore II 60; Kosmogonie II 237; Mikrometer III a 219; Planeten III a 393 400 401 402 414 426 427 428; Sonne IIIb 62 63 64 69 70 72 74 75 76 77 78 83 84 85 86 88; Sternhaufen und Nebeltlecke III b 525; Universum IV 70 97. SÉDILLOT, Einleitung I 49 52. SEELIGER, Einleitung I 160 163; Astrophoto-

metrie I 334 335 336 337 338 339 342 364; Doppelsterne I 687 696; Finsternisse I 839; Heliometer II 24; Kometen und Meteore II 67; Kosmogonie II 231 235 240; Mechanik des Himmels II 482 563: Mikrometer IIIa 166 242 244: Planeten IIIa 427 430; Sterncataloge und Sternkarten IIIb 497 502; Strahlenbrechung III b 589; Universum IV 65 70 72 73 74 75 78 79 80 81 82 84 85 86 88 90 91 92 93 94 95 98 99 100 101 105 111 117 119 120 121 126.

SEIDEL, Astrophotometrie I 310 311 323 327 328 329 331 333 336 337 338 339 340 342 344 348 363; Doppelsterne 1 688; Planeten III a 387.

SEJOUR, 'Einleitung I 115 153 154 155; Bahnbestimmung I 452 569 573.

SELANDER, Heliometer II 14. SENECA, Einleitung I 18; Kometen u. Meteore II 50 55 222.

SERPIERI, Zodiakallicht IV 184. SERVUS, Fernrohr I 700. SEYBOTH, Sterncataloge und Sternkarten III b 404.

SHORT, Heliometer II 4; Planeten III a 398. SIDEBOTHAM, Planeten III a 433. SIDGRAEVES, Astrospectroskopie I 422.

SIEBERT, Uhr IV 14.

SIEMENS, FR., Fernrohr I 740.

SIEMENS, WERNER, Kosmogonie II 246; Registrirapparate III b 38.

SIEMENS, WILLIAM, Kosmogonie II 246. SIMMS, Acquatoreal I 194; Altazimuth I 204; Mikrometer III a 206.

SIMON, Kosmogonie II 242. SIMPLICIUS, Einleitung I 10 11 15. SIMPSON, Mechanische Quadratur II 618.

Sisson, Acquatorcal I 192. SIXTUS IV., Einleitung I 55; Chronologie I

615.

SMITH, Astrophotometrie I 362. SMITT, Astrophotometrie I 332.

SMYTH, Astrospectroskopie I 405; Sterncataloge und Sternkarten III b 490.

SNELLIUS, Fernrohr I 708 710. SOCOLOFF, Sterncataloge und Sternkarten III b

491 502 504. SOCRATES, Einleitung I q.

SOLDNER, Sterncataloge und Sternkarten III b

SOMMER, Kosmogonie II 228. SORET, Sonne III b 88.

Sosigenes, Einleitung I 31; Chronologie I 613.

SOUILLARD, Finsternisse I 839; Mechanik des Himmels II 405.

SOUTH, Doppelsterne I 673; Sternbilder III b

SPENCER, Acquatoreal I 194. SPINOZA, Fernrohr I 702.

SPITALER, Kometen und Meteore II 52 75 77; Sternhaufen und Nebelflecke III b 528.

SPÖRER, Sonne IIIb 65 66 67 68 71 72 84. SPRINGER, Registrirapparate IIIb 39 40 41. STÄCKEL, Mechanik des Himmels II 291.

STAMPFER, Astrophotometrie I 331; Mikrometer IIIa 138; Uhr IV 10.

STANNYAN, Sonne III b 75. STARK, Planeten III a 433.

STARKE, Zeitbestimmung IV 171. STAUDACHER, Planeten III a 433.

STECKER, Kometen und Meteore II 108. STEEN, BILDE, Einleitung I 67

STEFAN, Astrospectroskopie I 396 STEINHEIL, CARL AUGUST VON, Einleitung I 163; Astrophotographie I 213 217 225 263; Astrophotometrie I 308 309 310 311 323 327 341 344 362; Fernrohr I 707 723 728 729 745; Mikrometer III a

137 138 199 200 201 217; l'laneten IIIa 433; Zeitbestimmung IV 178.

STEINHEIL, RUDOLF VON, Astrophotographie I 230; Fernrohr I 707 734 735 742. STEPHAN, Kometen und Meteore II 75 76;

Sterncataloge und Sternkarten III b 517; Sternhaufen und Nebelflecke IIIb 525; Theilfehler IIIb 608 611.

STERNECK, Sternwarten IIIb 548; Zeithe. stimmung IV 143 172.

STEVIN, Einleitung I 77.

STEWART, BALFOUR, Sonne IIIb 67.

STICHTENOTH, Sterncataloge und Sternkarten IIIb 477. STIEFEL, MICHAEL, Chronologie I 615.

STIRLING, Mechanik des Himmels II 520. STOCKWELL, Mechanik des Himmels II 395. STÖFFLER, Chronologie I 615.

STOKES, Fernrohr I 739.

STONE, E., Sterncataloge und Sternkarten IIIb 506; Universum IV 117.

STONE, O., Bahnbestimmung I 573; Helio-meter II 16; Mikrometer III a 164; Persönliche Gleichung III a 382; Planeten IIIa 385 399; Sonne IIIb 62; Sterncataloge und Sternkarten IIIb 491.

STRASSER, Sterncataloge und Sternkarten IIIb

STRATONOW, Sonne IIIb 71: Universum IV 72 92 93 96 109 110 114 115 116 123. STRATFORD, Sterncataloge und Sternkarten III b 462.

STRAUBEL, Fernrohr I 737.

STRUVE, H., Doppelsterne I 674; Mechanik des Himmels II 467; Mikrometer III a 141 163 167 Planeten III a 426 428.

STRUVE, L., Finsternisse I 754 763 811; Parallaxe III a 322; Eigenbewegung des Sonnensystems III b 96 103 107 108 109.

STRUVE, O., Einleitung I 162 163; Doppelsterne I 674 675 677 678 687; Mikrometer IIIa 116 147 155 163 164 165 195; Planeten IIIa 414 424 425 426 427 428 431 432; Pracession IIIb 17; Eigenbewegung des Sonnensystems IIIb 108; Sterncataloge und Sternkarten IIIb

466. STRUVE, W., Einleitung I 162; Aberration I 170 171 176; Astrophotographie I 303;

Astrophotometrie I 343 347 348; Bahn-bestimmung I 465 489; Doppelsterne I 671 672 673 674 675 677 685; Heliometer II 15; Längenbestimmung II 262 263 264 266 268; Mikrometer IIIa 129 147 156 158 163 164 229; Parallaxe IIIa 346 347; Passageninstrument IIIa 361; Personliche Gleichung III a 369; Planeten III a 418 422 424 425 427 428 431; Polhöhe III a 463; Eigenbewegung des Sonnensystems IIIb 96; Sternbilder IIIb 113 114 115; Sterncataloge und Sternkarten IIIb 458 481 484; Sternwarten IIIb 531 537; Theilfehler IIIb 602 611 Universum IV 61 62 63 64 65 66 72 76

84 94 105. STUCKRATH, Horizontalpendel II 33.

STUMPE, Eigenbewegung des Sonnensystems IIIb 103 107 108; Sterncataloge und Sternkarten IIIb 508,

STURM, Einleitung I 117.

LE SUEUR, Einleitung I 122; Astrospectroskopie I 407.

SWASEY, Aequatoreal I 194.

SWIFT, Kometen und Meteore Il 52 76 77 94 Planeten III a 434; Sternhaufen und Nebelflecke IIIb 525.

VAN SWINDEN, Uhr IV 5 10. SYLVESTER II, Einleitung I 53.

TACCHINI, Astrospectroskopie I 401 405; Finsternisse I 800; Sterncataloge und Sternkarten

III b 490 510. TALCOTT, Aberration I 176; Nutation IIIa 306 308; Polhöhe IIIa 467 468 479 491 Strahlenbrechung IIIb 601; Universaltransit IV 55; Zeitbestimmung IV 172. TALMAGE, Kometen und Meteore II 73.

TARTALEA, Einleitung I 77.

TATLOCK, John, Sterncataloge und Sternkarten

IIIb 503.

TAYLOR, Einleitung I 152 153; Bahnbestimmung I 474 477 481; Chronometer I 645; Fernrohr I 725; Interpolation II 42 45 46 47: Mechanik des Himmels II 371 383 399; Methode der kleinsten Quadrate IIIa 42.

TAYLOR, TH. GL., Sterncataloge und Sternkarten IIIb 475 485.

TERBUTT, Kometen und Meteore II 74 94. TEMPEL, Kometen und Meteore II 70 74 76 77 94 218; Sternhaufen und Nebelflecke

IIIb 525 526 527. TEMPELHOFF, G. F. de, Bahnbestimmung I 569.

TENGNAGEL, Einleitung I 67. TENNANT, Chronometer I 646; Sonne IIIb 78. TERBY, Planeten IIIa 402 405 426.

TERLING. Uhr IV 36. TETENS, Uhr IV 20.

THALÉN, Astrospectroskopie I 398 429.

THALES, Einleitung I 6 8 17: Mechanik des Himmels II 455.

THATCHER, Kometen und Meteore II 94 218. THEBIT, BEN CHORA, Einleitung I 49 51 52.

THEON, d. J., Einleitung I 48 49. THEORELL, Uhr IV 33.

THIELE, Astrophotographie I 279 282; Bahnbestimming I 573; Doppelsterne I 676 677; Mikrometer IIIa 165.

THOLLON, Astrospectroskopie I 394 399 429;

Planeten III a 409. THOME, JUAN, Sterncataloge und Sternkarten III b 503 521; Universum IV 67 68.

THOMPSON, ROBERT ANCHOR, Sterncataloge und Sternkarten III b 490.

THOMSON, WILLIAM, Kosmogonie II 246; Mechanik des IIimmels II 551; Sonne III b 90, s. KELVIN.

TIEDE, Uhr IV 20.

TIELE, Sterncataloge und Sternkarten IIIb 497. TIETJEN, F., Astrophotometrie I 340; Bahnbestimmung 1 464 573; Mechanik des Himmels II 343; Mikrometer III a 134; Planeten III a 439; Sterncataloge und Sternkarten IIIb 462.

TIGERSTEDT, Personliche Gleichung IIIa 378. TILLO, Kometen und Meteore II 181.

TIMOCHARIS, Einleitung I 19; Aequatoreal I 179; Sterncataloge und Sternkarten IIIb 455.

TISSANDIER, Kosmogonie II 241.

ERAND, Bahnbestimmung I 523 573; Doppelsterne I 677; Fernrohr I 746; Ko-meten und Meteore II 93 95 96; Mecha-TISSERAND, nik des Himmels II 482 484 556; Scintillation III b 52; Uhr IV 16.

TITIUS, Planeten III a 385.

TOBLER, Uhr IV 34 37.

TODD, D., Finsternisse I 838; Gleichung IIIa 382.

TÖPFER, Astrophotometrie I 316; Astrospectroskopie I 374.

TORNTWAITE, Acquatoreal I 190. TOSCANELLI, Kometen und Meteore 11 52.

TRABERT, Scintillation III b 52.

TRAUMULLER, Uhr IV 5.
TRETTENERO, Sterncataloge und Sternkarten III b 494.

TRIESNECKER, Heliometer II 5.

TROUGHTON, Aequatoreal I 194; Altazimuth 1 204; Mikrometer III a 115 117 202; Uhr IV 13.

TROUVELOT, Planeten III a 397 417 423; Universum IV 69.

TROWBRIDGE, Kosmogonie II 241. TSCHIRNHAUS, Graf, Fernrohr I 701.

TUCKER, Sterncataloge und Sternkarten III b 510 521.

TUMLIRZ, Astrophotometrie I 333 349 364. TUPMANN, Kometen und Meteore II 181 202 213; Mikrometer IIIa 100.

TÜRKHEIM, Kometen und Meteore II 116. TUTTLE, Kometen und Metcore II 74 75 94

218.

TWINING, Kometen und Meteore II 187.

TYCHO, BRAHE, Einleitung I 58 67 68 69 70 71 72 73 76 77 78 80 84 85 92 93 97: Acquatoreal I 179; Armille I 209: Astrophotometrie I 356 358; Kometen und Meteore II 54; Parallaxe IIIa 321 346; Quadrant IIIb 29; Sternbilder IIIb 109 223; Sterncataloge und Sternkarten III b 456.

UBAGHS, Eigenbewegung des Sonnensystems IIIb 108. UBALDI, Einleitung I 77.

ULUGH, BEIGH, Einleitung I 53; Sterncataloge und Sternkarten III b 455.

UPPDEGRAFF, Sterncataloge und Sternkarten III b 503 505. URBAN VIII., Einleitung I 74.

USCHER, Scintillation III b 53.

UTZSCHNEIDER, Fernrohr I 706 707; Heliometer

VALENTINER, Azimuth 1438: Planeten III a 402: Sterncataloge u. Sternkarten IIIb 480 406 507; Sternhaufen und Nebelflecke 111b 527.

VALZ, B., Bahnbestimmung I 570 571; Kometen und Metcore II 74; Mikrometer III a 68 205 394.

VASSENIUS, Sonne III b 61. VENDELIN, Parallaxe III a 320. VENTURI, Mikrometer III a 65.

VESPUCCI, AMERIGO, Einleitung I 55.

VIARO, BARTOLO, Sterncataloge und Sternkarten IIIb 510.

DE VICO, Bahnsucher I 574; Kometen und Meteore II 70 71 94; Planeten III a 394 395. VIDAL, Sterncataloge und Sternkarten III b 479. VIERORDT, Persönliche Gleichung III a 380

VILLARCEAU, YVON, Einleitung I 163; Aberration I 175; Bahnbestimmung I 571; Chronometer I 648: Coppelsterne I 676 696. VILLIGER, Planeten III a 397; Universum IV 74. VIOLLE, Astrophotometric I 306; Sonne III b 87 88.

VIVIANI, Uhr IV 4 5 VOGEL, H. C., Einleitung I 163; Aequatoreal I 193; Astrophetographie I 233 234 238 240 247 252 254 255 265 273; Astrophotometrie I 316 332 358 359; Astrospectroskopie I 371 372 378 380 383 391 394 398 399 403 404 405 406 407 408 409 410 414 415 416 417 418 419 420 421 422 423 425 426 427 428 429; Doppelsterne I 690; Fernrohr I 737 738; Kometen und Meteore II 74: Kosmogonie II 235 237; Mikrometer III a 94 123 124 184; Planeten IIIa 390 394 395 396 397 398 405 415 430: Sonne IIIb 62 64 82; Eigenbewegung des Sonnensystems IIIb 92 97 101; Sternhaufen und Nebelflecke III b 525 526 530; Universum IV 103 104 109.

VOIGTLANDER, Astrophotographie I 234 235 238; Astrospectroskopie I 369. VOIT, Fernrohr 1 723 728 729.

VULLIAMY, Uhr IV 24.

WADSWORTH, Fernrohr I 748 749. WAGNER, AUGUST, Aberration I 171: Stern-

cataloge und Sternkarten III b 487. WAGNER, H. A. E., Chronologie I 624. WAGNER, J. W., Parallaxe III a 322 325. WAGNER, RUDOLF, Fernrohr I 706.

WALBECK Personliche Gleichung III a 368 369. WALDEYER, Persönliche Gleichung IIIa 377. WALKER, Kometen und Meteore II 227.

WALLENSTEIN, Einleitung I 78. v. WALTENHOFEN, Fernrohr I 736. WALTHER, B., Einleitung I 55.

WANACH, BERNHARD, Sterncataloge und Sternkarten III b 508.

WANSCHAFF, Astrophotographic I 271 272 273 277; Astrophotometrie I'316 344.

WARDUS, SETH, Einleitung J 96. WARGENTIN, Einleitung I 120 140.

WARNER, Acquatoreal I 194.

WARNSTORFF, Coordinaten 1 665; Polhöhe III a 453; Zeitbestimmung IV 157.

WARTMANN, Planeten IIIa 433. WATERS, Universum IV 113.

WATERSTONE, J. J., Bahnbestimmung I 458 570 571 572; Sonne III b 88. WATSON, J. C., Bahnbestimmung I 572; Pla-

neten III.a 434; Universum IV 74. WEBB, Mond IIIa 278.

WEBER, Einleitung I 163; Kometen und Meteore II 116; Mechanik des Himmels II 486: Planeten IIIa 433.

WRIDENBACH, A. J., Chronologie I 624. WEIERSTRASS, Mechanik des Himmels II 508. WEIGEL, ERHARD, Chronologic I 615. WEILER, Mechanik des Himmels II 453.

Weiss, E., Bahnbestimmung I 573; cataloge und Sternkarten III b 486 488 490; Uhr IV 29.

WEISSE, M., Sterncataloge und Sternkarten III b 478 482; Universum IV 61 63. WELLMANN, V., Mikrometer IIIa 224; Tafel IV

227 229 235. WELSER, MARCUS, Einleitung I 76. WENDELIN, GOTTFRIED, Kometen und Meteore

II 6o.

WENDELL, O. C., Universum IV 76. WERNER, Planeten III a 385. WESLEY, Universum IV 68.

WESTPHAL, Kometen und Meteore II 70 94; Mikrometer IIIa 186.

WEYER, G. D. E., Bahnbestimmung I 540 571.

WEYRAUCII, Kosmogonie II 246. WHEATSTONE, Personliche Gleichung IIIa 376. WHIPPLE, Astrophotographic I 300. WHITE, E. J., Sterncataloge und Sternkarten IIIb 501.

WICHER, Kometen und Meteore II 116. WICHMANN, Finsternisse I 803 804. WIDMANNSTÄTTEN, Kometen u. Meteore II 109. WIEDEMANN, E., Astrospectroskopie I 409. WIESSEL, JOHANN, Fernrohr I 703. WILDE, Scintillation IIIb 54. WILHELM IV. VON HESSEN, Einleitung I 67 72;

Uhr IV 3.

UNIVERSITY)

WILLIAMS, STANLEY, Planeten III a 410; Sterncataloge und Steinkarten III b 504.

V. D. WILLIGEN, Astrospectroskopie I 396.
WILSING, Astrophotometrie I 359 361 362;
Astrospectroskopie I 422 426; Sonne III b
66 71: Strahlenbrechung III b 591.

WILSON, Doppelsterne I 674 685; Sonne IIIb 61 69 74; Sterncataloge und Sternkarten IIIb 507; Universum IV 71.

WINBAUER, Uhr IV 34 35.

WINKELMANN, Fernrohr I 706 721 737; Scintillation III b 51; Uhr IV 15.

WINLOCK, Sonne IIIb 82.

WINNECKÉ, Einleitung I 160; Altasimuth I 205; Astrophotometrie I 363; Bahnsucher I 575; Heliometer II 5 13 15; Kometen und Meteore II 52 56 74 75 76 86 94 102 122; Kosmogonie II 233; Mikrometer IIIa 184 186; Parallase IIIa 332 338; Planeten IIIa 390 398 399 414; Sternataloge und Sternkarten IIIb 487; Sternhaufen und Nebelflecke IIIb 525 526; Sternwarten IIIb 540 542.

WINNERL, Chronometer I 647; Uhr IV 16. WIRTZ, Sterncataloge und Sternkarten III b 510. WISLICENUS, WALTER F., Astrospectroskopie I 366 (Verf.); Chronologie I 593 (Verf.) 604 624; Mikrometer IIIa 175; Persönliche Gleichung IIIa 375.

WISNIEWSKI, Kometen und Meteore II 79. WITT, G., Planeten IIIa 440.

WOLF, CHARLES, Astrophotographic I 214; Astrospectroskopic I 415; Kosmogonic II 232 239; Persönliche Gleichung III a 374 376 381; Sterncataloge und Sternkarten IIIb 517; Sternhaufen und Nebelfiecke IIIb 527; Theilfehler IIIb 608 611; Universum IV 110.

Wolf, Max, Astrophotographie I 227 229 234 237 239 304; Bahnbestimmung I 523 524; Kometen und Meteore II 68 74 77; Planeten III a 436; Sternhaufen und Nebelflecke III b 528; Universum IV 71 120; Zodiakallicht IV 185.

Wolf, Rudolf, Fernrohr I 700 720; Kometen und Meteore II 160; Sonne III b 67 74. Wolf, (Gleiwitz), Kometen und Meteore II 116.

Wolf, (MAYR und Wolf), Registrirapparate III b 38.

WOLFER, Persönliche Gleichung III a 383. WOLFERS, J. Ph., Bahnbestimmung I 458 568 572; Ort III a 312; Sterncataloge und Sternkarten III b 458 459 461 462

471 472 476.
Wolff, Th., Astrophotometrie I 323 331 344
348 363; Scintillation IIIb 50 56 58;

Universum IV 77.
WOLLASTON, FRANCIS, Einleitung I 163; Astrophotometric I 332 333 342; Mikrometer
IIIa 229 230 231 233 235; Sterncataloge
und Sternkarten IIIb 475 479.

WOOLHOUSE, Finsternisse I 838.

WORMS, Kosmogonie II 246.

WOSTOKOFF, J., Sterncataloge und Sternkarten IIIb 502.

WRAY, Planeten IIIa 433.

WRIGHT, Astrospectroskopie I 405; Kosmogonie II 231; Universum IV 58.

WROTTESLEY, Lord, Doppelsterne I 674; Sterncataloge und Sternkarten IIIb 484 489.

WÜLLNER, Uhr IV 9.

WUNDT, Persönliche Gleichung IIIa 371 377 378 379.

WURLISCH, Kometen und Meteore II 161.

WUTSCHICHOWSKY, Kometen und Meteore II Tafel IV, S. 58.

X

XERXES, Mechanik des Himmels II 455.

Y

YARNALL, Sterncataloge und Sternkarten III b 490 493.

Young, C. A., Uhr IV 28.

YOUNG, THOMAS, Astrophotometrie I 327; Astrospectroskopie I 387 402 425; Kosmogonie II 240; Planeten IIIa 399; Sonne III b 63 64 73 74 76 78 79 82 83 85 86.

z

v. Zach, Bahnbestimmung I 569 570; Chronologie I 624; Kometen und Meteore II 55 112; Mikrometer IIIa 68 104; Planeten IIIa 390 398 435; Scintillation IIIb 55; Sterncataloge und IIIb 457 475 479 480; Sternkarten IIIb 531.

ZAHN, Mikrometer IIIa 65.

ZAHRTMANN, Längenbestimmung II 260.

Zech, J., Finsternisse I 813; Sterncataloge u. Sternkarten IIIb 458.

ZEIHER, Fernrohr I 705.

ZEISS, Sternwarten IIIb 546; Zodiakallicht IV 185.

Zelbr, Karl., Bahnbestimmung I 452 (Verf.) 458 (Verf.) 468 (Verf.) 469 (Verf.) 471 (Verf.) 513 (Verf.) 539 (Verf.) 542 (Verf.) 568 (Verf.).

ZENGER, Fernrohr I 745.

ZEZIOLI, Kometen und Meteore II 118 126

ZöLLNER, Einleitung I 163; Astrophotometrie I 313 314 315 316 318 319 328 332 333 334 345 336 337 338 339 340 341 342 344 361 362 363 364; Astrospectroskopie I 370 382 383 385 414 423 425 428; Horizontalpendel II 28 30 31 40; Kosmogonie II 229 239; Planeten IIIa 387 388 419; Scintillation III 16 67 0 71 72 78 83 84 86 88; Universum IV 77.

ZUCCHI, Fernrohr I 703. ZUPUS, Planeten IIIa 390. ZWINK, Uhr IV 19 20. Sach-Register.

Sach-Register.

(Die romischen Ziffern geben die Bände, die arabischen die Seiten an.)

A

Abendweite I 164 Tafel dazu I 165.

Aberration entdeckt von Bradley Éinkeihung I 1118, Aberration I 170, Puradiaze IIIa 146; tägliche, jährliche, seculare Aberration I 166; der Fixsterne I 166 ff.; der Planeten I 167 178; allgemeine Ausdrücke I 167; für die tägliche I 170, für jährliche, für den Aequator I 170, Berechnung I 171; für die Ekliptik I 172; für die Sonne I 172; für seculare I 172; strengere für Polsterne gulttige Formeln I 173 ff.; die Aberrationslipse und Wirkungen der Aberration I 171 177; Aberration der Planeten, Bertchssichigung auf verschiedene Weise I 178, Bahnbestimmung I 465 469, 489 497.

Die Constante der täglichen und jährlichen Aberration I 170; verschiedene Werthe aus Beobachtungen am Meridiankreis, im ersten Vertical, durch die Jupiterstubanten und Lichtgeschwindigkeit I 170 171; Bestimmung der Constanten aus Rectascension und Deklinationen von Zenithsternen I 175, aus Unterschieden von Meridianzenthüdistanzen zweier Sterne (Horrebow-Talcott) I 176, Nutation IIIa 305 307, Polhöhe IIIa 468 491; günstigste Bedingungen Aberration I 177; Einfluss des Lichts von verschiedener Wellenlänge Parallasz IIIa 350.

Einfluss und Bertleksichtigung d. Aberration bei Beobachtungen, Almurantar I 148 199, Asimuthbestimmungen I 442, Despehterne I 677, Meridiankreis III a. Mikrometermssungen III a 239 244, Ort III a 309, Parallaxe III a 343 344 346 349 350. Pelthohenbetimmung III a 455; bei systematischen Unterschieden, Sterncataloge IIIb 471, Zeithestimmungen IV 142. Chromatische Aberration Fernrohr

I 703 723 724.

— Sphärische Aberration Fernrohr I 703 720 724.

Aberrationszeit s. Aberration der Planeten.
Ablese mikroskop, Beschreibung Meridiankreis IIIa 3, Nomius IIIa 299; Untersuchung und Berichtigung, senkrechte
Stellung der Axe zur Kreisebene IIIa
300, Bild der Theilung in der Ebene der
Fäden IIIa 301; Fehler des Schraubenwerthes oder Run IIIa 301; Schraubenfehler IIIa 302, s. auch Mikrometer;
Beleuchtung der Theilung unter dein Mikroskop IIIa 302 Universalimstrument IV
44.

Abplattung, der Erde Mechanik des Himmets II 458, Parallaxe IIIa 315, 323; Bestimmung aus dem Verhältniss der Flichkraft zur Schwerkraft Mechanik des Himmets II 550; Bestichung des Verhältnisses der Flichkraft zur Schwerkraft am Acquator und des Verhältnisses der Schwerezunahme vom Acquator zum Fol zur Schwere selbst, Clairaut'sches Theorem II 555.

Theoretische Abplattung für Sonne, Jupiter, Saturn II 551; für die Satelliten II 562; Abplattung der Planeten Planeten III a 387.

Abweichung s. Deklination.

Acceleration, der Fixsterne Zeitbestimmung IV 131; s. auch Beschleunigung.

Achromasie, Geschichte derselben Fernrohr I 704; ihre Untersuchung I 737.

Achromatisch Fernrohr I 704. Adapteur von Vogel Astrophotographie I

Acquant Einleitung I 38.

Aequator des Himmels Einleitung I 2ff., Chronologie I 593, Coordinaten I 655 ff., Mechanik des Himmels II 568 586, Präcession IIIb 1; Trägheitsäquator Mechanik des Himmels II 567.

Acquatorea machina Acquatoreal I 179. Acquatoreal I 179; Beschreibung I 179 189 ff; Meridian, Azimuth, Acquator des Instruments I 179; Stundenwinkel und Deklination eines Punkts der Sphära en Instrument I 180; Biegung des Fernrohrs und der Deklinations- und Stundenaxe I 181; allgemeine Theorie I 181; Ermittlung der Instrumentalfehler I 185; absolute und relative Ortsbestimmungen I 188; in Verbindung mit Mikrometern I 188.

Aequatoreale Aufstellung, deutsche, englische, französische I 189 fl.; coudé I 189. Verzeichniss der bedeutendsten jetzigen Fernrohre in äquatorealer Aufstellung I

Aequatorealcoordinaten Coordinaten I 656 I.; Verwandlung derselben in horizontale und umgekehrt I 658 659 662; in ekliptikale und umgekehrt I 663 664, Eahnbestimmung I 469 470.

Aequatoreal - Horizontalparallaxe s.

Parallaxe, Illa 315.

Aequinoctialpunkt. Acquinoctium leitung I S. Chronologie I 595. Coordinaten I 657; seine Culmination Anfang des Sterntags Zeitbestimmung IV 131; Bestimmung desselben Meridiankreis IIIa 17, Rectascensionsbestimmung IIIb 30, Sterncataloge III b 456; mittleres, scheinbarcs, wahres Aequinoctium Bahnbestimmung I 469, Mechanik des Himmels II 588; l'eriodische Aenderungen, Nutation III a 302, Zeitbestimmung IV 131 140; Gleichung d. Aequinoctialpunkte Bahnbestimmung I 469: systematische Fehler Eigenbewegung des Sonnensystems III b 96, Sterncataloge und Sternkarten IIIb 457; s. auch Nutation, Pracession, Mechanik des Himmels.

Acquinoctialstunde Einleitung I 3 32. Acren Einleitung I 5, Chronologie I 405 ff.; s. auch Kalender.

Aerolithe Kometen und Meteore II 103; Ursprung Kosmogonie II 244; s. auch Kometen, Meteore, Sternschnuppen.

Akronychisch s. Aufgang.

Albedo Astrophotometric I 335; scheinbare und wahre I 336, die relative I 336, der Planeten I 340, Planeten II 342, des Mondes Astrophotometric I 342, der Mondgegenden Mond IIIa 250; Abhängigkeit von der Farbe Planeten IIIa 388. Alfonsinis che Tafeln Einleitung I 54; neue

Tafeln I 66.
Algol, seine Veränderlichkeit entdeckt von

Montanari Einleitung I 117. Algolsterne, s. Veränderliche Sterne.

Algolsterne, s. Veränderliche Sterne. Alhidade I 195.

Alhidadenlibelle Meridiankreis III a 1, Universalinstrument IV 43 53.

Almucantar I 196, Zeithestimmung IV 153; Beschreibung des Instruments Almucantar I 202; Theorie desselben I 196; Bestimmung der Instrumentalfehler I 197; Berichtigung d. Fehler I 203; Horizontalität der Fernrohraxe, Collimation, Nullpunkt des Höhenkreises, Coincidenz des Schwerpunkts und Drehungsmittelpunkts I 203 204; Bestimmung der Fadenintervalle I 201, der Zeit I 198, Zeithestimmung IV 153, der Polliöhe Almucantar I 199, der Rectasecasion und der Deklination I 199; Einfluss der täglichen Aberration I 199, der Refraction I 200.

Almucantarat Coordinaten I 655; erster, Polar-Almucantar I 197.

Altazimuth I 204, Polhöhe IIIa 480; Beschreibung des Instruments Altazimuth I
205 ff.; Bestimmung der Febler der Aufstellung und des Instruments durch Miren,
Nadir. Niveau I 207; Reduction auf den
Mittelfaden I 207; bei Mondbeobachtungen
auf das Mondecentum I 208 209; Bestimmung des Azimuths eines Objects I 208,
des Mondes I 208, der Uhreorrection I
208; Vergleichung der beobachteten Azimuthe mit der Mondephemeride I 209;
Vortheile für die Beobachtung des Mondes I 204 ff., s. auch Universalinstrument
IV 44 ff.

Amplitudo occidua, ortiva Abendweite I 164.

Anastema, Anastematisches Argument Mechanik des Himmels II 405.

Andromeda Sternbilder IIIb 115; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 115; Verzeichniss der Doppelsterne IIIb 116 449, der Nebelflecke und Sternhausen IIIb 110, der veränderlichen Sterne IIIb 121 452 455, der farbigen Sterne IIIb 121; Präcessionstabelle IIIb 122.

Andromedanebel entdeckt von Marius, Sternhaufen IIIb 524, als Spiralnebel von Roberts durch photographische Aufnahmen erkannt III b 528; neuer Stern in demselben Astrophotometrie I 357.

Andromediden Kometen und Meteore II 185. Annus fictus, s. Ort.

Anomalie, excentrische, mittlere, wahre Einleitung 1 91, Bahnbestimmung I, 457 494. Mechanik des Himmels II 301 306; Berechnung der wahren Anomalie für die Parabel, Barkersche Tafel, Bahnbestimmung I 560. Mechanik des Himmels II 304, wenn sie sich 180° nähert, Bahnbestimmung I 566; die Barkersche Tafel und ihre Erweiterung für grosse Anomalieen Anhang IV 190 235; Berechnung der excentrischen, wahren Anomalie und des Radiusvector aus der mittleren für die Ellipse Bahnbestimmung I 457 ff. 494. Mechanik des Himmels II 307; für die Hyperbel Bahnbestimmung I 497, Mechanik des Himmels II 307; Beispiel Il 307; allgemeiner Ausdruck für die excentrische Anomalie und für gewisse Functionen des Radiusvectors und der wahren Anomalie als Function der mittleren II 308 ff.; s. auch Bahnbestimmung und Mechanik des Himmels.

Antlia pneumatica, die Luftpumpe Stornbilder IIIb 122; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 122; Verzeichniss der Doppelsterne III b 122, der Nebelfiecke und Sternbaufen III b 123, der veränderlichen Sterne III b 123 453, der farbigen Sterne III b 123; Präcessionstabelle III b 124. Apex, Antiapex Einleitung I 161, Kometen und Meteore II 127 ff. 163 ff.; Tabelle für die Elongationen vom Apex für hyperbolische, parabolische, elliptische Bahnen II 167; der Sonnenbewegung Prätession IIIb 16, Eigenbewegung des Sonnensystems IIIb 93; Formeln zur Bestimmung der Lage IIIb 94; Resultate IIIb 103; Zusammenstellung der seitherigen Bestimmungen IIIb 107 ft.

Aphel Einleitung I 22, Bohnbestimmung I 455. Aplanatisches Linsensystem Fernrohr I 721. Apogäum Einleitung I 21; Länge des Apogäums der Sonne I 26; Veränderungen d.

I.age nach Copernicus I 61.

Apsiden, Apsidenlinic Einleitung I 21, Bahnbestimmung I 457; ihre Bewegung durch Copernicus erkant Einleitung I 58, durch Newton untersucht I 103 ff., Arbeiten von Clairaut, d'Alembert, Euler darüber I 121 ff., s. auch Mechanik des Himmels.

Apus, der Paradiesvogel Sternbilder III b 124; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 124; Verzeichniss der Doppelsterne IIIb 124 449, der Nebelflecke und Sternhaufen IIIb 125, der veränderlichen Sterne IIIb 125 453, der farbigen Sterne IIIb 125; Präcessionstabelle IIIb 125.

Aquarius, der Wassermann Sternbilder IIIb

125; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 125; Verzeichniss der Doppelsterne IIIb 126 449, der Nebelflecke und Sternhaufen IIIb 120, der veränderlichen Sterne IIIb 131 454 455, der farbigen Sterne IIIb 131; Präcessionstabelle IIIb 132.

Aquila, der Adler Sternbilder IIIb 132; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 132; Verzeichniss der Doppelsterne IIIb 133 450, der Nebellecke und Sternhaufen IIIb 136, der veränderlichen Sterne IIIb 137 454, der farbigen Sterne IIIb 137; Präcessionstabelle IIIb 138.

Ara, der Altar Sternbilder IIIb 138; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 138; Verzeichniss der Doppelsterne IIIb 138 450, der Nebelflecke und Sternhaufen IIIb 439, der veränderlichen Sterne IIIb 140 454, der farbigen Sterne IIIb 140; Präcessionstabelle IIIb 140.

Argo mit Carina, Malus, Puppis, Vela und Pyxis, das Schiff Argo Sternbilder IIIb 140; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 140; Verzeichniss der Doppelsterne IIIb 141 450, der Nebelflecke und Sternhaufen IIIb 146, der veränderlichen Sterne IIIb 148 153, der farbigen Sterne IIIb 149; Präcessionstabelle III b 150.

Argument der Breite Bahnbestimmung I 471. Ariel, s. Planeten, Uranus IIIa 430.

Aries, der Widder Sternbilder IIIb 150; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 150; Verzeichniss der Doppelsterne IIIb 151 450, d. Nebelflecke und Sternhaufen IIIb 152, der veränderlichen Sterne IIIb 153, der farbigen Sterne IIIb 153; Präcessionstabelle IIIb 153.

Armille I 209; Aequatorealarmillen Einleitung I 68; Beschreibung Armille I 209; Beobachtung mit denselben I 209, Aequatoreal I 179; Solstitialarmillen, Beschreibung u. Beobachtung damit, Armille I 211.

Beobachtung damit, Armille I 211. Asteroiden Planeten IIIa 435; Nachforschungen, Entdeckungen, Titius-Bode'sches Gesetz IIIa 384 435; Entdeckung der Ceres IIIa 435, der Pallas, Juno, Vesta III a 436; Uebersicht der Entdeckungen IIIa 436; photographisch entdeckt Astrophotographie I 239, Planeten UIa 384 436; Bezeichnung III a 437; Uebersicht der mittleren Bewegungen IIIa 437; commensurable Verhältnisse bei einigen mit der mittleren Bewegung des Jupiter Mecha-nik des Himmels II 405; Elemente, Verglichen mit denen der Kometen Kometen und Meteore II 79; ihre Wirkung auf die Kometen II 90; ihre Helligkeit und die Berechnung der Grössenclasse Astrophotometrie I 340, Planeten IIIa 437; mittlere Oppositionsgrösse und Phasencoëfficient IIIa 438; ihre Masse IIIa 438; über den Werth und die Nothwendigkeit d. Bahnberechnung der verschiedenen Asteroiden III a 439; Uebersicht der Asteroiden von besonderem Interesse aus verschiedenen Gesichtspuncten IIIa 440; der Planet Eros IIIa 440; ihr Werth für die Parallaxenbestimmung Parallaxe III a 327 330 331; ihre Entstehung Kosmogonie II 241 243; Verzeichniss der Bahnelemente Anhang IV 324 ff.

Astrognosie s. Sternbilder.

Astrolabium Armille I 210; Beschreibung

Astronomie, ihre Eintheilung, Einleitung I 1: die Entwicklung der Wissenschaft bis in die neuere Zeit I i ff; Definitionen I 1; erste Bestimmung der Jahreslänge durch die Aegypter I 3; die verschiedenen Auf- und Untergängel3; Bewegung v. Sonne u. Mond I 5; verschiedene Umlaufszeiten d. Mon-des I 7; Thales, Philolaus, Sokrates, Plato I 9; scheinbare Bewegung der Planeten Iq; die homocentrischen Sphären des Eudoxus I 10; Zerlegung der scheinbaren complicirten Planetenbewegung in eine gleichmässige mittlere und eine gesetzmässige Ungleichheit I 13; die Sphären des Calippus und Aristoteles I 15: die reagirenden und revolvirenden Sphären I 16; Erscheinungen von Kometen und ihre Erklärungen I 16; Grösse und Entfernung der Himmelskörper I 17; Anaximander, Pythagoras, seine harmoni-sche Anordnung I 17; das ägyptische Planetensystem I 27; Aristarch, Eratos-thenes, die erste Erdmessung I 18; Ilipparch, die Präcession der Aequinoction I 19; das Sternverzeichniss von

Aristyll und Timocharis I 19; die Epicykeltheorie I 20; die Combination der wahren Bewegung von Erde und Planeten zu der scheinbaren der letzteren I 23; die Mittelpunktsgleichung I 27; die wahren Längen des Mondes aus der Beobachtung der Mondfinsternisse I 28; Posidonius, Plinius, der Julianische Kalender I 30f; Ptolemäus und sein Almagest I 32; Bestimmung der Zeit aus Meridiandurchgängen I 32; Bestimmung der geographischen Breite und Schiefe der Ekliptik mit Hilfe des Gnomon I 33; sein Sterncatalog I 33; die Bestimmung der Elemente der Mondbalen I 35; Darstellung der Bewegung der Planeten I 37: die oberen Planeten I 38: die unteren Planeten I 40: Bestimmung der Retrogradationen und Uebersicht der Resultate des Ptolemäus I 43 44; Erklärung der Breitenbewegungen der Planeten 1 44; die Bestimmung der Mondparallaxe durch Ptolemaus I 46; die arabischen Astronomen Alfraganus, Albategnius I 49; die Trepidation I 51; die Planetentafeln von Arzachel und Ibn Junis I 53; die Sternwarte von Ulugh Beigh und sein Sterncatalog I 53; die Alfonsinischen Tafeln I 54; Peurbach und Regiomontan I 55; nikus und das heliocentrische System I 57; seine Sonnentheorie I 61; seine Mondtheorie I 62; seine Planetentheorie I 63; Tycho Brabe, seine Angaben uber die Strahlenbrechung I 67; seine Mondtheorie I 68; seine Ansichten über die Kometen I 71; Wilhelm von Hes-sen, Rothmann, Longomontan, die Methoden des letzteren für die geographische Ortsbestimmung I 72 73; Galilei I 74; Erfindung des Fernrohrs I 74; Entdeckung der Mondberge, der Sonnenflecke, der Phasengestalt der Venus, der Jupitersmonde I 75; die Gesetze der Trägheit, der Zusammensetzung der Bewegungen, Fall- und Pendelgesetze I 77; Scheiner, Fabricius, die veränderlichen Sterne I 76; Kepler und seine Untersuchungen über den Mars I 80; das Gesetz der Flächen I 89; die elliptischen Bahnen der Planeten I 91; das Gesetz der Umlaufszeiten I 93; Lansberg, Bullialdus, Cassini und Huyghens I 96; die Entdeckung des Saturnringes und der Saturnsatelliten I 97; Hevel und seine Sternwarte in Danzig I 97; Newton und das Gesetz der allgemeinen Gravitation I 100: die Drehung der Apsiden I 103; die Mondtheorie I 106; die Drehung der Knotenlinie I 108; Pracession, Ebbe und Fluth I 112; Massen der Planeten I 114; Bahnbestimmung von Kometen I 114f; die Elemente einer Bahn I 115; Gegensätze gegen die Newton'sche Theorie I 116; Entdeckung neuer Veränderlicher, der Eigenbewegung der Fixsterne, der Aberration und Nutation I 117 118; weitere Fortschritte der praktischen Astronomie

im 18. Jahrhundert I 118; die Probleme der theoretischen Astronomie, die Bewegung der Apsiden des Mondes I 118; die Secularbeschleunigung der mittleren täglichen Bewegung des Mondes I 119; die Veränderungen der mittleren Bewegungen von Jupiter und Saturn I 119; die Pracession und Nutation, die Frage der Stabilität des Sonnensystems I 120; die Erscheinungen der Libration sonstiger Ungleichheiten in der Bewegung der Satelliten I 120; das Problem der Bahnbestimmung I 120; die Arbeiten von Clairaut, d'Alembert, Euler über die Mondtheorie I 121; die Störungen in polaren Coordinaten I 122: seculare Glieder I 127: die Variation der Constanten I 132: die osculirende Bahn I 133; mittlere Elemente I 137; Lagrange, Laplace über die Stabilität des Weltsystems I 138; die Untersuchungen über die Jupitersatelliten I 140; Untersuchungen von Euler, Lagrange , d'Alembert über die Libration des Mondes I 141, über die Präcession und Nutation I 142; die Störungen der Kometen, specielle Störungen I 146; der Halley'sche Komet I 147; das Problem der Bahnbestimmung und die Arbeiten von Euler I 148; die Lambertsche Gleichung und der Satz von der Krümmung I 150 151; Arbeiten von Lagrange, du Séjour I 152, Olbers, Laplace I 154; die Entdeckung des Uranus I 156; Gauss und seine stheoria motus corporum coelestium I 157, Uebersicht über neuere Untersuchungen in der Störungstheorie, widerstehendes Mittel, Meteorströme, die neueste Entwicklung der Astronomie I 158ff.

Astronomischer Ring Zeitbestimmung IV 181. Astronomisches Netz Zeitbestimmung IV 180. Astrophotographie I 212; Aufnahmen d. Sonne im Brennpunct einer Linse oder eines Spiegels I 213, mit Vergrösserungssystem I 215; Aufnahmen der Corona I 220; des Mondes I 222, der Planeten I 224; der Kometen I 226 235 239, Kometen und Meteore II 56; der Sternschnuppen Astrophotographic I 227; der Fixsterne mit grossen Refractoren oder Spiegelteleskopen I 228, mit Porträtobjectiven I 234, der Nebelflecke I 237, Sternhaufen und Nebelflecke III b 525 526; Ent-deckung neuer Nebel III b 525, Universum IV 123. Kosmogonie II 231 232; d. kleinen Planeten I 239; Photographiren des Sonnenspectrums I 240, Astrospectroskopie I 394 ff., d. Coronaspectrums Astrophotographic I 247, des Spectrums von Mond, Planeten, Kometen I 247; Aufnahmen mit dem Objectivprisma I 258; Vergrösserung der Aufnahmen I 261; Ausmessung der Sonnenbilder I 263. der Sternpositionen I 267, d. Spectrogramme I 274. Aufnahmen und Vermessungen d. Stern-

haufen Sternhaufen und Nebelftecke III b 527, der Plejaden und im Hercules III b 527; Genauigkeit der Messungen III b 526, Mikrometer IIIa 64; die Aussennebel der Plejaden Sternhaufen und Nebtflecke IIIb 528; Aufnahmen der Milchstrasse zur Bestimmung der Vertheilung d.

Sterne Universum IV 75.

Die Reduction der gemessenen Sternpositionen Astrophotographie I 278 ff., nach rechtwinkligen Coordinaten I 283, Berücksichtigung der Aberration I 285, der Refraction I 285, Berechnung von Hülfs-tafeln I 286, die Refractionsconstante für verschiedene Wellenlänge I 287, Correctionen für Distorsion des Feldes und Deformation der Schicht I 288; nach Positionswinkel und Distanz I 288, Einfluss der Refraction I 289, der Präcession, Nutation und Aberration I 291, der Scalenwerth I 202, die Nullpunktscorrection I 292; nach Rectascension und Deklination I 295, die Refraction I 296, die optische Distorsion und die Deformation I 296, Präcession, Nutation und Aberration I 297. Geschichtliche Bemerkungen I 300.

S. auch unter den einzelnen Objecten und unter Photographie und Astrospectro-

skopie.

Astrophotometrie I 305; Photometrische Grundgesetze von Lambert, Lommel 1305; psychophysisches Grundgesetz von Fechner I 323; Photometer von Herschel I 307, Steinheil I 308, Lamont I 311, Secchi I 312, Schwerd I 312, Hornstein (Zonenphotometer) I 313, Zöllner I 313, Hirsch I 316, Dawes I 316, Christie I 316, Knobel, I 317, Pickering I 317 320, Pritchard (Keilphotometer) I 321, Parkhurst I 322; Eintheilung der Sterne nach Grössen I 322; Stufenschätzungen I 325; Unterschied der photographischen und optischen Helligkeit der Sterne I 325: Extinction des Lichts I 325; der Transmissionscoefficient I 326; Extinctionstabelle I 329; Helligkeitsverhältnisse der Sonne I 331, der Planeten I 337, der Satelliten I 341; der Phasenwinkel I 333; die Albedo I 335; der Phasencoefficient I 340; Helligkeiten der Fixsterne I 343; Veränderliche Sterne I 349; Neue Sterne I 355; Literaturnachweis I 362 ff.;

S. auch unter den einzelnen Objecten

und unter Helligkeit.

Astrophysik s. Astrophotographie, Astrophotometrie, Astrospectroskopie.

Astrospectroskopie I 364; das Objectivprisna und die spectroskopischen Apparate I 366 fft; die photographischen Aufnahmen der Spectra I 389, Vortheile und Nachteile I 389 fft; über die Daueraufnahmen I 390; das Spectrum der Sonne I 393, 394; das ultrarothe und ultraviolette Spectrum I 396; das Spectrum der Flecke I 401, der Fackeln I 402, der Chromosphäre I 402, der Protuberanzen I 403, der Corona I 404; Coincidenz mit Linien irdischer Stoffe I 398; atmosphärische Linien I 399; das Spectrum des Nordlichts I 405, des Zodiakallichts I 405, des Mondes I 406, der Planeten I 406, der Kometen I 408, der Sternschnuppen und Meteore I 410, der Fixsterns I 410; verschiedene Typen der Fixsternspectra nach Secchi I 410, nach Pickering I 411, nach Vogel I 414, nach Lockyer I 415; Vergleichung der Typen I 416; Vertheilung der Sterne am Himmel nach den Spectraltypen I 419. Universum IV 101 ff; Kosmogonie II 237; Spectra der neuen Sterne Astrospectroskepie I 422, der Nebelflecke I 422; das Doppler sche Princip und die Linienverschiebung I 424; Literaturnachweis I 428 429.

S. auch unter den einzelnen Objecten und unter Spectroskop und Astrophoto-

graphie.

Atmosphäre, ihre Höhe aus der Extinction des Lichtes Astrophotometrie I 327; aus der Höhe des Aufleuchtens der Sternschruppen Kometen und Mettore II 147. Ueber ihre Constitution s. Strahlen-

brechung.

Aufgang-Untergang I 430; Berechnung des wahren Auf- und Untergangs der Fixsterne I 430; Einfluss der Strahlenbrechung I 431; Berücksichtigung der eigenen Bewegung des Gestirns I 432, des Durchmessers I 433, der Parallaxe I 433; Tagebogentafel I 434, der heliakische, kosmische, akronychische Auf- und Untergang Einleitung I 3 4, Chronologic I 603; Frühauf-untergang, Spätauf-untergang I 603; Sehungsbogen für die Sterne verschiedener Helligkeit I 603 604.

Aufsteigung gerade s. Rectascension. Augendeckel-Augenpunkt Fernsohr I 731

732.

Auge- und Ohrmethode bei Durchgangsbeobachtungen Persönliche Gleichung IIIa 371.

Auriga, der Fuhrmann Sternbilder III b 154; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 154, Verzeichniss der Doppelsterne IIIb 154, 450, der Nebelhecke und Sternhaufen IIIb 156, der veränderlichen Sterne IIIb 157, 453, der farbigen Sterne III b 157; Präcessionstabelle IIIb 158.

Azimuth, Azimuthbestimmung I435; günstigste Bedingungen I 437; Bestimmung am Universalinstrument aus Beobachtungen des Polarsterns I 437. Berechnung durch Reihnenenlwicklungen I 438, Reihe von Ästrand, Tafeln von Albrecht, Block, Valentiner I 439 ff., Anordnung der Beobachtungen I 542, Beispiel I 449 450; am Passageninstrument zur Zeit der Culmination des Polarsternes I 444. Anordnung der Beobachtungen I 446, Beispiel I 450 451, in grösseren Stundenwinkeln des Polarsterns I 447; Differentialausdrücke für den Polarstern und Tafeln dazu I 447 448; am Universaltransit Universaltransit IV 56; Bestimmung von Mondazimuthen am Altazimuth und ihre Reduction Altazimuth 1 208 ff.

Aus früherer Zeit am Gnomon aus correspondirenden Sonnenhöhen von Longomontan, Einleitung I 74; aus einer beobachteten Sonnenhöhe bei bekannter Deklination I 74.

Tabelle zur genäherten Einstellung des Sterns in der Nähe des Meridians Polhöhe

Bestimmung des Azimuthfelhers am Meridiankreis Meridiankreis III a 5; aus Sternen in oberer und unterer Culmination oder der Verbindung von Polsternen und Acquatorsternen III a 13, Beitselstlütgung etwaiger Veränderung III a 13, Beispiel III a 14, Benutzung von Miren III a 15; beim Passageninstrument im ersten Vertical Passageninstrument III a 357 ff., Polhöht III a 460 ff.

Bestimmung der Zeit aus beobachtetem Azimuth Zeitbestimmung IV 174.

Einfluss der Parallaxe bei Azimuthbeobachtungen Parallaxe III a 317.

Azimuthalinstrument Universalinstrument IV 41; Beschreibung IV 41; Horizontalstellung durch das Niveau IV 41; Messung von Horizontalwinkeln IV 42 43; wenn das Object in der Nähe des ersten Verticals liegt Asimuthbestimmung I 447.

В

Bahn absolute, intermediäre Mechanik des Himmels II 491; osculirende Einleitung I 133. Bahnbestimmung der Planeten und Kometen I 452; Differentialgleichungen der Bewegung I 454; die Kepler'schen Gesetze I 455 456; die Constante der Theoria motus I 457; die numerische und optische Excentricität, die Anomalien, Mittelpunktsgleichung, mittlere tägliche Bewegung, das Kepler'sche Problem I 457 458; Lösung des Kepler'schen Problems durch Construction und Reihenentwicklungen I 458 ff; Geschwindigkeit des Himmelskörpers in den verschiedenen Kegelschnitten I 462 463; Wahrscheinlichkeit der verschiedenen Bahnformen I 463; Be-

wegungsrichtung I 464.
Bahnbestimmung ohne Voraussetzung
über die Excentricität I 464 ff.; Vorbereitungsrechnungen, Berücksichtigung der
Aberrationszeit I 465 49 489 497, Morration I 178; die Berechnung der Parallaxe
für Refractor- und Meridianheobachtungen,
Hülfstafeln von v. Rebeur - Paschwitz
Bahnbestimmung I 465 ff., Parallaxx III a
318, Anhan IV 243 ff., durch Berechnung
des locus fictus Bahnbestimmung I 467; Reduction auf das mittlere Aequinoctium I
469, Ort III a 313; Verwandlung der äquatorealen Coordinaten in die ekliptikalen
und umgekehrt I 469, Cordinaten I 663.

Bestimmung der rechtwinkligen Coordinaten des Himmelskörpers aus den Bahnelementen, Neigung, Länge des Knoten und der des Perihel I 471; Bestimmung der drei Elemente Parameter, Excentricität, Länge des Perihels aus drei der Grösse und Lage nach gegebenen Radienvectoren I 472; Entwicklung der Coordinaten und Dreiecksflächen in Reihen nach der Zeit I 474; Bestimmung der mittleren curtirten Distanz I 476; Fall der doppelten Lösung mit Hülfstafel I 481; Lamberts Satz von der Krümmung der scheinbaren Bahn I 486; Berechnung der äusseren curtirten Distanzen und der heliocentrischen Orte I 488; Bestimmung des Verhältnisses des Sectors zum Dreieck I 490: Hansen'scher Kettenbruch I 492; Ermittlung der Ele-mente I 493; Prüfung der Rechnung I 494; Berechnung der Ephemeride 1 495; Aufsuchungs - Oppositions - Vergleichgsephemeriden, Reduction auf den scheinbaren Ort, Aberrationszeit I 496

Fall einer hyperbolischen Bahn I 497;

Beispiel dazu I 400.

Bahnbestimmung in einer Parabel I 501; vorbereitende Rechnungen, mittlere und scheinbare Schiefe der Ekliptik I 501; Aufstellung der Grundgleichungen, mittlere tägliche parabolische Bewegung I 502; die Barker'sche Tafel I 502; (Anhang Tafel I, IV 190 ff.); die Barker'sche Tafel, wenn sich die wahre Anomalie 180° nähert I 566 (Anhang Tafel I, IV 238); die Euler-Lambert'sche Gleichung I 504; Hülfstafel zur Auflösung Anhang Tafel II, IV 239 ff.; die Olbers'sche Methode I 505; über die Lösung der Lambert'schen Gleichung I 507. Ermittlung der Elemente I 507, Berechnung des mittleren Orts, Carlinischer Kunstgriff I 509, Einführung der Rechnungsmodification nach Gauss I 509, der Ausnahmefall I 512; Oppolzer's Methode I 513; Beispiel I 517; Genauigkeit der parabolischen Bahnbestimmungsmethode I

Bestimmung einer Kreisbahn I 520; Tisserand's Untersuchung über die Unmög-

lichkeit einer Kreisbahn I 523.

Erste Verbesserung einer elliptischen Baln 1 525; Normalorte I 236; Verbesserung einer parabolischen Bahn, verschiedene Methoden I 528; Uebergang von der Parabel auf stark excentrische Ellipsen oder Hyperbeln I 531; die Euler-Lambert'sche Gleichung für die Ellipse I 532; Berechnung der wahren Anomalie und entsprechende Umformung zur Benutzung der Barker'schen Tafel I 535.

Ausgleichung der Beobachtungen durch Differentialquotienten I 540; Differentialquotienten I 540; Differentialquotienten I 540; Differentialquotien rechtwinkligen Coordinaten nach Argument der Breite, Radiusvector, Länge des Knotens und Neigung I 540; Uebergang auf Rectascension und Deklination I 541; Formeln für Planetenbahnen 1 544; für Kegmetenbahnen von kurzer Umlaufszeit 1545; für nahe parabolische Bahnen I 546; Uebergang der ekliptikalen Elemente auf äquatorealen I 545, der Aenderungen der äquatoreale Elemente auf soche ekliptikalen 1 545.

Formelzusammenstellung und Beispiele I 546; Elliptische Bahn I 546; parabolische Bahnen, Olbers' Methode I 555, Oppolzer's Methode I 561; Kreisbahn I 564; Verbeserung einer parabolischen Bahn I 565; Literatur I 568 ff.

Tisserand's Kriterium für die Identität zweier Kometen Kometen und Meteore

II 93.

Bahnbestimmung der Meteore Kometen und Meteore II 190; Beispiel II 194; Umformung der vorherigen Ausdrücke II 195; Beispiel II 197; Bahnbestimmung der stellaren Schwärme II 202.

Bahnbestimmung der Doppelsterne Doppelsterne 1678; Bestimmung von Positionswinkel und Distanz aus den Elementen 1679; Bestimmung der Bahn aus Positionswinkeln und Distanzen 1680; Einführung von Hillsgrössen 1682; Zusammenstellung der Formeln 1683; Differentialformeln 1684; Ausnahmefälle 1685; Bahnbestimmung aus veränderlicher Eigenbewegung 1689, aus spectroskopischen Messungen 1691.

S. auch zur Entwicklung der Bahnbestimmung die Einleitung und ferner Mechanik des Himmels II 299 - 317; sowie für die Berechnung der Störungen

Mechanik des Hi umels.

Bahnelemente Bahnbestimmung 1 463; s. auch Elemente.

Verzeichniss, der Elemente der Kometen, Anhang Tafel VI IV 296, der der grossen Flaneten Anhang Tafel VII IV 346, der der kleinen Planeten Anhang Tafel VII IV 324. Bahnnähen Kometen und Meteore II 93.

Bahnsucher I 574; Beschreibung des Instruments I 574.

Balkenmikrometer Mikrometer IIIa 132;

s. auch Differenzenmikrometer.
Barker'sche Tafel Bahnbestimmung 1 502
535 566 ff., Mechanik des Himmels II
304 312 314, Anhang Tafel I, IV 190 ff.
IV 238.

Bedeckungen s. Sternbedeckungen.

Beleuchtung des Gesichtsfeldes, der Fäden, des Kreises und ihre Moderitung Meridiankreis III a. 23. Universilinstrument IV 44; Vorzüge der Einschaltung farbigen Glases zur Beobachtung sehwacher Objecte Mikrometer IIIa 141; verschiedene Einrichtungen bei den Mikrometern III a. 128 ff.; Beschreibung derselben am Strassburger Refractor IIIa 130 ff.;

Beschleunigung Einleitung I 131, Mechanik act Himnati II 279 303; die seculare des Mondes Einleitung I 118 f. 138 fl.; Mechanik des Himnatis II 449 454, die historischen Finsternise II 455; Ursachen für dieselben II 456; des Saturn Einleitung I 119 138, Mechanik des Himnatis II 403; beim Encke'schen Kometen Kometen auch Meteore II 74 86, Mechanik des Himnatis II 481; beim Merkur II 306.

Bewegung, Erscheinungen und Ursachen Einleitung 1 77, Mechanik des Himmels II 278;

VALENTINER, Astronomic. IV.

Zusammensetzung II 279; Translationsbewegungen II 284; Rotationshewegungen II 193; geocentrische, heliocentrische I 22; rechtlaufige, rückläufige, diiekte, retrograde I 9; mittlere tägliche I 14, Buhmetzimmung I 457, Mechanik das Hinmuts II 303; des Mondes Einleitung I 118; des Mondapogatums I 121 fl.; der Mondknoten I 144 fl.; des Jupiter und Saturn I 130; Secularinderung I 138 fl.; anomale Gre-Kometen im widerstehenden Mittel I 159 fl.; Bewegung im Visionsradius I 163, Aitrospetroskopic I 424 fl.

S. ausführlicher unter Mechanik des Himmels sowie auch unter Eigenbewegung. Biegung des Kreises, des Fernrohrs, der Axe 1575; ihre Bestimmung bezw. Elimination 1576; Hansen'sche Methode, Umwechslung von Objectiv und Ocular 1 580; Bessel'sche Methode, directe und reflectirte Beobachtungen 1581; mit Hilfe von Collimatoren 1582; durch besondere Hulfsappaate, von Marth 1587, Löwy 1588, Bauschinger 1589, Schaeberle 1 590; Bestimmung der Biegung des Kreises allein 1591; Unterschiede der Bestimmung nach verschiedenen Methoden 1 592; Einflüsse auf die Biegung 1592. S. auch Merdidankries III a 114, 18 19.

Ihr Einfluss und ihre Bestimmung am Universalinstrument Polkoh III a 455, Zeitbestimmung IV 143, am Refractor Acquatorcal I 181 ff., Mikrometer III a 141 ff.; die Wirkung auf die Centrirung des Objectivs in den verschiedenen Lagen des Fernrohrs bei grossen Instrumenten IIIa

144. Bielascher Komet Kometen und Meteore II

60 73 224 ff. Bieliden Kometen und Meteore II 185.

Bildpunkt Fernrohr I 708.

Blendgläser Prismenkreis IIIb 23; Ermittlung der Fehler IIIb 23.

Blutregen Kometen und Meteore II 106. Bolide Kometen und Meteore II 103.

Bootes Stembilier IIIb 158; Grenzen und Anzall der dem blossen Auge sichtbaren Sterne IIIb 158, Verzeichniss der Doppelsterne IIIb 159 450, der Nebelliecke und Sternbaufen IIIb 161, der veränderlichen Sterne IIIb 166 453 der farbigen Sterne IIIb 166; Präcessionstabelle IIIb 167.

Brachyteleskop Fermohr I 746.

Breguetspirale Chronometer I 630.

Breite Coordinaten 1 658; geocentrische Finsternisse 1 766, Parallexe IIIa 315, Polibih: IIIa 441; geographische Einleitung 1 33 72 73, Finsternisse I 766, Polibiho IIIa 441; Einluss der Aberration Aberration I 172, Bahnbestimmung 1 547, der Parallaxe IIIa 318.
S. auch Polhöhe.

Brennebene Fernrohe I 709 711.

Brennpunkt, Hauptbrennpunkt Ferarche I 709; Unterschied des chemischen vom optischen Astropholographie I 213. Brennweite, Verhältniss zur Objectivöffnung bei photographischen Fernrühren Attrophotographie 1 215 223; Bestimmung derselben Fernrühr 1 720.

Brorsen'scher Komet Kometen und Metcore II 75 76.

C

- Caelum, der Grabstichel Sternbilder IIIb 167; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 167; Verzeichniss der Doppelsterne IIIb 167 450, der Nebellecke und Sternbaufen IIIb 168, der veränderlichen Sterne IIIb 168, der farbigen Sterne IIIb 168; Präcessionstabelle IIIb 168.
- Camelopardalus, die Giraffe Sternbilder IIIb 168; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 168; Verzeichniss der Doppelsterne IIIb 169, 450, der Nebelflecke und Sternhaufen IIIb 172, der veränderlichen Sterne IIIb 173, der farbigen Sterne IIIb 173; Präcessionstabelle 174.
- Camera, astronomische Astrophotographic I 235.
- Cancer, der Krebs Sternbilder IIIb 174; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 174; Verzeichniss der Doppelsterne IIIb 175, 450, der Nebelflecke und Sternhaufen III b 177, 452, der veränderlichen Sterne III b 178, der farbigen Sterne III b 179; Präcessionstabelle III b 179.
- Canes venatici, die Jagdhunde Sternbilder IIIb 179; Grenzen und Anzahl der dem blossen Auge sichtharen Sterne IIIb 179; Verzeichniss der Doppelsterne IIIb 180 450, der Nebelflecke und Sternhaufen IIIb 181, der veränderlichen Sterne IIIb 183; Präcessionstabelle IIIb 184.
- Canis major, der grosse Hund Sternbilder HIb 184; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 184; Verzeichniss der Doppelsterne IIIb 184 451, der Nebelflecke und Sternhaufen IIIb 185, der veränderlichen Sterne IIIb 186 453, der farbigen Sterne IIIb 186; Präcessionstabelle IIIb 187.
- Canis minor, der kleine Hund Sternbilder
 IIIb 187; Grenzen und Anzahl der dem
 blossen Auge sichtbaren Sterne IIIb 187;
 Verzeichniss der Doppelsterne IIIb 188,
 der veränderlichen Sternburgen IIIb 188 453,
 der farbigen Sterne IIIb 188; Präcessionstabelle IIIb 180.
- Canon der Finsternisse Chronologie I 600, Finsternisse I 771.
 - des Ptolemäus Chronologie I 609.
- Capricornus, der Steinbock Sternbilder IIIb 189; Grenzen und Ansahl der dem blossen Auge siehtbaren Sterne IIIb 189; Verzeichniss der Doppelsterne IIIb 189 451, der Nebelfleche und Sternhaufen IIIb 199.

- der veränderlichen Sterne IIIb 191 454 455, der farbigen Sterne IIIb 191; Präcessionstabelle IIIb 192.
- Capwolken Universum IV 112 ff; Zusammenhang zwischen Nebel- und Sternhausen IV 116.
- Cardanische Aufhängung Chronometer I 634. Carina s. Argo.
- Cartesi'sche Wirbeltheorie Einleitung I 116
 Kosmogonie II 228.
- Cassini'sches Netz Mikrometer IIIa 65; Einfluss des Fehlers in der Einstellung auf den Parallel IIIa 66; Correction für Krümmung des Parallels IIIa 67; Einfluss der Refraction und eigenen Bewegung IIIa 67.
- Cassiopea Sternbilder IIIb 192; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 192; Verzeichniss der Doppelsterne IIIb 192, der Nebelflecke und Sternhaufen IIIb 196, der veränderlichen Sterne IIIb 196 455, der farbigen Sterne IIIb 197; Präcessionstabelle IIIb 198.
- Catalogposition, s. Sterncataloge,
- Centaurus, der Centaur Sternbilder IIIb 198; Grenen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 198; Verzeichniss der Doppelsterne IIIb 198 451, der Nebelflecke und Sternhaufen IIIb 200, der veränderlichen Sterne IIIb 202 453, der farbigen Sterne IIIb 202; Präcessionstabelle IIIb 203.
- Centralsonne Kosmogonie II 232, Universum IV 59 (Sirius) IV 59 (Orionnebel).
- IV 59 (Sirius) IV 59 (Orionnebel). Centrirung Fornrohr I 710 734; Untersuchung derselben I 737.
- Cepheus Mermbider III b 203; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 203; Verzeichniss der Doppelsterne IIIb 203 451, der Nebelflecke und Sternhaufen IIIb 207, der veränderlichen Sterne IIIb 207 455, der farbigen Sterne IIIb 207; Fräcessionstahelle IIIb 208.
- Cetus, der Walfisch Sternhilder IIIb 208; Grenzen und Anzahl der dem blossen Auge sichtharen Sterne IIIb 203; Verzeichniss der Doppelsterne IIIb 209 451, der Nebelflecke und Sternhaufen IIIb 211, der veränderlichen Sterne IIIb 217 452, der farbigen Sterne IIIb 218; Präcessionstabelle IIIb 218.
- Chaldaische Periode Chronologie I 600, s. auch Saros.
- Chamäleon, das Chamäleon Sternbilds IIIb 218; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 219; Verzeichniss der Doppelsterne IIIb 219, der Nebelliecke und Sternbaufen IIIb 219, der farbigen Sterne IIIb 219; Präcessionstabelle IIIb 220.
- Chromosphäre der Sonne Astropholographie 1 222, Astrospectroskopie I 400, Sonne IIIb 75 70; Spectrum derselben Astrospectroskopie I 402.
- Chronodeik Zeithestimmung IV 177. Chronograph s. Registrirapparate.

Chronologie Einleitung 17 31 94, Chronologie I 593; mathematische und astronomische I 593; mittlerer Sonnentag und astro-nomischer Tag I 594; Ortszeit, Weltzeit, Zonenzeit I 594; das tropische Jahr I 594; himmlische Zeichen I 595; Zodiakal- und Hülfstafeln I 596 598; verschiedene Monate, Syzygien I 597; Meton'scher Mondeyklus, goldene Zahl I 598 618; Finsternisse I 599; die chaldäische Periode I 600; die Berechnung der Finsternisse und Hülfstafeln dazu, Oppolzer's und Ginzel's Canon I 601; die verschiedenen Auf- und Untergänge, kosmisch, akronychisch, heliakisch I 603, Hülfstafeln zur Berechnung derselben von Wislicenus I 604; der Schungsbogen I 603; technische oder historische Chronologie I 604; Mondjahr, Lunisolarjahr, Sonnenjahr I 605; Kalender der Chinesen und Japaner I 605, der Inder I 606, der Aegypter I 608, in Vorderasien I 610, der Griechen I 612, der römische und ehristliche I 613, die gregorianische Kalenderreform I 615, der Sonnenzirkel und Sonntagsbuchstabe I 617, die Osterrechnung, Epaeten, Sonnen- und Mondgleichung, Indictionen, Römerzinszahl I 618; die Gauss'sche Osterformel I 619; der russische Kalender I 619; der jüdische Kalender I 620; der Kalender der Türken I 622, der französischen Republik I 623.

> Kalendariographische Tafeln von Schram I 623; Literaturnachweis I 624.

Chronometer I 625, Uhr IV 1; der Mechanismus Chronometer I 626, der Regulator, die Unruhe I 626, die Hemmung I 628, die Duplexhenmung I 629, die Breguetspirale I 630, das Räderwerk I 630, der Motor I 631, die freie Hemmung I 632, die Aufziehvorrichtung I 633; die Cardanische Aufhängung I 634; Ursaehen für die Veräuderungen im Gang des Chrono-meters I 634; Stand und Gang einer Uhr I 635; Isochronismus des Regulators I 637; Formel für die Dauer der Regulatorschwingung I 637; Einfluss der Tempeauf den Regulator 1638; die Compensation I 639; die Ueber- oder Untercompensation I 641; die Hülfseompensationen von Poole, Eiffe, Molineux, Loseby, Kullberg I 642 ff; Untersuchung des Chronometers und Gangformeln I 644; Einfluss der Veränderung der Luftfeuchtigkeit, des Luftdrucks I 646, der Schiffsbewegung I 649, des permanenten Magnetismus, der atmosphärischen Electricität I 649, der Veränderung in der Molecularstructur der Metalle I 650, der Beschaffenheit des Oeles I 651.

Ueber die Behandlung des Chronometers auf Reisen und beim Transport überhaupt I 652.

 Uebertragung zur Bestimmung der Länge Längenbestimmung II 248 259; Unsieherheit des Ganges während der Reise II 262; verschiedene Methoden zur Berücksichtigung der Gangänderung II 262; über die Genauigkeit der durch Chronometerexpeditionen bestimmten Längendifferenz II 268.

Circinus, der Zirkel Sternbilder IIIb 220; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 220; Verzeichniss der Doppelsterne IIIb 220, der Nebelflecke und Sternhaufen IIIb 221, der veränderlichen Sterne IIIb 453, der farbigen Sterne IIIb 221; Präcessionstabelle IIIb 221;

Circummeridianhöhen s. Circummeridianzenithdistanzen.

Circum meridianzenith distanzen zur Bestimmung der Polhöhe Polhöhe III a 443
445; Abnahme der Genauigkeit mit Zunahme des Stundenwinkels III a 448 f; Bertucksichtigung der veränderlichen Deklination bei Beobachtungen der Sonne III a 455.

Circumpolarsterne Einleitung I 2, Aufgang I 431, Coordinaten I 661.

Coëfficienten einer Reihe, ihre Bestimmung aus Beobachtungen Mechanik des Himmels II 458.

Coincidenzen zwischen festem und beweglichem Faden Asimuthbestimmung 1 445, Mikrometer IIIa 148.

 bei der Uhrvergleichung Längenbestimmung II 252.

Collectivsystem Fernrohr 1 711.

Collimationsfehler und seine Bestimmung Acquatoreal I 182 f. 186. Almucantar I 203, Meridiankreis Illa 5; Bestimmung durch terrestrische Objecte Illa 12 15 16, durch Sternbeobachtungen Illa 12, durch Nadirbeobachtungen Illa 24; am Sextant Prismenkreis IIIb 19 (s. Indexfehler); am Universalinstrument Universalinstrument IV 46 47.

Collimator Bigung I 582, Meridiankreis IIIa 12 16.

 bei Spectralapparaten Astrospectroskopie I 364.

Colorimeter Astrophotometrie I 315.

Columba, die Taubz Skrubiklur III 221; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 221; Verzeichnis der Doppelsterne III b 221, der Nebelltecke und Sternhaufen III b 222, der veränderlichen Sterne III b 222 453, der farbigen Sterne III b 222; Präcessionstabelle III b 223.

Colur Coordinaten 1 657.

Coma Berinices, das Haar der Berenice Sternbilder III b 223; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 223; Verzeichniss der Doppelsterne III b 223, der Nebelflecke und Sternhaufen III b 224, der veränderlichen Sterne III b 227, der farbigen Sterne III b 227; Pelcessionstabelle III b 227.

Commutation in der Copernicauischen Planetentheorie Einleitung 164. Comparator zum Ausmessen der Photogramme, verschiedene Constructionen Astrophotographic I 264.

Compensation, der Chronometer Chronometer I 639; der Pendeluhren Uhr IV 11; der Fehler der Objective Fernrohr 1 727.

Conjugierte l'unkte, Ebene, Brennpunkte Fernrohr I 709.

Conjunction Einleitung 14; in Rectascension

und Länge I 6.

Constante der Aberration Aberration I 170; verschiedene Werthe aus Beobachtungen am Meridiankreis, im ersten Vertical, durch die Jupiterstrabanten und Lichtgeschwindigkeit I 170 171; Bestimmung der Constanten aus Rectascension und Declination des Polarsterns I 175, aus Deklinationen von Zenithsternen I 175, aus Unterschieden der Meridianzenithdistanzen zweier Sterne I 176, Nutation III a 305 307. Pollishe III a 468 471; günstigste Bedingungen Aberration I 177.

- der Extinction des Lichts, photometrische Constante Astrophotometrie I 329, Universum IV 94, ihre Bestimmung, Astrophotometric I 325 ff., Universum IV 76 ff. - der Nutation Arechanik des Himmels II

592, Nutation IIIa 304; Bestimmung derselben durch Rectascension von Polsternen, durch Beobachtungen im ersten Vertical IIIa 305; durch Unterschiede der Meridianzenithdistanzen zweier Sterne III a 306 ff.

- der Präcession Mechanik des Himmels II 592, Pracession IIIb 1: Bestimmung derselben IIIb 15 ff, Eigenbewegung Jes Sonnensystems III b 108.

- der Refraction oder Strahlenbrechung, Strahlenbrechung IIIb 566; ihre Bestim-

mung IIIb 592.

- des Sonnensystems, (der Theoria motus, der Gravitation), Bahnbestimmung I 457. Kometen und Meteore II 148, Mechanik des Himmels II 302 397 576; für die Sa-telliten II 302, für die Körper des Sonnensystems II 303; bei Doppelsternen, Coppelsterne 1 679.

- die sogenannten Gauss'schen Constanten zur Berechnung der Coordinaten aus den Elementen, Neigung, Länge des Knotens und des Perihels, für den Aequator Bahnbestimmung I 471 495, für die Ekliptik Mechanik des Himmels II 314.

- Variation der Constanten Einleitung I 132,

Mechanik des Himmels II 298.

Coordinaten I 655; sphärische Coordinaten, Definitionen, der Horizont, Zenith, Nadir, Meridian, Höhe, Azimuth I 655; Aequator, Deklination, Stundenwinkel I 655; Verwandlung von Bogenmaass in Zeit-maass und umgekehrt I 656; Ekliptik, Aequinoctien, Solstitien, Rectascension I 657; Länge, Breite I 658; Verwandlung von Azimuth und Höhe in Stundenwinkel und Deklination und umgekehrt I 658; Beziehung zwischen Zenithdistanz und Deklination und Stundenwinkel I 660;

obere und untere Culmination I 661; Einfluss der Eigenbewegung des Gestirns auf die Zeit der grössten oder kleinsten Höhe I 661; Ermittlung von Azimuth, Zenithdistanz, parallactischem Winkel und Stundenwinkel, Deklination und Polhöhe I 662; Sternzeit I 663; Verwandlung der Rectascension und Deklination in Länge und Breite und umgekehrt I 663, Bahnbestimmung I 469; die betreffenden Formeln für die Sonne Coordinaten I 664, Hülfstafeln I 665; Differentialformeln I 667: die Digression eines Sterns I 668.

Sphärische Polarcoordinaten, Positionswinkel und Distanz Mikrometer III a 153; Beziehungen zum Unterschied in Rectascension und Deklination, strenge Ausdrücke IIIa 153. Vereinfachungen IIIa

Rechtwinklige Coordinaten, Verwandlung I 664, Mechanik des Himmels II 280; wenn ein Axensystem beweglich ist II 281; Bestimmung der Lage eines Systems gegen ein anderes II 282; als Function der Bahnelemente Bahnbestimmung I 470, Mechanik des Himmels II 299 314; Diffe rentialquotienten der rechtwinkligen Coordinaten nach den Elementen Bahnbestimmung I 541, Mechanik des Himmels II 320; heliocentrische und geocentrische rechtwinklige Coordinaten Bahnbestimmung I 453 494 ff. 541.

- der Satelliten in Bezug auf die Hauptplaneten Mechanik des Himmels II 460; geocentrische Coordinaten eines Mondkraters II 615; galactocentrische Coordinaten Eigenbewegung des Sonnensystems

III b 104.

Hansen's ideale Coordinaten Mechanik des Himmels II 415; Proportionalcoordinaten II 431.

Störungen in rechtwinkligen Coordinaten II 330ff; in polaren Coordinaten Il 343 ff II 405 ff; S. Mechanik des Himmels.

Corona australis, die südliche Krone Sternbilder III b 228; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 228; Verzeichniss der Doppelsterne III b 228, der Nebelflecke und Sternhaufen IIIb 228, der veränderlichen Sterne IIIb 228 454, der farbigen Sterne III b 228; Präcessionstabelle III b 229.

Corona borealis, die nordliche Krone Sternbilder IIIb 229; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 229; Verzeichniss der Doppelsterne III b 229 451, der Nebelflecke und Sternhaufen III b 230, der veränderlichen Sterne IIIb 230, der farbigen Sterne III b 230; Präcessionstabelle III b 231.

Corona der Sonne Astrophotographic I 213 220 221, Astrospectroskopie I 400, Sonne IIIb 61 75 ff; ihr Spectrum Astrospectroskopie 1 404, Sonne IIIb 79 80; Erklärung für die Bewegung des Merkurperihels Mechanik des Himmels II 396, Sonne III b 81.

Coronium Astrospectroskopie I 404, Se

Coronograph Astrophotographii 1 220 247.
Correspondirende Höhen Azimuthhestimmung I 436; Zeithestimmung aus denselben Zeithestimmung IV 155; Beobachtung der Sonne IV 155, Berückschitigung
der Aenderung der Deklination IV 155,
Mittagswerbesserung IV 156, Mitternachtsverbesserung IV 157, Beispiel IV 157.

Corvis, der Rabe Sternbilder III b 231; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 231; Verzeichniss der Doppelsterne III b 231, der Nebelliecke und Sternhaufen III b 232, der farbigen Sterne III b 232; Präcessionstabelle III b 232.

Condé, Equatorial Aequatoreal I 192.

Crater, der Becher Mernbilder IIIb 233; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 233; Verzeichniss der Doppelsterne IIIb 233, der Nebelflecke und Sternbaufen IIIb 234, der veränderlichen Sterne IIIb 234, der farbigen Sterne IIIb 235; Präcessionstabelle IIIb 235;

Crux, das Kreuz Šterabilder IIIb 235; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 235; Verzeichniss der Doppelsterne IIIb 235, der Nebelflecke und Sternhaufen IIIb 236, der veränderlichen Sterne IIIb 236 454, der farbigen Sterne IIIb 236; Präcessionstabelle IIIb 236.

Culmination, obere und untere Einleitung I 2, Azimuthbestimmung I 435, Coordimaten I 661.

Cygnus, der Schwan Sternhilder IIIb 236; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 236; Verzeichniss der Doppelsterne IIIb 237, der Nebelltecke und Sternhaufen IIIb 242, der veränderlichen Sterne IIIb 243 454, der farbigen Sterne IIIb 243; Präcessionstabelle IIIb 245.

Г

Datumgrenze Zeithestimmung IV 134. Davisquadrant Jacobstab II 48. Deferent Einleitung I 21. Deimos, s. Planeten, Mars III a 413.

Deklination Einleitung I 2 6, Coordinaten I

655.

Thre Bestimmung, absolute und relative Deklinationsbestimmung 1 669, Aberration 1 176, Abuncantar 1 199; im Meridian Meridiankreit IIIa 17; Bertiekschitgung der Instrumentalfehler, Run, Excentricitä, Theilfehler, Biegung IIIa 18; der Refraction IIIa 18; reflectirte Beobachtungen III a18; Elimination der Polhöhe IIIa 19; Beobachtungen der Sonne zur Bestimmung der Schiefe der Ekliptik und des Frühlingspunkts IIIa 20, Sternataloge IIIb 456; Einfluss der Krümmung des

Parallels und der Fadenneigung Meridiankreis III a 21; Bestimmung des Acquaterpunkts am Kreise durch Collimatoren und Nadir III a 24; Beobachtung eines Gestirns mit messbaren Durchmesser III a 25; Berdicksichtigung der Parallaxe III a 25, für Beobachtungen ausserhalb des Meridians Thouhestimmung I 466, Parallaxe III a 318; Bestimmung der Deklination durch Beobachtungen im ersten Vertical, Paragemintrument III a 361 ff.

Systematische Fehler der Deklinationen, Eigenbewegung des Sonnensystems IIIb 96, Sternaataloge IIIb 457 471; System Auwers

und Boss IIIb 472 473.

Bestimmung von Deklinationsdifferenzen, am Heliometer Heliometer II 4; an Mikrometern: Cassini's Netz Mikrometer IIIa 66: am Zetanetz III a 68: am Ringmikrometer IIIa 72 78 ff., Einfluss der Eigenbewegung und Refraction III a 81; am Positionsringmikrometer IIIa 91; am Differenzenmikrometer III a 93, unter 45° III a 93, Zusatzglied für grosse Deklinationsdifferenzen und hohe Deklination IIIa 94, Einfluss der Eigenbewegung und Refraction IIIa 95; am Kreuzstabmikrometer IIIa 100, Einfluss von Orientirungsfehler, Eigenbewegung und Refraction IIIa 101; am quadratischen Mikrometer IIIa 104, Einfluss der Eigenbewegung und Refraction III a 105; mit dem Fadenmikrometer bei ruhendem Fernrohr IIIa 148, bei gehendem Uhrwerk IIIa 152, Einfluss der Strahlenbrechung III a 149 153. Verbesserung für Präcession, Nutation und Aberration IIIa 239.

 bei der wechselnden Neigung der Planetenbahnen nach Copernicus Einleitung 1 66.
 Deklinograph Mikrometer IIIa 134.

Delphinus, der Delphin Sternhilder III b 245: Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 245: Verzeichniss der Doppelsterne IIIb 246 451. der Nebelflecke und Sternhaufen IIIb 247, der veränderlichen Sterne IIIb 247; Präcessionstabelle IIIb 247; Präcessionstabelle IIIb 247.

Deviation Einleitung I 66, Diakaustik Fernrohr I 721.

Diastema Mechanik des Himmels II 494; Diastematisches Argument II 495.

Dichotomie Chronologic I 597.

Dichte Mechanik des Himmels II 279 524 551, Planeten IIIa 382 386 387.

Differentialquotient, numerische Berechnung Interpolation II 45.

Differenzenmikrometer Mikrometer III.a 92; ohne Positionskreis, Anschluss an zwei bekannte Sterne, günstigste Bedingungen III.a 13, Einfluss der Eigenbewegung III.a 93, in Verbindung mit dem Fernrohr von verticaler oder äquatorealer Aufstellung III.a 93; am parallactischen Fernrohr mit Positionskreis, wenn der Faden oder die Lamelle unter 45° steht III.a 93, Zusattglied für hohe Deklination und grosse Deklinationsunterschiede III a 04. Berücksichtigung der Eigenbewegung IIIa 95, der Refraction IIIa 95; wenn die Lamelle nach wahrem Parallel eingestellt ist, strenge Formeln IIIa 96, vereinfachte IIIa 97; wenn die Lamelle nach scheinbarem Parallel eingestellt ist III a 07. Anwendbarkeit des Mikrometers III a 97; Doppellamelle IIIa 98, Orientirung des Mikrometers IIIa 98, Beispiel IIIa 98; zwei senkrechte Lamellen unter 45° gegen die Richtung der täglichen Bewegung (Kreuzstab) IIIa 100, Reductionsformeln Illa 100. Einfluss eines Fehlers im Winkel der Lamellen III a 100, des Orientirungsfehlers IIIa 101, der Eigenbewegung IIIa 101, der Refraction für wahren und scheinbaren Parallel IIIa to1; Doppelkreuzstab IIIa 101, Beispiel IIIa 102; quadratisches (square - bar) Mikrometer IIIa 104, Einfluss der Eigenbewegung IIIa 105, der Refraction für wahre und scheinbare Deklinationen und Parallel IIIa 105, Orientirung des Mikrometers Illa

107, die Länge der Diagonale IIIa 107. Digression, der Planeten Einleitung I 47: der Circumpolarsterne Coordinaten 1 668.

Dione s. Planeten, Saturn IIIa 428. Diopter 1670.

Dipleidoskop Zeitbestimmung IV 177.

Direkte Bewegung Einleitung I o. Bahnbestimmung 1 464.

Distanz Mikrometer IIIa 153; Messung s. unter Doppelbildmikrometer, Heliometer, Mikrometer, Positionswinkel; Verbesserung für Präcession, Nutation, Aberration Mikronicter IIIa 241 242.

- curtirte Bahnbestimmung 1 453.

Doppelbildmikrometer Mikrometer IIIa 197; Vortheile gegenüber den Faden- und Lamellenmikrometern, allgemeine Principien nach Savery und Bouguer IIIa 197; verschiedene Constructionen von Amici. Benierkungen darüber III a 200, Messungen mit demselben III a 201; Doppelbildmikrometer mit getheilter Ocularlinse nuch Ramsden, Jones, G. Dollond IIIa 202; Airy'sches Mikrometer, erste Construction IIIa 203; Vorschlag von Valz IIIa 205, Lichtverlust III a 206; Beschaffenheit der Bilder IIIa 206, Beschreibung des mechanischen Theils nach Kaiser IIIa 207, Herstellung der Deckung der Bilder IIIa 209, Beobachtungsmethoden III a 200, vierfache Distanz III a 209, doppelte Distanz IIIa 210, verschiedene Einstellung für Positionswinkel und Distanz Illa 210, direkte Deckung der ungleichnamigen Bilder IIIa 210, einfache Distanzen Illa 210, Durchmesserbestimmungen Illa 211, Elimination der Schraubenfehler IIIa 211, Berticksichtigung unvollständiger Deckung IIIa 211, Nothwendigkeit der Einstellung bei allen zusammengehörigen Beobachtungen an derselben Stelle des Gesichtsfeldes III a 212, Bestimmung des Winkelwerthes der Schraube IIIa 212,

Bestimmung des Nullpunktes des Positionskreises IIIa 214, Berücksichtigung der Phase bei Durchmesserbestimmungen III a 215; Prismenmikrometer nach Maskelyne IIIa 215, Construction mit einem und zwei Prismen IIIa 216, Bestimmung der Durchmesser von Sonne, Mond und Planeten IIIa 216; Steinheil's Ocular - Prismen-mikrometer, Beschreibung IIIa 217 nur für hellere Objecte verwendbar IIIa 218; Mikrometer von Clausen IIIa 218, von Baden-Powell und Secchi IIIa 219: Mikrometer mit doppelt brechenden Krystallen von Rochon III a 219; Anwendung durch Arago zur Messung von Planetenscheiben IIIa 220, die Mängel desselben IIIa 221: Mikrometer mit veränderlicher Vergrösserung von Arago IIIa 221, sein Ocularmikrometer mit constanter Vergrösserung IIIa 222; Dollond's Doppelbildnikrometer IIIa 223; das Wellmann'sche Mikrometer III a 224; Benutzung eines Kalkspathprismas bei Marsbeobachtungen durch Lohse IIIa 224; Wellmann's Apparat für Messung von Positionswinkel und Distanz III a 224, Vervollkommnung des Apparates III a 224, Beobachtungsverfahren IIIa 225, Elimination der Fehler III a 227, Vorzüge des Mikrometers III a 228; Neigung der Fäden bei den Prismen von Rochon und Wollaston IIIa 229: Prisma von Brendel IIIa 230, Berücksichtigung und Elimination der Neigung IIIa 231; Beispiele IIIa 233; Abhangigkeit der Maximalelongation von Temperatur und Ocularstellung IIIa 234; Bestimmung der Maximalelongation IIIa 235; Mikrometer von Bigourdan III a 236.

Doppelsterne 1671; optische und physische I 671, Universum IV 60; Entdeckung durch Chr. Mayer, Doppelsterne I 671; Herschel's und W. Struve's Arbeiten I 672; die Farben der Doppelsterne I 675; das

Doppler'sche Princip I 675.

Ueber die Bestimmung der Bahn I 676, Einleitung I 162; Allgemeingültigkeit des Newton'schen Attractionsgesetzes Doppelsterne I 676 678; über den Werth der Anziehungsconstante im Sonnensystem und den Doppelsternsystemen I 679; die Messungen, Einfluss der Refraction, Aberration, Nutation und Präcession I 677; Persönliche Fehler bei den Beobachtungen I 677, Mikrometer IIIa 163; Bahnbestimmung, scheinbare und wahre Bahn Doppelsterne I 678; die sieben Elemente I 678; das Periastron I 678: Bestimmung von Positionswinkel und Distanz aus den Elementen I 679; der Bahn aus Posititionswinkel und Distanzen I 680; Genauigkeit der Bahnbestimmung I 680; Einführung von Hilfsgrössen I 682; Zusammenstellung der Formeln I 683; Differentialformeln I 684; Ausnahmefälle I 685; Uebersicht berechneter Doppelsternbahnen mit Umlaufszeiten unter 100 Jahren I 686; mehrfache Systeme I 687; Sterne mit veränderlicher Eigenbewegung 1 688; das Sirius- und Procyonsystem 1 688; Anwendung spectralanalytischer Messungen auf die Erkennung enger Doppelsterne 1 699; Bestimmung von fünf Bahnelementen aus spectroskopischen Beobachtungen I 694; Hinzunahme photometrischer Messungen bei Veränderlichen I 690 694, Altrophotometri I 359, Attropectroskopit I 428; über die Stabilität enger Systeme Doppetterne, I 695; Einfluss der Lichtzeit auf den Ort der Componenten I 696; Abhängigkeit der Fortplanzungsgeschwindigkeit des Lichts von der Helligkett I 696.

Ueber die Massenverhältnisse Universum IV 95; die Entstehung Kosmogonie II 335.
Messungen am Lampennetzmikronseter Mikrometer III a 69, am Schraubenmikrometer Herschel's III a 112, am Fademikrometer nach Positionswinkel und Distanz III a 153ff, mit dem Doppeblidmikrometer III a 223, mit Wellmann's Mikrometer III a 225, am Heliometer

Verzeichniss der Doppelsterne in den

einzelnen Sternbildern s. letztere. Doppler'sches Princip Einleitung I 163, Astrophotometrie I 359, Astrospectroskopie I

424, Doppelsterne I 675.

Dorado, der Schwertfisch Sternbilder IIIb 248; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 248; Verzeichniss der Doppelsterne IIIb 248, der Nebelflecke und Sternhaufen IIIb 249, der veränderlichen Sterne IIIb 252, der farbigen Sterne IIIb 252; Präcessionstabelle IIIb 252.

Dosenlibelle Niveau IIIa 290,

Drachenkopf-Drachenschwanz Einleitung I 7, Chronologic I 597.

Drachenmonat Einleitung I 7, Chronologic I 597.

Draco, der Drache Sternbilder IIIb 252; Genzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 252; Verzeichniss der Doppelsterne IIIb 253, 451, der Nebelliecke und Sternbaufen IIIb 256, der veränderlichen Sterne IIIb 260 454, der farbigen Sterne IIIb 260; Präcessionstabelle IIIb 260.

Dunkle Weltkörper Universim IV 96.

Durchgang s. Merkur-Venusvorübergänge.

Durch gan gebe obachtungen Merklänkreis

Illa 4; Reduction auf den Mittelfaden

Illa 8; Bestimmung der Fadendistanzen

Illa 10; Einfluss der Eigenbewegung, Parallaxe und des Durchmessers des Gestims

Illa 11; Bestimmung des Werthes einer
Schraubenrevolution aus Durchgängen

Mikrometer Illa 110 ff.; über die persönlichen Fehler bei denselben Pertönliche

Cheikung Illa 368 ff. 381 f.

Durchgangsinstrument s. Passageninstrument.

Durchgangstheodolith s. Universalinstru-

Durchmesser s. unter Mond, Planeten, Sonne.

— Bestimmung Heliometer II 4; am Fadenmikrometer mit spitzen Glasfaden Mikrometer IIIa 156; an Airys Doppelbildmikrometer IIIa 211; Berticksichtigung d. Phase IIIa 215; Einfluss der Irradiation Planeten IIIa 385.

Durchmusterung s. Sternkarten IIIb 519.

Dynameter Fernrohr I 737.

E

Ebbe und Fluth Einleitung I 113; als "Ursache der Secularbeschleunigung d. Mondes Mechanik des Himmels II 456; Einfluss auf die Rotationsaxe der Erde II 600. Ebbes Sextant Zeitbestimmung IV 179.

Echappement s. Hemmung.

Eigenbewegung der Fixsterne Präcession IIIb 12 16, Sterncataloge IIIb 458 ff., und des Sonnensystems Eigenbewegung des Sonnensystems IIIb 92; motus parallacticus, peculiaris, proprius IIIb 93; Herschel's Gleichung zur Bestimmung der Lage des Antiapex III b 94; die Grösse der Sonnenbewegung IIIb 94; analytische Behandlung des Zusammenhangs zwischen der Eigenbewegung von Sonne und Fixsternen IIIb 94: Ausdrücke von Airy III b 96; Hypothesen über die Entfernung der Sterne und über die Natur der motus peculiares IIIb 96 102; im grössten Kreis IIIb 97; Ausdruck von Argelander IIIb 98, von Bessel-Kobold III b 100; Resultate des verschiedenen Methoden IIIb 103; unter Annahme, dass die motus peculiares einem bestimmten Gesetz folgen (Schönfeld) IIIb 103, Entwicklung d. Formeln IIIb 104.

Bewegung der Fixsterne im Visionsradius Eigenbewegung des Sonnensystems III 92 97 101, Astrosphotometrie 1 359, Astrospech oskopie I 424, Doppelsterne I 675; Bestimmung des Apex der Sonnenbewegung daraus Eigenbewegung des Sonnensystems III b 103.

Zusammenstellung der Coordinaten des Sonnenapex IIIb 107; Vertheilung der Eigenbewegungen Universum IV 101 103 104, in Verbindung mit Spectraltypen IV

104.

Îhr Einfluss auf die Bestimmung der Nutationsconstante Nutation III a 305, auf die Parallaxe der Fixsterne Farallaxe III a 345.

Ekliptik Einleitung 1 5, Chronologie I 595, Coordinaten I 657 658, Universum IV 58; ihre Eintheilung in Zeichen Einleitung 1 3

19, Chronologie I 595.

Schiefe der, Einleilung 15, Coordinaten 1657; ihre Bestimmung an Gnomon Gnomen II 1; bei Ptolemäus Einleitung 133, bei den Arabern 149, durch Copernicus I 61, durch Tycho I 67, am Meridiankreis IIIa 17 20, Rectassensionsbestimmung IIIb 30 ff. Sternatslage IIIb 456; ihre Veränderlichkeit Einleitung I 93, Meridiankreis IIIa 21, Nutation IIIa

202; wahre, feste, instantane, mittlere, lunisolare Schiefe Mechanik des Himmels II 584ff., Pricession III b 1 2, Reclasernsionsbestimmung III b 12.

Ekliptikalkarten s. Sternkarten.

Elementare Glieder Mechanik des Himmels II 446.

Elemente der Bahn Einleitung I 115 130 133, Bahnbestimmung I 463, Kometen und Meteore II 64 Ann.; der Kometenbahn vor und nach einer Störung II 93.

Verwandlung der äquatorealen in ekliptikale und umgekehrt Bahmbestimmung I 545; Uebergang auf verschiedene Epochen für äquatoreale und ekliptikale Elemente Pritession IIIb 8 ff; osculirende Einteitung I 33. Mehanik des Himmels II 298 331 429; Uebergang auf neue osculirende Elemente mit den Störungen der rechtwiokligen Coordinaten II 342. Beispiel II 343; mit Störungen in polaren Coordinaten II 356, Beispiel II 356; mittlere Elemente Einteitung I 137 140, Mechanik des Himmels II 429.

Elemente bezogen auf einen Planeten als Centralkörper II 479, Beispiel II 481; Beziehungen zwischen den Aenderungen der Elemente eines Kometen durch Attraction eines Planeten II 482.

Variation der Elemente II 296 360. Beispiel II 362; Differentialgleichungen für die Variation der Elemente II 296, Transformation der Differentialgleichungen II 317; Einführung der störenden Kräfte II 319; für grosse Excentricitäten und für sehr kleine Excentricitäten und Neigungen II 324. S. auch weiter Mechanik des Himmels.

Elkysmometer Horizontalpendel II 28.

Elongation Einleitung I 47.

Enceladus s. Planeten, Saturn IIIa 428. Enckes Komet Einleitung I 160, Kometen und

Enckes Komet Einleitung I 160, Kometen und Meteore II 74, Mechanik des Himmels II

Engklisis Einleitung I 46.

Epacten Chronologie I 618.

Ephemeride der Planeten und Kometen Bahnbestimmung I 495.

Daniestimmung 1495.

die astronomischen Jahrbütcher Zeitbestimmung IV 1331; zur Berechnung des mittleren und scheinbaren Orts Ort IIIa 313, Sternartologe und Sternkarten IIIb 461, das Berliner astronomische Jahrbutch IIIb 462, die American Ephemeris IIIb 462, die American Ephemeris IIIb 464, andere Ephemeridensammlungen IIIb 469; die systematischen Unterschiede und mittleren Abweichungen der Ephemeriden unter einander IIIb 464, 4683; die Veranderungen und die Vertheilung der von ihnen aufgenommenen Sterne über den Himmel IIIb 466.

Epicykel Einleitung I 21.

Epicyklische Bewegung und Theorie Einleitung I 20 ff 57 ff.

Epoche Einleitung 1115, Bahnbestimmung 1463.

Equileus, das Füllen Sternbilder III b 261; Grenzen und Anzahl der dem blosses Auge sichtbaren Steine III b 261; Verzeichniss der Doppelsterne III b 261, der Nebelliecke und Sternhaufen III b 262, der farbigen Sterne III b 262; Präcessionstabelle III b 262.

Erdaxe Coordinaten I 655; ihre vermeintliche Bewegung nach Copernicus (Libration) Einleitung I 50; Bewegung der Rotationsaxe der Erde Mechanik des Himmels II 568 ff 581 ff. Nutation IIIa 302. Prä-

cession IIIb 1.

Erdbahn, die Veränderlichkeit ihrer Executicität Einleitung I 55, Kometen und Meteore II 85; ihre Elemente bei Copernicus Einleitung I 61, bei Tycho I 67; Untersuchungen von Kepler I 87; Untersuchcungen über die Secularverfinderungen von Lagrange, Laplace I 139 ff; ihre Störungen durch Mond, Jupiter und Venus I 145, s. auch unter Mechanik des Himmels

Erdbeben und Pulsationen Horizontalpendel

II 39 40.

Erde, über die Grösse und Gestalt bei den Alten, Kugelgestalt und Axendrehung Einkeitung 1 17, bei Eratosthenes I 18; Posidonius I 30; ihre dreifache Bewegung bei Copernicus I 59 fi; hire Abplattung nach Huyghens I 113; nach Newton I 113; dichter Kern I 145; Untersuchung ihrer Gestalt aus der Mondparallaxe Parallaxe III a 322; die Schwerkraft an ihrer Oberfälche III a 325; Einfuss der Abweichung von der Kugelgestalt auf die Bewegung des Mondes Mechanik des Himmels II 460; ihre mittlere tügliche siderische Bewegung II 402, Beziehung zu der der Venus und des Mars II 402.

Erdferne, Erdnähe Einleitung I 21.

Eridanus, der Eridanusfluss Sternhilder IIIb 262; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 263; Verzeichniss der Doppelsterne IIIb 263, der Nebelflecke und Sternhaufen IIIb 265, der veränderlichen Sterne IIIb 270 453, der farbigen Sterne IIIb 270; Präcessionstabelle IIIb 270.

Eros s. Planeten IIIb 440.

Euler'sche Gleichung s. Bahnbestimmung.

Euler'scher Cyclus Einkitung I 145, Mechanik des Himmels II 602 ff.

Evection Einleitung I 36 52 59, Mechanik des Himmels II 440.

Excedens Prismenkreis IIIb 20.

Excentricität bei Bahnen Einkitung I 21 91 115, die numerische Bahnbestimmung I 457, die optische I 458, Methanik des Himmels II 306; die der Bahnen der Planeten Kosmogonie II 241, des Mondes II 242. — an den Kreisen I 696; ihre Bestimmung

I 697; ihre Elimination, I 699, Meridiankreis IIIa 18, Prismenkreis IIIb 23 24.

Excentricitätswinkel Bahnbestimmung 1458, Mechanik des Himmels II 306.

Excentrischer Kreis Einleitung I 21.

Extinction des Lichts Astrophotometric I 325; Ausdrücke von Lambert und Laplace I 326; ihre Bestimmung von Seidel und Müller I 327; Tabelle für dieselbe I 329; Abhängigkeit von Luftdruck und Feuchtigkeit I 331; die Constante derselben I 329, Universum IV 94.

Fackeln der Sonne s. Sonne.

Fadenbeleuchtung Meridiankreis IIIa 2, Mikrometer III a 28.

Fadencorrection Mikrometer III a 116. Universalinstrument IV 47.

Fadendistanzen, ihre Bestimmung Almucantar I 201; Einfluss der Refraction I 201, Meridiaukreis III a 10; Mikrometer III a 190 191; Einfluss der Temperatur Meridiankreis IIIa 10; Bestimmung durch Sternbeobachtungen IIIa 10, durch Messung mit dem Universalinstrument III a 10, Berücksichtigung von Eigenbewegung, Parallaxe und Halbmesser des Gestirns bei der Reduction auf den Mittelfaden IIIa 10; Benutzung von Hülfstafeln Mikrometer IIIa 191; für das Passageninstrument im ersten Vertikal Passageninstrument IIIa 358, für sehr zenithnahe Sterne IIIa 359, für fest aufgestellte Instrumente IIIa 360, ihre Elimination III a 363.

Fadenkreuz s. Fadennetz.

Faden mikrometer s. Schraubenmikrometer. Fadennetz Einleitung I 98, Fernrohr I 720; Anwendung von Spinnefäden Einleitung I 118, Mikrometer IIIa 116f Einziehen der Fäden IIIa 116.

Farben der Fixsterne Astrophotometrie I 315, Astrospectroskopic I 410 ff., Doppelsterne I 675. Farbenzerstreuung Fernrohr I 723.

Farbige Sterne, Verzeichniss derselben in den einzelnen Sternbildern s. letztere.

Fayescher Komet Einleitung I 16c, Kometen und Meteore II 75.

Federuhr Chronometer I 625.

Fehler Methode der kleinsten Quadrate IIIa 26; systematische III a 26, zufällige III a 27, übrigbleibende IIIa 29 36; wahrscheinlicher Fehler III a 30 34, durchschnittlicher IIIa 35, mittlerer IIIa 36, der Summe, der Differenzen, der Producte IIIa 40; s. auch systematische Unter-schiede, Theilfehler.

Fehlergesetz Methode der kleinsten Quadrate III a 30 ff.

Fehlergrenzen Methode der kleinsten Quadrate III a 30 ff.

Fernrohr I 700; dioptrisches, katoptrisches I 700; Erfindung Einleitung I 74, Fern rohr I 700 703; das astronomische und terrestrische I 701; das dialytische I 707; Geschichte der Achromasie I 704, optischen Gläser I 706; die optische Axe I 720; Vergrösserung I 730, ihre Bestimmung I 737; Helligkeit, Lichtstärke I 732; Gesichtsfeld I 733, Bestimmung der Grösse I 736; Untersuchung der Centrirung. Achromasie und Astigmatismus I 737 738. Die Biegung und ihre Bestimmung s. Biegung.

Feuerkugeln Kometen und Meteore II 103; Helligkeit II 103; Zusammenhang mit Meteorsteinfällen II 104; ihre Höhe II 110: Identität mit Sternschnuppen und ihr Ursprung II 112 ff.

Finsternisse Einleitung I 8; Allgemeines Chronologie 1 599 ff., Finsternisse 1 749 s. Mondfinsternisse, Sonnenfinsternisse, Sternbedeckungen, Merkur- und Venusvorüber-

gänge.

Fixsternaberration s, Aberration 1166 167. Fixsterne Einleitung I 1; verschiedene Helligkeit, Eintheilung in Sternbilder I 1; Bestimmung ihrer Oerter I 19, ihrer Entfernung und Grösse bei den Arabern I 50, bei Kepler 194; ihre Eigenbewegung I 117 162; ihre Helligkeit I 162 163, Astrophotometrie I 343; ihre Eintheilung nach Grössenklassen I 322; die verschiedenen Helligkeitsskalen und ihre Vergleichung I 344 348; Cataloge und Karten mit Helligkeitsschätzungen und Messungen I 343 344; Zahl nach Grössenklassen I 349; veränderliche, neue, farbige Fixsterne s. Veränderliche Sterne und Farben der Fixsterne.

Die photographischen Aufnahmen Astrophotographic I 228 ff.; Belichtungszeit I 238; Verschiedenheit der Spectra für die Photographie I 239; Photographische Spectralapparate I 249 ff.; Belichtungszeit I 251; Verbreiterung der photographirten Spectren I 259 260; das Ausmessen der Sternpositionen I 267; der Spectrogramme I 273; Reduction der ausgemessenen Photogramme 278, allgemeine Fehlerquellen I 279, Mcthode der rechtwinkligen Coordinaten I 283, der Positionswinkel und Distanz I 288, der Rectascensionen und Deklinationen I 295.

Die spectroskopischen Beobachtungen Astrospectroskopie I 410; Secchi's Eintheilung der Spectra in 5 Klassen I 410, Picketing's in 16 Klassen I 412 413, Vogel's in 3 Hauptklassen entsprechend drei Entwickelungsphasen I 414 415, die Lockyer'sche Eintheilung I 415 416; Vergleichung der verschiedenen Bezeichnungen I 416 ff.; Häufigkeit der Sterne nach den verschiedenen Klassen I 418; Vertheilung der Spectren am Himmel I 410: Erklärung der verschiedenen Spectra nach Vogel's Anschauung I 421, s. hierüber auch Kosmogonie I 233 ff.

Die Eigenbewegung der Fixsterne Eigenbewegung des Sonnensystems IIIb 92; motus peculiaris, parallacticus, proprius III b 93; im Visionsradius IIIb 92 97 101; Hypothesen über die Entfernungen IIIb 96; über die motus peculiares III b 96 fl.; dieselben nicht als zufällige angesehn IIIb 103; die Eigenbewegung der Fundamentalsterne Sterneataloge und Sternkarten III b 458 460ff.; über die Bestimmung ihrer Entfernung s. Parallaxe III a 341 ff.

S. über Fixsterne auch die ausführlichen Angaben unter Stern . . .

Fixsternsysteme Kosmogonie II 231, Universum IV 59, Deppelsterne I 671 fl.

Fixsterntrabanten Doppelsterne I 671.

Flächengeschwindigkeit Bahnbestimmung

Flächenprincip Mechanik des Himmels II

Flecken der Sonne s. Sonne.

Flora, kleiner Planet, das Spectrum Astrospectroskopie I 406.

Fornax, der chemische Ofen Sternbilder IIIb 270; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 271; Verzeichniss der Doppelsterne IIIb 271 451, der Nebelflecke und Sternhaufen IIIb 271, der veränderlichen Sterne IIIb 272 452, der farbigen Sterne IIIb 272: Pracessionstabelle IIIb 272.

Frühlingspunkt s. Aequinoctionalpunkt. Fundamentalebene Ort IIIa 300, Pracession IIIb 2

Fundamentalpunkte Fernrohr I 711.

Fundamentalbestimmungen Meridinukreis Illa 1, Rectascensionsbestimmung IIIb 30: der Schiefe mit Refraction IIIb 31, Sterncataloge und Sternkarten IIIb 456; günstigste Bedingungen IIIb 457; Reductionsmethode IIIb 457; Einfluss der Polhöhe Meridiankreis IIIa 20.

Fundamentaleataloge Sterncataloge und Sternkarten IIIb 456, Präcession IIIb 17. Fundamentalsterne Meridiankreis Illa 17, Sternataloge und Sternkarten IIIb 457; ihre Eigenbewegung IIIa 458 460ff. Fundamentalsystem Meridiankreis Illa 17,

Stermataloge und Sternkarten 111b 471 ff. Funkeln s. Scintillation.

Gang einer Mikremeterschraube s. Run.

- täglicher, einer Uhr Chronometer 1 635. - todter Mikrometer IIIa 121.

Gauss'sche Constante s. Constante.

Gauss'sche Osterregel Chronologie I 619; Regel zur Bestimmung des Passahfestes I 621.

Gegenschein s. Zodiakallicht.

Gehörfehler Milrometer IIIa S1.

Gemini, Zwillinge Sternbilder IIIb 110 272; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 273; Verzeichniss der Doppelsterne IIIb 273 451, der Nebelflecke und Sternhaufen IIIb 275, der veränderlichen Sterne IIIb 276 453, der farbigen Sterne IIIb 276; Pracessionstabelle IIIb 276.

Geocentrische Bewegung Einleitung 1 22. Geographische Ortsbestimmung Einleitung I 72 73; s. Azimuthbestimmung, Längenbestimmung, Polhöhe, Zeitbestimmung.

Geschwindigkeit eines Himmelskörpers in der Ellipse, Hyperbel, Kreis und Parabel Einleitung I 135, Kometen und Meteore II 65, Mechanik des Himmels II 301; grösste Geschwindigkeit Bahnbestimmung I 462;

des Lichts Aberration I 171. Gesichtsfehler Mikrometer IIIa 76 78 81.

Gesichtsfeld Ferurohr I 716 733; Bestimmung desselben I 736.

Gewicht Methode der kleinsten Quadrate III a 37; Bestimmung desselben IIIa 39; Beispiel der Gewichtsbestimmung IIIa 40.

Gezeiten durch Newton erklärt Einleitung I 113; s. Ebbe und Fluth,

Ghost Mikrometer von Browning und Grubb Astrospectroskopie I 379; Mikrometer III a 135 136.

Gitter Astrophotographic I 222 246.

Gitterblenden Heliometer II 9, Personliche Gleichung IIIa 381. Glasfäden, ihre Herstellung Mikrometer III a

Glasgitter, Mikrometer IIIa 65.

Gleichgewicht, Gleichgewichtsfigur Mechanik des Himmels 11 547 552 555.

Gleichung, Ungleichheit Einleitung I 14.

- jährliche Mechanik des Himmels II 440 471. parallactische Mechanik des Himnels II

440 458 471. Gleichungen, Bedingungs-Normal-Elimina-

tionsgleichungen und ihre Behandlung s. Methode der kleinsten Quadrate.

Gnomon Einleitung I 6 33; Beschreibung II 1; Anwendung zur Bestimmung der Sonnenhöhe im Meridian, der Zeit, der Richtung des Meridians, der Schiefe der Ekliptik II 1 2; Gnomon geometricus II 3; Bestimmung der Zenithdistanzen der Sonne durch ihre Tangente (Antitangententafel) 11 3.

Goldene Zahl Chronologie I 598 618.

Granulation der Sonnenoberfläche s. Sonne. Gravitations constante s. Constante.

Gravitationsgesetz s. Newton'sches Ge-

Grösse, Helligkeit eines Steins Astrophotometric I 322; Fechner'sches psychophysisches Grundgesetz I 322; Unterschied zweier Grössenclassen I 323; Schätzungen 1 324, der kleinen Planeten I 340; die Grössenclassen bei Ptolemäus, Abd al Rahman al Súfi, Herschel, Struve, Argelander, Heis, Behrmann, Houzeau, Gould I 340; s. auch Helligkeit, Sternhelligkeit.

Grus, Kranich Sternbilder IIIb 277; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 277; Verzeichniss d. Doppelsterne IIIb 277, der Nebelflecke und Sternhaufen IIIb 278, d. veränderlichen Sterne IIIb 279, d. farbigen Sterne IIIb 279; Präcessionstabelle IIIb 279.

н

Hakemitische Tafeln Einleitung I 53. Halley'scher Komet Linkitung I 147, meten und Meteore 11 57 58 68 69 88. Hauptbrennpuncte Fernroler 1 709. Hauptebene Fernrehr 1 710. Hauptpuncte Fernrohr I 710.

Hauptstrahl Fernrehr I 711. Heliakisch Einleitung I 3. Chronologie I

60

Heliocentrische Bewegung Einleitung I 22. Heliocentrisches System Einleitung 50 ff. Heliometer Einleitung I 118, II 4, Mikrometer III a 188, erfunden v. Dollond v.

meter IIIa 198, erfunden v. Dollond u. Bouguer II 4 5; Beschreibung d. Dollond'schen u. der kleinen Fraunhofer-schen II 5 6, Beobachtungen mit denselben II 5 6; Verringerung d. Helligkeit durchs Heliometerobjectiv II 6; Beschreibung des grossen Fraunhofer'schen Heliometers in Königsberg II 6; Herstellung eines Heliometerobjectivs II 7; Messung v. Doppelsternen II 7 8. Dirchmessern II 8, Trabantenabständen II 9, grossen und kleinen Sterndistanzen II 9; Einfluss seitlicher Entfernung d. Objectivmittelpuncte II 7, der nicht kreisformigen Gestalt d. Sternbilder II 8; systematische Unterschiede bei den Einstellungen II 8; Distanzmessungen II S ff., Abblendung durch Drahtgitter II 9; V.rwandlung d. Schraubenscalentheile in Bogenmanss II 10, verschiedene Methoden II 10, Resultate Bessel's II 10, Abhängigkeit v. d. Temperatur II 11, Einfluss d. Ocularstellung bei Distanzmessungen II 11. Ocularscala II 12, optische Verbesserung Il 13; Messung d. Positionswinkel II 14, Bestimmung des Indexfehlers, verschiedene Methoden II 14 16, Einfluss d. Lage d. Fernrohrs II 15; die Heliometer in Bonn, Pulkowa, Oxford (Radcliffe Observatory) Il 15; Einstellungsweise v. Johnson II 16; die kleinen Repsold'schen Heliometer in Russland, Leiden u. s. w. II 17, die grossen in Leipzig, Göttingen, Bamberg, Newhaven, Cap d. g. H. Il 17; Beschreibung des Göttinger II 17, Bestimmung d. periodischen Fehler d. Schraube II 18, über die Messungen mit demselben II 19, Untersuchung d. Theilungsfehler d. Objectivscalen II 19 20, Beleuchtung d. Scalen, Kreise, Mikrometertrommeln Il 19; Gebrauch des Collimatorfernrohrs f. Bestimmung des Indexfehlers II 19; Abhängigkeit d. Brennweite v. d. Temperatur II 19; künstliche Doppel-sterne und Scheiben, Bedenken gegen ihre Benutzung II 19; Ocularprisma II 19; Abhängigkeit d. Ocularstellung v. d. Temperatur Il 20; Reduction d. Distanzmessungen auf normale Stellung des Auges II 21; Bestimmung des Scalenwerths II 21: Unterschied zwischen zwei Beobachtern II 22; Unterschied zwischen Distanzmessungen am Heliometer und Meridiankreis II 22 23; Befreiung d. gemessenen Positionswinkel v. den Instrumentalfeblern II 24; Bedeutung des Heliometers f. die moderne Astronomie II 27; das belgische Helio-meter v. Houzeau II 25.

Beobachtungen am Heliometer zu Parallaxenbestimmungen Parallaxe III a 331

333 350.

Heliophotograph Autrophotographie I 215. Heliostat Autrophotographie I 213; Beschreibung des Repsold'schen in Fotsdam I 215; der Meyerstein'sche Heliostat von Gothard-Konkoly verändert I 241 fi. andere Heliostate von Johnston, Fuess, Monckhoven I 241.

Heliotrop II 27.

Helium Sonne IIIb 19.

Hellig keit, das Verhältniss d. Grössenelassen Astrophotometrie I 323 349; die Schätzungen nach Stufen I 324; die photographische I 325; die der Sonne I 332, d. Planeten in mittlerer Opposition und verschiedenen Entfernungen v. Sonne u. Erde I 333 f., 337, Planeten IIIa 386 387; Beziehung z. Grösse IIIa 437; mittlere Oppositionsgrösse IIIa 438, eines beleuchteten Körpers Astrophotometrie I 335, des Saturn und seines Ringes I 336, d. Mondes I 341, der Fixsterne I 343; verschiedene Scalen v. Herschel, Struve und Argelander und ihre Vergleichung I 348; Gesammthelligkeit aller Sterne I 349.

Helligkeit der Kometen Kometen und Meteore II 77, der Meteore und Feuerkugeln II 103, der Sternschnuppen, geordnet nach Monaten und Stunden II 124.

Systematische Unterschiede d. Schätzungen d. Fixsterne nach dem Sternreichthum Universum IV 78, der Nebel IV 117.

Helligkeit des optischen Systems Fernrohr I 716, des Fernrohrs I 732.

Helligkeitsgleichung Sterneataloge und Sternkarten III b 471 474.

Hemmung, Echappement Chronometer 1626 ff.
Uhr IV 20; Theorie d. Hemmung IV 21;
die rückspringende oder d. englische Haken
IV 22, die ruhende Hemmung oder d.
Grahamgang IV 23, die Stiftenhemmung
IV 24, die freie Hemmung IV 25 ff. Chronometer I 632, die Riefler'sche Hemmung
Uhr IV 29, die Duplexhemmung Chronometer I 620.

Herbstpunkt Einleitung I 5, Chronologic I 595, Coordinaten I 657.

Hercules Sternbilder HIb 279; Grenten und Anzahl der dem blossen Auge sichtbaren Sterne HIb 279; Verzeichniss der Doppelsterne HIb 280, 451, die Nebelflecke und Sternhaufen HIb 283, die veränderlichen Sterne HIb 286 454, d. farbigen Sterne HIb 287; Präcessionstabelle HIb 288.

Höhe Coordinaten I 655.

Höhenbestimmung bei Ptolemäus Einleitung I 33, am Quadrant III b 30, s. Bestimmung d. Zenithdistanz,

Hoheninstrument Universalinstrument IV 43; Beschreibung IV 43; Nivellirung d. Axe IV 43; Alhidaden- oder Versicherungsibelle IV 43; Beleuchtung IV 44. Hohlspiegel Fernrohr I 703 743 ff.

Homocentrische Sphären des Eudoxus
Einleitung 1 10.

Horizont Coordinaten I 655

künstlicher (Quecksilber) angequickter
 Meridiankreis IIIa 18, Prismenkreis III b

21; Glashorizont IIIb 22; Nivellirung desselben IIIb 22.

Horizontaleoordinaten Coordinaten I 655; Verwandlung in äquatoreale u. umgekehrt 1 658 f., 662; Beispiele I 660 662; Differentialausdrücke I 667.

Horizontalparallaxe Parallaxe IIIa 315; Acquatoreal-Horizontalparallaxe IIIa 315.

Horizontalpendel II 28; die ersten Angaben von Hengler, Zöllner, v. Rebeur-Paschwitz, Perrot II 28 ff.; Beschreibung d. Apparate v. Zöllner II 31, v. Ewing, Gray II 32, v. Repsold, Stückrath II 33; photographische Registrirung II 36; Bestimmung der Masse und Entfermung v. Mond und Sonne II 28; über die Ablenkung d. Lothlinie durch Anziehung v. Sonne und Mond II 31 37; Beobachtungen damit II 36 38; theoretische Behandlung II 37 38; Einfluss d. Mondes beobachtet v. v. Rebeur-Paschwitz und Ehlert II 38; Beobachtung d. Barometerschwankungen II 39; seismische Bewegungen II 39; Erdpulsationen, Erdbeben II 40.

Horizontaluhr Zeithestimmung IV 181.

Horologium die Pendeluhr Sternbilder IIIb 288; Grenzen und Anzahl d. dem blossen Auge sichtbaren Sterne IIIb 288; Verzeichniss d. Doppelsterne IIIb 289, d. Sternbaufen und Nebeltlecke IIIb 289, d. veränderlichen Sterne IIIb 289 452, d. farbigen Sterne IIIb 290; Präcessionstabelle IIIb 291.

Hundstern-Sothisperiode Chronologie I 609. Hydra, die Wasserschlange Sternbilder IIIb 200; Grenzen und Anzall der dem blossen Auge sichtbaren Sterne IIIb 200; Verzeichniss der Doppelsterne IIIb 200 452; der Nebelflecke und Sternhaufen IIIb 203 452, der veränderlichen Sterne IIIb 206 453, der farbigen Sterne IIIb 206; Präcessiontabelle III b 207.

Hydrus, die kleine Wasserschlange, Sternbilder IIII 297; Grennen und Auzahl der dem blossen Auge sichtbaren Sterne III b 297; Vetzeichniss der Doppelsterne III b 298, der Nebellicke und Sternhaufen III b 298, der farbigen Sterne III b 298; Präcessiontabelle IIII 299.

Hyperbel, Bewegung in derselben s. Bahnbestimmung, Kometen und Meteore.

Hyperelementare Glieder Mechanik des Himmels II 446,

Hyperion s. Planeten, Saturn Ill a 428.

1

Jacobstab II 48.

Jahr, aegyptisches Einleitung I 4, Zeit IV 130.

fingirtes, annus fictus Ort IIIa 310.
 julianisches Einlatung 1 31, Chrono-

 julianisches Einleitung 1 31, Chronologie I 618, Präcession IIIb 1 6, Zeit IV 130.

 Iunisolar Einleitung I 7, Chronologie I 605. Jahr Mond - Chronologie I 605.

- platonisches Präcession IIIb 2.
- Schaltjahr Chronologie I 605

- siderisches, Einkeltung I 20, Chronologie 1605,

 Sonnen- Einleitung I 4; festes und bewegliches Chronologie I 605.

- tropisches Finleitung 120, Chronologie 1594, Ort IIIa 310, Pritession IIIb 6; Umsetzung in julianisches Jahr IIIb 6 7, Zeit IV 131.

Jahresanfang Ort III a 310; für einen Hauptmeridian als Nullpunkt der Zählung III a 310; der Nullpunkt der Zählung von der Lage des Erdorts unabhängig III a 310; Berechnung des Normalmeridians III a 311.

Jahreslänge Einleitung I 3 4; bei den Römern I 31, bei Ptolemäus I 34; s. auch Chronologie.

Jahrespunkte Chronologie 1 595. Jahresregent Chronologie 1 616.

Jahreszeiten Einkitung I 20; ihre ungleiche Länge I 25; bestimmt von Hipparch I 25.

Japetus, s. Planeten, Saturn IIIa 428. Jährliche Gleichung des Mondes entdeckt

von Tycho Einleitung 1 68, Mechanik des Himmels II 440, 471 Anm.

Hekhanische Tafeln Einleitung I 53

Indexfehler Prismenkreis IIIa 19; Correction IIIa 23; Bestimmung IIIa 23.

Indiction Chronologie 1 618.

Indus, Indianer Sternbilder IIIb 209; Grenzen und Ansahl der dem blossen Auge sichtbaren Sterne IIIb 299; Verzeichniss der Doppelsterne IIIb 290, der Nebelflecke und Sternbaufen IIIb 300, der veränderlichen Sterne IIIb 300, der farbigen Sterne IIIb 300; Präcessionstabelle IIIb 300.

Intermediäre Bahn Mechanik des Himmels II 493; die Differentialgleichungen für die intermediäre Bahn des Mondes II 501 ff; die Integration der Differential-

gleichungen Il 505 ff.

Interpolation II 41; die Newton'sche Interpolationsformel II 42; andere Formelu II 43; Interpoliren in die Mitte II 43; Beispiel II 44; Ermittlung der numerischen Werthe der Differential quotienten für einen gegebenen Functionswerth II 45; Beispiel II 47; s. auch Mechanische Quadratur II 618.

Intramerkurieller Planet Planten III a 389 432; Untersuchungen über die mögliche Existenz und Nachforschungen III a 389 432; Verzeichniss verdächtiger Sonnentlecke III a 433; die Arbeiten Leverrier's u. Oppoler's III a 434, Mechanik des Himmels II 396; s. auch Bewegung des Merkurperthel, Vuleau.

Invariante Kometen und Meteore II 93.

Irradiation Planeten IIIa 385; ihre Bestimmung für Venus, Mars IIIa 385 397.

Julianische Periode Chronologie I 618, Zeit IV 130. Juno Einleitung I 157, Planeten IIIa 436; ihre Helligkeit in mittlerer Opposition und ihr Phasencoëfficient Astrophotometric I 340.

ihr Phasencoëfficient Astrophotometric I 340, Jupiter, Durchmesser, Abplattung, Masse, ältere Bestimmung Einleitung I 98, neue Planeten IIIa 414; Dichte II!a 415, Mechanik des Himmels II 551; Flecke Planeten IIIa 415; Rotationszeit IIIa 415, verschiedene nach der Breite IIIa 415; Farbe der Flecke, Atmosphäre und Oberfläche IIIa 417, Veränderlichkeit IIIa 417; Lage der Rotationsaxe IIIa 417; seine Helligkeit und Albedo Astrophotometrie 1 338, Planeten IIIa 387 388, 414; sein Spectrum Astrospectroskopie 1 407; photographische Aufnahme Astrophotographie I 224 225; die mittlere tägliche siderische Bewegung Mechanik des Himmels II 402, Beziehung zu der des Saturn und Uranus II 403; die Secularverzögerung II 403, dieselbe entdeckt durch Halley Einleitung I 119, Arbeiten darüber von Clairaut, Euler, Lagrange I 130 138; die commensurablen Verhältnisse der mittleren Bewegung mit solchen kleiner Planeten Mechanik des Himmels II 405; Annäherung kleiner Planeten Planeten III a 439, Kesmogonic II 241.

- die Satelliten entdeckt von Galilei Einleitung I 75, Marius I 76; die Umlaufszeiten und Entfernungen 1 76 . Planeten IIIa 418: Durchmesser und Flecken IIIa 418; ihr Spectrum Astrospectroskopie I 407; die Albedo, Helligkeit und Schwankungen derselben Astrophotometrie I 342, Planeten IIIa 418, 419; Commensurabilität der mittleren Bewegungen IIIa 418, Einleitung I 120, 140, Untersuchungen von Lagrange, Laplace, Souillart I 140, 141, Mechanik des Hummels II 405; die Störungen II 468; die Entdeckung des fünlten Satelliten und die dadurch herbeigeführte veränderte Bezeichnung Planeten IIIa 418, Mechanik des Himmels II 468 Anm.; Berücksichtigung der Jupi-tersphase bei mikrometrischen Messungen der Satelliten Mikrometer IIIa 169; Verfinsterungen und Vorübergänge, Cassini's Tafeln Einleitung I 97 98, Planeten III a 419; die Beobachtung zur Bestimmung der Geschwindigkeit des Lichts und der Aberrationsconstante Einleitung I 98, Aberration I 171, zur Bestimmung der Längendifferenz Längenbestimmung II 248.

ĸ

Kalendariographische Tafeln Chronologie 1623.

Kalender der Chinesen und Japaner Chromologie 1605, die Aera Nino 1605, 60jähriger Cyclus 1605; der Inder I 606, die vier Zeitalter und Aeren 1 606 ff.; der Aegypter 1608, der Canon des Ptolemäus 1609, die Aera des Nabonassar und Philippus 1609, die Sothis oder Hundsternperiode I 609; die Aera der Sintfluth, des Augustus, die Gnaden-aera und die Weltaera des Panodorus I 610; die Kalender in Vorderasien, der macedonische und babylonische I 610; die Aera der Seleuciden I 612; der der Griechen I 612, die Olympiade, der Meton'sche Cyclus und der des Kallippus I 612: der romische und der christliche Kalender I 613, der Schaltmonat des Numa, die Reform Julius Casar's I 613, das Jahr der Verwirrung 1614; Unterscheidung der astronomischen und chronologischen Bezeichnung der Jahre vor Christi Geburt I 615; die Gregorianische Kalenderreform I 615; Tages- und Jahresregent I 616; Sonntagsbuchstabe und Sonnenzirkel, 28 jähriger Cyclus I 617; die goldene Zahl, die Epacte, Sonnen- und Mondgleichung, Indiction, Römerzinszahl I 618; die julianische Periode I 618; die Gausssche Formel zur Berechnung des Osterfestes I 619; der russische Kalender I 610: das russische und gregorianische Datum I 620; der jüdische Kalender I 620; die Gauss'sche Formel zur Berechnung des l'assahfestes I 621; der Kalender der Türken, 30 jähriger Cyclus I 622; der der französischen Republik I 623; die Kalendariographis:hen Tafeln von Schrain 1 623

Kanalwaage Aiveau IIIa 289.

Katoptrisches Fernrohr Fernrehr I 700.

Kepler'sche Gesetze Einleitung I 80 fi.; die Bearbeitung der Tychoni'schen Marsbeobachtungen durch Kepler I 80, die stellvertretende Hypothese I 86, die Untersuchungen über die Erdbahn I 87; Auffindung des zweiten Gesetzes (Flächengesetz) I 89, des ersten Gesetzes I 91, die mittlere, excentrische, wahre Anomalie I 91, des dritten Gesetzes I 92; ihre Herleitung aus den Differentialgleichungen der Bewegung Bannbestimmung I 454.

Kepler'sches Problem Einleitung 1 91, Bahn bestimmung 1 457; verschiedene Lösungen I 458; constructive von Dubois I 458 f., von Encke I 450; durch Reihen I 461.

Kernschatten Finsternisse I 750 ff.

Knoten, aufsteigender, niedersteigender s. Elemente der Bahn. Knotenpunkte des optischen Systems, Fern-

rohr 1 711.

Kohlensäcke Universum IV 66.

Kometen, frühere Ansichten Einleitung 1 16, Kometen und Meteore II 49 51; ihre Entfernungen n. Regiomontan Einleitung 1 55; Tycho's Ansichten und Beobachtungen 17 17 24, über die Kichtung der Schweife 1 71; Kepler's Annahmen und Berechnungen von Gassendi 1 97; die neueren Anschauungen über die Bahnen vom Hevel 1 98, Newton 1 114 115, Halley 1 120; übersichtliche Bemerkungen über den Zusammenhang mit Meteoren und Sternschnuppen 1 161, Kometon und Meteore Il 51; Bezeichnung der Kometen II 52 Anm.; ihre Zahl II 53; Unterscheidung von Planeten II 53; Schweif, Kopf, Koma, Kern II 54 ff.; Lichtausströmungen II 56 ff.; Theilungen des Kerns Nebenkometen Il 59; der Biela'sche u. Liais'sche Komet II 60, der Komet 281 II 60 ff., der Komet 309 II 63; Bahnen der Kometen II 66, im Zusammenhang mit der Frage des Ursprungs 11 66 83; Unterschied der periodischen und nichtperiodischen II 85; Hyperbeln, Parabeln, Ellipsen II 67; Wahrscheinlichkeit der verschiedenen Kegelschnitte 11 67; langperiodische II 68, der Halley'sche Komet 11 68, seine erste Vorausberechnung Einleitung I 120, die Störungsrechnungen und die Wiederkehr 1759 I 146 ff., seine Wiederkehr 1835, Kometen und Meteore II 58 69; der Komet Pons-Brooks, der Olbers'sche II 69; andere langperiodische Kometen mit Umlaufszeiten unter 100 Jahren II 70; Verzeichniss kurzperiodischer II 70 71; der Komet de Vico II 71; der Lexellsche Komet II 72, seine grosse Annäherung an den Jupiter 11 72 92, Mechanik des Himmels 11 394; der Biela'sche Komet Kometen und Meteore Il 73 224 f.; der Enckesche Komet II 74; die häunge Wiederkehr II 74. Annahme des widerstehenden Mittels als Erklärung für die Beschleunigung II 74, Mechanik des Himmels II 485; die Kometen Winnecke, Faye-Möller, Brorsen, Kometen und Meteore II 75; dic übrigen bekannten kurzperiodischen II 76; die theoretische Helligkeit II 77; die Kometen geordnet nach ihren Periheldistanzen II 78; ihre Bahnelemente verglichen mit denen der kleinen Planeten Il 79; Frage nach der Wahrscheinlichkeit aller möglichen Excentricitäten II 83; Wärmewirkung der Sonne im Zusammenhang mit der Excentricität II 84; Massenverlust II 86; Veränderung der Koma II 86; die Form der Schweife II 87; Annahme dreier verschiedener Typen nach Bredichin Il 87; electrische Entladungen zur Erklärung dieser Vorgänge II 86 87; Grösse der Abstossung abhängig von dem Moleculargewicht II 87; Marcuse's Annahme, dass die normalen Schweife aus paramagnetischen, die anomalen aus diamagnetischen Stoffen erzeugt werden II 87; Unwahrscheinlichkeit materieller Schweife II 88; Annahme einer optischen Begleiterscheinung stark electrisch polarisirter Kometen II 89; das Licht der Kometen und ihrer Schweife stark aktinisch Il 89, Astrophotographie I 227; Photographische Aufnahme I 226 235 239; Einfluss der Planeten Kometen und Meteore II 90; (s. auch unten); Verzeichniss der Bahnnähen II 94; Kometensysteme II 97; Masse der Kometen II 100; Annäherung an die Erde Il 101; Einfluss des Kometenlichts auf Fixsterne II tot; Durchgang des Kometen 309 durchs Jupitersystem

II 102 (s. auch unten); Beziehungen zwischen Kometen und Metcoren II 208; die Aehnlichkeit der Elemente der Perseiden und des Kometen 1862 III II 200, die der Leoniden und des Kometen 1866 I Il 210, die der Lyraiden und des Kometen 1861 1 11 211; die Bieliden oder Andromediden II 211 f.; Verzeichniss von zusammengehörigen Radianten und Kometenbahnen II 213 ff.; Erörterungen über die Wahrscheinlichkeit der Zusammengehörigkeit II 218 220; Hypothese über den Zusammenhang II 222; die Störungen in der Bewegung der Kometen Mechanik des Himmels 11 369 476, die der periodischen Kometen II 477, die der in Parabeln oder elliptischen Bahnen von grosser Excentricität sich bewegenden II 478: die Bewegung bei grosser Annäherung an einen Planeten II 479; Uebergang auf Elemente bezogen auf einen Planeten als Centralkörper II 480; Beispiel II 481; Beziehung zwischen den durch Attraction eines Planeten enstandenen Aenderungen der Elemente und den früheren II 482, Kometen und Meteore II 93; s. auch die Clausen'schen Untersuchungen über die Kometen 65 und 132 Il 90 f., die von Lehmann-Filhes über den Kometen 286 II 91f., die von Chandler über den Kometen 309 II 92; anomale Bewegungserscheinungen Mechanik des Himmels 11 485; Bewegung im widerstehenden Mittel Il 485; Einfluss des Widerstands auf die Bewegung verschiedener Kernpunkte Aometen und Meteore II 96; s. auch über Komet 281 Il 63 und Komet 309 Il 65; Berechnung der Kometenbahnen Einleitung I 114 f., in der Parabel I 148; Verbesserung der Newton'schen Methode, Arbeiten von Euler, Lambert, Bosco-vich, Lagrange, du Séjour, Olbers, Laplace I 148 ff.; s. Bahnbestimmung I 452 ff.; Ortsbestimmungen der Kometen mit dem Kreismikrometer Mikrometer III a 71, mit dem Fadenmikrometer IIIa 158. Verzeichniss der Bahnelemente der Ko-

meten Anhang IV 296 ff. Kometoiden Koneten und Meteore II 223. Kosmischer Auf- Untergang Einleitung I 3, Chronologie I 603.

Kosmischer Staub, Ursache für die Secularacceleration des Mondes Meckanik des Himmels II 456.

Kosmogonie II 228; allgemeine Einleitung Il 228; das Wesen des Urstoffs II 230; die Nebelmassen und die Fissternsysteme Il 231; die Fissterne II 233; Sonnensysteme II 235; unser Sonnensystem II 237; die Neigungen und Excentricitäten der Planetenbahnen II 241; die Neigung der Axen II 242; die Satelliten II 242; der Ring des Saturn II 243; die Kometen und Meteore II 244; das Zodiakallicht II 244; die Quellen der Sonnenwärme II 245.

Kraft Mechanik des Himmels II 278 279.

Kräftefunction Mechanik des Himmels II 284ff.

Kreis- oder Ringmikrometer Mikrometer IIIa 65 70; geschichtliche Bemerkungen IIIa 71; Doppelringe IIIa 71; Aufstellung der Gleichungen zur Bestimmung der Rectascensions- und Deklinationsdifferenzen III a 72; strenge Ausdrücke III a 72; Vereinfachung IIIa 73; Einfluss starken Uhrgangs (mittlere Zeit) III a 74; Bestimmung des Halbmessers der Ringe III a 74, mit dem Universalinstrument III a 74, durch Sonnenbeobachtungen IIIa 74. Sternbeobachtungen IIIa 75. günstigste Wahl der Sterne IIIa 76; Einfluss der Beobachtungsfehler und des Fehlers der Deklinationsdifferenz III a 77; Veränder-lichkeit des Halbmessers mit Entfernung vom Objectiv IIIa 77, mit Temperatur und Aenderung der Brennweite IIIa 77; günstigste Wahl der Sterne für die Ortsbestimmung IIIa 78; Benutzung des äusseren und inneren Kreises des Ringes III a 80; Berücksichtigung der Eigenbe-wegung III a 81; Einfluss der Strahlen-brechung III a 83, strenge Ausdrücke III a 84, genäherte Formeln IIIa 85. Ausdruck für die Strahlenbrechung nach Bessel's Tafeln IIIa 86, Hülfstafeln für die Berechnung der Strahlenbrechung III a 87; Beispiel III a 88; Bemerkungen über die Beobachtungen von Nebeln und Kometen III a 90; das Lampen-Kreismikrometer III a 90; Positionsringmikrometer von Kobold Illa 91.

Kreuzstabmikrometer s. Differenzenmikrometer.

1

Lacerta, die Eidechse Sternbilder IIIb 301; Grenzen und Anzald der dem blossen Auge sichtbaren Steine IIIb 301; Verzeichniss der Doppelsterne IIIb 301, der Nebelhecke und Sternhaufen IIIb 302, der veränderlichen Sterne IIIb 303, der farbigen Sterne IIIb 303; Präcessionstabelle 303.

Lambert's Satz von der Krümmung der scheinharen Bahn Einleitung I 151, Bahnbestimmung I 486.

Lambert's Theorem oder Gleichung Einleitung I 149, Fahnbestimmung I 504.

Lamellen mikrometer s. Differenzenmikrometer,

Lampenkreis mikrometer s. Kreismikro-

Lampen mikrometer s. Schrautenmikrometer,

Lampennetzmikrometer, Fraunhofer's Mikrometer IIIa 69; Beschreibung und Beobachtung der Doppelsterne damit IIIa 69.

Länge Einleitung 1 6. Coordinatin 1 658; wahre und mittlere Nutation IIIa 302; mittlere siderische und tropische der Sonne Präcession IIII-6; auf der Erde Längenbestimmung II 247. Längenbestimmung II 247; übersichtliche Bemerkungen über verschiedene Methoden II 248; die telegraphische Bestimmung II Registrirapparate II 249, durch gleichzeitiges Registriren der Sterndurchgänge auf den Apparaten beider Stationen Il 249, die persönliche Gleichung und ihre Ermittlung oder Elimination II 250, Wechsel der Beobachter und Stationen, Verwendung des Registriroculars II 250. Personliche Gleichung IIIa 370, Bestimmung der relativen persönlichen Gleichung IIIa 370; Beispiel Längenbestimmung II 251; Coincidenzmethode Il 252, Beispiel II 254; die Signalmethode II 255, Benutzung constanten Stroms II 255; die Stromzeit II 257, Abhängigkeit von der Stromstärke II 258: die Chronometerübertragung II 259; erste Methode II 259, Beispiel II 263; zweite Methode II 263, Beispiel II 264; Berück-sichtigung der Gewichte II 265; erste Methode II 265; zweite Methode II 266; dritte Methode II 268; Mondculminationen II 268, gleiche Beobachtung an zwei Orten II 269, Reduction des Mondrandes aufs Centrum II 270, Berücksichtigung der Veränderung der Rectascension des Mondes durch Vergleichung mit dem Mondort des Jahrbuchs II 270, Berücksichtigung der Fehler der Mondephemeride II 271. Genauigkeit der Methode II 273; Bestimmung aus Mondbeobachtungen in beliebigen Azimuthen östlich und westlich vom Meridian II 272, Genauigkeit der Methode II 273; aus Mondhöhen, insbesondere in der Nähe des ersten Verticals II 273; Monddistanzen II 274. Entwickelung der Formeln II 274. Correction wegen Parallaxe II 276, wegen Refraction II 276; Distanz der Mittelpuncte II 277; Einfluss der Abplattung der Erde II 278; Bestimmung durch Longomontan Einleitung I 74; aus Mondfinsternissen I 74, durch Ptolemäus I 33; aus Verfinsterungen der Jupiterssatelliten durch Galilei I 75; Beobachtungen der Sonnenfinsternisse Finsternisse I 799, Aufstellung der Bedingungsgleichungen I 800 f.

Längenunterschied Längenbestimmung II 247 248, Zeit IV 132 133.

Laurentiusstrom Kometen und Meteore II

Leo major, der grosse Löwe Sternbilder IIIb 303; Grenzen und Anzall der dem blossen Auge sichtbaren Sterne IIIb 303; Verzeichniss der Doppelsterne IIIb 304, der Nebelltecke und Sternhanfen IIIb 306, der veränderlichen Sterne IIIb 312, der farbigen Sterne IIIb 312; Präcessionstabelle IIIb 313.

Leo minor, der kleine Löwe Sternbilder III b 313; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 313; Verzeichniss der Doppelsterne IIIb 313, der Nebelflecke und Sternhaufen IIIb 314, der veränderlichen Sterne IIIb 315, der farbigen Sterne IIIb 315; Pracessionstabelle III b 315.

Leoniden Kometen und Meteore II 185.

Lepus, der Hase Sternbilder IIIb 316; Grenzen und Anzahl der dem blossen Auge sichtbaren Sternc IIIb 316; Verzeichniss der Doppelsterne IIIb 316, der Nebelflecke und Sternhaufen IIIb 316, der veränderlichen Sterne III b 317 453, der farbigen Sterne IIIb 317; Präcessionstabelle IIIb 317.

Leuchtkraft der Fixsterne im Verhältniss zur Sonne Universum IV 95; das Verhältniss derselben für Sterne des ersten und zweiten Spectraltypus IV 108.

Lexells Komet Kometen und Meteore II 72

Libelle Niveau IIIa 289; die Kanalwaage IIIa 289, die Röhrenlibelle IIIa 289, die Dosenlibelle IIIa 200; Füllung derselben IIIa 290; Einfluss der Blasenlänge auf die Bestimmung der Neigung IIIb 290; das Reservoir IIIb 290; Einspielpunkt der Blase III b 291; Bestimmung des l'arswerthes IIIb 296; die Albidadenlibelle Universalinstrument IV 43 53; s. auch Niveau.

Libra, die Waage Sternbilder IIIb 318; Grenzen und Anzahl der dem blossen Auge sichtbaren Sternc III b 318; Verzeichniss der Doppelsterne IIIb 318, der Nebelflecke und Sternhaufen IIIb 319, der veränderlichen Sterne III b 320 453 454, der farbigen Sterne III b 320; Pracessions-

tabelle III b 321.

Libration des Mondes, in Länge und Breite Einleitung I 120; entdeckt von Cassini und Hevel, erklärt von Cassini und Mayer I 120, Mond IIIa 245; die optische und physische Einkitung I 120; Theorie derselben Mechanik des Himmels II 604 ff.; die Kleinheit der physischen Libration II 60) ff; numerische Werthe II 613 -Planeten IIIb 383.

Licht ausströmungen Kometen und Meteore II 56; in der Koma der Kometen II 57; am Halley'schen Kometen II 58 Tafel III; an anderen Kometen II 58 59 Tafel IV.

Lichtbildmikrometer Mikrometer IIIa 137; erster Versuch und spätere Verbesserungen von Steinheil IIIa 137; die Mikrometer von Lamont, Stampfer, Littrow IIIa 138; das Positionsmikrometer mit lichten Fadenbildern von Browning-Bidder IIIa Beschreibung des Grubb'schen Ghost-Mikrometers IIIa 139, Nachtheile der Lichtbildmikrometer III a 139 140. Lichteinheiten Astrophotometrie I 306.

Lichtextinction Astrophotometrie I 325; Tabelle für dieselbe I 329; die Constante I 329; s. auch Extinction.

Lichtgeschwindigkeit Einleitung I 98, Aberration I 171; Bestimmung der Sonnenparallaxe aus derselben Parallaxe III a 341. Lichtgleichung Persönliche Gleichung III a

381; Anwendung von Gitterblenden III a 381, Sterneataloge und Sternkarten III b 471. Lichtiahr Universum IV 94 95. Lichtstärke Fernrohr I 732. Limbus Alhidade I 196.

Linsen Fernroler I 713; Bestimmung ihrer Brennpunkte und Hauptpunkte I 714; Sammel- und Zerstreuungslinse I 714; die Biconvex- und Planconvexlinse I 714; die Biconcay- und Planconcaylinse I 715: die Convexconcavlinse oder Meniscus 1715; Oeffnungswinkel und Oeffnungsradius I 716; Helligkeit, Vergrösserung, Grösse des Gesichtsfeldes, Leistung eines Systems I 716; Brechung durch zwei Linsen I 716; optischer Mittelpunkt I 717; die sphärische Aberration I 721; das aplanatische Linsensystem I 721; die numerische Apertur I 721; die chromatische Aberration oder Farbenzerstreuung I 723; das secundare Spectrum I 724; Correction der sphärischen und chromatischen Aberration I 724; die Gauss'sche Bedingung I 724; Bercchnung der Länge des secundären Spectrums auf der Axc I 726; das tertiare Spectrum I 727: Fehler der Objective und Oculare I 727 ff.; Centriren und Fassen der Linsen I 734; s. auch Fernrohr, Objectiv, Ocular.

Locus fictus Bahnbestimmung I 465 467 468 501.

Lotablenkung durch Anziehung von Sonne und Mond Horizontalpendel II 31 36 37.

Loxosis Einleitung I 46.

Lupus, der Wolf Sternbilder IIIb 321: Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 321; Verzeichniss der Doppelsterne III b 321, der Nebelflecke und Sternhaufen IIIb 322, der veränderlichen Sterne III b 322 453. der farbigen Sterne III b 323; Präcessionstabelle III b 323.

Sternbilder IIIb 323: Lynx, der Luchs Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III 323; Verzeichniss der Doppelsterne III b 323, der Nebelflecke und Sternhaufen IIIb 325, der veränderlichen Sterne IIIb 326 453, der farbigen Sterne IIIb 326; Präcessionsta-

belle III b 326.

Lyra, die Leyer Sternbilder IIIb 327; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 327; Verzeichniss der Doppelsterne IIIb 327, der Nebelflecke und Sternhaufen III b 329, der veränderlichen Sterne III b 329 454. der farbigen Sterne IIIb 329; Präcessionstabelle III b 330.

Lyraiden Kometen und Meteore II 184. Lyratypus s. Veränderliche Sterne.

Mare Mond III a 246.

Mars Planeten IIIa 384 398; Irradiation III a 385, seine Helligkeit und Albedo III a 387 388, Astrophotometric 1 338 340; Grösse der Retrogradation Planeten IIIa 399; sein Durchmesser, Abplattung und Masse III a 399; Flecken III a 399 ff.; die Polar-

flecke und ihre veränderliche Ausdehnung III a 400; die Rotation III a 400; die Farbe der Flecke und der Oberfläche IIIa 400; Darstellungen der Marsoberfläche, Bezeichnung der Gebilde IIIa 402; Verzeichniss der hauptsächlichen Regionen III a 402 Anm. ff.: spectroskopische Beobachtungen III a 405 412, Astrospectroskopie I 406; die Kanäle Planeten IIIa 405, ihre Verdoppelung IIIa 407, Abhängigkeit derselben von der Lage der Marsaxe gegen die Erde III a 410, versuchte Erklärungen III a 410; die Atmosphäre III a 412; Veränderungen auf der Oberfläche IIIa 413; die Satelliten IIIa 413, frühere aber unberechtigte Vermuthungen ihrer Existenz III a 413, vergebliche Nachforschungen durch d'Arrest, ihre Entdeckung durch A. Hall IIIa 413. ihre Umlaufszeiten. Entfernungen, Durchmesser III a 413, ihre Helligkeit Astrophotometrie I 342.

Mikrometrische Messungen auf seiner Oberfläche Mikrometter III a 171, Berücksichtigung der Phase III a 169; Beobachtung der Schneeflecke, Bestimmung der Lage seiner Axe, verschiedene Methoden III a 175; Durchmesserbestimmungen mit Arago's Doppelbidmikrometer III a 223; Finsternisse seiner Satelliten Finsternisse

I 835.

Verwendung der Marsoppositionen zur Bestimmung der Sonnenparallaxe Parallaxe III a 327, die kleinste Entfernung von der Erde IIIa 327; Aufstellung der Gleichangen und ihre Anwendung auf Rectascensions- und Deklinationsdifferenzen an einem Beobachtungsort IIIa 328 f., Beobachtung von Positionswinkel und Distanz mit dem Heliometer III a 329 f.; durch Beobachtung von Deklinationsdifferenzen am Meridiankreis an zwei Stationen III a 332, Anwendung der Methode IIIa 332; die mittlere tägliche siderische Bewegung Mechanik des Himmels II 402. Beziehung derselben zu der der Erde und Venus II 402; Störungen des Mars durch Jupiter Einleitung I 145.

Maass der Genauigkeit oder Präcision Methode der kleinsten Quadrate IIIa 33.

Markedonius Chronologie I 613.

Masse Mechanik des Himmels II 279; der Planeten Planeten IIIa 385 386, der Kometen, Kometen und Meteore II 100.

Mauerkreis Quadrant IIIb 31.

Mauerquadrant Quadrant IIIb 30.

Mechanik des Himmels II 278; Allgemeine Begriffe, Kraft, Masse, Dichte II 278 279; Gesetz der Trägheit, der Gleichheit von Wirkung und Gegenwirkung, Bewegungs-, Geschwindigkeits-, Kräfteparallelogramm II 279; Translations- und Rotationserscheinungen II 280; Orthoponale Transformation II 280.

Die Translationsbewegungen II 284ff; Kräftefunction, das Princip der Erhaltung der Bewegung des Schwerpunktes, das der Flächen, der Erhaltung der lebendigen Kraft, das Hamilton'sche Princip II 284 ff.; die Bewegungsgleichungen II 290; die Bewegung in Kegelschnittlinien II 299; die Variation der Elemente und Einführung der störenden Kräfte II 319; die Berechnung der speciellen Störungen II 330, in rechtwinkligen Coordinaten II 330, in polaren Coordinaten II 343, die Variation der Elemente II 360; die Berechnung der allgemeinen Störungen II 366; Vorbemergungen und Entwicklung der störenden Kräfte II 366; Entwicklung der Störungsfunction für Planetenbewegung II 379; Secularstörungen in den Elementen II 390; Störungen in polaren Coordinaten II 405; Hansen's Methode der Störungsrechnungideale Coordinaten II 415; Oppolzer's Methode, Proportionalcoordinaten II 431; Theorie der Satellitenbewegung II 436; Secularacceleration des Mondes II 454: Anomale Bewegung des Pericentrums, der siebente Saturnsmond II 464; die Jupiterssatelliten II 468; Störungen in der Bewegung der Kometen II 476, anomale Bewegungserscheinungen, Widerstände II 484; Gylden'sche Methode, absolute, intermediäre Bahnen II 493; die intermedäre Bahn des Mondes II 501. S. auch über die Translationsbewegungen das ausführlichere Register unter Störungen.

Die Rotationsbewegung II 523: das Potential II 523; die Dichte II 524; Niveauflächen oder äquipotenzielle Flächen II 525; das Potential einer Kugel II 526; das Potential eines Ellipsoides auf einen inneren Punkt II 528, auf einen äusseren Punkt II 535; wenn die Dichte nicht constant angenommen werden kann II 538; Potential eines Massencomplexes auf einen sehr entfernten Punkt II 539; die Laplace-Poisson'sche Gleichung II 541; Kugelfunctionen II 544; Attraction von Sphäroiden II 544, Definition des Sphäroids II 544; Figur einer flüssigen rotirenden Masse II 547; die Gleichgewichtsfigur einer Kugel bezw. ein Umdrehungsellipsoid II 547; das Verhältniss der Flichkraft zur Schwerkraft, die Abplattung II 550; die Abplattung der Erde berechnet aus Rotationsdauer, Länge der Rotationsaxe und des Secundenpendels am Aequator II 550; Abweichung von der Beobachtung zeigt die Unhomogenität II 550; dieselben Angaben für Sonne, Jupiter und Saturn II 551; das Jacobi'sche Ellipsoid II 551; es giebt unendlich viele Gleichgewichtsfiguren, aber nicht alle sind stabil, Poincaré's Stabilitätscoëfficienten II 551; Gleichgewicht von sphäroidisch geschichteten Körpern unter Berücksichtigung ausserer Kräfte II 552; die Oberfläche des Sphäroids II 553; das Clairaut'sche Theorem II 555; die innere Lagerung II 555; Figur der Satelliten II 561; der Satellit nahe im Aequator des Hauptplaneten II 561; die Gestalt des Saturnringes 552, Untersuchungen von La-

place, S. Kowalewsky, Maxwell, Seeliger II 563, Keeler's Nachweis verschiedener Rotationsgeschwindigkeiten bei verschiedenen Punkten des Ringes II 563; die Differentialgleichungen der Rotationsbe-wegung II 563; die Euler'sche Gleiching II 565; die momentane oder instantane Rotationsaxe, die Pole II 565 571; die Richtung der Rotationsaxe II 565; die Rotationsgeschwindigkeit II 566; Abstand eines Punktes von der Rotationsaxe, die Winkelgeschwindigkeit II 566; die Bewegung des Körpers im Raume II 566; Wahl einer festen Ekliptik zur Fundamentalebene, Trägheitsäquator und Schiefe desselben II 567; die Bewegung der Rotationsaxe im Raume II 568; die Träg-heitsaxe und ihre Abweichung von der Rotationsaxe II 568 571; Integration der Differentialgleichungen für den Fall, dass keine äusseren Kräfte wirken II 570; die Rotationsaxe beschreibt um die Trägheitsaxe des grössten Moments einen Kegel II 572, Bestimmung des Oeffnungswinkels und der Umlaufszeit für die Erde II 572, die Werthe von Peters, Nyrén und Downing II 573; die Aenderungen der Polhöhe II 573; die störenden Kräfte II 573; die Bewegung des Erdkörpers II 577; die Bewegungen der Rotationsaxe der Erde II 581: Pracession und Nutation II 584. die Wirkung des Mondes II 584, die feste Ekliptik und die wahre in Folge der Anziehung der Erde durch die Planeten veränderliche Ekliptik II 584, die Präcession durch die Planeten II 586, die Wirkung der Sonne II 588, die numerischen Werthe II 588, die Präcession, die Nutation in Länge, die Nutation in Schiefe II 501. die Constante der allgemeinen Präcession und die Constante der Nutation II 592, ihre numerische Bestimmung und Aufstellung des Gesammtausdrucks für die Lunisolarpräcession, der Mond- und Sonnennutation II 593; Aenderungen der Hauptträgheitsaxen in Folge der nicht absoluten Starrheit des Erdkörpers und der Massenverschiebungen auf ihr II 593, drei verschiedene Fälle II 595, Berechnung des Einflusses einer gegebenen Massenverschiebung auf die Lage des Trägheitspols II 599, wenn eine Verschiebung im Radiusvector stattfindet II 599, wenn eine Verschiebung auf der Oberfläche in der Richtung des Meridians stattfindet II 600, wenn sie auf dem Parallel stattfindet II 600; Einfluss der Ebbe und Fluth auf die Rotationsaxe II 601 f., der Massenversetzungen durch die Flüsse, durch Vereisung und Abschmelzen des Eises in den Jahreszeiten und entgegengesetzten Hemisphären II 601; die Polhöhenschwankungen II 604; die Librationen des Mondes II 606, die physische Libration II 609, die Libration in Knoten und Neigung II 609, numerische Werthe II 613; Berechnung der geocentrischen Coordinaten eines Mondkraters II 614.

Mechanische Quadratur II 618; Aufgabe derselben II 618; mechanische Differentialtion, erster und zweiter Differentialquotient II 618 619; Hullstafeln dazu II 632, die summirten Reihen II 622; Beispiele II 636; Methode der Bestimmung der Coëfficienten von Reihen durch mechanische Quadratur II 638.

Mediceische Sterne, die Jupiterssatelliten Einkitune I 75.

Mensa, der Tafelberg Strnbilder III b 330; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 330; Verzeichniss der Doppelsterne III b 330; der Nebelflecke und Sternhaufen III b 331; Präcessionstabelle III b 331.

Meridian Einleitung I 2, Coordinater I 655; Bestimmung der Richtung des Meridians Azimuthbestimmung I 435; durch Beobachtung der grössten Höhe eines Sterns I 435; durch correspondirende Höhen I 436; Einfluss der eigenen Bewegung I 436; durch Beobachtung von Azimuth und Zeit I 436, gulnstigste Bedingungen I 437; durch Beobachtung des Polarsterns I 437, Perechnung durch Reihenentwicklungen I 438.

Der Anfangs- und Normalmeridian Längenbestimmung II 248, Zeit IV 133. Der Haupt- oder Normalmeridian Ort

III a 310f. Meridiankreis IIIa I, Beschreibung IIIa I; Beobachtungen mit demselben III a 4; als Durchgangsinstrument IIIa 4, seine Berichtigung, Horizontalstellung der Axe, Einstellung in den Meridian III a 4, Azimuth, Neigung, Collimationsfehler III a 5, Formeln für die Correctionen III a 6. wenn die Instrumentalfehler klein sind III a 6; Mayer'sche Formel III a 6, für polnahe Sterne für obere und untere Culmination III a 7; Bessel'sche Formel III a 7, Hansen'sche Formel III a 8; Reduction auf den Mittelfaden IIIa 8; Einfluss der Refraction auf die Fadendistanzen IIIa o 10; Bestimmung der Fadendistanzen III a 10; Berücksichtigung der Eigenbewegung und Halbmesser IIIa 10, der Parallaxe der Gestirne IIIa 11; Bestimmung der Instrumentalfehler IIIa 12 24, der Zeit III a 12; Beispiel III a 14; Prufung der Berichtigung durch Miren IIIa 15; Einrichtung künstlicher Miren IIIa 16; Bestimmung der Rectascension bei bekanntem

Beobachtungen am Kreis IIIa 17; absolute Bestimmungen IIIa 17 ja 20, relative IIIa 17, directe und reflectirte IIIa 18; Einfluss der Refraction auf die Zenithdistanzen IIIa 18; Beobachtungen von Circumpolarsternen IIIa 19; Bestimmung der Polhöhe, der Deklination der Sonne und Sterne, der Schiefe der Ekliptik, der Lage des Frühlingspunkts IIIa 18; Beobachtungen in der Nähe der Solstizien und Aequinoctien III a 20; Ernitlung des Pol- oder Aequa-

Uhrstand IIIa 17.

torpunkts am Kreise aus Sternen III a 21, Berücksichtigung der Krümmung des Parallels und der Neigung des Horizontalfadens III a 21f.; des Nullpuncts durch Einstellung auf Collimator und Nadir III a 24, das Nadirgefäss und der Quecksilberhorizont III a 18 24; Einstellungen wenn das Gestirn eine Scheibe zeigt III a 25; Reduction auf die gleiche Epoche mit der Rectascension, wenn das Gestirn eigene Bewegung hat III a 26; Beobachtungen in Deklination zur Parallaxe III a 332.

Meridianzeichen oder Miren Meridiankreis IIIa 2 15; Einrichtung künstlicher IIIa 16.

Merkur Planeten IIIa 389; seine Elongation und Retrogradation IIIa 189: Durchmesser. Masse IIIa 389, seine Helligkeit Astrophotometrie I 337, seine Albedo I 340, sein Spectrum Astrospectroskopie I 406, Oberflächenbeschaffenheit, seine Phasen und Flecke Planeten IIIa 390, die Rotationszeit und Lage der Rotationsaxe IIIa 391 392, seine Farbe IIIa 392; die Secularbewegung seines Perihels IIIa 432 434, Mechanik des Himmels II 396, Erklärungsversuche in Annahme der nicht momentan sich fortpflanzenden Schwerkraft II 458 oder einer Modification des Anziehungsgesetzes II 486, oder Existenz intramerkurieller Planeten Planeten IIIa 434, oder bestimmter Annahme über die Sonnencorona Sonne III b 81; die mittlere tägliche siderische Bewegung Mechanik des Himmels II 402, ihre Beziehung zu der der Venus II 402.

Die Vorübergänge vor der Sonne Finsternisse 1 818, Bedingungen für das Eintreffen I 818, Periode der Durchgänge I 819; genaue Vorausberechnung I 822, Beispiel, Berechnung des Durchganges 1907 Nov. 13. 14 I 831; zum ersten Mal von Kepler vorausgesagt Einleitung I 97b zur Bestimmung der Sonnenparallaxen incht geeignet Parallaxe III a 327, die kleinste Entfernung des Merkur von der

Erde IIIa 327.

Meteore und Meteoriten Kometen und Meteore II 49, ihr Zusammenhang mit Kometen und Sternschnuppen II 51 112; Zusammenhang mit Meteorsteinfällen II 104, Grösse der Meteormassen II 104, Steinregen II 105, Staubfälle II 106; Eintheilung in Siderite und Asiderite nebst den Unterabtheilungen II 109, s. auch Sternschnuppen.

Bestimmung der Meteorbahnen II 191, stellarer Ursprung der Meteore II 201, stationäre Radianten II 201, Berechnung der Bahnelemente II 202. — Einleitung I 161.

Meteoroskop Kometen und Mettore II 146. Meteorschwärme s. Stenschnuppen. Meteorstaub Kometen und Meteore II 154. Meton'scher Cyclus Einleitung I 7, Chronologie I 598. Methode der kleinsten Quadrate III a 26; systematische Fehler III a 26; zufällige Beobachtungsfehler III a 27; wahrscheinlichster Werth, mathematische Wahrscheinlichkeit, mathematische Gewissheit IIIa 27. das arithmetische Mittel IIIa 28. Fehlergrenze IIIa 30. das geometri-Mittel IIIa 32, Fehlergesetze III a 30ff.; das Maass der Präcision IIIa 33, der wahrscheinliche Fehler IIIa 34, durchschnittliche Fehler IIIa 35, der mittlere Fehler III a 36; die übrigbleibenden Fehler III a 36, das Gewicht der Beobachtungen IIIa 37; Name der Methode der kleinsten Quadrate III a 37; Beziehung zwischen wahrscheinlichem, durchschnittlichem, mittlerem Fehler und Gewicht IIIa 37 38; Beispiel für die Gewichtsbestimmung verschiedener Beobachtungsreihen IIIa 40; mittlerer Fehler der Summen, Differenzen, Producte III a 40; Ermittlung der wahrscheinlichsten Werthe mehrerer von einander unabhängiger Grössen aus beobachteten Werthen von Functionen derselben IIIa 42, die zu behandelnden Gleichungen müssen linear sein IIIa 42, Reduction der Gleichungen auf die Gewichtseinheit IIIa 43; Bedingungsgleichungen und Normalgleichungen IIIa 44; Bemerkungen zur practischen Behandlung der Gleichungen IIIa 44. Auflösung der Normalgleichungen IIIa 45. Rechnungsschema III a 48; Auflösung durch Determinanten oder nach Gaussscher Methode IIIa 46 49, Eliminationsgleichungen IIIa 49; mittlerer Fehler der Unbekannten IIIa 50; Ausgleichung unter Darstellung der Unbekannten als Functionen einer oder mehrerer, die sich unsicher bestimmen IIIa 54. Beispiel III a 55; Normalorte IIIa 56; Ermittlung der wahrscheinlichsten Werthe, wenn zwischen den Unbekannten Bedingungsgleichungen bestehen III a 58, Beispiel IIIa 62.

Microscopium, Mikroskop Sternbilder IIIb 332; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 332; Verzeichniss der Doppelsterne IIIb 332, der Nebelflecke und Sternbaufen IIIb 332, der veränderlichen Sterne IIIb 333 454 455; Präcessionstabelle IIIb 333.

Mikrometer und Mikrometermessungen IIIa 64; Anwendung derselben IIIa 64; Aligemeine Bemerkungen über verschiedene Arten IIIa 65; Radennetz und Glagitter v. Malvasia, T. Mayer, Brandes IIIa 65, Cassini's Netz IIIa 65, Bradleyi's Raute und die Rautenformen von Flaugergues, da Rocca IIIa 67 68, Burkhardt's Quadrat und das Zetanetz von Valz IIIa 68, Lampennetzmikrometer von Fraunhofer IIIa 69, Netze von Lacaille IIIa 70, ihre Orientirung und Verbindung mit parallactischen Fernröhren IIIa 70, mit Meridianinstumenten IIIa 70, ihr tersuchungen über die Genauigkeit alter Netze IIIa 70;

Kreis- und Ringmikrometer IIIa 70; Lampenkreismikrometer von Fraunhofer III a 90, Positionsringmikrometer von Kobold III a 91, Differenzenmikrometer von Boguslawski III a 92, Lamelle unter 45° von Vogel III a 93, Kreuzstabmikrometer, Cross reticule III a 100, Quadratischets-, squarbar-, Mikrometer III a 104; Vergleichungen der Kreis- und Ringmikrometer mit den Lamellenmikrometern III a 108.

B. Schraubenmikrometer III a 110; ältere Constructionen III a 111, das Parallelwire und Crosshair Mikrometer von W. Herschel III a 112, Mikrometer von Lalande III a 113, Lampenmikrometer von W. Herschel und J. H. Schröter IIIa 114: die neueren Faden- und Positionsmikrometer III a 114, Repsold's Balkenmikrometer III a 132, Clark's Mikrometer für grosse Distanzen IIIa 133, Duplexmikrometer von Grubb IIIa 133, Deklinograph von Knorre IIIa 134; Lichtbildmikrometer verschiedener Constructionen III a 137; Messungen mit dem Fadenmikrometer III a 140. Messung von Rectascensions- und Deklinationsdifferenzen bei ruhendem Fernrohr IIIa 148, bei gehendem Uhrwerk III a 152; Bestimmung des relativen Orts nach Positionswinkel und Distanz III a 153; Einfluss der Gattung des Lichtes III a 162; systematische Beobachtungsfehler bei Doppelsternmessungen IIIa 163; Beobachtungen der Satelliten IIIa 166; Bestimmung der fortschreitenden und periodischen Fehler einer Schraube IIIa 175, Bestimmung des Winkelwerths der Schraube III a 190.

C. Doppelbildmikrometer IIIa 197; einelietnde Bemerkungen, Einführung des Princips der Doppelbilder IIIa 198, Doppelbildmikrometer von Amiei IIIa 199, von Airy IIIa 203, Prismen- und Ocularprismenmikrometer von Maskelyne und Steinheil III a 215, Mikrometer von Clausen und Rochon IIIa 218, Arago's Mikrometer mit veränderlicher Vergrösserung IIIa 222, Mikrometer von Dollond IIIa 223, von Wellmann IIIa 224, Doppelbildmikrometer von Bigourdan IIIa 236. D. Interferenzmikrometer von Michel-

son und Schwarzschild IIIa 237.

Verbesserung der Mikrometermessungen für Präcession, Nutation und Aberration IIIa 239, Unterschiede in Rectascension und Deklination IIIa 239, in Positionswinkel und Distanz IIIa 241.

S. auch die ausführlicheren Register über die einzelnen Mikrometer, insbesondere Differenzen - Doppelbild - Kreis - Schraubenmikrometer.

Mikrometerschraube s. Schraube.

Mikroskop s. Ablesemikroskop.

Milchstrasse v. Galilei als Sternanhäufung erklärt Einleitung I 76, Universum IV 57 fl. 65; Gestalt des Milchstrassenhaufens nach

Herschel IV 61; ihre Constitution IV 61; Beschreibung ihres Verlaufs IV 65; Ort ihres Pols IV 66; die grosse Trennung in der Milchstrasse IV 67; ihre Breite IV 68; ihre Structur IV 68, verschiedene Darstellungen derselben IV 68 ff.: dunkle Stellen in ihr IV 70; helle Nebelbänder IV 70; photographische Aufnahmen IV 71; der Milchstrassenschimmer durch schwache Sterne 15. Grösse hervorgerufen IV 71; zweifache Fundamentalebene IV 83 f.; Grenzen d. Milchstrasse IV os; sie bildet keine Symmetrieebene für die Sterne, die heller als 4. Grösse sind IV 97; die helleren Sterne werden nicht gegen die Milchstrasse hin dichter IV 98; Ueber-wiegen der Sterne des ersten Vogel'schen Typus in der Milchstrasse IV 103; Vor-herrschen der Wolf-Rayet'schen Sterne IV 110, der neuen Sterne IV 111, Abnahme der Nebelflecke IV 111 ff., Zunahme der Sternhaufen und planetarischen Nebel IV 112 ff.; die Nebel gehören grösstentheils zu ihr IV 116; Ursachen des Milchstrassenschimmers IV 117; sie ist vielleicht ein Spiralnebel IV 121; ihr Centrum liegt vermuthlich im Cygnus IV 121. -Kosmogonie II 32. - Eigenbewegung des Sonnensystems IIIb 103; s. auch Fixsterne, Sternvertheilung.

Mimas s. Planeten, Saturn IIIa 428. Mira Ceti entdeckt v. D. Fabricius Ein-Leitung I 76; s. Veränderliche Sterne.

Mirasterne s. Veränderliche Sterne.

Mire s. Meridianzeichen.

Mittagslinie s. Meridian.

Mittagsrohr s. Passageninstrument im Meridian und Meridiankreis.

Mittagsverbesserung Zeit IV 156. Mittel, das arithmetische Methode der klein-

sten Quadrate III a 28; das geometrische III a 32. Mittel punkt, optischer Fernrohr I 717.

Mittelpunktsgleichung Bahnbestimmung I 457, Einleitung I 27 62; beim Mond nach Ptolemäus I 36, nach Copernicus I 62, Mechanik des Himmels II 440.

Mitternachtsverbesserung Zeit IV 157. Mittlere Elemente Einleitung I 137; nach Hansen's Definition I 140, Mechanik d. Himmels II 430.

Mittlere tägliche Bewegung Bahnbestimmung I 457 497 502, Mechanik des Himmels II 306.

Monat, seine Länge bei den Chaldäern, Griechen Einleitung 17 8; bestimmt durch
Hipparch 127; d. siderische, synodische,
draconitische und anomalistische 17 8,
Chromologie 1507 605; in d. Chronologie der Chinesen und Japaner 1605;
der Inder, die Namen und Längen 1607;
der Aegypter, die Namen 1609; die Anfäinge und Namen der Monate in Vorderasien 1611 612; die Längen und Namen
bei den Griechen 1612 613; im römischen und christlichen Kalender 1613;
im jüdischen Kalender 1620 621, im tür-

kischen I 623; im Kalender d. französischen Republik I 623.

Mond, die Ünebenheiten der Oberstäche entdeckt von Galliel, Einleitung I 75; siene
Rotationszeit gleich der Revolutionszeit I
75; Hevel und seine Selenographie I
97; die Libration I 75, Mond III a 45,
in Länge und Breite, optische und physische, die Cassinischen Gesetze Einleitung
I 120; Untersuchungen von Euler und
Lagrange I 141; Anschwellung gegen
die Erde I 141; Bestimmung der Masse
I 145, neuere Annahmen über Masse,
Dichte, Abplattung, Lage des Schwerpunkts
Mond III a 245; Durchmesser, Volumen,
Oberstäche III a 245; Mondkarten III a
246 ff.

Photographische Aufnahmen, Astrophotographie I 222; Aufnahmen im Brennpunkt des Fernrohrs I 222; Vortheil
der Fernrohre mit grossen Oeffnungen und
grosser Brennweite I 222; Vortug eines
Spiegelteleskops mit grossem Brennweitenverhältniss I 223; Entwicklung d. Platten
I 224; das Photographiren des Mondspectrums I 247; das Spectrum selbst
Aitrospectroskopie I 406; die Helligkeit
nach photometrischen Messungen Astrophotometris I 341; seine Albed O 1342.

Die verschiedenen Objecte auf der Oberfläche, die Mare Mond III a 246 ff; die Ausdehnung derselben IIIa 248; die Gebirge IIIa 246, verschiedene Formen IIIa 248; characteristische Resultate aus den Messungen der Ringgebirge IIIa 286; Messungen auf der Oberfläche IIIa 247: Schattenlage der Erhebungen III a 249; die Berghöhen IIIa 281, aus Messung der Schattenlänge III a 283 ff.; die Palus, Lacus, Sinus III a 248; die Rillen III a 273; Strahlensysteme III a 274; Veränderungen auf der Oberfläche IIIa 247 277; die Mondphasen III a 250; Chronologic I 507. Tafel zur Berechnung I 508; Bestimmung der Grösse der Phase, Mond III a 282; das aschfarbene Licht III a 250, seine wechselade Helligkeit IIIa 250; die Lage d. Rotationsaxe IIIa 251; die Verschiedenheit der Hemisphären IIIa 251; Verschiedenheit der Intensität der Färbung III a 273; die Atmosphäre des Mondes III a 280; Beschreibung der Mondoberfläche und ihrer hauptsächlichsten Objecte im einzelnen IIIa 251 ff.

Die früheren Anschauungen über seine Bahn Einleitung I 6; Lage und Bewegung der Knoten, der Apsiden, Neigung der Bahn I 7 8; die verschiedenen Umlaufseiten I 7 8; die Theorie des Eudoxus I 15; des Calippus I 15; die Bestimmung der Entfernung bei Eratosthenes und Aristarch I 18; die Theorie des Hipparch I 27 ff., die Prosthaphärese I 29, die Enternung des Mondes I 30; Ptolemäus I 34 ff.; die Mittelpunktsgleichung und Evection I 36, Beobachtung der Finsterisse I 35, Bestimmung der Grösse und

Entfernung I 48: dieselbe nach Capella I 48, bei den Arabern I 49; die Theorie bei Copernicus I 62; bei Tycho Brahe I 68, die Entdeckung der Variation und jährlichen Gleichung I 68, die Entfernung und die Elemente der Mondbahn I 71; die Theorie des Longomontan I 73: Kepler I 92, die Evection, der Mittelpunktsgleichung und Variation bei ihm I 92, die Zeitgleichung für die jährliche Gleichung I 92; die Mondtheorie bei Newton I 103, Erklärung der Bewegung der Knotenlinie und der Apsiden, der verschiedenen Ungleichheiten, der Evection, der Variation, der jährlichen Gleichung, der Breitenstörung I 103 ff. 108 ff., das Newton'sche Gesetz reicht anscheinend nicht aus. Arbeiten über die Mondtheorie von Clairaut. d'Alembert, Euler und A. I 121 ff.; die Beschleunigung der mittleren täglichen Bewegung durch Halley entdeckt I 118; Arbeiten von T. Mayer und seine Mondtafeln I 119: Untersuchungen von Laplace, Lagrange, Euler I 139 140. Neuere Untersuchungen; die Secular-

acceleration Mechanik des Himmels II 198 449; die Theorie seiner Bewegung II 436; die Störung durch die Sonne II 436; Mittelpunktsgleichung, Evection, Variation, parallactische Ungleichheit und jährliche Gleichung II 440; die Aequatoreal-Horizontalparallaxe II 443, Bestimmung nach Hansen II 444; Secularvariation in Knoten und Perigäum II 450; andere Entwicklungen der periodischen Störungen II 451; numerische Werthe der Secularacceleration II 454; die historischen Finster-nisse II 455; Ursachen der Abweichungen II 456; Bestimmung der Ungleichheiten aus Beobachtungen II 458; Störung der Bewegung durch die Planeten II 459: Einfluss der Secularveränderung der Ekliptik auf die Lage der Mondbahn II 460; Störungen die aus der Abweichung der Erde von der Kugelgestalt entstehen II 460; Gylden's intermediare Bahn II 494 501 ft.; die Abplattung des Mondes II 562; seine Masse II 592; die Librationen II 577 604 ft. 615; s. auch unter Mechanik des Himmels und Störungen die ausführlicheren Register.

Die Elemente der Bahn, ihre Veränderungen, und die Umlaufszeiten Mond III a 245.

Mondcoordinaten Mechanik des Himmels II 460; Bestimmung der Correctionen derselben, betw. der Elemente der Bahn aus beobschteten Positionswinkeln und Distanz II 463, Finsternise I 814 f.; Benutzung der Finsternissbeobachtungen I 799 813 f. 816 f.

Mondeyclus Einleitung I 7, Chronologic 1 598 618.

Monddistanzen Einleitung I 74, Längenbestimmung II 273; Aufstellung der Grundformeln II 274; Umformung der Ausdrücke II 275; das Reductionsverfahren von Bremiker II 275; Einfluss der Parallaxe II 276, der Refraction II 276, des Halbmessers II 277; die Verkürzung des Verticaldurchmessers durch die Refraction II 277; Einfluss der Abplattung der Erde II 278

Mondfinsternisse Chronologie I 599, Firsternisse I 749; Bedingungen des Eintritts derselben I 751; Vorausberechnung I 751; Ausdrücke für Anfang und Ende der Finsterniss überhaupt, Anfang und Ende der totalen vom Halbschatten bewirkten, erste und letzte Berührung mit dem Kernschatten, Anfang und Ende der totalen vom Kernschatten bewirkten Finsterniss I 752; Eti für die Mitte der Finsterniss I 753; Berechnung des Positionswinkels der Berührungsstelle I 753; Berechnung mit Oppolær's Sysygientafeln I 753; ihre Bedeutung I 757.

Ihre früheren Beobachtungen zur Bestimmung der Mondbahn durch Hipparch Einleitung I 28, durch Ptolemäus I 35 ff, I 47; durch Albategnius I 50 f.; bei Copernicus I 63; zur Bestimmung der gegraphischen Länge bei Ptolemäus I 33,

bei Longomontan I 74.

Mond gleichung Chronologie I 618.

Mondjahr Chronologie I 605.

Mondparallaxe, erste Bestimmung aus Mondfinsternissen von Hipparch Parallaxe IIIa 319; durch Mondhöhen von Ptolemäus Einleitung I 46; durch Ptolemäus, Tycho, Kepler Parallaxe III a 320 321; aus der Länge des Mondes von Kepler IIIa 321; aus Sternbedeckungen IIIa 321; die Plejadenbedeckungen IIIa 322, Abhängigkeit von den Fehlern der Mondtheorieen IIIa 322; durch Beobachtungen von Längen an zwei Stationen auf gleicher Breite III a 322; durch beobachtete Zenithdistanzen auf gleichem Meridian und nördlicher und südlicher Breite III a 322, die Formeln dafür IIIa 322; Einfluss der Abplattung der Erde IIIa 323: Bestimmung aus der Mondtheorie. Hansen's Mondtafeln IIIa 325: Newcomb's Werth IIIa 326. - Mechanik des Himmels II 443.

Mondperiode, Saros Einleitung 18, Chronologie 1600.

Mondsterne Längenbestimmung II 268 272. Mondtafeln Einleitung I 30, Finsternisse I 753 813 816 ff.

Mondzolle Chronologie I 599 600.

Monoceros, das Einhorn Sternbilder IIIb 333; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 333; Verzeichniss der Doppelsterne IIIb 333, der Nebelliecke und Sternhaufen IIIb 336, der veränderlichen Sterne IIIb 337; Präcessionstabelle IIII b 337; 338.

Morgenweite, s. Abendweite.

Motus parallacticus, peculiaris, proprius Eigenbewegung des Sonnensystems IIIb 93. Multiplicationskreis IIIa 288.

Multiplications the odolith Multiplicationskreis III a 288.

Musca, die Fliege Sternbilder IIIb 3,38; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 3,38; Verzeichniss der Doppelsterne IIIb 3,38, der Nebelflecke und Sternhaufen IIIb 3,38, der veränderlichen Sterne IIIb 3,39; Präcessionstabelle IIIb 3,39;

N

Nachtbogen Einleitung I 2, Aufgang I 430. Nadir Coordinaten I 655: Bestimmung des Nadirpunkts am Meridiankreis Meridiankreis III a 3 18 24, Biecung I 556.

Nadirhorizont, Quecksilberhorizont Meri-

diankreis III a 18 24

Nebelflecke Sternhaufen und Nebelflecke III b 524; erste Entdeckung von Marius Huyghens, Hevel, Lacaille III b 524: das Messier'sche Verzeichniss IIIb 524; die Beobachtungen von W. und J. Herschel III b 525; die Cataloge von Dreyer III b 525; die Eintheilung von W. Herschel IIIb 525: die Spiralnebel IIIb 526 (s. auch unten); die photographischen Aufnahmen IIIb 528, Astrophotographie I 237; die Spectra Astrospectroskopie I 422; die Ortsbestimmungen mit dem Ringmikrometer Mikrometer IIIa 71, mit dem Fadenmikrometer nach Positionswinkel und Distanz III a 158; Bemerkungen darüber IIIa 158; starke persönliche Unterschiede bei den Ortsbestimmungen u. Zeichnungen Sternhaufen und Nebelflecke III b 526: Anschauungen über das Wesen der Nebelflecke nach Kant, Lambert Universum IV 59 70 71, Kosmogonie II 231 232: Entstehung der verschiedenen Formen II 232 233; ihre Vertheilung Universum IV 111 ff, Abnahme gegen die Milchstrasse hin IV 112 ff.; Nebelcentren und Anhäufungen IV 112; Sternhaufen in geringen galaktischen Breiten IV 112 113; die verschiedenen Classen nach Abbe IV 112. Bauschinger IV 113, Stratonoff IV 114: graphische Darstellung über die Vertheilung IV 113; planetarische Nebel liegen wie die Sternhaufen vorzugsweise in der Milchstrasse IV 114; nach Stratonoff sind die globularen Sternhausen abzusondern, in ihrer Vertheilung ganz zufällig IV 116; die Nebel gehören grösstentheils zum Milchstrassensystem IV 116; ihre Helligkeit und Grösse IV 117; Nebel und Sterne als zusammengehörige Systeme IV 121; die Spiralnebel IV 121 122; massenhafte Entdeckungen neuer Nebel durch Keeler mittelst Photographie IV 123, dieselben vorzugsweise Spiralnebel IV 123; erneute Frage der Zugehörigkeit zur Milchstrasse IV 123; s. auch Sternhaufen, Uni-

Verzeichniss der Nebelflecke und Sternhaufen in d. einzelnen Sternbildern s. letztere. Neigung der Bahn Einleitung I 114, Bahnbestimmung I 463, Mechanik des Himmels II 370; s. auch Bahnelemente, — Kosmogonie II 241; der Rotationsaxen II 242.

der Ekliptik s. Ekliptik, Schiefe derselben.
der Instrumentalaxen Nivacau IIIa 289,
Acquadoreal I 181, Meridianheris IIIa 2,
Crimersalinstrument IV 42; ihre Bestimmung durchs Niveau, Nivacu IIIa 29,3 ff.,
Acquadoreal I 185 186, Almucantar I 203,
Meridianheris IIIa 12, Universalinstrument
IV 44, durch Einstellung aufs Nadir Me-

ridiankreis III a 24.

Neptun, seine Entdeckung Einleitung I 159, Planeten III a 430; frühere Beobachtungen III a 431; Durchmesser, Masse, Abplattung, Flecke, Rotation III a 431; seine Hellig-keit III a 387 430; seine Albedo III a 388, Astrophotometrie I 339 340; sein Spectrum Astropetrosskopie I 408; der Satellit des Neptun Planeten III a 431; Neigung seiner Bahn und sein Durchmesser III a 432; Noigung seiner Bahn und sein Durchmesser III a 432; Nomogonie II 240 242. Die mittlere tägliche siderische Bewegung Mechanik der Himmels II 402; Beziehung derselben zu der des Uranus und Saturo II 403; Störung in der Bewegung des Uranus II 403.

Netzmikrometer Mikrometer IIIa 65 ff.

Newton'sches Gesetz Einleitung 196 ft; Nachweis der Kepler'schen Gesetze I 101 ff.;
Theorie des Mondes I 103; Erklärung der verschiedenen Mondungleichheiten I 108; der Präcession I 112; der Gezeiten I 113; die gegnerischen Anschauungen I 116 117.

S. auch die einschlägigen Artikel über Bahnbestimmung, Doppelsterne, Kometen und Meteore, Mechanik des Himmels.

Niveau III a 289; Fehler desselben III a 291
296; Bestimmung und Berichtigung derselben III a 292; Bestimmung des Werthes
des Niveau- oder Libellenpars III a 296; Abhängigkeit des Werthes oder Libellenpars III a 296;
Abhängigkeit des Werthes von der Länge
der Blase III a 297; Anwendung zur Bestimmung der Zapfenungleichheit der Axe
III a 293; zur Bestimmung der Neigung
der Axe III a 294; am Meridiankreis
Meridiankreis III a 12; Berücksichtigung
der Neigung bei den Beobachtungen am
Aequatoreal, Muncantar, Massimuth, Passagenintrument, Primenkreit, Universalinstrument s., diese Instrumente I 185; 186,
I 203, I 208, I 444 447 III a 6 ff. III a
359 ff. III a 460, III b 12, IV 50.

Das Querniveau oder das Niveau bei Horrebow-Talcottleobachtungen und seine Verwendung Polhöhe III a 469 470 471. Das Höhenniveau oder die Alhidadenlibelle Universalinstrument IV 43 53.

Niveauflächen Mechanik des Himmels II 525

Niveauprüfer Niveau IIIa 296. Nonagesimus Einleitung I 55. Nonius IIIa 297.

Nordlicht, sein Spectrum Astrospectroskopie 1 405. Norma, das Winkelmaass Sternbilder IIIb 339: Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 339; Verzeichniss der Doppelsterne IIIb 339, der Nebelflecke und Sternhaufen IIIb 340, der veränderlichen Sterne IIIb 340 453, der farbigen Sterne IIIb 340; Präcessionstabelle IIIb 340;

Normaleinheit v. Violle Astrophotometrie I 306.

Normalgleichungen Methode der kleinsten Quadrate III a 44.

Normalkerze, Hefner'sche Astrophotometrie I 306.

Normalmeridian Zeit IV 133.

Normalort Bahnbestimmung I 526, Methode der kleinsten Quadrate IIIa 56.

Normalstellung des Ocularauszugs und die Veränderlichkeit mit der Temperatur Heliometer II 12, Mikrometer III a 140.

Nutation Mechanik des Himmels II 584 ff., in Länge, in Schiefe II 501, Nutation III a 302; die wahre und mittlere Länge IIIa 302: Einfluss auf Rectascension u. Deklination III a 303; Bessel'sche Ausdrücke III a 303; Ort III a 309, Bahnbestimmung I 469; Einfluss auf die Längen I 469 501; Mondglieder kurzer Periode III a 305; Berücksichtigung bei den Sternephemeriden Meridiankreis IIIa 7, bei Fundamentalbestimmungen III a 21. censionsbestimmung IIIb 32. Sterncataloge und Sternkarten IIIb 458; bei relativen Parallaxenbestimmungen Parallaxe IIIa 346 349; bei Mikrometermessungen in Rectascension u. Deklination III a 239, in Positionswinkel und Distanz IIIa 241; die systematischen Unterschiede der Sterncataloge verursacht durch verschiedene Nutationsconstante Sterncataloge und Sternkarten IIIb 471.

Die Nutationsconstante Mechanik des Himmels I 592, Nutation III a 304; ihre Bestimmung aus Rectascensionen polnaher Sterne III a 305, zugleich mit Bestimmung d. Aberrationsconstante III a 305, Aberration I 175; Einfluss von Parallaxe und Eigenbewegung Nutation III a 305; Beobachtungen im ersten Vertical III a 305; Messung von Meridian-Zenithdistanzen von Sternen gleicher Zenithdistanz, Horrebow-Talcott Methode III a 306, Polhöhe III a 468

Die Nutation durch Newton erklärt Einleitung I 112; durch Bradley entdeckt I 118; spätere Untersuchungen I 120; von d'Alembert und Euler I 144. Nychthemeren Einleitung I 3, Zeit IV 129.

O

Oberon, s. Planeten, Uranus III a 430.

Objectiv Fernrohr I 700; achromatisches I 718; Fehler desselben und ihre Untersuchung I 727 ff.; compensirt, nicht compensirt und übercompensirt 1727; Fehler durch Farbenzerstreuung I 728; Kugelgestaltschler I 728; Verzerrung des Gesammtbildes I 728; regelmässiger und unregelmässiger Astigmatismus I 728; Bestimmung der Brennweite I 729; Centriren und Fassen der Objective I 734.

Ueber die Objective bei grossen Refractoren Aequactored I 192; zur Anwendug bei der Photographie lange Brennweite für Aufnahmen d. Sonne Astrophologrophie I 213; Vortheile d. kurzen Brennweite I 235; für chemisch wirksame Strahlen achromatisitt I 229; Proträtohjective I 234.

Objectivprisma Astrospectroskopie I 366; Vortheile und Nachtheile desselben I 367; Verbindung mit dem Fadenmikrometer I 367; zu photographischen Aufnahmen I 369, Astrophotographie I 230 258.

Obliquation bei Copernicus Einleitung I 66. Octans, der Octant Sternbilder IIIb 341; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 341; Verzeichniss der Doppelsterne IIIb 341, der Verzeichniss der Moppelsterne IIIb 342, der veränderlichen Sterne IIIb 342; Präcessionstabelle IIIb 342 343.

Ocular Fernrohr I 700: das Huyghens'sche I 718, das Ramsden'sche oder Mikrometerocular I 718, das negative, positive, Campanische Ocular I 719, das orthoskopische I 730: Fehler der Oculare I 729.

Ocularauszug, Scala zur Controle der Stellung Mikrometer IIIa 77.

Ocularheliometer s. Doppelbildmikrometer. Ocularkreis Fernrohr I 731.

Ocularspectroskop Astrospectroskopie I 366 369.

Oeffnungswinkel und -Radius Fernrohr I 716.

Olympiade Chronologie I 612.

Ophiuchus and Serpens der Schlangenträger und die Schlange Sternbilder III b 343; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 343; Verzeichniss der Doppelsterne III b 343, der Nebeiflecke und Sternhaufen III b 347, der veränderlichen Sterne III b 348 454, der farbigen Sterne III b 349; Präcessionstabelle III b 350.

Ophtalmometer Mikrometer IIIa 219.

Opposition Einleitung I 4; in Rectascension und Länge I 6; mittlere Astrophotometrie I 333.

Optische Axe Fernrohr I 720

Optische Gläser, Geschichte, Fernrohr I 706; ihre Herstellung I 739; ihre Bearbeitung I 740.

Optische Systeme, positiv, convergent, collectiv Fernorh I 711; negativ, divergent, dispansiv I 711; ihr Fundamentalpunkt I 711, Knotenpunkt I 711; Oeffungswinkel und -Radius I 716; die Helligkeit, Vergrösserung und das Gesichtsfeld I 716; der optische Mittelpunkt I 717.

Optischer Mittelpunkt Fernrohr I 717.

Orion Sternbilder IIIb 351; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 351; Verzeichniss der Doppelsterne IIIb 351, der Nebelflecke und Sternhaufen IIIb 354, der veränderlichen Sterne IIIb 355, der farbigen Sterne IIIb 355; Präcessionstabelle IIIb 356.

Orionnebel entdeckt von Galilei Einleitung

Oriontypus s. Veränderliche Sterne.

Ort IIIa 309: mittlerer, wahrer, scheinbarer III a 309 310; geocentrisch, heliocentrisch jovicentrisch u. s. w. III a 309; abhängig von Pracession, Nutation, Aberration, Parallaxe III a 309; Reduction des mittleren auf den scheinbaren III a 313; der Jahresanfang und der Nullpunct der Zeitzählung III a 310; das annus fictus und der dies reductus III a 310; Beziehung d. annus fictus zum Kalenderjahr III a 311; Beziehung der Daten des Normalmeridians zu denen eines beliebigen anderen Orts IIIa 312; die Reductionsconstanten in den Jahrbüchern IIIa 313, das Berliner astronomische Jahrbuch, der Nautical Almanac, die Connaissance des temps III a 313 314.

Ortsbestimmung der Sterne Acquatoreal I 188: absolute und relative 1 188, Almucantar I 196; directe und indirecte Mikrometer IIIa 64; Einfluss der Lichtgattung auf den relativen Ort zweier Sterne III a 162; s. auch Deklinations-Rectascensionsbestimmung, Meridiankreis, Mikrometer, Sterncataloge.

Ortszeit Zeit IV 132.

Osculirende Elemente s. Elemente. Osterrechnung und Osterregel Chronologie I 619.

P

Pallas, Entdeckung Planeten IIIa 436; Helligkeit in mittlerer Opposition und Phasencoëfficient Astrophotometrie I 340.

Parabel, Bewegung und Geschwindigkeit in derselben Bahnhettimmung I 462; Elemente I 463; Ernitlung derselben I 501ff.; Olbers'sche Methode I 505; Ausnahmerfall, Oppolter's Methode I 512; mehrfache Lösungen I 515; Genauigkeit der Bestimmung I 519; Methoden zur Verbesscrung I 528 ff.; Berechnung der Differentialquotienten I 544 546; Zusammenstellung der Formeln und Beispiele I 555; Olbers' Methode I 555; Oppolzer's Methode I 561; Verbesserung der Bahn I 565; s. auch Mechanik des Himmels II 304 ff. und Bahnbestimmung.

Parallactische Aufstellung Aequatoreal I 189 ff., Mikrometer IIIa 141; Fehler der Aufstellung und des Instruments IIIa 141; Methoden und Formeln zu ihrer Ermitlung IIIa 141 142, Aequatoreal I 185 ff. Parallactische Glieder Mechanik des Him-

mels Il 436. Parallactische Ungleichheit Mechanik des

Himmels II 440 458 471 Anm.

Parallactischer Winkel Coordinaten I 658; seine Berechnung aus Stundenwinkel, Deklination, Polhöhe I 662, Mikrometer III a 85. Parallaxe IIIa 314; tägliche und jährliche IIIa 314; Horizontalparallaxe, Höhenparallaxe, Aequatoreal-Horizontalparallaxe III a 315; geocentrischer Ort III a 315; allgemeine Ausdrücke für den Einfluss d. täglichen Parallaxe III a 316. auf den Halbmesser III a 317: Ausdrücke für Azimuth und Zenithdistanz IIIa 317; für Rectascension und Deklination IIIa 318, strenge Formeln für den Mond IIIa 319, Näherungsformeln III a 319; Ausdrücke für Länge und Breite IIIa 318; Berücksichtigung bei Deklinationsbeobachtungen im Meridian Meridiankreis III a 25: bei der Reduction der Meridianbeobachtungen auf den Mittelfaden IIIa 11; bei Planetenund Kometenbeobachtungen Bahnbestimmung I 465 ff.; locus fictus I 465 ff. 501.

der Horizontalparallaxe Bestimmung durch zwei Beobachter an verschiedenen Orten oder durch einen Beobachter Parallaxe III a 319; der Mondparallaxe durch einen Beobachter, frühere III a 319, Einleitung I 46; aus Sternbedeckungen Parallaxe IIIa 321, Plejadenbedeckungen IIIa 322, Abhängigkeit von den Fehlern der Mondtheorie III a 322; durch zwei Beobachter: aus Längen unter gleicher Breite III a 322; aus Zenithdistanzen auf gleichen Meridianen in nördlicher und südlicher Breite III a 322, Elimination et-waiger Fehler der Refractionstafeln III a 323, Formeln IIIa 323, Einfluss d. Abplattung der Erde IIIa 323; durch Finsternissbeobachtungen Finsternisse I 802; Bestimmung aus der Mondtheorie, Parallaxe III a 325, Mechanik des Himmels II 443 444, Mond IIIa 245; Verhältniss zur Sonnenparallaxe III a 283 285.

Bestimmung der Sonnenparallaxe Parallaxe III a 326; durch einen Beobachter: durch Planetenparallaxen aus Unterschieden der Rectascension, der Deklination, von Positionswinkel und Distanz gegen Fixsterne III a 327, Formeln hierfür III a 328, Heliometer II 17 22; durch zwei Beobachter: Rectascensionsunterschiede unter gleicher Polhöhe Parallaxe IIIa 331; Deklinationsunterschiede III a 331; Einfluss des Unterschiedes der Brechbarkeit des Planeten- und Sternlichts III a 332; durch Beobachtungen am Meridiankreis III a 332, Elimination der Fehler des Meridiankreises III a 332, die Bedingungsgleichungen III a 332; durch Beobachtung der Venusdurchgänge Illa 332, Aufstellung der Bedingungsgleichungen für Positionswinkel und Distanz und für die Contacte III a 333, Schwierigkeiten für die Contactmethode IIIa 338. Anwendungen IIIa 338, Finsternisse I 825; aus Finsternissbeobachtungen I 802: durch Planetenbedeckungen Parallaxe IIIa 338; Theoretische Methoden IIIa 338, Mechanik des Himmels II 459; Verhältniss zur Mondparallaxe Mond III a 283 285; frühere Bestimmungen Einleitung I 18 47 ff. 68 71 93.

Die Parallaxe der Fixsterne, jährliche Parallaxe Einleitung I 58, Parailaxe III a 341; Ausdruck für das Maximum und Minimum der Parallaxe III a 342: allgemeine Formeln, Anwendung auf Ekliptikalcoordinaten III a 343; auf aquatoreale III a 343: Zusammenhang mit der Aberration IIIa 343, Aberration I 175; gunstigste Bedingungen für die Bestimmung Parallaxe IIIa 344; Schwierigkeit directer Bestimmung III a 345: Verbindung von zwei Sternen III a 346: Circumpolarsterne III a 347, die Bedingungsgleichungen III a 347; Sterne nahe gleicher Rectascension IIIa 348; Einfluss der Parallaxe auf relative Coordinaten, die Bedingungsgleichungen IIIa 350; Schwierigkeit der Messung der Deklinationsdifferenz III a 350: Beobachtungen von Rectascensionsdifferenzen am Meridiankreis III a 350; Messungen am Heliometer IIIa 351; Heliometer II 16; Ausdruck für die Bedingungsgleichungen im Positionswinkel und Distanz Parallaxe IIIa 352, günstigste Bedingungen III a 352; neue Resultate III a 352; die Anwendung der Photographie IIIa 353.

S. Terner über die auf die Parallase und ihre Bestimmung berüglichen Punkte Mikrometer III a 163, Nutation III a 305, Ort III a 309, 310, Eigenbewegung des Sonnensystems III b 101 102, Sternhaufen und Nebelfiecke III b 526, Universum IV 58 50 94 108.

Parallaxentafeln Bahnbestimmung 1466 497, Mikrometer IIIa 151; Tafel III im Anhang IV 243 ff.

Parallel scheinbarer, wahrer Mikrometer IIIa 95 101 144; Orientirung des Mikrometers nach scieinbarem IIIa 109; Bestimmung des Parallel IIIa 144; Unterschied des scheinbaren und wahren Parallel IIIa 145; Einfluss einer Torsion des Rohres um seine Axe auf die Bestimmung des Parallels IIIa 147.

Krümmung des Parallels bei Meidianbeobachtungen Meridiankreis III a 21; Polhöhe III a 471.

Parallelkreise Einleitung I 2, Coordinaten I 656.

Parallelogramm der Bewegung, Geschwindigkeit, Kräfte Mechanik des Himmels II 279.

Parameter Bahnbestimmung I 463.

Passageninstrument IIIa 353; Beschreibung IIIa 354.

i) im Meridian, seine Berichtigung Meridiankreis IIIa 4; Azimuth, Neigung, Collimationsheher IIIa 5; Formeln für die Correctionen III a6; die Mayer'sche Formel IIIa 6, für polnahe Sterne in oberer und unterer Culmination III a 7; die Bessel'sche Formel IIIa 7; die Hansen'sche Formel IIIa 8; Reduction auf den Mittelfaden IIIa 8; Bestimmung der Fadendistanzen IIIa 10; Bestimmung der Instrumentalfehler IIIa 12; 24, der Zeit IIIa 12; Beispiel

III a 14, Zeitbestimmung IV 140; zur Bestimmung der Polhöhe u. Aberrationsconstante mit Horrebow-Talcott-Niveau Polhohe III a 460: Reduction der Beobachtungen IIIa 471; Aberration I 176.

2) im ersten Vertical Passageninstrument Illa 355; genäherte Orientirung IIIa 355; Ermittlung der Instrumentalfehler und Berichtigung III a 356; Theorie des Instru-ments im ersten Vertical III a 356; strenge Ausdrücke III a 357; Reduction der Seitenfäden auf den Mittelfaden bei kleinen Instrumentalfehlern III a 358, für sehr zenithnahe Sterne III a 359, für fest aufgestellte Instrumente IIIa 360; Bestimmung der Polhöhe Illa 361. Polhöhe Illa 460; Beobachtungsmethoden zur Bestimmung des Stundenwinkels im ersten Vertical Passageninstrument III a 361, Beobachtung desselben Sterns im Ost- und Westvertical in derselben Kreislage, in geänderter Kreislage, mit Umlegung beim Ost- und beim Westdurchgang IIIa 361; Elimination und Bestimmung der Instrumentalfehler und Fadendistanzen III a 363; Beobachtungsschema IIIa 363: Anordnung zur Beobachtung der Veränderlichkeit der Polhöhe III a 364; gemessene Zenithdistanzen IIIa 364.

3) in beliebigen Azimuthen, im Vertical des Polarsterns Zeitbestimmung IV 158: Entwicklung der strengen Ausdrücke IV 158 ff.; Reduction der Seitenfäden auf den Mittelfaden für Zeitsterne IV 163, für den Polarstern IV 165: über die Anstellung der Beobachtungen IV 166: Ephemeriden für Zeitsterne und Polarstern IV 167: Hülfstafeln IV 168: Schema IV 171; Beispiel IV 171.

Passagenprisma Zeithestimmung IV 178. Pavo, der Pfau Sternbilder IIIb 356; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 356: Verzeichniss der Doppelsterne IIIb 357, der Nebelslecke und Sternhaufen IIIb 357, der veränderlichen Sterne III b 358 454, der farbigen Sterne III b 358; Präccssionstabelle III b

Pegasus Sternbilder IIIb 359; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 359: Verzeichniss der Doppelsterne III b 359, der Nebelflecke und Sternhaufen IIIb 363, der veränderlichen Sterne IIIb 367 455, der farbigen Sterne III b 368; Präcessionstabelle IIIb 369.

Pendel, Entdeckung des Isochronismus der Pendelschwingungen durch Galilei Einleitung I 77, Uhr IV 4; als Regulator der Uhren von Huyghens eingeführt Einleitung I 97, Uhr IV 5; Theoretische Erörterungen IV 7; das Cycloidenpendel IV 9: die Compensationspendel IV 11.

Pendeluhr s. Uhr.

Pericentrum Mechanik des Himmels II 301; Anomale Bewegung desselben Il 464. Perigaum Einleitung [21.

Perihel Einleitung I 22, Bahnbestimmung I 455; Länge des Perihels I 463, Einleitung I 115.

Periheldistanz Einleitung I 115, Bahnbestimmung 1 462.

Periheldurchgang Einleitung I 115, Bahnbestimmung I 463.

Periode s. Chronologie.

Periplegmatische Curven Mechanik des Himmels II 494.

Perseiden Einleitung I 161, Kometen und Meteore II 179 184 185 209 212.

Perseus Sternbilder IIIb 369; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 369; Verzeichniss der Doppel-sterne III b 369, der Nebelstecke und Sternhaufen III b371, der veränderlichen Sterne IIIb 373 452, der farbigen Sterne III b 373; Präcessionstabelle III b 374

Persönliche Fehler Sternhaufen und Nebelflecke IIIb 526, Meridiankreis IIIa 25, Parallaxe IIIa 332 350: Benutzung eines Prismas Meridiankreis IIIa 25. S. auch

Persönliche Gleichung.

Persönliche Gleichung IIIa 368; Geschichtliche Bemerkungen IIIa 368; absolute und relative IIIa 370: Einfluss auf Längenbestimmungen III a 370, Längenbestimmung II 250 ff.; Elimination Personliche Gleichung III a 370: Bestimmung der relativen III a 370; der absoluten an Apparaten verschiedener Construction III a 371: die Zeitcollimatoren von Kaiser IIIa 372 f.; die Apparate von Bakhuyzen, Wislicenus III a 374 375: Elimination der absoluten Gleichung durch Repsold's unpersönliches Ocularmikrometer III a 376: Erklärungen durch physiologische Erscheinungen III a 376: Reactions-Reflexionszeit II! a 377: Abhängigkeit von äusseren Einflüssen verschiedener Ait III a 380; Helligkeitsgleichung III a 381; die nicht gleich häufige Beobachtung verschiedener Zehntelsecunden IIIa 382: Unterschiede bei Runbestimmungen IIIa 382; subjective Abweichungen bei allen Beobachtungen. Zeichnungen u. s. w. III a 383: beim Kreis- und Lamellenmikrometer nach der Helligkeit der Sterne Mikrometer III a 109: bei Doppelsternmessungen III a 163; s. auch Systematische Fehler.

Phasen Mond IIIa 250, Planeten IIIa 386; Bestimmung der Grösse der Mondphase Mond III a 280; Berücksichtigung der Phase bei Durchmesserbestimmungen Mikrometer III a 167; bei Messungen mit

Airy's Doppelbildmikrometer IIIa 215.
Phasencoëfficient Astrophotometric I 340. Phasenwinkel Astrophotometrie I 333.

Phobos s. Planeten, Mars III a 413. Phonix Sternbilder IIIb 374: Grenzen und

Anzahl der dem blossen Auge sichtbaren Sterne III b 374: Verzeichniss der Doppel-sterne III b 375 452, der Nebelflecke und Sternhaufen III b 375, der veränder-lichen Sterne III b 376, der farbigen Sterne III b 376; Präcessionstabelle III b 376.

Photographie des Himmels s. Astrophotographie.

Photographische Durchmusterung am Cap Sternataloge und Sternkarten III b 521; photographische Himmelskarte IIIb 522; photographisch-spectroskopische Durchmusterungsaufnahmen Astrophotographie 1 288.

Photographische Fenröhre Astrophotographie 1 213 216 217; mit Correctionslinsen 1 223 220 238, Refractoren und Spiegelteleskope 1 229 238; die Momentverschlüsse I 214 1, 218 220; das Einstellen I 221; ihre Montirung 1 231.

Photographische Methoden, zur Parallaxenbestimmung, bei Venusdurchgöngen Parallaxe III a 333, zur Fissternparallaxen III a 353; zur Bestimmung der Pollhöhe am Zenthteleskop Pohöhe III a 475, die Vortheile und Bedenken gegen dieselbe III a 476.

Photoheliograph Astrophotographie I 219. Photometer s. Astrophotometric.

Photometrie s. Astrophotometrie und Hellig-

keit.

Photometrische Constante für die Sterngrösse Astrophotometrie I 325 ff., Uni-

versum 1V 76 ff.

Photometrische Grundgesetze s. Astrophotometrie.

Photore fractor Astrophotographie I 231. Photosphäre Sonne IIIb 62 74, Mond IIIa 280, Astrospectroskopie I 400.

Pictor, die Malerstaffelei Sternbilder IIIb 377; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterner IIIb 377; Verzeichniss der Doppelsterne IIIb 377, der Nebelflecke und Sternhaufen IIIb 377, der veränderlichen Sterne IIIb 378, der farbigen Sterne IIIb 378; Präcessionstabelle IIII 378.

Pisces, die Fische Sternbilder IIIb 378; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 378; Verzeichniss der Doppelsterne IIIb 379, der Nebelflecke und Sternhaufen IIIb 381, der veränderlichen Sterne IIIb 385, der farbigen Sterne IIIb 385; Präcessionstabelle 111b. 386

Planeten IIIa 383; Eintheilung in innere und äussere, Unterscheidungsmerkmale IIIa 383; Haupt- und Nebenplaneten IIIa 384; Unterscheidungsmerkmale von Fixsternen IIII 384; Anordnung nach der Entfernung, Titius-Bode'sches Gesetz IIIa 385; Durchmesser und Masse IIIa 385; Durchmesser und Masse IIIa 385; Biradiation IIIa 385; ihre Helligkeit IIIa 386 387; die Phase, IIIa 386; Dichte und Abplattung IIIa 386

387; die Albedo IIIa 387; Flecke auf der Oberfläche IIIa 388; ihr Spectrum Astrospectroskopie I 406; photographische Aufnahmen Astrophotographie I 224, ihrer Spectra I 247, Apparat dazu I 247.

Mikrometrische Messungen auf der Planetenscheibe Mikrometer IIIa 172; Bestimmung der Lage der Planetenaxe IIIa 172; des Durchmessers mit dem Fadenmikrometer IIIa 173; mit dem Doppebildmikrometer IIIa 216, Berücksichtigung der Phase IIIa 216, Berücksichtigung der Phase IIIa 215.

Beobachtungen zur Parallaxenbestimmung Parallaxe IIIa 327, der Planetenbedeckungen IIIa 338.

Ihre Rotationsdauer von Cassini bestimmt Einleitung I 97; ihre Massen durch Newton I 114: ihre Durchmesser am Ringmikrometer I 118.

Die kleinen Planeten, Planetoiden oder Asteroiden s. Asteroiden.

Merkur (s. d.) IIIa 389; Venus (s. d.) IIIa 303; Jupiter (s. d.) IIIa 303; Jupiter (s. d.) IIIa 414; Saturn (s. d.) IIIa 419; Uranus (s. d.) IIIa 429: Neptun (s. d.) IIIa 430; Intramerkurieller Planet (s. d.) IIIa 432; Asteroiden (s. d.) IIIa 435.

Planetenaberration, s. Aberration.

Planetenbewegung Einkeitung 19ff.: rechtläufig und rückläufig 19g. nach Eudovas I 1nff.; Ansichten der Alten über Einfernung und wahre Bewegung I 12 ff.; die Umlaufszeiten bei Hipparch I 30g. Theorie der Bewegung bei Ptolemäus I 37g. die Endernungen nach Capella 1 48g. die Umlaufszeiten und Dimensionen I 49g. Theorie des Copernicus I 65 ff.; die Elemente nach Kepler I 92g. Theorie von Bullialdus und Cassini I 96 ff.: die secularen Störungen I 120g. die späteren Arbeiten s. Meclamik des Himmels.

Die mittlere tägliche Bewegung Mechanik des Himmels II 402; Beziehungen derselben zu einander II 403; die der kleinen Planeten II 405; commensurable Verhältnisse mit der des Jupiter II 405, seine Wirkungssphäre II 450.

Planetographischer Ort Mikrometer IIIa

Planeten system s. Sonnensystem,

Planetentafeln Einleitung I 30.
Planetenvorübergänge s. Merkur- und
Venusvorübergang.

Planetoiden s. Asteroiden.

Plejaden, Messungen von Bessel, Wolf (Paris). Elkin, Ambroon Sternhaufen und Nebelflecke IIIb 527; photographische Aufnahmen von Rutherfurd IIIb 527; Nebel in denselben von Tempel, Spitaler IIIb 528; die Aussennebel von M. Wolf IIIb 528.

Pointer Astrophotographie I 231.

Poldistanz Coordinaten I 656.

Pol Einleitung I 2. Coordinaten I 656, Mechanik des Himmels II 565; instantaner II 571; Trägheitspol II 568. Polhöhe, Polhöhenbestimmung III a 441; Beziehung zwischen der Polhöhe, Deklination, Zenithdistanz, dem Stundenwinkel und Azimuth IIIa 442; die Differentialformeln IIIa 442; verschiedene Methoden zur Bestimmung 1) Beobachtung von Zenithdistanzen eines Sterns bekannter Deklination am Meridiankreis III a 442, Meridiankreis IIIa 21: Elimination des Sternorts und Nullpunkts am Kreise Polhöhe IIIa 443; 2) aus Circummeridianzenithdistanzen am Universalinstrument III a 443; günstigste Bedingungen III a 444; Reduction auf den Meridian IIIa 445, bei unterer Culmination IIIa 446; Hülfstabellen für genäherte Einstellung in Azimuth und Zenithdistanz III a 447 448: Genauigkeit der Reduction durch Reihen III a 448; Beobachtungen des Polarsterns IIIa 449, Reduction auf den Meridian nach der strengen Formel IIIa 440. Reihenentwicklungen IIIa 450, Hülfstafeln für verschiedene Genauigkeit IIIa 450; Regeln für die Beobachtung selbst III a 454; Einfluss der Biegung und der täglichen Aberration IIIa 455: Beobachtung der Sonne IIIa 455, Berücksichtigung d. Veränderung in Deklination III a 455 456; Messung der Zenithdistanzen aus mehreren Sternen III a 456; Beispiel III a 456; 3) Beobachtungen im ersten Vertical am Passageninstrument IIIa 460, Passageninstrument IIIa 361; Einfluss der Instrumentalfehler und ihrer Veränderungen Polhöhe III a 461; Beobachtungen an Seitenfäden III a 464; Einstellung des Instruments IIIa 465; Beispiel IIIa 465; 4) Beobachtung zweier Sterne, welche rasch nach einander in gleicher nördlicher und sudlicher Zenithdistanz culminiren. Horrebow-Talcott III a 467, Aberration I 176, Nutation III a 307, Universaltransit IV 55; Anordnung der Beobachtungen Politohe III a 469, ihre Reduction III a 470. Berücksichtigung der Krümmung des Parallels IIIa 471, der Refraction III a 472, Einfluss der Unregelmässigkeiten in der Refraction nördlich und stidlich vom Zenith IIIa 473; Beispiel IIIa 473; Anwendung der Photographie IIIa 475; 5) Durchgangsbeobachtungen von Sternen in der Nähe des Meridians am Almucantar Almucantar I 197 198.

Methoden zur Elimination des Stemorts Polisöhe IIIa 477: 1) Combination dreier Sterne, Polstern, Zenithstern, Südstern am Universaltransit IIIa 4477; 2) Verbindung der Beobachtung von Unterschieden in Zenithdistanzen geeigneter Sternpaare und solcher im Azimuth gleicher Sternpaare und solcher im Azimuth IIIa 480; 3) Beobachtung zenithnaher Sterne, deren Rectascension 12 Stunden verschieden und deren Deklination sehr nahe gleich der Polhöhe, am Altazimuth und Zenithteleskop IIIa 485; s. auch Einleitung (Longomontan) 173.

Veränderlichkeit der Polhöhe, Einlei-

tung I 145, Polhöhe IIIa 490; Periode der Schwankung, internationaler Polhöhendienst IIIa 493; Theorie und mögliche Ursachen Mechanik de: Himmels II 573 604. Einfluss der Veränderung auf Fundamen-

talbestimmungen Meridiankreis IIIa 21.
Positionskreis, Mikrometer IIIa 91; Bestimmung seines Mittelpunkts IIIa 91;
seine Verbindung mit dem Schraubenmikrometer IIIa 126; verschiedene Constructionen dabei IIIa 126 ff.

Positionsmikrometer Mikrometer IIIa 69:

Positionsringmikrometer, Mikrometer IIIa 91: Beschreibung IIIa 91: Bestimmung der Rectascensions und Deklinationsdifferenz mit demselben IIIa 91: Bestimmung des Nullpunkts am Positionskreis IIIa 91:

Positionswinkel Mikrometer III a 153; Messung Von Positionswinkel und Distanz 1) am Heliometer, bei engen Doppelsternen Heliometer II 8; bei weiteren II 9: bei Durchmesserbestimmungen II 8; bei Satellitenbeobachtungen II 9; bei der gegenseitigen Lage entfernter Sterne II 9 23; 2) am Schrauben- oder Fadenmikrometer Mikrometer IIIa 154; Einstellung zwischen einem Doppelfaden bei engen Sternpaaren IIIa 155; Bisection durch einen Faden bei grossen Entfernungen III a 155; vierfache und doppelte Distanz III a 155; Schätzungsmethoden bei ganz engen Doppelsternen III a 156; getrennte Messung von Positionswinkel und Distanz der gleichzeitigen vorzuziehen IIIa 156; Messung von Nebelflecken und Kometen IIIa 157; Einfluss der Strahlenbrechung auf Positionswinkel und Distanz IIIa 159. für wahren Parallel IIIa 160, für scheinbaren Parallel IIIa 160; Einfluss der Gattung des Lichts auf den relativen Ort zweier Sterne IIIa 162; systematische Unterschiede bei Doppelsternmessungen III a 163, ihre Bestimmung durch Combination verschiedener Beobachtungen für die einzelnen Beobachter IIIa 164, ihre directe Bestimmung durch künstliche Doppelsterne III a 164; allgemeingültige Sätze über die Fehler III a 165; Beobachtungen von Satelliten III a 166; Einfluss d. Phase und Abplattung III a 167; Messungen auf der Planetenscheibe III a 170; 3) am Doppelbildmikrometer III a 200; verschie-dene Methoden, vierfache Distanz III a 210, doppelte Distanz IIIa 210; getrennte Messung von Positionswinkel und Distanz III a 210: einfache Distanz, Gefahr constanter Fehler IIIa 21L

Potential Mechanik des Himmels II 524; einer Kugel II 526, eines Ellipsoids auch einen inneren Punkt II 528, auf einen äusseren Punkt II 535; eines Massencomplexes auf einen sehr entfersten Punkt II 539; die Laplace-Poisson'sche Gleichung II 541; Attraction von Sphäroiden II 544; s. auch Mechanik des Himmels. Pracession IIIb I, allgemeine IIIb I ff. 15, Mechanik des Himmels II 577 584; lunisolare Pracession IIIb 1 ff.; durch die Planeten IIIb I, Mechanik des Himmels II 586; Entwicklung der Formeln und numerische Werthe Pracession III b 3: jährliche IIIb 6: Formeln für die Uebertragung der Elemente für die Ekliptik bezw. den Aequator IIIb 11; Einfluss auf die Sternörter, strenge Ausdrücke für die Ekliptik IIIb 11, für den Aequator III b 12: Berücksichtigung der Eigenbewegung IIIb 12; die Variatio saecularis III b 12; genäherte Ausdrücke für den Aequator III b 12, Nutation III a 303, Bahnbestimmung I 469 501; Einfluss auf rechtwinklige Coordinaten Pracession IIIb 13; bei Parallaxenbestimmung der Fixsterne Parallaxe IIIa 345; auf relative Coordinaten der Sterne IIIa 349, Mikrometer III a 239; Bestimmung der Constanten Präcession III b 15, Eigenbewegung des Sonnensystems IIIb 105, Mechanik des Himmels II 592.

Geschichtliche Bemerkungen Einleitung I 19; bei den Arabern I 49; bei Al-I 103 X. I 54; Veränderlichkeit derselben bei Copernicus I 59; bei Kepler I 93; Newton I 112; spätere Untersuchungen I 120 142;

Präcision, Maass der, Methode der kleinsten Quadrate III a 33.

Princip der Erhaltung der Bewegung des Schwerpunkts Mechanik des Himmels II 286, der Flächen II 286, der Erhaltung der lebendigen Kraft II 288, das Hamilton'sche II 280,

Prismenkreis IIIb 17.

Prismenmikrometer von Maskelyne Mikrometer IIIa 215 s. auch Doppelbildmikrometer.

Prismensextant IIIb 20.

Proportionalcoordinaten Mechanik des Himmels II 431.

Prosthaphäresis Einleitung I 29.

Protuberanzen Mond III a 280, Sonne III b 78 ff.; verschiedene Arten III b 83, Astrospectroskopie I 400; ihr Spectrum I 403, Sonne III b 78 ff. s. auch Sonne.

Prute nische Tafeln Einleitung I 66. Puppis s. Argo, Sternbilder IIIb 141. Pyxis s. Argo, Sternbilder IIIb 141.

Q

Quadrant IIIb 30; doppelte Aufstellung, kleinere mit Azimuthalkreis, grössere als Mauerquadranten IIIb 30.

Quadratisches Mikrometer Mikrometer IIIa 104; Beschreibung IIIa 104; mit und ohne Positionskreis, am parallactisch montitren oder nicht parallactisch montitren Fenrohr angebracht IIIa 104; Reductionsformeln IIIa 104; Einfluss der Eigenbewegung, der Strahlenbrechung für wahren Parallel und wahre oder scheinbare Deklination IIIa 105; Strahlenbrechung für scheinbaren Parallel IIIa 106; Fehler der Orientirung IIIa 106; Örientirung des Mikrometers, wenn kein Positionskreis vorhanden IIIa 107; Bestimmung der Länge d. Diagonale IIIa 107.

Quadratur s. Mechanische Quadratur. Quecksilberhorizont Meridiankreis III a 18. Quecksilbercompensation Uhr IV 14 ff.

R

Radiant, Radiationspunkt Einkitung I 161, Kometen und Meteore II 164, 178; Verzeichnisse II 181; Vertheilung derselben II 181; tägliche Veränderung derselben II 190; stationäre Radianten II 201; Verzeichniss von Kometen und zugebörigen Radianten II 212 II

Radius astronomicus s, Jacobstab.

Radius geocentrisch und scheinbar Parallaxe
III a 316 317; das Verhältniss derselben
für Horizontalcoordinaten III a 317, für
Aequatorealcoordinaten III a 318, für
Ekliptikalcoordinaten III a 318,

Radiusvector, Einleitung 1 91.

Rautenmikrometer Mikrometer IIIa 67; das Bradley'sche IIIa 67; Berichtigung desselben IIIa 67; besondere Form für lichtschwache Objecte III a 67; andere Formen IIIa 68.

Reagirende Sphären Einleitung I 16.

Rechtläufig Einleitung I 9.

Rectascension Einleitung 1 6, Coordinaten I 657; Einfluss der Parallaxe Parallaxe III a 318.

Rectascensionsbestimmung IIIb 30, Meridiankreis IIIa 4 17; absolute und relative oder Differenzbeobachtungen III a 17 20, Sterncotaloge und Sternkarten III b 456, Rectaseensionsbestimmung III b 30; Beobachtung der Sonne und naher Fixsterne III b 30; Beobachtung bekannter und unbekannter Fixsterne durch denselben Stundenkreis IIIb 31, am Meridiankreis, gunstigste Bedingungen IIIb 31: Berechnung der Beobachtungen, Fehler und Gang der Uhr IIIb 32; Zonenbeobachtungen IIIb 33; systematische Unterschiede Meridiankreis IIIa 17; Sterncataloge und Sternkarten IIIb 457 471; s. auch Almucantar I 199, Sonne Шь 59.

Mikrometrische Bestimmung der Rectascensionsunterschiede am Cassini'schen Netz
Mikrometer III a 66, am Zetanetz III a 68,
am Ringmikrometer III a 72 78 f., am Positionsringmikrometer III a 91, am Differenzenmikrometer III a 93, am Kreusstab
III a 100, am quadratischen Mikrometer
III a 104, mit den Fadenmikrometer bei
rulendem Fernrohr III a 148, bei gehendem Uhrwerk III a 1522. Verbesserung
wegen Strahlenbrechung, Eigenbewegung,
Präcession, Nutation, Aberration s. auch
die ausführlichen Register der einzelnen
Mikrometer.

Verwendung d. zu verschiedenen Epochen ermittelten Rectascensionen zur Bestimmung der Fehler der Präcessionsconstante, der Eigenbewegung der Sterne und des Sonnensystems, Eigenbewegung des Sonnensystems III b 95.

Reduction, auf den Erdmittelpunct Parallaxe
III a 316 R., auf den Jahresanfang Nudtion III a 303, Ort III a 312; auf den
locus fictus Bahnbestimmung; 1 467; auf
den Meridian Meridiankreis III a 8 ff, 21 f.,
Polibide III a 471, auf den mittleren oder
scheinbaren Ort Bahnbestimmung I 496;
Ort III a 313.

Reflectoren Aquator; al 189, Fernrohr I 700; Geschichtliche Bemerkungen 1703, der Cassegrain'sche, Gregory'sche, Newton'sche, Herschel'sche 1703 704; über die Vortheile bei der Beobachtung s. Astrophotographie.

Reflexbeobachtungen Biegung I 576 ff., Meridiankreis III a 18, Polhöhe III a 443. Refraction s. Strahlenbrechung.

Refractoren Acquatoreal I 189, Fernrohr I 700; Verzeichniss grosser Acquatoreal I 194 f.; geschichtliche Bemerkungen Fernrohr I 700; Brechung durch eine Kugelflächen I 710, durch zwei von je zwei Kugelflächen begrenzte Systeme I 712, durch rwei Linsen I 716; verschiedene Arten der Montirung; horizontal Acquatoreal I 190, die Fraunhofer/sche (deutsche) I 191, die Sisson'sche (englische) I 192, die Löwysche (coude) I 102.

Registrirapparate III b 33: Cylinderapparate III b 34: Beschreibung verschieden Formen III b 34 ft; Streifenapparate III b 38; Stromunterbrecher, Beschreibung verschiedener Constructionen III b 41; Ablescapparate III b 46; s. auch Löngenbestimmung II 249;

Registrirmethode Einleitung I 163, Längenbestimmung II 253 255, Fersönliche Gleichung IIIa 371; dieselbe bei Beobachtungen am Ringmikrometer Mikrometer IIIa 77 78.

Registrirocular Löngenbestimmung II 250, Mikrometer III a 126, Persönliche Gleichung III a 376, Sterncataloge III b 474.

Registrirvorrichtung für die Stellung d. Mikrometerschraube Mikrometer IIIa 122. Relativzahlen Sonne IIIb 68.

Repetition bei Winkelmessungen Einleitung
I 117.

Repetitions the odolit Universalins trument IV 43; Beschreibung IV 43; Messung von Horizontal winkeln IV 43 46.

Repsold'sches unpersönliches Mikrometer s. Registrirocular.

Reticulum, das Netz Sternbilder IIIb 383; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 388; Verzeichniss der Doppelsterne IIIb 388, der Nebelliecke und Sternhaufen IIIb 389, de veränderlichen Sterne IIIb 389, der farbigen Sterne IIIb 389; Präcessionstabelle IIIb 389. Retrograd Einleitung I 9, Bahnbestimmung I 464.

Retrogradation Einleitung I 10. Reversionsobjectiv Astrospetroskopic I 383. Reversionsocular Astrospetroskopic I 383. Reversionsprisma Astrospetroskopic I 382.

Reversionsspectroskop Astrospectroskopie I 382. Revolvirende Sphären Einleitung I 16

Revolvirende Sphären Einleitung I 16 Rhea s. Planeten, Saturn III a 428. Rillen s. Mond III a 273. Ring s. Armille I 200.

Ringmikrometer Einleitung I 118; s. Kreis-

mikrometer. Röhrenlibelle s. Libelle.

Römerzin szahl Chronologie [618.

Rostcompensation Uhr IV 12 f. Rotationsaxe, momentane oder

Rotationsaxe, momentane oder instantane, Mechanik des Himmels II 565; Lage derselben im Raum II 566; Bewegung im Raume II 568; beschreibt um die Hauptträgheitsaxe einen Kegel II 522; Arbeiten dartlber II 573; Bewegung derselben bei der Erde II 581; Aenderung der Hauptträgheitsaxen II 594; Polverschiebung durch Hinzufügung von Massen II 599, durch Verschiebung einer Masse auf der Oberläßehe in der Richtung des Meridians II 600, auf dem Parallelkreise II 600; Einfluss auf die Rotationsaxe II 600;

Rotationsbewegung, Mechanik des Himmels II 523; Differentialgleichungen derselben II 563; Bestimmung der Rotationsgeschwindigkeit II 566.

Rothe Sterne Universum IV 110; s. veränderliche und farbige Sterne

Rückläufig Einleitung I 9.

Rudolphinische Tafeln Einleitung I 92. Run Nonius IIIa 301, Meridiankreis IIIa 18, Polhöhe IIIa 454, Universalinstrument IV 44.

s

Sagitta, der Pfeil Sternbilder III b 389; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 389; Verzeichniss der Doppelsterne IIIb 390, der Nebelliecke und Sternhaufen IIIb 300, der Jarbigen Sterne IIIb 301; Präcessionstabelle IIIb 301.

Sagittarius, der Schütze Sternbilder III b
391; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b
392;
Verzeichniss der Doppelsterne III b
393;
der Nebelflecke und Sternbaufen III b
393;
der veränderlichen Sterne III b
395;
454, der farbigen Sterne III b
395;
Präcessionstabelle III b
396.

Sanduhr Einleitung I 32, Zeit IV 129. Saros Einleitung I 8, Chronologie I 600.

Satelliten Planeten IIIa 384: des Mars IIIa 413, des Jupiter IIIa 418, des Saturn IIIa 428, des Vranus IIIa 430, des Neptun IIIa 431: die Erscheinungen der Finsternisse und Vorübergänge: der der Jupiter und

meter:

Sreis-

tane,
der; im
tuptetten
t bei
auptbung
coo.

Einmeli Iben

a 18. IV 44

Jan No L in the aboli

m:sk Ms Ms Saturn-Verfinsterungen Finsternius 1 834; Berechnung der Erscheinungen 1 835 ff.; Berechnung der Bahnelemente 1 838; Tafeln zur Berechnung von Delambre, Damoiseau u. A. 1 838; im Nautical Almanac und Berliner Jahrbuch I 838; ihre Beobachtung an Mikrometern: allgemeine Bemerkungen Mikrometer IIIa 166, Abblendung der hellen Scheibe bei schwachen Begleitern IIIa 166, Formeln zur Berücksichtigung der Phasengestalt d. Planeten IIIa 167; Theorie ihrer Bewegung Mechanik des Himmels II 446, Prallactische Glieder II 436, Bewegung des 7. Saturnsatelliten II 464; ihre Figur II 561; ihre Entstehung Konnegonie II 242 243.

Saturn, seine Helligkeit Planuten III a 387
419, Astrophotometrie I 339; seine Albedo
Planeten III a 388, Astrophotometrie I
340; Durchmesser, Abplattung Planeten
III a 419, Masse, Flecken, Streifen, Rotationszeit III a 420; Spectrum Astrospectrotkopie I 407; Photographie desselben
Astrophotographie I 225.
Seine Satelliten entdeckt Einleitung I

97. Planeten IIIa 428: Untersuchungen über die gegenseitigen Störungen in de Bewegung IIIa 428, Mechanik des Himmels II 464, Bewegung des 7. Satelliten II 464; Bestimmung der Masse des 6. Satelliten II 468; die Verfinsterungen Finsternisse I

II 468; die Verfinsterungen Finsternisse I 834 ff.; ihre Beobachtungen Mikrometer III a 166; ihre Helligkeit Astropholometric I 242; die Lichtschwankungen I 342, Plameten III a 428; ihre Grösse III a 429.

Das Ringsystem entdeckt von Gallici, Huyghens Eindeitung I 75; boebachtet von Gassendi 197, Planeten III a 420; die Sichtbarkeit III a 421; Trennungen im Ring III a 422; dunkler Ring III a 422; die Durchsichtigkeit III a 423 427; Messungsresultate III a 425; Elecken auf dem Ring, seine Rotation III a 425; über die Constitution des Ringsystems III a 427, Mechanik des Himmels II 562; Veränderungen im System Planeten III a 427; sein Spectrum Astreptstreskopie 1 467.

Die Secularbeschleunigung des Satum entdeckt durch Halley Einleitung I 119 1138 ft., Mechanik des Himmels II 403; die mittlere tägliche siderische Bewegung II 402; ihre Beziehung zu der des Jupiter, Uranus, Neptun II 403: – Kormogonie II 424 1243; Urtheersum IV 58 59.
Schaltjahr-monat-tag Einleitung I 31,

Chronologie I 605 608 610 ff. Schiefe der Ekliptik s. Ekliptik. Schlieren bei optischen Gläsern Fernrohr I

707. Schnittphotometer Zodiakallicht IV 185,

Universum IV 7.1.
Schraube, ihre Anwendung bei mikronietrischen Messungen Mikrometer III a 114.;
periodische und fortschreitende Fehler III a
115, Pelishte III a 472, Heliometer III a
175; Bestimmung derselben Mikrometer III a
175; Bessel'sche Ausdrücke und Bei-

spiel dafür IIIa 176, Criterium zur Erkennung, ob die strenge Auflösung der Gleichung nöthig oder nicht IIIa 181; Trennung beider Bestimmungen III a 181; verschiedene Methoden mit Hülfsapparaten zu Bestimmungen der periodischen Fehler Illa 181. Untersuchungen von Kaiser und Dunér Illa 182. Mikroskop mit Glasmikrometer von Vogel Illa 184, Mikroskop mit beweglichen Fadenpaaren IIIa 184: Verwendung eines Bergkrystallprismas III a 184, nöthige Vorsichtsmassregeln dabei III a 184; durch passende Anordnung der Fäden IIIa 185; durch Durchgangsbeobachtungen von Sternen III a 186; Veränderlichkeit derselben III a 186; ihre Elimination IIIa 186; Ursachen der periodischen Fehler IIIa 182 186; Bestimmung der fortschreitenden Fehler IIIa 186. Vermeidung der Fehleranhäufung nach der Mitte III a 187, Passende Fäden im Mikrometer IIIa 188; Bestimmung des Winkelwerths IIIa 190, durch Messung der bekannten Aequatorealdistanzen der festen Fäden mit der Schraube IIIa 190, Berücksichtigung der Instrumentalfehler für Sterne höherer Deklination III a 190, Berücksichtigung der Refraction IIIa 190; Anwendung des beweglichen Fadens IIIa 191; gleichzeitige Bestimmung der fortschreitenden und periodischen Fehler IIIa 192; Bestimmung des Winkelwerths durch Ausmessung einer Distanz bekannter Grössen am Himmel oder terrestrisch III a 193, der Perseusbogen III a 193, Reduction auf den Jahresanfang III a 193, Beispiel IIIa 194; systematische Fehler und solche aus Verzerrung des Gesichtsfeldes III a 194; Beispiel für Messung terrestrischer Objekte IIIa 195; durch Messung der Deklinationsbewegung eines kleinen Planeten gegen einen Fixstern III a 195; Einfluss der Temperatur und Reduction auf eine Normalstellung III a 196; Bestimmung des Winkelwerths der Schraube beim Airy'schen Doppelbildmikrometer III a 212, aus dem beobachteten Durchgang der beiden Bilder eines Sterns durch einen Faden IIIa 213, mittelst eines Fadenmikrometers III a 213, dabei zu befürchtende constante Fehler III a 214; Abhängigkeit des Winkelwerths von der Grösse des gemessenen Bogens IIIa 213 214; durch Ausmessung künstlicher Scheiben und Doppelsterne III a 214. Siehe auch die verschiedenen Methoden unter Heliometer II 10ff.

Schraubenmikrometer Mikrometer IIIa

110; ältere Constructionen von Gacoigne, Aurout und Picard, G. Kirch III a

111; Mikrometer von Huyghens und
Roemer IIIa 112; Parallel-wire und Crosshair Mikrometer von W. Herschel III a

112; Mikrometer von U. Alande III a 113;

Lampenmikrometer von W. Herschel und
J. H. Schröter III a 114; die neueren
Faden- und Positionsmikrometer III 114;

Vortheile der Schraube zu Messungszwecken III a 114; Fehler der Schraube III a 115; sieben verschiedene Typen des Schraubenmikrometers III a 115; praktische Bemerkungen über das Aufziehen der Fäden Illa 116: Vergleichung der verschiedenen Constructionsarten IIIa 117; Lagerung der Schraube und des von ihr bewegten Schlittens IIIa 117; todter Gang IIIa 121; Vorrichtungen zur Registrirung der Stellung der Schraube IIIa 122; der Positionskreis und seine Verbindung mit dem Schraubenmikrometer IIIa 124; Beleuchtungsvorrichtungen für Feld- und Fadenbeleuchtung III a 128; Balkenmikrometer von A. Repsold und Söhne IIIa 132: Mikrometer für grosse Distanzen von A.
Clark III a 133; Duplex-Mikrometer von
A. Grubb III a 133; Deklinograph von
V. Knorre III a 134; Lichtbildmikrometer von Steinheil, Lamont, Stampfer, Littrow, Bidder-Browning, Grubb IIIa 137.

Messungen mit dem Schraubenmikrometer III a 140; Berichtigung des Focus III a 140; Wahl der Beleuchtung III a 140; Einschaltung farbiger Gläser III a 141; Fehler des Instruments und seiner Aufstellung III a 141; Bestimmung des Parallels III a 144; Messung von Rectascensions- und Deklinationsdifferenzen bei ruhendem Fernrohr III a 148; Bestimmung der Coincidenz des beweglichen und festen Fadens III a 148; Einfluss des fehlerhaften Parallels III a 148; Deklinationsdifferenz mit beweglichem Faden Illa 149; Einfluss der Eigenbewegung III a 149, der Strahlenbrechung III a 149; scheinbarer und wahrer Parallel III a 150; Beispiel einer Planetenbeobachtung III a 150; Messung bei gehendem Uhrwerk III a 152, Benutzung beider Schrauben III a 152, Einfluss der Krümmung des Parallels III a 152, Einfluss der Refraction III a 153; Bestimmung des relativen Orts durch Positionswinkel und Distanz III a 153, verschiedene Methoden III a 154. Glasfäden von Bigourdan IIIa 156; Beispiel einer Doppelsternbeobachtung III a 157; Positionsbestimmung von Nebelflecken und Kometen III a 157, Berücksichtigung der Eigenbewegung III a 158, der Strahlenbrechung auf Positionswinkel und Distanz III a 159, auf die aus ihnen abgeleiteten Differenzen in Rectascension und Deklination III a 160, Vereinfachung der Ausdrücke durch Anwendung wahrer Deklination III a 160, Beispiel einer Kometenbeobachtung IIIa 160; Einfluss der Gattung des Lichts IIIa 162; systematische Beobachtungsfehler bei Doppelsternmessungen III a 163; Beobachtungen der Satelliten IIIa 166, Berücksichtigung der Bewegung des Systems, wenn bei ruhendem Fernrohr beide Objecte nicht gleichzeitig beobachtet werden IIIa 166, Abblendung bei schwachen Objecten III a 167. Berücksichtigung der Phase III a 167; Messung auf der Planetenscheibe III a 170, Anwendung auf die Bestimmung der Lage der Marsaxe, Marsifecken IIIa 171ff.; Bestimmung des Durchmessers von leuchtenden Scheiben III a 175, nur rathsam, wenn nicht absolute Werthe verlangt werden IIIa 175; über die Nachtheile des Schraubenmikrometers III a 1926.

Die Anwendung des Schraubenmikrometers auf Spectralbeobachtungen Astrospectroskopie I 378; auf Parallaxenbestimmun-

gen Parallaxe III a 350.

Schwerkraft Einleitung 1 99ff.; die nicht momentane Fortpflanzung als Urseche für die Secularacceleration des Mondes und anormale Bewegung des Merkurperihels Mechanik des Himmels 11 458.

Schwerpunkt, Bewegung des Schwerpunkts Mechanik des Himmels II 286.

Schwingungsdauer, Einfluss der Amplitude Uhr IV 7.

Scintillation IIIb 49; Umstände, welche auf die Stärke des Glitzerns von Einfluss sind IIIb 51; Erklärungsversuch III b 54.

Scintillometer oder Scintilloskope, Flächen-Linien-Kreis-Spectro- und Beugungsscintilloskope Scintillation III h 40 ff.

tilloskope Scintillation III b 49 ft.

Scorpius, der Scorpion Sternbilder III b 396;
Grenzen und Anzahl der dem blossen
Auge sichtbaren Sterne III b 396, Verzeichniss der Doppelsterne III b 397, der
Nebelfische und Sternbaufen III b 398,
der veränderlichen Sterne III b 398 454,
der farbigen Sterne III b 399; Präcessionstabelle III b 399.

Sculptor, der Bildhauer Sternbilder III b 399; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 399; Verzeichniss der Doppelstene III b 399, der Nebelflecke und Sternhaufen III b 400, der veränderlichen Sterne III b 401 452 455, der farbigen Sterne III b 401; Präcessionstabelle III b 401.

Scutum, der Schild des Sobieski Sternbilder IIIb 402; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 402; Verzeichniss der Doppelsterne III b 402, der Nebelflecke und Sternhaufen IIIb 402, der veränderlichen Sterne III b 402, der farbigen Sterne III b 403; Prä-

cessionstabelle III b 403. Secularacceleration s. Beschleunigung. Sehungsbogen Chronologie I 603.

Seismometer Horizontalpendel II 31 39. Sensibilisiren Astrophotographie 1 240. Astrospectroskopie I 389.

Serpens s. Ophiuchus.

Sextants, der Sextant Sternbilder III b 403;
Grenzen und Anzahl der dem blossen
Auge sichtbaren Sterne III b 403; Verreichniss der Doppelsterne III b 403, der
Nebelliecke und Sternbaufen III b 404, der
veränderlichen Sterne III b 405; der farbigen Sterne III b 405; Präcessionstabelle
III b 406.

Sextant Prismenkreis IIIb 17; Spiegelsextant, Beschreibung IIIb 18; Index- oder Collimationsfehler IIIb 19; Excedens IIIb 20; künstlicher Horizont IIIb 22; Einfluss der Neigung am Glashorizont IIIb 22; Prismensextant IIIb 20; Excentricitätsfehler IIIb 23; Bedingungen, die beim Sextanten für die Beobachtungen zu erfüllen sind IIIb 21; Bestimmung des Index- und Excentricitätsfehlers IIIb 24; Einfluss der Stellung der Fernrohraxe bezw. der Spiegelnormalen gegen die Sextantenebene IIIb 24; Bestimmung der Zeit aus gleichen Höhen am Sextanten Zeitbestimmung IV 155.

Siderostat Astrophotographie I 213. Skaphium Zeithestimmung IV 181.

Solstitium Einleitung I 5, Chronologie I 595, Coordinaten 1 657.

Sommerpunkt Chronologie I 595.

Sonne III b 89; Dimensionen, Masse, Dichte, Abplattung III b 59; ältere Annahmen über die Grösse Einleitung 1 48, Universum IV 58; Durchmesser am Heliometer bestimmt Einleitung I 198, Heliometer II 4 5; Bestimmung ihrer Masse Horizontalpendel II 28; Aussehn der Oberfläche, Granulation, Sonne IIIb 62; Flecke, ihre Entdeckung
IIIb 60, von Galilei Einleitung I 75,
Scheiner I 76, Fabricius I 76; Kern, Penumbra, scheinbare und wahre Bewegung Sonne III b 60 63 65; Fleckenzonen III b 65; Periode III b 67, Relativzahlen III b 68; Natur der Flecken III b 69; ihre Beziehung zu anderen periodischen Erscheinungen IIIb 74 86; Fackeln, Poren IIIb 64; die Rotation der Sonne IIIb 65, Gesetz der Verschiedenheit III b 66; Ursache derselben III b 66; Entdeckung der Rotation durch Galilei Einleitung I 75; Corona, IIIb 61 75 ff.; Protuberanzen IIIb 61 78 ff., verschiedene Formen III b 83; die Photosphäre III b 62 74 79; die Chromosphäre IIIb 75; Constitution der Sonne IIIb 61; Temperatur III b 87; Ursache der Sonnen-wärme III b 90, Kosmogonie II 245 f.; Alter der Sonne II 245; Intensität der Sonnenstrahlung, Sonne IIIb 87; Verschiedenheit der Licht-, Wärme- und chemischen Strahlen auf der Oberfläche IIIb 62; Strahlenbrechung auf der Sonne IIIb 87.

Entfernung der Sonne s. Sonnenparallaxe.

Anwendung der Photographie auf die Sonne: Aufnahmen Sonne IIIb 61, Autro-photographie 1 213 ft. 222; im Brennpunkt einer Linse oder eines Spiegels 1 213, mit Vergrösserungssystemen I 215; Entwicklung der Bilder I 210, ihre Ausmessung I 263; Aufnahmen der Corona 1 213 220, des Coronaspectrums I 247, der Fackeln, Flecken, Chronosphäre I 222, des Sonnenspectrums I 240, der Finsternisse I 213.

Anwendung der Photometrie auf die Oberfläche Astrophotometrie I 331; Tabelle dafür I 332; Gesammthelligkeit I 332; die Sonnenflecken und ihre Periode I 360; Helligkeit gegen Sirius Universum IV 58.

Anwendung der Spectroskopie auf die Sonne: das mittere Sonnenspectrum Astrospectreskopie I 303 3944 das ultrarothe und ultraviolette Spectrum I 306; das Spectrum Ger Flecke I 401, der Fackeln I 402, der Chromosphäre I 402, der Protuberanzen I 403, der Corona I 404; Coincidenz mit Spectren irdischer Stoffe I 308: atmosphärische Linien I 399; Bestimmung der Rotation nach dem Doppler schen Princip I 426.

Lage der Sonne im Weltall Universum IV 58, in einem Sternhaufen IV 60. 96, Fotellung der Sonne in ihm IV 96, stellung der Sonne in ihm IV 96, sie steht im dichtesten Theil IV 107, Beweise aus der Sternvertheilung nach Helligkeit und Eigenbewegung IV 100 101; dem Sonnensternhaufen gehören mehr Sterne vom zweiten als ersten Spectraltypus an IV 106; Stellung im Spiralnebel der Milchstrasse IV 122.

Beobachtung der Sonne: zur Bestimmung des Aequinoctiums Meridiankreis
III a 17 20, Redaucensionsbestimmung III b
30 fl., Sternataloge und Sternkarten III b
456 fl.; Bestimmung des Islalbmessers eines
Ringmikrometers Mikrometer III a 74; Ortsbestimmung der Sonnenflecken am Ringmikrometer III a 74; am Roemer'schen
Schraubenmikrometer III a 112; Durch
messerbestimmungen mit dem Heliometer
und Doppelbildmikrometer III a 198, mit
dem Prismenmikrometer III a 198, mit
dem Prismenmikrometer III a 216.

Zur Bestimmung der Polhöhe und Zeit s. Sonnenhöhen. Wahre und mittlere Sonne Zeitbestimmung

IV 132. Sonnenbahn s. Ekliptik.

Sonnenbewegung scheinbare Einleitung I 5. Sonne IIIb 59; Ungleichmässigkeit Einleitung I 5, Zeitbestimmung IV 131; mittlere tropische Bewegung und mittlere wahre Länge IV 134; mittlere siderische Länge, Präession IIIb 6.

Sonnenfinsternisse Finsternisse I 757, Chronologie I 599; Bedingungen des Eintritts Finsternisse I 757 ff.; Unterscheidung der verschiedenen Arten I 758; Annahme kugelförmiger Erde I 760; Einfluss der Abplattung I 764 766; Berechnung der Elemente der Finsterniss I 760; Kepler's Methode I 760; die Bessel'schen und Hansen'schen Theorien I 760 ff.; Berücksichtigung der Strahlenbrechung I 768, der Erhebung des Beobachters über die sphäroidische Erdoberfläche I 769; Beispiel für die Berechnung der Elemente 1 771; Ermittlung der Art der Finsternss I 773; Darstellung der Grenzcurven I 774; Ermittlung der Berührungspunkte I 775 Formeln und Beispiel zur Berechnung der Berührungspunkte und der östlichen und westlichen Grenzcurven I 779; die Curven der grössten Phasen, nördliche und südliche curve I 781; die Bestimmung der End-

punkte der Grenzeurven I 784; Beispiel dazu I 786; Curven der Centralität I 788; Dauer der Totalität I 789; Zeit des Eintritts der einzelnen Phasen I 789; Berechnung des Positionswinkels der Berührungsstellen I 791; Beispiel, erste Näherung I 702, zweite Näherung I 704: Untersuchung historischer Finsternisse I 705; Beispiel dazu I 797; ihre Bedeutung für die Secularbeschleunigung des Mondes Einleitung I 118, Mechanik des Himmels II 455, für die Bestimmung des Mondortes und der Längenbestimmungen Finsternisse I 799 ff.; systematische Fehler der Beobachtung I 799; Beobachtung der Hörnerspitzen nach Positionswinkel und Distanz I 803, nach Rectascensions- und Deklinationsdifferenzen 1 805.

Ihre Beobachtung in früherer Zeit bei Ptolemäus Einleitung I 47. Albategnius

Die Erscheinungen an der Sonne bei totalen Finsternissen Sonne III b 75 ff., Mond IIIa 280; Beobachtung mit dem Spectroskop Finsternisse 1 800.

Sonnengläser Sonne IIIb 61. Sonnengleichung Chronologie I 618. Sonnenhöhen beobachtet am Gnomon Gnomon II 1; zur Bestimmung der Polhöhe Polhöhe III a 455, Berücksichtigung der Bewegung in Deklination III a 455; zur Bestimmung der Zeit, aus einer Höhe Zeitbestimmung IV 142, aus correspondirenden Höhen IV 155, Mittagsverbesserung IV 156, Mitternachtsverbesserung IV 157. Sonnenjahr Einleitung I 4, Chronologie I 605. Sonnenparallaxe Paralluxe IIIa 326, erste Bestimmungen und Annahmen von Aris-Bestimmingen und Annannen von Arristrarch, Eratosthenes Einleitung I 18, Hipparch und Ptolemäus I 47, Capella I 48, von den Arabern I 49, Tycho Brahe I 68, T1, Kepler I 93; Parallarx III a 326; neuere Methoden III a 327, durch Beobneuere Methoden III a 326, durch Beobneuere Methoden III a 327, durch Beobneuere Methoden III a 327, durch Beobneuere Methoden III a 327, durch Beobneuere Methoden III a 327, durch Beobneuere Methoden III a 327, durch Beobneuere Methoden III a 327, durch Beobneuere Methoden III a 328, durch Beobneuere Methoden III a 327, durch Beobne achtungen von Rectascensions- und Deklinationsdifferenzen an einem Orte III a 327; durch Messung von Positionswinkel und Distanz an einem Orte IIIa 329; durch Messung von Deklinationsdifferenzen an verschiedenen Orten IIIa 331; Beobachtung kleiner Planeten IIIa 331, des Mars IIIa 332; durch Beobachtung der Venusdurchgänge III a 333, verschiedene Art der Beobachtungen III a 333 338, Heliometer II 17 22; Entwicklung der For-meln Parallaxe IIIa 333ff., Finsternisse I 825 ff.; frühere Beobachtungen der Durchgänge III a 338; durch Sternbedeckungen durch Planeten IIIa 338; indirekte Methoden, Störungen der Planeten durch die Erde III a 338, aus der Mondtheorie III a 339, Mechanik des Himmels II 458, aus der Sonnentheorie Parallaxe III a 340, aus der Aberrationsconstante und der Lichtgeschwindigkeit III a 341, Aberration I 171. Sonennsystem des Eudoxus Einleitung I 9;

das ägyptische I 17; des Hipparch-Ptole-

maus I 20 ff.; des Alpetragius I 52; des

Copernicus I 57 ff.; des Tycho Brahe I 72 ff.; Entstehung Kosmogonie II 235 237. Eigenbewegung des Sonnensystems II 232, Präcession IIIb 16, Eigenbewegung des Sonnensystems IIIb 92; die verschiedenen Bewegungen der Fixsterne IIIb 93: die Grösse der Sonnenbewegung III b 94; analytische Behandlung des Zusammenhangs zwischen Eigenbewegung der Sterne und der Sonne IIIb 94; Ausdrücke von Airy III b 96; Hypothesen über die Entfernung der Sterne und über die Natur der motus peculiares IIIb 96 102; Bewegung im grössten Kreis IIIb 97; Ausdruck von Argelander IIIb 98; von Bessel-Kobold IIIb 100; Resultate der verschiedenen Methoden III b 103; aus Bewegungen im Visionsradius IIIb 103; unter Annahme, dass die motus peculiares einem bestimmten Gesetz folgen Illb 103, Entwicklung der Formeln IIIb 104; Zusammenstellung der Coordinaten des Apex IIIb 107

Stabilität Einleitung I 120 129.

Sonnentag wahrer, mittlerer Einleitung I 2, Chronologie I 593 594, Zeilbestimmung IV 130 132.

Sonnentafeln Finsternisse I 753, Präcession III b 6, Sonne III b 6α, Zeitbestimmung IV 135.

Sonn enuhren Zeitbestimmung IV 180; Aequatoreal-Horizontalsonnenuhren IV 181.

Sonnenzeit wahre, mittlere Chronologie I 593 594, Zeitbestimmung IV 132; Verwandlung in einander IV 136; in Sternzeit IV 137.

Sonnenzirkel Chronologie I 617. Sonntagsbuchstabe Chronologie I 616.

Spalt am Spectroskop, verschiedene Constructionen Astrospectroskopie I 374.

Spectralapparate s. Spectroskop.
Spectrograph Astrospectroskopic I 365 389.
Spectrometer Astrospectroskopic I 365: s.
Spectroskop.

Specíroskop Attenspetuvoskopie I 364; verbunden mit Spiegelteleskopen I 365; mit Refractoren I 365; das Objectivprisma I 366; Ocularspectroskope I 306 369; Sterns spectroskop oder Spectrometer I 366 372, verschiedene Constructionen I 377; die Scala I 377; das Reversionsspectroskop I 384; Diffractionsspectroskop I 387; Halfprism Spectroskop I 387; Halfprism Spectroskop I 387; Halfprism Spectroskop I 387; Halfprism Spectroskop I 387; der Spectrograph I 380; das Spectroskop ohne Fernroltr I 391; ditterspectrograph Attropholographic I 222; Photographische Spectrographe, verschiedene Constructionen I 240 249 ff.

Spectrum der Sonne Astrosytetroskopie 1 303ff.; der Flecken, Fackeln, Protuberanzen, Corona I 401 ff.; des Nordlichts I 405; des Zodiakallichts I 405; des Mondes I 406; der Planeten I 406; der Kometen I 405; der Sternschnuppen und Metwore J 410; der Fissterne I 410, Astrophotographic I 238, Kosmogonic II 236; der neuen Sterne Astrospectroskopie I 422; der Nebel I 422; die Linienverschiebung I 424 427, Eigenbewegung des Sonnensystems III b 97.

Das secundare Spectrum Fernrohr 1 724

726; das tertiare I 727.

Sphärentheorie des Eudoxus Einleitung I 10ff.; des Calippus I 15; reagirende und revolvirende bei Aristoteles I 16; des Pythagoras I 17; die Harmonie der Sphären I 17.

ren I 17.

Spiegel Astrophotographic I 213 214 229.

Spiegels extant s. Prismenkreis und Sextant.

Spiegelsextant s. Prismenkreis und Sextant. Spiegelteleskop, Geschichte Fernrohr 1703; Theorie 1743; das Gregory'sche, Newton-

Theorie 1743; das Gregory'sche, Newtonsche, Cassegrain'sche 1744; Lagerung der Spiegel, Herstellung der Rohre 1745; verschiedene Formen von Teleskopen 1 746; Herstellung der Spiegel 1747; ihre Vorzüge gegenüber den Refractoren bei photographischen Aufnahmen Astrophotographite 1220.

Spinnefäden, das Einziehen derselben Mikrometer IIIa 116; ihre Beleuchtung, Verschiedene Methoden IIIa 128.

Stationar Einieitung I 10.

Staubfälle Kometen und Meteore II 106.

Stellara Sternschungenschwärme K

Stellare Sternschnuppenschwärme Kometen und Meteore II 200.

Sternaichungen Universum IV 60 71 73 ff., 88 f.

Sternbedeckungen Finsternisse I 806; Zone des Himmels für geocentrische Bedeckungen I 806; Berücksichtigung der Parallaxe I 806; Perioden für denselben Stern I 806, Formeln für die Berechnung nach Bessel; aquatoreale Coordinaten I 807; Ortszeit des Ein- und Austritts I 807; Positionswinkel dafür I 808; Formeln nach Hansen, ekliptikale Coordinaten I 808; Anleitung zur systematischen Beobachtung nach Vorausberechnung und graphische Darstellung I 800: Bedingungsgleichungen zur Ermittlung der Elementencorrectionen des Mondes I 809 ff.; Correctionen der Mondparallaxe und des Mondradius für die Dauer einer totalen Mondfinsterniss I 811; für längere Zeiträume I 811; Bedingungsgleichungen nach Bessel für die Correction der Gestalt des Erdkörpers I 811 812; Bedeckungen von Planeten, Berticksichtigung der Abplattung und unvollständigen Beleuchtung I 812.

Ihre Benutzung zur Bestimmung der Mondparallaxe Purallaxe IIIa 321, der Sonnenparallaxe IIIa 338, einer Atmosphäre des Mondes Mond IIIa 280; Kleben des Sterns am Mondrand IIIa 281.

 chung der Sterngrössen nach Herschel und Struve-Argelander IIIb 1231, Ausdelnung der einzelnen Sternbilder, Verzeichniss der in ihnen enthaltenen bekannten Doppelsterne, Nebelflecke, Sternhaufen, farbigen und veränderlichen Sterne, der dem blossen Auge sichtbaren Sterne, s. unter den Namen der einzelnen Sternbilder.

Sterncataloge, ältere von Aratus, Timocharis, Hipparch, Ptolemaus IIIb 455, Einleitung I 19 33; verschiedene Ausgaben des Ptolemäi'schen Catalogs Sterncataloge und Sternkarten IIIb 455; die Cataloge vor Erfindung und Anwendung des Fernrohrs IIIb 455 456, Einleitung I 72; Flainsteed's Catalog Sterncataloge IIIb 456; Fundamental- und Zonencataloge III b 456; die Maskelyne'schen Sterne IIIb 457; Bessel's Tabulae Regiomontanae und Bradley's Fundamenta Astronomiae IIIb 458, die Neuausgabe der letzteren von Auwers IIIb 460; Wolfers' Tabulae Reductionum IIIb 458; die Fundamentalcataloge von Wolfers, Leverrier, Newcomb, Auwers (Astronomische Gesellschaft) IIIb 459; das Berliner astronomische Jahrbuch III b 461, die Connaissance des Temps, der Nautical Almanac and astronomical Ephemeris IIIb 462, die American Ephemeris and nautical Almanac IIIb 464; Abweichungen der in den 4 Jahrbüchern gegebenen Sternörter IIIb 464; die Pariser Conferenz 1896 zur Beschaffung gemeinsamer Grundlagen III b 464; der neue Newcomb'sche Fundamentalcatalog III b 466; Vertheilung der Fundamentalsterne über den Himmel III b 467 ff.; die übrigen zum Theil eingegangenen Jahrbücher IIIb 469; angeschlossene Cataloge, Reductionsformeln IIIb 470; systematische Unterschiede der Cataloge III b 471; das mittlere, südliche System und das der Astronomischen Gesellschaft, das System L. Boss IIIb 473; Berichtigungen zu Catalogen IIIb 474; compilirte Cataloge III b 475; das Unternehmen der Berliner Akademie zur Herstellung eines Gesammtcataloges IIIb 477; Verzeichniss aller Cataloge Illb 478ff. - Einleitung I 157 162.

Sterncoordinaten Coordinaten I 655 ff.; ihre Bestimmung s. die Specialartikel, auch Einleitung I 73.

Sterngrössen Einleitung II, Astrophotometrie I 322 343; Beziehung zwischen der Differenz der Helligkeit und Grösse I 323 349; Zahl der Sterne nach Grössenclassen I 349. S. auch Sternhelligkeit.

Sternhaufen III b 524; Zahl und Catalogisirug III b 525; Classen derselben nach Herschel III b 525; mikrometrische Vermessung III b 526 527; photographische Aufnahmen III b 527; ihre Anordnung und Vertheilung im Raum Universum IV 50 111 ff., als Folge von Anziehungskräften IV 121; der Sternhaufen der Sonne IV 96; ihre Entstehung Konnogenie II 235. Sternhelligkeit Astrophotometrie I 322 343; Cataloge mit Schätzungen der Helligkeit I 343. Messungen I 344: Vergleichung der Potsdamer Photometrischen Durchmustering mit der Harvard Photometry, den Oxforder und Bonner Beobachtungen I 345; Vergleichung der Helligkeiten nach Ptolemäus, Al Süfi, Argelander, Heis, Behrmann, Houzeau, Pickering I 347, nach Struve, Bonner Durchmusterung, Gould, Pickering I 347, nach Seidel, Wolff, Peirce, Pickering I 348, der teleskopischen Sterne nach Herschel, Struve, Argelander I 348, Sternbilder IIIb 123; Helligkeit der verschiedenen Grössenclassen Astrophotometrie I 349; verglichen mit der Normalkerze I 349; Gesammthelligkeit I 349; Schätzungen nach Stufen I 324, Messungen an Photometern I 307 ff.; Extinction des Lichtes in der Atmosphäre I 325, Tabelle dafür I 329.

Helligkeitsschwankungen, s. Veränder-

liche Sterne.

Sternkarten IIIb 455 513; Karten der dem unbewaffneten Auge sichtbaren Sterne IIIb 514, Sternbilder IIIb 112; Karten schwächerer Sterne Sterncataloge und Sternkarten III b 515; Ekliptikalkarten III b 516, übersichtliche Zusammenstellung derselben IIIb 518; die Bonner Durchmusterung III b 519; die Cordoba Durchmusterung IIIb 521; die photographische Himmelskarte IIIb 522.

Sternnamen Sternbilder IIIb III.

Sternparallaxen Parallaxe IIIa 341; Maximum und Minimum derselben III a 342; Anwendung auf ekliptikale und äquatoreale Coordinaten III a 343; Zusammenhang mit der Aberration IIIa 343; günstigste Bedingungen für die Beobachtung III a 344; Schwierigkeit der Bestimmung aus direktem Einfluss auf die Coordinaten IIIa 345; Rectascensionsbestimmungen des Polar-Deklinationsbestimmungen von γ Draconis, α Centauri III a 346; Beobachtung von Circumpolarsternen in beiden Culminationen oder von Sternpaaren in 12 Stunden Abstand IIIa 346 f.; Differentielle Methoden IIIa 349; Berechnung des Einflusses der Parallaxe auf die relativen Coordinaten III a 349; Methode der Rectascensionsdifferenzen im Meridian III a 350; Methode durch Messung von Positionswinkel und Distanz mit Mikrometern III a 350; mit Heliometern III a 350 ff.; günstigste Bedingungen III a 353. - Heliometer II 16.

Sternschnuppen Kometen und Meteore II 49: sporadische, systematische II 179: Zusammenhang mit Kometen, Metcoren II 51 112 ff. 200 208; Bestimmung der Höhe II 110 132 ff.; ihre Bahnen am Himmel II 113; Schweif II 119; äussere Erscheinung II 120; teleskopische II 120 124; Zahl der von einem Beobachter gesehenen II 121; Zahl und Helligkeit der beobachteten II 122, nach Monaten und Stunden

geordnet II 124; Dauer der Sichtbarkeit II 125; anomale Bewegungserscheinungen Il 126, Einfluss der Bewegung der Luft II 127, der Bewegung der Erde II 127 ff., Anziehung der Erde II 127 ff., Luftwiderstand II 127 ff. 148; unregelmässige Formen II 131: Bestimmung der Geschwindigkeit II 147, Tabelle der Geschwindigkeiten II 167 168, Abhängigkeit der Geschwindigkeit von der Tiefe des Eindringens in die Atmosphäre II 154, Eindringens in die Atmospinare II 154, Gesetz von Didion, Robert II 154; Vertheilung nach Zeit und Raum II 158; stündliche Variation II 159, jährliche II 160, azimuthale II 162, ferklärung für die Variationen II 163 ff.; der Radiant II 164 178, Verzeichniss der Radianten II 181; elliptische Bahnen II 169; Theilnahme an der Bewegung des Sonnensystems II 170; Zenithattraction II 175 187; die Sternschnuppenschwärme II 177, die Lyraiden, Perseiden II 184, die Leoniden II 114 185, die Andromediden oder Bieliden II 185, andere Schwärme II 185; Bestimmung der Bahnen II 190; Beispiel II 104; Bestimmung des Radiationspunktes aus den Elementen der Bahn II 198; Beispiel II 199; stellare Schwärme II 200 ihre Bahnbestimmung II 202; hyperbolische Geschwindigkeit II 200; über den Zusammenhang mit Kometen II 208 ff., die Lyraiden, Perseiden, Leoniden, Andromediden II 211 212; Verzeichniss von Kometenbahnen und zugehörigenRadianten II 213 ff.; Einfluss der Störungen durch einen Planeten auf die Bahn eines Sternschnuppenschwarmes II 219 f.; Bemerkenswerthe Aehnlichkeiten zwischen berechneten Radianten von Kometenbahnen und beobachteten Sternschnuppenradianten II 220; Ursprung II 222 ff.; Einleitung I 161; Spectra Astrospectroskopic I 410, Kometen und Meteore II 117; photographische Aufnahmen Atsrophotographie I 227 228.

Sternspectraltypen s. Astrospectroskopie. Sternsysteme s. Doppelsterne, Sternhaufen. Sterntafeln Chronologie I 602.

Sternvertheilung Untersuchungen Michell Universum IV 59, Höffler, Herschel IV 60, W. Struve IV 61 ff.; Zahl der Sterne IV 64; das Material zur Un-tersuchung der Vertheilung IV 72; die Bonner, die südliche, die Cordoba Durchmusterung IV 72, die photographische Unzuverlässigkeit der letzteren wegen abnehmender aktinischer Wirkung mit zunehmender galaktischer Breite IV 72; die Sternaichungen Celorias IV 73; die ekliptikalen Karten IV 74, über die Vollständigkeit der letzteren IV 74 f.; die Sternaichungen der beiden Herschel IV 75; die photometrischen Beobachtungen IV 76 ff.; die Untersuchungen von Seeliger IV 78 ff.; die Anzahl der Sterne nimmt langsamer mit der Sterngrösse zu als gleichmässige Vertheilung fordert IV

87, die Verlangsamung um so stärker je grösser die galaktische Breite ist IV 87; graphische Darstellungen von Schiaparelli, Stratonoff, Houzeau IV 92 f.; die mittlere Sterndichte des Raumes IV 93: die Mehrzahl der helleren Sterne gehört einem die Sonne einschliessenden Sternhaufen an IV 100; die Vertheilung der verschiedenen Spectraltypen IV 101; die Spectralclassen von Pickering IV 102; von Vogel IV 103; die Vertheilung in Verbindung mit der Eigenbewegung IV 104: die Sonne steht im dichtesten Theil des Sternhaufens IV 107: Beziehung zu den Parallaxen IV 108; in der Milchstrasse überwiegen die Sterne des ersten Typus (Siriussterne) IV 109: Beziehung zwischen Sterntypus und Eigenbewegung IV 109; die graphische Darstellung der Vertheilung der Spectraltypen von Stratonoff IV 109; Vertheilung der rothen Sterne IV 110, der Wolf - Rayet'schen Sterne IV 110, der neuen Sterne IV 111, der Nebelflecke und Sternhaufen IV 111 ff. s. auch Milchstrasse und Universum.

Sterntag Einleitung I 2, Chronologie I 593, Coordinaten I 663, Zeitbesümmung IV 130; nicht constant IV 130; Beginn desselben IV 131; Einfluss der Nutation IV 131.

Sternwarten IIIb 530; den verschiedenen Aufgaben entsprechend verschieden eingerichtet IIIb 531; ältere Sternwarten auf hohen Thürmen (Mannheim) IIIb 531; auf Bergen (Seeberg) III b 531; moderne möglichst niedrig, zugleich Unterrichtsinstitute (Berlin) IIIb 531; Uebersicht der nöthigen Räume IIIb 531; Forschungsinstitute (Pulkowa) III b 533; nothwendige Ausrüstung IIIb 535; Beschreibung der Pulkowaer Sternwarte IIIb 537; Aufstellung der Instrumente im Freien IIIb 538; die Fundamente IIIb 539; Leiden, Strassburg IIIb 540; Heidelberg-Königstuhl III b 541 546; Miren 111 b 542; Bergsternwarten III b 543; astrophysicalische und photographische Observatorien (Potsdam) IIIb 544.

Die Sternwarten des Alterthums in Meragha und Samarkand, Einleitung I 531: spätere Sternwarten, auf der Insel Hveen I 67, in Kassel I 72, Danzig, Paris, Kopenhagen I 97, Greenwich, Berlin I 98.

Sternzeit Chronologie I 593, Coordinaku I 663, Zeit IV 130; Verwandlung in wahre Zeit IV 137, in mittlere Zeit IV 137; im mittlere Zeit IV 137; im mittleren Mittag IV 137.

Stillstand Einleitung I 10.

Störungen, Theoretischer Theil Mechanik des Himmels II 278; Kräftefunction, Potentialfunction, Potential II 284; Bewegung des Schwerpunkts II 286; Princip der Flächen II 286; die unveränderliche Ebene II 288; Fhaltung der lebendigen Kraft II 288; das Hamilton'sche Princip II 289; Lagrange's Form der Bewegungssfleichungen II 200; Differential-

gleichungen d. Bewegung in rechtwinkligen Coordinaten gestörter und störender Körper II 291; die Störungsfunction II 292 367; Differentialgleichungen der Bewegung in polaren Coordinaten II 202; die Störungen II 295 297; Differentialgleichungen für die Variation der Elemente, Constanten II 298; osculirende Elemente II 298; Darstellung der Coordinaten als Functionen der Elemente II 299; Gauss-sche Constante II 302 397; Masse, Durchmesser, Beschleunigungsconstante für die Körper des Sonnensystems II 303; die Bewegung in der Hyperbel und Ellipse II 306; elliptische Bahnen, Entwicklungen nach der mittleren Anomalie II 307; nahe parabolische Bahnen II 312; Berechnung der Coordinaten u. Geschwindigkeiten II 314; Transformation der Differentialgleichungen für die Variation der Elemente II 317; Variation der Elemente, Einführung der störenden Kräfte II 319; für grosse Excentricitäten und für sehr kleine Excentricitäten und Neigungen II 324; die Störung der Perihelzeit in der parabolischen Bewegung II 327; Unterscheidung der speciellen und allgemeinen oder absoluten Störungen II 330; specielle Störungen in rechtwinkligen Coordinaten, Bond-Encke'sche Methode II 331.

Mechanische Quadratur II 332, Mechanische Quadratur II 618, Aufgabe derselben II 618, Interpolationsformeln II 618; summirte Reihen II 622; Hullstafeln II 632: Beispiele II 646; Bestimmung der Coefficienten von Reihen durch mechani-

sche Quadratur II 638.

Beispiel zur Berechnung der Störungen in rechtwinkligen Coordinaten Mechanik des Himmels II 336: Uebergang auf osculirende Elemente II 342, Beispiel II 343.

Störungen in polaren Coordinaten, Hansen-Tietjensche Methode II 343, Hulfstafel dazu II 347, Beispiel II 351; Uebergang auf osculirende Elemente II 356; Vergleichung der Störungen nach beiden Methoden II 357; Uebergang auf ein anderes Störungsintervall II 357, Beispiel II 350; Vergleichung desselben mit der Rechnung nach den beiden andern Methoden II 366;

Berechnung d. allgemeinen Störungen II 366; Vorbemerkungen II 366; Entwicklung der störenden Kräfte II 367; kleine Neigungen und Excentriciäten II 370; Entwicklung d. negativen ungeraden Potenzen der Entfernung der beiden Himmelskörper II 372; Entwicklung der Störungsfunction für Planetenbewegungen II 379; Variation der Elemente II 383; Stabilität des Weltsystems II 386 33; Secularsförungen in Excentricität, Neigunge, Knoten und Perihel II 390; Stabilität der Bewegungen II 393; Lexell'scher Komet II 394; Secularsförungen in Excentricität, Neigunge, Knoten und Perihel II 390; Stabilität der Bewegungen II 393; Lexell'scher Komet II 394; Secularsbörung des Merkurperi-

hels II 396; Secularstörung der mittleren Länge II 596; die Gauss'sche Constante II 397; periodische Störungen, Glieder langer Periode II 398, Beispiel, Jupiter-Saturn II 401 403; Argumente langer Periode in den Planetenbewegungen II 402; die Uranus-störung durch den Neptun II 403; Bemerkungen über die Störungen zweiter l'otenz der Massen II 404; Störungen in polaren Coordinaten II 405; ideale Coordinaten, Hansen's Methode d. Störungsrechnung II 415; Differentialgleichungen für Länge und Radiusvector II 418; Entwicklungen der Störungen in Breite II 423; Entwicklung der Störungsfunction für grosse Excentricitäten und Neigungen II 426; osculirende und mittlere Elemente

429; Proportionalcoordinaten II 431. Theorie der Bewegung der Satelliten Entwicklung der Störungsfunction II 436; Entwicklungen v. Laplace II 437 Anm.; Integration der Differentialgleichung für Länge und Radiusvector II 440, für Breite II 444; elementäre und hyperelementäre Glieder II 446; Secularbewegungen von Knoten und Perigeum II 447; Secularacceleration II 449; die Entwicklungen von Delaunay, Airy, Weiler, Bohlin, Hansen II 451; die Secularacceleration des Mondes II 454, die historischen Finsternisse II 455, Einfluss der Ebbe und Fluth II 456, des Niederschlagens v. kosmischem Staub II 456, einer sich nicht momentan fortpflanzenden Schwerkraft II 458; die parallactische Ungleichheit II 459; Bestimmung der Sonnenparallaxe II 459; Einfluss der Secularänderung der Ekliptik auf die Lage der Mondbahn II 460, der Abplattung der Erde II 460; die Coordinaten d. Satelliten in Bezug auf die Hauptplaneten I! 460; die Bewegung des siebenten Saturnssatelliten II 464; die Bewegung der Jupiterssatelliten II 468.

Die Störungen in der Bewegung der Kometen II 476, Kometen und Metcore II 90, der Sternschnuppenschwärme II 187; die Bewegung der Kometen bei grosser Annäherung an einen Planeten Mechanik des Himmels II 479, Kometen und Meteore II 90, Beispiel II 91 481; Uebergang auf jovicentrische Elemente II 91 482; Beziehung zwischen den Elementen vor und nach der Störung, Tisserand'sches Criterium II 93 Seeliger's Ableitung Mechanik des Himmels II 482; anomale Bewegungserscheinungen II 484; der Enckesche Komet II 485 492; Bewegungswiderstände II 487.

Absolute Bahnen, Gylden'sche Methode

II 493; intermediäre Bahnen II 494, periplegmatische Curven, Diastema, Anastema II 494; die Aufstellung der Differentialgleichungen II 495; Zerfällung der Bewegungsgleichungen in Differentialgleichungen für die intermediäre Bahn und die Störungsgleichungen II 499; die Differentialgleichungen für die intermediäre Bahn des Mondes II 501, Integration derselben II 505; Entwicklung der störenden Kräfte 11 512; die Störungen II 514; die Convergenz der Entwicklungen II 519. S. auch die Uebersichten in der Ein-

leitung I 122-148, 158-160. Störungsfunction s. Störungen.

Strahlenbrechung IIIb 548; Grundgesetze IIIb 548: das vereinfachte Refractionsintegral IIIb 552; Einfluss auf Finsternisse und Sternbedeckungen III b 552, Finsternisse I 768; Beziehung zwischen dem Brechungsexponenten und Radiusvector Strahlenbrechung IIIb 552; Zusammenhang zwischen der Dichte d. Luft und dem Brechungswinkel III b 553. Einfluss des Wasserdampfes auf die Strahlenbrechung IIIb 554; Beziehung zwischen dem Radiusvector, der Dichte, dem Drucke und der Temperatur der Luft III b 554; die Constitution der Atmosphäre III b 557; die Bessel'sche Hypothese IIIb 557, die Annahme von Newton, Laplace IIIb 558, von Gylden, Ivory, Oppolzer IIIb 559; Tabellen für die Temperaturabnahme und Jahres-Schwankungen nach den letzten drei IIIb 561; Vorzug des Oppolzer-schen Gesetzes III b 564; Behandlung des Refractionsintegrals IIIb 564; die Constante der Refraction IIIb 566; das Hauptglied der Refraction und dessen Integration III b 567; die Correctionsglieder IlIb 572; die Bessel'sche Form der Tafeln III b 576; Störungen der Refraction IIIb 577, die Schichtenneigungen IIIb 577, Zenithrefraction IIIb 578, Druckgefälle IIIb 578, Temperaturgefälle IIIb 578, die Saalrefraction III b 580; Resultate aus den Greenwicher und Königsberger Beobachtungen III b 582; die Untersuchungen von Nyrén IIIb 583; Bedenken gegen Verwendung der in üblicher Weise angebrachten inneren und äusseren Thermometer IIIb 585; das Aspirationsthermometer am Objectiv IIIb 587; Aenderungen in der Constitution der Atmosphäre III b 587; die Temperaturumkehr IIIb 588; Einfluss der Dispersion der Luft IIIb 589; Annahme einer anderen Constante für photographische Aufnahmen IIIb 591; die Bestimmung der im Refractionsausdruck auftretenden Constanten aus den Beobachtungen IIIb 592; Beobachtung von Zenithdistanzen in oberer und unterer Culmination IIIb 595; Gewicht der Bedingungsgleichungen III b 597; über die Wahl der Refractionsconstante und Temperaturen, die Münchener Beobachtungen III b 600.

Einfluss der Strahlenbrechung auf die Mikrometerbeobachtungen s. Mikrometer, auf die Beobachtungen der Zenithdistanzen s. Almucantar, Meridiankreis, auf die photographischen Aufnahmen der Sternörter s. Astrophotographie; die Strahlenbrechung auf der Sonne Sonne IIIb 86,

Aeltere Untersuchungen: der Araber (Alhazen) Einkitung 1 522, Tycho I 67, Wilhelm von Hessen I 72, Cassini und Picard I 117, Tob. Mayer, Bradley I 117.

Strahlensysteme Mond IIIa 274. Stromstärke Längenbestimmung II 256.

Stromunterbrecher Registrirapparate IIIb 41; von Krille IIIb 42, von Knoblich IIIb 42, von Hansen IIIb 43.

Stromzeit Längenbestimmung II 250 257. Stufe bei Helligkeitsschätzungen Astrophoto-

metrie I 324. Stunde, Tages- Nacht- Aequinoctial- Temporal-Einleitung I 3.

Stundenwinkel Coordinaten I 656; seine Berechnung für die grösste oder kleinste Höhe eines Sterns mit eigener Bewegung I 661; für den Eintritt in den ersten Vertical I 667; für die grösste Digression I 668; für Auf- und Untergang Aufgang I 430; Berücksichtigung der Refraction I 432 s. auch Zeitbestimmung.

Synodisch Einleitung 17. Chronologie I 597. Systematische Fehler Theilfeller IIIb 602. Systematische Unterschiede Helioneter III 17 22 23. Mikrometer IIIa 163. Periönliche Gleichung IIIa 368 ft., Sternectuloge IIIb 471. Strakleibrechung IIIb 595 ft.

Syzygien Einleitung 17, Chronologie 1597. Syzygien tafeln Chronologie 1598, Finsternisse 1753 ff.

Т

Tafel der Extinction des Lichts Astrophotometrie I 329; der Algolsterne I 351; der Lyrasterne I 352; der Mirasterne I 354; der Orionsterne I 355; der neuen Sterne I 359; der halben Tagebogen Aufgang I 434; zur Berechnung des Azimuths des Polarsterns Azimuthbestimmung 1 440; zur Bestimmung mehrfacher Lösungen von z' bei der Ellipse Bahnbestimmung I 483; der Kometen mit kurzer Umlaufszeit Kometen und Meteore II 70 71; der Bahnnähen zwischen elliptischen Kometenbahnen und grossen Planeten II 94; der Radianten der Kometen und Meteore II 213; zur Berechnung der speciellen Störungen Mechanik des Himmels II 335 348 und Mechanische Quadratur II 632; zur Berechnung der Strahlenbrechung bei Mikrometerbeobachtungen Mikrometer IIIa 87: zur genäherten Einstellung eines Sterns in Azimuth und Zenithdistanz nahe dem Meridian Polhöhe III a 447; zur Berechnung der Polhöhe aus Beobachtungen des Polarsterns IIIa 452 453; Verzeichniss der Doppelsterne, Nebelflecke und Sternhaufen, veränderlichen und farbigen Sternen nach Sternbildern geordnet Sternbilder IIIb 116-455; der Sterncataloge Sterncataloge und Sternkarten IIIb 478 bis 511; Tafel zur Berechnung der wahren und mittleren Anomalie, Barker'sche Tafel, Anhang IV 190-237; wenn sich die wahre Anomalie 180° nähert IV 238; zur Auflösung der Lambert'schen Gleichung, Encke's

Tafel IV 240; zur Berechnung der Parallane für Kometen- u. Planetenbeobachungen IV 244–261; für die Anzahl der Tage vom Anfang des Jahres IV 263; zur Verwandlung der Decimaltheile des Tages in Stunden, Minuten, Secunden IV 264; zur Verwandlung der mittleren Zeit in Sternzeit IV 265; zur Verwandlung der Sternzeit IV 265; zur Verwandlung der Sternzeit im mittlere Zeit IV 265; zur Reduction d. Circummeridianhöhen IV 268–293; Verzeichniss der Bahnelemente der Komern IV 296–321; der kleinen Planeten IV 344–347; der grossen Planeten IV 346–347.

Tag, astronomischer, bürgerlicher, wahrer, mittlere Sonaentag, Sterratag Einleitung 12. Chronologie 1 593 594, Coordinaten 1 663, Zeitbestimmung IV 130; Verschiedenheit IV 131; das Verhältniss derselben zu einander IV 131.

ander IV 131. Tagebogen Einleitung I 2. Aufgang I 430; Tafel dafur I 434.

Taurus, der Stier Sternbilder III b 406; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 406; Verzeichniss der Doppelsterne III b 406, der Nebelflecke und Sternhaulen III b 409, der veränderlichen Sterne III b 410, der farbigen Sterne III b 410; Präcessionstabelle III b

Telescopium, das Femrohr Sternbilder IIIb 411; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 411; Verzeichniss der Doppelsterne IIIb 411, der Nebelfiecke und Sternbaufen IIIb 412, d. veränderlichen Sterne IIIb 412 454, der farbigen Sterne IIIb 413; Präcessionstabelle IIIb 413.

Teleskop Acquatoreal I 189, Fernrohr I 700. Temporalstunden Einleitung I 3.

Tethys s. Planeten, Saturn III a 428.
Theilfehler IIIb 602; systematische oder periodische und zufällige IIIb 602; Methoden zur Bestimmung von Bessel IIIb 605, Nyrén IIIb 606, Kaiser IIIb 607, Hansen IIIb 610; Vermeidung der Anhäufung der Fehler bei der Bestimmung an IIIb 603; ihre Bestimmung an den Scalen des IIeliometers Heliometer II 20; ihre Elimination durch Versetzen des Kreises Universalisativument IV 45.

Theodolith s. Azimuthalinstrument.

Thierkreis Einleitung I 3; Eintheilung in Zeichen I 19.; s. auch Ekliptik.
Titan s. Planeten, Saturn IIIa 428.

Titania s. Planeten, Uranus III a 428. Titius'sches Gesetz Planeten III a 385. Toledanische Tafeln Einleitung 153.

Transmissionscoëfficient Astrophotometrie

Trepjidation Einkeltung 1 15 49 51 54: Triangulum, das Dreicek Sternbilder IIIb 413; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 413; der Nebelflecke und Sternhaufen IIIb 414, der veränderlichen Sterne IIIb 415, der farbigen Sterne IIIb 415; Präcessionstabelle | IIIb 415.

Triangulum australe, das südliche Dreicek

Sternbilder IIIb 415; Grenzen und Anzahl
der dem blossen Auge sichtbaren Sterne

IIIb 415; Verzeichniss der Doppelsterne

IIIb 415; der Nebelflecke und Sternhausen

IIIb 416, der veränderlichen Sterne IIIb
416 453, der farbigen Sterne IIIb 416;

Präcessionstable III b 416.

Triquetrum Gnomon II 3.

Tropischer Umlauf Einleitung I 20, Chronologie I 594.

Tucana, der Tukan Sternbilder IIIb 416; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 416; Verzeichniss der Doppelsterne IIIb 417, der Nebelflecke und Sternhaufen IIIb 418, der veränderlichen Sterne IIIb 418, der farbigen Sterne IIIb 418; Präcessionstabelle IIIb 418.

T

Uhr, Pendeluhr, erste Anwendung zur Beobachtung Einleitung 1 72, Uhr IV 1; einzelne Theile und ihre Wirkungsweise IV 2; Geschichtliches IV 3; die Schwingungsdauer abhängig von der Amplitude IV 8; Cycloidenpendel IV 9; Aufhängung des Pendels IV 10; Compensation gegen Temperatur IV 11, Holzpendel, Rostpendel, verschiedene Arten IV 12. Hebelcompensationspendel und Quecksilbercompensation IV 14, Riefler'sche Pendel IV 15: Compensation gegen Luftdruck, verschiedene Constructionen zur Compensirung oder Aufhängung im luftdichten Raum IV 16 ff.: Hemmung IV 20; günstigste Bedingung für ihre Wirkung IV 21; verschiedene Arten IV 21 ff.; der Antrieb IV 32 ff.; die Controle durch Zeitbestimmung, durch Vergleichung mit sich frei bewegenden Pendeln IV 41: s. auch Chronometer I 625.

Uhrcorrection s. Uhrstand.

Uhrgang Chronometer I 635, Meridiankreis Illa 13, Zeilbestimmung IV 139; abhängig von Temperatur, Barometer, Feuchtigkeit IV 139.

Uhrstand Chronometer I 635, Längenbestimmung II 259, Meridiankreis III a 4 12, Zeitbestimmung IV 139. Uhrvergleichung, durch Coincidenzen

Uhrvergleichung, durch Coincidenzen

Lüngenbestimmung II 252; durch Signale

II 255; mit besonderer Coincidenzuhr II
261.

Uhrwerk beim Aequatoreal I 189; beim Heliostat Astropholographie I 216; beim photographischen Fernfohr I 230.

Umbriel s. Planeten, Uranus IIIa 430.

Umlaufszeiten siderische, synodische, drakonitische Einleitung 1 7, anomalistische I 8, zodiakale I 10, tropische I 20, Chronologie I 594.

Ungleichheit Einleitung I 14 21 ff. 68, Mechanik des Himmels II 458 ff.; s. auch

Störungen.

Universalinstrument IV 41 44, Altazimuth I 204 ff., Meridiankreis III a 1, Methode der kleinsten Quadrate III a 35: Beschreibung IV 44: Umlegevorrichtung IV 45; Bedingungen, denen das Instrument ge-Umlegevorrichtung IV 45; nügen muss IV 46; Berichtigung d. Axen IV 46, des Collimationsfehlers IV 47: Einfluss der übrig bleibenden Instrumentalfehler, bei centrischem Fernrohe IV 48; Azimuthal-Höhenaxe IV 48; Berücksichtigung excentrischer Lage des Fernrohrs bei Bestimmung des Collimationsfehlers IV 51: Messung von Zenithdistanzen IV 52: Bestimmung des Zenithpunkts IV 52; Berücksichtigung der Veränderung der Stellung der Mikroskopträger IV 53. die Alhidadenlibelle IV 53

Bestimmung des Azimuths I 435 ff., des Azimuths zur Einittlung der Zeit Zeitbestimmung IV 174; der Polhöhe Polhöhe IIIa 454 ff., Berücksichtigung der Krümmung des Parallels IIIa 471; der Zeit Zeibeztimmung IV 140 ff. Berücksichtigung ungenauer Kenntniss des Zenithpunkts IV 150; Beobachtungen zur Bestimmung der Nutationsconstante Nutation

IIIa 306.

Universaltransit IV 54; Beschreibung IV 55; Bestimmung der Zeit aus Beobachtungen zweier Sterne in gleichen Azimuthen IV 56, Zeitbestimmung IV 152 158; Bestimmung des Azimuths IV 56 Bestimmung der Polible Polible III a 477.

Universum IV 57: historische Entwicklung der Ansichten darüber IV 52/. Kant IV 58. Lambert IV 59: Systeme verschiedener Ordnung, ihre Ausdehnung IV 59. Michell's Ansicht über die Zusammengehörigkeit der Sterngruppen IV 60: W. und J. Herschel, die Sternaichungen IV 60: Ansichten über die Gestalt des Milchstrassensternhaufen und seine Constitution IV 61: W. Struve's Etudes d'Astronomie stellaire IV 62: die Milchstrasse IV 65: mittlere Diehte der Materie im Weltraum IV 96 123; Annahme anderer Raumformen für die Vorstellung des Universums IV 124 ff. s. auch Kosmogonie, Milchstrasse.

Unruhe der Luft, Verschiedenheit des Einflusses auf directe und photographische
Spectralbeobachtungen Astrospectroskopie I
300 39L

Untergang s. Aufgang.

Uranus, seine Entdeckung Einleitung I 152.
Urnegelmässigkeit seiner Bewegung I 159.
Medamit des Himmels II 403; die mittlere
tägliche siderische Bewegung II 402; Beziehung derselben zu der des Saturn, Jupiter, Neptun II 403; ältere Beobachtungen Planeten III a 429; Durchmesser, Abplattung, Masse III a 430; Flecken und
Streifen, Rotation III a 430; tickläufige
Bewegung, Neigung der Rotationsave
Kosmogonie II 240 fi.; seine Helligkeit
Planeten III a 357 429, Astrophotometrie
I 339; Alluedo I 340, Planeten III a 385

sein Spectrum Astrospectroskopie 1 407; die Satelliten Planeten IIIa 430, ihr Durchmesser, die Neigungen ihrer Bahnebenen IIIa 430, ihre Albedo Astrophotometrie I

Urnebel, Urstoff Kosmogonie II 230 231.
Ursa major, der grosse Bär Sternbilder IIIb
419; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 419; Verzeichniss der Doppelsterne IIIb 419; der Nebelflecke und Sternhaufen IIIb 422, der veränderlichen Sterne IIIb 425, der farbigen Sterne IIIb 427; Präcessions-

tabelle IIIb 427.

Itabelle IIIb 427.

Itabelle minor, der kleine Bär Sternbilder IIIIb 427; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 428; Verzeichniss der Doppelsterne IIIb 428, der Nebelflecke und Sternhaufen IIII 429, d. veränderlichen Sterne IIIb 429, der farbigen Sterne IIIb 429; Fräcessionstabelle

v

Variation der Constanten Einleitung I 132, Mechanik des Himmels II 296 317 ff. 360 383.

- der Distanzen Einleitung I 150.

- des Mondes Einleitung 1 49 52 68 ff., Mechanik des Himmels II 440.

 der Sternselnuppen, die stündliche Kometen und Meteore II 150, die jährliche II 160, die azimuthale II 162; die Erklärung dafür II 163.

Variatio săcularis Prăcession IIIb 12.

Vela s. Argo.

III b 430.

Venus Planeten III a 384 393; Irradiation III a 385; Helligkeit IIIa 387, Astrophotometrie I 338; Albedo I 340; Veränderlichkeit der Helligkeit zur Zeit des Maximums Planeten IIIa 393: Elongation und Retrogradation IIIa 393; Durchmesser, Masse III a 393, Mechanik des Himmels II 396; dunkle Flecken, Phasen Planeten IIIa 393; Entdeckung der letzteren durch Galilei Einleitung I 75; die Rotation Planeten III a 303 ff.; dichte Atmosphäre IIIa 396; Lichterscheinungen auf der Nachtseite III a 397; weisse Flecke III a 397; aschgraues Licht IIIa 397; das Spectrum Astrospectroskopie I 406; ihre mittlere tägliche siderische Bewegung Mechanik des Himmels II 402; Beziehung zu der des Merkur, der Erde, des Mars II 402 403; die Störungen der Erde Ein-leitung I 145; ihre Beobachtung zur Bestimmung der Sonnenparallaxe Parallaxe III a 327 333 ff.; mittlere Entfernung von der Erde zur Zeit der Conjunction IIIa 330; ihre Bedeckung IIIa 338. - Kosmogonie

II 241 243.
Die Vorübergänge vor der Sonne Parollexe III a 327 333 ff., Finsternise I 818; Möglichkeit des Eintreffens I 818; Periode derselben I 820; die frühesten Beobachtungen I 821; genauere Vorausberechnung I 822 824; Ausdrücke für die Ränderberührungen 1.833; für die Entfernung der Mittelpunkte 1.824; Werth derselben für die Bestimmung der Sonnenparallaxe und Ermittlung der Genauigkeit dieser Bestimmung durch die Beobachtungen an verschiedenen Orten der Erde 1.825; Berechnung der Grenzeurven, Eintritt einer gegebenen Phase I 828.

Venusmond Planeten, Venus IIIa 398.

Veränderliche Sterne Einleitung 176 117,
Astrophotometrie 1325 3402: ihre Beobache
tung 1324 325; Verzeichnisse derselben
1350: ihre Bezeichnung 1350: verschiedene Classen 1350: Algoltypus 1350,
Reduction auf den Sonnenmittelpunkt 1
350: Verzeichniss der Algolsterne 1351;
Lyratypus 1 351, Verzeichniss der Lyrasterne 1352; Miratypus 1353, Verzeichniss der Mirasterne 1354; Orionitypus 1
354, Verzeichniss der Orionsterne 1355;
Luberseicht nach der Periodendauer 1355;
neue Sterne 1 355, Verzeichniss derselben
1358: Spectra der veränderlichen und
neuen Sterne 1 357 ff.; Erklärung des
Lichtwechsels der veränderlichen und neuen
Sterne 1359. Kormogonic II 324 ff.; Berechnung der Bahn des Begleiters für Algolsterne Doppolaterne 1 694.

Verzeichnisse der veränderlichen und neuen Sterne s. unter den einzelnen Sternbildern.

Veränderlichkeit der Polliöhe Polliöhe IIIa 490, Mechanik des Himmels II 569 ff.

Vergrösserung Fernvohr I 716 730; Bestimmung derselben I 736.

Vernier s. Nonius IIIa 298.

Verspannungen bei optischen Gläsern Fernrohr I 707.

Vertical Coordinaten I 655; erster I 655, Beobachtungen im ersten Vertical s. Passageninstrument, Polhöhe.

Verticalkreis Beschreibung IV 127. Verticalkreise Coordinaten 1655.

Vesta, ihre Entdeckung Einleitung I 157; ihr Spectrum Astrospectroskopie I 406.

Virgo die Jungfrau, Sternbilder IIIb 430: Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 430: Verzeichniss der Doppelsterne IIIb 431, der Nebelflecke und Sternhaufen IIIb 434, der veränderlichen Sterne IIIb 443 453, der farbigen Sterne IIIb 443; Präcessionstabelle IIIb 444.

Volans, der fliegende Fisch Sternbilder IIIb 444; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne IIIb 444, Verzeichniss der Doppelsterne III b 444, Verkobelflecke und Sternhaufen IIIb 445; der farbigen Sterne IIIb 445; Präcessionstabelle III b 445.

Vulcan Mechanik des Himmels II 396, Planeten III a 434.

Vulpecula, der Fuchs Sternbilder III b 445; Grenzen und Anzahl der dem blossen Auge sichtbaren Sterne III b 445; Verzeichniss der Doppelsterne III b 446, der Nebelflecke und Sternhaufen III b 447, der veränderlichen Sterne III b 447 454, der farbigen Sterne III b 447; Präcessionstabelle III b 448.

18

Wahrscheinlicher Fehler Methode der kleinsten Quadrate IIIa 34; für den wahrscheinlichsten Werth IIIa 38.

Wahrscheinlichkeitsrechnungs. Methode der kleinsten Quadrate.

Wahrscheinlichster Werth Methode der kleinsten Quadrate IIIa 27 ff., 36 ff. Wasseruhr Einleitung 1 32, Zeitbestimmung

IV <u>129.</u>

Wasserwaage s. Niveau, Libelle. Weber'sches Gesetz zur Erklärung für die Beschleunigung die Encke'schen Kometen herangezogen Methanik des Himmels II 486.

Wellen bei den optischen Gläsern Fernrohr

Wellenlängen, Catalog derselben Astrospictroskopie I 394.

Weltraum, Beschaffenheit desselben Einleitung
I 161 s. auch Universum IV 124.

Weltsysteme s. Sonnensystem.

Weltzeit Chronologie I 594, Zeitbestimmung IV 133.

Wendekreis Einleitung 15.

Wendepunkte Chronologie 1 595.

Widerstehendes Mittel Einleitung I 160, Kometen und Meteore II 74 75, Mechanik des Himmels II 485 487; Bewegung in demselben II 488; Constante des Widerstands Planeten IIIa 390.

Winnecke's Komet zur Bestimmung der Merkursmasse Planeten 111a 390.

Winterpunkt Chronologie I 595.

Wintersolstiz-sonnenwende Einleitung I 5, Chronologie I 595, Coordinaten I 657.

z

Zahl, goldene Chronologic I 598 618. Zapfenform Meridiankreis IIIa 4.

Zapfengleichung oder -ungleichheit Niveau III a 293 ff.

Zeichen des Thierkreises Einleitung I 19, Chronologie I 595.

Ze it bürgerliche, mittlere, Orts., Sterne, wahre, Welt-, Zonen- Chronologie 1 593 fil., Zeit IV 120 ff., Uhrzeit IV 139; Maass der Zeit IV 129, Einheit IV 129; Unterabtheitungen IV 129; Sonnentag, Sterntag IV 130, Verschiedenheit IV 131; Verwandlung der mittleren und wahren Zeit in einander mit Beispiel IV 130, der Sternzeit und wahren Zeit V 137; Sternzeit und mittleren Zeit IV 137; Sternzeit im mittleren Mittag IV 137; Beispiele IV 138;

Zeitbestimmung aus beobachteten Meridiandurchgängen IV 140; aus einer beobachteten Zenithdistanz IV 140, günstigste Bedingungen dafür IV 141; Beobachtung der Sonne IV 142; Einfluss der täglichen Aberration IV 143, der Biegung IV 143; Beispiel IV 143; aus mehreren nach einander gemessenen Zenithdistanzen IV 143, getrennte Reduction der einzelnen Zenithdistanzen IV 143, Beispiel IV 144: Reduction des Mittels der Zenithdistanzen auf das Mittel der Uhrzeiten IV 145, Grenzbestimmungen für die practische Anwendung IV 148; Reduction des Mittels der Uhrzeiten auf das Mittel der Zenithdistanzen IV 148, Beispiel IV 148; Einfluss der Refraction IV 150; Correction wegen des Zenithpunkts am Universalinstrument IV 150, wenn der Zenithpunkt unbekannt IV 151; Verbesserung wegen Refraction IV 151; Bestimmung aus gleichen Höhen verschiedener Sterne östlich und westlich des Meridians IV 152, günstigste Bedingungen IV 153, Einfluss der Refraction IV 155; aus correspondi-renden Höhen IV 155, Beobachtung der Sonne IV 155, Berücksichtigung der Aenderung der Deklination IV 155, Mittagsverbesserung IV 156, Mitternachtsverbesserung IV 157, Beispiel IV 157; Be-obachtung von Sternen im Vertical des IV 158, Entwicklung der Polarsterns Formeln IV 158, strenge Ausdrücke IV 159, Reduction von den Seitenfäden auf den Mittelfaden IV 162, für Zeitsterne IV 163, für den Polarstern in der Nähe des Meridians IV 165, Beobachtung des Polarsterns in der Nähe der Digression IV 166, Berücksichtigung der Fehler, Angaben über die practische Anstellung der Beobachtungen IV 166, Vorausberechnung für die Zeitsterne und den Polarstern durch Sternephemeriden IV 167, Hülfstafeln IV 168, Schema IV 170, Beispiel IV 171; Zeitbestimmung aus dem beobachteten Azimuth IV 174. Anordnung der Beobachtungen IV 174.

Näherungsmethoden: durch Beobachtung des Verschwindens eines Sterns hinter einem terrestrischen Object IV 175; durch zwei beobachtete Höhen von zwei Sternen und der Zwischenzeit, ohne Kenntniss der Polliböt IV 175, Anwendung zur See, wo eine Sonnenhöhe in der Nähe, die andere ausserhalb des Meridians beobachtet wird. Berücksichtigung der Ortsveränderung des Schiffs IV 176 177; dasrch das Dipleidoskop, Chronodeik IV 177; Passgeprisma IV 178; Eble's Sextant IV 179; Astronomisches Netz IV 180; durch Sonnenuhren IV 180.

S. ausserdem Zeitbestimmungen bei Ptolemäus Einleitung I 32, Longomontan I 73; am Almucantar Almucantar I 106 102; im Meridian Längenbestimmung II 255, Meridiankreis IIIa 12, mit Beispiel IIIa 14, am Universaltransit Universal-

Zeitgleichung Einleitung I 70; Tycho nimmt sie verschieden für die Bewegung der Mond- und Sonnenorte an I 70; bei Kepler I 92; Chronologie I 594; Zeit

transit IV 56.

IV 132 134 f.; verschieden an denselben Tagen verschiedener Jahre IV 135; Tabelle IV 135; ihr Lauf IV 135.

Zeitrechnung s. Chronologie.

Zenith Einleitung 1 2. Coordinaten I 655; geocentrisches, scheinbares Parallaxe III a 315. Polhöhe III a 441.

Zenithattraction der Sternschnuppen Kometen und Meteore II 175 187.

metten und Meteore II 175 187.
Zenithdistanz Coordinaten I 655: Berechnung aus Pollohe, Deklination und Stundenwinkel I 661, Mikrometer III a 85; scheinbare und wahre Parallaxe III a 314 317; Einfluss der Parallaxe III a 314 317; Einfluss der Parallaxe in Zenithdistanz III a 317, der Strahlenbrechung III b 550 ff., der Aberration Zeit IV 143; Bestimmung am Meridiankreis III a 18. Verbesserung für Fadenneigung und Krümmung des Parallels III a 21 ft. Universalinstrument IV 52. Polithe III a 442 ff. Tabelle zu genäherter Einstellung in der Nähe des Meridians III a 447; Beobachtungen der Sonne III a 455; am Passageninstrument oder Zenitheleskop III a 467; Reduction auf den Meridian, wenn das lastrument im Meridian steht III a 471; wenu

es nicht im Meridian steht III a 445 ff. 471; Einfluss der Strahlenbrechung III a 472, Einfluss der Biegung Biegung I 575, Polhöhe III a 455.

Zenithpunkt Meridiankreis IIIa 18, Universalinstrument IV 52 f., Zeitbestimmung IV 150.

Zenithteleskop Polhöhe IIIa 468; photographisches IIIa 475.

Zetanetz Mikrometer IIIa 68; Bestimmung der Rectascensions- und Deklinationsdifferenz IIIa 68, Justirung IIIa 68.

Zodiacus Einleihung 1 3. Chronologie 1 595. Zodiakallicht IV 184; Beschreibung IV 184; photographische Aufnahmen IV 185; das Schnittphotometer IV 185; der Gegenschein IV 186; Erklärung IV 186, Kormogonie II 244 f.

Zodiakaltafel Chronologie I 596.

Zonenbeobachtungen Reclascensionsbestimmung IIIb 33; s. Zonencataloge.

Zonencataloge Sterncataloge IIIb 456 470. Zonenphotometer Astrophotometric I 313. Zonenzeit Chronologie I 595, Zeitbestimmung pag.

23,

32,

., 318,

6 v. o. statt y lies yo.

Berichtigungen.

a) Zum ersten Band.

1, Zeile 20 v. u. ist (s. d.) zu streichen.

6 v. u. statt 11 lies 14.

11 v. u. statt EE, E' E, lies EE, E' E, '.

10 v. u. nach oder Erdes fehlt ein Komma.

```
94.
             ,, 17 v. o. statt Entdeckung lies Erfindung.
                  22 v. o. ist (s. diese) zu streichen.
      95,
                7 v. o. statt Inrervallen lies Intervallen.
     147.
     163.
                  7 v. o. statt SEELGER lies SEELIGER.
     303.
                  23 v. u. statt Deguerreotyp lies Daguerreotyp.
                  10 v. u. Der neue Stern wurde bereits mehrere Tage vorher von E. HARTWIG
     357.
               entdeckt.
             " 28 v. u. statt Spiessen lies Hartwig.
    358,
                 8 v. o. statt v sin e lies - y sin e.
 . 665,
  ,, 780.
                10 v. u. statt 1:391 lies 14:391.
            ,, 5. 6 v. u. statt r lies r sin 1".
  ,, 786,
                                     b) Zum zweiten Band.
pag. 85, Zeile 2 v. o. statt 71.9 lies 71.8.
                   6 v. o. statt 36.8 lies 36.9.
       85, ,,
                   9 v. u. statt MARCH lies MARSH,
  , 139, Fig. 263 sind p und q zu vertauschen.
      152, Zeile 11 v. o. statt 41.7 lies 41.9.
                17 v. o. statt - cos z secp' lies P cos z secp'.
                  19 v. u. statt Fig. 270 lies Fig. 271.
      282.
            .. 17 V. u. statt m lies m1.
  . 284,
            , 24 v. u. statt r. " lies r. ".
    287.
    292, ,, 3 v. o. statt f(r_i) \frac{z_i}{r_i} lies f(r_i) \frac{z_i}{r_i}.
294, ,, 11 v. u. statt \frac{\partial \Omega}{\partial r} lies \frac{\partial \Omega}{\partial r}.
  ,, 292,
            , 16 v. u. statt \frac{Z}{\pi} lies \frac{Z}{\pi}.
      295,
            ,, 15. 17 v. o. statt 1 + e cos M lies 1 - e cos M.
      307,
            , 2 v. u. statt \binom{2m}{2} e^{(m-2)iQ} lies \binom{2m}{2} \alpha^2 \beta^{2(m-1)} e^{(m-2)iQ}.
      309,
             " 15 v. o. fehlt die eckige Schlussklammer.
     311,
  " 313. " 6 v. o. statt 3 - 4 e lies - 3 + 4 e.
              .. 7 v. u. statt -\beta_1 \frac{\partial y_0'}{\partial b} lies +\beta_1 \frac{\partial y_0'}{\partial b}.
      317,
```

```
Berichtigungen.
                                                                                                                              429
pag. 320, Zeile 14 v. o. statt \frac{\partial x}{\partial r} lies \frac{\partial x}{\partial r}
                      13. 14 v. o. fehlt (8) als Bezeichnung der Gleichungen.
      322,
                       16 v. o. fehlt hinter Q + e Y(o) die Schlussklammer.
       322,
                       10-12 v. u. fehlt (5) als Bezeichnung der Gleichungen.
       342,
                       8 v. u. fehlt (6) als Bezeichnung der Gleichungen.
       342,
                      17 v. u. statt v = 206° 22' 30".42 lies 206° 28' 30".42.
       343,
                      14 v. u. statt sin E lies e sin E.
       350,
                      12 v. ο. statt Φ' lies Φ,.
       351,
                      20 v. o. statt Pm lies P, m.
       356,
                       8 v. u. statt sec p3 lies sec3 p.
      356,
                    18. 19 v. o. statt X lies E.
       362,
                    20 y, u, statt + r \sin(v + \omega) . . . lies - r \sin(v + \omega) . . .
       362,
                       16 v. o. statt E_n cos 2(L-\pi) lies 2E_n cos 2(L-\pi).
       367,
       368,
                       16 v. u. statt t, r lies t, T.
                       1 v. o. statt \frac{\partial^2}{\partial a^2} \left( \frac{1}{p^n} \right)_0 (a\sigma)^2 lies \frac{1}{2} \frac{\partial^2}{\partial a^2} \left( \frac{1}{p^n} \right)_0 (a\sigma)^2.
        372,
                        q v. o. im letzten Glied fehlt der Coefficient 1.
       372,
                       16 v. u. statt a3 lies a8.
       375.
                        11 v. o. diese Zeile muss heissen:
        376,
            P_{s}^{(x-1)} = \frac{1}{2s-1} \left\{ (2x+2s-3) \frac{1+\alpha^{2}}{(1-\alpha^{2})^{3}} P_{s-1}^{(x-1)} - (2x-2s+1) \frac{2\alpha}{(1-\alpha^{2})^{2}} P_{s-1}^{(x)} \right\}
        380, Zeile II v. o. statt \alpha'\sigma'(v-v')\sum \frac{\partial B_0(x)}{\partial a'} lies \alpha'\sigma'(v-v')\sum x \frac{\partial B_0(x)}{\partial a'}.
                       12 v. u. statt iβ lies tβ.
        382,
                        I v. u. statt sin 1 /2 lies sin 1 /.
        382.
                        4 v. o. statt Σ1 lies Σ1.
        383,
                         6 v. o. statt sin(v + \pi_0') lies sin(v' + \pi_0').
        383,
                         8 v. o. statt 2 sin3 1 7 lies 2 sin3 1 /.
        383,
                       17 v. o. statt \frac{d\Omega}{dm} lies \frac{\partial\Omega}{\partial m}
                        2. 3 v. o. fehlt auf der rechten Seite der Gleichung der Coefficient 2.
        389.
                        8 v. u. statt \frac{\partial B_0^{(1)}}{a} lies \frac{\partial B_0^{(1)}}{\partial a}.
        380.
                        8 v. u. statt \frac{dP_0^{(1)}}{da} lies \frac{dP_0^{(1)}}{da}.
                        10 v. u. statt (21)'E lies (21) E'.
        391,
                        19 v. o. nach F, fehlt die erste Schlussklammer.
        393,
                        12 v. o. fehlt die Schlussklammer
                        II v. u. statt \frac{d^2x}{dt}, \frac{d^2y}{dt}, \frac{d^2s}{dt} lies \frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}, \frac{d^3z}{dt^2}
        418,
                         9. 10-20, 24. 27 v. o. sind mehrfach für e ungleiche Typen.
        424.
                         8 v. u. statt cos E'2 lies cos2 E'.
        426,
                         4 v. o. statt 22(3) lies 23(3).
        431,
                        6 v. u. statt \frac{ds}{dL} \frac{\partial \Omega}{\partial L} lies \frac{1}{u^2} \frac{ds}{dL} \frac{\partial \Omega}{\partial L}.
        437,
                        4. 6 v. o. statt or lies or.
        445.
```

12 v. o. statt (4) lies (4a).

17 v. o. statt sin 83 lies sin3 8.

6 v. o. statt Beobachtungeu lies Beobachtungen.

21 v. u. statt F lies N.

462, Zeile 18 v. o. statt α - B) lies (α - B).

461, Fig. 273 statt Ω lies Ω.

446,

458,

459

District Google

```
430
pag. 462, Zeile 24 v. o. statt DQ lies D'Q.
                 2 v. u. statt \frac{\partial \Omega}{\partial a} lies \frac{\partial \Omega}{\partial a}
                   I v. u. statt \frac{d\mu'}{dt} lies \frac{d\mu_1}{dt}.
     466.
                   12 v. u. statt (3) lies (8).
     467.
                   2 v. o. statt \partial B_{34}^{(2)} und B_{34}^{(2)} lies \partial \overline{B}_{34}^{(2)} und \overline{B}_{34}^{(3)}.
     474.
                   16 v. u. statt u lies u.
     483,
                 14 v. o. statt f lies f.
     485,
                   9 v. u. felilt die Anfangsklammer (
     490,
                   7 v. u. statt 2A(c_0 - cv)^{\frac{2A+B}{2A}} lies \left\{2A(c_0 - c_v)\right\}^{\frac{2A+B}{2A}}.
     491,
     542,
                  12 v. u. fehlt (5) als Bezeichnung der Gleichung.
     548,
                    3 v. o. fehlt (2) als Bezeichnung der Gleichung.
     550,
                   3. 5 v. u. statt a lies a.
                  22 v. u. statt β, r und α, r lies β, r und α, r.
     567,
                  15 v. u. statt XY lies X' Y'.
     567,
                    8 v. o. statt \sin \epsilon \sin (\psi' - \psi) \frac{\partial V}{\partial s'} lies -\sin \epsilon \sin (\psi' - \psi) \frac{\partial V}{\partial s'}.
     581,
     581.
                   2. 3 v. u. statt E', W' lies Ea', Wa'.
     582,
                    5 v. o. statt sin ε' sin (ψ' - ψ) sin ε' lies sin ε sin (ψ' - ψ' sin ε'.
     582,
                    7 v. o. statt cos e' sin (4' - 4) sin e' lies cos e sin (4' - 4) sin e'.
                   13 v. u. ist 72 im Nenner zu streichen.
     602, Fig. 279 für R ist einmal zu setzen R'.
     618, Zeile 7 v. u. statt M(n) lies M,(n),
                 12 v. u. statt P'2k 1 lies P'2k-1"
     623.
                    8 v. o. statt 491 lies 191.
     625,
                    I v. o. statt (x) lies f(x).
     627,
                        c) Zum dritten Band, erste Abtheilung.
      26, Zeile
                  6 v. o. statt cos (8 + h') lies cos (8 + h').
                    8 v. o. statt das lies dass.
       33,
                  21 v. o. statt \frac{\Sigma}{\partial v_a} lies \frac{\partial \Sigma}{\partial v_a}
       43,
       52,
                   17 v. o. fehlt (19) als Bezeichnung der Gleichung.
                   2 v. o. das 2. und 3. Zeichen - soll sein +.
      53,
      55,
                  in der ersten Spalte, letzte Zeile des Beispiels statt 9.4788 lies 9.4780.
      58,
                   2 v. u. fehlt (1) als Bezeichnung der Gleichung.
      89.
                   6 v. o. statt 7.8879 lies 7.7879.
                  12 v. u. statt 56 815 lies 56.615, dadurch wird τ cos δ 417.76, δ' - δ 699".83,
     102,
                Mittel 612"18, 8 4" (p. 103 letzte Zeile) 10° 28' 28".3.
                   10 v. o. und die Ueberschrift statt Tafel I lies Tafel II.
     128.
                   15 v. u. und die Ueberschrift statt Tafel II lies Tafel III.
     135,
     153.
                   4 v. u. statt SPP' lies sPs'.
```

1 v. o. statt $\cos \lambda' - \lambda$ lies $\cos (\lambda' - \lambda)$.

3 v. u. statt — $h \sin(II + \alpha)$ lies + $h \sin(II + \alpha)$.

3 v. u. statt grographische lies geographische.

13 v. u. statt - π, R sec δ, cos (···) lies - π, R sec δ, v cos (···).

6 v. o. statt d + D' lies $\delta + D'$.

5 v. o. statt dp' lies dp.

3 v. o. statt Δβ lies Δδ.

12 v. u. statt cos zo lies i cos zo.

168,

330,

330,

344,

346,

349,

359,

360,

- pag. 475, Zeile 18 v. u. Nach Mittheilung des Herrn Prof. Marcuse rühren die Angaben zur Construction des photographischen Zenithteleskops von ihm allein her.
 - " 476, " 16 ff. v. o. Die Beurtheilung der photographischen Methode gründet sich, wie im Text angegeben, auf die Versuche der Internationalen Erdmessung; seit Abfassung des Artikels sind aber die Versuche mit erheblich günstigerem Erfolg, wie aus den späteren Berichten hervorgeht, fortgesetzt.
 - ,, 490, ,, 3 v. o. nach (\(\phi \delta_z \) im linken Theil der Gleichung fehlt].

d) Zum dritten Band, zweite Abtheilung.

```
3, Zeile 17 v. u. statt 12 lies 12.
pag.
               8 v. o. statt γ, 1,3 lies γ, 1,3.
           , 21 v. u. statt Ilo lies Ilo'.
          , I v. o. slatt V, AV lies V, AK.
      12, ,, 9 v. o. statt λ, lies β.
     14, ,, 3 v. u. statt Z2 z0 lies Z3 z0.
     15, " 13 v. u. statt δ, lies δ, '.
      31, " 5 v. u. statt sin2 e lies sin 2e.
          " 21 v. u. statt 725 lies 723.
      59,
     74, " 19 v. u. hinter Loomis fehlt ein Komma.
          ,, 11 v. o. statt \delta + v lies \delta + V.
     102.
          , 7 v. u. das Mittel der & giebt statt 1.236 1.416, damit wird Zeile 3 v. u.
    102.
             A = 237^{\circ}.3, D = +2^{\circ}.7, q = 2.63.
              19 V. o. statt Sernconstellation lies Sternconstellation,
     109,
          " 11 v. u. ist 1) zu streichen.
    115,
          " 16 v. o. ist 2) "
    122.
          " 15 v. o. ist 3) "
    124.
           " 5 v. u. ist 4) "
    125,
           ., 17 v. u. ist 5) "
 " 221, Es fehlt die Ueberschrift »Nebelflecke und Sternhaufen«.
          Spalte 1 statt Second Radcliffe Catalogue lies Radcliffe.
   493
           " 4 statt So lies II und So.
   493,
    551, Zeile 2 v. o. statt Vo lies vo.
           , 16 v. o. statt \frac{\mu_0}{\mu_r} nach dem Integralzeichen lies \frac{\mu_0 a}{\mu_r}.
          " 9 v. o. z gehört über die Gradzahlen.
     563,
           ", 7 v. o. die Formel lautet \omega \left[1 - \frac{\mu_0^2}{n^2}(1-s)^2\right] = \varepsilon.
    565.
           , 10 v. o. im Wurzelausdruck statt w lies w.
           4 v. o. statt 24'54".6 und 22'19".6 lies 24'24".6 und 24'19".6.
   571,
           " 4 v. u. unter dem zweiten Integralzeichen fehlt eine Klammer (
    571,
          " 6 v. o. fehlt vor \frac{3}{9} die Klammer (
 ., 572,
          , 11 v. u. statt cot2 z lies cot z.
           , 7 v. u. statt R., lies R.
   573.
 ,, 578,
           " 17 v. o. statt ± λ" lies ± 1".
          ist von oben bis Zeile 16 zu schreiben: sim Orte A2 die Temperatur T2, so be-
 . 579.
             stehen folgende Gleichungen, wenn kein Druckgefälle existiert,
```

$$\rho_1 = \rho_{0,1} e^{-\frac{k_1}{RT_1}}$$
 und $\rho_2 = \rho_{0,2} e^{-\frac{k_2}{RT_2}}$,

wo man statt der Dichte ρ_0 nun die Drucke ρ_0 an der Oberstäche einführen kann, und so wird

$$\rho_1 = \frac{f_0}{RT} e^{-\frac{h_1}{RT_1}} \quad \text{und} \quad \rho_2 = \frac{f_0}{RT_2} e^{-\frac{h_2}{RT_2}}.$$

In den Höhen h, und h, soll nun dieselbe Dichte herrschen, so wird $\frac{T_2}{T_1} = e \frac{h_1}{R T_1} - \frac{h_2}{R T_2}$

oder

$$\log\left(1 - \frac{T_1 - T_2}{T_1}\right) = \frac{h_1}{KT_1} - \frac{h_2}{KT_2}.$$

Ist nun T1 von T2 wenig verschieden, so kann man hierfür

$$T_1 - T_2 = \frac{h_1 - h_2}{R}$$

setzen. Die Neigung der Niveaufläche ist, wie früher durch den Ausdruck

$$\lambda'' = \frac{h_1 - h_2}{\sin 1'' \cdot D} = \frac{R}{\sin 1''} \frac{T_1 - T_2}{D} = 6044 \frac{T_1 - T_2}{D}$$
 (D in Kilometern)

gegeben. In Gebirgsgegenden oder an Küstenstationen wird man unbedenklich $T_1 - T_2 = \frac{1}{2}$ ° C auf eine Distanz von einer geographischen Meile annehmen können. Temperaturdifferenzen, die also von beständigem systematischen Charakter sind und durch die à den Betrag von 6' erreichen würde. Hierdurch würden die Correctionen ".... u. s. w.

- pag. 584, Zeile 26 v. o. statt für i z = 10° lies 15°.
- 14 v. u. statt für $i z = 0^{\circ}$ lies + 1. .. 584.
- 13 v. u. statt 2- lies 2-2. 589,
- .. 21 v. o. statt 7:40066 lies 7:40166. 593.
- 21 v. u. statt Temperatuten lies Temperaturen. 600,
- 601, 19 v. u. statt ben lies den,
- 605, 2 v. u. statt $\varphi(270 + z)$ lies $\varphi(180 + z)$.

e) Zum vierten Band.

- pag. 7, Zeile 20 v. o. statt vo lies vo.
- " 6 v. u. statt v lies v.
 - Figur statt (A. 44 lies (A. 446).
- 8, Zeile 3 v. o. statt lies .
 - 16 v. u. statt / lies / .. 12,
- 16 v. u. statt (1 + at) lies (1 + at). 12,
- 10 v. o. statt a lies a. 24.
- 4 v. u. statt sine seci cosec z lies sine seci cosecz, 49,
- 6 v. o. statt Capricornis lies Capricorni. 60.
- 14 v. u. statt bezeicnet lies bezeichnet. 97,
- " 11 v. u. statt apo lies apo-. 97, " 18 v. u. statt st lies ist.
- 146, 147. 20 v. u. statt 0.997 lies 0.979.
- 3 v. u. statt 2 arc 1" lies 2 ... 149,
- 13 v. u. statt (11) lies (12), 152,
- " 25 v. o. statt gegeben lies gegebenen. 158,
- 162. " 20 v. o. nach »Gleichung« fehlt »(27)«.
- ,, 12 v. u. statt (21) lies (21 a).
- ,, 162, 2 v. o. statt (23) lies (22). ,, 163,
- , 21 v. o. rechts statt 9.90734 lies 9.90734n. 173,
- ,, 25 v. o. statt 7:37109 lies 7:37109n . ., 173,
- , 24-27 v. u. statt q, h, & lies q', h', &'. ,, 176,

14 DAY USE

RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed.

Renewed books are subject to immediate recall.

1 164RA	
REC'D LD	
AUG 2 1'64-10 AM	
Red. Cite w 2 5 75	
AUG 3 0 1982	
IRVINE	•
HINLPHIBRASY !	
LD 21A-60m-4,'64	General Library

(E4555s10)476B

