C 419,431

THE TAURUS RAILWAY.

A

CONCISE ACCOUNT,

HISTORICAL, STATISTICAL, AND MECHANICAL,

RAILWAY FROM FRANKFURT TO WIESBADEN,

With tiventy-Five steel and wood engravings.
*
robert thorman, Engineer.

LONDON:
JOHN WEALE, 59, HIGH HOLBORN.
mbcceslvi.

Transportation

$$
\begin{aligned}
& \text { TF } \\
& 74 \\
& \text { T23 } \\
& \text { T49 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Trarspenter linn } \\
& \text { swan de } \\
& 11-19-53 \\
& 84992
\end{aligned}
$$

THE TAUNUS RAILWAY.

FRANKFURT TO WIESBADEN.

ITATHO AT WItCHES, THEW HON THE RAHEAV.

Nors.-Where the letter x is placed denotes French metres $=3.280$ feet English; f. is florins, contraining 60 kreuzers, or $18.8 d$. sterling ; x is krenzers, 3 of which $=1$ penny; f. and inc. are feet and inches, English measure.

The Taunus Railway, so named from its running nearly parallel with, and being in the vicinity of, the Taunus Mountains between Frankfurt-on-Maine and Wiesbaden, was constructed by Mr. Paul Denis, and fully opened to the public in the month of April, 1840, some portion of it being opened in September and November the previous year.

The building of the railway commenced in the summer of 1838. The line runs through three different territories: 1st, commencing in and running through part of the Frankfurt; 2nd, through part of the Duchy of Nassau; and 3rd, through the Grand Duchy of Hessen Darmstadt, for a short distance going through the fortress at Castel, and lastly entering Nassau again.

The Company received their concession from the Senators of the free town of Frankfurt on the 8th of May, 1838; from the government of Hess Darmstadt, 11 th May; and from Nassau, 13th June; but not before 19th October the same year from the Military Commission " to go through the fortress at Castel ; and in many parts the grounds could not be taken possession of before the summer of 1839 , so that the line has been forwarded very expeditiously.

The railway is $41,8.58^{\circ}$ long $=26$ English miles ${ }^{\text {b }}$, not taking intoancount the branch line to Biebrieh, which is $1,454^{\mathrm{m}}$, making together $43,312^{\mathrm{m}}$, or 27 English miles. There are six intermediate stations, viz., Höchst, Hattersheim, Flörsheim, Hocheim, Castel, and Biebrich; the first four and last of these being in the Duchy of Nassau, the station Castel in the Grand Duchy of Hessen Darmstadt.

The line runs nearly parallel to the river Maine, which at once almost vouches for the very few engineering difficulties which were met with. Great praise is, therefore, due to the projectors and engineers for their ehoosing such easy ground to pass over, the benefits of which the shareholders are now reaping. With the exception of parts of the line which run through the celebrated Hock vineyards, the grounds were bought at a moderate rate.

CAPITAL AND COST OF RAILWAY.
The capital of $3,000,000 \mathrm{fl}=£ 250,000$, was raised by 12,000 shares of 250 fl . each $=£ 2016 \mathrm{~s} .8 \mathrm{~d}$.

The engineer's estimate was $2,300,000 \mathrm{fl}=£ 191,66611 \mathrm{~s} .4 \mathrm{~d}$. But the sum of $3,000,000$ florins not being sufficient to furnish or stock the railway, a loan of $300,000 \mathrm{fl} .=£ 25,000$, was granted, which raised the capital of the Company in 1840 to the sum of $3,300,000 \mathrm{fl} .=£ 275,000$.

[^0]The outlay is as follows :-

Total outlay for building railway . . . $2,071,00000=179,583 \quad 6 \quad 8$

TO BE DEDUCTRD.

Fl. $8,159,437 \quad 57=£ 268,286 \quad 911$
This is the total cost up to the first general mecting of the shareholders, 12th August, 1840.

At the present time the Company have 12 locomotives and tenders, 99 passenger carriages, and 45 trucks and close luggage vans, 12 of the latter coming into this year's account.

Cost for 4 close luggage vans $7,11428=592 \quad 17$ 5b
" 8 transport waggons for cattle and merchandize $11,75056=979$ \& $10 \frac{2}{3}$
At the last gencral meeting, which took place 17th April, 1845, according to the report given by the Board of Directors, the capital of the Company was $\mathbf{3 , 5 7 1 , 4 9 9}$ fl. $45 \chi=£ 297,62419 s .7 d$. , for the year ending 31st December, 1844.

EARTH-WORKS.

There are no heavy cuttings or embankments of any consequence upon the whole line. The only embankments worth noticing are, one between the river Nied and Höchst, which is about $1,500^{-m}$ long, and at the highest part about 20 feet. The earth to bnild this embankment was taken out of a piece of ground by the railway side, bought by the Company for that purpose.

The next, after getting through Hattersheim, of about $1,200^{m}$ long and 10 feet high. The earth was partly taken from a short cutting between Hattersheim and the embankment, but by far the greatest portion was taken, as before, from a piece of ground by the railway side.

The part running through the vineyards near Hocheim is built upon a sloping ground, supported by a strong stone wall on the under side; the bank sides and
small cuttings were taken to fill the space and level it. There is also, before entering the vineyards, another small embankment of about $1,900^{\mathrm{m}}$ long, and 6 to 10 feet high; and upon leaving the vineyards, another small cutting which was used for the above.

The next embankment, between Hocheim and Castel, about $2,000^{m}$ long, and about 6 to 10 feet high, was taken partly from the cutting of a hill side, and the other part as before from a piece of land bought for the purpose.

Between Castel and Wiesbaden there is one more cutting, and two embankmente, the two latter being together about $2,000^{\circ}$ long, and 10 to 12 feet high; the cutting about 500^{m} long and 8 to 10 feet deep, the proceeds of which were taken for making the above embankments and the Biebrich branch line, of which about two-thirds is also embankment ; the wanting material, as before, was taken from ground near the railway. The ballasting of the whole line was taken in a similar manner, from patches of ground found suitable for that purpose, which, on some seetions, cost much leadage.

GAUGF, RAILS, ETC.
The gauge is the narrow one, of 4 feet $8 \frac{1}{2}$ inches, and the rails of the double T form, weighing 58 lbs . per yard, of Welsh manufacture, contracted for by the Messrs. Goldsehmidts, of Frankfurt and Mainz, iron merchants, \&c., and delivered at $£ 16$ per ton. The joint ehairs weigh 22 and the intermediate 19 lbs . each.

Where embankments are raised, the chairs rest upon oak sleepers $8 \frac{1}{2}$ feet long, being trees of 12 to 16 inches diameter, eut through the middle; each sleeper eost 2 fl . or 3 s .4 d . sterling ; and in euttings, or where no embankments are, they are laid upon stone blocks, 2 feet square and 12 inches thick, felt being laid between the chair and stone; the cost of each stone is $2 \mathrm{fl} .30 \chi$ or 4 s .2 d .

Since the commencement the permanent way has cost very little repairs, with the exception of one or two places, which were damaged by heavy rains and floods; but between the two systems of wood and stone the latter has cost considerably less than the former.

The earth-works, bridges, and culverts, are finished from Frankfurt to Castel for double way, but as it is not necessary at present to lay down the second line of rails, the grounds are mostly cultivated, and sown with clover, which, as well as the slopings, yield a pretty little capital.

BRIDGES AND CULVERTS.

There are upon the whole line of railway, including the Biebrich branch, 16 bridges and 113 culverts, which, although they cannot boast of any great beauty, make up for it by their strength and durability.

The three largest bridges contain three, four, and six arches respectively; the first over the river Nied, with three of 10^{∞} span each, and 7° high; the second with four arches, used as a fieldway, underneath the embankment between the Nied and Höchst, $5^{\text {m }}$ span, and $5 \frac{1}{2}{ }^{\mathrm{m}}$ high ; the third underneath the same embankment, also used as a fieldway, with six arches of 5^{mo} span and $5 \frac{1}{2} \mathrm{~m}$ high. The others are all smaller, containing from one to three arches, and 4° to $5^{m \mathrm{~m}}$ span.

There are also two large wood bridges, one on entering and one on leaving Castel, thrown over the trenches of the fortress; these are supported upon two stone pillars in the middle, or between walls. The length is 70 feet and breadth 24 feet, there being a double row of rails laid upon them. The reason of these being built of wood is, in case of war breaking out they can be easier demolished or removed than when built of stone.

The station house in Castel is also a wood building, for the same reason.

gradients and curves.

The curves upon the main line are nine in number, but from the great radius of some of them they might almost be counted a straight line. The nine curves are divided into thirteen, having each a different radius.

To take them by rotation, with gradients, from station to station, they stand as follows:-

1st. From Frankfurt to Höchst 8900.75°, being a straight line, with four descents and one ascent.

The first descent is $4,060^{\circ}$ long, descending ${ }_{1500}^{15}$; second, $2,800^{\mathrm{m}}$ long, ${ }^{58} 8^{2} \delta$; third, 380° long, $\frac{1}{\delta \sigma}$; and fourth, 300^{m} long, $\sigma \frac{1}{6}$; then ascending $1,540^{\mathrm{m}}$ long, $\frac{1}{\frac{1}{5} 5}$, which is the greatest inclination on the whole line of railway.

2nd. From Höchst to Hattersheim $5927.35^{¹}$, having one curve of $2,300^{\text {m }}$ long, and $2,648^{\circ}$ radius, with four descents, one ascent, and one plane. The first descent
 200^{m} long, $\frac{1}{66}$; then ascending $1,300^{-\infty}$ long, $\frac{1 .}{6}$, going into the station upon a plane of 200^{m} long.

Srd. From Hattersheim to Flörsheim, a direct line 6691.79m, having three descents and six ascents.

First descent, 409^{m} long, $\frac{1}{5 \frac{1}{6}}$; second, $2,400^{\mathrm{m}}$ long, $\frac{1}{\frac{1}{5} \sigma}$; third, 600^{m} long, ${ }^{\frac{1}{6} \sigma}$;

4th. From Flörsheim to Hocheim 6483.71", having two curves divided with four different radiuses, three descents, two planes, and one ascent.

 डit ; another plane of 978° long, followed by the second descent of 790° long, $\frac{1}{65}$; and third 602 ${ }^{\mathrm{m}}$ long $\frac{1}{6,6}$, entering Hocheim upon a gentle curve of 624^{m} long, and $5,714^{\mathrm{m}}$ radius, as given above.

5th. From Hocheim to Castel $5078.40^{\text {m }}$, having two curves, six descents and one ascent. The line has here two descents upon a straight line before entering the first curve. The first descent is $1,158^{\mathrm{m}}$ long, $\boldsymbol{\sigma}^{\circ} \mathrm{\sigma}$; second 400^{m} long ${ }^{5}$ ts, entering the first curve of $1,276^{\mathrm{m}}$ long, and $3,300^{\circ}$ radius; an aseent of $1,276^{\circ}$ long, $\overline{50}{ }^{\circ}$; and third
 long, $5^{\frac{1}{2}}$, entering into Castel with the latter descent upon a curve of 768^{m} long, having a radius of 747^{m}.

6th. From Castel to Wiesbaden $8,481^{m}$, with six curses, one plane, and one ascent. This is the worst part of the whole railway, as it ascends the whole way into Wiesbaden, leaving the station Castel with a eurve and ascent. The station has a length of 200°, being horizontal ; the first part of ascent 370° long, $\frac{1}{30}$; the first curve, $37 \mathrm{~N}^{\circ}$ long, 700^{m} radius, a straight line of 507^{m} ascending $\frac{1}{5}{ }^{\circ}$, then coming into a curve of $930^{\text {m }}$ long, with a radius of $2,500^{\text {m }}$, this eurve being quite horizontal ; another straight line of $1,440^{\prime \prime}$, rising $\frac{1}{5} \delta \delta$, joining the third eurve, $1,420^{\circ}$ long, and $2,000^{\circ}$ radius, ascending $5 \frac{30}{}$; another straight line of 280°, rising 560 , and three eurves joining each other ; fourth curve, $1,097^{\mathrm{m}}$ long, $2,000^{\circ}$ radius; fifth, 840° long, $1,800^{\mathrm{m}}$ radius; and sixth, 700° long and $1,604^{\mathrm{m}}$ radius, entering the station at ${ }^{-1}$ Wiesbaden with a straight line of 672^{m}, rising 36σ, the station being 200° long, and quite horizontal.

7th. The Biebrieh braneh joins the main line half-way between Castel and Wiesbaden, entering it with a curve on the right hand, with a radius of 100°, and on the left with one of 189°. It seldom happens that a locomotive must enter these curves,
the first, perhaps, only for a few yards to bring a luggage train, which is brought by horses; and second, through which a locomotive can pass for a similar purpose, or a special train, but which very seldom happens. The other part of the line is straight, with the exception of entering the station, where is a short curve, the station itself being upon a staight line.

CARRIAGES, FARES, and traffic.

There are four classes of carriages; the 1st class or Berlins are in three compartments, each holding six persons, similar to those upon the Grand Junction Railway, and other railways in England, fitted out and upholstered with drab-coloured cloth, the seats and backs being stuffed with horse-hair. These carriages are painted a dark green colour intermised with black, having the arms of Frankfurt, Mainz, and Wiesbaden painted upon their doors. The frame of carriage and wheels are nicely picked out with black and red stripes.

The weight of carriage, with wheels, \&cc., complete, is 63 ewt ., and cost about $3,500 \mathrm{fl}$., or $=£ 291 \mathrm{1Ss} .4 \mathrm{~d}$. (See Plate IX.)

Ind class, or diligence, in two compartments, similar to the 1 st class carriages upon the Belgian railways, holding in each compartment nine persons; these are fitted out similar to 1st class, with the exception of having no arm-leans, having as well as 1st class, glass windows to shut up and down, and are altogether quite as comfortable, but not quite so select. (See Plate X.)

Each carriage weighs $61 \frac{1}{2}$ ewt., and cost complete, with wheels, \&c., 2,500 fl., or $=\mathbf{f} 2086 \mathrm{~s} .8 \mathrm{~d}$.

Srd class, or Char-a-banc, holding forty persons, are divided into three compartments, each having two doors, the two end compartments holding each ten, and the middle twenty persons; the seats are stuffed, and covered with horse-hair cloth; the sides are closed by curtains. The partition between each compartment is carried up to the roof of the carriage, so that they are also a very warm carriage, and similar to the 2nd class carriages upon the Belgian railways. (See Plate XIII.)

The weight of one carriage, as before, is 66 cwt . and cost $£, 160 \mathrm{fl}=£ 180$.
4th class are similar to the Srd, with the exception of having no partition between compartments, merely an open frame-work, and the seats not being stuffed; the sides are also furnished with curtains, to shelter the passengers from the weather. These carriages have mostly breaks of the common kind. (See Plate XIV.)

Each carriage weighs 61 cwt . and cost $1,960 \mathrm{fl} .=£ 1636 \mathrm{~s} .8 \mathrm{~d}$. The 2 nd, Srd,
and 4th class carriages are all painted alike, a green colour, the 2nd having one coat of varnish more, the sloping parts of frame-work being pieked out black and red, the wheels plain green; the number and class of carriages being painted in legible figures and letters upon both sides.

There are as well as the above several mixed carriages, two of which have 1st and 2nd classes very comfortable; they are generally used in winter when the trains are short; they are in three compartments, holding in all twenty-eight persons, viz., the two ends, being 2nd class, hold each ten, and the middle, 1 st elass, eight persons. These carriages are equal in appearance and equally as comfortable as the 1st class carriages. (See Plate XI.)

The others are for 2nd, 3rd, and 4th classes; these carriages are generally used for the Biebrieh branch, running from thence to Wiesbaden, and vice versâ, and to Castel, and vice versá ; they are similar to the Srd class, having one end closed in with glass windows and doors for 2nd class passengers, the other end for Srd class, and the middle for 4 th class, the two ends holding each ten and the middle twenty passengers. These carriages are drawn by horses from the main line to Biebrich, they being detached while the train is in movement by a simple piece of machinery. The points being changed after the train has passed on, the carriages run in of themselves, and are brought up with a break at the point required, where horses are awaiting to take them to their destination. (See Plate XII.)

The traffic is a mixed one, but consists mostly of passengers, the trains being intermixed with goods, cattle, and gentlemen's travelling carriages, no horses being carried. The traffic may be best judged of by the returns of the last two years, 1844 and 1845. (See Appendix.)

Thus the 1st Class $=2.06 d$., the 2 nd $1.38 d$. , the 3 rd $.96 d$. , and the 4 th $6.53 d$. per English mile.

Each passenger is allowed 40 lhs . weight of luggage free, but from 1 to 10 lbs. more for the whole distance 15χ, or 55χ per mile, or $=18.5 d$.; from 11 to $20 \mathrm{lbs} .25 \chi$, or $.92 \chi$ per mile, or $=.306 \mathrm{~d}$.; from 21 to $30 \mathrm{lbs} .35 \chi$, or 1.29χ per mile, or $=.43 d$. For greater quantities the price is somewhat reduced.

The price for transporting a gentleman's travelling carriage for the whole distance is

Goods or merchandize are divided into four classes; the 1st is as follows:_grain, fruit, potatoes, meal, fire-wood, coals, pig iron, old metal, and any raw produce, the price of which is for the whole distance 12χ per cwt., or $.46 \chi$ per mile $=.158 \mathrm{~d}$.; a less quantity than 45 cwt . cannot be taken as 1st Class, or must pay 2nd Class tariff.

2nd Class, colonial, drysalters, wine, spirits, beer, oil, cascs of mineral water, \&c., cotton, wool, hops, leather, silk, cast iron materials, tin, lead, hemp, flax, stone and glass ware, \&cc., which for the whole distance costs 18χ, or . 5χ per mile $=.166 \mathrm{f}$.

3rd Class, is goods, or packages taken as passengers' luggage, and costs for the whole distance 22χ, or $.842 \chi$ per mile $=.280 \mathrm{~d}$.

4th Class, money, or any articles which are by value declared, costs 3χ, or $1 d$., per 100 fl . worth, for the whole distance or any distance, no matter how short.

Merchants or expeditors sending per railway in one year
From $12,000 \mathrm{cwt}$. to $18,000 \mathrm{cwt}$. receive 5 per cent. return.

$"$	18,001	$"$	24,000	$"$	$7 \frac{1}{2}$	$"$
$"$	24,001	$"$	50,000	$"$	10	$"$
$"$	50,001	$"$	100,001	$"$	15	$"$
$"$	100,001	$"$	and upwards	$"$	20	$"$

Table，showing number of Passengers travelled on Railway，from the opening to 31st October，184J．

	1839	1840	1841	1842	1843	1844	1845	Remarks．
January	8		16，564	24，292	30，155	28，400	30，835	
February	는		26，234	29，373	34，675	33，316	28，701	
March	Es	寅	37，476	47，025	36，572	49，052	28，916	In this month，1845，on ac
April	E		30，843	57，744				of the railway and etation
	二是	＂						cing overflowed with
May			85,401	83，620	60，275	67，076	64，290	vith
June	总岩	感	B2，60］	90，837	78，631	02，882	86，932	water，the tmffic was stopped
June	${ }^{+0}$		02，600	20，087	10，631	12，082	0，032	for cight days．The damage
July	违号	是	111，713	120，306	105，078	101，202	116，609	stained was covered by $3,000 \mathrm{fl}$ ．
August	京	둘	116，8884	111，640	108，990	90，351	107，538	not including the loss of income
September	房㝘景	$\stackrel{0}{\circ}$	100，020	105，009	101，234	92，722	05，025	for that time．
October			56，625	67，286	50，236	52，074	65，340	
November	H		42，615	30，010	41，218	39，350		The winter being long the
December	エ		32，670	32，811	3，059	29，333		number of passengers mucb re－
								duced from November，1844，to
Total	61，766	50，564	769，651	809，012	744，060	743，667		March， 1845.

Total income，from opening to 31st December， 1845.

1839	1840	1841	1842	1843	1844	1846
$\underset{16,464}{\text { r1－}} \stackrel{x}{x}$			${ }_{453,555}^{\text {TL }}$ 23	$\stackrel{\mathrm{rL}}{436,567}{ }^{2}$		$\stackrel{\text { rl }}{437,032} 8$

Total outlay for working，from opening to 31st December， 1844.

c 2

STATIONS AND HOUSES.

The station houses and passenger sheds are very neat buildings, designed by Mr. Oppermann, architect in Mainz, who has shown a great deal of taste in his design, and judgment in the construction. The fault, if any, belongs to the locality, not to the architect. The passengers, in bad weather, have no covering between the waiting rooms and carriages.

The station house in Frankfurt is a large stone building, being a large pavilion with two wings, and at the end of each wing a small pavilion; the large or middle building contains, lst, on the ground floor, the booking clerks' offices, where the tickets are given out and money taken; 2nd, in first story, the sitting room for Directors, where their meetings are held, and acting Directors' offices, with office for head cashier and secretary. The attics are used as lumber rooms and store rooms for articles which are left behind. The right wing is used as waiting room for 1 st , 2nd and 3rd class passengers, being very tastefully fitted out and decorated, sofas, with horse-bair seatings running round the walls, of mahogany; the windows having beautiful chintz curtains, and the roof or ceiling being tastefully decorated. At the end of this wing is a small pavilion two stories high, the ground story being used as offices and storerooms for luggage and goods transport, the upper story as dwelling for foreman and clerk. The left wing is used as waiting room for 4th class passengers, being as large as the other, but quite plain, the seats being of oak. The pavilion at the end is used for steam-boat offices, \&c., on ground floor, and the upper story as a dwelling for the stations overseer. (See Plates III., IV., and V.)

The station houses at Castel and Wiesbaden are very similar to the above, with the exception of the Castel station house being built of wood, and having a covered passage, used only in bad weather, between the waiting rooms and carriages, which was recently erected. Mainz and Castel are joined together by a bridge of boats, as shown in Plates XX. and XXI.

The intermediate station houses, at Höchst, Hattersheim. Flörsheim, and Bicbrich, being merely large enough for the elerks to live in the upper stories, the under parts or ground floor being used as waiting room and elerks' office. The station house at Hocheim is considerably smaller, being only a cottage, containing waiting room and office, with a small sleeping room for watchman or police.

The passenger sheds are all splendid buildings, being three in number upon the main line and one at Biebrieh, of wood; but from their neat construction and decoration, deceive the cyc at once into believing they are made of more solid and substantial materials*. (Sce Plates VI., VII., and VIII.)

ELECTRIC TELEGRAPH.

The electric telegraph, whieh is now completed between Castel, Biebrich, and Wiesbaden, is constructed on a very simple and economical plan, the cost being only £11 per mile.

The above-mentioned three stations are included in the line, and each of them is every moment at liberty to forward intelligence to the other two. The despatches are given by a pointer moving on the centre of a dial plate, round whieh the letters of the alphabet are marked.

Lately a peculiar meehanism has been adopted by the inventor, Mr. William Fardelly, by whieh the pointers of the several telegraphs are made to move with great speed and ease, so that a small battery of two or three elements is sufficient to move several of these instruments. There is likewise a portable telegraph, to be carried with the trains; this instrument can be applied to any part of the cireuit whatever: nevertheless, preparations are being made for this purpose at given distances along the line. The whole is worked by a single conducting wire of copper, $1 \frac{1}{2}$ millimetre thiek, supported by wooden posts, into the tops of which the wire is fixed by a wooden peg or wedge.

There is also a printing apparatus worked by the same single wire, which may be placed at each station; but as simplicity seems the desirable point for railroads,

[^1]these apparatuses are better adapted for communication between two end stations alone.

This system, which answers all the purposes of the railway, is in continuation tliroughout the whole line from Frankfurt to Wiesbaden.

LOCOMOTIVE ENGINRS.

Are twelve in number, all six-wheel engines, from the following manufactories: _Nos. 1 to 6, from Mcssrs. Robert Stephenson and Co.'s, of Newcastle-on-Tyne, having 12 inc. cylinders and 18 inc. stroke, the middle or driving wheels 6 ft . diameter, and bearing wheels 4 ft ; Nos. 7 and 8 from the same establishment, having 13 inc. cylinders and 18 inc. strokc, driving wheels $5 \frac{1}{2}$ feet, and bearing ditto 3 f. 9 inc. diameter; No. 9 from Messrs. Jacobi, Maniel, Hyson, and Co., of the gute Hoffnungs Hütte, near Sterkrath, on the Ruhr; the cylinders are 12 inc. diameter and 18 inc . stroke, driving wheels 6 ft ., and bearing ditto 4 feet diameter; Nos. 10 and 11 from Messrs. Sharp, Roberts, and Co., of Manchester, having 14 inc. cylinders and 18 inc. stroke, the driving wheels $5 \frac{1}{2} \mathrm{ft}$., and bearing ditto $3 \frac{1}{2} \mathrm{ft}$. diamcter ; No. 12 from the house of Cockerill, in Seraing, with 14 inc. cylinders and $9 \mathcal{E}$ inc. stroke, the driving wheels $5 \frac{1}{2} \mathrm{ft}$., and bearing ditto 3 ft .9 inc. diameter. This engine is constructed after Mr. Robert Stephenson's new patent, with long boiler and expansion, giving great satisfaction as regards economy in fuel. The above-mentioned locomotives were furnished between 1839 and 1841. These locomotives were furnished with spark catchers, and extra blast pipes, as the quality of the coke varies so much; the main pipe must be kept small enough to suit the inferior ; the diameter of main pipe at its outer end is from 25 inc. to 27 inc., the other being 3 inc., most of which are as shown in Plate XVIII.

Aceidents upon railways are of very frequent occurrence, arising from various causes, and are attended with various amounts of damage, not unfrequently causing serious losses of life as well as property; it therefore behoves every railway company to offer to the public as much security as possible, which in a great many cases can be done at a very trifling outlay. It very often happens, that could the locomotive and tender be detached from the train when running, very serious accidents would have been avoided.

Upon the Taunus Railway an apparatus is in use, which from its simplicity and efficiency cannot easily be excelled; it is attached to the hinder part of the tender, and is uscd in case of emergency, as well as being constantly used when at the stations, where it is necessary to uncouple the engine and tender from the train, thereby
saving great trouble, and with less danger to engine-men and firemen, as they can disconnect at any speed or at any time, whether the engine and train is in motion or not.

The apparatus is shown in Figs. 1 and 2, Plate XIX., and consists of a lever, A, about 5 to 6 feet long, attached to a weigh-bar, B, which rests upon the upper part of tender, and moves in the carriages, k к. Upon the end of weigh-bar, в, is keyed a short lever, or arm, c , which is connected with a double eye and rod to the slightly conical pin, D , going through the large double eye, d, which is attached to the drag-spring of tender, F . The links, E E, are to admit of the vibration of dragspring, which is always more or less stretched when the train is behind the tender; G is a guide bolted upon the planking of tender to keep the pin \mathbf{D} always in a right position; 4 is a standard or catch-plate screwed upon the tank, to hold the lever a in its place when the train is coupled to the tender.

When it is found necessary to uncouple, the lever a is lifted out of the notch of the plate H, and allowed to fall, whereby the pin D is raised; the coupling between carriage and tender will immediately fall of itself.

This apparatus is also used upon some carriages which run into a branch line, the carriage being uncoupled at the time the train is running, some time before arriving at the switches or points leading into the branch, whereupon the train passing they are changed, the carriages run in of themselves, and are brought up with a break at the required spot, where horses are awaiting to take them to their destination.

Fig. 3 is a front view of rod and pin, D.
Fig. 4 is a front view of catch-plate, n .
Fig. 5 is a view of the part of guide, G , which is bolted to the planking.
Fig. 6 is a ground plan of ditto.
This system has now stood the test of six years, answering all the purposes for which it was intended, and has very frequently been of the utmost service, more particularly by the bursting of a tube in the boiler, where the flames have been driven from under the fire-bars of fire-box, and through underneath the tender, to such an extent, that had the engine and tender not immediately been detached from train, there was every possibility of setting the first carriage on fire.

The apparatus can be easily adapted to any form of tender or carriage at pleasure, taking care that the links, $\mathbf{E E}$, are kept long enough to admit of the vibration of drag-spring.

ESTABLISHMENT

Consists of, 1st, a board of Directors, or Verwaltungsrath, chosen by a general meeting of the shareholders, and consists of six members, two being chosen from Frankfurt, two from Mainz, and two from the shareholders of Wiesbaden, their meetings generally being held in Frankfurt. Out of the six members are chosen a chairman and vice-chairman; a secretary as well always attending to note minutes of meetings.

2nd. Technical administration, consists of a resident Director and Inspector, the Director having full control and management of traffic, \&c.; the Inspector having the inspection of railway, and all buildings, and every thing moveable upon the whole establishment, these two gentlemen always being present at the meeting of the board, every other officer being under their especial order and control.

The establishment in Frankfurt is as follows:-head cashier, or elcrk, director's secretary, reviscr, stations manager, 1st and 2nd ticket clerks, two merchandize expeditors and two helpers, one stations overseer, with two porters and ten men of different grades.

In Höchst, one ticket clerk, one overseer, and one porter; in Hattersheim, a stations manager and ticket clerk, one overseer, one porter, two waggon greasers, and four water pumpers; Flörsheim, one ticket clerk, and one porter; Hocheim, one ticket clerk, and one porter.

In Castel, a stations manager, 1st and 2nd ticket clerk, one merchandize expeditor, one overseer, two porters, and twelve men of different grades.

Biebrich, one stations manager and ticket clerk, one overseer, one porter, and three men of different grades.

Wiesbaden, a stations manager, 1st and 2nd ticket clerks, one merchandize expeditor, one overseer, two porters, and seven men of different grades.

With the trains the following persons are employed:-1st, the Frankfurt train, one commissioner, (Zug commissair,) one head conducteur, and four guards, one packmaster, and two breaksmen; End, Wiesbaden train, one commissioner, one head conducteur, four guards, one packmaster, two breaksmen, and two guards for the Biebrich branch; all the above being under the control of Director.

The way establishment is under the control of inspector, having one head overseer, five under overscers, and seventy-one men, acting as police, switch-changers, and plate-layers.

Locomotive and repairing establishment, also under the control of inspector, consists of locomotive superintendent, one foreman at Frankfurt station, six engine drivers, ten stokers, and five cleaners; and in the workshops one foreman, one clerk, fifty-four workmen, one general storekeeper, and two labourers.

Thus altogether there are 260 persons employed and receiving salaries, besides day labourers for repairing railway, whose wages amounted in 1844 to $£ 8207 \mathrm{~s} .8 \mathrm{~d}$.

GENERAL OBSERVATIONS.

All reports sent to the board of Directors must go through the hands of the resident ${ }^{\text {a }}$ Director or Inspector, and by him laid before the committee when sitting, which takes place twice a month generally. The locomotive superintendent must send in a report once a month, of repairs, accounting for all work done to locomotives, tenders, carriages, \&c., as well as all other repairs, accounting for all materials expended. For other departments the month is divided into three periods, when all returns are made, of cokes, oil, materials, passengérs, goods, and money, \&c.

In the summer months there are generally four locomotives in fire every day, there being six through trains from each end, besides extra to Wiesbaden from Castel, two locomotives doing the duty the whole day, the others standing in reserve, and running the extra trips; thus each engine on active duty runs upwards of 156 miles per day, which it does three to four days per week; it is then taken into the

[^2]shed and examined, and remains as many days before again being taken out. In winter there are only four through trains per day, and three locomotives in fire, the one for doing the extra trip and reserve, the others for the regular duty. Each engine driver and fireman have their own engines, and only travel with them, therefore each engine-man rests as many days as his engine, or at least his duty is not so arduous, having only to see that all is in proper order. The general average speed of trains is from 20 to 25 miles per hour; should the engine drivers exceed that, they are liable to be fined by the Company. To this slow speed is to be adduced the very few accidents which have occurred upon this line since the opening.

The trains are in summer generally very heavy, averaging from 16 to 18 carriages and trucks, but on Sundays and holidays from 20 to 30 . On some days in summer there are from 12,000 to 13,000 passengers travelling in one day; in winter the trains arerage from 10 to 12 carriages and trucks. The number of passengers travelled upon the railway in 1844, divided by 965 , yields an average of 2037.4 persons per day ; and in 1845 gives an average of 2020.8 passengers per day.

Labour is rather cheap, but materials are high; a good blacksmith does not receive more than $2 s .2 d$. per day, a mechanic 1 s .8 d . to 2 s . per day, joiners the same, day labourers 18. to 18. 2d. per day, all working much longer hours than are generally worked in England.

Brass, copper, iron, and metal, are about 20 to 30 per cent. dearer here than in England; coke costs $338.4 d$. per ton, and is about 20 to 30 per cent. inferior to English.

WORKSHOPS, ETC.

The workshops in Castel being the principal one, sall the heavy work is done there, and general repairs. The machinery consists of one large lathe for turning driving and other wheels for locomotives; one 14 -inch screw-cutting and turning ditto; one 12 -inch self-acting ditto, for turning axles, \&c.; one 10 -inch ditto common, for turning bolts, nuts, \&e., and short work ; one ditto for turning carriage and tender wheels turning upon their own bearings; one small planing machine; one small drilling ditto; one screwing ditto, and one grindstone, all of which are driven by a steam-engine of eight horses power. One of Shank's punching machines, and cylinder boring machine, for boring in their places, has also of late been added to the list, being two of the most useful machines in existence, more especially the latter.

In Frankfurt there is only one small hand-lathe, there being only five to six workmen employed there on account of the carriage repairs.

DESCRIPTION OF DRAWINGS.

Numbrakd

I. and II. Sectional double plate, showing length and gradients, the tints determining each State.
III. Front elevation of the Frankfurt station house.
IV. Sectional elevation of ditto.
\}Engraved on one Plate.
V. Ground plan of ditto, bottom flat, and upper story.
VI. End view of passenger sheds.
VII. Side view of ditto, and sectional elevation Engraved on one Plate.
VIII. Section of ditto.
IX. Elevation, end view, cross section, and plan of 1st class carriages.
X. Ditto
XI. Ditto
ditto
ditto
ditto ditto ditto showing the break and apparatus for uncoupling the carriage when in motion.

D 2

Plate.
XIII. Elevation and sectional eleration of Srd class carriages.
XIV. Elevation, end view, cross section, and plan of 4 th class carriages.
XV. Details showing different parts of carriages, answering for all classes, with exception of 1 st class.

Fig. 1. Showing the manner the buffer springs are coupled with buffers, with buffer boxes, drag hook, and cast-iron frames, A A.
2. Elevation, plan, and end view of malleable iron axle horns, for holding grease boxes, drawn 1 inc. per foot.
3. Iron eye-bolt for receiving the spring carriers, with bolts and nuts for screwing the horns on to cross sheaths of carriages.
4. Carriers for bearing springs.
5. Shows section of middle seats of Srd class carriages.
6. Showing section of drag hook and spindle for buffer spring.
XVI. Details of different parts, answering for all carriages, with exception of 1st class.

Fig. 7. Carriage wheels and axles for all carriages and trucks, with exception of 1st class, there being a little difference in their lengths.
8. Represents the bearing springs, 3 inc. broad, containing 11 plates, being 4 inc. deep for 2nd class and the mixed 1 st and 2 nd class carriages, and 18 plates 4$\}$ inc. deep for Srd and 4th classes, scale $1 \frac{1}{2}$ inc. per foot.
9. Is the front view of the two straps, d, which join the bearing springs and grease boxes together.
10. A thin plate which comes between the bolt-beads and cross sheaths, on being bolted to the axle-horns.
11. Stretcher which joins the two axle-horns together, helping to stiffen them.
19. A small cod or carriage of cast iron, which is screwed upon the roof of all carriages for hand-rail.
13. A cast iron pillar for supporting the seats in the 3rd and 4th class carriages.

Plate.
XVII. Details of different parts, answering for 2nd, 3rd and 4th, and mixed carriages.

Fig. 14. Represents a side view and plan of grease boxes.
15. Represents a section and end view of ditto.
" 16. " an elevational section of grease boxes.
" 17. " ditto ditto and plan of keep for ditto.
" 18. Represents the brass bearings for ditto.
" 19 and 20 " the covers to grease boxes, of sheet iron.
" 21. Buffer spring frames, of cast iron.
, 22. Buffer drawn half size.
43. The hinder or back seats of Srd class carriages.
XVIII. Represents in two figures the spark-catching chimney, with double blastpipe, as now used.
Fig. 1. Is a section; the inner chimney, A, is 11 inc. diameter, being bell-mouthed at the top, and going 8 to 10 inc. deep into the smoke-box at bottom ; the outer case, c c , is surmounted at the top by a brass or copper crown, D D, which has at the outlet at the top an iron tube going 3 to 4 inc. into the interior of crown, the same diameter as small chimney.

The outer case or chimney, c c, is fastened to the smoke-box by means of the cast iron ring or base, E E ; on each side is a hand-hole closed by a door, $h h$, for cleaning away the ashes which are deposited. FF are the blast pipes, which are joined together at the bottom by an elbow pipe of cast brass, in the interior of which is a throttle valve, having a spindle attached to it going through one side of smoke-box, a lever and rod being attached; it is carried up to platform of engine, where it is regulated by engine driver at will.
XIX. Uncoupling apparatus. For description see page 15.
XX. Is the ground plan of bridge of boats crossing the Rhein between Mainz and

Castel, showing the timbers and method of joining together. The bridge is 1836 feet long, and is built in Yokes (Iochs) of four boats each, which at certain places can be removed at will. At the Mainz end there is one boat built larger than the others, on account of its having

Platr
a platform resting entirely on itself. This bost is always dropped down the stream and pulled to one side when any ships or steamers have to pass through. It is brought up to its place again by means of a winch which stands on board, the cable being fastened to its roller or drum; at this place there is never more than one boat removed, but in the middle where the large rafts (flösze) of timber pass, there are from four to eight taken away, as the case may be. Each boat has an anchor, and secured thereto by a chain cable. The ends or platforms at the ends of bridge resting on the shores, are raised or lowered by powerful screws, to suit the rising or falling of river.
XXI. Details of the preceding.

Fig. 1. Shows a cross section of end or outside boats, and longitudinal section of bridge.
2. Is a cross section of bridge, showing part of the longitudinal section of end or outside boats and cross-timbers.
,. 3. Longitudinal section of bridge, and cross section of middle or intervening boats.
, 4, 5, and 6. Show cross section of bridge and joinings of timbers, where resting on the intervening or middle boats, and other details.
XXII. Station at Höchst, view from the Railway.
to Station at Wiesbaden, view from the Street.
XXV. $\left\{\begin{array}{l}\text { Station at Frankfurt-on-Maine, view from the Promenade. } \\ \text { Station at Castel opposite Mainz, front view. }\end{array}\right.$

Contel, Jan. 1846.
ROBERT THORMAN.

APPENDIX,

SHOWING INCOME AND OUTLAY PRO 1844, AND INCOME PRO 1845.

Income for the Ybar ending 31st Deckmber, 1844.

The above income divides itself into 12 months as follows :-

Expenditure for the Year ending December 31et, 1844.

- The nett income of traficic is Fl. 431,272 39χ or $=\boldsymbol{£ 3 5 , 9 3 9 7 8 . 9 d .}$

Nett profits divided into five different heads, as follows :-

Income from Traffic pro 1845.

The above income divides itself into 12 months, as follows :-

Castel, January, 1846.
ROBERT TIIORMAN.
TABLE showing the Total Cost of Milcage of Locomotives upon the Taunus Railway in 1844, taken from the Superintendent's Books.

Nors.-The duplicates, which were taken out of store, are accounted for in this Table, the old materials always being deducted, which will account for the differeace between this and the Committee's Report. The Coke burut by the Locomotives when in reserve is not accounted for in this Table.

Plate 1 x /I

IAETE

Dotived by Google

Digitized by Google

Fッはnli゙いど

Digilizod by Google

Digitized by Google
(iverned IVhen if lovllom /H゙al

Digitized by Google

H.1) K. 天 K.AT. ツ"AY:

का 「irrrílifes.

FRRANKYばJT 8，W゙1

Digitized by Google

1ス.1.1,135.110.

Wain"mod by Google

Digitized by Google

Dililized by Google

$\left[\begin{array}{c}n \\ \vdots \\ -\quad \\ \vdots\end{array}\right]$

$\operatorname{lin}_{2}^{2}$
$\underbrace{(2)}$

$$
\begin{gathered}
\infty \\
c, \ldots
\end{gathered}
$$

$$
\begin{gathered}
\square \\
\cdots \\
\sim \\
\sim
\end{gathered}
$$

Digitized by Google

Digitized by Google

Dlolizod by Google

EHE:
ir JRDATS。
J VIJKNCE゙ AND CASTFLL

Sectiont
Fug. 3

\therefore D A BDATS.
UE at MAYENCE AND C'ASTEL.
iof Radway cormune admacenty',
E. $T^{\prime} A I L S$

Fug 7

Sertuon of the End Shups

Bettom of Shy' or Berat
of the Middle or Insude Shups
ria 1

Digitiod by Google

BOUND

NOV 121954
UIVIV. OF MICH. LIBRARY

[^0]: - Military Commission of the Confederation.
 ${ }^{b}$ This is the length the locomotives run, or length of rails; the total length, including the stations, is about $41,966^{\mathrm{m}}$.

[^1]: - The intermediate stations, Höchst, Hattersheim, and Hocheim, have siding places, Hattersbeim being the middle station where the trains meet, they starting at equal times from Castel and Prankfurt.

[^2]: - The resident Director is Mr. A. Beil, of Franlfurt, and the Inspector is Captain Otto Mellar, of the Royal Prussinn Engineers, of Mainz.

