urrent number of specimen. ocality	No. 1. San Francisco.		No. 2. San Francisco.				
	Incbes and 100ths.	$\begin{gathered} \text { 100ths } \\ \text { of } \\ \text { length. } \end{gathered}$	$\begin{aligned} & \text { Inches } \\ & \text { nad } \\ & \text { 100ths. } \end{aligned}$	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length, } \\ & \text { including } \\ & \text { caudal. } \end{aligned}$			
Body:	2.73	. 208	2.90				
Greatest width	1. 99	. 15	1.70				
Height at ventrals	2. 62	. 197	2.90	24			
Least height of caudal peduncle	1.03	. 078	1. 03	09			
Hreatest length	3.28	. 245	2.96	Head :			
Distance from snoat to nape	2.2	. 165	1.93				
Width of interorbital area	. 62	. 045	. 66	. 0			
Length of snout	. 95	. 07	1. 00	. 86			
Length of maxillary	1. 20	. 09	1.14	. 10			
Length of mandible	1. 53	. 115	1. 36				
Diameter of orbit Dorsal (spinous) :	. 68	Doreal (spinous) :					
Distance from snout	3. 20						
Length of base.....	3.32	. 25	3. 30	28			
Greatest height.	1.64	. 123					
Height at first spine	1. 00	. 074					
Dorsal (soft):							
Height at longest ray	1.32	.10					
Anal:							
Length of base................	3. 67	. 275	3. 46				
Caudal:							
Length of external rays.	1. 84	. 14	1.80				
Pectoral:							
Length	2.85	. 215	2.36				
Ventral: Distance from tip of lower jaw Lent	4. 16	. 314	3. 25	. 28			
Length Branchiostegals...	2.15 6	. 162	2. 16	. 18			
Caudal, principal rays	15		15				
Pectoral	19		19				
Number of scales in lateral line to base of caud	110		111				
Number of transverse rows above latera! line..	15		15				

Urrent number of specimen ocality

Extreme length.

Greatest height
Greatest width
Height at ventrals.
Least height of caudal peduncle
Greatest length
Distance from snoat to nape
Length of snout
Length of maxillary
Length of mandible.
Diameter of orbit
Distance from snout
Length of base
Greatest height
Height at first spine
Lenjth of base
Height at longest ray
Distance from tip of lower jaw
Length of base
Height at longest ray
Length of middle rays
Length of external rays.
Distance from snout
Length
Distance from tip of lower jaw
Length
Branchiostegals.
Dors
Caudal, principal rays
Ventral.
Number of scales in lateral hine to base of caudal Number of transverse rows above latera! line.

San Francisco.

Smithsonian

miscellaneous collections
Smithsonian Institution

SMI 6908

224.1

Wibrary of tbe Wfluseum
or
COMPARATIVE ZOÖLOGY,
at habrasd coligel calibricer, was.

$$
\begin{aligned}
& \text { Wh yimutrsmiar } \\
& \text { tor Pratrition }
\end{aligned}
$$ No. 3252, Cept25.1883.

SMITHSONIAN

MISCCLLANEOLS COLLECTIONS.

VOL. XXII.

WASHINGTON :
PUBLISHED BY THE SMITHSONIAN INSTITUTION. $\Delta{ }^{3 \pi} 1882$.

CONTENTS.

Advertisement.

Article I-Proceedings of the United States National Museum, Vol. III, 1880. 594 pp.
(Smithsonian series, No. 425.)
(National Museum series, No. 25.)
Article II.-Proceedings of the United States National Museum, Vol. IV, 1881. 600 pp.
(Smithsonian series, No. 467.)
(National Museum series, No. 27.)

ADVERTISEMENT.

The present series, entitled "Smithsonian Miscellaneous Collections," is intended to embrace all the publications issued directly by the Smithsonian Institution in octavo form; those in quarto constituting the "Smithsonian Contributions to Knowledge." The quarto series includes memoirs, embracing the records of extended original investigations and researches, resulting in what are believed to be new truths, and constituting positive additions to the sum of human knowledge. The octavo series is designed to contain reports on the present state of our knowledge of particular branches of science; instructions for collecting and digesting facts and materials for research; lists and synopses of species of the organic and inorganic world; museum catalogues; reports of explorations; aids to bibliographical investigations, etc., generally prepared at the express request of the Institution, and at its expense.

The assignment of a work to one or the other of the two series will sometimes depend upon whether the required illustrations can be presented more conveniently in the quarto or the octavo form.
In the Smithsonian Contributions to Knowledge, as well as in the - present series, each article is separately paged and indexed, and the actual date of its publication is that given on its special title page, and not that of the volume in which it is placed. In many cases works have been published, and largely distributed, years before their combination into volumes.

While due care is taken on the part of the Smithsonian Institution to insure a proper standard of excellence in its publications, it will be readily understood that it cannot hold itself responsible for the facts and conclusions of the authors, as it is impossible in most cases to verify their statements.

S. F. BAIRD,
Secretary S. I.

Department of the $\mathfrak{B n t e r i o r}$:
 U. S. NATIONAL MUSEUM.

$-25-$

PROCEEDINGS

OF THE

UNITED STATES NATIONAL MUSEUM.

Vol. III.
1880.

published under the direction of the smithsonian institution.

WASHINGTON: GOVERNMENT PRINTING OFFIOE. 1881.

TABLE OF CONTENTS.

Page.
Bean, Tarleten Fi. Description of a Now Hake (Phycis Earlit), from South Carolina and a Note on the Occurrence of Phycis regius in North Carolina 09
Check-List of Duplicates of North American Fishes distributed by the Smithsonian Institution in behalf of the United States National Museum, 1877-'80 75
Cattie, 8. TH. On the Genitalia of Male Eels and their Sexual Characters 280
Eadlich, Fred. M. List of Species and Varieties of Minerals in the National Museum of the United States in 1879 333
Garman, Samuel. Synopsis and Deecriptions of the American Rhinobatides. 516
Gilbert, Charles H. (See under Jordan and Gilbert.)
Gill, Theodore. On the Ideatity of the Genus Leurynnis Lockington, with Lyeodopsie Collett 247
Geode, G. Brown. Descriptions of Seven New Species of Fiahes from Deep Soundings on the Southern New England Coast, with Diagnoses of Two Undescribed Genera of Flounders and a Genns related to Merlucius 237

- Fishes from the Deep Water on the South Coast of New England obtained by the United
States Fish Commission in the Summer of 1880 407
- The Frigate Mackerel (Auxis Rochei) on the New.England Coast. 532
- Notacanthus phasganorus, a New Species of Notacanthidie from the Grand Banks of New- foundland. 535
Hay, O. P. On a Collection of Fishes from Eastern Mississippi 48
Heilprin, Angele. On Some New Species of Eocene Mollusca from the Southern United States 149
Jordan, David 8. Notes on a Colleotion of Fishes from East Florida, obtained by Dr. J. A. Henshall 17
- Notes on a Collection of Fishee from Saint John's River, Florida, obtained by Mr. A. H. Curtiss. 28
- Note on a Forgotten Paper of Dr. Ayres, and its Bearing on the Nomenclature of the Cyprinoid Fishes of the San Francisco Markets 325
- Note on "Sema" and "Dacontrus" 327
- Deacription of a New Species of Caranx (Oaranx beani), from Beaufort, North Caro- lina 488
Jordan, David S_{2}, and Gilbert, Charlen II. Notea on a Collection of Fishes from San Diego, California 23
—— Description of a New Flounder (Xystreurys liolepis), from Santa Catalina Ieland, Cali- forna 34
——Description of a New Ray (Platyrhina triseriata), from the Coast of California 36
1 ——Description of a New Species of "Rook Cod" (Sebaetichthys serriceps), from the Coast of California 38
1 On the Occurrence of Cephaloscyllium laticeps (Duméril) Gill on the Coast of Callfor- nia 40
On the On Shark of Sonthern California (Galeorhinus galeus) 42
- Description of a New Flounder (Pleuronichthys verticalis), from the Coast of California with Notes on Other Species. 49
\sim Notes on Sharks from the Coast of California. 51
On the Generic Relations of Platyrhina exasperata 63
-Description of a Now Species of Sebastichthys (Sebastichthys miniatus), from Monterey Bay, California. 70
LDescription of a New Species of "Rook-fish" (Sebastichthys carnatus), from the Coast of Californis 73
- Description of a New Species of Ray (Raia stellulata), from Monterey, Callfornia 133
Deacription of New Species of Xiphister and Apodichthys, from Monterey, California... 135
——Description of Two New Species of Sebastichthys (Sebastichthys entomelas and Sebastich. thys rhodochlorit), from Monterey Bay, California 142
V Description of a New Agonoid Fish (Brachiopsie syosternus), from Monterey Bay, California 152
1 Description of a Now Flounder (Hippoglossoides exilis), from the Coast of California.. 154
Page.
Jordan, David G., nnd Gilbert, Charles H. Description of a New Species of Ray (Raia rhina) from the Coast of Calitornia 251
- Description of Two New Species of Fishes (Ascelichthys rhodorus and Scytalina cerdale)
from Neah Bay, Washington Territory 264
Description of Two New Species of Scopeloid Fishes (Sudis ringens and Myetophum crenulare), from Santa Barbara Channel, California 273
1 Description of Two New Species of Flounders (Parophrys ischyurus and Hippoglos. soides elassodon), from Puget Sound 276
1.-Description of Seven New Species of Sebastoid Fishes, from the Coast of California 287
\sim Description of a New Embiotocoid (Abeona aurora), from Monterey, California, withNotes on a Related Species.299
\checkmark Description of a New Flounder (Platysomatichthys stomias), from the Coast of Califor- nia 301
\checkmark Description of a New Embiotocoid Fish (Cymatogaster rosaceus), from the Coast of Cali- fornia. 303
-Description of a New Species of Deep-Water Fish (Icichthys Lockingtoni), from the Coast of California 305
- Description of a New Embiotocoid Fish (Ditrema atripes), from the Coast of California.. 320
——Description of a New Scorpanoid Fish (Sebastichthys maliger), from the Coast of Cali- fornia 322
\sim Description of a New Scorpanoid Fish (Sebastichthys proriger), from Monterey Bay, California 327
- Description of a New Agonoid (Agonus vulsus), from the Coast of California. 330
-_ Description of a New Species of Hemirhamphus (Hemirhamphus rosce), from the Coast of California 335
\sim Description of a New Species of Notidanoid Shark (Hexanchus corinus), from the Paeific Coast of the United States 352
-Description of a New Species of Nemichthys (Nemichthys avocetta), from Puget Sound. 409
- Description of a New Species of Paralepis (Paralepis coruscans), from the Straits of - Juan de Fuca 411
L— List of the Fishes of the Pacific Coast of the United States, with a Table showing the Distribution of the Species 452
On the Generic Relations of Relone exilis Girard 459
_ Notes on a Collection of Fishes from Utah Lake. 459
- Description of a New Species of Rock-fish (Sebastichthys ehrysmmelas), from the Coast of Callfornia 465
Lawrence, Gearge N. Description of a New Species of Bird of the Family Turdide, from the Island of Dominica, W. I 16
- Description of a New Species of Parrot of the Genus Chrysotis, from the Island of Do- minica 254
- Description of a New Species of Icterus, from the West Indies 351
Hockington, W. N. Remarks on the Species of the Genus Chirus found in San Francisco Market, including one hitherto undescribed 53
- Description of a New Fish from Alaska (Uranidea mierostoma) 58
- Description of a New Species of Agonide (Brachyopsis verrucosus), from the Coast of California 60
-Description of a New Genus and Some New Species of California Fishes (Icosteus anig. matious and Osmerus attenuatus) 63
- Description of a New Chiroid Fish (Myriolepis zonifer), from Munterey Bay, California. 248
- Description of a New Sparoid Fish (Sparus brachysomus), from Lower California....... 284
- Note on a New Flat-fish (Lepidopsetta isolepis), found in the Markets of San Francisco.. 325
-Description of a New Species of Prionotus (Prionotus stephanophrys), from the Coast of California 529
Rathbun, Richard. The Littoral Marine Fauna of Provincetown, Cape Cod, Massachu. setts. 116
Ridgway, Robert. Revisions of Nomenclature of Certain North American Birds. 1
- A Catalogue of the Birds of North America. 163
-Catalogue of Trochilidee in the Collection of the United States National Muscum 308
 269
- List of the North American Species of Myriapods belonging to the Family of the Lysio-petalida, with a Description of a Blind Form from Laray Cave, Virginia524
Smith, Resa. On the Occurrence of a Species of Oremnobates at San Diego, California. 147
Smith, S.1. Preliminary Notice of the Orustacea dredged in 64 to 325 fathoms off the South Coast of New England, by the United States Fish Commission, in 1880. 413
Page.
Swan, Inmes G. The Surf Smelt of the Northwest Coast, and the Method of Taking Them bx the Quillehate Indians, West Coast of Washington Territory 43
- The Eulachon or Candle-fish of the Northwest Coast 257
Verrill. A. E. Notice of Recent Additions to the Marine Invertebrata of the Northeast-ern Coast of America, with Descriptions of New Genera and Species and Critical Remarkson OthersPart IL-Mollusea, with Notes on Annelida, Echinodermata, etc., collected by the UnitedStates Fish Commission356
Part III.-Catalogue of Mollusea recently added to the Fauna of Southern New England. 405
White, C. A. Note on the Occurrence of Productus giganteus in California 46
- Note on Acrothele 47
- Description of a New Cretaceous Pinna from New Mexico 47
- Note on the Occurrence of Stricklandia Saiteri and S. Davidsoni in Georgia 48
- Description of a very large Fossil Gasteropod, from the State of Puebla, Mexico 140
Descriptions of New Invertebrate Fossils from the Mesozoic and Cenozoic Rocks ofArkansas, W soming, Colorado, and Utah157

OF THE

UNITED STA'TES NATIONAL MUSECM.
 1880.

BEVISIONE DF NOMENCEATERE OF CERTAEN NORTI AMEHICAN BIRDN.
 By ROBER'T RIDGWAY.

The following emendations of nomenclature apply both to species ennmerated in the latest published list of North American birdsCones's "Check List," and others not contained therein. These two series are therefore included in separate categories, the former having, for couvenience of reference, the corresponding number of the "Check List" prefixed to each name.

It is deemed inexpedient to give here a list of the species to be added to the Smithsonian Catalogue of $1859, \uparrow$ for the reason that they are sufficiently distinguished by the absence of the concordant number following each name, in the revised list following this paper.

a. Species given in Coues's Check List.

4b. Turdus aonalaschikae, \ddagger Gmel.-In my report on the ornithology of the fortieth parallel expedition I used the name "guttata, Pallas," as the earliest name certainly applicable to this species; but I now believe that Gmelin's name, Turdus aonaluschkae, based upon the Cnalascha Thrush of Pennant (Arctic Zoology, II, p. 338) and Aoonalaskia Thrush of Latham (Synopsis, II, i, p. 23), is the one which should be nsed. As in the case of Muscicapa guttata, Pall., there can be no doubt whatever that the western Dwarf Thrmsh (Turdus nanus, Auct., nec And.!) is the very species which these authors deseribed under the above names. Turdus aonalaschkae being, therefore, the proper name for the Hermit Thrushes collectively, the Middle and Eastern Province forms should be called, respectively, T. aonalaschkae auduboni and T. aonalaschkae pallasi. . With regard to the last, it is very evident that

[^0]Turdus nanus, Aud., was based upon a small specimen of the eastern Hernit Thrush, since Audubon distinetly says so in his account of the supposed species. The name nanus antedates pallasi ; but the latter having been used, in a restricted sense, exclusively for the eastern race, while nanus has been almost wholly applied, of late years, to the small west-coast form now to be called T. aonalaschkae, it seems best to discard the name nanus altogether and adopt for the eastern birds that of pallasi, as next in order of date.
61. Helonea swainsoni, Aud.-According to Agassiz, the correct orthography of the generic name of this species (if to be separated from Helmitherus) is Helonaa and not "Helinaia," as spelled by Audubon. (Cf. Newton, P. Z. S., 1879, p. 552.)

144a. Leucosticte griseinucha (Brandt) Bp .-The present indications are that this form does not intergrade with L. tephrocotis, but, on the contrary, is a well-defined species of very constant characters confined strictly to that portion of the Alaskan coast west of the one hundred and thirty-fifth degree of west longitude.

146a. Egiothus linuria, "var. fuscescens."-No examples referable to the soccalled fuscescens having ever been taken in winter, while the particular stage originally so named is represented by birds in highly intensified midsummer dress from various portions of subarctic America (the interior of the continent and coast of Alaska, as well as Labrador), the inference is uatural that "fuscescens" represents simply the midsummer plumage of the common species. ($C f$. Coues, Birds of the Northwest, 1874, p. 115.)

146b. Egiothus canescens exilipes (Cones) Ridgw.-There is every probability that \boldsymbol{E}. canescens is a quite distinct species, since it occurs in almost every district inhabited by \mathcal{E}. linaria (especially in the Nearctic Region), and cannot therefore be a geographical race of the same species. E.canescens and E. linaria holbölli are the large boreal races breeding in Greenland; E. canescens exilipes and E. linaria proper are the smaller continental forms.

159a. Passerculus anthinus, Bp.-This seems to be quite distinct from P. sandwichensis, and probably more nearly relatel to-

160 a. Passerculus guttatus, Lawr., which proves to be very distinct from P. rostratus.

165 a (Appendix). Ammodromus nigrescens, Ridgw.-As has already been insisted by Mr. Maynard (see Am. Sportsman, V. Jan. 16, 1875, • p.248), this bird is very probably distinct specifically from A. maritimus.
169. Melospiza fasclata (Gm.) Scott.-We can see no valid reason why Gmelin's name for this species should not be used instead of Wilson's, bestowed upon it nearly a quarter of a century later. ($O f$. Scott,

Am. Nat., 1876, p. 17.) The recognizable forms of this species should therefore be known as ($169 a$) M. Fasciata fallax, ($169 b$) M. fasciata guttata, (169 c) M. fasclata rufina, ($169 d$) M. fasciata heermanni, and (169 e) M. pasciata samuelis (samuelis antedating gouldii).

169f. Melospiza cineren (Gm.)Ridgw.-Through the explorations of Messrs. Dall, Turner, and Nelson, the fanna of Unalashka has of late vears been very thoroughly investigated, and we are thus able to identify the "Cinereous Finch" of Pennant (Arct. Zoology, II, p. 68) upon which Gmelin based his Fringilla cinerea (S. N., I, ii, p. 922) with the species which Professor Baird afterward named Melospiza insignis (Trans. Chicago Acad., I, i, p. 319, pl. 29, fig. 2). Through the same means it becomes equally certain that the Oonalaska Bunting of Pennant and Latham (Emberiza unalaschcensis, Gm. S. N., I, ii, p. 875) is, as some authors have long maintained, the bird usually called Passerella townsendi (Aud.). The known forms of Passerella having been proven by Mr. Henshaw to intergrate, and therefore, to constitute mere geographical races of a single species, they should he known by the following names:-
188. P. iliaca (Merrem) Sw.
"189"a. P. iliaca unalascheensis (Gm.) Ridgw.
189a. P. ilinca schistacea (Baird) Hensh.
-. P. iliaca megarhyncha (Baird) Hensh.-
the latter-connecting unalaschcensis with schistacea, but peculiar in the extremely robust bill and other characters-not being given in the "Check List."

170 a (Appendix). Peucta arizonc, Ridgw.-There is very strong probability of this being quite distinct, specifically, from P. astivalis. (See Proc. U. S. Nat. Mus., I, 1878, p. 127, foot-note.)
15. Spizella montana (Forst.) Ridgw.-Forster's name of montana applied to this species in 1750^{2} antedates Gmelin's name monticola (1788), and, there being no objection to it otherwise, should be substituted for it.

180 a. Spizella breweri, Cass.-Thus far there appears not the slightest evidence that this bird should be referred to S. pallida. The respective habitats of the two overlap quite considerably, and they may always be easily distinguished by the markings of the head.
191. Spiza americana (Gm.) Bp.-In 1858 Professor Baird rejected the generic name Spiza for this species, for the reason that, although it "was first used in connection with Emberiza americana," it was "so mixed up with types of several other modern genera as to render it uncertain whether to apply it to one rather than to another"一at the same time remarking that "if Spiza pointed more ummistakably to the E. americana it might, perhaps, be necessary to alopt it." ("Birds N. Am.," p. 494.) Upon referring to the "Specchio Comparativo," where Bonaparte next, after its institution, mentions his genus Spiza, I find, in the
foot-note on p. 47, that he distinctly names E. americana as the type of the genus ("Reconoscemmo inoltre, che quest' uccello [E. melanocephala] è il perfetto analogo della Fringilla americana tipo di quel Sottogenre"). Four years later, however, Bonaparte proposed the name Euspiza for the same type ("Saggio," p.141), but according to recognized rules this later name becomes simply a synonym of Spiza, as does also Cabanis's name Euspina, the latter substitued for Euspiza (Mus. Hein., I, p. 133), under the misapprehension that the type of the latter was the Emberiza melanocephala of Scopoli (see M. H., p. 130)-a species not only generically distinct from -E. americana, Gmel., but moreover hardly a member of the same subfamily.
201. Phonipara zena (Linn.) Bryant.-"Fringilla bicolor," Linn., S. N., ed. $12(1766)=F$. zena, Linn., S. N., ed. 10 (1758).
206. Pipilo fuseus mesolevcus (Baird) B. B. \& R.-The Arizona form of this species is very easily distinguishable from the true fuscus of Mexico, the latter being without the rufons cap of mesoleucus, the colors in general darker, etc.

212b. Ageleus tricolor (Nutt.) Bp.-Totally distinct from A. phoeniсеия.
233. Pica rustica hudsonica (Sab.) Baird.-The earliest available name for the Enropean Magpie appears to be Corvus rusticus, Scopoli (1769), which considerably antedates "melanoleuca, Vieill." (1818), and is now adopted by European authorities. (Cf. Dresser, Birds of Europe, pt. xxii.) The American bird, therefore, if to be separated subspecifically from the European (for which there certainly seems sufficient reason), should be named as above.

239 a (Appendix). Perisoreus obscurus, Ridgw.-Since the original description of this bird was published Mr. Henshaw has obtained additional specimens, and, by an examination of them, together with the types, has adopted Mr. Sharpe's conclusion (Cat. B. Brit. Mus., III, p. 105) that the form in question is a distinct species, an opinion in which I at present wholly agree. Not so, however, with capitalis, Baird, which Mr. Sharpe treats in the same manner; the latter unquestionably grades directly into P. canalensis, and consequently, notwithstanding it is a very strongly marked form, should be called P. canadensis capitalis.

The Perisoreus obscurus is of much more restricted range than was at first supposed, and probably does not extend much, if any, north of Sitka. The examples alluded to in Hist. N. Am. B. (Vol. II, p. 302), as coming from "north of Sitka and in the Yukon territory," and which were stated to "incline toward the var. canadensis," are in reality referable to P. canadensis, of which they constitute a separable race, distinguished by the less extent and dingy or smoky tinge of the frontal
white patch and generally darker colors. This new race may be characterized as follows :

Perisorects canadensis fumifrons, Ridgw.

Abstract

Cr.-Similar to canadensis proper, but colors darker and more dingy throughout, and the white of the forebead obscured, or even sometimes almost wholly obliterated, by a wash of smoky gray or brown. Hab.-Coast of Alaska. 265. Caprimulgus vociferus, Wils.-I can see no reason whatever for removing this bird from the genus Caprimulgus. The type of "Antrostomus" is the C. carolinensis, Gmel., which differs from all the other Caprimulgi (so far as I am aware) in possessing fine lateral flaments to the rictal bristles, so that, in case this character be deemed sufficient, the genus Antrostomus may stand, if restricted to the single species possessing this feature. (Cf. Proc. U. S. Nat. Mus., I, pp. 142, 143, pls. i, ii.)

266. Phal enoptilus nuttalli (Aud.) Ridgw.-This species is decidedly peculiar in the combination of its salient points of structure, having a lengthened, naked tarsus, like Nyctidromus, a characteristically velvety plumage, short, even tail, and unique wing-formula; features which, taken together, render it a very well-marked genus, which may be characterized as follows:-

Phalenoptilus, gen. nov.
CH.-Differing from Caprimulgus and "Anfrostomus" in the short, even tail (much shorter than the wing), and lengthened, perfectly naked tarsus (longer than the middle toe), the first quill shorter than the fourth, and the plumage with a peculiar, velvety, moth-like surface.

Type, Caprimulgus nutlalli, Aud.
As stated on pages 142, 143, Proceedings of the United States National Museum, Vol. I (1878), the characters supposed to separate the American Antrostomi from the Old World species of Caprimulgus, particularly the type of the latter genus (C. europeus, $L_{\text {. }}$), are wholly intaugible, with the exception of A. carolinensis, which has minute lateral filaments to the rictal bristles, these being in all other species perfectly smooth, or simple. On the other hand, the Caprimulgus nuttalli of Audubon has so many decided peculiarities of structure that it is somewhat a matter of surprise that its place in the genus "Antrostomus" has not been questioned ere this. In fact, P.nuttalli is quite as distinct in its external structure from " A." vociferus and its allies as is the Nyctidromus albicollis. The more prominent differences of structure in these forms may readily be seen by comparison of the birds themselves, or by examination of the outline drawings of plates I and II of the volume of the " Proceedings" referred to above.
268. Chordeiles acuifennis texensis (Lawr.) B. B. \& R.-The Chordeiles texensis of Lawrence is merely a slightly different northern form
of C. acutipennis (Bodd.) Cass., of South America. (See Sclater, P. Z. S. 1866, p. 134, and Hist. N. Am. B., II, pp. 400, 407.)
267. Chordeiles popftut. (Vieill.) Baird.-Brisson's name virginianus was not restricted to this species until many years after the institution of Vieillot's name popetue: the latter, therefore, notwithstanding its barbarous character. is. by all the rules, entitled to retention.
269. Cypselds saxatilix (Woodh.) Ridsw.-This speaies agrees so very closely in details of structure with C. melba, Linu., that there seems to be no good reason for separating it genericaly from the genus Cypselus, unless C. melba also is removed to another genus. The type of Panyptila being the Cypselus cayannensis, Gmel., the elimination of C. saxatilis does not, of course, affect the validity of the latter genus, as properly restricted; still, there is not much more difference of form between "Panyptila" cayennensis and C. saxatilis than between C. melba and C. apus, the latter being the type of Cypselus. C. apus has the feet much weaker and the tarsus much more densely feathered than C. melba; C. saxatilis is nearly intermediate in this respect, though coming much nearer to C. melba.
273. Basilinva xantusi (Lawr.) Elliot.-See Elliot's "Synopsis of the Trochilide* ", p. 227.
284. Trogon Ambiguts, Gould.-The species described in "Birds of North America," and figured in the atlas to that work, is the present one, and not T.mexicanus. The latter is chiefly distinguished by the absence of white bars on the tail-feathers, which are uniform black underneath, except the broad white tip.
295. Xexopicus albolarvatus (Cass.) Bd.-In addition to the very tangible external characters pointed ont by Professor Baird in his characterization of a subgenus Xenopicus (B. N. Am., p. 83), may be nentioned the fact that the tongue is scarcely extensile, its tip, when fully protruded, reaching only $\frac{3}{4}$ of an inch beyond the tip of the bill, or just the same as in Sphyropicus thyroideus, while in Picus villosus harrisi the protrusion amounts to $2 \frac{1}{2}$ inches, or $1 \frac{1}{4}$ inches more! (See Orn. 40th Parallel, pp. 546,548, and 552 , under lists of specimens of the above species.)
301. Picoides tridactylue americanus (Brehm) B. B. \& R.-As pointed ont in "History of North Americau Birds" (Vol. II, pp. 529534), the differences between the American and European white-backed species of this genus are very slight, and by no means sufficient to warrant specific separation. The common form should therefore be known as above, and the Rocky Mountain race, if deemed sufficiently distinet, as-

[^1]
301 a. Piooides tridactylus dorsalis (Baird) B. B. \& R.

314. Colaptes auratus mexicanus (Sw.).

The above combination becomes absolutely necessary in view of the indisputable and wholesale intergradation of the auratus and mexicanus types of this species. In the present case is afforded an excellent example of the difficulties in the way of consistent nomenclature, whether binomial or trinomial.
316. Allce flammeus pratincola (Bonap.) Rilgw.-Professor Newton has, we think, clearly demonstrated* that the proper type of the Linnaan genus Strix is not S. flammea, but S. stridula, subsequently made the type of Savigny's genus Syrnium; and that Aluco, Fleming (1828), should stand as the generic name of the Barn Owls. Andubon's name, "americana" (1839), for the American Barn Owl is antedated by pratincola, Bouap. (1838), which should, in consequence, stand as the subspecific name for this form.

318 b. Scops asio maccalli (Cass.) Coues.-In the "Proceedings of the U. S. Nat. Mus." for 1878 (Vol. I, pp. 109-111), I formally referred the "Scops asio var. enano" of Lawrence to S. maccalli, Cassin, and in a foot-note on p. 111 refer Mr. Sennett's specimens to the latter. This fact, however, seems to have been overlooked by both Dr. Coues and Mr. Sennett, who, in their last paper, continne to call the variety "S. asio enano." +
320. Asso vilsonianus (Less.).-Brisson's genus Asio appears to be unquestionably that which should be applied to the longeared owls, and has long since been adopted by some authorities. Admitting that the short-eared species (Strix accipitrina, Pall.) cannot be separated generically, it would have to be called-
321. Asio accipitrinus (Pall.) Newton.
323. Strix nebulosa, Forst.-Professor Newton's vory correct conclusion that the proper type of the Linnean genus Strix is the S. stridula, necessitates the above change in the generic name of this American congener of that species.

The Floridan birds of S. nelulosa I find to be so different from north. ern examples as to well merit subspecific separation. In his memorable work on the birds of East Florida (Bull. Mus. Comp. Zool., I, p. 340) Mr. Allen refers to the much darker color of Floridan specimens, but apparently overlooks the naked toes. It is with pleasure that I dedicate this race to one who has done such eminent service not only to the ornithology of Florida, but to the science in general.

[^2]Ch.-Similar to typical nebulosa, but toes wholly destitute of feathers or bristles, veing perfectly bare to the extreme base; colors darker than in nebulosa, with less ochraceous, the tail scarcely barred on the basal half, and the bars on the breast much more distinct, as well as narrower and more continuous.

Hab.-Florida (Clearwater).
The above characters I find to be constant in a series of three specimens (two of and one \&) sent to the National Museum by Col. S. T. Walker, of Clearwater, Florida. Not only are the toes perfectly bare, but the feathers clothing the tarsi are much shorter than in northern nebulosa, thus causing the legs to appear much more slender. The only feathering on the toes consists of a small pointed strip on the outer side of the first phalanx of the middle toe, reaching about to the second joint.
324. Strix occidentalis (Xant.) Ridgw.

Assuming that the Great Grey Owls are sufficiently distinct generically from the foregoing, they should be known as-
322. Scotiaptex cinereum (Gmel.) Swains., and
[322a.| Scotiaptex cinereum lapponicum (Retz.) Ridgw
236. Surnia ulula funerea (Linn.) Rich. \& Sw.-In the 10th edition of "Systema Natura" Linnæus describes on the same page (93) Strix funerea and S. ulula, in the order here given; the former being based on "Fu. suec. 51," the "ulula flammeata, Frisch. ar. t. 9 " being doubtfully quoted; "Habitat in Europa." S. ulula is based upon "Fn. suec. 52-Ulula, Gesn. av. 773, Aldr. ornith, 1. 8, c. 6; Will. ornith. 68, t. 13, Ray. av. 26, n. 4;" the habitat also "in Europa." In neither case would the diagnoses given determine the species independent of the references. In the 12th edition, however, S. ulula is mentioned first, with the same diagnosis and habitat, but with additional or more explicit references. S. junerea follows, with an additional diagnosis which renders the species unmistakable, and a reference to "Strix canadensis," Briss. av. I, p. 518, t. 37, f. 2, which we know to be the American Hawk Owl. Furthermore, there is added to the habitat "America septentrionali." It is therefore difficult to decide which of the two names has priority as the specific designation. If the S. funerea is to be regarded the same in both editious, then this name, as occurring first on the page, would be entitled to that claim ; but there is nothing whatever in the account of Strix funerea of edition 10 to show that it is anything more than the European Hawk Owl ; or, in other words, the same as the species called on the same page S. uhula. As the matter stands, we prefer to take funerea of 1766 as the earliest date of the name as applied to the American bird, and to call the species S. ulula, the latter name being of certain application in the 10th edition, while it precedes funerea in the 12th.
347. Falco FUSCO-cerrulescens, Vieill.-Sce Sharpe, "Catalogue of the Accipitres in the British Museum," I, p. 400.
353. Butio Abbreviatus, Caban.-See Sharpe, as above, p. 163, who, howerer, refers it to the genus "Tachytriorchis." See, also, Sclater \& Salvin's "Nomenclator Avium Neotropicalium," p. 118.
363. Polyborus Cheriway (Jacq.) Caban.-See Sharpe, t. c., p. 33. This species appears to be quite distinct from P. tharus.
364. Pseddogryphés californianus (Shaw) Ridgw.-Concerning the validity of this genus, see Bull. Nutt. Orn. Club., April, 1880, p. -
366. Catharista (atrata, Bartr.).-If the name atrata, as now almost universally applied to this species, is to be accredited to Bartram, it has priority over all the synonyms; but if we are to reject Bartram's names on acoonnt of his frequent "lapses" from binomialism, or his equally bad practice of omitting descriptions (which, however, is not the case with regard to his mention of the present species), then urubu of Vieillot (1809) takes precedence over atrata of Wilson (1812), which comes next in order of date.
368. Columba erythrina, Licht.-Although there is no law compelling the adoption of a museum name, I prefer to do so in this case rather than propose a new one, since Lichtenstein's name crythrina is a very appropriate one. The name by which this species has usually been knownC. "flavirostris, Wagler"-is "glaringly false," and, therefore, to be rejected, according to the rules of the British Association.* It is true that the bill sometimes appears yellowish in the dried skin, but in life it is always some shade of purple or pink, whitish at the extremity. Whatever it may be, it is impossible to identify McCall's C. solitarius with this species. If his description was really penned from a specimen, his bird has not yet been rediscovered, no known North American Pigeon corresponding at all closely with his description. In any event it cannot be the present species, which never has "brilliant reflections" on either neck or breast, nor the back or under wing-coverts " light-red color."
378. Ortalis vetula maccalli (Baird) Ridgw.-In regard to this emendation of the generic name, see Wharton, "The Ibis," Oct., 1879, p. 450. I find the Texan birds easily distinguishable from Mexican ex. amples (true vetula).
380. Canace canadensis (Linn.) Reich.-None of the American grouse usually referred to Tetrao resemble at all closely the type of the latter genus, T. urogallus, Linn. They appear, in fact, nearly as distinct from Tetrao proper as are Bonasa or Pedixcetes, or other recognized American genera. It seems scarcely advisable, however, to admit a genus "Dendragapus" for the special accommodation of C. obscura in its various forms.
396. Charadrius dominicus, Miill.-Miiller's name for the American Golden Plover, dating 1776, should take precedence over fulvus, Gmel., bestowed twelve years later (1788), as the name of the species. The Asiatic form should therefore be called C. dominicus fulvus (Gmel.)

[^3]400 bis (Appendix). Egialitis curonica (Gm.) Gray.*-This supposed new species proves to be the Lesser Ringed Plover of the Old World, E. curonica (Gm.) Gray, the principal synonyms of which are the following. It may be considered doubtful whether the specimen really was obtained near San Francisco, as stated on the label.

Charadriu* curonicus, Gmel., S. N., I, 1786, 652.
Egialitis curonicus, (iray, Cat. Brit. B, 18/̈3, 141.-Marting, Handb. Brit. B. $1872,134$.
Charadrius philippinus, Lath., Ind. Omı., 1I, 1790, 745.
Charadrius fluviatilis, Becher., Naturg. Vög. Dentechl., 1809, 422.
Charadrius minor, Meyer \& Wole, Tasch. Vög. Deutschl., 1810, 324.
Charadrius intermedius, Menetr., Catal.-, 53.
Charadrius zonatus, Swains., B. W. Afr., II, -, 235, pl. 25.
Agialitis microrhynchus, Ridaw., Am. Nat., VIII, Feb. ${ }^{1874,} 109$ ("San Francisco, Cal.").
408. Himantopus mexicanus (Mïller) Ord.-Muiller's name dates 1776; thirty-one years earlier than nigricollis, Vieill.
413. Scolopax RUsticula (Linn.) Wharton.-See "The Ibis," Oct., 1879, p. 453.

442 bis (Appendix). Numenius tahitmensis (Gm.).-The earliest name for the bird afterwards named Numenius femoralis by Mr. Peale is Scolopax tahitiensis, Gmel. (S. N., I, ii, 1788, p. 65̃6, n. 22).
448. Ajaja rosea (Briss.) Ridgw.-The American Spoonbill being a very distinct generic type, for which Reichenbach proposed (in 1853) the name Ajaja, it becomes necessary to change the speciffe name also. There is not, unfortunately, any post-Linnæan synonym for this species, with the exception of "Platea 'mexicana, Willonghby," as used by Gambel in 1849 (Jour. of Philad. Acad., 1, p. 222). ((ambel, however, gives no description; and, moreover, since the name "mexicana" is simply quoted from Willoughby, it seems best to adopt Brisson's very appropriate name of rosea, in justice to the accurate and complete description of the species in the work of that author.
454. Hydranassa tricolor (Mill.) Ridgw.-If the Herons are to be subdivided at all, it seems quite necessary to recognize the generic name which, in 1858, Professor Baird proposed for this species (B. N. Am., p. 660), the earliest designation of which is Ardea tricolor, Miller (1776).
455. Dichromanassa rufa (Bodd.) Ridgw.-See Bull. U. S. Geol. and Geog. Survey Terr., vol. iv, no. 1, p. 246.
460. Botaurus Lentiginosus (Montag.) Stephens.-This appears to be the earliest designation of the species.

[^4]466 a (Appendix). Rallus obsoletus, Ridgw.-This proves to be quite distinct from R. elegans, being, in fact, more nearly related to R. longirostris (sive "crepitans").
472. Gallinula galeata (Licht.) Bp.-Quite distinct specifically from G. chloropus, Lath.
473. Ionornis martinica (Linn.).-This species has nsually been referred to either Porphyrio, Briss., or Porphyrula, Blyth, but it is exceedingly distinct generically from both these types, particularly the former. The generic name Ionornis, institated for its special reception, by Reichenbach in 1853 (Nat. Syst., p. xxi), seems to be the earliest one available.
488. Anas boscas, Linn.-See Wharton, "The Ibis," Oct., 1879, p. 453).

489 a (Appendix). Anas fulvigula, Ridgw.-This bird proves very distinct from A. obscura.
526. Pelecanus ERYthrorhynchus, Gmel.-This name antedates "trachyrhynchus, Lath.," by two years, and, being no less appropriate, there is no valid reason why it should not be retained. (Cf. Bull. Nutt. Orn. Club, Jan., 1880, p. 36.)
525. Sula Leucogastra (Bodd.) Salvin.-See Salvin, Trans. Zool Soc. Lond., IX, ix, 1875, 496.
529. Phalacrocorax dilophus cincinnatus (Brandt) Ridgw.This is simply the large northwestern form of P. dilophus, no more entitled to specific separation than var. floridanus, which represents the opposite extreme of size.

In regard to the generic name of the Cormorants, it appears that we will have to use Phalacrocorax, Briss., instead of Graculus, the latter, properly applied, having for its type the Corvus graculus, Linn., = Aracula pyrrhocorax, Scop. (Conf. Sharpe, Cat. Passerif. Brit. Mus., p. 146, foot-note.)

547 b. Larus occidentalis, Aud.
548 a. Larus CALIfornicus, Lawr.
549. Latus bracityrhynchus, Rich.

The above appear to be quite well-defined and distinct species; the first more nearly related to L. affinis, Reinh., than to argentatus; the second mach nearer to L. cachinnans, Pall., than to delawarensis.
581. Ossipraga gigantea (Gmel.) Homb. \& Jacq.-A very distinct genus from Fulmarus.
580. Phebetria fuliginosa (Gmel.) Cones.-Appears to be sufficiently distinct generically from Diomedea.
583. Priocella tenuirostris (Aud.) -. -This bird seems sufficiently distinct generically from Fulmar:s, and has been made the type of Priocella, by Hombron \& Jacquinot (Compt. Rend., XVIII, 1844, p. 357.)
595. Priofinus melanurus (Bonn.) -. -This species is the type of the genus Priofinus, Homb. \& Jacq. (t. c. p. 355).
600. Puffinus auduboni, Finsch.-The Procellaria obscura of Gmel. has been determined by Dr. Finsch (see P. Z. S. 1872, p. 111) to be a Pacitic Ocean species, distinguished from the Puffinus obscurus of recent authors by its white underwing-coverts and other characters. Dr. Finsch therefore proposed for the Atlantic species the name auduboni, as above.
601. Puffinis gavia (Forst.) Finsch.-See Giglioli \& Salvadori, Ibis, 1869, p. 66; Finsch, Jour. für Orn., 1872, p. 256.
603. Puffinus griseus (Gmel.) Finsch.-Cf. Finsch, Jour. für. Orn., 1874, p. 209 ; Salvin, Rowley's Orn. Mise., iv, 1876, p. 236.
619. Lunda cirrhata, Pall.-Sufficiently distinct generically from the species of Fratercula.
623. Simorhynchus PYGMEUS (Gmel.) Ridgw.-The Alca pygmaa of Gmelin is unquestionably the young of this species, afterward named "S. cassini" by Dr. Coues. Alca kamtschatica, Lepechin, is the same species in adult (winter?) plumage.

b. Species and Subspecies not in Coues's Check List.

Siurus nevices notableis, Grinnell, MS.
Ch.-Similar to S. narius, but much larger. Wing, 3.25; tail, 2.50; bill, from nostril, . 50 ; depth at base, .25; tarsus, .83; middle toe, .56. Above dark grayish brown, the feathers of the pileum with indistinctly darker centres. Beneath yellowish white, the throat thickly spotted, and the breast and sides heavily streaked with blackish dusky; a superciliary stripe of pale fulvous, hardly extending back to the rnd of the auriculars. Lores crossed by a distinct streak of black. Centre of the abdomen immaculate; lower tail-coverts with central streaks of grayish dusky; lining of the wing smoky gray. Bill brownish black, the mandible growing lighter brown basally. Feet horn-color.

Hab.-Black Hills, Wyoming (Mus. G. B. Grinneil).
The plumage of this bird is in all respects, so far as I can see, quite identical with that of ordinary darker plumaged specimens of S. navius, except that the superciliary stripe does not extend so far back and the streaks on the breast are broader; the former character may be merely apparent, however, and owing to the manner of skinning.

Parus cinctus, Bodd.-In accrediting this species to the North American fanna, on the strength of specimens collected in Alaska by Mr. Lacien M. Turner *, I inadvertantly called it "P. sibiricus, Gmel.," at the time overlooking the priority of the name cinctus.

Myiarchus mexicanve (Kanp) Lawr.

Tyrannula mexicana, KaUP, P. Z. S., Feb. 11, 1851,51. \dagger
Myiarchus mexicanus, Lawr., Ann. Lyc. N. Y., IX., 1869, 202 (neo Baird, B. N. Am., 1858, p. 179).
mit Tyrannula cooperi, Kaup, 1. c. (Mexico). \ddagger
Myiarchus cooperi, Baird, B. N. Am., 1R58, 180 (based on the above).
Myiarchus reythrocercus, 8cl. \& Salv., P. Z. S. 1868, 631, 632 (Tobago \& Venezuela). Myiarchus gucatanensis, Lawr., Pr. Philad. Acad. 1871, 225.
Myiarchus oberi, Lawr., Ann. N. Y. Acad. Sci., I, 1877, 48 (Dominica, W. I.).
Disclaiming any desire to prolong the discussion inaugurated by me in Vol. I of these Proceedings (p. 139), I however feel called upon, by Mr. Sennett's comments in his "Further Notes on the Ornithology of the Rio Grande" (Bull. U. S. Geol. \& Geog. Survey, Vol. V, No. 3, pp. 402-404), to offer a few additional remarks on the subject.

The synonymy of Myiarchus mexicanus (Kaup) Lawr., as given above, includes all the binomial synonyms of the species in question, so far as I ain aware; and in view of Mr. Sclater's positive declaration (P. Z. S. 1871, p. 84) that "Tyrannula mexicana of Kaup is identical with Myiarchus cooperi of Baird," I do not see how we can avoid using Kanp's name for the species. Mr. Sclater's opinion certainly cannot be set aside, for he made actual comparison of Kaup's type specimen with the very examples which Professor Baird called M. cooperi, and found them "identical."

The name erythrocercus, Scl., was proposed three years before Mr. Sclater made this discovery, and was, moreover, based on examples from Tobago, Venezuela, and Bahia, and was described as "similar to M. cooperi [i. e., mexicanus, Kaup], bat much smaller," ete.

In 1871, Mr. Lawrence, being apparently unaware of Dr. Sclater's identification of T. mexicanus, Kaup, with Professor Baird's M. cooperi, and accepting the latter's identification of mexicanus with his (L.'s) cineraxcens of later date, redescribed the Mexican bird as M. yucatanensis ; and in 1877, on the ground of certain differences of plumage and size, separated (from M. "erythrocercus") the specimens from the Lesser Antilles (Dominica) by naming them M. oberi.

[^5]Such is, in brief, the history of the case. The point at issue, however, is whether specimens of this species from the Rio Grande Valley in Texas are to be referred to mexicanus proper or to an assumed race, "erythrocercus." The species was originally introduced to the United States fauna under the name "M. crinitus erythroeercus (Scl. \& Salv.) Coues" (Bull. U. S. Geol. \& Geog. Surv. Ter., Vol. IV, No. 1, p. 32), and was subsequently mentioned by the present writer as "M. erythrocercus var. cooperi" (Proc. U. S. Nat. Mus., I, 1878, p. 138), both of which I believe to be incorrect-the former on account of the reference of the species to M. crinitus, and, probably, in the use of the name erythrocerous instead of mexicanus; the latter, because erythrocercus is the subsequent name, and cannot, therefore, be used for the specific designation, while cooperi is also very doubtfully referable to this species. In order, however, to present the case as briefly and clearly as possible it will be necessary to discuss the several points separately.

First, as to the reference of this species to crinitus: I do not see how this can possibly be done without bringing in also M. cinerascens and M. stolidus (see Hist. N. Am. B., Vol. II, p. 331); and even then I much doubt whether crinitus and mexicanus ever intergrade, since I have examined many scores of specinens, but have yet to find a specimen that is truly intermediate.* There is, however, in Southwestern Mexico a very small race of mexicanus, which can be distinguished from cinerascens only by the extension of the rufous of the retsices to the extreme tip of the inner web, they being in every other respect apparently quite identical. There are several such examples in the national collection, obtained in Tehuantepec by Professor F. Sumichrast.

Second: It is mueh to be regretted that neither Dr. Kaup nor Dr. sclater give measurements of the type specimens of T. mexicanus, since we might then readily determine whether this name belongs to the large or the small race of the species as occurring in Mexico. Since, however, Dr. Sclater remarks that "it (the said type) is certainly rather smaller in dimensions than two of my skins of this species (i.e., "M. cooperi," Baird), and has the bill smaller"; and that "a third specimen in my collection, which I also refer to the (so-called) M. cooperi of Baird, agrees very well with it in general dimensions, and has the bill even slightly smaller," it appears very evident that Kiup's T. mexicana was not based on one of the very large individuals of this species, but one of medium size, corresponding to the Rio Grande specimens. Further than this, the individual variations among Mexican specimens of this species affect only the size and proportions, not colors-at least not to any especially noticeable extent.

Third: I find upon re-examination of all the material in the national

[^6]collection (embracing numerous specimens received since my last paper was written), that specimens from the patria of erythrocercus proper (Venezuela, Tobago, Bahia, and other parts of South America) are nniformly darker colored than the smaller Mexican examples, though they may fully equal them in size. This darkness of color is carried to an extreme degree in Antillean specimens, and constitutes, so far as I am able to see, the sole distinguishing character of Mr. Lawrence's "M. oberi," as compared with the continental forms of the species en masse.

Finally, I therefore conclude that, whatever may be the character of Central American specimens (of course they are intermediate), or whether the name mexicana is to be applied to the larger or smaller race of the Mexican bird (and the odds are strongly in favor of the latter), that (1) the name erythrocercus should, if to be nsed at all, be restricted to examples agreeing strictly with the South American "race," since it is subsequent in date to mexicanus; and (2) that the Rio Grande birds are probably exactly like the type of the latter.*

Nyctidromus albicollis (Gmel.) Burm.-As explained some years since by Dr. Sclater (see P. Z. S. 1861, p. 10, and 1866, p. 144), the earliest name for this species is Caprimulgus albicollis Gmel. (S. N., I, ii, 1788, p. 1030), the C. americanus of Linnæus, quoted by Mr. Cassin (Proc. Philad. Acad. 1851, pp. 179, 180) and some other authors (see Mr. Sennett's two lists) being unquestionably a Jamaican species belonging to quite a different genus (Siphonorhis americana). All the synonyms and the more important references are given in my notes in Dr. Merrill's paper (Proc. U. S. Nat. Mus., I, pp. 143 and 144).

Iacee latirostris (Sw.) Elliot.-This species, introduced to the fauna of the United States by Mr. Henshaw (cf. American Sportsman, v, Feb. 20, 1875, p. 328 ; Zoology Wheeler's Exp., Orn., p. 380) under the name of Circe latirostris, should be hereafter known by the above name, the genus Circe being previously employed in another branch of zoology (see Elliott, Synopsis of the Trochilida, p. 234).

Nomonyx, gen. nov.
CR.-Similar to Erismatura, but differing from all the species of that genus in the form of the maxillary unguis, which is similar to that of Fulix and allied genera, the same being in E'rismatura the most peculiar and important generic character.

Type, Anas dominica, Linn.
Altogether the most distinctive feature of the genus Erismatura consists in the remarkably peculiar conformation of the maxillary unguis,

[^7]or nail of the upper mandible. This, viewed from above, is extremely small, narrow, and linear, the broader terminal half being bent very abruptly downward and backward, so as to be visible only from in front or below. With the sole exception of Anas dominica, Linn., all the species usually referred to this genus agree strictly with the type, Anas leucocephala, Scop., notwithstanding other characters are more or less variable. Anas dominica, Linn., has the nail of normal form, or very much like that prevailing among the ducks generally, and on this account should be separated generically from Erismatura.

DEBCRIPTION OR A NEW GPECIES OF RIRD OF TEE TABMLY TURDIDE, FROM THE ISHAND OF DOMINICA, W. I.

By GEO. N. LAWRENCE.

Margarops dominicensis.

Margarope herminieri, Lawr. nee Lafr., Proc. U. S. Nat. Mus., vol. I, p. 52.
Male.-The entire upper plumage is of a rich dark brown, the crown is darker and has the edges of the feathers of a lighter shade; tail and quill feathers of a darker brown than the back; axillars and under wing.coverts white; the lores are blackish brown; the feathers back of the eyes and the ear-coverts have narrow shaft streaks of pale rufous; the feathers of the neck and upper part of the breast are of a warm dark brown, those of the chin and middle of the throat with light rufous centres, those of the lower part of the neck and the upper part of the breast have also light rufous centres, but in addition each feather has a light terminal spot; on the lower part of the breast and on the sides the feathers have white centres, bordered strikingly with brown ; the markings of the breast-feathers are squamiform in shape, those of the sides lanceolate; the abdomen is white, a fe:v feathers on the upper part are very narrowly margined with brown; under tail-coverts brown, terminating with white; outer feathers of thighs brown, the inuer whitish ; "iris tea-color ;" there is a naked space around the eye; bill yellow, with the basal half of the upper mandible dusky ; tarsi and toes pale yellow.

Length (fresh), 9 inches; wing, 5 ; tail 32 ; tarsus, 13 ; bill from front, $\frac{1}{1} \frac{1}{6}$, from gap, $1 \frac{1}{8}$.

Type in United States National Museum.
Mr. Ober sent five specimens of this form from Dominica, all males and closely resembling each other. It is probable, as in the allied species, that the females do not differ in phamage materially from the males.

Mr. Ober's collection from Dominica contained three species of Margarops which I never had seen before. These were referred to known species, two of them, I think, correctly; but the one which is the subject of this article I now find was erroneously considered to be M. herminieri, Lafr. I supposed these species would be the same as those recorded
from the neighboring islands, as they agreed well with the descriptions giren of them, and there were no available specimens to compare with.

As soon as I had finished the examination of the birds of each island collected by Mr. Ober, they were placed in a box by themselves, and not disturbed again except for an occasional comparison. The collection from Gnadeloupe, containing specimens of the true M. herminieri, Lafr., was not received until more than a year after that from Dominica. These specimens I labelled M. herminieri, Lafr., as a matter of course, they being from the locality of the type. The difference between the birds from the two islands was not observed at that time, as no comparison was made.

This winter, having occasion to review the species of Margarops, I got the specimens from the different islands together for the first time, and at once saw that the species from Dominica was quite distinct from the Guadeloupe bird. It differs from N. herminieri, Lafr., in being less in length, of a more robust form, the bill stouter, and the tail shorter; the brown coloring throughout is much darker and of a ruddy cast, instead of oliraceous; the centres of the feathers on the throat and upper part of the breast are much more rufous, and have black spots at their ends; the abdomen is pure white, whereas in M. herminieri the lower part of the breast and the abdomen are covered with lanceolate-shaped markings, which are rery striking, each feather being white, with a strongly defined brown border; only a very small space on the lower part of the ablomen is white; M. herminieri has the white ends of the under tail-coverts edged narrowly with pale brown; in the new species they are white without borders, aud it has the tarsi and toes stronger and paler in color than those of M. herminieri.

February 1, 1880.

NOTES ON A COILECTION OP PISEES PROM EAST TLORIDA, OR-

By DAVID S. JORDAN, M. D.
Jnring the past winter (1878-79) a collection of fishes was made for the writer by Dr. J. A. Henshall, of Cynthiana. Ky., in the streams and inlets of Eastern Florida. The number of species obtained was not large, but the specimens were preserved in excellent condition, and among them are several of interest. Two species (Gerres plumieri and Umbrina broussoneti) had not been previonsly recorded from the coast of the United States. Three others were, at the time of collection, new to science. One of these has been lately described, under the name of Jordanella floridae, by Messrs. Goode and Bean. The others have been already noticed by me in these proceedings as Zygonectes rubrifrons and Zygonectes henshalli.

Proc. Nat. Mus. $80-2$

April 26, 1880.

The marine species were obtained from Indian River and from the neighboring coast; the cyprinodonts, centrarchids, and other fresh or brackish water species chiefly from San Sebastian River and tributaries.

DIODONTIDA.

1. Chilomycterus geometricus (Schneid.) Kaup.

URANOSCOPIDE.

2. Astroscopus y-greecum (C. \& V.) Gill.

A single fine specimen of this beautiful speries. Dr. Henshall informs me that this specimen in life exhibited strong electrical powers, these powers apparently having their seat in the naked skin on the top of the head. So far as I know, such phenomena have not hitherto been ascribed to any fish of this family. I therefore put this statement on record, in hopes that subsequent observers of this rare fish may be able to verify it.

ECHENEIDID风.

3. Echeneis naucrates L.

A single specimen, with 22 laminæ in the disk.

CARANGIDE.

4. Selene argentea Lac.

Numerous fine large specimens. Specimens lately described from the Pacific coast under the name of Argyriosus pacificus, Lockington, appear to belong to this species.
5. Carangus chrysus (Mitch.) Girard.
6. Chloroscombrus chrysurus (Linn.) Gill.
7. Oligoplites occidentalis (L.) Gill.

Several fine specimens of this highly interesting species. The character of five (instead of seven) dorsal spines, assumed to distinguish Oligoplites from Scombroides Lac. (Chorinemus C. \& V.), is perhaps of insufficient value for generic distinction. Some of the species of Scombroides have, however, the dermal productions really scale-like, instead of the irregular linear imbedded ridges found in Oligoplites. This character may for the present, until all the species of the group are examined, be held to distinguish the latter genus.

SCI ANIDA.

8. Umbrina broussoneti Cur. \& Val,

Two fine specimens of this West Indian species were obtained by Dr. Henshall. These are the first yet recorded from the United States. The species is not included in Goode's Catalogue of Bermudan Fishes, nor
in any of Poey's lists of the fishes of Cuba. It is, therefore, an important addition to our fauna. This specimen agrees very fully with Guinther's description of Umbrina broussoneti, and with Cuvier and Valenciennes's description of Cmbrina coroides. C. \& V.'s description of \boldsymbol{U}. broussoneti gives the number of rays in the dorsal fin as X. I, 25. My specimens have D. X. I, 28.

GERRID止.

9. Gerres plumier Cuv. \& Val.

A single fine specimen of this beantiful species. It has not been preriously recorded from the consts of the United States.

SPARIDE.

10. Lagodon rhomboides (L.) Holbr.

PRISTIPOMATIDE.

11. Lutjanan carin (Schneider) Poey.

A single fine specimen.

CENTRARCHIDA.

12. Micropteras pallidus (Raf.) Gill \& Jordan.

Dr. Léon Vaillant (Mission Scientifque au Mexique: ined.) divides this species provisionally into two, adopting the name "Micropterus salmoides" for the ordinary form, and that of Micropterus nuecensis (Baird \& Girard) for the southwestern form (Texas and Mexico). According to him the two are externally identical, but M. nuecensis is distinguished by the presence of a small patch of teeth on the tongue, the tongue being entirely smooth in the ordinary form.

I have examined a number of specimens in regard to this point.
I find lingual teeth in the following specimens:
(1.) Two specimens, one large one small, from the Falls of the Ohio.
(2.) One small specimen from a tributary of White River at Bloomington, Ind.
(3.) One specimen (in the museam at Paris) from Texas.

I find them absent in the following:
(1.) Several specimens in Henshall's collection from Indian River.
(2.) Specimen from Neuse River.
(3.) Specimens from White River at Indianapolis.
(4.) Specimens from Lake Erie.

The presence of these teeth evidently does not depend on age, and apparently not on sex. It may be a specific feature, but I am inclined at present to think it only a feature of individual variation. I have not seen such teeth in the small-mouthed black bass.
13. Chænobryttus viridis (C. \& V.) Jor.
14. Lepomls pallidus (Mitch.) Gill \& Jor.

The recent rejection of the name "pallidus" for this species by my friend Professor Goode (Proc. U. S. Nat. Mus. 1879, 139) is due to his having overlooked the fact that Mitchell has a Labrus pallidus as well as a Bodianus pallidus in his Memoir on the Fishes of New York. The latter, as Professor Goode observes, is Bairdiclla argyroleuca; the former is Lepomis pallidus.
15. Lepomis punctatus (Cuv. \& Val.) Jor.
(Lepomis apiatus Cope.)
Several fine specimens.
16. Enneacanthus obesus (Baird) Gill.
(Bryttus fasciatus Holbrook = Bryttus obesus Baird 9).
"Enneacanthus milnerianus Cope" is included in Goode's list (Proc. U. S. Nat. Mus., II, 1Si9, 114) of the fishes of Florida. This species appears in my list of valid species of Centrarchidæ in Bulletin X of the National Museum. It is a nominal species, and came into the lists in this way: While my paper in Bulletin X was passing through the press, Professor Cope kindly sent me the proof-sheets of a paper on the fishes of the Saint John's, which has since appeared in the Proc. Am. Philos. Soc. In this paper a new species with the above name was described. This species, however, Professor Cope saw fit to suppress in the publication of the paper, he having identified it with Enneacanthus fasciatus.

MUGILIDA.

17. Mugil brasiliensis Agassiz. White Mallet.

Our other common species of Mugil, the striped mullet, Mugil plumieri and Mugil lineatus of authors, is doubtless the species for which the name of Mugil albula L . should be retained.

SCOMBERESOCIDI.

18. Bemirhamphus unifasciatus Ranz.

CYPRINODONTID压.

19. Jordanella floride Goode \& Bean.

Many specimens of this interesting species were obtained by Dr. Henshall. The females differ from the males chiefly in the lower vertical fins.
20. Zygonectes rubrifrons Jorlan.

Numerous specimens.

21. Zygonectes henshalli Jordan.

Still more abundant. This species and the preceding are very closely related, and are both nearly intermediate between Zygonectes and Fundulus. The current genera related to Fundulus are separated by characters of very dubious value.

22. Fundulus sp.

A small specimen with pale cross-bars; not suitable for identification.

23. Gambusia patruelis B. \& G.

Two specimens, agreeing with the descriptions of Gambusia holbrooki of Girard and Giinther, and with Girard's figure of Gambusia patruelis. The two species are probably identical. The black bars on the caudal and the oblique suborbital blotch are characteristic color-marks.

CATOSTOMID无.

24. Erimyzon goodel Jordan.

Many specimens.

SILURID压.

25. Amiurus erebennus Jordan.

Many small specimens.

ANGUILLIDA.

26. Anguilla rostrata (Le Sueur) DeK.

A comparison of these Florida specimens with a series of eels from Venice renders it evident that our American eel is not identical with Anguilla vulgaris of Europe, as I with others have supposed.

In our species the beginning of the dorsal is notably more posterior than in the European one. In Venetian specimens the distance from the snout to the base of the dorsal is contained 3_{3}^{2} times in the total length of the fish. In Florida specimens the same distance is contained barely 3 times in the total length.

The same difference is expressed differently but correctly by Dr. Giinther (Cat. Fish Brit. Mus., VIII, 24). He ascribes to A. vulgaris the eharacter of -
"The length of the head is nearly eqnal to the distance between the commencements of the dorsal and anal fins."

Aud to A. bostoniensis (rostrata)-
"The length of the head is conspicuously more than the distance between the commencements of the dorsal and anal fins."

The band of vomerine teeth also appears to extend farther back in A. vulgaris than in A. rostrata.

NOTES ON A COLLECTION OF PISHES FROM BAINT JOIN', BIVER, FLORIDA, OBTAINED BY MR. A. H. CURTISE.

By david s. JohDan.

A small collection of fishes from Saint John's River was sent to Prof. H. E. Copeland and myself some years ago by Mr. A. H. Curtiss. As this collection contains some specimens of interest, a list is here given :

1. Siphonostoma sp. (Syngnathus Auct.).

Two specimens of a variety or species of this genus, apparently undescribed, are in this collection. I have specimens of three types, subspecies, or species of Siphonostoma from our Atlantic coast, which may be thus compared:

	a. Juacum Storer. (Wood's Hole, Mass.)	b. Incimiance Cithr.? Besulorh N. C.	Saint Julus's Kiver, Fla.
Dormal raya	35; 38; 40	33; 37	30; 31.
Kimgr.....	$18+37$	$18+83(\mathrm{r}) ; 20+88$ (\%)	$15+33$
Inormal fin	Lommer than hearl	Shorter than bead	Shorter than hend.
Morsal tin	Latk-npotted at baso	Dusky at baee or plaiu.	Fery high in femaloes: black, with paler eprots.
Bame of dorsal fin	$\mathrm{On} 4+5 \mathrm{rings}$	On $3+5$ rings	Ona +5 riugs.
Muzzle.................	Shorter thau rest of hemal.	Murh longer than ront of mend; longent its fomalem.	Shorter than rebt of head.
Dietance from nnout to frout of dorad.	3 timea in total length ..	2 in leugth.	$2{ }^{2}$ in length.
Hend contuitued	9 timen in length........	7 times in longth.....	7 timee in lengeth.
Tail.	f longer than reat of lundy	- longer than reat of benty.	+ longer thau rest.
Belly in females	Scarcely carinate.......	Scarculy carinato.......	With a sharp black enrina. Color darker and body stomter ttan in the othera.

These characters are all evidently subject to much variation. If these are true species, they differ from each other little more than the two sexes of the same form differ.

It seems to me that the specific names fuscus, fasciatus, viridescens, and peckianus are all based on individuals like those above noted from Wood's Hole.
2. Aphoristia plagiuaa (L.) Jor. \& Gill.
3. Chloroscombras chrysurus (L.) Gill.
4. Archosargus probatocephalus (Wall.) Gill.
5. Lagodon rhomboldes (L.) Holbr.
6. Micropterus palldus (Raf.) Gill \& Jor.
7. Epinephelus sp. ${ }^{\rho}$ (One very young specimen.)
8. Orthopristis fulvomaculatum (Mitch.) Gill.
9. Goblosoma alepidotum (Lac.) Grd.
10. Chirostoma sp.
11. Hemirhamphus unifasciatus Ranz.
12. Fundulus sp.
13. Mollienesia latipinna Le Sueur.
14. Brevoortia tyrannus (Latrobe) Goode.
15. Megalops thrissoides (Bloch) Gunther (Scales).
16. Lepidosteus osseus (L.) Ag. (Scales).

NOTES OX A COLIECTION OP PIBEIES EROX NAN DIEGO, CAL. IPORNIA.

By DAVID S. JORDAN and CHARLES H. GILBERT.

The writers hare spent the greater part of the month of January, 1880, in the collection and study of fishes at San Diego, Cal., in the interests of the United States Fish Commission. As some of the species obtained are new to science, and others new to the United States fauna, it is thought advisable to present an annotated list in alvance of the publication of a more extended report.

HIPPOCAMPIDE.

1. Eippocampus ingens Girard.

One large specimen seen.

SYNGNATHID \mathbb{E}.

2. Syngnathus leptorhynchus Girard.
(Syngnathus arundinacens Girard.)
Not uncommon.

PLEURONECTIDE.

3. Paralichthys maculosus Girard.

Very abundant. There seems to us no doubt of the correctness of Lockington's identification of the "Uropsetta californica" with this species. The caudal fin in the adult is somewhat double concave; in the young the middle rays are more produced. This species is both dextral and sinistral. Out of twenty-six examples examined in reference to this point fifteen were found to be sinistral and eleven dextral.
4. Citharichthys sordidus (Girard) Gilinther. Not common; one specimen seen.
5. Eypsopsetta guttulata (Girard) Gill. Common.

SOLEIDE.

6. Aphoristia atricauda sp. nov.

Body oblong-lanceolate, anteriorly somewhat blunt, regularly narrowed behind and ending in a point, the snout rather abruptly truncate, eyes and color on the left side. Eyes very small, nearly even behind, the upper eye the larger and extending farthest formard. A single nostril in front of the interorbital space and apparently a single smaller one below it. Mouth moderate, extending to opposite the eye, somewhat
turned toward the eyed side; lips large, not fringed, the upper with a small blackish papilla in advance of lower eye. This is apparently normal, but it may be a detached piece of skin, hardened by the alcohol. Upper jaw sca reely produced, not forming a hook. Teeth small, on the blind side only, the edge of the jaw on the eyed side forming a smooth ridge.

Gill-openings narrow, not extending up to the level of the month. Scales very small, ctenoid, pretty regular over the body, much smaller on the head, the rows of scales rendered very distinct by black dots, the stripes converging towards the snout. Scales on the two sides of the body similar. No lateral line on either side. About 105 scales (100 to 110) in a longitudinal series from the head to the tail; 45 to 50 in a cross-series.

Dorsal fin beginning on the head, continuous with the anal around the tail. Veutral fin of the colored side only present, nearly on the ridge of the abdomen, and separated from the anal by an interval half longer than the cleft of the mouth. Rays of the middle parts of the dorsal and anal fins with a fleshy border at base on the blind side.

Dorsal rays about 100; anal rays 80 ; no distinct caudal fin.
Coloration brownish olive, with vertical dark half-bars, irregular in size and position, some of them coming down from the back and others up from the belly, these posteriorly nearly meeting, but anteriorly alternating. Streaks of dark points along the rows of scales, these forming very distinct longitudinal streaks. Posterior part of dorsal and anal broadly edged with black. Right side plain white.

Mcasuremente.

This species is known to us from a single specimen taken by a Chinese fisherman, Ah Sam, in the Bay of San Diego. This specimen is now in the collection of the United States National Museum, No. - - In form and number of scales, fin-rays, etc., it resembles Aphoristia ornata from the West Indies, but the ventral fin is remote from the anal.

BATRACHID庣.

7. Porichthys porosisaimus (C. \& V.) Ginnther.

Very common.
BLENNIIDE.
8. Heterostichus rostratus Girard.

Found in the "kelp" outside the harbor.
9. Gibbonsea elegans Cooper.

A single specimen taken in the rock-pools on Point Loma.
10. Hypleurochilus gentilis (Grd.) Gill.

With the preceding, and more common.

GOBIIDA.

11. Gilichthys mirabilis Cooper.

Exceedingly abundant in the shallow waters of the bay. Only small specimens seen, the maxillary in these being much less developed than iu the adult.

> COTTID正.

12. Leptocottus armatus Girard.

Common in the Bay of San Diego.

13. Oligocottus analis Grd.

Allied, but not closely, to Artedius quadriseriatus Lockington.
Body compressed, especially behind, not much depressed anteriorly; head comparatively small, scarcely depressed, narrowed and rather pointed anteriorly, its outline triangular as viewed from above; snout strongly decurved in profile; mouth moderate, horizontal, the lower jaw included; maxillary reaching to opposite posterior margin of pupil; premaxillary anteriorly below the level of the eye; eyes large, high up, close together, as long as the snout, 32 in head, their diameter double the width of the deep interorbital space, which has a deep lengthwise groore; nasal spines prominent ; a deep cross-furrow behind them, which forms with the interocular furrow a V -shaped figure; preopercle with a blunt process, on which is a spine directed upwards and outwards; no scales on the head; no other spines on the head.

Branchiostegals 6. Gill membranes broadly united, without isthmus.
First dorsal beginning in front of the posterior edge of the opercle, its first two spines ret close together at base, diverging abore, and shorter than the third.
Dorsal fins contiguous, but not united, neither of them specially elevated; pectoral fin reaching beyond front of anal, its lower rays with the skin thickened, and projecting much beyond the membranes; caudal fin slightly ronnded; anal papilla very conspicuous.

Fin rays: D. IX 16; A. 13-14; V. I, 3; P. 16; C. 10 +.

Posterior part of body covered with miuute, imbedded, non-imbricate, pectinate scales, which cover most of the posterior part of the body above and cease anteriorly behind the middle of the spinous dorsal in front and at the posterior third of the soft dorsal behind; some scales also along the region of the lateral line anteriorly; a series of somewhat larger but still minute scales at base of dorsal, one below each ray, and another along lateral line; anteriorly, cirri take the place of the pectinations on the scales.

No prickles ou the skin. On the head and anterior parts of the body are very many long white, simple, bifid or trifid cirri, so that the living fish appears almost "woolly" with them. Some of these cirri on the nasal bones; a patch between and behind the eyes; the whole top of the head sparsely covered; two or three on the posterior edge of the maxil. lary; edge of the cheeks fringed with them as with a gray beard. A conspicuous row of them along the lateral line, which ceases somewhat behind the beginning of the scaly area. A row of cirri along the base of the spinous dorsal extending to about the seventh ray of the spinous dorsal. Mary scattering cirri between the dorsal and lateral line. Skin of head with many mucous pores.

Body dark, clear olive-green, with about five irregular bars of darker greenish; much mottled and spotted, some of the spots above clear blue, some rusty red, and the most of them blackish. A dark bar at base of caudal; lower part of sides with round black spots posteriorly. Fins all with cross-bars made of dark spots and lighter areas.

> Measurement of largcst specimen-from Point of Rocks.
Leugth to base of caudal.. 3.45 inches.
Length of head (percentage of length to base of candal). 30
Depth of body " 25
Least depth of body " 095
Diameter of eye " 07
Width of head 20
Depth of head 17
Length of maxillary 12
Distance from snout to dorsal 27
Length of first dorsal 27
Length of second dorsal 37
Height of first dorsal 12
Height of secund dorsal 15
Length of aual 30
Height of anal 13
Length of pectoral 33
Length of ventral 22
Length of caudal 20
Length of longest cirri 04
Length of anal papilla " 06

This description is drawn from two adult examples taken at Point of Rocks, near San Diego, just south of the line of Mexico, and from about
fifteen examples of varions sizes taken at the "mussel heds" on Point Loma, near San Diego. These are numbered - $?$ in the museam collection. It inhabits can-shaped pools in the rocks between tide-marks lurking in the Corallina, and may be caught at low tide. Its quick movements when alarmed reuder this, however, a matter of some difficulty.
14. Scorpxenichthys marmoratus Grd.

Occasionally taken in the kelp.

SCORPANIDA.

15. Sebastapistes guttatum (Girard) Gill.

Not uncommon.
16. Sebastichthys atrovirens Jor. \& Gilb. MSS.

Occasionally taken in the kelp.

LATILIDE.

17. Caulolatilus princeps (Jenyns) Gilb.

Common in the kelp.

SCOMBRIDE.

18. Sarda chilensis (C. \& V.) J. \& G.

Abundant off shore in the fall.

PERCIDA.

19. Paralabrax clathratus Grd.

Frequent.
20. Paralabrax maculofanciatus (Steindachner) Gill.

Common in the bay.

21. Btereolepis gigas Ayrea.

Occasionally taken off the coast.
SPARID压.
22. Girella nigricans (Ayres) Gill.

The young common in the rock-pools.

23. Cynoscion magdalenze (Steindachner) Jor. \& Gilb.

Common in the bay of San Diego.
24. Menticirrus elongatus (Ginther) Gill.

A large species of Menticirrus, probably Umbrina elongata of Günther, is taken occasionally in the bay. We have obtained one specimen.
25. Corvina saturna (Girard) Steindachner.

Not uncommon.
26. Roncador stearnai (Steindachner) Jor. \& Gilb. (gen. nov.).

Common. This species, having a serrated preopercleand only villiform teeth in either jaw, is not a Corvina as that genus is understood by many recent writers. Its relations are rather with Scianops ocellatus, with which it is, however, hardly congeneric. We propose to consider it as the type of a distinct genus or subgenus, for which the name Roncador, applied to it by the Italian fishermen, may be adopted. This word appears also in the Latin name of a related species, Umbrina ronchus.

Roncador, gen. nov. Allied to Corvina and Scianops.
Body moderately elongated, the head deep, the profile declivons, lower jaw included; both jaws with a broad band of villiform teeth only; no enlarged teeth or canines; pseudobranchiæ present; preopercle strongly and evenly dentate posteriorly, entire below; spines strong, the second of the anal very robust, but not very long; caudal fin lunate, air-bladder large.

This species, Roncudor stearnsi, is as readily distinguished by the black pectoral spot as its relative, Scicnops ocellatus, is by the black spot on the caudal.

EMBIOTOCID压.

27. Embiotoca jackeoni Ag.

Common.
28. Amphistichus argenteus $A g$.

Occasional.
29. Ditrema furcatum (Grd.) Giinther. Common.
30. Byperprosopon arcuatum Gibbons.

Not uncommon.
31. Cymatogaster aggregatus Gibbons. Very abundant.
32. Abeona minima (Gibbons) Gill. Occasional.

LABRIDE.

33. Pimelometopon pulcher (Ayres) Gill.

Very abundant in the kelp outside the bay.

SPHYR x NID E .

34. Sphyræna argentea Girard.

Very abundant outside the bay in the fall.

ATHERINIDA.

35. Chirostoma californiense (Girard) Gill.

Exceedingly abundant.
36. Atherinops affinis (Ayres) Steindachner.

Scarcely less common.
37. Leuresthes tenuis (Ayres) Jor. \& Gilb. (gen. nov.)

Leuresthes, gen. nov., allied to Atherinops Steindachner, but with the teeth wanting or reduced to slight or deciduons asperities. In the specimens which we have obtained of this species no teeth whatever are observable.

The much greater width of the posterior portion of the premaxillary in Chirostoma, Atherinops, and Leuresthes serve to distinguish these genera from Atherina, in addition to the differences in the form of the month. Labidesthes Cope has, like Atherina, a slender premaxillary, but the mouth is curved and the jaws much produced forwards. The group called by Girard Heterognathus has likewise a broad premaxillary. It is probably not separable generically from Chirostoma, although the lower jaw is much stronger and some teeth are present on the vomer.

Leuresthes tenuis is occasionally taken in San Diego Bay, bnt it is much less abundant than the others and attains a smaller size.

MUGILIDE.

38. Mugil mexicanus Steindachner.

Very abundant in San Diego Bay. Our specimens have the anal III, 8, instead of III, 7, as stated by Dr. Steindachner.

SCOMBERESOCIDE.

39. Hemirhamphus sp. incert.

The young of a species of Memirhamphus is very abundant in San Diego Bay. We are at present unable to identify it with any of the known species, but having seen no specimens over four inches long, we
do not think proper to describe it as new. The rays both in dorsal and anal are 14 or 15 ; the lower jaw is contained 4 times in the total length. It is allied to \boldsymbol{H}. pleii and \boldsymbol{H}. unifasciatus, but it is probably distinct from both.
40. Belone exilia Girard.

Occasionally taken. One specimen seen.

CYPRINODONTIDE.

41. Fundulus parvipinnis Girard.

Very common in the Bay of San Diego.

ALBULID $\underset{\text { A. }}{ }$

42. Albula vulpes (L.) Goode.

This species visits the bay at intervals, in considerable schools. Several specimens were obtained.

CLUPEID \mathbb{E}.

43. Clupea sagax Jenyns.

Very abundant in San Diego Bay. The very largest are nearly plain in coloration. The ordinary specimens have a very distinct series of round, blackish spots along the sides of the back, with smaller ones above it, which form stripes along the rows of scales.
44. Clupea mirabilis Girard.

Very abundant in San Diego Bay. The vomerine teeth in this species are very few and often not to be found. It should not be generically separated from the preceding.

ENGRAULIDE.

45. Engraulis delicatissimus Girard.

Very common.
46. Engraulis ringens Jenyns.

Very common.

MURENIDE.

47. Gymnothorax mordax (Ayres) Jor. \& Gilb.

Not rare in rock-pools. This species is extremely pugnacions, striking at a stick after the fashion of a snake. It is also very tenacious of life.

Length of tail almost exactly equal to that of the rest of the body, head forming one-seventh of the total length; snout short, narrow, and pointed, occipital region becoming fleshy and much elevated with age; dorsal fin beginning immediately in front of the gill openings.

Tube of the anterior nostril half as long as the eje; the posterior nostril with a slight membranous expansion, not forming a tube; diameter of eye contained 24 times in the length of the snout, being placed nearly above the middle of the gape; gill opening slightly longer than the eye.
Sides of the upper jaw with two series of teeth posteriorly; the outer series small, close-set, somewhat triangular in form, slightly recurved, immorable; the inner series similar in form, but much larger, depressible, the series not extending so far back as the outer and consisting of about five teeth; the two series separated by a well-defined groove; in front of these, and continuons with the outer series, are three nearly fixed knife-shaped teeth, the posterior the larger, next a movable tooth similar to the last fixed one but smaller, and three small fixed teeth in front. On the middle line of the vomer are three depressible, fang-like, arrow-shaped teeth, the first rather smaller than the largest lateral teeth, the other two subequal and considerably larger, the posterior one very freely movable. These teeth are subject to some variation in different individuals, and are seldom quite alike on both sides of the same fisb.
In the lower jaw is a single series corresponding to the fixed series in the upper jaw. These are similarly enlarged in front, where the series is partly duplicated and some of the teeth are movable. The teeth in the lower jaw are broader and more directed backwards than those in the upper jaw.

MYLIOBATID E .

48. Myliobatis californious Gill.
(Rhinoptera veapertilio Girard.)
The commonest of the numerous sting rays in San Diego Bay.

DASYBATIDA.

49. Ptoroplatea marmorata Cooper.

Common in San Diego Bay. Probably distinct from P. hirundo, having a narrower disk and shorter tail, with distinct dermal fold above and below.

50. Urolophus halleri Cooper.

Common. This species is certainly not identical with U. torpedinus, in the synonymy of which species it is placed by Dr. Günther. Its skin is entirely smooth. It is probably a valid species, more nearly allied to U. cruciatus than to U. torpedinus.

51. Dasybatin dipterurus sp. nov.

Allied to Dasybatis centrurus and D. pastinaca.

Disk rhomboid, slightly broader than long; anterior margins nearly straight forwards, meeting in a very obtuse angle; posterior margins curved; lateral angles rounded. Tail nearly half longer than disk, with
a conspicnous cutaneous fold below and a smaller but evident one above. Upper jaw considerably curved, with a slight convex protuberance in front, which fits into a slight emargination in the lower jaw, which is convex, its outlines corresponding to the curves of the upper jaw. Bands of teeth wider in front than laterally. Inside of mouth behind the lower jaw with three fleshy processes. Teeth about $\frac{1}{23}$; about 8 in a cross-series in the npper jaw and 10 in the lower.

Color light brown, somewhat marbled with darker, but without distinct spots; tail blackish; belly white.

Skin everychere perfectly smooth in all the specimens seen.
Mfeasurements of two specimens.

This species is known to us from four female specimens taken in San Diego Bay. These range in length from 18 to 24 inches, and are therefore but partially grown. Several other specimens, some of them larger, have been seen in a pile of refuse fish thrown away by the Chinese fishermen. These were, however, too far gone for preservation or description.

52. Platyrhina exasperata sp. nov.

Disk rhombic, about as hroad as long, the snont prominent, but bluntish at the tip, the angle made by the anterior margins of the pectorals rather less than a right angle, but the snont itself rounded at the tip. Anterior margin of pectorals nearly straight.

Eyes rather large; nasal ridges well separated, little converging, not meeting anteriorly. Month rather narrow, slightly convex forward. Teeth about $\frac{8}{3}$. Nostrils with a large anterior flap, which projects backwards and covers a narrower posterior tlap.

Ventral fins separate, entire, their outer margin slightly convex.
Tail depressed, with a broad lateral fold; dorsal fins comparatively
large; caudal fin well developed; under side of tail flattened with a blunt medial ridge.

Under side covered with a fine shagreen, like the skin of a shark, the roughnesses being triangular and closely set, depressible backwards; the skin below much as in Rhinobatus, but the prickles higher and sharper, the skin mach rougher than in the latter genus.

The branchial region, from the nostrils to the pelvic bones, is entirely smooth, escept the lower lip, which has a band of close-set prickles. A small tract in the middle of the pelvic area is prickly, and most of the abdomen proper, back to a point in front of the vent; the anterior and outer three-fourths of the pectorals below and about half the ventrals anteriorly and exteriorly also rongh, as is the whole snout below, in front of the nostrils; whole lower surface of the tail and the surface of the fins rough with shagreen.

Above, the entire surface is covered with close-set stellated prickles of different sizes, largest on the base of the pectorals, and smallest abont the eyes and on the outer edges of the fins.

Besides these are several stout, bluntish, slightly recurved spines, with stellate bases, placed as follows: One at the upper anterior angle of the eye and two behind it, the posterior the larger; a large spine on the back at the shoulder-girdle, in front of which are two or three on the median line, and a series on the middle line of the back of 10 to 12 ; two more on the tail between the dorsal fins; two series on the shouldergirdle, the inner of two, the onter of two to four. No other large spines on the body. No claw-like spines are present on the pectorals in the male examples seen, all of which are, however, immature.

Measurements.

This species is very abundant in the Bay of San Diego, where about twenty examples of both sexes, all very similar in size, were obtained.

This species of the Asiatic genus Platyrhina in the waters of the United States is a very interesting addition to our fauna. Proc. Nat. Mus. $80-3$ May 6, 1880.

RHINOBATIDE.

53. Rhinobatus productus Ayres.

Very common.

GALEORHINIDA.

54. Mustelus californicus Gill.

Abundant. This species appears to be identical with the Atlantic Mustelus canis, itself indistinguishable from Mustelus hinnulus Blainville, of the Mediterranean.

55. Triacis semifasciatus Grd.

Not uncommon.

56. Galeocerdo sp 1

The jaws of a large shark, with the teeth similar in both jaws, triangular, oblique, deeply notched on the outer margin, and all strongly ser. rate, are preserved by Mr. Pitcher, of San Diego. The shark was taken near San Diego, but south of the Mexican line. The width of the mouth is about a foot. I suppose this to have been a species of Galeocerdo.

HETERODONTID风.

57. Heterodontus francisci (Grl.) Jor. \& Gilb.

Common.

DEECRIPTION OF A NEW FLOUNDER (XYBTREURYS LIOLEPIE), FROM SANTA CATHLINA ISLAND, CALIEORNIA.

Ey DAVID S. JORDAN and CHARLES H. GILBERT.

XYSTREURYS LIOLEPIS, gen. et sp. nov.
Generic characters.-Subfamily Hippoglossina, allied to Hippoglossina, Hippoglossoides, and Paralichthys (Pseudorhombus). Eyes and color on the right side; mouth large, oblique, with the teeth developed on both sides, stout, unequal, bluntish, in a single series; gill-rakers few, short, thick, almost triangular; scales small, cycloid, membraneous, oblong in form; lateral line simple, arched over the pectorals; caudal fin double-truncate, the angles rounded; dorsal fin beginning over the eye; anal fin preceded by a feeble antrorse spine; ventrals lateral; body oblong, moderately deep, rather thin.

This genus differs from Hippoglossoides in the arched lateral line, and from Hippoglossina in the cycloid scales and in its dextral habit. From most of the related genera it is separated by the few stout short gill. rakers.

Specific characters.-Form broadly elliptical, the profile continuous with the curve of the back; ventral outline from chin to past the ventrals nearly straight, the rest of the outline corresponding to the dorsal outline. Head moderate, shortish; mouth very oblique, not so large as in Paralichthys maculosus; the premaxillaries on the level of the pupil when the mouth is closed, the maxillary reaching to the posterior border of the eye; maxillary broad; teeth in a straight row, wide apart, unequal, conical, and blunt at tip, their number about $\begin{gathered}14+15 \\ 13+12^{\circ}\end{gathered}$ *Teeth in the lower jaw irregularly alternating large and small. In the upper jaw similar, but smaller and less obviously alternating. The middle tooth on the blind side in the upper jaw the largest.

Eyes large, close together, the lower slightly anterior; nostrils of riyht side above and in front of lower eye; upper nostrils turned over on the blind side; posterior nostrils largest, with a conspicuons flap. Interorbital space a narrow, elevated ridge, covered with very small scales; a few scales on the posterior part of the maxillary, none on the mandible.

Preopercle with its posterior margin free, little movable; cheeks and opercles densely covered with small, oblong, cycloid scales. Branchios. tegals 7.

Gill-rakers short, blunt, triangular, scarcely one-fourth as long as the eye, their edges slightly dentate. There are about 7 of the large ones on the middle and lower part of the gill-arch, some rudiments above. (There are about 24 long and slender gill-rakers in Paralichthys maculo. 8u8.)

Lateral line without dorsal branch, with a broad curve above the pectorals. Scales quite small, oblong, cycloid, thin and membraneous; little imbricated except behind, and somewhat imbedded in the skin, with some smaller supernumerary scales, especially below; scales much smaller on the thoracic region than on the sides. Scales of right and left sides similar. A series of small scales extending up each ray of the vertical fins.

Lateral line with about 123 scales, pierced by tubes; number of rows of scales perhaps a little greater than the number of tubes.

Dorsal fin beginning just in advance of the middle of the pupil, its first ray slightly turned toward the blind side; some of the anterior rays furcate; most of the rays simple; the fin rather low in front, gradually becoming higher to a point near the midalle of the body, thence regularly diminishing behind, the last ray being near to the base of the caudal; the candal peduncle very short ; anal fin similar, its highest ray opposite the highest of the dorsal ; a weak antrorse spine at beginning of anal; ventrals shortish, reaching past front of anal; pectoral of right side about as loug as head, that of left side half as long. Caudal fin some. what double-truncate, with rounded angles, the middle rays being prodaced.

Fin-rays: Dorsal, 82; anal, 64; ventrals, 7.

Measurements of typical specimen.
(Nu. United States National Museum.)
Extreme length 11.50 inches.
Length to base of caudal fin 9.90 inches $=1.00$
Greatest depth 41
Least depth 105
Length of caulal peduncle 065
Length of head 23
Width of interorbital area 017
Length of snont 04
Length of maxillary 10
Length of mandible 11
Diameter of orbit 065
Distance from snout to domsal 075
Length of hase of dorsal 77
Greatest height of dorsal 10
Distance of anal from snout 32
Length of base of anal 69
Height of longest ray 11
Length of caudal 13
Length of pectoral (right side). 24
Length of ventrals 025

The typical example of this species was taken on a hook on the west side of the island of Santa Catilina, Los Angeles County, California.

DESCRIPTION OR A NEW RAY (PLATYREINA TRIEERIATA), FROX THE COAST OR CALITORNIA.

BY DAVID S. JORDAN AND CHARLES H. GILRERT.

PLATYRHINA TRISERIATA.

Disk broad-ovate, broader than long; the suont very bluntly rounded, not projecting; the angle formed anterionly by the pectorals very obtuse; anterior margius of the pectorals slightly convex; tail stout, in form intermediate between Raia and Rhinobatus, its width at base about equal to the length of the snout and a little more than the interorbital width ; tail much longer than the disk, not much depressed, its sides vertical, its lower lateral edges with broad horizoutal fuld, a slight groove above on each side of the median series of spines.

Dorsal fins similar, higher thau long, the anterior far behind the end of the claspers; the posterior free margin of both fins very convex, not forming an angle. Caudal fin large, well developed both above and below, its outline entire, elliptical. Ventral fins with their margins entire, the claspers well developed. Pectoral fins extending forward to a point but little short of the tip of the snout.

Rostral ridges wide apart at base, rapidly convergent, inclosing a triangular area; a slight translucent space separates this from the opaque pectorals; eyes small, wide apart, the broad spiracles close behind them.

Mouth broad, its width equal to the distance from its front margin to the tip of the snout; a deep crease passing around the mouth behind, in front of which the lower lip has three folds of skin. Upper lip not developed, a strong fold of skin passing from the angle of the mouth on either side to the inner angle of the nostrils, thence straight across, joining its fellow on the opposite side, these folds enclos. ing a depressed, subtriangular, \square shaped area, which is bounded behind by the curved outline of the npper jaw. In this depression are three transverse cross-folds of skin. Nostrils broader than the interval between them, with a free fold behind, which is prolonged forwards and inwards in the middle, the rest of the fold being turned backward. Auterior edge of nostrils with a broad flap, the outer edge of which is much prolonged, overlapping the posterior flap, the inner edge covering the inner angle of the nostril.

Both jaws strongly and somewhat regularly curved. Teeth numerous, rather sharp, about $\frac{80}{b}$, about twelve in a cross-series. Gill openings very narrow.

Skin everywhere covered with a rather fine shagreen, almost precisely as in Rhinobatus productus. The asperities are smaller below, and coarser on the outer anterior margin of the pectorals, where there are also two or three irregular rows of sharp, curved, backward-directed spines. Four strong spines on the tip of the snout, forming a rhombio figure; four or five strong, bluntish spines around each eye, above and in front, the one at the upper anterior angle the largest.

A series of 22 very strong spines along the median line of the back and tail, and two more on the tail between the dorsal fins. On each side of the tail above is a similar series of ten spines, the first opposite the end of the base of the ventrals, the last opposite the front of the first dorsal; a single strong spine on the outer edge of the shoulder-girdle and two between the spine and the dorsal series.

Color almost exactly as in Rhinobatus productus. Olive-brown above, whitish beneath, the vertical fins paler. Rostral area and edges of peetorals somewhat translucent. No sharp markings of any kind anywhere.

Measurements.
Extreme length 17.90 inches.
Length of disk 7.25 inches $=1.00$
Width of disk 1. 09
Width of tail at base 20
Distance between outer humeral spines 36
Length of branchial area 15
Width of branchial area in front. 34
Width of branchial area behind 28
Distance between outer edges of nostrils 21
Width of mouth 20
Width of interorbital area 165
Length of eye 06
Length of snout from eye 225
Length of snout from month 22
Length of nostrils 07
Width of anterior nasal flap 106
Length of nasal flap 04
Distance from snont to first dorsal 1. 565
Length of base of first dorsal 095
Height of first dorsal 18
Interval between dorsals 150
Length of second dorsal 10
Height of necond dorsal 19
Height of caudal 175
Length of upper portion of caudal 45
Distance from snout to end of base of pectoral 83
Length of base of ventrals 23
Width of ventrals 20
Length of elaspers 36

The type of this species, an adult male, was taken at Santa Barbara, Cal., February 8, 1880, by A. Larco, an Italian fishermen. It is numbered - in ine collection of the United States National Museum. Mr. Larco states that this species is not uncommon about Santa Barbara in spring and summer.

This species is probably related to Platyrhina sinensis, but it has little affinity with Platyrhina exasperata, already described by us, from San Diego. In color, form of tail, and character of the dermal covering it resembles the Rhinobatida, and its affinities with Syrrhina, of the latter "family," are evident.

DESCRIPTION OF A NEW APRCEES OF "ROCK COD" (MEBASTICHTHYs SEREICEPs), TROM THE COAST OF CALIFORNIA.

By DAVID s. JORDAN and CHARLES H. GILBERT.

Body rather robust, heavy forwards, compressed behind, the caudal peduncle short and rather slender. Head large. Mouth large, rather oblique, the maxillary reaching to opposite the middle of the eve; the premaxillary anteriorly on the level of the orbit; jaws about equal, in the closed mouth; teeth, as usual, in villiform bands on the jaws, vomer, and palatines.

Top of head with the spinous ridges very thick and strong, their tips bluntish, turned upward and outward; the spines on each side placed nearly in a right line, so that the edge of the crown seems somewhat regularly serrated.

The following pairs of spines are present: nasal, preocular, snpraocular, tympanic, occipital, and nuchal. The coronal spines (found in S. auriculatus and S. ruber) are wanting in this species, as are the postocular spines (usually present in \mathbb{S}. pinniger). Interorbital space between the spines narrow, flat, and coarsely scaled (the elevated ridges found in S. nigrocinctus being wanting). The tympanic spines are
stronger than in related species. The nuchal spines are as usual placed close behind the occipital.

Preorbital bone rather broad, with a single obsolete spine directed downwarl. Preopercle with five rather short and bluntish spines, the second the larger, the three lower quite small. Opercle with two bluntish, diverging spines. A blunt spine on the shoulder girdle above the pectorals; two sharp suprascapular spines. Subopercle and lower edge of opercle each with a blunt point. Preorbital scaly below. Maxillary naked.

Eye rather large, its diameter about one-quarter the length of the head.

Gill-rakers clavate, short, stiff, compressed, armed with bristly teeth above and within. There are about thirty of them in all, those nearest the middle of the arch longest and most perfect, the others gradually grewing smaller and incomplete. About half of them have the posterior edge free. The longest is about one-third the length of the eye ($\frac{1}{d}$ in S. melanops ; $\frac{3}{5}$ in S. pinniger). In form they are midway between the tubercle-like gill-rakers of "Sebastosomus" (S. melanops) and the long and slender gill-rakers in "Scbastomus" (S. pinniger, flavidus, auriculatus, etc.).

Branchiostegals 7, the gill membranes, as in other species, little united, without isthmus.

Scales moderate, essentially as in S. fasciatus and related species. Lateral line with 55 scales.

Dorsal fin with strong spines, the fourth to seventh highest and subequal, the lowest more than half the height of the highest. Soft dorsal rather higher than any of the spines. Caudal fin broad, rounded. Anal fin with the second spine robust, about as long as the third and much stronger, the soft rays high.

Pectoral broad and rounded, its base deep, nearly one-third the length of the head, its lower rays thickened as in S. melanops, its tips reaching just past the veut. Ventrals falling just short of the front of anal.

Fin rays: D. XII, 1, 13; A. III, 5.
General color dark olive, blackish on the head and back, the sides somewhat yellowish; sides of body with black cross bands which are somewhat oblique; these bands are usually distinct, but are sometimes nearly obsolete in dark-colored examples. The first band runs downward from front of dorsal across base of pectoral; the second from near the middle of spinous dorsal to behind the ventrals; the third from the posterior part of the dorsal to the rent; the fourth and fifth above the anal, and the sixth at base of caudal. Another black bar extends across the scapular region and the opercular spines, and two bands radiate from the eye, obliquely downward and backward. Belly dusky greenish; fins blackish, with a strong olive tinge.

Lips, mouth, front and lower part of the head, with a strong wash of

coppery red, this color fading out on the thoracic region. Base of fins and different parts of the body sometimes with obscure small whitish spots.

Mcasurements.
(No. United States National Musenm, from Santa Barbara.)
Extreme length 10.40 inches.
Length to base of candal 8.70 inches $=1.00$
Greatest depth 38
Least depth. 11
Length of head 35
Diameter of eye 025
Leng't of anout 10
Width of interorbital area 055
Length of sapraocular ridge 05
Length of occipital ridge 06
Length of maxillary 18
Distance from snont to dorsal 325
Length of base of dorsal 57
Height of longest spine 13
Height of longest ray 1.5
Length of base of anal 135
Height of second spine 14
Height of longest ray 22
Length of caudal 205
Width of base of pectoral 11
Length of pectoral 265
Length of ventral 24

This species is found in great abundance about the island of Santa Catalina, where eight examples were obtained by the writers. Another was taken at Santa Barbara, where the species is considered rare by the fishermen. It scems to be intermediate between the still rougherheaded S. nigrocinctus, on the one hand, and the smoother S. fasciatus and S. melanops on the other.

ON THE DCCURERNCE OR CEPHALOSCELLIUM LATICEPS (DEOMERIL) GILLL, ON THE COAST OF CALIPORNIA.

By DAVID S. JORDAN and CHARLES H. GILBERT.

While we were engaged in making collections on the coast of Los Angeles County, California, a shark was described to us by a Wilmington fisherman as having the habit when caught of filling himself with air "till he was big as a barrel," so that if thrown back in the water he would float away on the surface, belly upward, etc., exactly after the fashion of the species of Tetrodon. On cross-questioning, the fisherman assured us that the animal was a genuine shark, with the mouth underneath and many sharp teeth, and that he had frequently taken them near Wilmington.

At last one of these animals was brought in to us by a fisherman
named Vicente Leonardo, who took it in a gill net off Santa Catalina Island. It proved to be a species of the genus Cephaloscyllium Gill, and apparently identical with the type of the genus (Scyllium laticeps Duméril). This species has been hitherto recorded, so far as we know, ouly from Tasmania.

The following is a description of our specimen (No. —_, United States National Museum):

Head short and broad, broader than long, and not half as deep as broad; snout very blunt, not projecting much beyond the mouth ; eyes oblong, small, the spiracles behind them well developed; no nictitatiog membrane; uasal openings not confluent, their flaps separated by a broad space, the breadth of which is two-thirds the length of the snout; nasul flaps conspicuous, withont cirrus; mouth very broad, not strongly curved, with only a trace of labial fold at the angle; skin at the angle of the mouth thin, smooth, pale, and raised into little cross-folds.

Teeth similar in both jaws, small, sharp, with a long central cusp and a small basal cusp on each side. About four series of teeth. Teeth $30+30$ $27+27$

First dorsal beginning over middle of ventrals ; secoud dorsal begiuning behind front of anal and ending a little before end of anal ; base of pectorals low and horizontal, the last two gill openings above them. Caudal fin short.

Color dark grayish-brown, with fire pairs of dark bars across the back, their form irregular; the central pair bounded by straight lines and forming a cross-shaped figure; middle part of each fin blackish; entire surface of body and fins covered with round black spots of different sizes, these larger and less numerous on the belly; on the sides are also whitish spots, smaller and less numerous than the black ones.

This specimen was a female, with the ova nearly ripe. The stomach when received by us was much inflated. The intestines contained numerous specimens of a small gasteropod shell.

Other fishermen about Wilmington tell me that they take this shark occasionally, about two or three times a year, and that when fully inflated it is half as broal as long, a sta'ement not hard to believe.

A fisherman at Santa Barbara, Mr. A. Larco, tells me that he also knows this shark. He has in his possession two eggectases, with the eggs, which he says were taken from one of this species. These erro. cases are "wheel-barrow shaped," like the egg-cases of rays, and provided with long tendrils.

Mcasurements.
Length ... 37 inches $=1.00$
Greatest depth (partly distended)...22
Greatest width (partly distended)..

Greatest wilth of heat .. 18
Length of snout (from mouth) ... 04
Leugth of branchial area .. 08
Width of mouth 14
Diameter of eye 03
Distance from anont to first dorsal 62
Length of base of irst dorsal 08
Distance between dorsals. 09
Length of base of second dorsal 05
Height of second dorsal 065
Length of base of anal. 063
Height of anal $0 \times$
Length of caudal. 18
Length of pectoral 21
Length of ventral 11

ON THR OILOSMARE OF BOETHERN CALIPORNR (GALEORHINUA

 GAEECS!.
By DAVID S. JORDAN and CHARLES H. GILBERT.

Along the coast of Southern California a large species of shark appears in the spring in great schools. At certain places along the coast, expecially about Newport Landing, in the southern part of Los Angeles County, the pursuit of this shark becomes a matter of considerable economic importance. They are taken easily with a hook, and sometimes great numbers of them may be surrounded and brought in with a seine. They are valued for their livers and fins. A single liver when the animals first arrive, in March, will yield a gallon of oil. As much as $\mathbf{4 , 0 0 0}$ gallons of this oil have been procured at Newport in a single season. The fins of this species are sold to the Chinamen, who find them a great delicacy, and pay for them $12 \frac{1}{2}$ cents a pound.

The present writers have succeeded in obtaining one of these "oilsharks," and find the species to be the European tope, Galeorhinus galeus (Galeus canis and vulgaris of authors). It is singular that our only knowledge of the occurrence of this species on the west coast of America till now has been the indication by Dr. Giinther of the presence in the Bricish Museum of "o. Young. San Francisco. From Mr. Gruber's collection." Yet, in the waters of California south of Point Conception it is doubtless more numerous in individuals than all other species of sharks combined.

Measurements of an adult male oil-shark.
Length..... .. 63 inches $=1.00$
Depth (greatest) ... 14
Lenugth of head ... 18
langth of snout (below, from mouth) .. 075
Length of snont (from eye) od
Width of mouth.. 07
Length of spiracle.. . 0085
Dinmeter of eye .. 025
Distance from suout to first dorsal 33
Length of base of first dorsul... 073
PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.43
Height of first dorsal 075
Distance between dorsals. 25
Length of second donsal 045
Height of second dorsal 04
Length of anal 035
Length of caudal. 21
Distance from ventrals to pectorals 25
Length of pectorals 15
Length of ventrals. 045
THE AEEP-EMELT OF THE NORTHEEAT COABT, AND TGR METHOD OV TAKING THESIRT THE QUEHLEEUTE INDIANA, WEET COABT OF WAgEIINGTON TEERITOEX.

By James G. SWAN.

Neeait Bay, Wasir., September 22, 18:9.
Thirty miles south of Cape Flattery, at the entrance to Fuca Strait, Washington Territory, is the Quillehnte River, a small stream emptying into the Pacific Ucean near some rocky islets, the largest of which, named by the Indians "Alikistet," and by the whites "James Island," is a landmark for the entrance to the little bay or cove, ou the shore of which is the principal village of the Quillehute Indians, who collect and dry for winter use a very choice variety of smelt (Пypomesus olidus), which I have named the surf-smelt, from its peculiar habit of depositing its spawn among the shingle of the beach, coming in with the surf in incredible numbers, and in this respect somewhat resembling the capelin (Mallotus villosus) of New Brunswick.

The surf-smelt closely resembles the common smelt in shape, size, and the peculiar cucumber-odor, but differs in having its belly covered with a coating of cellow fat, which imparts an oily appearance to water where the tish have been cleaned or washed, and makes them the very perfection of pan-fish.

During the month of August, 1879, I was at the Quillehute Iudian vil. lage from the 17 th to the 22d, with United States Indian Agent Charles Willoughby, and had an ample opportunity to witness the habits of the sarf-smelt aud their capture by the natives. These Indians take them by means of a peculiar-shaped hand-net of a parallelogram form at top, five feet long, twenty inches wide, and from four to five feet deep, with a cursed handle.

The specimen net which I send is made of the fiber of the common stinging nettle (Urtica dioica L.), which grows in luxurious abundance on the northwest coast near Indian villages and deserted camps. A specimen of the prepared fiber is also sent with the net.

The method of preparing the nettle by the Quillchute Indians, after gathering a quantity and stripping off the leaves and twigs, is to dry the stalks in the sun or on a frame in the lorlge, near, but not directly over, the fire.

When properly dried, each stalk is split open and the shive or woody part broken by the hand and peeled off from the outside skin or fiber. This fiber is then spun or twisted into threads or twine, by rolling between the palm of the hand and the bare leg, a process at which the women are very expert.

The Indians at present know nothing of the process of rotting the plant and breaking it to get rid of the shive, or of the process of hackling the fiber, and as their method is so slow and laborions, they are abandoning the use of the nettle as a textile plant, and use twine, which they either purchase ready made, or manufacture from cotton threads raveled out from flour-sacks and spun by hand, or from jute, which they procure from old gumy-bags which have been thrown away by the whites.

I think if they could be taught the process of rotting the nettle and preparing the fiber as the farmers of Kentucky prepare hemp or flax, that they would soon be able to furnish a valuable article of commerce which would pay them well for their labor.

The net I send will show the twine made by this most primitise of all methods, and indicate the many purposes for which it may be made available, but in order to be profitable it should be prepared in quantities like flax, or hemp. which it greatly resembles.

The net stitch or knot for making the mesh was not tanght them by white men, but has been known by the coast Indians for ages.

Nearly thirty years ago I saw the salmon-nets of the Chinook Indians at the mouth of the Columbia River. The knowledge and use of nets antedates the advent of the first white man, but in the manufacture of the fiber and the twine they seem to have retained the most primitive ideas, and never have adranced. What little twine they now manufacture is made cxclusively by the old women.

The peculiar shape of the net, and the curved handle, are to enable Indians to best use them in the surf. A straight handle could not be used.

The surf-smelt are usually most plentiful during the month of August, and come in such vast numbers that the water seems to be filled with them. Captain Carroll, of the steamer Alesander Duncan, plying between the Columbia River and Puget Sound, informed me that, on the 24th of Angust, while on his passage from Astoria to Neeah Bay, he ran throngh a school of smelts between Point Grenville and Quillehute which extended nearly forty miles, and at night their track was made visible by a bright phosphorescent light which emanated from them. I noticed the same luminous appearance in the surf in Quillehate Cove during each night that I remained there.

The smelts come in with the flood tide, and when a wave breaks on the beach they crowd up into the very foam, and as the surf recedes many will be seen flapping on the sand and shingle, but invariably returning with the undertow to deeper mater.

An examination showed the pebbles to be incrusted with spawn, and as all the smelts I cooked were males, I concluded that the females had first come in and cast their spawn and were succeeded by the males, who deposited their milt. I handled and noticed a great many, and cooked several dozens on two successive days, but did not notice a single female. This might have been purely accidental, and perhaps at another time the catch would have proved all females.

On the first appearance of the fish, the Indians rush into the surf and press the outer edge of the net down firmly on the sand or shingle, the swash of the breaker forcing the smelts into the net. Then, as the water recedes, they turn round quickly and hold the net so that the undertow will force more smelts into it. In this way I saw them take at least a bushel at a single scoop.

In their immense numbers, these smelts resemble the culachon. (Osmerus pacificus) or candle fish, which are taken in such enormous quantities at Nass River, in British Columbia, near the southern bound ary of Alaska.

After every scoop, the Indian, if successful, empties its contents on the beach, where the squaws and chidren quickly gather them into baskets, and carry them to the houses, where they are strung on strips of cedar bark and hung up to dry. The method of stringing them is to take each one separately and pass a half hitch with the bark around the head just back of the gills. This keeps each tish scparate, and enables them to dry better.

The Quillehutes still retain the ancient superstition, formerly so prevalent among the coast tribes, relative to their fish, that the first ones must not be sold or given away to be taken to another place, nor must they be cut transversely, but split open with a muscle-shell.

I was fortunate in obtaining quarters in the house of an Indian who had a cooking-stove, where we cooked our rations as suited us. One of the Indians of our party obtained some smelts, which he boiled for supper, cooking them in the Quillehute style; he gave me some, which I friel. No sooner did the Quillehutes learn that I was cooking some of their fish than two of the head chiefs, Howcattl and Klakistokar, came to see what I was doing, as they feared I would cut the fish with a knife; but I fried them whole, and when they saw me take the nice crispy smelts with my hand and eat them entire, without aid of knife or fork, they grunted forth their satisfaction, and allowed me to purchase as many as I wished to take away. But of salmon they would neither give or sell. The fall run of the Salmo canis and Salmo proteus had just commenced to come, and while thes gave us all we could eat of their own cooking, in their own houses, they refused to sell or give a single fish to be taken away. They fully believed that if we took any salmon into onr canoe, all the salmon would desert the Quillehute River and follow us to Neeah Bay, and if we had cut the smelts or salmon with a knife, they all would immediately disappear in the ocean and never return.

I was unable to procure even a specimen of the salmon, but obtained enough smelts to forward some excellent specimens to Washington.

Very respectfully, your obedient servant,
JAMES G. SWAN.

Prof. Spencer F. Baird,
United States Commissioner Fish and Fisheries, Smithsonian Institution, Washington, D. C. -

P. S.-I omitted to mention that the surf-smelt are common in all the salt water of Paget Sound, but I have not heard of an instance where they run up fresh-water streams to spawn, like the eastern smelt.
J. G. S.

NOTE ON THE OCCUEEENCE OP PRODUCTUA GTGANTEEA IN CAEITOENIA.

By C. A. WHITE.

Among a small collection of fossils sent to the National Museum by Mr. Ludwig Kumlien, of the United States Fish Commission, from the valley of McCloud River, Shasta County, California, are three or four large examples of Productus, which I am nnable to distinguish from P.giganteus Martin sp., the well-known type species of the genus as it is extensively known in European strata. They are preserved in a hard, dark-colored, argillaceous rock, which is partly metamorphosed, and they are, therefore, somewhat imperfect; but portions of them show the characteristics of the species very plainly. The largest of these Californian examples was, when perfect, quite equal in size to the larger European examples of $P \cdot$ giganteus, having had a transverse diameter near the hinge of not less than 140 millimeters, or $5 \frac{1}{2}$ inches.

A small collection of fossils was sent by mail from the same locality in 1877 by Mr. Livingston Stone, the species of which were recognized as of Carboniferous age, but P. giganteus was not among them, although the later collections indicate that they occur in the same strata. These associated forms of both collections are too imperfectly preserved for specific determination, but the genera Fenestella, Streptorhynchus, Spiri-gera Camarophoria, Allorisma, and Euomphalus are more or less satisfactorily recognized. They all together plainly indicate the Carboniferous age of the strata from which they come, which fact was also previously known through the reports of Trask and Whitney.

This, so far as I am aware, is the first discovery of P. giganteus in American strata. It is not a little remarkable that it should be found in the westeru portion of the continent and not in the middle and eastern portions, where the Carboniferous system is so well developed, and where several European species of Carbouiferous brachiopoda are recog. nized.
Proceedings Nat. Mus., 1820. C. A. White.

PRODUCTUS GIGANTEUS.

1
?

Fig. 1, on Plate - , represents one of the examples referred to, the principal portion of the figure showing a natural cast of the dorral valve, with the umbonal portion of the ventral valve. In this figure the full length of the shell from back to front is not shown, but it is represented in the accompanying diagram, Fig. 2.

Washington, D. C., December 3, 1879.

NOTE ON ACEOTRHELE

By C. A. WHITE.

Among the fossils collected from Primordial strata at Antelope Spring, Southern Utah, by Mr. G. K. Gilbert and Mr. E. E. Howell, who were then connected with the explorations and surveys west of the 100 th meridian, were a number of examples of a discinoid brachiopod. This form I described and figu:e ${ }^{*}$ under the name of Acrotreta 9 subsidua, referring it to that genns provisionally. Noue of the examples were in a condition to show all the generic characters clearly, but certain features in these shells indicated their possession of important differences from any genus then established and led me to suggest that they prohably represented a new generic type. In the same year, 1876 , Prof. G. Linnarsson, of Stockholm, Sweden, published \dagger a new generic form from the Primordial rocks of Sweden, uncier the name of Acrothele, which plainly includes Acrotreta 9 subsidua White. Professor Linnarsson des cribed two Swedish specics under this generic name (A. coriacea and A. granulata), and in 1879 he published a third species under the name of A. intermedia, \ddagger but A. subsidua is at present the only known American species. It is not unlikcly, however, that some of the American species heretofore referred to Discina will be found to belong to Acrothele.

Washington, D. C., February 1, 1880.

DEGCEIPTION OR A NEW CPETACEOUN PINNA EAOM NEW Misxico.

By C. A. WHITE.

Pinna stevensoni.

Shcll large, elongate-triangular in marginal outline; ralves moderately convex; the convexity being slight and nearly uniform posteriorly, but much greater toward the front, where it amounts to an obtuse median angularity upon each valve, and wheie a transverse section of the shell has an approximately regular rhombic outline; upper border

[^8]straight or nearly so ; lower border slightly convex and longer than the uper border ; posterior border nearly straight or slightly convex, truncating the shell obliquely downward and backward, meeting the upper border at a more or less distinct obtuse angle and the lower border by an abrupt curve. Surface marked by abundant coarse lines and imbrications of growth, which triverse the shell in slightly curved lines corresponding with the posterior border, and is apparently without trace of any radiating lines or ribs.

Entire length from beak to postero-basal extremity about 215 millimeters; breadth, from the postero-dorsal extremity to the base, measured at right angles with the upper border, 95 millimeters.

This shell is so unlike any described American species that no detailed comparison with any of them is necessary ; but it is so closely related to P. legeriensis d'Orbigny, from the department of Sarthe, France, that it is not without some hesitation that I have decided to propose a separate specific name. I have never had an opportunity to examine any of the few examples of P. legeriensis that have leen discovered, and my comparisons are therefore only with the description and figures of d'Orbigny, in Pal. Française, Vol. III, p. 257, pl. 334. From these it appears that our shell differs from P. legeriensis in the following particulars. The angle of divergence of the upper and lower margins is not so great, in consequence of which the brealth of the shell is not proportionally so great; the curve by which the posterior border meets the lower border is more abrupt, and the greatest transverse diameter of the shell is near the median line instead of being much below it, as it is represented to be in P. legeriensis. The internal median grooves upon each valve, and also the undulations of the lower border, mentioned by d'Orbigny, appear to be entirely wanting in our shell.

Position and locality.-Cretaceous strata; about 112 miles southwestward from Fort Wingate, Northern New Mexico, where it was collected by Mr. James Stevenson, in whose honor the specitic name is given.

Washington, D. C., February 15, 1880.

NOTE ON THE OCCUREENCE OF MTRICKEANDINIA BALTEEI AND s. DAVIDAONI IN GEORGLA.

By C. A. WHITE.

A few months ago Lieut. A. W. Vogdes, United States Army, gave me a few fragmentary fossils from a collection which he had then lately made at Taylor's Ridge, in the town of Ringgold, Catoosa County, Georgia. The other fossils of this collection and the geology of the region referred to were discussed by Lieutenant Vogdes in the December, 1879 , number of the American Journal of Science and Arts, pp. 475-477. He there refers, and doubtless correctly, the horizon from which he obtained the fossils he gave me to that of the Clinton Group
of New York. They are in the condition of natural casts in fine-grained sandstone, but I have quite satisfactorily identified a dorsal valve of Stricklandinia salteri and one of S. davidsoni Billings. If these two species are correctly identified, as they appear to be, their discovery in Georgia is especially interesting, because they have hitherto been found only in strata of the island of Anticosti; and also of the indication which they and their associates in the two regions named afford as to the equivalency of the Georgia, Clinton, Anticosti strata in America; and Upper Llandorery strata of Great Britain.

Washington, D. C., February 15, 1880.

DEACRIPTION OFA NEW PLOUNDRE (PLEURONICHTHY CALIS, PROM THE COAST OF CALIFORNIA, WITII NOTES OX OTHEE MPECEES.

BY DAVID S. JORDAN and CHARLES II. GILBERT,

Pleuronichthys verticalis sp. nov.

Form broad ovate, the outlines regular; head small, somewhat constricted behind the upper eye; eyes large, but smaller than in P. quadrituberculatus. Interorbital ridge narrow; a small tubercle or prominence in front of the upper eye; a large one in front of upper edge of lower; another larger and sharper at interior edge of the interocular space; another at the posterior edge of the interocular spine ridge. This latter is developed into a long, sharp, triangular spine, which is nearly as long as the pupil, and is directed backwards. A prominent tubercle at the posterior lower angle of the upper eye. Upper edge of opercle somewhat uneven, but no other tabercles present.

Mouth small, as in other species; the lips thick, with lengthwise plice.

Teeth in a broad band on the left (blind) side of each jaw; no teeth on the right side in either javo. Gill-rakers very small, weak, and flexille, about ten in number. Scales essentially as in the other species, swall, cycloid, imbedded, and scarcely imbricated. Lateral line nearly straight, with an accessory branch which extends to the middle of the dorsal fin.

Dorsal fin beginning on the blind side at the level of the premaxillary, there being but about four of its rays on the left side of the median line. Vertical fins less elevated than in the other species, the longest rays of the dorsal about half the length of the head. Anal fin preceded by a spine. Caudal peduncle short and deep. Caudal fin elongate, rounded behind. Pectoral short, nearly equal. Ventrals moderate, reaching anal spine.

Fin rays: D. 65 ; A. 45.
Color dark olive-brown, with round grayish spots, the body and fins mottled with blackish.

Proc. Nat. Mus. $80-4$
May $6,1880$.

The type, No.
United States National Museum, was taken in a trawl-net outside of the Golden Gate, and was procured by us in the San Francisco market.
There are apparently three species of the genus Pleuronichthys, as restricted by Gill, in the waters of California.
One of these is the common species in the San Francisco markets at present, being taken in some abundance in the trawl-nets off Point Reyes and the Farallones. This species is the Pleuronichthys ccenosus of Lockington's Memoir (Proc. U. S. Nat. Mus. 1879, 97), and, as Lockington suggests, it is probably identical with the Pleuronectes quadrituberculatus of Pallas. For this form we accept provisionally the name quadritubereulatus.
A second species occurs farther south, two specimens having been procured by us at Santa Catilina Island, and one at San Luis Obispo. This form answers better than the preceding to Girard's deseription of his Pleuronichthys cœnosus, and it may for the present be identified with it. The specimen noticed by Lockington as "No. 4," "with the dorsal not continued downward nearly so far as the others," perhaps belongs to this species.
The third species is P. verticalis, described above.
The species may be readily separated, so far as we have observed, by the following characters:

[^9]Measurements.

	Verticalie.	Quadrituberculatue.
Ertreme length, in inchen	0.20	11. 85
Length to baso of caudal, in inchen $=1.00$	$7.50=1.00$	9. $20=1.00$
Trody, sreatest depth	. 54	. 62
Modr least depth of tail	. 14	. 13
Howd, length	. 24	. 28
Howd, diameter of orbit	.07	. 083
Domal, distance from tirat ray to median	. 045	.11
Dorsal, greatest heimht	. 13	. 10
\triangle nad, preatest height	. 13	. 18
Caudal, length	. 235	. 28
Pectoral, length.	. 135	. 18
Ventral, lougth	. 11	. 11

A second example of Tystreurys liolepis, taken at Santa Barbara, is sinistral. The species is, therefore, like Paralichthys maculosus and Platichthys stellatus, both dextral and sinistral. In the second example the small accessory scales are extremely numerous.

Two more examples of the species, noticed by us as Platysomatichthys stomias, have been obtained in trawl-nets from near the Farallones. This species is apparently not congeneric with Platysomatichthys hippoglossoides, differing in the long and slender gill-rakers and the ctenoid scales, as well as in the dentition, narrow interorbital space, and other minor details. The large teeth in both jaws, and the small teeth in the outer row in the upper jaw, are distinctly arrow-shaped, being abruptly widened toward the tip, thence acutely triangular.

We propose to consider this species as the type of a distinct genus, which may be termed Atheresthes, from the arrow-shaped teeth. It may be thus defined :

Atheresthes gen. nov.
Eyes and color on the right side. Body long and slender, closely compressed, tapering into a long and slender caudal peduncle. Mouth extremely large, oblique, the long and narrow maxillary extending beyond the eye. Both jaws with two irregular series of unequal, sharp teeth, which are anteriorly long and slender, posteriorly short. All the long teeth of both jaws, and the outer series of small teeth in the upper jaw, arrow-shaped. Some of the anterior teeth freely depressible. Interorbital space narrow. Gill-rakers long and strong, numerous. Scales comparatively large, ciliated, thin, and readily deciduous, those on the bliud side similar, smooth. Lateral line without arch. Fins low and rather fragile, the dorsal beginning over the eye, its anterior rays low. Caudal lunate; no anal spine. Pectorals and ventrals small, the latter both lateral.

Type, Platysomatichthys stomias Jor. \& Gilb.

NOTES ON AEARES PROM THECOAST OR CAITEOENIA

BY DATID S. IORDAN and CHAS. EH. GILBERT.

The following species of sharks, not hitherto recorded from the Pacific coast of the United States, have been observed by the writers during the present winter (1880):

1. Isuras oxyrhynchus Rafinesqne. (1)

The jaws of a species of Isurus were obtained by us at San Pedro, the shark having been taken off Santa Catilina Island. The teeth agree essentially with those of Isurus oxyrhynchus (Lamna spallanzani of authors). Isurus glaucus has, however, also the same dentition, hence we are unable exactly to determine the species.
2. Carcharodon rondeleti Miller \& Henle.-Man-eater Shark.

A large individual of this species was lately harpooned at the whaling station of Point Carmelo, near Monterey. Its jaws, now in the possession of Mr. A. C. Keating, a druggist at Monterey, are about two feet across.

Schools of this species are said to be occasionally noticed in the open sea from Monterey sonthward.
3. Cetorhinus maximus (Linnæus) Blainville.-Dasking Shark; Ground Shark.

An individual of this species, 31 feet in length, was taken March 25 by the whalers at Monterey, and another somewhat larger on March 26. Several others were noticed, but only two were secured. We are told that eighteen or twenty jears ago several of them were taken at Monteres, since which time few or none have been noticed in the bay.
4. Carcharhinus glaucus (L.) Blainville.-Blue Shark.

A young individual of this species, taken in San Francisco Bay, is in the museum of the California Academy of Sciences. A "Blue Shark" is found in the open sea along the southeru coast of California, but I do not know whether it is this species.
5. Galeorhinus galeus (L.) Blainville.

As already noticed, this species is the most abundant shark of Southern California. It is common at Santa Barbara, and I am told is not unfrequently taken at Monterey.
6. Galeocerdo tigrinus Müller \&\& Henle.-Man-eater Shark.

As already noticed by us, jaws of an individual of this species were seen by us at San Diego, near which place the animal was obtained.
7. Cephaloscyllium laticeps (Dnméril) Gill.-Ground Shark.

The occurrence of this species at San Pedro has been already noticed by us. At Santa Barbara it is, next to Triacis semifasciatus, the most abundant of the sharks. It is there taken daily in the lobster-pots set for the "craw-fish" (Palinurus interruptus). Its habit of inflating itself, when caught, by swallowing air, is very remarkable.
8. Pleuracromylon laevis (Riseo) Gill.

Two specimens of this species have been obtained by us at Monterey. One of them, a female, taken March 26 , had the young about 8 inohes long, each of them connected by a long umbilical cord to a placenta which is attached to the uterus. The occurrence of this shark, in connection with its relative, Mustelus hinnulus (vulgaris, canis, etc.), on the Pacific coast, is very interesting.

March 26, 1880.

ON THE GENEREC RELATIOXA OF PIATTEHINA EXABPERATA.

By DAVID S. JORDAN and CHARLES H. GILBERT.

A short time since a small ray was described by the present writers, from San Diego, under the name of Platyrhina exasperata. (Proc. U.S. Nat. Mus. $1880,-$ —.) Soon after a second species was described by us, from Santa Barbara, as Platyrhina triseriata. (Proc. U. S. Nat. Mus. 1880 ,-.)

The two species are certainly not congeneric. The former species has the skin above covered with stellated prickles of different sizes, and resembles the genns Raia. The latter is covered over by a uniform fine shagreen, and resembles the species of syrrhina and rhinobatus. So far as we can ascertain from the description given by Dumériland Guinther of Platyrhina sinensis and Platyrhina schænleini, these two species agree with Pletyrhina triseriata in the character of the dermal covering, as well as in form of body. We propose therefore to consider Platyrhina exasperata as the type of a distinct genus, Zapteryx, distinguished from Platyrhina by the presence of detached, unequal, stellated prickles on the skin above, instead of the uniform shagreen covering found in Platyrhina, and from Raia by the convex outline of the ventrals and by the greater development of the dorsal and caudal fins. In Raia the ventrals are always emarginate.

March 26, 1880.

RENARER ON THE MPECIES OP TME GENUN CTIIEUB POUND IN GAV PBANCIACO MAEEST, INCEUDENG ONE EITTEIERTO UNDE BCRIBED.

By W. N. LOCKINGTON.

Four species of the genus Chirus occur in the markets of this city. The two most abundant of these are C. constellatus and C. guttatus Grd. Of the others, one is C. pictus Grd., while the other has until now remained undescribed.
C. pictus is separated from the others by some sufficiently obvious external characters, beside those of color, as will be evident from the subsequent remarks, but the writer is unable to find any constant character except that of the coloration by which to distinguish the other three species.

As, however, he has now seen several hundred examples of C. guttatus and C. constellatus, and a large number of both the other species, and as, notwithstanding the considerable variation in the size, number, and position of the marking of each species, neither on any occasion shows the slightest tendency to approach the pattern of another, he submits that in this group the pattern of the coloration may be considered specific.

Difficult though it may be to prove upon paper the distinctuess of these forms, there do not exist on this coast any other four species belonging to one group which can be so unerringly separated by the eye.

Diagnosis.

This form is more inconstant in the number of its fin-rays and in the coloration than any of the others.

Six specimens now before me vary as follows in the rays of the dorsal and anal:
No. 1. Locality, San Francisco market........... D. XX, $\frac{1}{2} ;$ A. 21
No. 2. Locality, San Francisco market........... D. XXI, $\frac{1}{11}$; A. 22
No. 3. Locality, San Francisco market........... D. XXI, $\frac{1}{2} ;$ A. 21
No. 4. Locality, Kadiak Island, Alaska........... D. XIX, in; A. 21
No. 5. Locality, San Francisco market............ D. XIX, ${ }^{\frac{1}{2}}$; A. 21
No. 6. Locality, Kadiak Island, Alaska........... D. XVIII, $\frac{1}{2}$; A. 24
The color of all the species changes rapidly on exposure to air or immersion in alcohol.

No. 2, when fresh, was of a brilliant green upon the belly, and lower part of the flanks, deepening into brown above, and blotched with bright purple. After exposure, the ground tint becomes first reddish, and finally dull purplish brown, while the purple blotehes gradually fade into dirty white.

The dorsal and anal are blotched like the body, and the pectorals barred with the same tints.

In all the examples examined, the ventrals are shorter than the pectorals, and fall considerably short of the vent; and the lowest pair of lateral lines unite much nearer to the ventrals than to the vent.

I can perceive no constant difference between specimens from Alaska and those fonnd in our market. The most ordinary number of rays in the first dorsal appears to be nineteen.

No. 1 differs from all the others in the total absence of brighter blotches upon the sides, but the pectorals are barred, and all other characters coincide.

Chirus constellatus.

First dorsal, in all the individuals examined, with twenty-one rays,
and ventrals overpassing pectorals and reaching nearly or quite to the vent.

Lowest lateral line usually forking about midway between ventrals and vent.

Pectoral spotted all over with light and dark spots.
Commou in the bay of San Francisco.

Chirus guttatus.

First dorsal with twenty or twenty-one rays, ventrals and pectorals usually abont even posteriorly and scarcely reaching to the vent; position of the fork of the lowest lateral line somewhat variable.

Spots on sides bright orange when fresh, but becoming dark on exposure to air or alcohol.

Chirus maculo-seriatus nov. sp.
D. XXI, $\frac{1}{2}$; A. 22-23; P. 19; V. $\frac{1}{6}$; C. (principal rays) 15; L. lat. 110.

Body elongate, compressed, the greatest height about one-fifth of the length (candal included); greatest thickness, at opercles, about three-

- fourths of the greatest height; depth of caudal peduncle about $\frac{10}{2}$ of the greatest depth; head about one-fourth of total length.
Dorsal outline rising at an angle of about 20°, with a slight curve to the origin of the dorsal, or to about its ffth ray, whence it descends gradually in a straight line to the caudal peduncle, which is wedgeshaped, increasing in width towards base of tail.

Abdominal outline descending slowly to the scapular girdle, thence nearly level to anal; anal base sloping upwards with a slight curve.

Snout longer than orbit; interocular width slightly less than length of orbit; forehead slightly curved transversely, summit of asceuding premaxillary processes rising slightly above the profile of the suout.

Anterior nostril with the edges raised into a short tube.
Eyes lateral, elliptical ; a fimbriated flap over the orbit.
Jaws subequal, the upper slightly projecting; posterior extremity of maxillary reaching slightly beyond anterior margin of orbit, that of mandible below the center of the pupil.

Cardiform teeth in both jaws, in several rows in front, diminishing to a single series at the sides, the outer row larger than the others; a patch of similar teeth upon the vomer, and occasionally a few on the anterior part of the palatines, a character which certainly cannot be of generic value in this group. Branchiostegals six ; gill-openings continuous below, no isthmus; gill-rakers obsolescent, transverse.
Dorsal arising above the tlap of the opercle, slightly in front of the pectoral base, deeply notched; the first dorsal strongly arched on its upper margin; the first ray much shorter than the second; the other rays increasing in height to about the fourth, thence diminishing to the twentieth, which is considerably shorter than the unarticulated ray at the commencement of the second portion of the dorsal.

Second dorsal lower than the first, the rays increasing to about the
fourth; upper margin straight, slightly diminishing in height to the nineteenth ray, four last rays diminishing rapidly.

Anal commencing even with the second dorsal, and cotorminous and similar to it; rays increasing to the third; last ray short.

Caudal slightly emarginate on posterior margin, with numerous accessory rays running some distance up the profile of the caudal peduncle; principal rays twice bifurcate. Vent somewhat in advance of the anal.

Pectorals rounded, central rays longest, their tips about even with the nineteenth dorsal spine; rays simple; base vertical.

Ventrals inserted well behind the pectorals, beneath the sixth dorsal spine; second ray longest, its tip slightly overpassing the vent; three longest rays overpassing the pectoral.

Lateral lines five on each side, two above and two below the principal line.

The uppermost on each side commence close together on the occiput, run along the dorsal base outside the first row of scales, and end at the fourteenth ray of the soft dorsal.

The second commences on the occiput, and is continued to the base of the uppermost principal caudal ray.

The third commences on the scapular region, runs parallel with the dorsal outline till it becomes median upon the caudal peduncle, and is continned some distance upon the caudal.

The fourth commences slightly in front of the pectoral base, and continues parallel to the abdominal outline to opposite the seventeenth anal ray.

The fifth pair are united into a median abdominal line at a point about half way between the vent and the axil of the ventrals; anterior to this point the single line runs forward to the pectoral girdle; posterior to it each division runs parallel with the anal base, and ends at the base of the lowest principal caudal ras.

Scales ctenoid, rather larger on the anterior portion of the body than on the posterior; the ciliation obsolete on the scales of the side of the head. Suborbital stay squamose. Snout, preorbital, and interoperculum scaleless. Membrane between caudal rays scaly.

Pectoral base scaly; some small scales at base of rays of first dorsal; second dorsal with small scales between the rays for about half its height. Anal scaleless.

Color, in alcohol, brown, blotched with yellowish blotches in longitudinal series.

This hitherto undescribed species is tolerably common in the markets of San Francisco at some seasons of the year.

When fresh, the series of blotches along the sides are bright orange and bright maroon.

A type specimen is in the National Museum.

Table of measurements.

Current number of specimen Locality	No. 1. San Franciseo.		No. 2. San Francisco.	
	$\begin{aligned} & \text { Inchem } \\ & \text { mind } \\ & \text { INuthes. } \end{aligned}$	$\begin{aligned} & \text { lonthn } \\ & \text { of } \\ & \text { length. } \end{aligned}$	$\begin{aligned} & \text { Inches } \\ & \text { and } \\ & \text { 100ths. } \end{aligned}$	$\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { loneth, } \\ & \text { including } \\ & \text { caudal. } \end{aligned}$
Exineme leagth	13. 35		11.00	
Buods:				
(i) nenteat haizht.	2.73	. 2008	200	18
Cirentrest wiuth ...	1. 289	. 15	1.70	144
Least height of caudal peiluncle	1.03	- V18	1. 03	$\bigcirc 08$
ITead:				
Greatest length	3.28	. 245	2.96	
Distance from snowt to nupe .	2.2	165	1.93	105
Widith of interorbital arcus	.69	04i	63	uso
Lesagth of smout				
Length of maxiliary	1.20	-09	1. 14	100
Leagzh of mandible.	1. 53	. 115	1. 36	. 085
Diameter of orbit	. 68	031		
Doreal (rpinows):				
Distance from on	3. 20	24	3.108	
Leagth of base	3.38	. 23	3. 30	J
Greatemt height.	1.64	. 123		
Breytht at inst apise	1.00	. 074		
Iorsal (eafe):				
Lenerth of base	3.80	-3845050	3.50	. 30
Height at longest ray	1.32			
Anal:				
Diatance from tip of lower jaw	6. 48	. 485	3. $\%$	48
Lewgth of base.	3. 67	. 275	3. 46	- ${ }^{0}$
Height at longest ray	1.22	. 093		
Cauchal:				
Length of midale mays.	1.78	. 135	1. 80	138
Lanuth of external raym	1.84	. 14	1. 8u	.1:2
Peetoral:				
Distance from mnout	3.43	. 257	2.85	24.5
Leumit	2.8 .3	. 215	2. 36	202
Ventral:				
Distance from tip of lower ja	4.16	. 314	3. 2.5	
Lexyth	2. 15	. 162	2.16	. 185
Branelaiostegals.				
Lrorsal	SXI,		XX1, ?
Anal				
Caudal. pribeipal ray	15		15
Pectomal	19		19	.
Ventral.	t		
Number of scales in laternl line to base of caudal	110		111	
Number of tranaverse rows above lateral line....	15		15	

The proportions of the two specimens measured differ considerably, No. 2 being much deeper in proportion to its length than No. 1, and having its greatest depth immediately over the reutrals, instead of at the origin of the dorsal.

In consequence of the more elongate form, the insertions of the ventrals and of the pectorals are relatively farther back in No. 1 than in No. 2.

Similar differences of proportion exist in C. constellatus, and it is evident that no weight can be attached to proportion in distinguishing these species.

Neither is it advisable, in view of individual differences observed, to attach mach significance to the length of the ventrals, or to the position of the fork of the lowest lateral line.
C. maculo-seriatus is by no means scarce in our markets, but is less abundant than guttatus and constellatus.

An example of this form is in the National Museum at Washington, numbered

DESCRIPTION OFA NEW FIAI TEON ALASKA (URANIDEA MICRESTOMA)

By W. N. LOCKINGTON.

Uranidea microstoma.

Body long and low, little compressed.
Head depressed, rather small, wider than deep; anterior portion of body about equal in width and depth, somewhat flattened on back near head, and gradually becoming more and more compressed posteriorly.

Dorsal outline regularly arched, its highest point at origin of finst dorsal ; abdominal outline nearly straight in some examples.

Head about $4 \frac{3}{5}$ to $4 \frac{1}{d}$; breadth of same $5 \frac{1}{3}$ to $4 \frac{1}{2}$ times in the total length; orbit about 5 , snout 4 to $3 \frac{1}{2}$ times in the length of the head.

Eyes directed upwards, elliptical, the orbits not elevated above the general surface; interorbital width nearly equal to the transverse diameter of the orbit.

Mouth short, small compared with others of the genus; posterior extremity of maxillary a little beyond the front margin of the orbit; upper margin of maxillary hidden behind the preorbital in the closed mouth, except the short, broad, posterior extremity, which is free.

Lower jaw shorter than the upper, and closing within it.
A broad band of villiform teeth in front of both jaws.
Teeth on vomer, none on palatines.
Subopercular spine much developed, directed forwards; preoperculum ending in a single sharp, straight spine; branchiostegals 5.

First dorsal commencing a little behind the pectoral base, low, the upper margin nearly straight; height less than that of second dorsal, the rays nearly equal in length.

Second dorsal commencing above the vent, first ray shorter than the second; upper margin a straight line, the height of the fin diminishing regularly but slowly posteriorly.

Anal shorter than second dorsal, commencing opposite the third and ending opposite the seventeenth ray of that fin; anteriorly rounded, the rays increasing to the fourth, thence somewhat diminishing posteriorly; depth greater than the height of the second dorsal.

Pectoral wedge-shaped, seventh ray longest; rays fleshy, simple; tip of seventh ray reaching about to the vent.

Ventrals inserted a little behind insertion of pectorals, the tips not reaching the vent, consisting of one spine and four rays; secoud, third, and fourth rays longest.

Caudal slightly convex on its posterior margin when expanded; the rays twice bifurcate, first bifurcation at about a third of their length from the base.

Vent not separated from the anal fin by any considerable space; rays simple.

Lateral line deflected downwards suddenly at posterior extremity of second dorsal, thence posteriorly along center of caudal peduncle, and anteriorly parallel to dorsal outline; pores simple, 35-37.

Body scaleless, entirely smooth.
Color olivaceous above, lighter below; upper portion maculated with darker; fins with small dark spots on the membrane; a dark band across caudal.

Two specimens (Nos. 1 and 3) from fresh water, near Saint Paul's, Kodiak, collected by W. J. Fisher. In No. 1 the dorsals are separated by a considerable space; in No. 3 by a smaller space. One of these is in the United States National Museum, numbered -.

Numerous specimens from the Aleutian Islands, collected by Captain Greenebaum, present no difference except in the more or less complete union of the dorsals, and their smaller size. The latter are probably half grown.

As the fin-rays and other characters agree closely, I am inclined to think the separation of the dorsals either an individual character, or one due to greater age.

Mr. Fisher's examples were obtained in fresh-water lakes formed by the melting snows, and communicating with the ocean ouly by shallow outlets. This species differs from those of the genus found in the United States by its smaller month, lower fins, and the four soft rays in the ventrals. In all these respects it resembles the European Uranidea gobio.

Dimensions.

	No. 1.	No. 2.	No. 3.
Total length	4.87	8.88	4. 80
Greatent depth	. 85		. 75
Depth of caudal peduncle	. 29	.18	. 27
Length of head....	1.06	. 80	103
Width of head.	. 84	.75	. 81
Longitadinal diameter of orbit	. 21	. 15	. 22
Length of anout30	. 21	.31
Tip of suout, along top of head, to origin of first dorsal	1.80		1.25
Jength of base of first dorsal 75	. 54	. 73
Jength of base of aecond dorsal ..	1. 62	1.15	1.37
Tip of anout to insertion of ventrals	1.12		. 94
Length of sentral.	. 73	. 85	. 70
Length of pectorala	1. 00	. 68	. 94
Tip of lower jaw, along abdomen, to otigin of anal	2.36		2.10
Length of anal base	1.28	. 95	1.25
Number of doreal rays.	8-19	0-19	8-19
Number of anal raye.	14	14	12
Num'ser of pectoral raya	14	14	14
Number of caudal rays	5-10-2	

description of a new species or haonidn birachyophis VERRECONCS), PROM THE COAST OF CALIFORNIA.

By W. N. LOCKINGTON.

Brachyopsis verrucosus.

D. VII-IX, 7-8. A. 10-11. P. 14-15. V.1-3. C. 2-10, 2. Lateral scutes, 34-36.

Form elongated, slender, lateral dorsal outline rising very gradually from the snout to above the base of the pectoral; central part of the upper orbital margin elevated above the line of the forehead and occiput, as is also the tip of the lower jaw and front portion of the snout, so that there is a not very conspicuous depression in front of the eye.

From the highest point the dorsal outline descends gradually to the elongated and narrow caudal peduncle.

Abdominal outline from posterior extremity of mandible to candal peduncle straight.

Greatest height about 11 ; greatest width 7-72 ; length of head 42-414 times in total length to tip of candal (mouth closed); greatest depth about $1 \frac{1}{2}$ in greatest width; depth of caudal peduncle about $3 \frac{3}{4}$ times in the greatest depth.

Mouth oblique, the lower jaw projecting considerably beyond the upper, its tip entering into the dorsal outline, and its posterior extremity reaching to a vertical from the anterior margin of the pupil.

Mandible half or nearly half the length of the head.
Maxillary short, broad posteriorly, and set at a more oblique angle than the mandible, below which the lower angle of its posterior margin projects when the mouth is closed, while the entire length of its upper margin is hidden beneath the preorbital in the closed mouth; a short and slender barbel at its posterior extremity.

Entire length of upper jaw less than that of head.
Teeth uniform in both jaws, villiform, very small, in a band which is widest in front, but divided in the center.

A patch of similar but even finer teeth (perceptible to the touch, but scarcely to the eye) on vomer, and another on each palatine.

Eses directed laterally and somewhat upwards, oval, their longitudinal diameter a little less than the length of the snont, and about $4 \frac{1}{6}-4$ in the length of the side of the head; interorbital area sunken, its width about 5 times in the length of the head.

Snout a little longer than the longitudinal diameter of the eye; two short backward-directed spines on its summit, slightly posterior to the line of the tubes of the nostrils.

Preorbital large, with several small spines on its lower margin.
Supraorbital margin set with small spines, and rising in its posterior portion to a spinulose crest.

Lower orbital margin prominent, a pair of spines at its posterior extremity, the hinder the larger.

Preoperculum with a spinulose longitudinal ridge, ending in a back-ward-directed spine; a second smaller spine below this, at angle; lower limb with two flat angular projections.

Operculum striate, with a ridge, ending in a spine, on its upper part.
Occipital and lateral ridges of apper surface of head prominent, spinulose or denticulated above, but without spines; lateral rideres each formed of three shorter ridges; no pit on occiput.

Gill-membranes continuous below, without isthmus; branchiostegals five, large.

Pectoral very long, boldly rounded on its posterior and lower margins, broad; the upper rays slightly increasing to about the sixth, the five lowest decreasing rapidly. Tips of the longest rays reaching nearly to or beyond the sisth dorsal ray, or to the back of the thir. teenth or fourteenth dorsal scute. Longest rays about equal in length to the head. Rays simple, base slightly oblique.

Ventrals inserted ou the plane of the upper pectoral axil, longer than the pectorals, their greatest length about 4 times in the total length, and consisting of a spine and two rays, the spine attached to the first ray, which is of considerable length, but shorter than the second, the tip of which extends beyond the second anal ray. Membrane between the two rays broad; the second ray fringed with a membrane aloug its internal margin.

First dorsal commencing at about the eighth dorsal scute and terminating at the sixteenth. First spine shorter than the second, the next five about equal in length, the remainder diminishing rapidly. Height of the longest spines somewhat exceeeding the depth of the body below the fin.

Second dorsal about equal in height and similar in form to the first, arising at about the nineteenth dorsal scute, and terminating at or near the twenty-seventh. First ray shorter than the second, the next four nearly equal, the remainder falling rapidly.

Anal commencing directly below the last ray of the first dorsal, and coterminous with the second dorsal, its lower margin nearly straight, and its depth rather less than the height of the second dorsals.

The last rays of the dorsals and anal are joined to the body by mem. brane.

Posterior margin of caudal convex ; accessory rays few.
Dorsal scutes $35-36$, the two series approaching and uniting a little behind the second dorsal; about seven scates between the point of junction and the caudal.

Each scute produced posteriorly into a large spine bent backwards, and frequently denticulated upon its anterior or outer edge. Behind the point of junction of the two dorsal rows the spines are in closely coupled pairs.

Lateral series of scutes each consisting of 34-36 plates, each armed with a spine similar to those above described.

Ventral series containing 20-31 plates, the last three or four single, the remainder forming a double series similar to the dorsil series, but with less conspicuous spines.

The ventral series commences at the axils of the ventral fins, and the lower surface between these fins and the gill-openings is occupied by several large, separate, subcircular, strongly striated scales or plates, those running along the margin of the gill-openings placed closer together, and forming a series of about seven.

Abont seven pairs of subcircular scales, not striated, or only slightly striated, are scattered along the acutely triangular space behind the ventrals, between the two ventral series of scutes, which do not fairly meet each other anterior to the anal fin. An elongate naked area behiud the pectorals, separating the lower lateral from the ventral series.

Some small scales in the space between the mandibles, and a series of small, elevated, and sharp-pointed scales along the curve of the pectoral base.
Vent not far behind the base of the ventrals.
The center of the interocular space, the area between the occipital ridges, some spaces on the lateral aspect of the head between the more prominent parts of the bones, and the areas between the large scales in front of the ventral are set with numerons prickles, a few of which also occur in the intermandibular area.

Similar prickles are numerous on the anterior portion of the trunk, occupying the spaces between the parallel dorsal and npper lateral series of scutes; those of the upper surface end at the first dorsal, those of the upper lateral surfaces at the posterior extremity of the same fin. Behind these points the scuta of these surfaces closely interlock.

Lateral line continuous; a pore between each pair of scutes; pores simple.

Color.-After exposure to alcohol, the upper and lateral surfaces of the body are banded alternately with dull yellowish and olivaceous brown; pectorals whitish on their basal portion, a dark spot on the upper and another on the lower edge excepted, and dark on their terminal part, the margin of the dark color running obliquely from the center of the first to the tip of the eleventh ray.

Ventrals with a large black spot on the membrane inside the first ray, and two small spots near the tip of the membrane. Abdomen yellowish white.

When somewhat fresher, the dirty yellowish tint of the ventrals was bright orange yellow, and the black of that fin was more positive, so that it is probable that in life the colors of the whole body were much brighter than they are now.

The total length of the specimens examined, from tip of lower jaw (month closed) to tip of caudal, varied from 5.68 inohes to 6.65 inches.

Actual measurements of the parts are not given, as the proportions vary but little.

Several examples were collected November 26,1879 , at a depth of ten fathoms, in Drake's Bay, 35 miles north of San Fıancisco, by Mr. Voy, who has presented them to the State University, Berkeley, Cal.

One of the types is in the United States National Museum, numbered -.

This species is referred to the genus Brachyopsis, proposed by Dr. Gill for the reception of Agonus rostratus.

This genus is distinguished from Agonus by the projecting lower jaw and consequent comparatively large terminal mouth, and by the absence of an isthmus.

DEMCRIPTION OF A NEW GENEW AND BOME NEW MPRCERE OF CAE. TENEATUN).

By w. N. LOCKINGTON.

Fam. BLENNIDE(?).

ICOSTEUS.

Body much compressed. Teeth in a single row in both jaws, close-set, sharp. No teeth on vomer, palatines, or pharyngeals. Gill-openings continuous under the throat, composed of flexible rays, the anterior simple.

A single long dorsal fin; anal similar. Base of pectorals fleshy. Ventrals thoracic in position. Lateral line with groups of spines. Pseudo branchix.

Body scaleless throughout; fins beset with spinules along the rays.
Etymology: cexw, to yield; vatsoy, bone.

Icosteus ænigmaticus.

Body much compressed throughout; head thicker than any portion of the body. Dorsal outline rising rapidly to the origin of the dorsal; thence more slowly in a regular curve to about the center of the length of the body; thence curving gradually downward to the caudal peduncle. Abdominal outline regularly curved.

Upper and lower outlines of candal peduncle concave, the peduncle widening posteriorly to support the fin-shaped caudal.

Greatest depth about $3 \frac{1}{2}$ times in total length; length of head about 5 times in total length; eye 6 ; snout more than 3 ; interorbital width about $2 \frac{1}{2}$ times in the length of the head; caudal peduncle about $5 \frac{1}{2}$ times in the greatest depth.

Nostrils simple, elongate-elliptical; eyes lateral, their diameter less than the length of the snout; mouth-opening rather large, horizontal, or nearly so; tip of the intermaxillary below the lower margin of the ese; margin of upper jaw formed of the intermaxillaries only ; maxilla-
ries narrow throughout, not hidden beneath the preorbital; posterior extremity of the maxillary extending to a little beyond a vertical from the center of the eye.

Teeth in jaws in a single row, numerous, fine, sharp-pointed, closely and regularly set, those in the upper jaw smaller than those in the lower. No teeth on vomer or palatines. No pharyugeal teeth present.

Gill-rakers flexible, few, about half as long as the diameter of the eye on the first branchial arch, diminishing on each successive arch.

Gill-openings continuous under the throat ; branchiostegals six.
Dorsal commencing at a vertical above the pectoral axil, and consisting of $52-55$ rays, all soft and flexible, but some of the anterior ones unbranched. Anterior portion of dorsal low, the rays gradually increasing in height posteriorly, the base of the fin terminating opposite to that of the anal, at about $1 \frac{1}{2}$ times the least width of the caudal peduncle from the origin of the caudal fin; but the longest rays (last but two or three) extending backwards almost to the origin of the central caudal rays. None of the dorsal rays bifurcate more than once.

Anal commencing opposite the 24th-27th dorsal ray; similar to and abont equal in depth to the height of the posterior portion of the dorsal, consisting of $37-40$ rass, most of them once bifurcate; its base terminating opposite to that of the dorsal, and its longest posterior rays extending backwards even with those of the latter; three last anal rays diminishing rapidly in length.

Some of the anterior anal rays appear to be unbranched.
Caudal elongate, fan-shaped, the central rays longest, and the posterior margin greatly rounded. Posterior part of candal peduncle expanded, and forming the larger half of an ellipse, around which the rays are set; the central ones straight, the outer ones curving outward and backward. Accessory rays numerous; principal rays twice bifurcate.

Pectorals with a fleshy base, having a curved posterior border from which the rays radiate, forming a fan-shaped fin; the central rays longest, the others diminishing regularly on both sides. All the rays straight; the seven or eight central ones twice, the others once, bifurcate.

Ventrals inserted a little behind the base of the pectorals, narrow, consisting of a short (spinious?) and four long rays.

Lateral line conspicuous, curving downwards above the pectoral until, a little posterior to the origin of the anal, it reaches the median line of the trunk, along which it continues till it dies out upon the fleshy base of the caudal.

Groups of small spines along the entire length of the lateral line, the number of spines in each group variable. About 120 groups of spines in the smaller example. No scales upon any portion of the body or fins, but the latter rendered rough by asperities or small spinules; a single series along the base of each ray, and a series along each of its branches.

Color.-Purple spots and blotches of irregular shape upon a yellowishbrown ground; the spots largest upon the dorsal region, and becoming
smaller and more numerous near the lateral line. The region above and behind the pectorals beset with numerous purple spots, smaller than those above the lateral line. Beneath the lateral line, on the posterior part of the body, there are no spots, except along the line of the anal; but probably this is the result of exposure to alcohol, which has caused the disappearance of most of the spots from the smaller specimen, the color of which, when fresher, was like that of the larger.

Throat and greater portion of gill-membranes without blotches, but sown with dark points, which occur also over the whole of the body and the interior of the mouth. Fleshy bases of caudal and pectorals with several purple blotches. Fins darker than the body, and showing traces of blotches of a deeper tint, especially upon the caudal.

Vertebre numerous; vertebral column highly flexible and soft.
Cranial bones tolerably firm, those of the face and opercles, \&c., highly flexible.

Entire body characterized by a lack of firmness, as it can be doubled up as readily as a piece of soft, thick rag. Swim-bladder large.

I append measurements of the two specimens, but many of these must be regarded as approsimate only, in consequence of the distortion arising from the softness of texture of the fish, together with that consequenit upon cutting them open shortly after they were first procured.

In the larger specimen the rentrals are partly destroyed, and the tips of many of the dorsal and anal rays are wanting.

The shape of the head in the two examples is very different, doubtless owing to the flexibility of the bones. In the larger the snout is bluff, almost perpendicular, the dorsal outline rises rapidly to the origin of the dorsal, and the tip of the premaxillaries is far below the eye; while in the smaller the dorsal outline slopes regularly from the tip of the snout, which is almost level with the lower margin of the eye, to the origin of the dorsal.

Dimensions.

These two individuals, together with a third of smaller size, and certainly of another species, were procured in the market of San Francisco by W. G. W. Harford, in 18i6. The fishmonger called them "deep-sea fish," and said that he had never seen the kind before. No others have appeared in the market since. A sualler example is in the museum of the State University, Berkeley, and was procured in Washington Territory.

The relations of this fish are probably with the Blennioid fishes. It can, however, hardly be referred to any of the current families, and should perhaps form the type of a separate one.

Osmerus attenuatus.

Osmerus elongatus Lockington, Rep. Commissioners Fisheries State of Cal., 1879, p. 43; not Osmerus elongatus Ayers, Proc. Cal. Acad., Vol. I, p. 17.
D. 1-10. A. 17. P. 14. V. 1-8.

Form elongate, fusiform, dorsal outline rising gently to a point just behind the origin of the pectoral, thence almost straight to dorsal, thence tapering regularly to the caudal peduncle. Abdominal outline straight from the posterior extremity of the maxillary to the rentrals, thence inclining upwards slowly to the candal peduncle.

Greatest depth $7 \frac{2}{3}-8 \frac{3}{4}$ times; head 4 t to nearly 5 times in the total length; eye about 4 times in the length of the head; snout about the same length as the eye; caudal pedunce 2 是-23 times in the greatest depth.

Viewed from above, the forehead and snout diminish in width anteriorly.

Nostrils conspicuous, divided by a thin partition, s:mple, situated on a line from the top of the pupil to the tip of the snout, and about halfway between the latter and the anterior margin of the orbit.

Eyes large, subcircular, entirely in the anterior half of the head; npper orbital margins raised, but the interorbital space between these margins flat transcersely.

Mouth large, the commissure straight and ascending anteriorly at an angle of about 30°, the tip of the upper jaw horizontal with the center of the pupil, and the posterior extremity of the maxillary on a vertical line from the posterior margin of the pupil; mandible straight on its lower border, its tip projecting beyond that of the upper jaw.

Dentition tolerably strong, on jaws and palatines. Teeth of upper jaw in a single row, numerous, small, slender, those in front inclined forward, a large tooth at the symphysis.

Lower jaw with a double row of slightly recarved teeth in front, the outer extending only about one-fifth of the length of the sides of the mandible, the inner row extending along the sides, and consisting of larger teeth than the outer or than those of the upper jaw; the largest situated along the sides, and much wider apart than those of the upper jaw.

Lnner palatine row of numerous small teeth; outer palatine series
vers variable in its development, but usually consisting of fow rather large teeth, increasing in size forwards, the anterior tooth sometimes quite a large canine. Teeth in front part of tongue in a single series on each side, with a single terminal tooth; all the teeth large and curved, the terminal tooth largest. A large patch of several rows of villiform teeth on the base of the tongue, marked off by a constriction from the terminal patch.

Gill-rakers long and slender, those of first pair of branchial arches half as long as the eye, the others diminishing gradually. Branchiostegals seven.

Angle of preoperculum a little more than a right angle, both the posterior and the inferior margins nearly straight. Posterior margin of gill-cover forming a bold aud almost regular curve, its most posteriorly produced portion occupied by the suboperculum.

Pectoral of fourteen rays, the third or fourth longest, narrow, the rays bifurcate. Tips of the pectorals distant from the ventrals more than the length of the ventrals.

Ventrals not greatly shorter than the pectorals; the rays bifurcate, their tips not reaching to the anus; insertion of ventrals about one scale in advance of that of dorsal. *

Dorsal of one spine and ten bifurcate rays, highest in front, the height about twice the length of the base; the second ray slightly longer than the first, the last longer than the spine. Anal commencing at about the posterior third of the total length, and consisting of seventeen branched rays, the first very short, the second nearly equal to the third and longest, the fourth nearly equal to the third, thence descending gradually.

Candal deeply emarginate, almost forked; rays $11-10-9-\frac{8}{10}$, principal rays several lines brauched.

Lateral line not very distinct, running along the center of the silvery band of each side. Scales rather large, their exposed portion forming a diamond-shaped pattern, each diamond about twice as deep as long. Head scaleless.

No scales upon the fins.
Adipose fin falcate, rather large.
Color of the fresh fish.-Light greenish gray on the back, the pattern of the scales marked by a series of black dots around the edge of each; these die out upon the silvery lateral line. A very bright silvery line along the side, reaching one scale above lateral line; the upper boundary of this band distinct, the lower fading into the silvery-white of the belly. Operculum and suboperculum bright like the lateral band, except above, where they become greenish gray like the back; snout and cheeks darker greenish gray than the back. Lower jaw with black points below and on the sides, closer together toward the tip. Fins spotted with dark points. Forehead between eyes almost black; eyes silvery ; pupil black.

Locality, San Francisco.

The whole fish is highly transparent when fresh, the outline of the brain being clearly risible through the occiput.
From Osmerus thaleichthys, which at first sight nearly resembles it, this species may be distinguished by the following characters: The slightly greater length and more tapering form of the suout, when viewed from above; the straight lower jaw, which in O. thaleichthys is considerably curvel upwards toward the tip; the gradual declivity of the upper ontline of the head, which in the latter species is straight with the line of the back; the larger eyes; the different arrangement of the teeth; the more elongated bods, much less curvate along the abdominal outline; and the much greater distance between the tips of the pectorals and the base of the ventrals.

Dimensione.

Nios. 1, 2, and 3 are alcoholic specimens; the others were meanured while fresh.
The comparatively elongate form of this fish induced me to believe that this species must be O. elongatus Ayres (Proc. Cal. Acad. Sci., I, 17, 1854), but as the latter ichthyologist transmitted examples of his species to Washington, and these examples were examined by Girard, and found by him to be identical with his Osmerus pretiosus (=Argentina pretiosa Grd. = Hypomesus olidtus (Pallas) Gill), there is no doubt that the foregoing is an undescribed species.

There are thus four species of Microstomatida on the Pacific coast, United States, viz, Thaleichthys pacificus, Hypomesus olictus, Osmerus thaleichthys, and O. attenuatus. The first of these does not occur in the markets of San Francisco, but is sent down packed in salt from the Columbia River, also to some extent in oil, under the name of "Columbia River sardines." The other three are brought into the markets in a fresh state. Hypomesus olictus grows to the largest size, and is most highly esteemed of the three. Osmerus attenuatus is tolerably abundant in the markets during the spring and summer months.

DEBCRIPTION OFA NEW HAKE (PHYCR EAREIII), FROM BOUTH CAEOLINA, ANDANOTE ON THE OCCUREENCE OFPRYCBS REGUUB IN NORTR CAROLINA.

By TARLETON M. BEAN.

1. Phycis earllu Bean.

The United States National Museum has just received from Mr. R. E. Earll three specimens of a species of Phycis which differ from all the other recognized eastern American species. It is quite unlike P. tenuis, P. chuss, and P. chesteri, since none of the rays of the first dorsal are produced. In the shape of the anterior dorsal and the general form of the body it resembles P. regius, from which, however, it may be at once distinguished by its much smaller scales. From P. DeKayi Kaup it is well separated by the structure of its anterior dorsal, and by having the ventrals shorter than the head. The species differs also from P. rostratus Gthr. in having a much greater number of scales between the anterior dorsal and the lateral line.

Mr. Earll secured these fish in the market of Charleston. They were numbered 131 in his collecting invoice, and are catalogued as numbers 25207,25208 , and 25209 of the Museum Register. The species is dedicated to its discoverer, who first collected it and called attention to its specific distinctness from the four known east coast forms.

Description.-The species is short and stont, resembling in this respect P. regius. The greatest height of the body equals twice the length of the longest ray of the anterior dorsal, and is contained 5 times in the total length, caudal included. The length of the head is contained 32 times in the length of the body, measured to the origin of the middle caudal rays. The length of the snout equads the distance between the eyes. The length of the upper jaw equals half that of the head. The length of the eye is contained nearly twice in length of snout, $6 \frac{1}{2}$ times in length of head, and nearly 4 times in the length of the postorbital part of the head. The lower jaw is as long as the upper, but is received within it. The maxilla extends somewhat behind the vertical through the posterior margin of the eye. The barbel is $\frac{f}{s}$ as long as the upper jaw, or nearly so. Both jaws and the head of the vomer are armed with teeth in villiform bands, as in other species of the genus.

The pectorals are as long as the postorbital part of the bead.
The ventrals extend nearly to the vent, and their length is contained 4 times in the distance from the tip of the snout to the end of the second dorsal.

The distance of the anal from the tip of the snout nearly equals the length of the anal base.

The origin of the anterior dorsal is directly over the axil of the pectoral; the dorsals are subcontinuous; none of the rays of the anterior
dorsal are produced, and none of them are longer than the longest rays of the second dorsal. The longest anal ray is not much more than half as long as the longest dorsal ray, and equals half the length of the pectorals. The length of the anterior dorsal base is about equal to that of the snout ; the second dorsal base is about $2 \frac{2}{2}$ times as long as the rentral fin.

The length of the middle caudal rays is contained 8 times in the total length without caudal.

The typical specimens are 13 inches, $13 \frac{1}{2}$ inches, and 14 inches long, respectively.

Radial formula.-B. VII ; D. 10, 60-63; A. 53-54; P. 15.
There are 21 or 22 rows of scales between the anterior dorsal and the lateral line, and about 155 along the lateral line.

Color.-Brown, with some light spots on the second dorsal and the sides; the anal fin and the two dorsals margined with darker brown.
2. Phycis regius (Walb.) Jor. \& Gilb.

Col. Marshall McDonald, among numerous interesting forms of southern fishes, has recently secured 6 specimens of this species of Phycis, which were taken in a haul seine, March 26,1880 , at the mouth of the Cape Fear River, in North Carolina. These are numbered 90 in his collecting invoice. Phycis regius has not beten recorded so far south before; specimens have been taken in York River, a tributary of Chesapeake Bay. The discovery of two gadoids as far south as the Cape Fear and Charleston is quite unexpected.

> U. S. National Museum, Washington, April 9, 1880.

DEBCRIPTION OF A NEW ©PECIEA OF BERANTICETMTA (SEBABTICETBIS MENIATES), YGOM MONTEREY BAY, CALIFORNIA.

By DAVID S. JORDAN and CHARLES M. GILBERT.

Sebastichthys miniatus sp. nov.
Allied to Sebastichthys pinniger Gill.
Body oblong, the form much as in S. pinniger and S. atrovirens; the caudal peduncle rather stouter than in pinniger. Head moderate, somewhat pointed, the profile not very steep. Mouth rather large, the maxillary reaching to opposite the middle of the pupil, the premaxillary in front on the level of the lower edge of the pupil. Lower jaw projecting somewhat beyond the upper, with a rather conspicuous symphyseal knob, which is larger than in pinniger. Middle of lower jaw elevated, so that the mesian teeth are much raised, and fit into an emargination
of the upper jaw. This elevation is much more marked in the present species than in pinniger.
Head more completely scaly than in related species, the scales also rougher, the scales on the mandible, snout, preortital, and head generally being fully etenoid. In S. pinniger the scales on nearly all parts of the head are cycloid. Mandible scaled even to the symphyseal knob. Interopercle fully scaled; most of the branchiostegals with series of scales. Maxillary, preorbital, and tip of snout fully scaled. Preorbital with a narrow neck, and two distinct spines, the neck less than onefourth the diameter of the eye, which is of moderate size, about as in pinniger.

Spinous ridges on top of head low and small. The following pairs of spines are present: Nasal, preocular, supraocnlar, postocular, tyn!panic, and occipital, six pairs in all.

Interorbital space very broad and almost flat, a slight depression on each side of the supraocular ridge, between which depressions is a slight convexity.

In S. pinniger the interocular space is notably narrower, and both depressions and concavity are more marked. Space between occipital ridges slightly convex. In S. pinniger this is slightly concave.

Preopercular spines rather long and sharp, the second the longest and sharpest, the spines radiating and having less of a backward direction than in S. pinniger.

Opercular spines sharp. Spines on subopercle and interopercle moderate. Two suprascapular spines and a rudiment of a third.

Scales large, in about 47 transverse rows; the accessory scales few.
Dorsal fin low, rather deeply emarginate, essentially as in S. pinniger, but both spines and soft rays somewhat higher, the latter a little higher than the spines. Caudal in lunate. Anal fin rather high, the second spine about as long as the third and rather stouter, little more than half the height of the soft rays. Pectoral fin moderate, as in pinniger, the tip reaching about to the vent, the base rather narrow, and the rays not fleshy. Ventrals, as in pinniger, very long, reaching past the vent almost to the beginning of the anal.

Dorsal rays XIII, 14; A. III, 7.
Gill-rakers, as in pinniger, very long and slender, about $10+22$ in number, the longest about of the diameter of the eye.

Color darker than in pinniger, deep red, strictly speckled with dusky. Above bright deep vermilion, mottled with flesh-color on the sides, the belly light red. Back and sides everywhere with clusters of black dots, so that the whole body has a dusky shade. Top of head and back with vaguely defined cross-blotches made of dark points on snout, interorbital space, occiput, under fourth dorsal spine, under eighth dorsal spine, one under first soft ray, last soft ray, and base of caudal. Three obscure orange stripes radiating from the eye. Maxillary with a red streak.

Lips real, mottled with blackish. Under side of head light red, mottled with darker. Inside of mouth red.

Fins all bright vermilion; spinous dorsal spotted with olive-gray be10w, the membrane posteriorly edged with blackish; soft dorsal spotted below with blackish, a vertical dark olive streak on each membrane; other fins tipped with blackish, the membranes more or less dotted. No black blotch on the spinous dorsal; no distinct pale streak along the lateral line.

The coloration of Sebastichthys pinniger, which has thus far never been described, is as follows:

Ground color light olive-gray, profusely blotched with bright clear orange-red, the red shades predominating above, the pale below. Belly nearly white. Top of head with cross-blotches and marblings of orange, alternating with pale. Sides of the head flesh-colored, with three bright orange bands radiating from the eye; maxillary with orange touches. Lips pale, tinged with blackish. Inside of mouth pale.

Dorsal fin with the membranes bright orange, a large black blotch ocenpying the membranes between the serenth and tenth dorsal spines; this spot is usually distinct, but in old examples it is sometimes obsolete. Pectorals light red, mottled with yellowish. Other fins all bright orange, without dusky tips, slightly mottled with paler at base. Lateral line running in a distinct continuous light-gray streak, which is not erossed by the red markings.
S. miniatus was first known to us from two specimens taken at Santa Barbara. These were provisionally considered as representing a variety of pinniger, but after the examination of an extensive series of specimens from Monterey Bay we were forced to the conclusion that the deep-red forms, although nearly allied to S. pinniger, belong to a distinct species. The difference in color is very marked and the two species may be separated at sight. In life any of the numerous species of this genus may be at once recognized by the color alone, a feature which, circumstances of age and surroundings being equal, is in this group remarkably constant.

This species reaches the same size as S. pinniger, and is brought with it to the San Francisco market, but in much less abundance.

In the description already published by us of Sebastichthys proriger the specimen measured as "S. pinniger" belongs to the present species.

Measurementa.

10.51	Miniatus. (Monterey.)	Itimiger. (Monteroy.)
Extreme lencth in thehes.	11. 00	12.50
Lepyrtu to baste of caudal $=100$	9. 10	18.60
1sody:		
Greateat dopth.	35.	37.5
Lesat depti of tail	123	
Meaul:		
Lenuth		37.3
Length of snout	. 085	-1909
Diameter of eye..........	-008	-
Oceipital spime. 08	-07
Supromentar appine.	. 12.5	14
1.eant widit of preorlitas	. 017	, 0:3
Maxillmry	4.5	15.
Longest gill-raker.	. 05	063
Dorsal:	15.5	10.5
Longeat soft ray ...	17.3	1 t .
Anal:		
Leagth of hamo	15.5	
Secend spine. .	13.5	11.
Third spine..	14.8	11.5
Lumpeat ray.	:1.	-1. 5
Caudal, middle rey.	17.	15.
F'ectoral:		
Width of baso.	0.5	
\checkmark entral lengil	27.	S
Dorsal mers.	XIII, 14	XIII. 14
Analraya.	115.7	111.
Scalea in latemd lime	42	so

DESCRIPTION OF A NEW BPRCIES OF "EOCK-FIMHD MEEAATICEBTHEA CARNATUE), PRON THE COAET OECALIEORNIA.

By DAVID S. JORDAN and CHIARLES II. GILEERT.

Sebastichthys carnatus sp. nov.
Allied to Sebastichthys nebulosus Ayres.
Body rather short and deep, tapering rapidly to a rather slender caudal peduncle. Head short, bluntish, the profile straight and steep. Month low and rather short, the maxillary extending to rather behind the posterior edge of the eye, which is rather small and elevated. Premaxillary entirely below the level of the eye, which is rather small and elevated. Mouth nearly horizontal, the jaws about equal, the lower jaw slightly shortest in the closed mouth. No prominent symphyseal knob.

Scales on the head rather rougher than in S. nebulosus; the lower jaw, maxillary, space in front of eye, and nasal region naked, as in nelulosus.

Top of head with the spinons ridges well developed, but somewhat lower than in S. nebulosus; otherwise very similar. The following pairs are present: Nasal, preocular, supraocular, tympanic, and occipital, five in all. The occipital spines especially are lower and narrower than in nebulosus.

Preopercular spines small and bluntish, the uppermost rather broader than the second, which is the longest. Opercular and suprascapular spines two each, rather short and broad. A slight spine on interopercle and subopercle.

Gill-rakers, as in nebulosus. short, compressed, somewhat clavate, the middle ones longer and somewhat crooked.

Spinous dorsal always higher than in nebulosus, the highest spines rather higher than the soft rays, the membranes more deeply incised than in nebulosus, but less than in maliger. Caudal fin truncate. Anal fin moderately high, the second spine stronger and slightly longer than the third, about two-thirds the height of the soft rays. Pectoral fins rather short, about reaching to the vent, their bases very broad, as in related species, and the lower rays thickened and fleshy. Ventrals reaching vent.

Scales in 53 transverse rows; the accessory scales rather numerous.
Dorsal, XIH, 12; anal III, 7; pyloric cæca 8; vertebre $12+15$.
Pattern of ccdoration almost exactly identical with that of S. nebulosus, but the shade of color very different.

In S. carnatus the light ground color is clear flesh color or pinkish, often tinged with grayish purple; the light shades on the head purplish. The dark shades are yellowish-brown, usually tinged with greenish.

In S. nebulosus the light ground color is more restricted, and its hue is usually a clear warm brownish-yellow with orange mottlings, varying to dusky orange-brown, below often tinged with olise. The dark shades are olive-black, varying to olive-brown. The light shades of S. nebulosus are often nearly identical with the dark shades of S. carnatus.

In both species the pattern is a light ground color, with dark blotehes, the dark color predominating above. Membrane between third and fourth spines always pale, this color forming a blotch at the base of these spines, and then extending obliquely downwards and backwards, joining the ventral color. In front of this light area on the sides is a narrow oblique dark one, in front of which in turn is a light one, which begins at the angle of the opercle and divides, passing around the pectorals and uniting below them.

A light blotch under the eighth dorsal spine extending up on the fin; also another at the junction of the two dorsals, and still another under the last ray. Under each of these blotches irregular undulating light areas extend down the sides, either continuous or as detached blotches. The pale dorsal blotches correspond in position to the pink dorsal spots of rosaceus, constellatus, oculatus, and chlorostictus, and to pale areas found in fasciolaris, vexillaris, maliger, and other species.
Head above with cross-shades and bands radiating from the eve. Fins with the general pattern of color of neighboring parts of the body.
This species is very closely related te S. nebulosus, and from it cannot always be readily distinguished except by the color. Like S. nebulosus, it is one of the smaller species, seldom reaching a length of much over a foot. It is very abundant in the Bay of Monterey, forming a large proportion of the "rock-fish" shipped from Monterey to the San Francisco market. S. nebulosus occurs in the same waters, and the examination of great numbers of examples of both sexes and all ages has.
consinced us that, although closely related, the two forms are permanently distinct. Whether hereafter to be regarded as a species or as a "subspecies," the form is a peculiar one, and as such worthy of a same.

APEIL $\because, 1850$.

Prepared by TARLETON II. BEAN.

LOPHIIDE.

1. Lophius piscatorius Linn.

Lophius americanus Storer, Hist. Flah. Mass., 1867, p. 101, pl. xvili, fg. 2. 22311. Gloucester, Massachusetta.

ANTENNARIIDE

2. Pterophryne histrio Liun.

Pterophryne lavigata (Cuv.) Gill, Cat. Fish. E. Conat N. A., 1873, p. 14.
20062 Wood's Holl, Massachusetts (3).

DIODONTIDE.

3. Diodon hystrix Linn. 25779. Bermuda
4. Chilomycterus geometricus (Linn.) Knup.
5. Iant const of United States.
6. Noank, Connecticut.
7. Eestern shore of Virginia.
8. Beanfort, North Carolina.
9. Fort Mscon, North Carolina.
10. Eastern shore of Virginia.
11. Coant of New England.
12. Newport, Rhode Island.
13. Eastern coast of United States.
$22012 . \quad$ "

TETRODONTIDE.

5. Tetrodon turgidus Mitch.

Chilichthys turgidus Gill, Cat. Fish. E. Coast N. A., 1873, p. 15.

$10740 .$	Wood's Holl, Mansachusetts. Fioank Connecticnt	17601. 17602	Noank, Connecticut
14746.	" *	17603.	$4{ }^{4}$
14747.	$6{ }^{40}$	17604.	4
14748.	4	17605.	${ }^{4}$
14749.	$4{ }^{46}$	17606.	$4{ }^{4}$
14750.	4	17607.	4
14828.	" ${ }^{4}$	19461.	Enstern shore of Virginia
14972.	Eantern comet of United Staten.	19765.	$4{ }^{4}$
17590.	Nioank, Connecticut.	19829.	Wood's Holl, Manachusette.
17597.	$* *$	20250.	Eastern coast of United Staten.
17598.	4	2144.	Cohnseet Narrowa, Masachusette
17509.	4	22718.	Eastern coast of United States.
17600.	4	23147.	$4{ }^{* 3}$

6. Alutera Bchoepfil (Walb.) Goode \& Bean.

Aluters ouspicauda GIII, Cat. Fish. E. Const N. A., 1873, p. 15.
Cerataoanthus aurantiacus Gill, op. cit., p. 15.

14745.	Wood's Holl, Mansachusetta.	18745.	Wood's Eoll, Masmehusetts
16601.	Menowsha Bight, Maseschnsetts.	18744.	4 *
16814.	Wood's Holl, Masenchusetta.	18747.	44
16507.	4 *	18748.	44
18715.	$4 t$ at	18749.	46 ts
18716.	44	18750.	46
18717.	$4 *$	18751.	** 4
18718.	410	18752.	414
18719.	44	18753.	44
18734.	48	18804.	44
18735.	44	19251.	$4{ }^{4}$
18736.	4 *	19280.	$4{ }^{4}$
18737.	$4{ }_{4}$	10282	64
18738.	44	10718	Fort Macon, Forth Carolina
18739.	46	20091	Newport, Rhode Island.
18740,	44	21644.	44
18741.	46	21649.	$4{ }^{4}$
18742.	44	22937.	Eastern coast of United States.
18743.	46	22788	44
1874.	44		

7. Monacanthus setifer Bennett.

Stephanolopis aetifor GIII, Cat. Fish. I. Coant N. A., 1873, p. 15.

18893.	Wood's Holl, Masanchusetta.	18908.	W ood's Holl, Magsachusetta
18894.	$4{ }^{*}$	18009.	U 4
18895.	$4{ }^{11}$	18910.	$4{ }^{4}$
18896.	4 *	18911.	4 *
18897.	4 *	18912.	\cdots *
18808.	$4{ }_{4}$	18918.	4 *
18899.	4	18014.	4 *
18000.	$4{ }^{4}$	18915.	4
18901.	$4{ }^{*}$	18916.	$4{ }^{46}$
18902.	4	18917.	4 -
18903.	4 *	18946.	$4 \quad 4$
18904.	4 "	21545.	Charieaton, South Carolina
18005.	$4{ }^{4}$	21631.	Newport, Rhode Laland.
18906.	4 *	2314.	Wood'a Holl, Maasachuaetts
18907.	4 a		

B. Balistes capriscus Linn.
21650. Newport, Rhode Island.
| 22730. Rastern coant of United Statea.
9. Balistes vetula Linn.
22731. Eastern coast of United States.

SYNGNATHIDE.

10. Byngnathus funcus Storer.

18919.	Wood'a Holl, Maseschusetta.	18932.	W ood'a Holl,	Manachnsetts
18920.	\bullet *	18933.	4	4
18921.	$4{ }^{4}$	18934	4	${ }^{4}$
18022.	4 a	18935.	4	4-
18023.	$4{ }^{4}$	18936.	4	4
18924.	$4{ }^{4}$	18037.	${ }_{0}$	${ }^{6}$
16925.	4 u	18938.	4	4
18926.	$4{ }^{4}$	18039.	4	4
18027.	$4{ }^{4}$	18940.	\cdots	4
18928.	$4{ }^{4}$	18041.	4	4
1892.	$4{ }^{4 \prime}$	18042.	${ }^{4}$	4
18930.	$4{ }^{46}$	18043.	${ }^{6}$	4
18031.	$4{ }^{4}$			

GASTEROSTEIDE:

11. Gasterosteus aculeatus L.

12. Gasteronteus pungitius L.

23101. Wood's Holl, Masachusette | 2460. Wood'r Holl, Massachneetta.
23102. Gasterosteus pungitius L. sub. ep. brachypoda Bean.

23103. Apeltes quadracus (Mitch.) Brevoort.

13404.	Wood's Holl, Masachusette.	10110.	Wood's Holl,	Masaschunette.
13413.	$4{ }^{4}$	17753.	4	u
13418.	$4{ }^{4}$	19832.	${ }^{4}$	4
14002	Noank, Connecticut.	23160.	4	4

SOLEIDS.

15. Solea vulgaris Qnensel. 22734. England.
16. Achirus lineatus (Linn.) Cuv.
17. Washington, Dtatrict of Colurgbla.
18. Potomac River.
19. New Bedford, Massachunetts
20. Tompkinaville, New York.
21. Enstern coast of United States.
22. New York Market.
23. Eastern coast of the United Btatea.
24. Potomac River.
[^10]
PLEURONECTIDE.

17. Pseudopleuronectes americanus (Walb.) Gill.

14001.	Portland, Maine	14736.	Wood's Holl, Massachusetts
14092	$4{ }^{*}$	14727.	$* *$
14693.	4 "	14728.	$4{ }^{4}$
14694.	" *	14729.	16
14605.	4 "	14730.	4
14696.	$4{ }^{4}$	14731.	**
14697.	${ }^{+}$	14732.	π "
14690.	4	14733.	4
14700.	4 "	14734.	4 *
14701.	"4 "	14735.	4 *
14702.	$1{ }^{4}$	14738.	$4{ }^{*}$
14704.	Wood's Holl, Massachusetts.	14739.	$4{ }^{4}$
14706.	$4{ }^{4}$	14740.	4 *
14707.	" **	14741.	4 *
14708.	" *	17231.	4
14709.	$4{ }^{4}$	17232	$4{ }^{4}$
14710.	4	17233.	4
14711.	" "	17234.	$4{ }^{46}$
14712.	$1{ }^{4}$	17235.	$4{ }^{*}$
14714.		17936.	$4{ }_{4}$
14716.	$4{ }^{* *}$	17237.	4 *
14717.	4	17238.	$4{ }^{4}$
14718.	$4{ }^{4}$	17239.	4
14710.	$4{ }^{*}$	17240.	$4{ }^{*}$
14721.	$6{ }^{6}$	20868.	New York Market.
14722.	$0{ }^{6}$	20874.	Washington Mk't, from Porland, Me.
14723.	$4{ }^{46}$	20953.	Buckaport, Maino.
14724.	${ }^{4}$	22730.	Eastern Coast of United Statea.
14723.	4	23179.	Glouceater, Masanchusette.

18. Limanda ferruginea (Storer) Goode \& Bean.

19. Pleuronectes glaber (Storer) Gill.

20. Glyptocephalus cynoglossus (Linn.) Gill.
21. Masaachneetts Bay.
22. Le Have Bank.
23. Halifax, Nova Scotia,
24. " "
25. Month of Harbor, Hallfix, N. B.
26. Halifax, Novi Scotia.
27. Le Have Bank.

21817.	Gloucester, Massachusetto.
21821.	4
21908.	u
22094. Milk 1sland Trap, Gloucester, Mam.	
23141.	Maseachnsetts Bay.
24632.	Chebucto Head, NovB Scotis

21. Lophopsetta maculata (Mitch.) Gill.

14633. 14634.	Wood's IIoll, Masarchnaetts.
14636.	$4{ }^{4}$
14638.	Portland, Maine.
14639.	Noank, Connecticut
14640.	$"{ }^{\prime \prime}$
14641.	$4{ }^{4}$
1492.	${ }^{\prime \prime}$
14613.	4
1464.	4
$1484{ }^{\text {\% }}$.	
14648.	* **
14649.	$4{ }^{64}$
14632	11
14603.	$4{ }^{4}$
14654.	16
14650.	4
16002	Wool's Holl, Masaachusetts.
17151.	Eastport, Maine.
17152.	Nonak, Connecticut.
17153.	6 ${ }^{6}$

17154.	Noank, Connecticut.
17155.	" "
17156.	64
17157.	$4{ }^{\prime \prime}$
17158.	11
17150.	$4{ }^{41}$
17160.	Charienton, Sonth Carolina.
17161.	Noank, Connecticut.
17108.	410
19420.	Wood's Holl, Masmachusetts.
19753.	Eaatern coast of United Staten.
22313.	Gloncester, Masenchusette.
22372.	Wood's Holl, Masaachnaetts.
22603.	Gloucester, Manachuaetts.
22735.	Eantern coast of United Statea.
29759.	Wood's Holl, Mamnachusetts.
23763.	Of Cape Cod, Maseachasetts.
24221.	Glouceater, Maseachusetts.
24262	Vinegarl Sound, Massachusetta.
24340.	Provincetown, Mnsaachumetts.

22. Citharichthys spllopterus Githr. 1

2xico. Crialleld, Maryland.
23. Hippoglossoides platessoiden (Fabr.) Gill.

21009.	Halifax, Nova Scotia.	23142.	Massachumetts Bay.
21021.	4 -	27920.	Sable Island.
21033.	${ }^{4}$	24602.	Maseachusetts Bay.
21037.	$1{ }^{* *}$	24606.	Halifax, Nova Sootia.
21045.	$4{ }^{4}$	24607.	
21040.	Of Malifax, Nova Scotia.	24609.	$4{ }^{4}$
21002.	Halifax, Nova Scotin.	24011.	${ }^{\circ}$
21064.	$4{ }^{4}$	24612.	${ }^{\prime \prime}$
21065.	4	24010.	"
217×2.	Gloucester, Masachusetta.	24621.	$4{ }^{4}$
21818.	- "10	24627.	${ }^{6}$
22288.	Lat. $42^{\circ} 49^{\prime}$ N., Lon. $62055^{\prime} \mathrm{W}$.	24638.	${ }^{6}$
22629.	Gloucenter, Massachnsetta.	24034.	4

24. Pseudorhombus dentatus (Linn.) Gthr.

Chanopsetta ocellaris (DeKay) Gill.
Chanopsetta dentata (Storer) Gill

14628. 14629.	Noank, Connecticut.
14670.	$4{ }^{4}$
16029. 16318.	Wood's Foll, Massachusetts.
17114.	Charleston, South Carolina.
18442.	Saint John's River, Florida.
18443.	${ }^{6}$
18444.	14
1845.	4 -
18446.	* *

18447.	Saint John'e River, Morida
18531.	Kinston, North Carolina
18532.	4
19397.	Wood's Holl, Maseachueetts
19398.	${ }^{4}$
10501.	Beaufort, North Carollna.
20082.	Charlenton, South Carolina.
21279.	Saint John's River, Florida.
22717.	Eastern conat of United States.
22908.	" 4
23528.	Criefleld, Maryland.

25. Pseudorhombus oblongus (Mitch.) Gthr.

Chanopsetta oblonga (Mitch.) Gil

10677.	Wood's Holl, Massachusette.	14024.	Noank, Connecticut.
10678.	$4{ }^{4}$	14025.	" ${ }^{\circ}$
10679.	$4{ }^{4 \prime}$	14628.	4 "
10682	$4{ }^{4}$	14627.	$4{ }^{6}$
10683.	$4{ }^{4}$	1929.	Wood's Holl, Manaachusetts.
10716.	4	24305.	Provincetown, Masaachusetta.

26. Hippoglossus vulgaris Flem.
27. Jeffrey's Bank.
| 24242. Joffroy's Bank.

Macruride.

27. Macrurus Bairdil Goode \& Bean.

23140. Grand Banke
| 24313. Gloucester, Massachusetts.
23141. Macrurus Fabricii Sundeval.
23142. Lat. $42^{\circ} 40$ N., Lon. $63^{\circ} 45 \mathrm{~W}$. 21783. Off coast of New England. 21800. Lat. $43^{\circ} 53^{\prime}$ N., Lon. 59005^{\prime} W. 22280. Off coust of New England.

22640 .
22747. Sablo Island Bank.
22748.
22872. Off coast of New England.
22873.11
22875. 4 "
22876. " 4
23054. Banquerean.

GADIDE.

29. Pollachius carbonarius (Linn.) Bonn.

14615.	Eastport, Maina	
14616.	$"$	4
14017.	$"$	4
14018.	$"$	4
14621.	$"$	4

21704.	Gloucester, Manaachusetta.	
22000.	$"$	$"$
22796.	$"$	$"$
24210.	$"$	$"$
2451.	Wood's Holl, Masachuaetts,	

30. Gadus morrhua Linn.

玉2215. Noman's Land.
22770. Wood's Holl, Maseachunetta.
22837. Glouceater, Masachusetta.
$29156 . \quad "$
$23106 . \quad 4$ "
23764. Provincetown, Massachusette.

31. Microgadus tomcodus (Walb.) Gill.

107i8. Wood's Holl, Masanchunetta.

10779.	$" 4$
13015.	11
13010.	4
13835.	4 "
14009.	Noank, Connecticut.
14590.	Eastport, Mnine.
14591.	" ${ }^{\circ}$
14592.	4
14594.	Portland, Mrine.
14507.	Wood's Holl, Maesachusctts.
14508.	" "
14599.	11 *
14000.	$4{ }^{4}$
14601.	$4{ }^{4}$
14602.	11
14003.	4

[^11]33. Phycis tenuis (Mitch.) DeKay.

10450.	Eastport, Maino.	19176.	Woud in Holl, Masachuserts.
14508	Wood's Holl, Maeachusetts.	19750.	Enstern coast of Uaitod Statea.
14569.	" ${ }^{\text {c }}$	21018	Halifax, Nova Scotia
14573.	Eastport. Maine	21616.	Lat. $42^{\circ} 4^{20}$ N., Lon. $64^{\circ} 20^{\circ} \mathrm{W}$.
14575.	Portland, Maino.	21790.	Glouceater, Masmachuaette.
14576.	* "	21796.	" . ${ }^{\circ}$
145%.	4 -	21816.	${ }^{4}$
14578.	$9{ }^{64}$	22321.	$0{ }^{46}$
14502	${ }^{6}$ -	2001.	4 "
14503.	084	22053.	$4{ }^{4}$
1454.	4	2701.	$0{ }^{0}$
14585.	" ${ }^{\text {" }}$ "	2722.	New England.
19104.	Wood's Holl, Massachusetta.	24373.	Proviscetown, Masaachunetts (14).
19160.	" ${ }^{\circ}$	2443.	Wood's Holl, Muasachusetto.
19169.	" ${ }^{\circ}$	24464.	* "
19172	${ }^{6}$-4	24574.	"
19174.	$0 \times$	24610.	Halifax, Nova Seotha

34. Phycis regius (Walb.) Jordan \& Gilbert.
35. New York Aquarium.

1604\%. East const of United Statea.
35. Onos (Rhinonemus) cimbrius (L.) Goode \& Bean. 23149. Gloucenter, Massachusetts. 23180. Halifar, Nova Scotia.
36. Haloporphyrus viola Goorle \& Bean.

- 23002. Lat $44^{\circ} 20^{\prime} \mathrm{N}$. Lon. $57^{\circ} 57^{\prime} \mathrm{W}$. 23063.

22918. Grand Banks.
22919. Lat $43^{\circ} 41^{\prime}$ N., Lon. $59^{\circ} 15^{\prime} \mathrm{W}$. 24301. Lat. $44^{\circ} 13^{\prime} \mathrm{N}_{\text {., }}$ Lon. $58^{\circ} 0 \mathbf{2}^{\prime} \mathrm{W}$.
22920. Lat. $43^{\circ} 17^{\prime}$ N., Lon. $51^{\circ} 25$ W.
22921. Grand Banke, wewtern edge。
22922. Banquereal
22923. Lat. $50^{\circ} 04^{\prime} \mathrm{N}_{+}$Lon. $43^{\circ} 66^{\prime} \mathrm{W}$.
22924. Lota maculosa (LeS.) Rich.

11019.	Sandusky, Ohio.	15860.	New Fork Market.
11020.	* 4	16657.	"
11022.	$4{ }^{4}$	16638.	${ }^{\prime \prime}$
$110 \leq 4$.	0	16639.	10
11201.	Alpena, Michigan.	16640.	0
11202.	"	17782.	Sandusky, OLio.
11203.	${ }^{6}$	17783.	" "
12452	A pontle Island, Lake Superior.	19793.	Alpenm, Michigan.
12460.	" "	22920.	Lake Superior.

MERLCCIIDE.

38. Merlucius bilinearis (Mitch.) Gill.

13010.	Wood's Holl, Masmachuaetts.	18731.	Wood's Holl, Massachnsetts
14500.	Portand, Maine.	18732.	"
14561.	Eastport, Maine.	18739.	" ${ }^{\prime \prime}$
14562	0 "	19757.	4 "
14563.	$0{ }^{\circ}$	19840.	14
14564.	Wood's Holl, Masanchusetta.	10867.	$4{ }^{\prime \prime}$
14565.	" ${ }^{\circ}$	20848.	Noman's Land.
14560.	\bullet	21055.	Halifax, Nova Scotia
1495.	Eastern coast of Cnited Stateo.	21703.	Gloucester, Massachusetts
16797.	New Bedford, Massachusetts.	22640.	- "
18705.	Wood's Holl, Massachusetts.	22698.	$4{ }^{4}$
18700.	-6	23154.	Wood'e Holl, Musmachusetta
18707.	06	24240 .	Lat. $42^{\circ} 53^{\prime}$ N. Lon. $60^{\prime} 14^{\prime} \mathrm{W}$.
18708.	$4{ }^{46}$	24241.	Jeffrey's Bank.
18709.	0	24268.	I.at. $42^{\circ} 53^{\prime}$ N., Lon. $00^{\circ} 14^{\prime} \mathrm{W}$.
18710.	*	24525.	Wood's Holl, Mansachnsetts.
18711.	0 b	24\%15.	Lat. $42^{\circ} 33^{\prime}$ N., Lon. $69{ }^{\circ} 14^{\prime} \mathrm{W}$.
18730,	${ }^{6}$		

Proc. Nat. Mus. $80-6$
May 2. 1880.

LYCODID.E.

39. Lycodes Vahlii Reinh.

24239. East Banquerean.
24240. Zoarces anguillaris (Peck) Storer.

14503.	Eastport, Maine.	22871.	Gloucester, Massachnsetts.
14554.	" ${ }^{\prime \prime}$	23084.	$4{ }^{4}$
$14{ }^{\circ} \mathrm{V}$ 6.	4	23198.	Massachusette Bay.
14557.	Portland, Maine:	23760.	Provincetown, Massachusetts.
14358.	$"{ }^{\prime \prime}$	23910.	$4 *$
14539.	$4{ }^{4}$	24292.	* 4
21784.	Gloncester, Massachusetta	21311.	*
22032.	$4{ }^{4}$	24346.	$4{ }^{4}$
22658.	$4{ }^{46}$	24382.	$4{ }^{4}$
22095.	$4{ }^{4}$		

CRYPTACANTHIDX.

41. Cryptacanthodes maculatus Storer.

XIPHIDIONTIDE.

42. Murzenoides gunnellus (L.) Goode \& Bean.

IFuranoides mueronatus (Mitch.) Gill.
13120. Wood's Holl, Massachusetts.
13432. " "
13438.
13848. Eastport, Maine.
16503. Eastern coast of United States.
19827. Wood's Holl, Massachnsetts.

1984\%. Wood's Holl, Masaschnoetts $22842 . \quad$ "
23164. New Bedford, Massachasetts
23165. Wood's Holl, Maosachusetts
24020. 4 *

ANARRHICHADIDE.

43. Anarrhichas lupus L.
44. Enat const of United States. 23907. 4 "
45. Lat. $12^{\circ} 10^{\prime}$ N., Lon. $60^{\circ} 30^{\prime}$ W.
46. 8 miles S. E. Gloucester, Massachusette. 24690. 5 miles S. S. E. Gloucester, Massachusetts 24700. 4
47. Anarrhichas minor Olafsen.
48. Lat. $44^{\circ} 30^{\prime}$ N., Lon. $57^{\circ} 10^{\prime}$ W., 250 fths. | 24237. Lat. $43^{\circ} 52^{\prime}$ N., Lon. 59009^{\prime} W., 200 sthe.
49. Anarrhichas latifrons Steenstrup \& Hallg.
50. Lat. $42^{\circ} 27^{\prime}$ N., Lon. $64^{\circ} 20^{\circ}$ W., 280 fathoms.
51. Banquerean, 300 falhoms. 22710. Enst coast of United Statea
52. Lat. $42^{\circ} 53^{\prime}$ N., Lon. $50^{\circ} 09^{\prime}$ W., 200 fthe 24098. Lat. $43^{\circ} 33^{\prime}$ N., Lon. $52^{\circ} 00^{\prime} \mathrm{W}$., 150 fth . 23109. Lat. $43^{\circ} 33^{\prime}$ N., Lon. $52^{\circ} 06^{\prime}$ W., 140 to 160 fathome

BLENNIIDE.

46. Blennius crinitus.
47. Bermada,
48. Labrosomus nuchipinnis (Q. \& G.) Poey.
49. Bermuda. | 21046. Bermuda
50. Batrachus tau Linn.

6853.	East coast of United States. Wood's Fill, Maasachanotia
10743.	4 "
10741.	4 -
14542	Soank, Connecticut.
14343.	$4{ }^{4}$
1434.	" ${ }^{6}$
14545.	4
14546.	4
14548.	${ }^{4}$
14549.	46
14300	4
14351.	64 b6
14553.	4
16550.	Wood's Holl, Masachnsetts.

URANOSCOPID.

50. Astroscopus anoplus (C. \& V.) Brevoort. 7304. Enstern United States.

CYCLOPTERIDE.

51. Cyclopterns lumpus Linn.

20008 Nemport, Rhode Island.

I 23051. Gloucester, Massachusetts.
GOBIIDE.
52. Gobius soporator.

21935 Bermuda

53. Eleotris.

19880 | 10882 |
54. Dormitator.
$19 \% 51$ |

TRIGLIDE.

55. Dactylopterus volitans (Linn.) Lac.

1859.	Wood's Holl, Massachusetts.	18509.	Wood's Holl, Massachusette.
18330.	4	18000.	" *
18521	$4{ }^{\prime \prime}$	18601.	4
18502	4 -	18602	4 "
12383.	* *	18603.	$4{ }^{*}$
18584.	$4{ }^{4}$	18805.	4
18585.	4	18606.	4 a
18586	$4{ }^{4 *}$	18607.	4 4
18567.	$4{ }^{4}$	18608.	4
18368.	$4{ }^{4}$	18609.	$4{ }^{4}$
1858.	$4{ }^{4}$	18610.	$4{ }^{4}$
18500.	$4{ }^{4}$	18611.	$4{ }^{4}$
18501.	$4{ }^{34}$	18612.	4 m
18302.	$4{ }^{4}$	18613.	" *
18593.	$4{ }^{4}$	18614.	$* *$
18591.	$4{ }^{46}$	18615.	$4{ }^{*}$
18595.	$4{ }^{4}$	18616.	4 *
18506.	$4{ }^{4}$	18617.	4 a
18507.	$4{ }^{4}$	18618.	4 4
18808	* *	18019.	4 u

84 PROCEEDINGS OF UNITED STATES NATIONAL MUSECM.

56. Prionotus evolans (L.) Gill.

13575.	Wood's Holl Maemehusetts.	18871.	Wood's IIoll, Massachusetts
1354.	${ }^{\prime \prime}$	18872.	* 4
14 \%3.	4 "	18878.	\bullet
14633.	Nonnk, Connecticut.	18874.	$4{ }^{46}$
14536.	" ${ }^{\circ}$	18875.	${ }^{4}$
14537.	$4{ }^{6}$	18876.	" "
14538.	10 "	1887%.	${ }^{6}$
14539.	" ${ }^{6}$	1×878.	${ }^{4}$
14340.	16	18870.	4
14985.	Wood's Holl, Masmachusetta.	19307.	${ }^{\prime}$
16004.	* *	10308.	$4{ }^{4}$
16008.	$4{ }^{4}$	19310.	${ }^{\prime \prime}$
16009.	$4{ }^{\prime \prime}$	20703.	Nowport, Rhode Island.
10011.	4 6	21442.	Wood's Holl, Massachusetts.
10503.	$4{ }^{4}$	21652.	Newport, Rhode Ialand.
18968.	4 "	20713.	Fast coast of United Staten.
18×69.	$0{ }^{16}$	22750 .	Wood's Holl, Masaachusetts.
18870.	" **	22754.	* "

57. Prionotus carolinus (Linn.) C.\& V.

14528.	Noank, Connecticut.	17145.	Noank, Connecticut.
14529.	-	17146.	$\cdots{ }^{*}$
14300 .	" ${ }^{\circ}$	17147.	$4{ }^{6}$
.14331.	" ${ }^{\circ}$	17148.	$4{ }^{4}$
14382	" 0	17149.	$4{ }^{4}$
$14 \% 33$.	" ${ }^{4}$	17150.	${ }^{4}$
16053	Wood's Holl, Massachusetts.	19341.	Wood's Holl, Massachusetta.
16309.	" ${ }^{\text {c }}$	10342.	"
17142.	Noank, Connecticut.	19343.	$4{ }^{4}$
17143.	*	10344.	4
1714.	${ }^{4}$	10345.	81

AGONIDE.

58. Aspidophoroides monopterygius (Bloch) Storer.
59. Manachusetts Bay. |2433. Provincetown, Manenchusetta.

COTTIDE.

59. Cottus octodecimspinosus Mitch.

14514.	Portland, Maine.	19188.	Wood's Holl, Masachusetta.
14315.	${ }^{\prime \prime}$	10180.	$"$
14516.	4	10190.	$4{ }^{44}$
14518	${ }^{4}$	19191.	$4{ }^{44}$
14519	4	10192.	14
14530.	${ }^{*}$	19198.	${ }^{*}$
14522.	$6{ }^{64}$	19104.	$4{ }^{4}$
145\%3.	4 " .	19185.	$4{ }^{4}$
1452].	$4{ }^{4}$	19749.	Coast of Mansachusetts.
14526.	" 4	21036.	Halifax, Nova Scotia.
19186.	Wood's Holl, Massachusetts.	21507.	Salem, Maseachusetts.
19187.	" ${ }^{\prime}$	22260.	Gloucester, Maseachusetts.

60. Cottus aeneus Mitch.

10365.	Wood's Holl, Massachusetts.	15098.	Tompkineville, New Tork.
10367.	${ }^{4}$	16185.	Noank, Connecticut
13516.	0 "	20883.	Wood's Holl, Monaschusctts.
13522.	$4{ }^{4}$	20889.	$4{ }^{4}$
13 L 25.	0 4	21457.	4 -4
13530.	14	22766.	$4{ }^{4}$
13541.	" "	23150.	$4{ }^{4 *}$

61. Cottus scorplus L., subsp. grönlandicus C. \& V.

Cottus granlandicus Cuv, \& Val.
14507. Portland, Maine.

14509 **
14510 . 4
14511. Eastport, Maine.
62. Cottus scorpioides Fabr.
21744. Cumberiand Gulc.
| 22331. Cumberlaud Gulf
63. Centridermichthys unoinatus (Rhdt.) Guinth.
24340. East conat of United States.
64. Gymnacanthus pistilliger (Pall.) Gill MSS.

21T32. Disco Island, Greenland. 21735. " "

HEMITRIPTERID.E.

65. Hemitripterus americanus (Gmel.) Storer.

$\begin{aligned} & 14997 . \\ & 1499 . \end{aligned}$	Eastport, Maine.	$\begin{aligned} & 20956 . \\ & 21010 \text {. } \end{aligned}$	Buckeport, Maine Halifax, Nova Scotia.
14500.	Portland, Maine.	21026.	$4{ }^{4}$
14502.	*	21035.	4 **
14503.	04	21508.	Salem, Maseachusetta.
14504.	Noank, Connecticut.	21640.	Newport, Rhode Island.
14503.	Wood's Holl, Massachusetts.	21795.	Gloucester, Massachusetts.
14059.	Coast of Massachusetta.	22260.	*
16438.	Bostom, Massachusette.	229883.	$4{ }^{44}$
16514.	Nantucket, Rhode Island.	22315.	$4{ }^{46}$
10318.	"	22647.	110
16594.	Wood's Full, Masaachusetts	22635.	$4{ }^{4 \prime}$
10412.	" 0	22039.	${ }^{4}$
10413.	* ${ }^{6}$	22839.	${ }^{6}$
19814.	96	22843.	Wood's Holl, Massachusetts
19748.	4 "	24368.	Grand Banlis.
20096	Nowport, Rhode Island.		

SCORPENIDE.
66. Sebastes marinus Linn.

Sebastet viviparus Kröyer.

1472	Eastport, Maine.	21792.	Gloncester, Massachusetts.
1473.		21811.	*
14474.	$"$ "	22307.	${ }^{4}$
14476.	${ }^{4}$	22298.	East coast of United States.
14477.	4 "	22299.	" "
14478.	4	22851.	Glouceeter, Masachunetts.
1479.	$4{ }^{46}$	22700.	$" 4$
14480.	4	22882	Fast coast of United States
14484.	$4{ }^{4}$	23092.	" 6
14486.	4	23143.	Massachusette Bay.
14488.	$4{ }^{4}$	23774.	"
14489.	46	23775	"
14480.	$4{ }^{4}$	23911.	Banquereau.
14485.	$4{ }^{46}$	24637.	Hallfax, Nova Scotia
14496.	11		
21020.	Lat. $42^{\circ} 42^{\prime}$ N., Lon. $64^{\circ} 20^{\prime}$ W., 270 to 300 fathoms.		

67. Sebastomus melanops (Grd.) Gill.
68. Washington Territory.

SCARIDE.
68. Scarus radians Val.
21373. Bermuda. | 21882. Bermada.
69. Pseudoscarus vetula (Schn.) Gill.
21880. Bermuda.

> LABRIDE.
70. Charojulis radiatus (L.) Goode.
21879. Bermuda.
71. Tautoga onitis (Linn.) Gthr.

10598.	Wood's Holl, Massachusetts.	17613.	Wood'e Holl Masalchunetta
10389.	"0	17614.	$\because{ }^{\circ}$
10643.	" 4	17615.	$4{ }^{4}$
13630.	${ }^{6}$	17616.	14
14446.	18 -	17618.	$4{ }^{16}$
1453.	Noank, Connecticut,	17619.	** **
14451.	${ }^{\circ}$	17620.	${ }^{4}$
14455	$4{ }^{4}$	17621.	μ
14456.	$4{ }^{4}$	176:20	$4{ }^{46}$
14457.	4	22725.	14
1458.	"	22769.	${ }^{6}$
14400.	$4{ }^{4}$	2:914.	Massachusetts Bay.
14460.	$0{ }^{\circ}$	$2: 915$.	${ }^{*}$
14461.	Wood' Eoll, Mansachusetta.	22916.	4
1446.	${ }^{64}$	2438.	Wuod's IILl, Massachumette
14463.	4	2444.	" ${ }^{4}$
14464.	$4{ }^{40}$	2447.	46
14466.	16	24455.	11.4
14467.	*	24473.	$4{ }^{4}$
17610.	4	24507.	${ }^{4}$
17611.	" *	24519.	14
17612.	$4{ }^{44}$	24572	${ }^{4}$

72. Tautogolabrus adeppersus (Walb.) Gill.

10745.	Wood's Holl, Masaschusetts.	17335.	Noank, Connectiout
10746.	" ${ }^{\circ}$	17550.	${ }^{\circ}{ }^{\circ}$
14431.	Portland, Malne.	17557.	46
1432	* "	17358,	$4{ }^{4}$
1433.	*	17559.	$4{ }^{4}$
14134.	$4{ }^{4}$	17560.	* *
14435.	$4{ }^{4}$	17501.	$4{ }^{4}$
14436.	4 **	17562.	44
14438.	4	17563.	$0{ }^{4}$
14439.	" *	17564.	$4{ }^{4}$
1440.	4 *	17617.	Wood's Holl, Masaschosetts
14411.	$4{ }^{4}$	17023.	Noank, Connecticut.
1442.	046	17024.	41
1443.	4	17005.	18
1446.	"	17026.	16
1445.	$4{ }^{\prime \prime}$	17627.	4
1446.	Noank, Connecticut.	17028.	40
1447.	${ }^{\prime \prime}$	17620.	$4{ }^{4}$
14448	$4{ }^{4}$	22053.	Gloucester, Massachusetta.
1449.	$4{ }^{6}$	22742	${ }^{6}$
14450.	0 *	22767.	Wood's Holl, Mnasachusetts.
14452	$4{ }^{\prime \prime}$	22908.	Provincetown, Massechusetts .
16034.	Woodis Holl, Massachusetth.		

73. Oxyjulis modestus (Grd.) Gill.
74. Santa Barbara, Callfornia.
| 17027. Santa Barbara, Callfornia.

POMACENTRIDE.

74. Glyphidodon saxatilis (L.) C. \& V.

10333.	Bermada.		18213.	Bermuda
16856.	${ }^{*}$		18214.	4
18907.	${ }^{6}$		18215.	${ }^{6}$
18.08.	${ }^{4}$		18216.	1
18209.	4		18217.	${ }^{\circ}$
18210.	4	-	18218.	${ }^{6}$
18211.	4		21984.	${ }^{4}$
18212.	14			

CICHLIDE.

75. Heros.
76. West const of Central America. | 10910. West const of Central America.

EMBIOTOCIDA.

76. Embiotoca Jacksoni Ag. 17048. Santa Barbara, Callformia. 17049.
77. Callfornia.
78. Taeniotoca lateralis (Ag.) A. Ag. 6216. Preaidio, California.
79. Callfornia.
80. Callfornia
81.
82. Holconotus rhodoterus Ag.
83. Preaidio, California.
84. Humboldt Hay.
85. San Diego, California.
86. Santa Barbara, California.
87. Santa Cruz Island, California.

17030. Santa llarbara, Coliforaia		
17031.	$*$	$*$
17032.	$"$	$*$
17033.	$"$	$*$
20340.	California.	

CHETODONTIDE.

79. Sarathrodus bimaculatua (Bloch) Poes.

1819.	Bermuda.	18202.	Bermuda.
18198.	$"$	18203.	"
18190.	$"$	18204.	"
18200.	"	18205.	"
18201.	$"$	18200.	4

80. Holacanthus ciliaris Lac.

18243.	Bermuda	21876. 23782
18944.	Bermuda.	

1824 "
23782.

TRICHICRIDE.
81. Trichiurus lepturus Linn.
19504. Beaufort, North Carolina.
10076. North Carolina.
19677.
21541. Charleston, South Carolim.
22817. Ponsacola, Floridn.
23139. Southern coat United Staten.

SCOMBRIDE.
82. Scomber scombrus Linn.

83. Scomber pueumatophorus De la Roche.
23754. Provincetown, Massachosetts.
84. Sarda pelamys (L.) Cuv.

8482. New York.			
1423. Noank, Connecticut.			
1424.	$"$	$"$	
1425.	$"$	$"$	14420.

85. Orcynus pelamys (L.) Poey.

215:3. Wood'a Holl, Masachnaette
| 21557. Wood's Holl, Masachnsetts
86. Cybium maculatum (Mitch.) Cuv.
23118. Washington Market.

CARANGIDE.

87. Vomer setipinnis (Miteh.) Ayres.

| 16838. New Fork Market. | |
| :--- | :--- | :--- |
| 19735. East coast United States. | $216: 3$. |
| 22753. | Newport, Rhode Ialand. |

88. Argyrelosus vomer (Linn.) C. \& V.
89. Beanfort North Carolina.
90. Decapterus punctatus (Ag.) Gill.

18120.	Bermudas.	18953.	Wood' Holl,	Maneschusetts.
18121.	*	18954.	-	*
1812\%	16	18055.	10	16
18123.	"	18450.	"	${ }^{6}$
18124.	"	1 1057.	"	4
18125.	${ }^{6}$	18058.	4	4
18126.	4	18950.	${ }^{\prime \prime}$	4
18127.	4	18060.	${ }^{\prime \prime}$	4
18128.	10	18961.	${ }^{6}$	4
18129.	"	18002	"	4
18130.	${ }^{\prime \prime}$	18963.	${ }^{*}$	4
18131.	$"$	18964.	"	4
18931.	Wood's Holl, Masamchasetts,	19143.	${ }^{*}$	4
18952.				

90. Trachurops crumenophthalmus (Bloch) Gill.

15685.	Woods Holl Massachusetts.	18700.	Wood's Holl, Mresachusetta.
18686.	$\cdots{ }^{*}$	18701.	" ${ }^{\circ}$
18687.	4	18702.	$4{ }^{\prime \prime}$
18688.	" ${ }^{\circ}$	18703.	0
18689.	$4{ }^{6}$	18704.	30
18080.	$4{ }^{4}$	18725.	*
18691.	36	18720.	*
18602.	11	18727.	10
18603.	4	18728.	$4{ }^{4}$
18604.	${ }^{\prime \prime}$	18729.	0 "
18685.	${ }^{6}$	18 1882.	-
18096.	$4{ }^{46}$	18083.	$4{ }^{4}$
18659.	$4{ }^{4}$	210338.	Newport, Rhorle Island.
18698.	${ }^{6}$	22368.	Wood's Holl, Massachunetts.
18609.	"6	22784.	0 "

91. Carangus pisquetus (C.\& V.) Gnt.

Paratractus piaquetus (C. \& V.) Gill.

14416.	Wood's Holl, Masachusetts.	
14417.	${ }^{4}$	${ }^{6}$
14418.	*	4
16568.	*	${ }^{4}$
17199.	4	4
17200.	*	4
17201.	4	4
17202.	4	4
17203.	4	*
17204.	4	${ }^{4}$
17205.	4	${ }^{4}$
17206.	4	4
17207.	${ }^{4}$	${ }^{*}$
17208.	${ }^{6}$	${ }^{4}$
18867.	4	4
19020.	${ }^{4}$	${ }^{4}$
19255.	4	${ }^{4}$

92. Carangus hippos (L.) Gill.

93. Blepharichthys orinitus (Akerly) Gill.

13087.	Wood's Hol	achusetts. ©	19088.	Manritins. Newport Rhode Island
16413.	14	*	20682.	Wood's Holl, Maasachunetts.
16520.	${ }^{\prime \prime}$	${ }^{*}$	20705.	* "
1998.	Mauritius.		20.50.	Newport, Rhode Island.
10985.	${ }^{*}$		21640.	" 1
10080.	${ }^{6}$		22752	Wood's Holl, Masanchusetta.
19987.	*			

94. Trachynotus carolinus (L.) Gill.
95. Now York Market.
96. Wood's Holl, Massachusetts.
97. "
98. 4 "

18811 4
18812. 4
18813. 4 "
18814. " 4
18815. "
18816. ts
18817. 4
$18818 . \quad$ "
18819. *
188.0. \quad.
18821.
95. Seriola zonata (Mitch.) C. \& V.

Kalatractus zonatus (Mitch.) Gill.

10402.	Wood's Holl, Masaschnsetts.	19010.	Wood's Holl, Massachustett.
12935.	**	19274.	" **
12993.	*	19365.	$4{ }^{4}$
12399.	* *	10368.	$4{ }^{4}$
14384.	"	19367.	" ${ }^{6}$
14385.	$4{ }^{46}$	10368.	4
14387.	${ }^{6}$	19360.	${ }^{6}$
14388.	$4{ }^{4}$	19370.	$4{ }^{16}$
1485	East const of United States.	10371.	"
16382	Wood's IIoH, Massachuaetto.	19372.	18
16393.	* "	$193 \% 4$.	*
16543.	Now Bedford, Massachusetts.	19393.	${ }^{6}$
16 J 69.	Wood's Holl, Massachusetts.	20197.	Newport, Rhode Island.
18465.	-6 ${ }^{\circ}$	20646.	Wood's Holl, Massachusetts.
18360.	16	20650.	" "
1836%	${ }^{6}$	20743.	Newport, Rhode Island.
1896.	*	21636.	- "
20013.	4 -	22774.	Wood's Holl, Massachusetta.

CORYPHIENIDE.
96. Coryphæna Sueurl C. \& V.
16485. New York Market.

STROMATEIDE.

97. Palinurichthys perciformis (Mitch.) Gill.

98. Poronotus triacanthus (Peck) Gill.

14369.	Noank, Connectiout,
14370.	" "
14371.	Eastport, Malna.
14372.	" ${ }^{\circ}$
14373.	" $"$
14374.	" "
14375.	" ${ }^{\prime \prime}$
14376.	" "
14377.	$" *$
14378.	" "
14379.	Portland, Maine.
14381.	" "
14382.	" ${ }^{\circ}$
14383.	" "
14939.	Norfolk, Virginia.
1494.	Wood's Holl, Massachusetts.
14951.	Eart coast of United Staten

15082. Tompkinaville, New Fork
15083. Wood's Holl, Maseachusetta.
15084. \quad.
15085. Noank, Connecticut.
15086. " "
15087. " $"$

1719‥ "
17183. " "
17104. " "
17105. 4 "
17106. Noank, Connorticut,
17197. " "
17108. "
20051. Wood's Holl, Massachusette
21607. Banquerean.
23155. Wood's Holl. Massachusetts.
24259. Off coast of Maise.
24200. Vineyard Sound.
24927. Gloucester, Massachusetta.
99. Peprilus alepidotus (L.) Cuv.

Peprilue Gardenii (B1. Schn.) Gill
12871. Off coast of Florida.
15372. Washington Market.
19409. Beavfort, North Caroling
22024. Norfolk, Virginia

LATILIDE.

100. Lopholatilus chamaleonticeps Goode \& Bean.
101. Lat. $40^{\circ} 10^{\circ}$ N., Lon. 70050^{\prime} W., 75 fathomg.

BERYCIDA.

101. Holocentrum sogo Bloch.

18071.	Bermada.		18080.	Bermuda
18072	"		18081.	${ }^{4}$
18073.	${ }^{1}$	-	180.22.	4
18074.	${ }^{\prime \prime}$		18083.	$*$
18075.	-		18084.	4
18070.	14		18085.	6
18077.	4		18086.	4
18078.	"		18087.	4
18079.	${ }^{4}$		21891.	${ }^{\prime \prime}$

SCIENIDE.
-
102. Cynoscion carolinensis (C.\& V.) Gill.

8315.	Saint John's River, Florida	19868.	Benufort, North Carolina
12807.	Norfolk, Virginia	10654.	" ${ }^{\text {a }}$
14559.	" 0	19713.	Fort Macon, North Carolina.
19651.	Fort Macon, North Carolina.	22032.	Off coast of North Carolina.
10652.	Beaufort, North Carolina.	2468.	Near Charleston, South Carolina

103. Cynoscion regalis (Bloch) Gill.

104. Pogonias cromis Lac.

17904.	Suint John's River, Florida.	18407.	Sulat John's River, Flosida
17905.	" *	18408.	\triangle-4
17906.	${ }^{4}$	18409.	${ }^{\prime}$
1790\%.	$4{ }^{4}$	18410.	$4{ }^{4}$
15908.	$4{ }^{4}$	18411.	${ }^{4}$
17809.	$4{ }^{4}$	1848.	-4 4
17910.	$4{ }^{4}$	18040	Florida.
17911.	*	19041.	-
17912.	$4{ }^{46}$	18704.	Southent coast United States.
18303.	$4{ }^{46}$	22779.	"
18405.	${ }^{\prime}$	24000.	Near Charleston, South Carolina.
18406.	*		

105. Liostomus obliquus (Mitch.) De Kay.

106. Bairdiella argyroleuca (Mitch.) Gill.

Bairdiella punctata (L.) Gill.

37% 17735.	Southenst const of United States
17735.	Branswick, Georgia.
1 NO 0.	Mouth of Saint John's River, Florida.
16355.	Saint Jobn'm Liver, Florida.
18498.	- "
18499.	$0{ }^{\circ}$
18500.	$9{ }^{4}$
18501.	0 "
1×50.	" ${ }^{4}$
18503.	0 "
18504.	0 "

18505.	Saint John's River, Florida.	
18500.	$"$	$"$
18507.	$"$	$"$
18508.	$"$	$"$
18500.	$"$	$"$
18510.	$"$	$"$
18511.	$"$	$"$
18512.		
19002.	Florida.	
22927.	$"$	
23109.	South Carolina.	

107. Scienops ocellatus (Linn.) Gill.
108. Saint John's River, Florida.
109. Beaufort, North Carolina
110.
111. Menticirrus nebulosus (Mitch.) Gill.

10701.	Wool's Holl, Massachusetta	18851.	Wood's Holl, Massachusetts
10700.	* "	18852.	" *
14253.	Noank, Connectient.	188:3.	" "
14354.	Woor's Holl. Massachuscts.	18854.	" ${ }^{\circ}$
15 M 79.	New York Market.	18855.	" *
18.12	Wood's Hull, Massachusetta.	18856.	" "
18.13.	" "	18857.	11
18047.	"	18858.	0 "
$18 \% 48$.	*	18850.	$4{ }^{4}$
18849.	" $"$	21441.	Cohanset Narrows, Masmachusetta
1880.	" *	22757.	East coast of Únited Statea.

109. Menticirrus littoralis (Holbr.) Gill.

10081.	Florida.	10087.	Florida.
19082.	**	10088.	"
19083	${ }^{6}$	10089.	4
1004.	${ }^{1}$	10090.	0
19085.	1	19091.	*
18086.	4		

110. Micropogon undulatus (L.) C. \& V.
111. Suint John's River, Florida.
112. " 11
113. "
114. Saint John's River, Florida 22740. East coast of United Statea. 22933.
115. Orcynus pelamys (L.) Poey. 21304. Bermuda
| 21881. Bermuda.

112. Haploidonotus grunniens Raf.

504. Mississippi Valley.
505. Sandusky, Ohio.

11040 . "
11041. " 4
11089. Auaable River, Michigan.
12279. Cincinnati, Ohia
12285.
$12286 .{ }^{6}$
12287. " " "
$12288 . \quad$ " 1
17768. Detroit, Michigan.
17769. Sandusky, Ohio.
113. Diapterus gula.
21896. Bermuda.
23557.
$23502 . \quad$ "
$23504 . \quad 4$
23507. "

23568 *
$23569 . \quad 4$
23570.
$23571 . \quad$ -
23576.
23579.

GERRIDE.

23580.	Bermuda
23581.	4
23582.	4
23583.	4
23584.	4
23586.	4
23587.	4
23588.	4
23590.	4
23501.	4
23592.	4

114. Diapterus Lefroyl Goode.

Eucinostomus Lefroyi Goode.

115. Pimelepterus Boscil Lac.

10338.	Bermuda.	18187.	Bermuda
18173.	${ }^{4}$	18188.	4
18174.	4	18189.	4
18175.	4	18190.	4
18176.	${ }^{*}$	18191.	4
18177.	4	18102.	${ }^{6}$
18178.	14	1819J.	4
18179.	**	18194.	4
18180.	4	18195.	4
18181.	4	18198.	4
18182.	${ }^{6}$	20177.	4
18183.	4	21900.	4
18184.	4	23547.	4
18185.	4	22548.	4
18180.	4		

SPARIDE.

116. Lagodon rhomboides (L.) Holbrook.

117. Archosargus probatocephalus (Walb.) Gill.

15578.	New Tork Market.		18390.	Saint John's River, Florida.		
1800.	Saint John's	Florida.	18400.	${ }^{\prime}$	-	*
18389.	\cdots	4	18101.	${ }^{6}$	c	*
18390.	"	*	18402.	"	-	4
18391.	*	${ }^{6}$	18403.	${ }^{4}$	-	4
18392.	${ }^{4}$	4	18404.	${ }^{\prime \prime}$	-	${ }^{6}$
18593.	*	*	18413.	4	${ }^{\circ}$	${ }^{4}$
18394.	-	4	18114.	${ }^{\circ}$	${ }^{\circ}$	4
18395.	14	4	18415.	16	${ }^{6}$	${ }^{4}$
18396.	4	${ }^{*}$	18416.	${ }^{\prime \prime}$	-	4
18397.	${ }^{6}$	${ }^{4}$	21546.	Charleaton,	, South C	arolina.
18398.	*	${ }^{4}$	27\%9.	East coast of	of Caited	Staten.

118. Stenotomus argyrops (L.) Gill.

5940.	East coast of United States.	14345.	Wood' Holl, Masachusetts.
10652.	Wood's Moll, Massachusetts.	14347.	" ${ }^{\circ}$
10468.	" *	14348.	$4{ }^{4}$
10702.	11	14349.	$1{ }^{\prime \prime}$
12022.	${ }^{\prime}$	14350.	$4{ }^{4}$
12923.	${ }^{4}$	14351.	$4{ }^{19}$
14326.	4	14352.	" *
14327.	${ }^{4}$	14964.	$4{ }^{4}$
14328.	411	14065.	$4{ }^{4}$
14329.	4	16007.	4
14330.	$4{ }^{4}$	10030.	${ }^{4}$
14331.	4	16042.	$4{ }^{4}$
14332.	${ }^{*}$	16049.	3.0
14333.	$4{ }^{4}$	17186.	4
14335.	$4{ }^{\prime \prime}$	17187.	$4{ }^{4}$
14336.	4	21436.	Cohasset Narrowe, Masaachuaetts.
14307.	$4{ }^{4}$	22758.	Wood'a Holl, Masiachusetts.
14338.	" ${ }^{\prime \prime}$	22925.	East coast of Uuited States.
14399.	4	24468.	Wood's Holl, Maseachusetts.
14340.	4	24491.	** *
14341.	4	24508.	16
14342.	14	24512	$4{ }^{4}$
1434.	4	24345.	4

119. Sargus Holbrookii Bean.

20979. Charlenton, South Carolina. 29870. Now York Market.
20980. Charleston, South Carolins.
20981. Calamus megacephalus (Sw.) Pocy.
20982. Bermuda

221. Pagrus argenteus Schn. 1

24605. Off Charleston, South Carolina.
24606. Pristipoma fulvomaculatum (Miteh.) Gthr.

22023. East coast of United States.
| 23507. Norfolk, Virg ain.

123. Hzmylum Eanthopterum C. \& V

18219.	Bermuda.		18292.	Bermuda.
18220.	"		18233.	${ }^{4}$
16221.	${ }^{4}$		18234.	4
18222.	*		18235.	*
18223.	${ }^{1}$		18236.	4
18224.	${ }^{\prime \prime}$		18237.	4
18235.	${ }^{4}$		18238.	4
18226.	${ }^{\prime \prime}$	-	18239.	4
18227.	4		16240.	46
16228.	${ }^{6}$		18341.	4
18229.	10		18242.	4
18230.	${ }^{6}$		20170.	4
18231.	*		21372	4

124. Heemylum flaviguttatus Gill.

10032. Colima.

125. Həəmylum.

10099. Florida.
10100. Lutjanus caxis (Schn.) Poey.

18101.	Hermnda.	18110.	Bermada.
18102.	"	18111.	*
18103.	*	18112.	4
18104.	10	18118.	"
18105.	*	18114.	4
18106.	${ }^{4}$	18115.	"
18107.	${ }^{6}$	18116.	11
18108.	*	18117.	4
18109.	${ }^{4}$	22798.	1

127. Lutjanus Blackfordii Gonde \& Bean.

2270j. Southern coast of Ünited Statee.
128. Rhomboplites aurorubens (C. \& V.) Gill.
2124. Charleston, South Carolina.
| 21571. Charleston, South Carolina

CESTRARCHID.E.

129. Micropterus salmoides (Lac.) Gill.

10715.	Potomnc River.	16844.	New York Market.
11100.	Bay City, Miehigan.	17791.	Holyoke, Masaachusetts.
11208.	Alpena, Michigan.	10014.	Sanduaky, Ohfo.
12308.	Charlestown, Now Hampabire.	19615.	" ${ }^{\circ}$
12309.	"	10610.	$1{ }^{\prime}$
12310.	$"$ "	19617.	Bay City, Michigan.
12809.	Norfolk, Virginia.	22727.	Potomac River.

130. Micropterus pallidus (Raf.) Gill \& Jordan.
131. Norfolk, Virginia.
132. " 14
133. Sandukky, Ohio.
134. Cincinnati, Ohio.
135.
136. Sandusky, Ohio.
137. New York Market.
138. Tangipahoa Kiver, MissisaippL.
16911.4 $10012 . \quad$ " 16913. \quad "
139.
140. Saint John's River, Florida.
141.
142. Saint John's River, Florida
143.
144. Ambloplites rupestris (Raf.) Gill.
145. Rochester. Wisconsin.
146. Lake Champlain.
147.
148. Fellow Croek, Ohio.
149. Racise, Wisconain.
150. Clevclond, Ohia.
151.

7r3.
8460. Fellow Creek, Ohio.
8420. Sundusky, Ohio.

```
11013. Sandusky, Ohio.
11014.
11016.
11218. Alpena, Michigan.
12415. Sandusky, Ohio.
10010. Trugipahoa River, Misalsippi.
10022. Sandueky, Ohio.
23183.
24060. Aux Plaine%, Illnois.
```

132. Acantharcus pomotis (Bd.) Gill.
133. New Jeraey. 20353. Trenton, New Jersey.
134. Chzenobryttus gulosus (C. \& V.) Gill.

Chenobrytue viridis (C. \& V.) Jordan.

18384.	Saint John'a	River, Florida.	18090.	Saint John'a River, Florids		
18385.	*	-	19100.	${ }^{\prime}$	"	
18387.	${ }^{6}$	${ }^{6}$	24753.	Washington	Market (from	N. C.)
18514.	${ }^{6}$	"	24754.		${ }^{\circ}$	${ }^{4}$
18515.	*	16	24755.		4	4
18516.	${ }^{68}$	6	24756.		"	4
18517.	${ }^{4}$	${ }^{6}$	24757.		-	*
18519.	${ }^{10}$	4	24758.		${ }^{6}$	4
18520.	${ }^{6}$	4	24750.		4	${ }^{4}$
18521.	4	4	24760.		${ }^{6}$	4
19096.	*	6	24761.		4	4
19087.	${ }^{4}$	${ }^{6}$	24760.		${ }^{6}$	4
19098.	${ }^{4}$	${ }^{6}$	24800.		4	4

134. Apomotis cyanellus (Raf.) Jordan.

20052 Cumberland River, Tennessee.
135. Lepomis auritus (L.) Gill.

42s0. Florida.
0246. Sing Sing, New York.
757.

7775 " $"$
8099. Rivers of east coast of United States.

```
15351. Susquohanna River, Pennsylvania.
18017.
20305. Havre de Grace, Maryland.
21453. Potomac River.
22230.
```

136. Lepomis pallidus (Mitch.) Gill \& Jordan.

Proc. Nat. Mus. $80-7$

19123.	Saint John's River, Florida.	
19125.	$"$	4
10126.	$"$	4
19127.	4	4
10128.	$"$	4
10129.	$"$	4
19181.	$"$	4
10132.	$"$	4
10133.	$"$	4
24762.	North Carolina.	
24763.	$"$	

May 26, 1880.
137. Lepomis punctatus.
17948. Saint John's River, Florida.
18361. " 18363. " 18305. 4 4 $\begin{array}{lll}18306 . & \text { " } & \text { " } \\ 18375 . & \text { " } & 4\end{array}$

1837.	Saint John's River, Floridn	
18464.	"	"
18473.	$"$	$"$
18477.	$"$	$"$
18480.	$"$	4
23170.	Florida.	

138. Xenotis sanguinolentus (Ag.) Jordan.
139. Tangipabon River, Misaiseippl.
140. Xenotis peltastes (Cope) Jordan.
141. Racine, Wisconsin.
| 9206. Michigaz,
142. Xystroplites heron (B. \& G.) Jordan.
143. Saint Lonie, Missonti.
144. Eupomotis aureus (Walb.) Gill \& Jordan.

11003.	Sandusky, Ohio.	18260.	Washington Markel.
11064.	" "	18270.	${ }^{\prime}$
11065.	$4{ }^{4}$	18271.	4
12952.	South Hadley Falis, Maseachusetta.	18272.	16
14041.	Wanhington Market.	18273.	**
14942.	"	18274.	4
14962.	${ }^{6}$	18275.	4
18260.	${ }^{6}$	18276.	"
18261.	${ }^{6}$	18277.	11
18262.	${ }^{\prime \prime}$	18631.	${ }^{*}$
18263.	4	20304.	Havre de Grace, Maryland.
18204.	4	22863.	Potomac River, Washington, D. C.
18203.	${ }^{6}$	24668.	Aux Plaines, Mlinois.
18260.	${ }^{6}$	24768.	Washington Market, from North Carolias
18267.	4 *	24810.	"4 **
18268.	${ }^{4}$	24877.	$4{ }^{4}$

142. Eupomotis нpeciosus (Holbr.) Gill.

18364.	Saint John's	River, Florida.	19100.	Saint John' River,	Florida
18300.	${ }^{4}$	${ }^{\circ}$	19107.	14	
18371.	19	4	10108.	4	4
18373.	${ }^{6}$	4	19110.	4	4
18383.	14	4	19115.	${ }^{4}$	0
18469.	"	${ }^{4}$	19117.	4	${ }^{4}$
18478.	4	${ }^{4}$	19120.	4	4
19103.	${ }^{16}$	4			

143. Enneacanthus margarotis Gill \& Jordan.

20494. Wateon's Creek, Mercer County, New Jersey.
20495. Enneacanthus obesus (Baird) Gill.
20496. San Franciaco Market, California.
20497. Centrarchus irideus (Bosc.) C. \& V.

7747.	Tarborough, North Carolina.
24601.	Washington Market, from N. Carolina.
24662.	North Carolina.
24676.	"
24677.	Washington Market, from N. Carolina.
24748.	

24750 .	4	4
24751.	4	4
24752.	4	ω
24766.	4	\cdots
24808	\oplus	\cdots

146. Pomoxys nigromaculatus (LeS.) Girard.

1038.	Norfolk, Virginia	18524.	Einston, North Carolina.
10386.	" "	18525.	$" 1$
11007.	Sandusky, Obio.	18526.	${ }^{6}$
11011.	\because *	10312.	Licking River, Ohio.
11160.	$0{ }^{4}$	10313.	" ${ }^{4}$
12805.	Norfolk, Virginia.	18314.	${ }^{\prime \prime}$
17903.	Saint John's River, Florida.	18315.	$4{ }^{6}$
17964.	Wilmington, North Carolina.	10317.	" 0
17965	\cdots *	18318.	68
17967.	64	10319.	$4{ }^{46}$
17960.	$4{ }^{4 \prime}$	19320.	" ${ }^{*}$
17970.	" ${ }^{*}$	23181	Sandusky, Ohio.
18350.	Saint John's River, Florida.	24767	Washington Market.
1835	${ }^{* *}$	24891.	"

147. Pomoxys annularis Raf.

23122 Misiasspi Valloy.

SERRANIDE.

148. Epinephelus atriatus (Bloch) Gill.

18068.	Berrouda	18095.	Bermuda.
18039.	${ }^{4}$	18096.	"
18090.	"	18097.	${ }^{6}$
18091.	4	18098.	${ }^{6}$
18092.	${ }^{6}$	18000.	${ }^{6}$
18056.	${ }^{4}$	18100.	4
18094.	${ }^{*}$		

149. Epinephelus gattatus (Gmelin) Goode.

12709. Bermuda.	1904. Florida.		
1811.	"	20182. Bermnda	
18112.	$"$	21683.	"

150. Epinephelus morio (Cuv.) Gill.

2275 . Bermada.
151. Centropristis atrarius (Linn.) Barn.

10042	Wood's Holl, Maseachuectts.	17181.	Nonnk, Connectieut.
1066\%.	" ${ }^{\circ}$	17182	${ }^{\prime \prime}$
14221.	Noank, Connecticut.	17183.	${ }^{\prime \prime}$
14322	" ${ }^{\circ}$	17184.	$4{ }^{4}$
14323.	"	17241.	Wood's Holl, Maseachusetta.
14324.	Wood's Holl, Massachueetts.	19300.	${ }^{6}$
14355	\square	10417.	${ }^{*}$
16086.	$4{ }^{4}$	18511.	Beaufort, North Carolina.
16574.	$\because \quad 4$	19041.	Florida.
17174.	Soank, Connecticut.	19828.	Wood's Holl, Massachusetts.
17175.	" *	21440.	Cohasset Narrows, Massachusetts.
17176	$4{ }^{4}$	22378.	Wood's Holl, Masanchuaette.
1717.	4 "	22800.	$4{ }^{4}$
17178.	4 4	22959.	Enst coast of United Statea.
17179.	14	24584.	Wood's Holl, Massachusetts.
17180.	4		

152. Diplectrum fasiculare (C.\& V.) Holbrook.
153. Off Charleston, South Carolina.

ETHEOSTOMATIDE.

153. Percina caprodes (Raf.) Girard.

1152. Meadville, Pennsylvania	1317.	Poland, Ohio.
1201. Raciue, Wiaconsin.	1309.	Yellow Creek, Ohio.
1902.	"	1394. Madrid, Now York.
1223. Wisconsin.	8145.	Ohio.
1246. Columbus, Ohio.	9662.	"
1264. Westport, Diew Fork	0731.	Potornac River.
1306. Poland, Ohio.	2040\%. Pennsylvania.	

154. Diplesium blennioides (Raf.) Jordan.
155. Black River, Ohio.

PERCIDE.

155. Perca fluviatilis.

Perea americana Schrank.

7118.	Sandusky, Ohio.	14976.	Washington Market
7 50.	" ${ }^{\circ}$	15333.	${ }^{\prime \prime}$
7281.	Ohio.	15334.	${ }^{6}$
7344.	Saulusky, Ohio.	15335.	${ }^{\prime}$
7345.	" ${ }^{*}$	15336.	14
7430.	* *	15337.	${ }^{4}$
741.	Ohio.	15338.	4
7478.	"	15339.	4
7878.	"	15340.	4
8094.	"	15341.	4
8713.	Ecorse, Michigan.	15342.	${ }^{4}$
8831.	" ${ }^{\circ}$	15343.	*
6832.	"	15344.	4
8883.	Sandusky, Ohio.	13345.	${ }^{68}$
10327.	" ${ }^{*}$	15346.	4
10330.	Deep Lake, Illinois.	15347.	${ }^{\circ}$
11001.	Sandurky, Ohio.	15348	"
11003.	" ${ }^{\circ}$	15402.	Chapman's Landiog, Maryland.
11004.	" ${ }^{4}$	18507.	Kinston, Forth Carolins.
11005.	$4{ }^{6}$	18528.	**
11149.	"	10450.	Potomac River
11150.	" ${ }^{6}$	10491.	${ }^{6}$
11176.	Van Hutton Lake, Michigan.	19779.	,
12321.	Washington Market.	19781.	Sandusky, Ohio
12324.	"	19782.	" "
12925.	-	19783.	4
12947.	South Hadley Falls, Massachnsetts.	20550.	Hlinois

156. Stizostethium vitreum (Mitch.) Jordan \& Copeland.
stizostethium americanum (Cur.) Gid.
157.
158.

Sandusky, Ohio.
1118.
11181.

157. Stizostethium canadense (Smith) Jordan.

22238. Memphis, Tennesse.

LABRACID.E.

258. Morone americana (Gmel.) Gill.

1750.	Sing Sing, Now York.	15471.	Chapman's Landing, Maryland.
10033.	Potomac River.	15472 .	" "
10054.	*	17127.	Noank, Connecticut.
10600.	${ }^{4}$	17128.	" ${ }^{4}$
10592.	Woodis Holl, Massachnnetts	17129.	10
10730.	" ${ }^{\circ}$	17130.	$"{ }^{4}$
13354.	$\cdots{ }^{\circ}$	17242.	Potomac River.
14319.	$\cdots{ }^{*}$	17243.	"
1532.	Washington Market	17244.	-
15354.	${ }^{\circ}$	17245.	4
15325.	**	17246.	4
15326.	*	1724\%.	*
15327.	${ }^{*}$	17248.	${ }^{4}$
13338.	4	17240.	${ }^{4}$
17239.	${ }^{4}$	17250.	"
:5330.	${ }^{6}$	22308.	New York Market.
15331.	4	24925.	Wood's Hull, Maneachnsetts.
15332	*		

159. Roccus lineatus (Bl. Schn.) Gill.

10ese. Wood's Holl, Massachnaetts.
12008. Norfolk, Virgivis
18921. Washington Market

10020 "

19033	u
1003	4

1×25
186 c 6 *
10927.
19358.
19509.
19330.
10331.

1932
1033.4

19334	Washington Market
19335.	$"$
19330.	$"$
1933.	$"$
19338.	$"$
19339.	"
10447.	Potomac River.
19613.	Holyoke, Manachusette.
22714.	East coast of United State
28726.	"
22960.	"
23117.	Washington Market.
24807.	North Carolina
24846.	Washington Market.

160. Roccus chrysops (Raf.) Gill.
161. Sandusky, Ohio.
162. " 4
163. Sandusky, Ohio. 10620.
164. Paralabrax clathrata Girard.
165. Santa Cruz Island, California | 17038. Santa Barbara, California

EPHIPPIIDE.

162. Parephippus quadratus (Guin.) Gill.

19493. Beanfort, North Carolina.

POMATOMID E.
163. Pomatomns saltatrix (Linn.) Gill.

10768.	Wood's Hall, Massachusetts	17587.	Noank, Connecticut
1400%.	Noank, Connecticut.	17588.	$4{ }^{4}$
14312	-4 4	17589.	$4{ }^{46}$
14313.	- "	17590.	14
14314.	$4{ }^{4}$	17591.	"
14315	${ }^{4}$	17592.	"
14316.	Wood'a Holl, Massachueetts.	17503.	4
14318.	" ${ }^{\prime}$	17504.	$4{ }^{4}$
15554.	New York Market	17595.	${ }^{64}{ }^{4}$
16124.	Wood's Holl, Massachusetts.	18401.	Saint John's River, Florida.
1612\%	$"{ }^{*}$	18402 .	" 4
16139.	Menemsha Bight, Massachusetts.	10054.	4
16571.	Wood's Holl, Maseachusetts	19301.	Wood's Holl, Mansachusetts
17565.	Nonnk, Connecticut.	22710.	East coast of United Statea.
17586.	44	22762.	Wood's Holl, Massachusetia.

AMMODYTTDE.

164. Ammodytes americanus De Kay.

13095.	d's Holl, Massachusetts.	19830	Wood's Holl, Massachusetts.
16183.	${ }^{6}$	1942.	" 4
1650.	Nantucket, Rhode Ialand.	22841.	*

ECHENEIDIDE.

165. Echeneis naucrateoides (Zueiew).
166. Newport, Rhode Island.
167. " 4
168. East const of United Statea.
169. East coast of Uaited Statces 22918.

SPHYRENIDE.

166. Sphyræna borealis De Kay.

18754.	Wood's Holl, Masachusetta.	18767.	Wood's Holl, Mameachusetts.
18755.	$" *$	18768.	$4{ }^{64}$
18756.	30	18769.	40
18737.	$6{ }^{6}$	18770.	$4{ }^{46}$
18738.	$4{ }^{64}$	18771.	0 "
18759.	" ${ }^{\circ}$	18772.	$4{ }^{4}$
18760.	$4{ }^{46}$	18773.	30
18761.	4	18774.	41
18762.	$4{ }^{4}$	18775.	$4{ }^{4}$
18763.	* *	18776.	$4{ }^{4}$
18764.	$4{ }^{4}$	18777.	$4{ }^{4}$
18765.	" ${ }^{6}$	18778.	$4{ }^{4}$
18768.	$4{ }^{46}$		

MUGILIDE.

167. Mugil albula Linu.

Mugil lineatus Mitch.
14930. North Carolina.
15307. Waahington Market.
15308. "4
15309. *s
15310.
15311. "
$15312 . \quad 4$
$13313 . \quad$ แ
$15315 . \quad$ u
1:316.
15317.
15318.
$15319 . \quad 4$
15320.
15321.

15322.	Washington Market.
18568.	W'ool' Holl, Manaschnaette.
18560.	${ }^{6}$
18570.	$4{ }^{4}$
18571.	64 *4
18572.	$4{ }^{4}$
18804.	$4{ }^{4}$
18805.	$4{ }^{4}$
18800.	4 "
18807.	$4{ }^{4}$
21635.	Newport, Rhode Island.
22387.	Wood'a Holl, Massachusetts.
22777.	${ }^{\prime \prime}$
24510.	4 "
24697.	Near Charlenton, South Carolina

168. Mugil brastliensis Ag. 24505. Wood's Holl, Massachusetts.
169. Mugil cephalotns Cuv. \& Val. 1800s. Honolulu, Hawall.

ATHERINIDE.

170. Chirostoma menidium (L.) Gill.

Christona notata (Mitch.) Gill.

171. Belone longirostris (Mitch.) Gill.

14018.	Noank, Connecticut.	18836.	Wood' Holl,	Massachusetts.
1752.	$4{ }^{4}$	18837.	"	\cdots
17575.	" "	18838.	4	4
17576.	$3{ }^{60}$	18839.	4	4
17577.	414	18840.	4	${ }^{*}$
17578.	$4{ }^{46}$	18841.	4	${ }^{*}$
17579.	$4{ }^{4}$	18842	*	4
17580.	$4{ }^{4}$	18843.	*	$*$
17581.	4 "	1884.	"	4
17582.	4	18845.	*	*
17583.	$4{ }^{4}$	18846.	${ }^{6}$	4
17584.	4	20629.	*	4
18833.	Wood's Holl, Massachneetta.	21451.	*	${ }^{*}$
1884.	$0{ }^{\prime \prime}$	29371.	4	4
18835.	" *	22773	4	4

172. Belone hians.
173. New York Market.
174. Belone latimanus Poey.
175. Wood'e Holl, Messachusetta. | 21421. New York Market

SCOMBRESOCIDE.

174. Hemirhamphus Pleli Val.

18132	Bermuda.	18138	Bermuda
18133.	"	18139.	"
1813.	"	18140.	"
18135.	"	18141.	u
18136.	"	18142.	"
18137.	"	18143.	u

175. Scombresox вaurus (Walb.) Flem.

Scomberesox scutellatue Los.

19200.	Cape Cod, Maseachusette	
10207.	$"$	$"$
19208.	$"$	$"$
19845.	Wood's Holl, Masachusetts.	

176. Esox lucius Linn.

11025. Sandasky, Ohio.
11026. "
11027. 4

ESOCID E.

12942 South Hadley Fall, Maseachusetts.
15659. New York Market.
17784. Sandusky, Ohio.
177. Eisox nobilior Thompson.
11028. Sandusky, Ohio.
| 11029. Sandusky, Ohio
178. Esox americanus Gmelin.
1587. Piermont, New York
6814. New York.
15711. New York Market.
15716. New York Market 20350. Trenton, New Jerwer.
24771. Long Island, Now York.
179. Esox reticulatus LeS.

10388. Norfolk, Virginia.	17786.	Norfolk, Virginla	
124is.	"	"	2488.
1293. Washington Markek			
15012. South Hadley Falls, Masaachusetta	Washington Market.	24892	24
17885. Sorfolk, Virginia		24896	"

UMBRIDK.

180. Umbra limi (Kirt.) Guinth. Melanura limi (Kirt.) $\mathbf{\Delta g}$.
181. Northficld, Hlinois. | 9288. Raciae, Wisconsin
182. Dallia pectoralis Bean.
183. Saint Michael's, Alaska

CYPRLNODONTIDE.

182. Cyprinodon variegatus Lac.

17706.	Noank, Connecticat.	17719.	Noank, Connecticut
17707.	* *	17720.	* **
17708.	4	17721.	$4{ }^{4}$
17700.	" . ${ }^{4}$	17722.	$4{ }^{4}$
17710	4	17724.	44
17711.	$4{ }^{4}$	17725.	${ }^{4}$
17712.	${ }^{6}$	17.20.	$4{ }^{4}$
17713.	${ }^{\prime \prime}$	17727.	$4{ }^{4}$
17714.	$4{ }^{4}$	17728.	$4{ }^{46}$
17715.	4 "	17729.	$4{ }^{\prime \prime}$
17716.	4 *	17730.	$4{ }^{4}$
27717.	4 6	24581.	Wood's Holl, Massachuaetta
17718.	$4{ }^{4}$		

183. F'undulus pisculentus (Mitch.) Val.

184. Fandulus parvipinnis.

24883. San Diego, California.
24884. Eydrargyra majalis (Walb.) Val.

PERCOPSIDE.

186. Percopsis guttatus Ag.
187. Lake Superior.
8.46

4
24772. Lake Superion

SYNODONTIDE.
187. Synodus faetens (Linn.) Gill.
10507. Beaufort, North Carolina

MICROSTOMIDE.

188. Mallotus villosus (Müler) Cuv.
189. Halifax, Nova Scotia. | 24924. Wood'e Holl, Masachunetta
190. Osmerus mordax (Mitch.) Gill.

191. Osmerus pacificus.
192. Naas River, Oregon
| 23185. Frauct River, British Columbia
COREGONIDE.
193. Thymallus tricolor Cope.

11060.	Ausable River, Michigan.	11094.	Aneable River, Michigan.
11063.	\bullet "	11095.	$4{ }^{4}$
11064.	$*$	11096.	${ }^{4}$
11088.	$4{ }^{4}$	11097.	$4{ }^{4}$
11091.	$4{ }^{4}$	11098.	$4{ }^{4}$
11092.	$4{ }^{4}$	10547.	$4{ }^{4}$
11093.	4	19548	4

192. Argyrosomus Artedi (LeS.) Hoy.
A. clupeiformif (Mitch.) Ag.
193. Great Lakes
194. Sandasky, Ohio.
195. Sandusiry, Ohio.
196. Auaable River, Michigan
197. Argyrosomus Artedi (LeS.) Hoy var. sisco Jor.
198. Geneva Lake, Wisconsin.

SALMONIDEE.

194. Salmo salar Linn. var. sebago Girard.
195. Grand Lake, Maine.
196. Sebes Pond, Maine.
197. Schoodic Lake, Maine.
198. Salmo Irideus Gibbons.

22338.	4	$"$
22333.	4	4
22354.	4	4
22356.	4	4
22350.	4	4
22361.	4	4

22402. California	
22404.	11
22405.	11
22406.	11

2419. McCloud River, Califorala

22420.	$"$	$" 1$
22421.	4	4

22422 "
22423 " 4
$22124 . \quad$ "
22425.3
22426 . 4
22428 " 4
22429.
196. Oncorhynchus quinnat (Rich.) Gthr.

22335.	McCloud River, California		224.4	McĆloud River, Callfornia	
22340 .	-	4	22435.	${ }^{4}$	
22345.	4	"	22436.	"	4
22303.	4	4	22437.	*	4
23394.	4	14	22438.	*	${ }^{6}$
28395.	${ }^{6}$	*	22440.	${ }^{6}$	${ }^{6}$
22308.	4	4	22441.	${ }^{\prime \prime}$	4
22410.	${ }^{6}$	${ }^{\prime \prime}$	2244.	"	4
22411.	4	4	2244.	${ }^{6}$	4
22412.	4	4	22447.	${ }^{*}$	${ }^{*}$
22413.	4	H	22448.	*	4
22414.	4	4	22449.	*	${ }^{*}$
22415.	${ }^{4}$	4	22481.	${ }^{16}$	4
22416.	4	4	22483.	${ }^{6}$	${ }^{*}$
22417.	4	4	22483.	${ }^{4}$	4
22418.	${ }^{\prime \prime}$	4	23153.	Callfornia	
22433.	"	${ }^{4}$			

197. Salvelinus fontinalis (Mitch.) Gill \& Jor.

198. Balvelinus oquassa (Girafd) Gill \& Jor.
199. New York Market
200. Salvelinus Bairdii (Suckley) Gill \& Jor.
201. Mccloud River, California.
202.
203. Clackamas River, Oregon.
204. Clackamas River, Oregon.
205. McCloud River, California.

ALEPIDOSAURIDE.

200. Alepidosaurus ferox Lowe.
201. Off Gloncester, Massachusetts. 22040 .
202. Le Have Brak, 200-250 fathoms.
203. Weatern part Le Have Bank, 120 fathoma. 24290. Lat. 42° g7' N., Lon. $62^{\circ} 65^{\prime}$ W., 200 fathoma. 24297.
204. Lat. $43^{\circ} 00^{\prime} \mathrm{N}$., Lon. $61^{\circ} 18 \mathrm{~W} ., 200 \mathrm{fthe}$.

HYODONTIDE.

201. Eyodon tergisus LeS.

11038.	Sandusky, Ohia
11170.	" "
11221.	Cincinnati, Ohio.
12355	4
12956.	$4{ }^{4}$
1205\%.	$4{ }_{4}$
12358	$4{ }_{4}$
12950.	$4{ }^{46}$
12361.	$4{ }_{4}$
12362	$4{ }^{44}$
12363.	4 4

12450.	Ecorso, Michigan.
12451.	" "
12474.	Pellowntone River.
12475.	"
12476.	${ }^{6}$
12478.	Pompey' Pillar.
12480.	Yellowntone River.
18564.	Sandusky, Ohio.
18566.	Econse, Michigan.
18567.	${ }^{6}$
22901.	4

ALBULIDE.

202. Albula valpes.

Albula conorhynehus BL Schn.

18144	Bermuda
18145.	4
18146.	4
18147.	4
18148.	4
18149.	4
18150.	4
18151.	4
18152	4

18153.	Bermnda
18154.	$"$
18155.	$"$
18150.	$"$
19788.	$"$
21560.	New York Market.
21648.	Newport, Rhode Isinnd.
21859.	New Bedford, Maseachunetts
21808.	New London, Connecticut.

ELOPIDE.
203. Flops saurus Linn.

15578.	New Xork Market.	19637.	Florida.
15574.	${ }^{\prime}$	19648.	Fort Macon, North Carolina
15580.	"	19851.	Wood's Holl, Massachusetta
16852.	New Bedford, Massachusetts.	10874.	$4{ }^{4}$
18573.	Wood's Holl, Mnseachnaetts.	21550.	New York Market.
18574.	4 "	22305.	"
18575.	$4{ }^{11}$	24802.	4
18576.	4	24803.	4

DUSSUMIERIDE.

204. Etrumeus teres (DeKay) Brevoort.
[^12]
CLUPEIDE.

205. Brevoortia tyrannus (Latrobe) Goode.

Brecoortia nenhaden (Mitch.) Gill.

206. Brevoortia patronus Goode.
21341. Pensacola, Florida.
22809.

```
23810. Pensacola, Florida.
24825.
```

207. Alosa sapidissima (Wils.) Linsly.

5472. 10626.	New Bedford, Massachusetta. Potome Rirer.	14300	Portland, Maine.
-10627.	*	14847	Noank, Connecticut.
10629.	-	14831	Neuse River, North Carolina
12044.	South Hadiey Falle, Massachesetts.	14934	Waahington Market.
12945.	16	18513	W
12946.	$4{ }^{4}$	19209	${ }^{6}$
14202.	Noank, Connecticut.	20469	South Hadley Falls, Massachusette.
14293.	" ${ }^{\text {a }}$	20472	"
1429.	" 4	20970	Avoca, North Caroling
14295.	Portland, Maine.	21225	Gravesend Bay, New York.
14296.	${ }^{1}$	21414	Avoca, North Carolina.
1429%.	16	22058	East coast of United States.
14298.	$4{ }^{4}$	23107	Aroca, North Carolina.
14290.	110		

208. Opisthonema thrissa Gill.
209. Eantern shore of Virginia.
210. Pomolobus æestivalis (Mitch.) Goode \& Bean.
P. pseudoharengus (Wils.) Gill (in part).
211. Wood's Holl, Massachusetta. | 23175. Wood's Holl, Massachusetts
212. Pomolobus vernalis (Mitch.) Goode \& Bean.
P. peeudoharengus (Wila.) Gill (in part).
213. Noank, Connecticut.
214. Cohanset Nartows, Massnchusetts.

22s00. Wood's Holl, Massachusetts.
22786.
23176. Wood's Holl, Massachueetts.
23177. " "
23178. ぃ *
211. Pomolobus pseudoharengus (Wilson) Gill.

Under this name, which is now known to have been bestowed upon the two distinct species immediately preceding it in this list, a number of specimens were distributed in 1877. Pomolobus vernalis may be at
once separated from P. astivalis by its larger eye and higher fins. The catalogne numbers of the mixed lot follow.

1064.	Wood's Holl, Maseachusetts,	14279.	Portland, Maine.
10845.	"0 "	14280.	" ${ }^{\circ}$
10650.	*	14281.	$4{ }^{6}$
10×00.	$4{ }^{40}$	14283.	" "
10800.	" 6	14285.	$" 14$
10.58.	*	14286.	$" 1$
10503.	$\cdots{ }^{\circ}$	14945.	East coast of United States.
14368.	${ }^{4}$	14946.	16 "
$14 \% 76$.	Portland, Maine.		

212. Pomolobus mediocris (Mitch.) Gill.

3470. New Bedforl, Msasachumetts.
3471. Potomac River.
3472. Wood's Holl, Masanchusettg.
3473. " "

100\%1. "
10ses. Potomac River.
12500. Norfolk, Virginia.
12802.

13:97. Potomac Rirer.
16753. Potomac River.
18429. Saint John's River, Forida.
1843.
19456. Potomac River.
19715. Fort Macon, North Carolina.
19751. East const of United Sthtea. 19785.
19871. New Bedford, Mnsaachusett.
213. Clupea harengus Linnæus.

14217.	Eantport, Maine.	14259.	Wood's Holl, Masaachusetta.
14918.	-. 6	14757.	Eastport, Maine.
14250.	" ${ }^{4}$	14758.	" "
14230.	4	17567.	$4{ }^{4}$
14232	*	17568.	$4{ }^{4}$
14235.	\cdots	17560.	${ }^{4}$
14298.	Portland, Maine.	17570.	14 os
14241.	" 6	17571.	$4{ }^{4}$
14\%42	"	17572.	${ }^{\prime \prime}$
.1424i	18 14	17573.	${ }^{4} "^{3}$
14248.	$4{ }^{6}$	21687.	Ipswich Bay, Mnseachusetta.
14231.	414	22360.	Wood's Holl, Massmehumetts
14256.	Wood's Holl, Masaachusetts.	24520.	4 "
14257.	${ }^{*}$		

DOROSOMIDE.

214. Doroboma cepedianum (Lac.) Gill.

12314.	Washington Market.	17138.	Potomao River.
1:315.	"	17130.	"
13803.	Norfolk, Virginia.	17140.	${ }^{6}$
14921.	Potomac River.	17141.	${ }^{\circ}$
15073.	New Fork Market.	18435.	Saint John's River, Florida.
17131.	Potomac River.	18436.	" ${ }^{4}$
17139.	${ }^{6}$	18437.	" 6
17133.	"	18599.	Kinaton, North Carolina.
17134.	${ }^{*}$	38530.	" "
17135.	*	18573.	East coast of United Statea.
17136.	-6	24678.	Washington Market.
17137.	${ }^{*}$	24975.	"

215. Engraulis vittatus (Mitch.) Bd. \& Girard.

19003.	Wood'	Holl, Massachusetts.	19011.	Wood's Holl,	Massachusette.
19004.	${ }^{4}$	${ }^{\circ}$	19012.	${ }^{\prime \prime}$	${ }^{6}$
19005.	${ }^{4}$	${ }^{4}$	19013.	"	4
19006	*	4	10014.	4	4
1900%.	4	${ }^{*}$	19015.	${ }^{6}$	4
19008.	${ }^{4}$	**	19016.	4	${ }^{6}$
19009.	${ }^{4}$	4	19017.	**	4
19010.	4	4			

CATOSTOMIDE.

24850. Washington Market. 24895.	24898.	Washington Market.
217. Erimyzon sucetta (Lac.) Jor.		
18245. Potomac River.	18249.	Potomac River.
18248.	18250.	"
18247.	18251.	"
18248.	24897.	Washington Market.

218. Hypentelium nigricans (LeS.) Jordan.

Catostomue nigrican LeSueur.
7670. Yellow Creek, Ohio.
8303. Aux Plainea, Illinois.

8762 " ${ }^{\circ}$
9152. Illinois.
15357. Susquehanna River, Penneylfania 19888. Yellow Creek, Ohio. 19670.
219. Catostomus commersonii (Lac.) Jorlan.
6833. Port Huron, Wisconsin.
7677. Cleveland, Ohio.
7706.
7777. Wiaconsin.
7781.
8409. Tellow Creek, Ohio.
8440. Racine, Wisconsin.
8457. Port Huron, Wisconsin.
8501. Detroit River, Michigan.
8728. Huron River, Winconsin.
8870. Alabama.
8984. Cleveland, Ohio.
0054. Racine, Wiaconsin.
9059. Ohio.
9170. Weatern States.
9207. Lake Champlain.
0393. Ecorse, Michigan.
9646.
20097. Sing Sing, New York.
20241. Near Richmond, Indiana.
20308. Root River, Wiaconsin.
24849. Washington Market.
220. Catostomus longirostrum LeS.
8437. Essex County, New York.

CYPRINIDA.
221. Hybopsis amarus (Grd.) Cope.
15379. Chapman's Point, Maryland.

222. Luxilus cornutus (Mitch.) Jordon.

7377. Yellow Creek, Ohio.
7378.
7379. Aux Plaines River, Ilinois.
7380. Semotilus corporalis (Miteh.) Putnam.
7381. Wentport, New York.
7382. Root River, Wisconsin.
7383. Weat port, Lake Champlain.
7384. Black River, Ohio.

88s3. Black Warrior River, Alabama.
8956. Racine Wisconsin.
8965. Quebec, Canada.
224. Semotilus bullaris (Raf.) Jordon.

Semotilus rhothous Cope.
Semotilus argenteus (Storer) Putnam.

7823.	New England, and New York.	12933. South Hadley Falls, Mansachusetts.
8775.	" "	15404. " "
8070.	" *	10848. New England and New York.
8985.	$1{ }^{\circ}$	10809. Sing Sing, New York.
9107.	$1{ }^{\prime \prime}$	2285. Schoodic Lake, Maine.
9645.	" *	

225. Ceratichthys biguttatus (Kirt.) Girard.
226. Black River, Ohio. \mid 18010. Bainbridge, Pennaylvaia
227. Bainbridge, Pennsylvania,

PROCEEDINGS OF UNITED STATES NATIONAL MESEUM. 111

226. Rhinichthys cataracta (C. \& V.) Jordan.

Rhinichthys nasutus (Ayres) Ag.
bs05. Carlisle, Pennaylvania.
227. Notemigonus americanus (L.) Jordon.

924.	Wasbington Market.	18229.	Saint John's River, Morida.
11074.	Saxdunky, Ohio.	18330.	* 0
11152	4 -	18331.	48
11153.	$4{ }^{4}$	19063.	11
11154.	41	19064.	0 *
17792	$4{ }^{4}$	19065.	41
17788.	44	19066.	44
17.94.	4	19067.	6
17795.	46	19088.	$4{ }^{4}$
18303.	Saint John's River, Morida.	19000.	16
187.	\because *	23100.	Avoca, Forth Carolinn.
1833.	4 *	23110.	4 *
18336.	11	23111.	4 4
18327.	46		

228. Exoglossum maxillingua (LeS.) Haddeman.

7r60. New York to Ohio and Maryland.
9044.
15300. Bainbridge, Pennsylvania.
229. Idus melanotus Heckel.
22973. Druid Hill Ponds, Baltimore, Maryland.
230. Caransins auratus (Linn.) Bleeker.
18290. Warhington Market.
18291.
18052.
18293.
18204. Washington Market.
18297.
20065. New York Market.
231. Cyprinus carpio Liun.
22964. Druid Hill Ponda, Baltinore, Md. 2296.
22968. Draid Hill Ponde, Baltimore, Md.
22000.

SILURIDA.

232. Ichthælurus punctatus (Raf.) Jordan.
233. Cincinnati, Ohio.
234. Michigan.
235. Sandusky, Ohio.
236.
237. Cincinnati, Ohio.
238. " "
239.

12250.	Cincinnati, Ohio.	
12251.	$"$	$"$
12252.	$"$	$"$
12282.	$"$	$"$
12283.	$"$	$"$
21208. Saint John's River, Florida.		

233. Amiurus nigricans (LeS.) Gill.
234. Saint John's River, Forida.
| 21270. Saint John's River, Floridn.
235. Amiurus albidus (Le8.) Gill.
236. Potomac River.

15i52. Bainbridge, Pennaylvania
10930. Washington Market.
20299. Havre de Grace, Maryland.
23188. Philadelphia, Pennsylvania.

23190.	Washington Market.
23191.	"
24851.	"
24893.	"

235. Amiurus lophius Cope.
236. Iuntington, Maryland.
| 15830. Huntington, Maryland.
237. Amiurus natalis (LeS.) Gill var. Hvaus (Raf.).
238. Western and Southern United Statea I 0220. Western and Southern Enited States. (7).
239. Amiurus vulgaris (Thomp.) Nelson var. aelurus (Grd.).
240. North Red River, Minnesota.
241. Amiurus catus (L.) Gill.

A miurus nebulosus (LeS.) Gill.

1433.	Sing Sing, New York.	18383.	Washington Market.
1479.	Chesapeake Bay.	18384.	${ }^{6}$
8444.	Washington Market.	18.85.	${ }^{6}$
8695.	"	18286.	${ }^{*}$
9025.	1	18287.	${ }^{\circ}$
9730.	Philadolphia, Ponnsylvania.	18288.	"
9732.	Washington Market.	18289.	4
12949.	South Hadley Falls, Masmechusetto.	19433.	Potomac River.
13353.	Bainbridge, Pennsylvania.	20378.	South Hadley Falls, Massachnsetts.
18278.	Washington Market.	20454.	Wilkes Bare, Pennsylvania.
18279.	"	22108.	Washington Market.
$18 \pm .0$	-	23186.	Potomac River.
16281.	"	23180.	*
18282.	${ }^{6}$	24852.	Washington Market.

239. Amiurus melas (Raf.) Jordan \& Copeland.
240. Northfield, Illinois.
241. Lacine, Wisconsin.
242. Patapaco River.
243. Cook County; Illinola.
244. Noturus insignis (Rich.) Gill \& Jordan.

Noturus marginatus Baird.

1470.	James River, Virginin.	19454	Potomac River.
15354.	Bainbridge, Pennsylvania.	23187	${ }^{\prime \prime}$
18012.	" 6	23190	${ }^{*}$
18016.	${ }^{4}$		

241. Noturus exilis Nelson.
242. South Grand River, MissourL
243. Noturus gyrinus (Mitch.) Raf.
244. Near Plermont, New York.
245. Artopsis felis (L.) Gill \& Jordan.
246. 1 CONGRIDE.
247. Conger oceanica (Mitch.) Gill. 19905. Beaufort, North Carolina. \quad 22907. East coast of United States.

ANGUILLIDAE.

245. Anguilla rostrata (LeS.) De Kay.

Anguilla bostonienvis (LeS.) De Kay.

13583. 13384.	Wood's Moll, Massachusetts. "	$16115 .$ $16146 .$	Wood's Holl, Massachusetta.
13586.	$4{ }^{41}$	17200.	Noank, Connecticut.
$135 \mathrm{k9}$.	4	172:1.	${ }^{6}$
13500.	$4{ }^{\prime \prime}$	1722.	11
14051.	Noank, Connecticut.	17293.	$4{ }^{4}$
14183.	16	17224.	4 "
14184.	${ }^{6}$	17225.	4
14185.	$4{ }^{4}$	17238.	4
14186.	${ }^{6}$	17247.	4
14188.	"	17238.	4
14191.	" ${ }^{4}$	17229.	$4{ }^{4}$
14104.	$4{ }^{4}$	$17 \% 30$.	11
14195.	4	20766.	Grand Lake Stream, Maine.
14106.	11	22654.	Gluucester, Massachusetto.
14200.	14	22711.	${ }^{6}$
14202.	$4{ }^{4}$	22910.	46
14203.		24422.	$4{ }^{4}$
$\begin{aligned} & 14211 . \\ & 14216 . \end{aligned}$	Wood's Holl, Mansachusetts. Eastport, Maine.	25093.	Wood' Holl, Massachusetts.

SIMENCHELYIDF.

6. Simenchelys paraaitious Gill.	
21655	Lo Have Bunk.
21676	-
21849	Weetern Bank, 200 fathoms.
21802	Banquerean.
22791.	Grand Banka.
28794.	Lat. $43025{ }^{\prime}$ N., Lon 60020 W.
22888.	Grand Banks.
29071.	Lut. $44^{\circ} 17^{\prime} \mathrm{N} .$, Lon. $58{ }^{\circ} 10^{\circ} \mathrm{W} ., 120 \mathrm{fths}$.
23072	** " *
23075	Banquereat.
20076.	Lat. $43^{\circ} 18{ }^{\circ} \mathrm{N} .$, Lon $00024 \mathrm{~W} ., 250$ flhs.
24870.	Lat $43^{\circ} 18$ N., Lon. $50020{ }^{\circ} \mathrm{W} ., 200$ flhs.

MURENIDE.

247. Murzena sanctse-holense.

20183. Bermuda

SYNAPHOBRANCHIDE.

248. Symaphobranchus pinnatus (Gronow) Gthr.
2168, Lo Have Bank.
249.

2168%
21848.
21800.
23145. Banquerean.
23146. Lat. $44^{\circ} 2 Y$ N., Lon. $57^{\circ} 00^{\prime}$ W., 250 fithoms. 24200. Banquereau.
24210.
24216. Lat. $44^{\circ} 30^{\circ}$ N., Lon. $57^{\circ} 08^{\circ}$ W., 200 fathome.
24271. Lat. $43^{\circ} 41^{\prime}$ N., Lon. $50^{\circ} 15^{\prime} \mathrm{W}$., 200 futhome.
24272. Lat. $42^{\circ} 41^{\prime} \mathrm{N}_{\text {., }}$ Lon. $02^{\circ} 58^{\prime} \mathrm{W}$., 200 fnthoms.
24352. Lat. $44^{\circ} 30^{\prime} \mathrm{N}$. . Lon. $57^{\circ} 08^{\circ} \mathrm{W}$., 200 fathome
24353. Lat. $47^{\circ} 20^{\circ} \mathrm{N}$., Lon. $50^{\circ} 48^{\prime} \mathrm{W} ., 48$ fathoma.
24383. Lat. $43^{\circ} 25^{\prime}$ N. Lon. 60° W., 180 fathome.
24900. Lat. 44° N. Lon. $58^{9} 90$ W., 100 fathomn.
24430. Lat. $43^{\circ} 05^{\prime} \mathrm{N}$. . Ion. $61^{\circ} 03^{\prime}$ W., 150 fathoms.
24734. Southern part of Weatern Bank,
24735. Grand Banks, Lat 49.

114 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

18556.	Potomac River.	19875.	Potomac River.
18558.	${ }^{\prime}$	22406.	-
18509.	${ }^{6}$	23102.	Aroca, North Carolina
18560.	${ }^{4}$	25149.	Potomac River.
18561.	${ }^{\circ}$	25151.	"
18562.	4	25153.	4
19048.	Flurida	25154.	4
1944.	"	25155.	${ }^{4}$
19445.	4	25158.	${ }^{6}$
19446.	4		

251. Lepidosteus platystomus Rafinesque.

 0505. Great Laken and W. to Rocky Mts. f12497. Great Lakes and W. to Rocky Mita.
POLYODONTIDE.

252. Polyodon follum Lac.

8234. 3235.	Foxburg, Pa. Tennessee.	12331. 12384.	Madieon, Indiana. ©
12228.	Cincinnati, Ohio.	12414.	Cincinnati, Ohio.
1222.	4 *	15475.	Madison, Indiana.
12230.	4 "	15480.	41 ob
12231.	414	15481.	44
12332.	$4{ }^{4}$	15482.	44
12333.	4 48	115488.	64
12297.	414		

ACIPENSERIDSE.
253. Acipenser oxyrhynchus Mitchell.

10897.	Potomac River.	22958. Potoman River.	
20330.	"	22957.	"

254. Acipenaer ruthenus Linnaus.
255. Baltimore, Maryland.
256. Scaphirhynchops platyrhynchus (Raf.) Gill.

2565.	Cincinnati, Ohio.	1224.	Cincinnati, Ohlo.
3246.	Republican River, Kanaas.	12245.	${ }^{6}$
3255.	Cincinnati, Ohio.	12461.	$4{ }^{4}$
12236.	* "	12463.	$4{ }^{4}$
12237.	$4{ }^{4}$	12478.	Yellowstone River.
12238.	$4{ }^{\prime \prime}$	15476.	Madiaon, Indiana.
12239.	11	15478.	"
12240.	$4{ }^{4}$	15470.	*
12241.	41	22158.	M ${ }^{\text {a }}$ Carmel, Illinois.
12242.	$4{ }^{4}$		

CHIM x RIDE.

256. Chimæra plumbea Gill.
257. Lat. $43^{\circ} 51^{\prime}$ N., Lon. $50^{\circ} 05^{\prime} \mathrm{W}$.
258. Le Have Bank
259. Banquerean.
260.
261. Grand Banks. -
262. Banquereau.
263.
264. Lat. $43^{\circ} 32^{\prime}$ N., Lon. $60^{\circ} 21^{\prime}$ W., 250 fathoms. 24287. Lat. $42^{\circ} 97^{\prime}$ N., Lon. $6205^{\prime}{ }^{\prime}$ W., 200 fathome. 24308. Lat. $44^{\circ} 16^{\prime}$ N., Lon. $68^{\circ}{ }^{5 \prime} 2^{\prime} \mathrm{W} ., 250$ fathoms. 24304. Lat. 44° N., Lon. $588^{\circ} 30^{\prime}$ W., 160 fathoms. 24305. " " W " 24306. Fishing Banka.

DASYBATIDE.

257. Dasybatis contrurus (Mitch.) Gill, MSS.
258. I

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

RAIIDE.

258. Raia eglanteria Lac.

2e270. Gloucester, Massachusetts 22061 . 4 "
259. Rala oxinacea Mitch.

260. Raia ocellata Mitch.
14158. Wood's Holl, Maesachueetts
22806. Gloncester, Massachusetts.

2428 4 4
24227. 4
261. Rala radiata Donovan.

21012 Elifas, Nova Scotia
21031. " "

21048 * *
21502. Salem, Mananhusette.
21815. Gloncenter, Masaachunetta
$2221 . \quad$.
"
2295. Of Gloucester, Masachnnette

2312 Gloucenter, Massechusetia.
24203. Provincetown, Masanchusetts.
1416. Wood's Holl, Maseachusetts. 22320. Gloucester, Masachusetts. 22386. Noank, Connecticut. 22887. East coast of United States. 22954.
2435. Provincetown, Mresachusette
24220. Gloucester, Massachusetts. 24230 .
2424. Provincetown, Massachnsetts.

ODONTASPIDIDE.
262. Eugomphodus Ittoralis Gill.

2\%\%20. East const of Cnited States.

SPHYRNIDE.

263. Sphyrna zygana (L.) Mull. de Henle.

2942 Rest conet of United Statee.
| 22943 . East conet of United Staten.

GALEORHINDDE.

264. Eulamia obscurus (LeS.) Gill.

19420. Wood's Holl, Massachusetts.	"19423.	Wood's Holl, Masenchusetts.		
19421.	"	"		
19422	"t	"		

265. Mustelus canis (Mitch.) DeKny.
$\left.\begin{array}{l}\text { 7208. Eant coast of United States } \\ \text { 7301. Beenley's Poink, New Jersey. } \\ 14153 .\end{array}\right)$ Noank, Connecticut.

266. Bqualus acanthias Linnæus.

Squalus americanus (Storer) Gill.
10275. Wood's Hon, Masaachusetts.

19276.	$"$	$"$
19277.	$"$	$"$
19278.	$"$	$"$
19270	"	"

$$
\begin{array}{ll}
\text { 10921. } & \text { Eastport, Maine. } \\
\text { 19923. } & \text { " } \\
\text { 21855. } & \text { George's Bank. } \\
\text { 22316. } & \text { Gloucester, Maesachneetts } \\
22660 . & \text { o }
\end{array}
$$

267. Centroscyllium Fabricii (Rhdt.) Müll. \& Henle.
268. Lat. $42^{\circ} 40^{\circ}$ N., Lon $63^{\circ} 50^{\circ}$ W., 250 fthe. 21686. George's Bank.
269. Of Gloucenter, Massachusetts.
270.
271. Le Have Bank.
272. Lat. $43^{\circ} 56^{\prime}$ N., Lon. $59^{\circ} 04^{\prime}$ W.
273. Banquerean.
274. Sable Island Bank.
275. Lat. $44^{\circ} 39^{\prime}$ N., Lon. $53^{\circ} 48^{\prime} \mathrm{W}$.
228.9. Lat. $44^{\circ} 23^{\prime}$ N., Lon. $53^{\circ} 25^{\prime}$ W., 200 fths.
276. Lat. $44^{\circ} 38^{\prime}$ N., Lon. $57^{\circ} 09^{\prime}$ W., 200 fths.
277. Benquerear.
278.
279. Lat $44^{\circ} 20^{\prime}$ N., Lon. $57^{\circ} 57 \prime$ W.
280. Lat. $43^{\circ} 25^{\prime}$ N., Lon. 60° W., 250 fathoms 24300. Lat. $42^{\circ} 97^{\prime}$ N., Lon. 62050^{\prime} W., 200 fathoms. 24392. 24705. Lat. $43^{\circ} 27^{\prime} \mathrm{N}_{\mathrm{o}}$, Lon. $51^{\circ} 47^{\prime}$ W., 200 fathoms 24706. 25105. Grand Banks.
281.
282. Lat. $42^{\circ} 46^{\prime} \mathrm{N} .$, Lon. $65^{\circ} 18^{\prime} \mathrm{W}$., 200 fithorss
283. Centroscymnus ccololepin Bocage \& Capello.
284. Iat. $42^{\circ} 40$ N. Lon. 630 W., 260 fthe. 21833. Grand Banka.
285.
286. Banquereau.
287.
288. Grand Banks, 200 fathoms.
289. Banquerean
290. Lat $43^{\circ} 25^{\prime} \mathrm{N}_{\mathrm{\prime}}$ Lon. $600 \mathrm{~W} ., 180$ fatbome.
291. Lat. $42^{\circ} 15^{\prime} \mathrm{N}$., Lou. $58052^{\prime \prime} \mathrm{W}$., 250 fithoms 24209. Lat. $42^{\circ} 37^{\prime}$ N., Lon. $62^{\circ} 5^{\circ} \mathrm{W}$., 200 fathoma 24711. Lat. 44° N., Lon. $52^{\circ} 50^{\circ} \mathbf{W}$., 250 fathoms.

MYXINIDE.

269. Myxine glutinosa Linnæus.
270. Le Have Bank.
271. Lat. $44^{\circ} 45^{\prime}$ N., Lon. 59054^{\prime} W., 400 fths.
272. Lat. $45^{\circ} 03^{\prime}$ N., Lon. $64^{\circ} 30^{\circ}$ W., 85 fths. 22800. Grand Banka.
273. 4
274. Fastern part of George's Bank, 46 fhe. 23086.

Washington, May 1, 1880.

[^13]
THE LITTORAL MARINE FAUNA OP PROTINCETOWN, CAPE COB, MABAACMEBETTS.

By IRCHARD RATHEUN.

The species enumerated in the following list were, anless otherwise stated, all collected by the United States Fish Commission during the summer of 1879. As the list, however, represents only a few days' collecting, at intervals when the steamer was not available for dredging purposes, it must be considered as far from complete, especially as regards the smaller forms, while no attempt has been made to include the groups of Entomostraca, Foraminifera, \&c. Considering the fact that very little has yet been published concerning the shore animals of this region, I feel justified in offering the list in its present imperfect form in
order to supply more definite information as to the so-called boundary line separating the Northern and Southern New Englaud faunx.

Rock exposures are entirely wanting about the outer extremity of Cape Cod, and the sandy areas which compose the most of that region are generally of so pure a character as to offer little inducement to animal life in the way of food. The littoral fauna of Provincetown and vicinity is therefore less rich in species than a more diverse region would be. Nevertheless a more diligent search than has hitherto been instituted would undoubtedly result in the finding of many species additional to those given below. Prof. H. E. Webster, who spent the entire summer of 1879 in collecting and studying especially the shore aunelids about Provincetown, obtained many new forms not included in this list.

The localities examined in 1879 were about as follows: The inner beach of the cape in front of the town of Provincetown, from the dike on the south to Wood End on the north and from high-water to low-water mark, including the eel-grass areas lying directly off the beach and the broad sand-flats in front of and behind it; the inner beach at Long Point; the piles of the wharves, especially those at the ends of the long steamboat and railroad wharves; and the outer beaches at Wood End, Race Point, \&c. A few interesting species obtained at Wellfleet by Professor Webster are included in the list, and I am also indebted to him for material from about Provincetown. The identifications of species are only partly mine. Prof. A. E. Verrill furnishes the lists of worms and Nudibranchs; Prof. S. I. Smith has kindly identifled the Amphipods and more difficult Decapods; and Mr. Sanderson Smith the more critical species of Mollusks. Mr. O. Harger has also examined the Isopods. In addition to the species contained in the list, a species of Chironomus in the larval stage was tound abundantly on the shore, and one or more species of mites were common among Hydroids. Of the one hundred and fifty-seven species included in the list, all but twenty-one were previonsly known to range both to the north and south of Cape Cod. Of the species whose range has been extended, thirteen belong properly to the fauna of Southern New England and seven to that of Northern New England. The southern species are as follows: Pallene empusa, Pinnixa chatopterana, Gebia affinis, Mara levis, Microdeutopus grandimanus, Amphithoë longimana, Chelura terebrans, Caprella geometrica, Leptochelia algicola, Sigalion arenicola, Sthenelais picta, Anthostoma robustum, and Leptosynapta roseola. The northern species are: Leptochelia caca, Praxilla zonalis, Tetrastemma vermiculus, Planocera elliptica, Embletonia fuscata, Stiliger fuscata, and Edioardsia sulcata. The only new littoral species discovered by the Commission, so far as the collections have been worked up, is Edicardsia pallida.

Excepting in a few necessary instances the synonymy of the species has been omitted, but references have been given in nearly all cases to American publications in which the synonymy and range of the several species and other information concerning them are discussed.

New Haven, Conn., April 8, 1880.

PYCNOGONIDA.

Pallene empusa Wilson, Trans. Conn. Acad. Arts and Sciences, vol. v, p. 9, pl. iii, figs. $2 a$ to $2 g$, 1878.-Phoxichilidium maxillare Smith, Inv. of Vineyard Sonnd, p. 644, 1874 (non Stimpron).

Found amongst the eel-grass, low water to $\frac{1}{2}$ fathom. Former localities: Vineyard Sound (U. S. F. C., 1871) and Noank, Conn. (U. S. F. C., 1874).

MEROSTOMATA.

Limulus Polyphemus Latreille. Smith, Inv. V. S., p. 580, 1874.

Very common along the entire inner shore of the cape, in the vicinity of Provincetown. The living specimens were usually encountered partly buried in the sand, near low-water mark. They sometimes attain a very large size in this region, but the majority of the specimens seen were from small to medium size and females. All the larger specimens collected were males. The cast skins or exuvia were sometimes so abundant that they nearly made up the little ridge of débris running along the upper part of the beaches.

Two specimens, both females, were obtained in the act of molting; one was living, the other dead. In the case of the latter the operation of throwing off the old skin had adranced considerably, allowing us to measure accurately the increase in the size of the carapax for the past year. Of the exuvia, the greatest width of the carapax was 57^{mam}; length of carapax along the median line, 35^{mm}; distance between the tips of the spines surmounting the compound eyes, 31.5^{mm}; length of compound eye, 3.5^{mm}. The carapax of the newly expanded animal had a width of $67^{7 m}$; length, 45^{mm}; distance between the spines of compound exes, 43^{mm}; length of compound eye, 5^{mm}. The living specimen had only broken slightly through the outer skin, so that but one measurement could be made without destroying it. The width of the old carapax was 124^{mm}, of the new 141^{mm}; but as the latter had suffered contraction in alcohol, it must have been larger originally.

DECAPODA.

Gelasimus pugnax Smith, Trans. Conn. Acad., vol. ii, p. 131, 1870; ibid., vol. v, p. 33, 1879 ; Inv. V. S., p. 545, 1874.
Very abundant on the salt marshes and upper part of the beaches, between the town and Wood End Light. Also found at the same place by Prof. S. I. Smith and Mr. O. Harger, in 1872.

Gelasimus pugllator Latreille. Smith, Trans. Conn. Acad., vol, ii, p. 136, 1870; ibid, vol. v, p. 33, 1879; Inv. V. S., p. 545, 1874.
A few specimens only of this species have been noticed from Provincetown; they were found on the beach near the dike in 1872, by Smith and Harger.

Pinnixa chzetopterana Stimp., Ann. Lyc. N. H., New York, vol. vii, p. 235, 1860.
Wellfleet, 1879; collected by Prof. H. E. Webster, who found it in great abundance in the tubes of Amphitrite ornata, on the flats near the town.

Platyonichan ocellatus Latr. Smith, Inv. V. S., p. 547, 1874; Trans. Conn. Acad., vol. v, p. 33; 1879.
Extremely abundant everywhere along the inner shore, in the vicinity of Provincetown, at low water and deeper. Large numbers were observed to be molting during August and the last of July, and fresh exuviæ were very common all through the latter half of the summer. One small specimen obtained while molting, and preserved in alcohol, afforded the following measurements: length of carapax in the exuvia, 35^{mm}; width, 42^{mm}; length of freshly expanded carapax, partly contracted in alcohol, 38^{mm}; width, 47^{mm}. The largest specimen taken on the shore measured: length of carapax, 71^{mm}; width, 86^{mm}. On August 16, and during one or more succeeding days, the young were seen swimming at the surface in countless numbers, but how far from the shore they extended was not determined; they were very plentiful about the end of the long steamboat wharf. They varied in length of carapax from about 11^{mm} to 16 mm . September 3 they were again abundant, but less so than on the former occasion, and they remained nearer the shore, or at least closer to the bottom. At this time they were from 18^{mm} to $23^{m m}$ long.

Carcinns maenas (Linné) Leach. Smith, Trans. Conn. Acad., vol. v, p. 34, 1879.C. granulatus Simith, Inv. V. S., p. 547, 1874.

Collected by Smith and Harger, 1872.
Panopeus depressus Smith, Proc. Bos. Soc. N. H., vol. xii, p. 283, 1859; Inv.V. S., p. 547, 1874 ; Trans. Conn. Acad., vol. v, p. 37, 1879.

Collected by Smith and Harger, 1872.
Panopens Sayi Smith, Proc. Bos. Soc. N. H., vol. xii, p. 284, 1859; Inv. V. S., p. 547, 1874 ; Trans. Conn. Acad., vol. v. p. 37, 1879.
Found abundantly in the eel-grass off the dike, and also collected by Smith and Harger, 1872.

Cancer frroratus Say. Smith, Trans. Conn. Acad., vol. v, p. 38, 1879.
Common; shore, at low water.
Libinia emarginata Leach. Smith, Trana. Conn. Acad., vol. v, p. 45, 1879.-L. canaliculata Smith, Inv. V. S., p. 548, 1874.
Very abundant at low water, Provincetown; several very large males were also obtained from ${ }^{\circ}$ Wellfleet Harbor, the largest measuring: length of carapax, 113^{mm}; width, excluding spines, 103^{mm}.

Eupagurus longicarpus (Say) Stimp. Smith, Inv. V. S., p. 549, 1874; Trans. Conn. Acad., vol. v, p. 47, 1879.
Very abundant.

Gebla affinis Say. Smith, Inv. V. S., p. 549, 1874.
This species was not collected at Provincetown, but was obtained from the fiats at Wellfleet by Prof. H. E. Webster, in 1879, and seems to be abundant there. This is the first time it has been recorded from the north side of Cape Cod.

Crangon vulgaris Fabr. Smith, Inv. V. S., p. 550, 1874; Trans. Conn. Acad., vol. v, p. 55, 1879.
Very common along the shore.
Palamonetes vulgaris (Say) Stimp. Smith, Inv. V. S., p. 550, 1874; Trans. Conn. Acad., vol. v, p. 88, 1879.
Only a very few specimens of this species were collected, although it was diligently sought for. These were found in the eel-grass in front of the town and off the dike.

SCHIZOPODA.

Mysis atenolepis Smith, Inv. V. S., p. 551, 1874; Trans. Conn. Acad., vol. v, p. 103, 1879.

A few specimens only were collected; they were from the eel-grass in front of the town.

AMPHIPODA.

Orchestla agilis Smith, Inv. V. S., p. 555, 1874.
Very abundant on the beaches, under dead sea-weeds, etc.
Talorchestia longicornis (Say) Smith, Inv. V. S., p. 556, 1874.
Very abundant on both the outer and inner beaches, burrowing deeply into the sand, about high-tide level.

Talorchestia megalopthalma (Bate) Smith, Inv. V. S., p. 556, 1874.
Associated with the preceding.
Hyale littoralis (Stimp.) Smith, Inv. V. S., p. 556, 1874.
Collected in 1879; and also in 1872, by Smith and Harger.
Calliopius levviusculun (Kroy.) Boeck. Smith, Inv. V. S., p. 557, 1874.
Found upon the beach at Long Point among stranded sea-weeds.
Gammarus locusta (Linne) Fabr., Systema Entomologia, 1775. Gould, Inv. Mass., ed. I, p. 334, 1841. Smith, Bull. U. S. Nat. Mus., No. 15, p. 139, 1879.-G. ornatus Edwards, Ann. des Sci. Nat., tome xx, p. 367, 1830; Hist. Nat. des Crust., tome iii, p. 47, 1840. Smith, Inv. V. S., p. 557, 1874.
Only a few specimens of small size were obtained from the eel-grass in various places. The scarcity of this species at Provincetown is probably due to the absence of rocks and of much rock-weed, which together form its favorite grounds. A comparison of European with American specimens has enabled Professor Smith to establish the identity of G. ornatus and G. locusta.

Gammarus annulatus Smith, Inv. V. S., p. 557, 1874.
Shore and flats at low water, and eel-grass; abundant.
Gammarus mucronatus Say, Journ. Phila. Acad., vol. i, p. 376, 1818. Smith, Inv. V. S., p. 559, 1874.

Shore and flats at low water; very abundant.
Mcora levis Smith, Inv. V. S., p. 559, 1874.
In the eel-grass off the dike. Not hitherto recorded from north of Vineyard Sound.

Microdeutopus grandimanus Smith.-Autonoï grandimana Bruz., Skand. Amphip. Gamm., p. 26, 1859.-Microdeutopus minax Smith, Inv. V. S., p. 562, 1874.
On the shore at low water, in the eel-grass off the dike, and among the sea-weeds on the piles of the wharves. Formerly known on the American coast only from Vineyard and Long Island Sounds.

Amphithoē longimana Smith, Inv. V. S., p. 563, 1874.
Found at low water and in the eel-grass in one-half fathom. Previously known only from south of Cape Cod.

Corophium cylindricum (Say) Smith, Inv. V. S., p. 566, 1874.
Eel-grass, one-half fathom.
Chelura terebrans Philippi. Smith, Proc. U. S. Nat. Mus., vol. ii, p. 232, 1879.
Abundant in old submerged piles of wharves, associated with Lim noria lignorum and Teredo navalis. First recorded from America in the paper of Professor Smith referred to above, but previously found by him at Wood's Holl in 1875.

Caprella geometrica Say, Journ. Acad. Nat. Sci., Phila., vol. i, p. 390, 1818. Smith, Inv. V. S., p. 567, pl. v, fig. 20, 1874.
In the eel-grass, one-half fathom, and also obtained from floating seaweeds in Piovincetown Harbor. Hitherto recorded from south of Cape Cod ouly, but discovered by the Fish Commission at Quahog Bay, Maine, in 1873.

ISOPODA.

Jara albifrons Leach. Harger, Proc. U. S. Nat. Mus., vol. ii, p. 158, 1879.-Jara copiosa Stimpan, Mar. Inv. Grand Manan, p. 40, 1853. Harger, Inv. V. S., p. 571, 1874.

Very abundant on the shore between tides, under loose stones and other objects; and also in the eel-grass in very shallow water.

Chiridotea cceca (Say) Harger, Am. Journ. Sci., III, vol. xv, p. 374, 1878.
Shore, low water; only a few specimens collected.
Idotea frrorata (Say) Edwards. Harger, Inv. V. S., p. 569, 1874; Proc. U. S. Nat. Mus., vol. ii, p. 160, 1879.-Idotea tricurpidata Desm., Dict. des Sci. Nat., tome xxviii, p. 373, 1823.

Very abundant on the shore, on piles of wharves, in the eel-grass, and swimming at the surface amongst floating sea-weeds.

Idotea phosphorea Harger, Inv. V. S., p. 569, 1874.
Occasionally found swimming at the surface in Provincetown Harbor, and also upon the beach, with stranded sea-weeds.
Epelys trilobus (Say) Smith, Inv. V. S., p. 571, pl. vi, fig. 28, 1874. Harger, Proc. U. S. Nat. Mus., vol. ii, p. 160, 1879.
Moderately abundant; shore, between tides, and in the eel-grass, onehalf fathom; only specimens of small to medium size were met with.

Sphæroma quadridentatum Say. Harger, Proc. U. S. Nat. Mus., vol. ii, p. 161, 1879.
Abundant, but only specimens of small size were obtained; low water and between tides on the shore and flats, and upon eel-grass, in one-half fathom.

Limnoria lignorum (Rathke) White. Harger, Proc. U. S. Nat. Mus., vol. ii, p. 161, 1899.

In piles of old wharves, in company with Leptochelia algicola and Chelura terebrans.

Leptocheha algicola Harger, Proc. U. S. Nat. Mus., vol. ii, p. 162, 1879.-Paratanais algicola Harger, Am. Journ. Sci., III, vol. xv, p. 377, 1878.
Very abundant at low water, on eel-grass, in one-half fathom, and in old piles, associated with Limnoria lignorum and Chelura.

Leptochelia cceca Harger, Proc. U. S. Nat. Mus., vol. ii, p. 164, 1879.
A single specimen only of this species was recognized among the shore collections.

CIRRIPEDIA.

Balanus balanoides (Linn6) Stimp., Mar. Inv. of Grand Manan, p. 39, 1853. Smith, Inv. V. S., p. 579, 1874.
Common on piles of wharves, on shells, stones, and wood on the beaches, and occasionally found on floating fucus. On the piles it was usually of small size, but on stones lying on the beaches it often exceeded half an inch in diameter.

Lepas fancioularls Ellis and Sol. Smith Inv. V. S., p. 579, 1874.
On floating fucus in the harbor.

ANNELIDA.

Lepldonotus squamatus Leach. Verrill, Invertebrate Animals of Vineyard Sound, p. 581, pl. 10, fig8. 40, 41, 1874.

On the piles of wharves.
Earmothoe imbricata Malmg. Ver., Inv. V. S., p. 582, 1874.
Piles of wharves.
Sigalion arenicola Ver., Proc. U. S. Nat. Mus., vol. ii, p. 167, 1879.
Shore, in sand, at low water.
Ethenelais picta Ver., Inv. V. S., p. 582, 1874; Proc. U. S. Nat. Mus., vol. ii, p. 167, 1879. Shore, in sand, at low water.

Nephthys ciliata Rathke. Ver., Inv. V. S., p. 583, 1874.
Shore, in saind.
Phyllodoce catenula Ver., Inv. V. S., p. 587, 1874.
Piles of wharves.
Eulalia pistacia Ver., Inv. V. S., p. 584, 1874.
Piles of wharves.
Autolytus cornutus A. Ag., Jour. Bos. Soc. N. H., p. 392, 1863. Ver., Inv. V. 8, p. 590, pl. 13, figs. 65, 66, 1874.

Piles of wharves, and among eel-grass near the beach.
Nereis limbata Ehlers. Ver., Inv. V. S., p. 500, pl. 11, fig. 51, 1874.
Shore, in sand, and among eel-grass.
Nereis virens Sars. Ver., Inv. V. S., p. 590, pl. 11, figs. 47-50, 1874. Shore, in sand.
Lumbrinereis fragilis A. and E. Ver., Inv. V. S., p. 594, 1874 (Lumbrioonereis). Shore, in sand.
Lumbrinereis tenuim Ver., Check List, p. 8, 1879; Inv. V. S., p. 594, 1874 (Lumbriconereis).
Shore, in sand.
Arabella opalina Ver., Check List, p. 8,1879; Inv. V. 8., p. 594, pl. 13, Ggas 69, 70, 1874 (Lumbriconereis).
Shore, in sand.
Goniada gracilis Ver., Proc. U. S. Nat. Mus., vol. ii, p. 174, 1879.-Eone graoilis Ver., Inv. V. S., p. 596, 1874.
Shore, in sand.
Fhynchobolus dibranchiatus Ver., Inv. V. S., p. 596, pl. 10, figs. 43, 44, 1874.
Shore, in sand.
Anthostoma fragile Ver., Inv. V. S., p. 598, 1874.
Shore, in sand.
Anthontoma robustum Ver., Inv. V.S., p. 597, pl. 14, fig. 76, 1874.
Shore, in sand.
Bcolecolepls viridis Ver., Inv. V. S., p. 600, 1874.
Shore, in sand.
Polydora cillatum Clapar. (') Ver., Inv. V. S., p. 603, pl. 14, fig. 78, 1874. Shore, in sand.
Cirratulus grandis Ver., Inv. V.S., p. 606, pl. 15, iggs. 80, 81, 1874.
Shore, in sand.
Notomastus luridus Ver., Inv. V. S., p. 610, 1874.
Shore, in sand.

124 proceedings of united states national musedx.

Notomastus filiformis Ver., Inv. V. S., p. 611, 1874.
Shore, in sand.
Praxilla zonalis Ver., Proc. Am. Ass. Adv. Sci., 1873, p. 384.
Shore, in sand.
Clymenella torquata Ver., Inv. V.S., p. 608, pl. 14, figs. 71-73, 1874.
Shore, in sand.
Cistenides Gouldii Ver., Inv. V. S., p. 612, pl. 17, figs. 87, $87 a, 1874$. Shore, in sand.

Nicolea nimplex Ver., Inv. V. S., p. 613, 1874.
Piles of wharf, and eel-grass.
Scionopsis palmata Ver., Inv. V.S., p. 614, 1874.
Piles of wharf.
Polycirrus eximius Ver., Inv. V. S., p. 616, pl. 16, fig. 85, 1874.
Shore, in sand, and piles of wharf.
Fabricia stellaris Blainv.-Fabricia Leidyi Ver., Inv. V. S., p. 619, 1874.
Piles of wharf.
Hydroides dianthus Ver., Check List, p. 11, 1879; Inv. V. S., p. 620,1074 (Serpula). On piles of wharves, and incrusting living and dead shells of Pecten irradians, Ensatella americana, Littorina littorea, Anomia glabra, \&c.; also on fucus and other objects; especially abundant in the vicinity of the dike.

Spirorbis borealis Daud. Ver., Inv. V. S., p. 621, 1674.
On fucus growing on the piles and floating at the surface; abundant.
Clitellio irrorata Ver., Inv. V. S., p. 622, 1874.
Shore, in sand, near high-water mark.
Ealodrillus littoralis Ver., Inv. V. S., p. 623, 1874.
On the beach, under dead sea-weeds near high-water mark.
GEPHYREA.
Phascolosoma Gouldil Dies. Ver., Inv. V. S., p. 627, pl. 18, fig. 93, 1874. Shore, in sand.

ENTEROPNEUSTA.

Balanoglossus aurantiacus Ver., Inv. V. S., p. 627, 1874.
Shore, in sand.

NEMERTINA.

Tetrastemma dorsalis M'Int. Ver., Am. Journ. Sci., vol. x, p. 40, 1875.
Piles of wharves.
Tetrantemma vermiculus Ehr. (1) Ver., Proc. U. S. Nat. Mus., p. 184, 1879.
Piles of wharves.

Lineus viridis Ver., Am. Journ. Sci., vol. x, p. 40, 1875; Inv. V. S., p. 628, 1874 (Ne mertes).
Piles of wharres.
Cerebratulus ingens (Leidy) Ver., Check List, p. 12, 1870; Inv. V. S., p. 630,1874 (Meckelia).
Shore, in sand.
Cerebratulus roseus (Leidy) Ver., Check List, p. 12, 1879; Inv. V. S., p, 630, 1874 (Meckelia).
Shore, in sand.

TURBELLARIA.*

Planocera elliptica Gir., Proc. Bos. Soc. Nat. Hist., p. 251, 1850.
Piles of wharves, and on the shore under bits of wood, \&c.
Bdelloura candida Gir. Ver., Inv. V. S., p. 634, 1874.
Parasitic on Limulus Polyphemus.

CEPHALOPODA.

Ommastrephes illecebrosa (Les.) Ver., Inv. V. S.. p. 634, 1874.-O. sagittatus Binney in Gould, Inv. Mass., ed. II, p. 510, 1870.
This species is caught in Provincetown Harbor during the summer and early fall in considerable numbers, to use for bait, and is often stranded upon the beaches at low tide. Prof. S. I. Smith and Mr. Oscar Harger, while at Provincetown in 1872, noticed large numbers of this squid about the docks, killing and eating young mackerel. Their obserrations on the habits and appearance of the creature made at that time are given in the report of the United States Fish Commission for $1871-72$, pp. $441,442,1874$.
Loligo Pealei Les. Binney, in Gould, Inv. Mass., II, p. 514, 1870. Ver., Inv. V. S., p $635,1844$.
This species was not encountered at Provincetown by the Fish Com. mission, but it is represented in the collection of Mr. J. H. Blake, of that place, by two pens takeu from specimens canght in the harbor, in July, 1879. It is not abundant north of Cape Cod, although several specimens were procured at Annisquam, on the north side of Cape Ann, by Professor Hyatt, in 1878, and it has also been previously noticed from Massachusetts Bay.

GASTEROPODA.

Ilyanassa obsoleta (Say) Stimp. Ver., Inv. V. S., p. 641, 1874. Gould, Inv. Mass, II, p. 302, 1870 (Nassa).
Very common on many of the inner beaches, and extending up to hightide level. It is especially abundant in places where the brackish water from ponds runs down the face of the beach as it is left uncovered by the tide.

[^14]Purpura lapillus (Linn6) Lam. Gould, Inv. Mass., II, p. 360, 1870. Ver, Inv. V. S., p. 642, 1874.

Shore, rare.
Anachis avara (Say) Perkins. Ver., Inv. V. S., p. 643, 1874. Gould, Inv. Mass, I, p. 313, 1841; II, p. 356, 1870 (Columbella).
Rare; only a single specimen was found by the writer, but others have collected it at Provincetown.

Astyris lunata (Say) Dall. Ver., Inv. V. S., p. 645, 1874.-Columbella lunata Gould, Inv. Mas8., II, p. 359, 1870.
Abundant in the eel-grass in front of the town and off the dike.
Iunatia heros (Say) Adams. Gould, Inv. Mass., II, p. 338, 1870. Ver., Inv. V. S., p. 646, 1874.

Very common along the entire inner shore, and often picked up dead on the outer beaches.

Neverita duplioata (Say) Stimp. Gould, Inv. Mass., II, p. 345, 1870. Ver., Inv. V. S., p. 646, 1874.

Abundant, associated with Lunatia heros.
Littorinella minuta (Totten) Stimp. Ver., Inv. V. S., p. 653, 1874. Gould, Inv. Mass., II, p. 29\%, 1870 (Ris8oa).
Common, shore at low water.
8kenea planorbis (Fabr.) Forbes and Hanley. Gould, Inv. Mass., II, p. 296, 1870. Ver., Inv. V.S., p. 655, 1874.
Common on the shore, with Tottenia gemma, Littorinella minuta, \&c., and also on the piles of wharves.

Littorina littorea (Linn6) Johnston. Gould, Inv. Mass., II, p. 308, 1870.
Very abundant on the shore, on piles of wharves, and on eel-grass which is more or less exposed at low tide. Just off the dike it occurs on the eel-grass in countless numbers, and, in common with all the other species of shells in that vicinity, is frequently covered with the white calcareous tubes of Hydroides dianthus.

Littorina rudis (Maton) Gould, Inv. Mass., I, p. 257, 1841; II, p. 304, 1870. Ver., Inv. V. S., p. 651, 1874.-L. tenebroea Gould, In v. Mass., I, p. 259; II, p. 306.

This is an exceedingly common species on the shore.
Littorina palliata (Say) Gould, Inv. Ma8s., I, p. 260, 1841; II, p. 309, 1870. Ver. Inv. V. S., p. 652, 1874.

Common on the shore and on piles of wharves among sea-wseds.
Lacuna vinota (Mont.) Turton. Gould, Inv. Mass., II, p. 302, 1870. Ver., Inv. V. S., p. 652, 1874.

On the eel-grass, shallow water; not found in much abundance.

Bittium nigrum (Totten) Stimp. Gould, Inv. Mase., II, p. 321, 1870. Ver., Inv. V. S., p. $648,1874$.

Very abundant amongst the eel-grass, in shallow water in front of the town, and off the dike, and also on the beaches, where it often occurs in immense numbers.

Crepidula fornicata (Linne) Lamarck, Gould, Inv. Masa, II, p. 271, 1870. Ver., Inv. V. S., p. 649, 1874.
Common, especially in the vicinity of the dike, on shells of Pecten and Ensatella.

Crepidula plana Say. Gould, Inv. Mass., II, p. 272, 1870. Ver., Inv. V. S., p. 650, 1874.
Common off the dike, and also found elsewhere.
Crepidula convexa Say. Gould, Inv. Mass., II, p. 273, 1870. Ver., Inv. V. 8., p. 650, 1874.

Abundant off the dike, adhering to the surfaces of living and dead shells, to Limulus, and other objects.

Acmaea testadinalis (Müller) Forbes and Hanley. Ver., Inv. V. S., p. 661, 1874. Gould, Inv. Mass., II, p. 267, 1870 (Tectura).
Rare, shore; variety alveus also found.
Odostomia bisuturalle (Say) Gould, Inv. Mass., II, p. 327, 1870. Yer., Inv. V. S., p. 656, 1874.
Not uncommon; eel-grass off the dike, and elsewhere.
Odostomia trifida (Totten) Gould, Inv. Mass., I, p. 274, 1841; II, p. 328, 1870. Ver. Inv. V. S., p. 656, 1874.
Associated with the last, and about equally common.
Odostomia dealbata Stimp. Gould, Inv. Mass., II, p. 327, 1870. Ver., Iyv. V. 8., p. 656, 1074.
A single specimen only was obtained from the eel-grass off the dike.
Melampus lineatus Say, Am. Conch., p. 85, 1822.-Melampus bidentatus Say. Gould, Inv. Mass., II, p. 467, 1870. Ver., Inv. V. S., p. 664, 1874 (non Mont.).
Abundant, shore, between tides.

Onchidoris, sp.

An undetermined species of this genus was obtained from sea-weeds on the inner beach at Long Point.

Tergipes despeotus Ald. and Han. Ver., Inv. V. 8., p. 667, 1874.-Aolis (Tergipes) despecta Gould, Inv. Mass., II, p. 248, 1870.
From hydroids, on piles of wharves, and sea-weeds of beach.
Embletonia fuscata Gould, Inv. Mass., II, p. 251, 1870.
Found among the filamentous green algæ in little rills of water on the beaches and sand-flats.
Stiliger fuscata Bergh. Ver., Prelim. Check List, p. 23, 1879.-Calliopaa (1) fuscata Gould, Inv. Mass., II, p. 250, 1870.
Associated with Embletonia fuscata.

LAMELLIBRANCHIATA.

Teredo navalia Linn6. Gould, Inv. Mass., II, p. 28, 1870. Ver., Inv. V. S., p. 669, 1874.
Very abundant in the piles at the outer end of steamboat wharf, and in other situations. A few years ago about forty feet of the above-mentioned wharf was so weakened by the borings of this shell-fish that it completely gave way under the weight of a ship's load of merchandise stored upon it.

Teredo megotara Hanley. Gonld, Inv. Mass., II, p. 30, 1870. Ver., Inv. V. S., p. 670 , 1874.

At Provincetown, in cedar buoys (Gould).
Teredo dilatata Stimp. Gould, Inv. Mass., II, p. 32, 1870. Ver., Inr. V. S., p. 670, 1874.

From pine buoy attached to lobster pots, at Provincetown (Gould).
Ensatella americana (Gould) Ver., Am. Journ. Sci., vol. iii, pp. 212, 284, 1872; Inv. V.S., p. 674, 1874.—Solen americanus Gould, Inv. Mass., II, p. 42, 1870.

Many dead adult shells and living young were collected on the sandflats at low water.

Mya arenaria Linn6́. Gould, Inv. Mass., II, p. 55, 1870. Ver., Inv. V. S., p. 672, 1874.
Very abundant on the shores and flats; especially so on the broad flats between the town and Wood End Light House, where, in the clean sands, the shells are often of a nearly pure white.

Lyonsia hyalina Con. Gould, Inv. Mas8., II, p. 64, 1870. Ver., Inv. V. S., p. 672, 1874.
Quite common at low water on the inner shore at Provincetown, and in the inlet behind Race Point Light House. It was also picked up in extreme abundance on the outer beach at Race Point.

Cochlodeama Leanum (Say) Couth. Gould, Inv. Mass., II, p. 68, 1870. Ver., Inv. V. S., p. 673, 1874.

Dead shells in fresh condition were collected on the outer beach at Race Point, but not on the inner.

Spisula solidisaima (Dillw.) Gray.-Mactra solidissima Gould, Inv. Mass., II, p. 73, 1870. Ver., Inv. V. S., p. 680, 1874.

Living young and adult dead shells were frequently found on the shore at low water.

Ceronia arctata (Con.) Adams. Gould, Inv. Mass., II, p. 80, 1870. Ver., Inv. V. S., p. 679, 1874.

Many living specimens were obtained by Prof. H. E. Webster in the inlet behind Race Point Light House and on the outer beach near the same place; not known from the inner shore.

Cumingia tellinoides Con. Gould, Inv. Mass., II, p. 79, 1870. Ver., Inv. V. S., p. $679,1874$.
Not found by the Fish Commission, but several dead shells were collected on the inner beaches by Mr. J. H. Blake, of Cambridge, and Dr. Crocker, of Provincetown.

Angulus tener (Say) Adams. Ver., Inv. V. S., p. 677, 1874. Gould, Inv. Mase., II, p. 97, 1870 (Tellina).

Abundant on the shore, low water.
Fenus mercenaria Linne. Gould, Inv. Mass., II, p. 133, 1870. Ver., Inv. V. 8., p. $681,1874$.
Rare on the beaches at Provincetown, but very common farther south on the inner shores of the cape, especially in the neighborhood of Wellfleet, where they attain a large size and have the purple coloration of the interior of the shell more than usually intense and widespread.

Tottenia gemma (Totten) Perkins. Ver., Inv. V. S., p. 682, 1874.
Very abundant on the beaches in company with Skenea planorbis and Littorinella minuta, and also found amongst the eel-grass. The small dark-colored shells of this species are frequently scattered over the white beaches in the greatest profusion, appearing like coarse grains of black sand. But, being lighter than the sand, they are readily blown along by the wind antil they collect in large numbers in the lee of any prominence that may present itself, and in the furrows of the beaches. In such places as these several handfuls of pure shells, with little admixtare of sand, may often be scooped np. The first specimens of this species obtained by General Totten, its earliest describer, were from the beach at Provincetown.

Laevicardium Mortoni (Con.) Perkins. Ver., Inv. V. 8., p. 683, 1874. Gould, Inv. Mass., II, p. 143, 1870 (Liocardium).
Low water, rare.
Cryptodon Gouldii (Phil.) Adams. Gonld, Inv. Mass., II, p. 100, 1870. Ver., Inv. V. S., p. 686, 1874.

Dead shells frequently found along the beaches; probably lives in shallow water close to the shore, but not dredged in Cape Cod Bay in less than thirteen fathoms, at which depth it was very abundant.

Bolemya velum Say. Gould, Inv. Mnss., II, p. 48, 1870.-Solenomya relum Ver., Inv. V.S., p. 688, $18 \% 4$.
A few dead valves only were picked up on the inner beaches.
Astarte castanea Say. Gould, Inv. Mase., II, p. 117, 1870. Ver., Inv. V. S., p. GR5, 1874.

Fonnd abundant!y in Provincetown Harbor, west and north of the light-house, at low-water mark (Gould). Although searched for at this locality in 1879 , no specimens were discovered ; a very low tide is probably required to uncover them. Mr. J. H. Blake says they are also common low down on the inner shore, near Wood End Light.

Proc. Nat. Mus. 80-9 Jıly 2, 1880.

Argina pexata (Say) Gray. Ver., Inv. V. S., p. 692, 1874. Gould, Inv. Mass., II, p. 147, 1870 (Arca).

Collected on the beach at Provincetown (S. I. Smith, 1872).
Mytilus edulis Linné. Gould, Inv. Mass., II, p. 183, 1870. Ver., Inv. V. S., p. 6t2, 1874.

Very abundant, shore, piles of wharves, attached to floating fucus, \&e
Modiola plicatula Lam. Gould, Inv. Mase., II, p. 188, 1870. Ver., Inv. V. S. p. 693, 1874.

Very abundant on the flats near high-water mark.
Crenella glandula (Totten) Adams. Gould, Inv. Mass., II, p. 194, 1870. Ver., Inv, V. S., p. 695, 1874.

A few fresh, bat not living, shells were obtained from the beaches at low water. Provincetown, at low water (Stimpson, Shells of N. England). This species was first known to Totten, its describer, from Provincetown.

Pecten irradians Lam. Gould, Inv. Masв., II, p. 199, 1870. Ver., Inv. V. S., p. 695, 1874.

This species was formerly very abundant in front of the town, in the patches of eel-grass just below ordinary low-tide level, but at present the full-grown shells are rarely found there. They are, however, still very plentiful off the dike in similar situations. The adult shells rest on the ground amongst the cel-grass, which at low water becomes thickly matted above them, generally quite concealing them. Young shells usually adhere to the eel-grass by their byssus.

Anomia glabra Ver., Am. Journ. Sci., vol. iiii, p. 213, 1872; Inv. V. S., p. 69b, 1874. A. ephippium, electrica, squamula, Gould (non Liune).

Abundant on the flats in front of the dike, but generally of small size, attrached to dead shells of Pecten irradians, Ensatella americana, \&c.

TUNICATA.

Molgula manhattensis Ver., Am. Jonrn. Sci., vol. i, p. 54, 1871; Inv. V. S., p. 699, $18 \% 4$.
Abundant near high-tide level, amongst the grass in the pools left on the shore at low tide; attached to eel-grass and to floating sea-weeds. Also thrown up in immense numbers on the outer beach at Race Point during heavy storms.

Botryllus Gouldi Ver., Am. Journ. Sci., vol. i, p. 211, 1871; Inv. V. S., p. 702, 1874. Growing on eel-grass in shallow water and on floating sea-weeds, \&c.

BRYOZOA.

Crisia eburnea Lamour. Ver., Inv. V. S., p. 707, 1874.
Very abundant on fucus and eel-grass, often associated with Bugula turrita; on eel-grass everywhere in shallow water from the dike to Long Point, and on fucus growing on the piles and floating at the surface.

Tubulipora serpens (Linne) Flem., Brit. Anim., p. 529, t. Johnston, Hist. Brit. Zoöph., p. 275, 1847.-T. flabellaris Ver., Inv. V. S., p. 708, 1874.
Found very abundantly on the eel-grass in shallow water, forming small rounded clusters.

Flustrella hispida (Fabr.) Gray.-Alcyonidium hispidum 8mitt. Ver., Inv. V. S., p. 708, 1874.

Incrusting floating fucus in the harbor, and probably also occurring on the sea-weeds of the piles.

Vesicularia, sp.

One or two small specimens of a Vesicularia with crieping stem, possibly V. ura Smitt, were found upon fucus growing upon the piles.
Bugula turrita (Desor) Ver., Inv. V. S., p. 712, pl. xxxiv, figs. 258, 259, 1874.
Very abundant on piles of wharves, eel-grass in shallow water, and on floating fucus; associated with Crisia eburnea.

Electra pllosa (Linn6) Fisch., t. Ver., Preliminary Check List Mar. Inv. Atl. Const, p. 29, 1879.-Membranipora pilosa Farre, Phil. Trada., p. 412, 1837. Ver., Inv. V.S., p. 712, 1874.

Incrusting fucus, laminaria, eel-grass, \&e, floating in the harbor, and stranded on the beaches.

Cribrellina puncturata Smitt, Floridan Bryozoa, part II, p. 24, 1873.-Escharipora punctata Smitt, Öfvers. af K. Vetens.-Akad. Färh., 18b8, appendix, p. 4. Ver., Inv. V. S., p. 713, 1874.
On eel-grass, one-half fathom, rare.
Eippothoa hyalina (Linn6) Smitt, Floridan Bryozoa, part II, p. 40, 1873.-Mollia hyalina Smitt, Öfvers. af K. Vetens.-Akad. Förh., 1868, nppendix, p. 16. Ver., Inv. V. S., p. 713. 1874.
On floating fucus and eel-grass in the harbor, and on the beaches.
Lepralia americana Ver., Am. Journ. Sci., III, vol. ix, p. 415, pl. vil, fige. 4, 5, 1875.-Lepralia Pallasiana Ver. Inv. V. S., p. 713, 1874 (with query; non Busk).
Very common; incrusting fucus and other sea-weeds on the piles, and also growing on eel-grass in shallow water.

ECHINODERMATA.

Leptosynapta Girardii (Pourtales) Ver., Inv. V. S., p. 716, 1874.
This species is common everywhere about Provincetown, on the sandy beaches between low-tide and half-tide levels, but it is most abundant on the sandy flats about midway between the town and Wood End Light House, where large areas are left dry for a considerable time at low water. It also occurs in abundance on the sand-flats inside of Race Point Light House, on the outer shore.

Leptosynapta roseola Ver., Inv. V. S., p. 716, 1874.

Provincetown beach, and sheltered inlets back of Race Point, on the outer side of Cape Cod, buried in the sand at low water, and associated
with L. Girardii. Collected at the latter place by Prof. H. E. Webster and Mr. Benedict. Hitherto known only from New Haven, Conn., and Vineyard Sound (Verrill).
Asterias Forbesil (Desor) Ver., Am. Jonrn. Sci., vol. xi., p. 418, 1876; Proc. Bos Soc. Nat. Hist., vol. x, p. 345, 1866; Inv. V. S., p. 718, 1874.-A. arenicola Stimp., Proc. Bos. Soc. Nat. Hist., vol. viii, p. 268, 1862. Ver., ibid., vol. x, p. 339, 1866; Inv. V. S., p. 718, 1874.-Asteracanthion berylinus Ag., A. Ag., Mem. Mus. Comp. Zoül., vol. v, No. 1, p. 94, pl. ix, 1877.
Very abundant along the shore above and below low-water mark, and on piles of wharves, but always of comparatively small size. A comparison of the specimens from Provincetown with those obtained from Gloucester in 1878 shows more or less constant differences to exist between the two. In the former the spines are generally longer and more acute, sometimes even quite slender, and the pedicellariæ appear to be somewhat more numerous, and to vary greatly in their arrangement. These differences are, however, of very slight value in this exceedingly variable species.
Asterias vulgaris Stimp., MSS. Packard, Can. Nat., Dec., 1863. Ver., Proc. Bos Soc. Nat. Hist., vol. x, p. 347, 1866; Inv. V. S., p. 718, 1874.
Below low-water mark at the outer ends of the long wharves.
Amphipholis elegana Ljung. Ver., Inv. V. S., p. 720, 1874.-Amphiura squamata Lyman, Illust. Cat. Mus. Comp. Zoöl., No. I, p. 121, 1865 (non Delle Chiaje, t. Ljung.).
Only a few specimens of this Ophiuran were obtained; they were from the eel-grass in very shallow water.

ANTHOZOA.

Metridium marginatum M.Edw. Ver., Inv. V. S., p. 738, 1874.
Common on the mooring posts in the harbor (J. H. Blake).
Edwardsia sulcata Ver., Mem. Bos. Soc. N. H., vol. i, No. I, p. 29, 1864.
Sand, at low water.
Edwardsia pallida Ver., Proc. U. S. Nat. Mus., vol. ii, p. 198, 1879.
In sand, at low water.

ACALEPH

Clytia Johnstoni (Alder) Hincks. Ver., Inv. V. S., p. 725, 1874.
On floating fucus thrown up on inner beach of Long Point.
Campanularia flexuosa Hincks. Ver., Inv. V. S., p. 726, 1874.
Abundant on fucus of piles of wharves, \&c.
Obella geniculata (Linn6) Allman. Ver., Inv. V. S., p. 727, 1874.
On floating fucus stranded on Long Point beach, inner shore.
Obelia ditchotoma (Linn§) Hincks. Ver., Inv. V. S., p. $228,1874$.
Very abundant on eel-grass, one-half fathom.

Sertularia pumila Linne. Ver., Inv. V. S., p. 732, 1874.
Very common, and growing principally on fucus, on piles of wharves; also on floating fucus in the harbor. A very robust variety was collected from fucus stranded on the outer beach at Race Point.

DESCRIPTION OFA NEW SPECEES OF RAY (RAIA STELLULATA) FROL MONTEREX, CALIFORNIA.

By DAVID S. JORDAN and CHARLES IH. GILBERT.

Raia stellulata sp. nov.
Allied to Raia radula Delaroche. Disk much broader than long, anteriorly broadly arched, and convex, the tip of the snout very slightly exserted. Anterior margin of pectorals undulated, convex anteriorly, then concave. Length of snout from eyes a little more than twice the width of the interocular space, which is concave, less than the distance between the outer angles of the spiracles. Breadth of disk equal to the distance from the tip of the tail to the shoulder-girdle. Length of tail equal to the distance from its root to the middle of the interocular area.

Male everywhere above rough with stellate prickles, the base of the pectorals being almost smooth. Along the middle region of the back and the whole upper surface of the tail is a band of close-set, rather low prickles, with broad, very distinctly stellate bases. An elongate patch of stout, recurved spines on the anterior part of the pectorals, and farther back the usual series of claw-like spines found in the males of all species. Stout spines above the eye, a few in the middle of the shoulder, and along the middle line of the tail. Sides of the tail without large prickles. Lower side smooth, except around the mouth.

Female everywhere above rough with stellate prickles, the anterior region, middle of back, and upper surface of tail most so. A median row of strong spines on the tail above, and six on the scapular region. A series of strong spines over the eye. A lateral row of rather strong prickles on the tail. Body smooth below, except anteriorly.

Tail flat below, with a conspicuous lateral fold. Dorsal fins low, their height equal to the interorbital space, separated by a space considerably shorter than their base. Caudal fin reduced to a very small fold, as in the "genus" Uraptera, to which this species would be referred in Müller \& Henle's arrangement.

Mouth somewhat arched. Teeth not very sharp, tricuspid, about $\frac{35 \text { to } 40}{35}$ Nasal flaps slightly fringed externally. Distance between nostrils abont equal to the distance from them to the tip of the snout.

Color grayish-brown, everywhere mottled with light and dark colors, the markings sharp and distinct. Numerous black spots of all sizes, some of them ocellated. A black spot about as large as the eye at the
base of each pectoral, each surrounded by a pale ring and in turn by another dark one. Head with black cross-bars. The two sexes entirely similar in color.

This species is not nucommon in the Bay of Monterey. We have obtained eight examples, which agree with each other very closely. One of these is a female, about 18 inches in length, in which the ovaries are immature. The other females are about 30 inches in length, and the ovaries are fully matured, containing eggs. The males are about 30 inches long, likewise bearing evidences of maturity. These specimens are now in the United States National Museum. This species is readily distinguished from the two others known from the Pacific coast by its obtuse snout and its rough skin.

The Raia binoculata Girard is the common skate of the Pacific coast, and is brought in in large numbers to the San Francisco markets. In color it is uniform light brown, with a black ring near the base of each pectoral, and usually a dusky crescent on each ventral. The pectoral ocellus is often obscure, and sometimes can hardly be traced in preserved examples; in living specimens it is generally conspicuous.

The skin in the male is entirely smooth above, except the anterior edge of the pectorals, the bony part of the snout, and the larger spines on the front part of the pectorals, the supraocular region, a few (one to six) on the scapular regiou, and a series along the median line of the tail. There are two or three detached spines usually along the side of the tail. The claw-like pectoral spines are also present. The females have, in addition, a lateral series of spines on the tail and some prickles on the posterior part of the pectorals, the larger spines found on the pectorals of the male being wanting. The actual length of the snout in R. binoculata is not much greater than in R. stellulata, bnt its form is different, the disk being anteriorly acuminate, bounded by concave lines, its length being more than three times the interocular space. Male and female examples of this species, with ripe eggs, or welldeveloped claspers, are about two feet long.

Still another ray is known to us from a female example from Monterey about 30 inches in length. It agrees with R. binoculata in every respect, except in the form of the snout, which is extremely long, acuminate, and pointed, its length nearly four times the interorbital width. The anterior outline of the disk on each side of the snout forms a nearly uniform concave curve, it being scarcely at all undulated. These differences are shown by the appended table of measurements. We consider this at present a variety of Raia binoculata, although such variations in the length of the snout are unusual in the same species.

Still another form is known to us from two examples, a male and a female, each about 6 feet in length, taken at Monterey. This form must be considered as the Raia cooperi Girard, as the very imperfect description of the latter species agrees in all essegntial respects with these specimens.

Raia cooperi has the snout acutely produced, rather more so than in \boldsymbol{R}. binoculata, thongh less than in the variety referred to, the distance from the eye to the tip of the snont being about twice the interorbital width. The length of the disk is $\frac{7}{8}$ its width; the tail is ? the length of the disk. The female is covered above with small stellate prickles, which are larger over the eye, on posterior edge of pectorals, on ventrals, the middle line of the back, and on the tail. Prickles on tail in several series. Differentiated spines present only over eye and on tail. The male is nearly smooth, its spines essentially as in R. binoculata. Color brown, with paler blotches; a large, obscure, blackish blotch at base of pectoral. This species has scarcely a trace of caudal fin, and is therefore likewise an "Craptera." Its teeth are about $\frac{44}{40}$. Whether this Raia cooperi is a distinct species or merely very old individuals of Raia binoculata we are now unable to decide. There are no important differences, except such as might accompany increased age.

Table of measurements.

	Rnin stelluiata. \%	Finia binoculata. 6	Rain bisoculata var. 9 ?
Extreme leagth, in inches.	17.45	21.6	28.8
Iencth ut disk, in inchee.	10. 10	13.00	18.4
Disk:			
(rreatest width (hundredths of length of disk).	121	106	103
Greatent width at front of cyes..	68	45. 5	41
Willts of smont, midway betwren oyes and tip of smout.	41	10.7	14
Distauce from ohout to frat gillopening	43	50.5	
I intance loetween firstgill-openinge	31.5	25.5	
I intance het wewn lant gillopenings	18	14.3	
Distance from frat to last gill-openiags	14	12.8	12
Width of mouth	18	15	15.5
Width of interorbital apace	8	7	\%
Distance from anout to mouth	24	21.5	
Dimmeter of orbit	8	6. 3	5.5
Tail:			
Dintance between dorsals	${ }_{5} 1.5$	67 3.8	67 3
Height of frrst dorsal.	8		
Lengeth of base of tirst dornal.	7.5	7.6	7

Monterex, Cal., April 7, 1880.

DESCRIPTIONA OF NEW SPECEE OF XIPBISTER AND APODICRTHYE, TROM MONTEREX, CALIEORNIA.

By DAVID S. JORDAN and CHARLES H. GILEERT.

1. Xiphister chirus sp. nov.

Body elongate, somewhat compressed, formed as in Xiphister mucosus (Xiphidion mucosum Girard). Head short, convex in profile, not depressed above the eyes. Mouth small, oblique, the maxillary extending to opposite middle of pupil. Eye small, as long as snout, about 5 in head. Lower jaw slightly projecting. Teeth strong, the anterior caninelike, bluntish; four canines in lower jaw, six or more in the upper, similar
to the posterior teeth, but somewhat enlarged. Lateral teeth of lower jaw short, blunt, the series extending behind the anterior canines. Lips full, the upper protractile. Head naked. Gill membranes united, without isthmus.

Body covered with minute scales, the usual three parallel lateral lines running without union from the head to the tail. Each of these, as in other species, with a series of simple, transverse, alternating, short branches at right angles, and each with one or two open pores. These branches correspond in the outer lines each to a dorsal or anal ray. Middle line farther from each of the outer lines than these are from the dorsal or anal. A short dorsal line, similar to the lateral lines and similarly branched, extending from the occiput to the first dorsal spine. An abdominal line on each side of the belly. These gradually converge anteriorly and meet on the breast. They are not connected with the lower lateral line. In the other species of the genus the lower lateral line sends a branch to the abdominal line.

The vertical fins are similar in all the species, the dorsal of low sharp spines only; the anal similar, but composed of soft rays, both slightly joined to the caudal.

Dorsal fin beginning close behind the pectoral, at a distance from the opercular angle not greater than the diameter of the eye. Anal beginning about a head's length nearer the snont than the base of the caudal, or about $1 \frac{1}{2}$ head's lengths nearer snout than end of caudal.

Pectoral fin quite small, but several times larger than in any of the other species, larger than the eye, its length about equal to the distance between the middle and lower lateral lines.

Fin rays: D. LXX; A. 50; P. 14.
Color olive-brown, yellowish below; the sides everywhere with marblings of different shades of brown, mostly in the form of vertical bars. Some round black spots along the back and upper part of the sides; a black spot behind opercles. Head brown above, yellowish below; a narrow black streak from eye directly backward across the temporal region. Numerous black spots on sides of head, but no radiating bands. Dorsal and anal fins with black spots; pectorals plain yellowish, a conspicuous dark axillary spot; caudal plain reddish.

This species differs from the others of the genus in the large pectorals, the alsence of anterior union of the lower lateral and the abdominal lines, in the position of the first rays of dorsal and anal, in the presence of more than two canines in the upper jaw, and in the coloration, the sides of the head being without stripes and the caudal plain.

It is known to us from about twelve examples taken at the Point of Los Pinos, near Monterey. It inhabits rocks at the extreme low-tide mark, and is abundant chiefly among the masses of mussels which cover the outermost rocks exposed to the wash of the waves. Like the other species of the genus, it is very active and makes its way readily out of water over damp rocks and algæ. It seems to reach a smaller size than the other species.

2. Xiphister rupestris sp. nov.

Besides the foregoing species, which is distinguishable at sight from Xiphister mucosus, a second species occurs in great abundance among the rocks about Monterey. This species is more nearly allied to $X . m u$ cosus, agreeing with it in form of body, mouth, teeth, and arrangement of the lateral lines; differing in the coloration of the head, in the number of dorsal and anal rays, in the insertion of the dorsal and anal fins, and in the size of the pectoral fins. A description of these points will suffice, without the enumeration of features common to all the species of the genus.

The life coloration of Xiphister mucosus is blackish green, becoming pale green on the belly and sides of the head; toward the tail the blackish is coinmonly broken with much olive-green in various patterns; a transverse light-greenish bar at base of caudal, which extends to the dorsal and anal fins. Radiating backward from the eye are three olivebrown streaks, these much lighter in the center and edged above and below with blackish, outside of which is sometimes a streak of light green. These streaks all merge backward in the olive-green of the head. The upper streak trom the eye toward the occiput is geuerally obsolete or small and indistinct; the middle streak is wedge-shaped, with the edges straight or nearly so; it is but slightly more than onethird the length of the head; the third streak terminates before reaching the margin of the preopercle. A very old example, over a foot long, has a diffuse yellow blotch on the back anteriorly.

In Xiphister rupestris the life coloration is olive-brown or reddish brown, uniform or variously marked and shaled with lighter; a light olivaceous bar at base of caudal, extending on dorsal and anal; behind this a blackish area; the tip of the caudal usually pale. Three long, well-defined streaks radiating backward from the eye, these streaks uniform black, overlaying the olive cheeks, and abruptly margined with very light olive; the upper streak is more distinct than in X. mucosus; the central streak proceeds straight backward from the eye, half the breadth of the cheeks, at which point it is broadest; it is theu narrowed and bent abruptly downward; both the middle and lower streak reach the margin of the preopercle, the length of the middle streak being three-sevenths that of the head.

In Xiphister mucosus the dorsal fin begins anteriorly, nearly as in Xiphister chirus, the distance from its origin to the occiput being less than that from the occiput to the tip of the snout. The origin of the anal fin is nearly midway from the snout to the tip of the caudal, it being nearer the snout than the tip of the caudal fin by from one-third to twothirds the length of the head. The fin rays are pretty constantly D. LXXIII, A. 48. The pectoral fin is as long as the eye.

In Xiphister rupestris the dorsal fin begins farther back, the distance from its origin to the occiput being one third greater than the distance from the occiput to the snout. The anal fin begins much in advance of the
middle of the body, the distance from the first ray to the tip of the caudal exceeding the distance to the snout by nearly twice the length of the head. The fin rays are very constantly D. LXVI, A. 50. Pectoral fin very short, its length less than the diameter of the eye (about three-fifths).

These two species are extremely and equally abundant about Monterey, especially on the Point of Pines. They live ander rocks in the sand, in crevices of rocks, and in masses of algæ between tide-marks. They are very active, making their way readily on land, and remaining out of water in damp places for hours without inconvenience. We have procured upwards of a hundred specimens of each species, and find the distinctive characters, although few, to be very constant.

Xiphister cruoreus (Xiphidium cruoreum Cope, Proc. Am. Phnos. Soc., 1873), from Alaska, is apparently either identical with Xiphister mucosus or closely allied to it. The description agrees better with mucosus than with rupestris.

The systematic position of the genus Xiphister deserves a moment's notice. Professor Gill has referred it to a family, "Xiphidiontida," distinguished from "Stichaida" chiefly by the absence of pyloric coeca, and from "Cebedichthyide" by the short intestinal canal, the absence of pyloric cœca, and the absence of soft rays in the dorsal.

As a matter of fact, the intestinal canal in Niphister is but little shorter than in Cebedichthys. It has five or six well-developed pyloric caca. Whatever may be the value of the family "Stichaida," the writers do not believe that Cebedichthys, Xiphister, and Apodichthys are representatives of distinct families. The lateral line of Cebedichthys, by the way, corresponds to the upper lateral line of Niphister, and like it has for its whole length a series of short lateral branches ending in open pores.

Table of measuroments.

3. Apodichthys fucorum sp. nov.

Allied to Apodichthys flavidus Girard, but differing in the form of the anal spine, in the smaller number of fin-rays, and in the smaller size of the pectoral fins.

Form of head and body and dentition as in Apodichthys flavidus. Mouth very oblique, the maxillary reaching the vertical from the center of the pupil. Dorsal tin beginning at a point considerably nearer the nape than the latter is from the end of the snout. Anal spine small, its length about one-fifth that of the head, transcersely very convex in front, and slightly concave or grooved behind. Pectoral fins very small, about one-fifth the length of the head. Anal fin beginning nearer base of caudal than tip of snout by about three times the length of the head. Dosal, very constantly, LXXXIII; A. 35.

In Apodichthys flavidus the dorsal begins as much behind the nape as the latter is behind the tip of the snout. The anal spine is very large, two-fifths the length of the head, and deeply excavated on its anterior surface and very convex behind, the spine being very thin and with sharp edges, resembling a quill-pen.

Pectoral fins larger, about two-ffths the length of the head. Anal beginning nearer base of caudal than tip of snout by twice the length of the head. Fin rays: D. XCIII; A. 40.

The life coloration of Apodichthys fucorum is either bright olive-green or brownish red, becoming in alcohol either bright straw color or vermillion ; a row of dark spots extending along axis of body, these sometimes with light-bluish center, and connected by a very narrow dark streak. Generally a dark streak downward from eye, but no other markings about the head.

The ground-color of these fishes, whether red, green, yellow, or brown, has no significance in specific distinction. As with many other species of rock-fish, they take the color of their surroundings. When in masses of Fucus, this species is always olive-green; when among Chondrus, or other red-brown algæ, it is colored like the plants. We have seen Oligocottus maculosus (which species is ordinarily brownish, mottled, the belly blue) dark grayish red in pools lined with Corallina, deep crimson when surrounded by brighter algæ, plain gray in pools with granite bottoms and no plants, and of the most intense grass-green when taken from among fronds of Ulva. Other fishes imitate exactly the brown branches of the kelp (Macrocystis). Thus the names favidus, virescens, and sanguineus have been successively applied to differently colored examples of Apodichthys flavidus.

Our specimens of the latter species are orange-red, everywhere dusted with minute punctulations. A few pale round spots on axis of body posteriorly. A narrow jet-black bar downward and backward from eye, falling behind the maxillary; a shorter black streak from eye toward occiput. Anal fin obliquely barred with brownish.

Apodichthys fucorum is exceedingly abundant about the Point of Los

Pinos, near Monterey. It is found mostly in masses of Fucus attached to rocks between tide-marks, and it is often found at low tide at a considerable distance from any water, kept damp by the masses of alga. Sometimes a dozen of them can be shakeu from a bunch of alga attached to a dry rock. It is, like the species of Xiphister, very active, moving over stones or sand, and showing less anxiety about the presence of its native element than any uther fish known to us. The very numerous typical examples are all of nearly the same size as the one measured below. It probably does not attain so great a size as Apodichthys flavidus.

We have little doubt that Professor Gill is right in uniting flavidus Girard, virescens Ayres, and sanguineus Gill as one species. Whether inornatus Gill is different or not we do not know. At any rate, its number of fin-rays (D. XC, A. 38) will separate it from A. fucorum.

Table of measurements.

	A. furcorum.	A. Javidue.
Extreme length, in inchee	4. 35	8.90
Length to lose of cmudal $=100$	4. 10	850
Body, greateat depth..	0.6	
Head:		
Length	10	11
Distance from anout to nape	8	6
Dorsal, distance from nnout	13	11.5
Aual:		
Distance from snout.	68	00
Height of spine.	2	4
Length of pectoral	2	4
Dorsal rays	83	98
Anal raye.	35	40

Monterey, Cal., April 7, 1880.

DESCRIPTION OF A VERY LARGE FOSSIL GABTEROPOD FROM THE ATATE OF PUEELA, MEXICO.

By C. A. WHITE.

The United States National Museum has received from Mr. H. B. Acton, through the Hon. J. W. Foster, United States minister to Mexico, the very interesting fossil shell which is described in the following paragraphs. Mr. Acton says, in a letter accompauying the specimen, that it was obtained from the strata upon which are located the Zapotitlan Salt Works, which works are about six miles southwestward from the town of Tehuacan, in the State of Puebla, Mexico, and about 115 miles inland from the Gulf coast. He gives the elevation of that locality as 6,500 feet above the level of the sea.

Only oue example of this species has been received, and it is accompanied with examples of no other species. Fragments of the imbedding rock, which is a dense bluish limestone, have been carefully examined, and although they were found to contain numerous fragments of
fessil shells, not any of them were sufficiently well preserved to indicate even their generic relations. No satisfactory information has been obtained concerning any geological observations that may have been made in that region, which might convey a knowledge of the geological age of the strata of the locality from which the fossil in question was obtained, and I am therefore under the necessity of relying wholly upon the testimony afforded by the fossil itself. The genus to which I have referred it has hitherto been known only in rocks of Cretaceous age; and there appears to be no good reason to doubt that the strata from which this Mexican shell was obtained belong also to that period.

Genus TYLOSTOMA Sharpe.

> Tylostoma princeps (sp. nov.).
(Plate II, figs. 1 and 2.)
Shell very large, general form rhombic-ovate, inflated; spire moderately extended; volutions five or six, convex, having an ill-defined narrow shouldering at the distal or upper portion, adjacent to the suture; umbilicus none, suture impressed; aperture ovate-semilunate, large, its length equal to more than two-thirds the full length of the shell; outer lip forming an approximately regular curve from near the suture to the anterior portion of the aperture, which, although broad, is somewhat produced; margin of the outer lip only slightly sinuate; inner lip bearing a broad, moderately thin callus, its outline somewhat strongly sinuate and its margin narrowly flexed along its anterior portion.

Surface marked by the ordinary lines of growth.
Length from the apex to the front margin of the aperture, 220 milli meters; greatest breadth, $\mathbf{1 6 0}$ millimeters; length of aperture, 150 mil limeters. (Musenm, No. 8864.)

This is much the largest fossil gasteropod that has ever been found in North American Mesozoic strata; and it is excelled in size by only comparatively few of its class that have since existed.

It has much the general aspect of a Lunatia, but it is referred with. out much hesitation to the genus Tylostoma Sharpe. This last-named genus is regarded by some malacologists as having affinities with the Tectibranchiata, near Pterodonta; but I agree with Stoliczska and Zittel in referring it to the Pectinibranchiata, and placing it near Lunatia in the Naticidse. It is true that all the characteristics of Tylostoma, as enumerated by Sharpe and characteristic of most if not all the species which have been referred to that genus, are not clearly observable upon the only example of this species that has been discovered; but being plainly without an umbilicus, or any umbilical perforation, in connection with its other characteristics, it cannot be referred to any other recognized genus of the Naticidæ. The condition of our example is not such as to show clearly whether or not the outer lip was thickened at the time of the death of the mollusk.

The varices or alternate swellings, characteristic of Tylostoma, are present, but not so conspicuous upon this example as they are upon some species of the genus, especially upon T. mutabilis Gabb, another Mexican Cretaceous form; but they are quite as conspicuons as they are shown to be in the pablished figures of Sharpe's type species, T. tor. rubic. These varices or swellings are more apparent in our example by an apical than by a lateral view of it, but their presence is indicated in fig. 2 upon the ultimate and penultimate whorls.

Although size cannot generally be relied upon as a specific character, the extraordinary dimensions of this shell separate it clearly from any other known form with which it might be otherwise in danger of being confounded. The only fossil species which resemble it, or even approximately approach it in size, are the Natica pedernalis and N. pra-grandis of Roemer, from the Cretaceous of Texas; but both these species eridently belong to a group that is now generally referred to Lunatia, or Euspira; and the largest known examples of either of these forms have scarcely more than half the dimensions of the example here described.

DESCRIPTEON OF TWO NEW SPECEEA OF AEEABTICITTHTA (AEBAMTICHTEYN ENTONELAS AND BERASTICHTHYS RHODOCEILO.

Hy DAVID S. JORDAN and CHARLES H. GILBERT.

Sebastichthys entomelas sp. nov.
Allied to S. ovalis (Ayres).
Body oblong, rather elongate, the back regularly but not strongly arched, contracted to a rather slender caudal peduncle. Head moderate, the profile less steep than in related species, but the tip of the snout blunter than in ovalis. Mouth small, the short maxillary extending to below the middle of the eye. Lower jaw projecting, its tip entering the profle, but considerably less protruding than in ovalis. Palatine teeth few.

Preorbital very narrow, withont spine. Eye rather large, about 4 in length of head, less than the iuterorbital space, which is strongly convex, especially in its middle part.

Nasal spines minnte. Preocular spine broad, triangular, rather prominent, more conspicuous than in melancps, but much less so than in ovalis. Supraocular ridge little developed, its spine minute, sharp, concealed by the scales. Postocular spine present, minute, similarly concealed. No tympanic spine. Occipital ridges scarcely developed, concealed by the scales, without distinct spine at tip. In ovalis all these spines, though small, are distinct. In flavidus there is no trace of any spines on the cranium, and the ridges are little developed.

Preopercular spines rather small, directed backwards, the two lower obsolete. Opercular spines small, two suprascapular spines. Scales on
top and sides of head very small, present on maxillary, mandible, preorbital, and snout.

Scales on body small, in about 65 transverse series.
Gill-rakers numerous, long and slender, their length about half the diameter of the eye.

Dorsal spines very low and slender, the fin moderately emarginate, the membrane joining the last spine at about two-fifths its height. Soft dorsal long and low, the soft rays about as high as the highest spines, a little more than one-third the length of the head. Caudal forked. Anal low, its second spine stronger than third, but scarcely higher, less than two-thirds the height of the first soft ray. Pectoral fins moderate, not reaching vent, their tips beyond tips of ventrals, their base $3 \frac{1}{2}$ in length of head.

Fin rays: D. XIII, 15; A. III, 8.
Color rather dull olive-green. Sides with obscure ronnd rusty spots. Belly, lips, and lower parts tinged with creamy. Obscure light and dark shades across cheeks. Traces of two or three obscure dark vertical bars. Dorsal dusky, with reddish shates. Caudal dusky, the rays olive. Other fins dusky, with creamy reddish at base. Lower half of pectoral distinctly reddish.

Peritoneum jet-black.
This species is known to us from five specimens taken in deep water outside of Monterey Bay, in company with S. ovalis, rubrixinctus, elongatus, etc. It is known to the Portuguese fishermen as "Buda." Its relations are probably most intimate with ovalis, which differs in the following respects:

Ovalis is much deeper and more oval in form, with the back considerably more elevated, and the profile much more steep, the lower jaw more protruding. The mouth reaches to the posterior edge of the papil. The preocular ridge is very strong, forming a large triaugular protuberance ending in a spine; small supraocular, postocular, tympanic, and occipital spines are present, the tympanic spine very minute, but constant. The dorsal fin is very low, the notch between the spinous and soft parts extremely shallov, the membrane joining the last spine at more than two-thirds its height, the height of the spinous and soft portions about equal. The second anal spine is considerably the longest and strongest, scarcely lower than the soft rays. The pectoral fins are long, reaching to the vent.

Anal rays, III, 7, or III, 8.
The color of this species when adult is olivaceons, strongly tinged with pale creamy red, especially below. The membrane of both dorsals are covered with many small round black spots. Some of these are usually present on the body. The upper fins are greenish, the lower more yellowish, and most of them are more or less dusky-edged. Caudal fin rather dark.

Peritoneum black.

The remaining species of this type, melanops, simulans, and flavidus, differ in the absence of any distinct spines on the cranium, as well as in color, form, and other peculiarities. Melanops has the preocular ridge considerably developed, and occasionally ending in a spine. The others have this ridge obsolete. The mouth in simulans and flavidus is considerably larger than in the other species. In melanops and simulans the fins are slaty black, like the body. In flavidus they are olivaceous, the caudal being distinctly brownish yellow (hence the popular name of Yellow-tail). The peritoneum in flavidus is pure white, in melanops somewhat dusky.

Bebastichthys rhodochloris sp. nov.
Allied to S. rosaceus (Girard).
Body oblong, more elongate than in rosaceus, the back less elevated, the profile less steep. Mouth comparatively large, but rather smaller than in rosaceus, the maxillary not reaching beyond posterior border of pupil. Jaws about equal in the closed mouth, the lower with a small symphyseal prominence. Preorbital narrow, with two bluntish projections. Eye very large, longer than the long snont, $3 \frac{1}{2}$ in head.

Spinous ridges on top of head very high, slender, and sharp, more elevated than in rosaceus, chlorostictus, and constellatus, and sharper. Nasal, preocular, supraocular, postocular, tympanic, and occipital spines present, as in most of the red species. Supraocular ridge long and prominent. Postocular and tympanic spines close behind it, sharp and large. Interorbital space very narrow, its width even posteriorly less than length of supraocular spine (in rosaceus considerably more). Interorbital space with two longitudinal ridges, sharp and conspicuous, not covered by the scales, the very narrow interspace between them strongly concave, the spinous ridges strongly divergent behind.

Preopercular spines sharp, directed backward, the three upper long and pointed, more developed than in rosaceus, less radiating than in chlorostictus. Two sharp suprascapular spines. Opercular spines short and sharp.

Gill-rakers about as in rosaceus and chlorostictus, moderately long and slender, much shorter than in cvalis or pinniger, but longer than in nebulosus and ruber, the longest gill-raker about one-fourth the diameter of the eve.

Dorsal fin still lower than in rosaceus, the membranes little emarginate, the longest spine about 23 in head (in rosaceus $2 \frac{1}{2}$). Emargination of dorsal moderate. Soft rays low, the highest about equal to the highest spine. Caudal fin slightly emarginate.

Second anal spine proportionately longer than in any other of our species, very strong, curved, its length about equal to that of the maxillary or the base of the soft dorsal, or about half the length of the head. It is higher than the soft rays of the anal. Pectoral fins reaching past tips of the ventrals nearly to the anal.
D. XIII, 14; A. III, 6.

Scales moderate, in 58 transverse series, the small accessory scales very numerous.

Grousd-color bright clear rose-red, without any trace of purplish. Region above the lateral line with mach deep green, in the form of reticulating streaks. Below the lateral line the green gives place to bright golden yellow, which is similarly mixed with the red. Top of head with cross-bands of green and red, green streaks radiating from the eye, one to snout, one aloug maxillary, three across cheeks and opercles, and one across temporal region.

Four bright pale pink spots on the sides of the back, arranged as in rosuceus, constellutus, and chlorostictus; the color brighter than in these species, and entirely devoid of the purplish ring which is fonnd in rosaceus; one spot is under the fourth dorsal spine, one near the lateral line under eighth dorsal spine, one under junction of spinous and soft rays, and sue under the last soft ray. The first and third of these spots are each surrounded by a distinct ring of green. Another pink spot on the tip of the opercle. A distinct pale area behind eye. Dorsal with the rays red and the membranes olive-green. Candal and anal with the ravs red and the membranes golden. Pectorals red, dashed with olive. Ventrals red. Under parts of head and the inside of the mouth pale red, nnspotted.

In S. rosaceus the red on head above, and around the pink spots on the sides, is distinctly purple-red. The yellow or olice on the back and sides blends with the red instead of forming distinct reticulations, and there is little if any green on the back or fins. The lateral line is clear red, usually not crossed by the olive marks.

Sebastichthys rhodochloris occurs in abundance in the deep waters of the Bay of Monterey. It is a small fish, like S. rosaceus, and rarely reaches a weight of more than a pound. It is known to the fishermen of Montesey by the name of "Fly-fish," S. rosaceus being called "Corsair."

One fisherman who procured a number of them for us, on being told that his "Fly-fish" was very much like the "Corsair," summed up the relationships of the two as follows: "You bet it is like it, but it is a different kind of tish."

The following species of "rock-fish" were obtained by us in Monte. rey Bay. The names used by the fishermen of Monterey are appended. Most of these are evidently names in use for other species at the Azores, transferred to species of Californian waters:

[^15]| | rupa (Vera). |
| :---: | :---: |
| S. pinniger | Fliaum. |
| S. miniatus | Rasher. |
| S. auriculatus | |
| S. proriger. | |
| S. elongatus | Reña. |
| S. vexillaris | Yellow Garrupa. |
| S. chlorostictu | Pesce Vermiglia. |
| S. rhodochloris | Fly-fish. |
| S. rosaceus. | Corsair. |
| S. constellatus | Bagre. |
| S. ruber | Tambor. |
| S. rubrivinctus | Spanish Flag. |
| S. rostrelliger | Garrupa. |
| S. maliger | |
| S. carnatus | Red Garrupa. |
| S. nebulosus | |
| S. fasciolaris | Spotted Garrupa. |
| S. serriceps | Tree-fish. |

Table of measurements.

Santa Cruz, Cal., April 15, 1880.

ON TBE OCCUREENCE OR A HPECIES OF CRENXOEATEA AT BAT DIEGO, CAILIORNIA.

By ROSA SMITH.

Three specimens of a small scaly Blenny found in those rocky tidepools which are heavily lined with alge, on March 6, 1880.

This Blenny is evidently of rare occurrence, this one point being at present its only known habitat on the Pacific coast of the United States, and these three specimens the only ones I could procure. It is accompanied by Oligocottus analis, which in this vicinity is abundant in all rock-pools, by Gibbonsia elegans of a dull color, and by Hypleurochilus gentilis.

These specimens were provisionally identified as belonging to Cremnobates monophthalmus (Giinther) Steindachner (Anchenopterus monophthalmus Guinther, Cat. Fishes Brit. Mus., iii, 275), a species hitherto known from three examples from the Pacific coast of Central America. My specimens differ from Guinther's description in the following particulars: The dorsal fin is continuous, the membrane of the third spine joining the fourth near its summit in two examples, at its first third in the other. The head is proportionally shorter, forming two-ninths of the total length instead of one-fourth, and the body is less elongate, its depth forming one-fifth the total length instead of one-sixth. The characters of the San Diegan form of this genus agree more closely with Steindachner's description of Cremnobates affinis (Ichthyologische Beiträge, $\mathrm{v}, \mathbf{1 7 8}$), a species considered by its describer as doubtfully distinct from C. monophthalmus. C. affinis is known from one individual taken on the West Iudian island of St. Thomas, the proportions and coloration of which accord with my specimens, but this species also has the membrane from the third dorsal spine joining the fourth at its base ("die Membrane des dritten letzten Strahles setzt sich an die Basis des folgenden ersten Stachels des zweiten Dorsales an").
If the specimens from San Diego prove to be of a distinct species, which seems probable, they will be separated from those already known by the single merely emarginate dorsal fin, instead of two separate fins. In any event, the genus Cremnobates furnishes an interesting addition to the fauna of our Pacific coast.

Cremnobates integripinnis sp. nov.

Description.-The body is oblong, compressed. The head is less than the fourth of the total length, which measures two inches and an eighth. Gape of mouth oblique, the maxillaries reaching a vertical line intersecting posterior rim of orbit. Head conical, thickish, with the orbits placed far forward, small fringed tentacles on their superior margins, a tentacle on posterior margin of anterior nostril, and palmate tentacles on occiput. A cusp or spine on opercle.

Dorsal continuous, composed wholly of spines of nearly equal height
throughout, the first and second spines a little higher than the third, which is rather higher than the fourth, the third and fourth somewhat separated, but connected by membrane nearly as high as that connecting fourth and fifth, the other spines gradually increasing in height backward. The three anterior spiues less stiff than the others.

The two anal spines are connected by a membrane to the soft part of that fin, the anterior insertion of which is about midway between tip of snout and base of candal. The caudal is posteriorly rounded, its interradial membrane being emarginate; the membrane of the last dorsal spine joins the base of the first ray of the caudal, while the latter is free from anal, the free tips of which extend beyond base of caudal.

Pectorals fan-like, their extremities reaching a vertical line intersecting vent. Branchiostegal membranes continuous under throat. Body covered with conspicuous cycloid scales, which are smaller on the belly. No scales on head or fins.

Lateral line of thirty-eight scales, beginuing on the scapular region, running anteriorly very high, abruptly curving around pectorals, and pursuing a straight course on the median line of the side to the tail.
Teeth rather strong, conical, in a narrow band; a single series of rather strong teeth on vomer.

Color varies in three individuals: one is a dark browuish gray; another, of equal size ($2 \frac{1}{8}$ inches long), is lighter; while a third, of $1 \frac{1}{2}$ inches in length, is lavender in color. The markings are similar on all my specimens, each being maculated and obscurely barted with a darker shade of its own color; the dorsal region is always darkest, and each individual has an ocellated spot, black, with narrow pale edging on posterior portion of dorsal fin. Dorsal and anal fins each with narrow pale edging. Pectoral fins reddish violet at base, with a black crescent around it, the rest of the fin pale, with dark cross-bars. Ventrals barred. Candal with a dark bar at base, the rest of the fin translucent, with narrow dark bars formed of spots.
Length:
Table of measurements.
Total, in inches 2.05
To base of candal, in inches $100=1.70$Body, greatest depth23
Head:
Length 26
Diancter of eye 7.5
Length of maxillary 11
Dorsal fin:
Total length 80
Distance from snont 21
Length of anterior part 9
Height of first spine 6
Height of second spine 7
Height of third spine 4
Height of fourth spine 3
Height of highest spine 7.5
Height of membrane connecting third and fourth spines 1.8
PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 149
Anal fin, distance from snont 4.7
Candal, length 18
Pectoral, length 24
Ventral, length 17
Fin rays:
Dorsal xxxil
Anal II, 20
Scales in lateral line. 38

The specimens have been presented to the United States National Museum.

San Diego, Cal., April 10, 1880.

ERN UNITED ATATES.

By ANGELO HEILPRIN.

A part of the species herein described have been for several past years among the collections of the United States National Museum. Those which are mentioned as coming from Texas were collected by Mr. G. W. Marnoch, who sent them some years ago to Dr. C. A. White, and were by the latter gentleman presented to the National Museum. The number following the description of each species is that by which it is recorded in the museum register.

PLEUROTOMA, Lam.

Pleurotoma pagoda, n. sp.

$$
\text { Plate, fig. } 1 .
$$

Ventricose; whorls about nine, the body-whorl nodulated on its most convex portion (nearly central), the nodulation consisting of a single series of sharp, obtusely-pointed, and flattened spines or nodes, which frequently appear double by the crossing of an impressed line over their basal portion; npper volutions with a similar series of nodes almost immediately above the sutural line, and gradually dwindling off into a crenulation; upper surface of the whorls concave, faintly striated, the sinual ruga indicating but a faint sinus; lower surface with numerous welldeveloped revolving lines, which show a tendency to alternate. Aperture exceeding the spire in length, considerably contracted at about its center.

Length, $1 \frac{1}{2}$ inch. (No. 1505.)
Eocene of Alabama.
This species in its general appearance greatly resembles certain forms of Fusus, and a comparison of more numerous specimens may show it to belong to that genus, although the ornamentation of the whorls, as well as the sinual indication, more clearly point to Pleurotoma. The
only two specimens in the collection have the outer lip fractured, and I an therefore unable to pronounce conclusively upon the presence of a true notch.

> Pleurotoma venusta, n. sp.
> Plate, fig. 2.

Slender, acnminate; whorls about nine, convex, ornamented by numerous fine revolving lines, which on the body-whorl are disposed in pairs; one deeply impressed line margins the majority of the volutions immediately below the suture; sinnated lines of growth not prominent; spire and aperture of abont equal length.

Length, 14 inch. (No. 1509.)
Jackson, Miss.

Pleurotoma platysoma, n. sp.

$$
\text { Plate, fig. } 3 .
$$

Whorls 9 in number, flattened, each volution following the other almost in direct continuation without any prominent sutural division, aud ornamented with numerous revolving lines, which on the caudal portion of the body whorl tend to alternate, a fine line interposing itself between the more prominent ones; aperture probably a little more than one-third the length of the entire shell ; notch deep, sigmoidal.

Length, 2 inches (No. 8916.)
Atascosa County, Texas.

EUCHEILODON, Gabb.
 Eucheilodon creno-carinata, n. sp.
 Plate, fig. 4.

Whorls subscalariform, flattened above, the angulation formed by a doubly crenulated carina; volutions ornamented by numerous revolving, profoundly elevated striæ, which are decussated by the much finersinnated lines of growth; the upper or flattened portion with a prominent beaded line bordering the suture, and two (a finer and a coarser line) intermediate ones between the same and the carina; outer lip grooved within, and probably sharply crenulated by the terminations of the revolving strix; columella with about eleven beads, which decrease in size from above downwards. Aperture nearly equal in length to the spire?

Length of fragment, 1 inch. (No. 8921.)
Jackson, Miss.

> SCALARIA, Lam.

Scalaria unilineata, n. sp.
Plate, fig. 6.
Whorls about nine in number, convex, with numerous very faint, almost invisible, revolving lines, and much more prominent transverse

-
,
ones (about 24 on the body-whorl); two very distinct revolving lines on the last volution, the upper one placed at about the middle, the lower one subcarinating it (only the upper of these two lines is seen on the remaining whorls, appearing there as a central line); base striated by revolving lines, and radially by the continuations of the transverse lines; apperture elliptical, somewhat produced distally.

Length, $\frac{3}{3}$ inch. (No. 8920.)
Jackson, Miss.

FUSUS, Lam.
 Subgenus Strepsidura, Swainson.

Fusus marnochi, n. sp.
Plate, fig. 6.
Volutions seven or eight, the earlier three or four convex, the remainder flattened; body-whorl subangulate; suture impressed; aperture less than one-half the length of shell, the canal sharply twisted; columella with a pseudo-fold following the curve of the canal. The whorls in the single specimen before me are destitute of ornamentation, but some traces of the former existence of revolving lines are apparent.

Length, $\frac{4}{5}$ inch. (No. 8917.)
Atascosa County, Texas.
Named after Mr. G. W. Marnoch, through whom this and other species of older Tertiary Texas fossils have been obtained.

TEREBRA, Lam.

Terebra plicifera, n. sp.

Plate, fig. 8.
Turreted; whorls ? in number, flattened, rapidly decreasing in size from the base upwards, and ornamented by numerons broad and prominently defined plice, having a sigmoidal flexure; an impressed line on the upper portion of each volution produces a subsutural ring or band, over which the plice and corresponding sulci are continued, and which occasionally tends to become double from the presence of a second impressed line. Body-whorl with two elevated revolving lines on its basal angulation; base radiately and longitudinally striated; aperture (broken in all specimens).

Length (No. 8919.)
Atascosa County, Texas.

CRASSATELLA, Lam.
 Crassatella declivis, n. sp.

Plate, fig. 9.
Very inequilateral, somewhat iuflated anteriorly, the posterior dorsal margin descending very obliquely to the extremity, which is subcunei-
form; anterior margin descending rather abruptly, obtusely ronnded; basal margin somewhat sinuous posteriorly. Surface deeply sulcated for the greater portion, the sulci mainly disappearing on the umbonial slope, where they give place to finely crowded striæ; apex acute; muscular impressions impressed; margin minutely crenulated.

Length, $1 \frac{3}{4}$ inches. (No. 2490.)
Aquia Creek, Virginia.
April 25, 1880.

DESCRIPTION OF A NEW AGONOID FIST (BRACHYOPAS XXOATERNU(), PEOM MONTERET BAY, CALIEORNLA.

By DAVID S. JORDAN and CHARLES H. GILBERT.

Brachyopsis xyosternus sp. nov.

Form of head and body as in Bracinyopsis verrucosus Lockington. Body elongate, depressed, broadest.at the shonlders, thence tapering rapidly to the snout, and gradually and evenly to the tail. Snout broad, obtuse, depressed, its sides parallel. Mouth terminal, very oblique, the lower jaw much the longer, its tip projecting upward above the upper profile of the snout. Mandible very broad, its greatest depth one-thirl its length, maxillary reaching to half way between front of orbit and pupil. A long barbel three-fourths the diameter of the orbit at its end. Premaxillaries anteriorly above the level of the pupil. Jaws with bands of villiform teeth. Vomer and palatines with slight asperities. Nasal spines present. No spines on top of cranium. Interorbital space broad, concave, from the elevation of the supraocular ridges. Preorbital with two spines. A sharp spine on the suborbital at lower posterior margin of eyc. Preopercle with four processes, the upper one a sharp spine. Opercle striate, without spine. Top of head and the upper parts of the body without the small prickles which are found in B. verrucosus. Occipital pit obsulete.

No isthmus, the gill membrane united across the breast. No slit be hind the last gill.

Body with the usual eight series of long keeled plates. Each keel terminating in a strong spine hooked backward, strise radiating in every direction from the spine.

Dorsal series of plates 32,6 before the spinous dorsal, 6 along its base, 4 between the two dorsals, 5 along the base of the soft dorsal, and 11 behind it. The two dorsal series uniting immediately behind the soft dorsal, the resultant single series round, with radiating strie, the keeand spine obsolete. The two abdominal series similarly unite close behind the anal fin.

The plates in the upper lateral series diminish in size forward, becoming very small anteriorly. The lower lateral series becomes broader forwards as the other series decreases. It terminates abruptly opposite
the origin of the second dorsal. In the lower lateral series are 29 plates, in the abdominal series 30,10 before the anal, 8 along its base, and 11 behind it.

Breast without distinct plates, but entirely covered with minute tubercles) each of which has a central spine. A series of five plates in front of the base of the pectorals, four of them armed with hooked spines.

Fin rays: D. VI-6; A. 8; V. I, 2.
Lowest rays of pectorals not so short as in B. rerrucosus, the lowermost two-thirds the length of the longest (in B. verrucosus two-sevenths). Pectorals barely reaching front of anal.

Ventrals much shorter than in B. verrucosus, the tips reaching slightly more than half the distance to the anal fin (beyond front of anal in B. verrucosus). Inner ray of ventrals very little longer than the outer, the connecting membrane narrow (very broad in verrucosus). Vent but little behind ventrals.

Coloration.-Upper parts dusky; mandible, cheek, and subopercle silvery. Belly pale, with reddish tint. Lower half of pectoral reddish at luse, the rest of the fin thickly dusted with black points. Ventrals reddish. Dorsal membrane immaculate, the rays punctulate with black. Candal blackish. Anal reddish anteriorly, dusky behind.

This species is related to Brachyopsis verrucosus, lately described by Mr. Lockiugton, differing, however, in several important respects, especially (a) in the presence of small prickles on the breast instead of the large wart-like plates characteristic of verrucosus, (b) in the short ventral tins, (c) the absence of small prickles on the plates of the body, (d, the smaller number of plates, (c) the shorter vertical fins, (f) the long maxillary barbel, and (g) the deep mandible.

Brachyopsis verrucosus is comparatively common in the open water between Point Reyes and the Farallones, and is frequently brought in in the trawl-nets. Brachyopsis xyosternus is thus far known only from a specimen found on the beach at Santa Cruz by Dr. C. L. Anderson, and presented by him to the United States National Museum.

The genns to which these two species belong is well separated from Agonus by the absence of an isthmus, as well as by the entirely different form of the mouth and anterior portion of the head. Whether they are congeneric with the type of Brachyopsis Gill (Agonus rostratus Tilesius, from Kamtschatka) is yet to be proven.

Table of measurements.

Table of measuremento-Continued.

	Xyosternus, Sunta Cruz.	Vorrucosus, Punta Rejes.
Head:		
Length of maxillary	6.5	7.5
Leueth of mandible	11	12
Depth of mandible	${ }_{5}^{3.6}$	2.5
Diameter of orlit	${ }_{3}^{5} 5$	
Dorsell (epinous):		
Distance from snout	31	25.3
Greatest height .		
Lencth of base $\left\{\begin{array}{l}\text { to end of men } \\ \text { to last apime }\end{array}\right.$	17	11
Doraul (seft): ${ }^{\text {a }}$ (last spine		
Length of hase to $^{\text {and }}$ and membrane	18	
Lebigth of hase \{ , last ruy	10	13.3
Height of longest zay .	13	
Dintanee from anont	47.5	52
Length of base: $\{$ to end of memb		
Lengtit of base \{ to last ray	16.5	24
Irwight of longest ray	13	
Caudal, lenetle	13.5	16.3
Peetoral, leugth	24	24.5
Ventral :		
Distance from maout	24	
Length...........	14.3	20.
Dorsal rays	V1-6	1×-7
Ansil ravs	8	11
pretoral rays	17	14
Ventral ravs	1.2	2
Number of tubes in lateral line.	34	37
Number of plates in dorgal acries	32	35
Number of plates in lower lateral seriea	20	35

Santa Cruz, Cal., April 20, 1880.

DESCRYPTION OF A NEW FLOENDER (HIPPOGTOSSOIDES EXILIS), FROM THE COAST OF CAHIPORNIA.

By DAVID S. JORDAN and CHARLES H. GILBERT.

Hippoglossoides axilis sp. nov.

Eyes and color on the right side. Boly elongate, comparatively
 the ventral, and neither strongly arched; the body tapering backwards into a slender caudal peduncle, which is cousiderably longer than deep. Greatest depth about one-third the length to base of caudle.

Head moderate, not obtuse, the oucline of the snout continuous with the descending profile of the back. Mouth not large, very oblique, the upper jaw with its margin on each side concave, the lower jaw correspondingly convex. Lower jaw slightly protruding, with a distinct symphyseal knob. Maxillary rather narrow, its posterior end obliquely truncate, not extending quite to opposite the middle of the pupil. Premaxillary anteriorly on the level of the interorbital space.

Teeth all conical, the upper jaw with t, wo distinct series; outer series of teeth smaller than in the other species of Hippoglossoides, not large anteriorly, and becoming quite small posteriorly. Teeth of the inner series quite small, closely and eveuly set. Lower jaw with a siugle
series of close-set teeth, much smaller than in the outer series of the upper jaw.

Eyes large, the lower somewhat in advance of the upper, their diameter two-sevenths of the length of the head. The upper eye with some vertical range, but not encroaching on the dorsal line.

Interorbital space a very narrow sharp ridge, with three rows of small scales, a slight ridge comnecting it with the lateral line. A series of mucous pores aronnd lower eye behind. About 8 scales in a series obliquely across the cheeks.

Gill-rakers rather slender, shorter than in the other species of this genus, but similar in form, compressed, toothed on the inner edge, somewhat curved forwards. Abont 10 of them below the angle of the arch, the longest not one-third the diameter of the eye.

Scales comparatively large, very much larger than in the other species of Mippoglossoides, thin, almost membranaceous, and somewhat readily decidnous, their edget conspicuonsly ctenoid, but much less rough than in H. jordani. In the latter species the scales are of much firmer texture, and their cilia are spine-like and stiff. The character of the scales is similar to that of Atheresthes stomias, which this species also simulates in form and color. Scales on the head entirely similar to those on the body, but somewhat smaller. Those on left side also similar, but less strongly ctenoid. They are, however, considerably rougher than ou the blind side in related species.

Lateral line very prominent, its tubes coarse. It is straight behind, slightly and regularly rising anteriorly, without trace of arch or convexity.

Rays of both dorsal and anal fins extensively scaly on both sides. Scales extending high up on all the fins. Scales 16-71-18 (42-125-13 in Hippoglossoidea jordani).

Fins low, rather fragile, the rays set well apart.
Dorsal fin beginning immediately in front of the pupil, its anterior rass very low, the highest rays much behind the middle of the fin, their height much less than the length of the caudal peduncle, and but little more than the diameter of the eye.

Anal fin similar to the dorsal, but rather higher, preceded by a spine which is shorter than in U. jordani.

Candal fin long, somewhat pointed, the middle rays unusually produced.

Pectoral fins small, little more than half the length of the head, that of the left side less than a third. Ventral fins both lateral, small, not reaching to the anal spine.

Fin rays: D. 78 ; A. 62 ; V. 6.
Color pale olivaceous brown, rendered darker by black punctulations, which form an edging around each scale, sometimes with a few very faint bronze spots. Fins somewhat dusky, especially the caudal and
pectoral; dorsal and anal edged with yellowish anteriorly; ventrals with considerable light yellow.

This species is known to us from upwards of a hundred specimens taken in sweep-nets between the Golden Gate and Point Reyes.

All the specimens are small, ranging from 8 to 12 inches in length. Its abundance, in the San Francisco market at least, seems to be confined to the month of April.

Its relations are not intimate with the two species of this genus preriously known-H. platessoides of the North Atlantic and H. jordani of the North Pacific. From both it differs in the elongate form, much larger scales, fewer fin rays, smaller teeth, \&c. With H. jordani, which inhabits the same waters, it agrees in scarcely any respect, excepting in the characters of the genus Hippoglossoides, i. e., the large month, conical teeth, ctenoid scales, simple, straight, lateral line, convex cautal, dextral eyes, \&c.

Table of measurements.

	Erilid.	Jordani:
Extreme length, in inches	10.25	9. 08
Leagth to base of catulal, in inches = 100.	8. 40	7. 70
Booly: Greatest belght		41
Lenet livight.	82	41 9.8
Length of caudal peduncio.	12.5	8
Hend:		
Grientest length	24.5	38.5
Width of interorbital area	, 80	1. 50
Length of mnout	3.7	8.8
Lengeth of orbil.	93	
Jength of maxillary	9	11
Length of manelible	11.5	14
Leogth of longent gill-mker	2	3
Derwal:		
Distance from nnout	0.3	9
Greateat height		11. 5
Anal:		
Distance from mnout	35	33
Height at longeet ray	9.3	10. 5
Caudnl:		
Eegrth of midalle mays.	20.5	17.5
Length of onter ruys.	17	
Pertoral:		
Right ride, length	14	15.5
Left side, lenith	8	11
Ventral, right side, length	7.5	8
Dosaal raya	78	9
Anal riys.	69	73
Scalen in lateral line	71	125
Scales in transwerse row above lateral line	18	42
Seales in transverse row below lateral line	18	43

San Francisco, Cal., April 21, 1880.

DEACEIPTEONM OF NRW INVERTEERATE POMAIIM FEQVI TEVE MEsOLOIC AND CENOZOIC TOCKAOF AREANSAS, WIOMING, COL. ORADO, AND UTAHE.

By C. A. WHITE.

The fossils described in the following paragraphs are among the collections of tho National Musemm. All except one species have been selected for description from anong the collections that were made under the anspices of the surveys formerly in charge, respectivels, of Professor Powell, Dr. Hayden, and Captain Whecler. Two of thes, Callianassa ulrichi and Spirorbis diclhauti, are embraced in a small Cchlection of Cretaceous fossils sent to the Natioual Musenm from near Li tle Rock, Ark., by Mr. E. O. Ulrich, of Cincinuati, Ohio.

MOLLUSCA.
CONCHIFERA.

Genus PTERIA Scopoli.

Subgenus OXYTOMA Meek.

Pteria (Oxytoma) erecta (sp. nov.).
Avicula linguiformis White, 1876 (not Slumarl), Powell'm Rep. Geol. Uinta Mts., p. 95.
Shell rather small, appearing to be uearly crect, but the axis is slightly oblique to the hinge-line; both valves convex, but the right one less convex than the left; hinge-line long, much longer than the axial length of the shell; posterior wing large, its extremity acutely angular and moderately prominent; anterior wing comparatively large, prominent, obtusely pointed, defined from the body of the shell by a sinus or furrow in both valves, the direction of which forms a slightly obtuse or nearly right angle with the hinge-line; front, exclusive of the anterior wing, nearly perpendicular the margin forming a nearly regular curve from the front all the way around to the posterior side, where it is flexed with a back ward curve to meet the extremity of the hinge-line ; umbones somewhat prominent, especially that of the left valve. Surface having a nearly smooth appearance, but the lens reveals the presence of somewhat regularly disposed concentric lines.

Length of hinge-line, 32 millimeters; axial length of the shell, 26 millimeters. (Museum No. 8i71.)

This shell was formerly referred by me (loc. cit.) to the Avicula lingui. formis of Shumard, but it differs from that spesies by having larger wings, a much longer hinge-line, and a much less obliyue axis. It may be compared with P. (O.) salinensis White, Proc. U. S. Nat. Mus., vol. ii, p. 296, pl. 5, figs. 1 and 2; but it differs in being less robust, having
propurtionally larger wings, narrower body, and a more nearly erect axis.

Position and locality.-Lower Potato Valley, Southern Utah, where it was obtained by Prof. J. W. Powell from Cretaceous strata.

Genus SOLEMYA Lamarck.

Solemya bilix (sp. not.).

Shell about two and a half times as long as high, broader anteriorly than posteriorly; both ends rounded, the posterior one more narrowly so than the other; both dorsal and basal margins gently convex or nearly straight; test thin and iragile; valves moderately convex from abore downward, the greatest convexity in that direction being near the dorsum; beaks, having the usual inconspicuous character common to the genus, situated near the posterior end; ligament necessarily short, but apparently well developed, and resting upon a fulcrum of support of the usual character in each valve. Surface bright and, besides the usual lines of growth, marked by numerous faint radiating lines, which are visible to the unassisted eye, but are satisfactorily seen only under a lens, nearly uniformly distributed over the whole surface, but upon the middle portion they are arranged in pairs.

Length, 20 millimeters; height at the broadest part, which is in front of the middie, 8 millimetres. (Muscum No. 8913.)

This is plainly a characteristic species of Solemya, but the only fossil species with which it need be compared is S. subplicata Meck \& Hayden, from the Fox Hills Cretaceons of the Upper Missouri. It differs from that species in being proportionally broader inf front, in the character and uniformity of distribution of its radiating strix, and in wanting the subplicate character of the front portion. The extension of the epidermis has not been observed, but in other respects this species may le compared with the living S. velum Say in general form, and in the pairing of its radiating lines.

Position and locality.-Cretaccous strata, associated with Mactra holmesii (= Cyrena I holmcsii Meek), about four miles north of Golden, Colo, where it was obtained by Mr. W. H. Holmes. These strata were formerly supposed to belong to the Lignite series (Laramie), but they are marine Cretaceous, as I have shown in An. Rep. U. S. Geol. Sur. Terr. for 1877, pp. 193-196.

Genus LUCINA Bruguière.

LUCINA PROFUNDA (sp. nov.).

Shell subcircular or subpentahedral; valves not very convex; posterior side truncate, narrower than the anterior; basal border having its margin more abruptly convex at its middle than towards the front and rear; dorsal margin short, nearly straight; front margin having a nearly
regular curve; beaks small, submedially located, distinct but inconspicnous; umbonal ridge slightly developed, curved, passing near the dorsal and posterior borders. Surface marked by the usual concentric lines of growth.

Length, 20 millimeters; height, from base to beaks, 18 millimeters. , (Museuin No. 8362.)

This species is readily recognizable by its comparatively narrow pos. terior side, its deeply convex basal border, and slight convexity of the valves.

Position and locality.-Cretaceous strata, Monument Creek, Colorado, where it was obtained by Dr. A. C. Peale.

GASTEROPODA.

Genus PLANORBIS Guettard.

Planorbis equalis (sp. nov.).

Shell rather small, coiled nearly in a plane, apparently sinistral; whorls apparently 4 or 5 , in close contact but only slightly involute, broadly convex upon the periphery, but their sides more narrowly convex, their transverse diameter greater than that which corresponds with the plane of the coil.

Surface marked by a considerable number of revolving raised lines or slight angulations, which are crossed by the usual lines of growth.

Diameter of the full coil of the largest examplo discovered, 6 millimeters. (Museum No. 8909.)

This is apparently the only species of typical biumbilicate Planorbis that has yet been discovered among the fossil fresh-water faunæ of the Western region, and it therefore needs no detailed comparison.

Position and locality.-Green River Group, Eocene, Henry's Fork of Green River, Southern Wyoming.

Subgenus GYRAULUS Agassiz.

Planorbis (Gyraulus) militaris (sp. nov.).
Shell very small, dextral, depressed convex above, umbilicate below; volutions two and a half to three and a half, convex on all sides except the inner, which is very narrowly flattened against each preceding coil; suture deeply impressed both above and below; surface marked by comparatively coarse lines of growth.

Diameter of the full coil of the larger examples in the collection, 4 millimeters. (Museum No. 8594.)

This form was noticed but not named by me in vol. iv, U. S. Expl. \&SUr. West of the 100th Merid., p. 210. At that time I was not antisfied as to the mature condition of these shells, but by careful examina-
tion of a larger number of examples there seems to be no reason for doubt upon that point.

The subgenus Gyraulus has not heretofore been published as occurring among our large fossil pulmonate molluscan faunæ of the West, but at least two other species probably exist there, one in the Bear River (Laramie) strata, and the other in those of the Green River Group.

Position and locality.-Head of Soldiers' Fork, Utah, where they were obtained by one of the parties of the survey in charge of Lieutenant Wheeler. The true age of the strata is not at present definitely known, but it is understood to be either that of the upper portion of the Laramie or the lower portion of the Wahsatch Group.

Genus LIMNÆA Lamarck.

Subgenus LEPTOLIMNEA Swainson.

Limnea (Leptolinnea) minuscula (sp. nov.).

Shell rather small, moderately attenuate; spire much longer than the aperture; volutions six or seven, moderately convex, the distal border very narrowly appressed against each preceding coil; aperture small, elongate, subovate; columellar fold distinct, but not large. Surface marked by distinct lines of growth, but no revolving lines have been detected.

The only two examples of this species that have been discovered are broken, but the full length of the larger one is estimated at 9 millimeters; diameter of last volution, 3 millimeters; length of aperture, $3 \frac{1}{2}$ millimeters. (Museum No. 8907.)

Position and locality.-From strata belonging to either the basal portion of the Green River Group or the upper portion of the Wahsatch Group, about three miles east of Table Rock Railroad station, Southern W yoming, where it is associated with Planorbis cirratus White, and also a small Limnæid that is probably referable to Acella Haldeman.

Genus HELIX Linnæus.

Subgenus PATULA Haldeman.

Melix (Patula) sepulta (sp. nov.).

Shell convex above; umbilicus moderately wide; volutions about six, convex upon all sides except the inner; suture impressed; surface regularly but minutely ribbed, the ribs having the same direction as the lines of growth.

All the examples discovered are distorted by pressure, but the diameter of the full coil of the largest example was about 12 millimeters and its full height about 7 millimeters. (Museum No. 8908.)

Position and locality.-The coal-bearing series of strata at Evanston, Wyo, where it is associated with \boldsymbol{H}. evanstonensis White and other forms. These strata belong either to the upper part of the Laramie or the lower portion of the Wahsatch Group.

ARTICULATA.

VERMES.

Genus SPIRORBIS Lamarck.

Spirorbis? dickilauti (sp. nov.).

Shell discoid, one side being nearly flat and the other broadly umbilicate; volutious about five, partially embracing but all of them visible, somewhat rugose but increasing in size with considerable regularity; peripheral side of the volutions flattened or gently convex, having a single revolving raisedrline along its middle and another similar one at each border, where it sharpens the angularity between the lateral and peripheral sides; onter portion of both the lateral sides of the volutions concave, and the inner portion convex, giving the last-named portion a greater transverse diameter than the outer portion, the larger part of which is embraced by the next succeeding volution; aperture small, round, and apparently, but not really, contracted. The cavity being round, the outer portion of the test only partakes of the irregu. larity described, and seems to have been deposited as an encrustation upon the first-formed inner portion, that of adjacent volutions seeming to blend, obscuring the suture. Besides a considerable degree of rugosity, the surface shows under the lens a peculiar granular or rather an etched appearance.

Greatest diameter of the full coil of the largest example discovered, 9 millimeters; greatest diameter of the outer volution, near the aperture, $2 \frac{1}{2}$ millimeters. (Maseum No. 9073.)

In size and general aspect this species resembles S. rotulus Morton sp., from the Cretaceous of New Jersey, but although doubtless congeneric, it differs from that species in the character of its surface ornamentation, and in having a round instead of quadrangular aperture. This shell is referred to the shell-bearing worms and not to the mollusca on account of the peculiar character of the test. It probably does not strictly belong to the genus Spirorbis, but it is regarded as at least a closely related form.

Position and locality.-Cretaceous strata near Little Rock, Ark., where it was obtained by Mr. E. O. Ulich, and also by Mr. H. E. Dickhaut, in whose honor the specific name is given.

CRUSTACEA.

Genus CALLIANASSA Leach.

Callianassa ulricui (sp. nov.).

Hand quadrate, flattened; inner face less convex than the onter; both upper and lower edges acute, the lower one more so than the upper, and finely crenulate; fixed finger slender, plain, its transverso section subProc. Nat. Mus. $80-11$

Aug. ©4, 1880.
triangular, gently curved, shorter than the hand; movable finger larger and stronger than the fixed one, having a moderately strong prominent ridge upon the inner side, between the front end of which and the estremity of the finger there is sometimes a distinct tooth. Surface nearly smooth, but some examples are granulate about the middle of both sides of the hand, and several small foramina are observable along the upper margin of the movable finger.

Length of hand, 13 millimeters; breadth, 10 millimeters; thickness, 4 millimeters. (Museum No. 8910.)

Position and locality.-This species has been sent to the United States National Museum by Mr. E. O. Clrich, in whose honor the specific name is given. He obtained it from Cretaceous strata near Little Rock, Ark. Associated with it, besides certain characteristic Cretaceous mollusea, there are several separate movable fingers which plainly belong to another decapod crustacean; but although complete in themselves, they constitute too small a portion of the animal to satisfactorily base a specific description upon them.

A CATALOGCE OF THE BIRDA OF NORTH AMEAICA.

By ROBERT RIDGWAY.

INTRODCCTION.

During the interval of twenty-one years which has elapsed since the publication of the last Smithsonian catalogue,* a great advance has naturally been made in our knowledge of North American ornithology; and so numerous and important are the changes which have resulted, t:rough additions of new species, rectifications of synonymy, etc., that a new list seems desirable to take the place of the old one.

The total apparent number of species given in the old catalogue has been increased only from 738 to 764 , a slight numerical discrepancy which it is necessary to explain. From the catalogue of 1859 there have been eliminated no less than 62 names, which are either not entitled to a place in the North American fauna or which have been degraded to varietal or sub-specific rank, the number of the species in the latter case being here simply duplicated as many times as there are varieties of a species. To offset this large reduction, 59 valid new species have been described since 1859 , and 77 added, or restored, to the fauna, the accessions thus numbering 127 species, or 65 more than the eliminations. The forms considered to be of merely subspecific rauk number 160 , which, added to the 764 valid species recognized, gives a total of 924 definable forms composing the North American avian fauna, as now understood. \dagger

It is found impracticable to here distinguish, in all cases, between

[^16]species which are truly or peculiarly North American and those which are more properly visitants from other countries; but in the case of those whose occurrence appears to be accidental or occasional, the number preceding the name is inclosed in brackets. Of the latter class, species which there is good reason to believe did not reach our limits through natural means (i. e., those escaped from confinement) have been, iu every case, carefully excluded, as have likewise all introduced species.

It has been deemed best, in view of the recent discoveries along our southwestern border, to retain as North American all the species (less than a dozen in number) treated by Professor Baird in Volume IX, Pacific Railroad Reports ("Birds of North America"), and likewise given in the old catalogue, on account of their having been obtained just across the boundary, in Northern Mexico; their discovery within our limits being quite certainly only a question of time and investigation. For the same reason, the remaining few of Giraud's "Sixteen New Species of Texan Birds" are also included. Neither are we prepared to relinquish severad Audubonian species which at the present time are known only from the descriptions and figures by their discoverer (e. g., Regulus curieri, l'erissoglossa [?] carbonata, Dendraca montana, and Wilsonia minuta, as well as other better-known species which are given by Audubon on his oun authority (e.g., Chrysomitris "magellanica" = C. notata, and Eudocimus ruber).

Several species peculiar to the islands of Socorro and Guadalupe, off the coast of northwestern Mexico and Lower California, respectively. together with the few forms peculiar to the latter peninsula, are regarled as truly North American, their affinities, with perhaps only two exceptions (i.e., Conurus holochlorus and Polyborus lutosus), being strictly "Nearctic."

The greatest difficulty encountered in the compilation of this work has been in the way of distinguishing between valid "species" and those forms to be regarded as geographical races of merely subspecific rank. The greatest care has been taken in all doubtful cases of this kind, and previous conclusions (published in "History of North American Birds" \dagger and elsewhere) carefully reconsidered, with the aid of all the material accessible, including many specimens not previously in hand. This reconsideration of the subject has, in not a few cases, resulted in a reversal of former opinion, specimens from important localities not before represented often deciding the point one way or the other. Every form whose characteristics bear unmistakably the impress of climatic or

[^17]local influences, gradually less marked toward the habitat of another form, with which it thus intergrades; and all forms which certainly intergrade, no matter how widely distinct the opposite extremes may appear (e.g., Colaptes auratus and mexicanus), together with intergrading forms whose peculiarities are not explained by any known "law" of variation, have been reduced to subspecific rauk. On the other hand, where the difference between allied forms is slight, but at the same time absolutely constant, and not coincilent with a difference of habitat (e.g., certain of the small Thrushes and the various forms of Junco), specific rank is upheld. There are some forms which future investigation, based upon adequate material, may decide to be of different rank from that accorded them here. We cheerfully acknowledge our fallibility, but at the same time would say that we have endeavored to be as conscientious and consistent as possible, giving the rank of each form as it appears in the light of our present knowledge, independent of previous conclusions.

Smithsonian Ivstitution, January 22, 1880.

CATALOGUE.

1. Hylocichla mustelina (Gmel.) Baird. Wood Thrush. [148.]
2. HYLOCICHLA FUSCESCENS [Steph.] Baird. Wilson's Thrush. [151.]
3. HYLOCICHLA ALICIAI BARD. Gray-cheeked Thrush. [154.]
4. hyLocichla ustulata (Nutt.) Baird. Russet-backed Thrush. [152.]

4a. HYLOCICELA UStulata swainsoni (Caban.) Ridew. Olive-backed Thrush. [153.]
5. HYLOCICHLA UNALASHKA (GMEl.) Ridgw. Dwarf Thrush. [150.]
5a. HYLOCICELA UNALASHKA AUDUBONII (Baird) Ridgw. Rocky Mountain Hermit Thrush. [149a.]
5b. Hylocichla uralashker pallasi (Caban.) Ridgw. Hermit Thrush. [149.]
[6.] TURDUS ILIACUS Linv. Red-wing Thrush.
7. merula migratoria (Linn.) Sw. \& Rich. American Robin. [155.]
7a. MERULA MIGRATORIA PROPINQUA RIDGW. Western Robin.
8. mertula confinis (Baird) Ridgw. Saint Lucas Robin.
9. hesperocicila naivia (Gmel.) Baird. Varied Robin. [156.]
10. OREOSCOPTES MONTANUS (TOWNE.) Bard. Sage Thrasher. [255.]
11. MIMUS POLYGLOTTUS (Linn.) BoIE. Mockingbird. [253, 253a.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 167
12. GALEOSCOPTES CAROLINENSIS (LINN.) CABAN.
Catbird. [24.]
13. HARPOREYNCEUS RUFUS (LINN.) CABAN.

Brown Thrasher. [261,261 a.]
13a. HARPORHYNCEUS RUFUS LONGIROSTRIS (LAFR.) COURS
Mexican Brown Thrasher. [260.]
14. HARPORHYNCHUS CINEREUS XANTUA. Saint Lucas Thrasher.
14a. HARPORHYNCHUS CINEREUS BENDIREI (COUES) HENSU.
Bendire's Thrasher.
15. HARPORHYNCHUS CURVIROSTRIS (SW.) CABAN.

Curve-billed Thrasher. $[259,259 a$.]
15a. HARPORHYNCEUS CURVIROSTRIS PALMERI RIDGW.
Palmer's Thrasher.
16. HARPORHYNCEUS REDIVIVUS (Gamb.) Caban.

Californian Thrasher. [256.]
16a. HARPORHYNCHUS REDIVIVUS LECONTEI (LAWR.) COUEG.
Leconte's Thrasher. [57.]
17. HARPORHYNCHUS CRISSALIS HENRY.

Red-vented Thrasher. [258.]
18. HARPORHYNCHUS GRAYSONI BAIRD.

Socorro Thrasher.
19. CINCLUS MEXICANUS SWANN.

American Water Ouzel [164.]
[20.] CYANECULA SUECICA (Linn.) BREUM.
Blue-throated Warbler.
[21.] SAXICOLA CENANTHE (LINN.) BECHST.
Stone Chat. [157.]
22. SiALIA SIALIS (Linn.) Haldem

Bluebird. [158.]
23. SIALIA MEXICANA SWANs.

Californian Bluebird. [159.]
24. SIALIA ARCTICA SWANS.

Rocky Mountain Bluebird. [160.]
25. MYIADESTES TOWNSENDI (ALD。) CABAN.

Townsend's Bolitaire. [235.]
26. PHATNOPEPLA NITENS (Sw.) SCL.

Black-crested Flycatcher. [234.]
27. POLIOPTLLA CARULEA (LINN.) SCL

Blue-gray Gaatcatcher. [2s2.]
proceedings of united states national musedy.
28. POLIOPTILA PLUMBEA BAIRD.

Plumbeons Gnatcatcher. [283.]
29. POLTOPTILA MELANURA Lawr.

Black-capped Gnatcatcher. [284.]
30. regulus Calendula (Lins.) Licht.

Ruby-crowned Kinglet. [161.]
31. regulus obscurus ridaw.

Dusky Kinglet.
32. Regulus cuvieri aud.

Cuvier's Kinglet. [163.]
33. REGULUS SATRAPA Licht.

Golden-crowned Kinglet. [162.]
33a. REGULUS SATRAPA OLIVACEUS BAIRD.
Western Golden-crowned Kinglet.
[34.] PHYLLOSCOPUS BOREALIS (Blas.) Dresser. Kennicott's Warbler.
35. CEAMAA FASCIATA GAMB.

Ground Tit. [274.]
36. LOPHOPHANES BICOLOR (LINN.) BP.

Tufted Titmouse. [285.]
37. LOPHOPHANES ATROCRISTATUS CASA,
Black-crested Titmouse. [286.]
38. LOPHOPHANES INORNATUS (Gamb.) Cass.

Plain Titmouse. [287.]
39. LOPHOPHANES WOLL WEBERI BONAP.
WOllweber's Titmouse. [288.]
40. parus montanus, Gamb.

Mountain Chickadee. [294.]
41. PARUS ATRICAPILLUS Linn.

Black-capped Chickadee. [290.]
41a. PARUS ATRICAPILLUS SEPTENTRIONALIS (Harris) Allev.
Long-tailed Chickadee. [289, 289a.]
41 b. PARUS ATRICAPILLUS OCCIDENTALIS (BARD) Cours.
Oregon Chickadee. [291.]
42. Pards Carolinensis Aud.

Carolina Chíckadee. [293.]
43. PARUS MERIDIONALIS SCL

Mexican Chickadee. [292.]
[44.] PARUS CINCTUS Bodd.
Siberian Chickadee.
proceedings of united states national muselm.
45. PARUS HUDSONICUS Forst. Hudsonian Chickadee. [2\%.]
46. Parus rufescens towns.

Chestnut-backed Chickadee. [295.]
46 a. parus rufescens neglectus, Ridew. Californian Chickadee.
47. PSALTRIPARUS Minimus (Towns.) Bp.

48. PSALTRIPARUS PLUMBEUS BAIRD. Lead-colored Tit. [299.]
49. PSALTRIPARUS MELANOTIS (Hartl.) Bp. Black-eared Tit. [297.]
50. AURIPARUS Flavicers (Stndev.) Baird, Yellow-headed Tit. [310.]
51. sitta Carolinensis gmel White-bellied Nuthatch. [277.]
51a. Sitta carolinensis aculeata (Cass.) Allen. Slender-billed Nuthatch. [278.]
52. Sitta canadensis linn. Red-bellied Nutbatch [2\%9.]
53. sitta pusilla lath. Brown-headed Nuthatch. [280.]
54. Sitta pygmina vig. Pigmy Nuthatch. [281.]
55. Certhia fammiaris rufa (Bartr.) Ridgw. Brown Creeper. [275.]
55a. CERTHIA FAMLLIARIS MEXICANA (Glogeli) Ridgw. Mexican Creeper. [276.]
56. Campyorhynchus brunneicapillus (Larr.) Gray. Cactus Wren. [262.]
57. Camplorhynchus affinis Xantis. Gaint Luoas Cactua Wren.
58. Salpinctes obsoletus (Say) Caban. Rock Wren. [264.]
58a. SALPiNCTES Obsoletus guadalupensis Ridgw. Guadalupe Rock Wren.
59. Catherpes mexicants (Sw.) Baird. Mexican White-throated Wren [263.].
59a. CATHERPES MEXICANUS CONGPERSUS RidGw. White-throated Wren.
proceedings of cnited states national musech.
60. THRYOTHORUS LUDOVICIANUS (Gy.) Bp.

Carolina Wren. [265.]
60a. TRRYOTHORUS LUDOVICIANUS BERLANDIERI (COUCE) COCRA Berlandier's Wren. [266.]
60b. TERYOTHORUS LUDOVICIANUS MIAMENSIS Ridaw.
Florida Wren.
61. THRYOMANES BEWICKI (AUd.) Batrd. Bewick's Wren. [267.]
G1a. THRYOMANES BEWICKI SPILURUS (Vig.) Barrd. Californian Bewtck's Wren.

61 b. THRYOMANES BEWICEI LEUCOGASTER BAird. Texan Bewick's Wren.
6.. thryomanes brevicauda Ridaw. Guadalupe Wren.
63. troglodytes aëdon, vieml.

House \mathbf{W} ren. [$270,272$.
63a. troglodytes aídon parkmanni (Aud.) Coues. Western House Wren. [271.]
64. troglodytes insularis bard. Socorro Wren.
65. anorthura troglodytes hyemalis (vibil.) Coues. Winter Wren. [273.]
Gua. anorthura troglodytes pacificus (Baird) Ridaw. Western Winter Wren.
66. ANORTHURA ALASCENSIS (BaIRD) Cours. Alaskan Wren.
67. TELMATODYTES PALUSTRIS (Wils.) Baird. Long-billed Marsh Wren. [268.]
67a. TELMATODYTES PALUSTRIS PALUDICOLA BAIRD Tule Wren.
68. CISTOTHORUS STELLARIS (Licht.) Caban. Short-billed Marsh Wren. [269.]
[69.] mOtacilla alba Lins. White Wagtail.
[70.] BUDYTES FLAVA (Linn.) Grax. Yellow Wagtail.
71. ANTEUS LUDOVICIANUS (Gm.) Licit.

American Titlark. [165.]
[72.] ANTHUS PRATENSIS (LINN.) BECHST. European Titlark.
proceedings of tnited states national museum 171
73. NEOCORYS SPRAGUEI (AUD.) SCL.
Sprague's Titlark. [166.]
74. MNIOTILTA VARIA (Linn.) VIELLI.

Black-and-white Creeper. [167a.]
74a. MNIOTILTA VARIA BOREALIS (NUTT.) RIDGW.
Small-billed Creeper. [167.]
75. PROTONOTARIA CITREA (BODD.) BAIRD.

Prothonotary Warbler. [169.]
70. HELONAA SWAINSONI AUD.

Swainson's Warbler. [179.]
77. HELMITHERUS VERMIVORUS (GMEL.) BP.

Worm-eating Warbler. [178.]
78. HELMINTHOPHAGA BACHMANI (AUd.) CABAN.

Bachman's Warbler. [182.]
79. HELMINTHOPHAGA PINUS (LINN.) BAIRD.

Blue-winged Yellow Warbler. [180.]
80. HELMINTHOPHAGA LAWRENCEI MERRICK. Lawrence's Warbler.
81. HELMINTHOPHAGA CHRYSOPTERA (Livx.) Baind. Golden-winged Warbler. [181.]
82. HELMINTHOPHAGA LEUCOBRONCHIALIS BREWSTER. White-throated Warbler.
83. HELMINTHOPHAGA LUCIA Cooper.

Lucy's Warbler.
84. HELMINTHOPHAGA VIRGINI丑 BAIRD.

Virginia's Warbler. [183a.]
85. HELMMINTHOPEAGA RUFICAPILLA (WILS.) BAIRD.

Nashville Warbler. [183.]
66. HELMINTHOPHAGA CELATA (SAy) Baird.

Orange-crowned Warbler. [184.]
86a. helminthophaga Celata lutescens Ridaw. Luteous Warbler.
87. HELMTNTHOPHAGA PEREGRINA (WiLs.) BAIRD

Tennessee Warbler. [185.]
88. PARULA AMERICANA (LINN.) Bp. Blue Yellow-backed Warbler. [168.]
80. PARULA PITIAYUMI INSULARIS (Lawr.) Ridgw.

Socorro Warbler.
89a. PARULA PITIAYUMI NIGRIIORA CouEs,
Sennett's Warbler.
proceedings of united states national musely.
90. PERISSOGLOSSA TIGRINA (GMEL.) Baimd. Cape May Warbler. [206.]
91. PERISSOGLOSSA CARBONATA (AUd.) BARD. Carbonated Warbler. [207.]
92. PEUCEDRAMUS OLIVACEUS (Giraud) Coces. Olive-headed Warbler.
93. DENDRGCA IESTIVA (Gmel.) Baird. Summer Yellow Bird. [203.]
94. DENDRGECA CARRULESCENS (Linn.) BAIRD. Black-throated Blue Warbler. [193.]
95. DENDRGECA CORONATA (LInn.) Grap. Yellow-rump Warbler. [194.]
96. DENDRCECA AUDUBONII (Towns.) BAIRD. Audubon's Warbler. [195.]
97. DENDRGCA MACULOSA (GMEL) Baird. Black-and-yellow Warbler. [204.]
98. DENDRGCA CeERULEA (Wils.) Baird. Cerulean Warbler. [201.]
99. DENDRGECA PENNSYLVANICA (Linn.) Baird. Chestnut-sided Warbler. [200.]
100. DENDRGEA CASTANEA (Wils.) Baird. Bay-breasted Warbler. [197.]
101. DENDRCECA STRIATA (FORST.) BAIRD. Black-poll Warbler. [202.]
102. DENDRGEA BLACKBURNIAP (Gm.) Baird. Blackburnian Warbler. [196.]
103. DENDRGEA DOMINICA (Linn.) Baird. Yellow-throated Warbler. [209.]

103a. DENDRGCA DOMINICA ALBILORA BAIRD. White-browed Yellow-throated Warbler.
104. DENDRGCA GRACIA Coces. Grace's Warbler.
105. DENDRGECA NIGRESCENS (Towns.) BAIRD. Black-throated Gray Warbler. [192.]
106. DENDRGECA CHRYSOPARIA Scl. \& Salv. Golden-cheeked Warbler.
107. DENDRCiCA VIRENS (GMEL.) Baird. Black-throated Green Warbler. [189.]
108. DENDRGECA TOWNSENDI (NUTt.) BaIRd. Townsend's Warbler. [191.]
rroceedings of united states national mesedm. 173
10. DENDRGECA OCCIDENTALIS (TOWNS.) BAIRD.

Hermit Warbler. [190.]
110. DENDRCECA KIRTLANDI BAIRD.

Kirtland's Warbler. [205.]
111. DENDRCECA PINUS (Wils.) Baird. Pine-creeping Warbler. [198.]
112. DENDRGECA MONTANA (Wils.) BAIRD. Blue Mountain Warbler. [199.]
DENDRGECA PALMARUM (GMEL) BAIRD. Red-poll Warbler. [208.]
113a. DENDRGEA PALMARUM HYPOCHRYEEA RIDGW. Yellow Red-poll Warbler.
114. DENDRGECA DISCOLOR (Vieill.) Baird. Prairie Warbler. [210.]
115. SIURUS AURICAPILLUS (Linn.) Swains. Golden-crowned Thrush. [186.]
11G. SIURUS NATVIUS (Bodd.) Covrs. Small-billed Water Thrush. [187.]

116a. SIURUS Nfitivs NOTABILIS Grinnell. Grinnell's Water Thrush.

11\%. SIURUS MOTACILLA (VIELLE) Cours. Large-billed Water Thrash. [188.]
113. OPORORNIS AGILIS (Wils.) Baird.

Connecticut Warbler. [1\%1.]
119. OPORORNIS FORMOSA (WiLs.) BAIRD.

Kentucky Warbler. [105.]
120. GEOTHLYPIS PHILADELPEIA (WILs.) BAIBD.

Mourning Warbler. [172.]
121. GEOTHLYPIS MACGILLIVRAYI (AUd.) BAIRD.

Macgillivray's Warbler. [173.]
122. GEOTHLYPIS TRICHAS (Linn.) Caban. Maryland Yellow-throat. [170.]
123. ICTERIA VIRENS (LINN.) BaMR. Yellow-breasted Chat. [176.]
123a. ICTERIA VIRENS LONGICAUDA (LAWr.) CCUEs. Long-tailed Chat. [177.]
124. WILSONIA MITRATA (Gmel.) Bp. Hooded Warbler. [211.]

1ㄹ. WILSONIA PUSILLA (Wils.) Bp. Blacis-capped Yellow Warbler. [213.]

174 proceedings of united states national musech.
125 a. Wilsonia pusilla pileolata (Pall.) Ridaw. Pileolated Warbler.
126. Wilsonia minuta (Whs.) Ridgw. Small-headed Flycatcher. [212.]
127. Wilsonia canadensis (Livn.) Coues. Canadian Flycatching Warbler. [214, 215.]
128. Setophaga ruticilla (Linn.) Swans. American Redstart. [217.]
129. Setophaga picta Swans. Painted Redstart. [218.]
130. Setophaga miniata Swang. Red-bellied Redstart. [219]
131. CARDELLina Rubrifrons (Giraud) Scl. Red-faced Warbler.
132. ERgaticus ruber (Swalsg.) Baird. Red Warbler. [216.]
133. basiledterus culicivorus (Licht.) Bonap. Brasier's Warbler.
134. BASILEUTERUS BELLII (Giratd) SCL Bell's Warbler.
135. Vireosylvia olivacea (Lisk.) Bomap. Red-eyed Vireo. [240.]
136. VIREOSYLVIA AGILIS FLAVO-VIRIDIS (CASS.) Ridaw. Yellow-grten Vireo. [241.]
137. Vireosylvia Caridris barbatula (Caban.) Ridow. Black-whiskered Vireo. [243.]
138. Vireosylvia philladelpipica cass. Philadelphia Vireo. [244.]
139. Vireosylvia gilva (Vielle) Cass. Warbling Vireo. [245.]
139a. vireosylvia gilva swainsoni bard. Western Warbling Vireo.
140. Lanivireo flavifrons (Vieill) Baird. Yellow-throated Vireo. [252.]
141. LaNivireo solitarius (Vibil.) Bamd. Blue-headed Vireo. [250.]

141a. LANIVIREO SOLITARIUS CASSINI (Xantys) Ridgw. Cassin's Vireo. [251.]
141b. Lanivireo solitarius plumbeve (Cours) all Plumbeous Vireo.
142. VIREO ATRICAPILLUS Woodh. Black-capped Vireo. [247.]
143. VIREO NOVEBORACENSIS (GMEL) BP. White-eyed Vireo. [248.]
144. VIREO HUTTONI CASS. Hutton's Vireo. [249.]
145. VIREO BELLII AUd. Bell's Vireo. [246.]
146. VIREO PUSILLUS Couts.

Least Vireo.
147. VIREO VICINIOR Coues.

Gray Vireo.
148. Lanius borealis Vieill.

Great Northern Shrike. [23a.]
149. LANIUS LUDOVICIANUS Linx.

Loggerhead Bhrike. [237.]
149a. LANIUS LUDOVICIANUS EXCUBITORIDES (Sw.) COUES,
White-rumped shrike. [238.]
149b. LANIUS LUDOVICIANUS ROBUSTUS BAIRd.
Large-billed Shrike.
150. AMPELIS GARRULUS LINX.

Northern Wax-wing. [232.]
151. AMPELIS CEDRORUM (Vieill.) Baird. Cedar Wax-wing. [233.]
152. PROGNE SUBIS (LiNv.) BAIRD.

Purple Martin. [231.]
152a. PROGNE SUBIS CRYPTOLEUCA BATRD.
Cuban Martin. [231a.]
153. PETROCEELIDON LUNIFRONS (SAY) LAWR.

Cliff Swallow. [226.]
154. HIRUNDO ERYTHROGASTRA BODD.

Barn Swallow. [225.]
155. TACHYCINETA BICOLOR (Vieml.) Caban.

White-bellied Swallow. [227.]
156. TACEYCINETA THALASSINA (Swains.) Caban.

Violet-green Swallow. [228.]
157. COTHE RIPARIA (LINn.) Boir.

Bank Swallow. [229.]
158. STELGIDOPTERYX SERRIPENNIS (AUD.) BARD.

Rough-winged Swallow. [230.]

```
\(17 \%\) PROCEEDINGS OF UNITED STATES NATIONAL MUSELM.
159. CERTEIOLA BAHAMENSIS REICIEXB.
    Bahaman Honcy Croeper. [301.]
160. EUPHONIA ILEGANTISSIMA (Br.) GRAx.
    Blue-headed Euphonia. [224.]
161. PYRANGA RUBRA (LiNN.) VIEHLL.
    Scarlet Tanager. [220.]
162. PYRANGA LUDOVICIANA (Wils.) BP.
    Western Tanager. [223.]
163. PYRANGA HEPATICA SWAINS.
    Hepatic Tanager. [222.]
164. PYRANGA ESTIVA (Linn.) Vieill.
    Summer Redbird. [221.]
1C4a. PYRANGA FSTIVA COOPERI RIDGW.
    Cooper's Tanager.
165. HESPERIPIONA VESPERTINA (COOPFR) BP.
    Evening Grosbeak. [303.]
166. PINICOLA ENUCLEATOR (Linn.) Viehli.
    Pine Grosbeak. [304.]
[167.] PYRREULA CASSINI BaIRD.
    Alaskan Bullfinch
168. CARPODACUS PURPUREUS (GM.) BAIRD.
    Purple Finch. [305.]
168a. CARPODACUS PURPUREUS CALIFORNICUS BAIRD.
    Californian Purple Finch. [306.]
169. CARPODACUS CASSINI BAIRD.
    Cassin's Purple Finch. [307.]
170. CARPODACUS FRONTALIS (SAy) GRAY.
    House Finch. [308.]
170a. CARPODACUS FRONTALIS RHODOCOLPUS (CABAN.) RIDGW.
                            Crimson House Finch.
171. CARPODACUS AMPLUS RIDGW.
                            Guadalupe House Finch.
172. LOXIA CURVIROSTRA AMERICANA (WILS.) COUES.
                            American Crossbill. [318.]
172a. LOXIA CURVIROSTRA MEXICANA (STRICKL.) BAIRD.
                            Mexican Crossbill. [318a.]
173. LOXIA LEUCOPTERA GM.
Whito-winged Crossbill. [319.]
174. LEUCOSTICTE GRISEINUCRA (Brandt) Baird.
Alcutian Rosy Finch. [323.]
```

proceedings of united states national museum.

```
175. LEUCOSTICTE TEPEROCOTIS SwAINS.
    Gray-crowned Rosy Finch. [322.]
```

175a. LEUCOSTICTE TEPEROCOTIS LITTORAIIS (BALRD) COUES.
Gray-headed Rosy Elinch.
176. IEUCOSTICTE ATRATA RIDGW.
Black Rosy Finch.
177. LEUCOSTICTE AUSTRATIS ALLEN.
Brown-capped Rosy Finch.
mgiothus Canescens Gould.
Mealy Redpoll. [321.]
178a. EGIOTEUS CANESCENS EXILIPES (COUEB) RIDOW.
White-ramped Redpoll.
179. EGIOTHUS LINARIA (LINN.) CABAN.
Common Redpoll. [320.]
179a. EGGOTHUS LINARIA HOLBOLLI (BREHM) RIDGW.
Greater Redpoll.
180. FGGIOTHUS BREWSTERI RIDGW.
Brewster's Linnet.
181. ASTRAGALINUS TRISTIS (Linn.) Cab.
American Goldfinch. [313.]
182. ASTRAGALINUS PSALTRIA (SAY) CouEs.
Green-backed Goldfinch. [314.]
182a. ASTRAGALINUS PSAITRIA ARIZONF, COUES.
Arizona Goldfinch. [315.]
1826. ASTRAGALINUS PSALTRIA MEXICANUS (SW.) COUES
Mexican Goldfinch.
183. ASTRAGALINUS LAWRENCHI (CAB8.) Bp.
Lawrence's Goldfinch [316.]
184. CHRYSOMITRIS NOTATA (DU BUs) BP.
Black-headed Goldfinch. [310.]
185. CERTSOMTTRIS PINUS (WILS.) BP.
Pine Goldifinch. [317.]
186. PLECTROPEANES NIVAIIS (LINN.) MEYER. Snow Ennting. [325.]
187. CENTROPHANES LAPPONICUS (LiNN.) CABAN. Lapland Longmpur. [326.]
188. CENTROPHANES PICTUS (SWANS.) CABAN. Smith'n Longspur. [327.]
189. CENTROPHANES ORNATUS (TOWNs.) CABAN. Chestnut-collared Longapur. [328,329.] Proc. Nat. Mus. $80-12$

Aug. 24, 1880.
190. RHYNCHOPHANES MACCOWNI (LAWR.) BAIRD

MoCown's Longapar. [330.]
191. CENTRONYX BAIRDII (AUD.) BARRD.

Baird's Bunting. [331.]
192. PAsserculus princtes matnard. Ipswich Sparrow.
193. PASSERCULUS SANDWICHENSIS (GMEL.) Baird. Sandwioh Sound Sparrow. [333.]
193a. PAsSERCULUS sandwichensis gavanna (Tils) Ridgw. Savannah Sparrow. [332.]
193b. PAsserculus sandwichensis alaudinus (Br.) Ridaw. Western Savannah Sparrow. [3\%5.]
194. Passerculus anthinus bonap. Titlark Sparrow. [334.]
190. Pasgerculus guttatus lawr. Saint Lucas Sparrow.
196. Passerculus rostratus (Cass.) Baird. Large-billed Sparrow. [336.]
197. Pocrebtes Graminevs (Gm.) Bard. Grass Finch. [337.]
197a. POCiCETES GRAMINEUS CONFINIS Baird. Weatern Grass Finch.
198. COTURNICULUS PASSERINUS (Wils.) Br. Yellow-wlinged sparrow. [338.]
198a. COTURNICULUS PASSERINUS PERPALLIDUS Ridaw. Weatern Yellow-winged Sparrow
199. COTURNICULUS HENSLOWI (AUd.) Br.

Henslow's Sparrow. [339.]
200. Coturniculus leconter (Aud.) Bp.

Leconte's Sparrow. [340.]
201. Ammodromus Caudacutus (Gm.) Swanss.

Sharp-tailed Finch. [341.]
201a. AMMODROMUS CAUDACUTUS NELSONT Allen.
Nelson's Sharp-talled Finch
202. AMMODROMUS MARITIMUS (Wis.) Swarss. Sea-\&ide Finch. [342.]
203. AMMODROMUS NIGRESCENS RIDGW. Black-and-white Bea-side Finch.
204. Chondebtes Grammica (Sax) Br. Laric Finch. [344.]

204a. CEONDESTES GRAMMICA STRIGATA (SW.) RIDGW. Western Lark Finch.
205. ZONOTRICEIA QUERULA (NUTt.) Gamb.

Earris's Eparrow. [348.]
206. ZONOTRICEIA IEDCOPBRTS (FORST.) SWAINS. White-crowned Eparrow. [345.]
207. ZONOTRICEIA GAMBELI (NUTT.) GAMB. Gambel's White-crowned Sparrow.
20% a. ZONOTRICEIA GAMBELI INTERMEDIA RIDGW. Intermediate White-crowned Sparrow. [346.]
208. ZONOTRICHIA CORONATA (PALL.) BAIRD.

Golden-crowned Sparrow. [377.]
209. ZONOTRICEIA ALBICOLIIS (GM.) BP. White-throated Bparrow. [349.]
210. SPIZELIA MONTANA (FORST.) RIDGW. Tree Sparrow. [357.]
211. SPIZELLA DOMESTICA (BARTR.) COUES. Chipping Sparrow. [359.]

211a. SPIZELLA DOMESTICA ARIZONAI (COUEs) RIDGW. Weatern Chipping Eparrow.
212. SPIZELTA PALLIDA (Sw.) Bp. Clay-colored Sparrow. [360.]
213. SPIZELLA BREWERI CASs. Brewer's Eparrow. [361.]
214. SPIZELLA PUSILLA (WHs.) BP. Field Sparrow. [358.]
215. SPIZELLA ATROGULARIS (CabAN.) Bd. Black-chinned Sparrow. [362.]
216. JUNCO ATKFNI RIDGW. White-winged Bnowbira.
217. JUNCO HYEMALIS (LINN.) SCL. Black Snowbird. [354.]
218. JUNCO OREGONUS (TOWNs.) SCL. Oregon Bnowbird. [352.]
219. JUNCO ANINECTENS BAIRD. Pink-sided Snowbird.
22. JUNCO CANICEPS (WOODH.) BAIRD. Gray-headed Enowbird. [353.]
221. JUNCO DORSALIS HENRY. Red-backed Bnowbird. [351.]

222. Junco Cinereus (Swains.) Caban.

Mexican Snowbird. [350.]
293. Junco insularis Ridgw.

Guadalupe Snowbird.
224. AMPHISPIzA BILINEATA (Cass.) Cougs.

Black-throated Sparrow, [355.]
22. AMPHISPIZA BELLII (CAss.) Coues.

Bell's Sparrow. [356.]
$2 \% a$. AMPHISPIZA BELLII NEVADENSIS RIDGW. Sagebrush Sparrow.

226. PEUC風A Bachman's Finch. [370.]

 Oak-woods Sparrow.

27. PEUCAEA ARIzONAE Ridgw.

Arizona Sparrow.
228. PEUCTIA CASSINI (Woodi.) Barrd.

Cassin's Sparrow. [371.]
229. PEUCAEA CARPALIS COUES.

Rufous-winged Sparrow.
230. PEUCAA RUFICEPS (Cass.) BaIRd.

Rufous-crowned Sparrow. [372.]
230 a. PEUCAA RUFICEPS BOUCARDI (SCL.) B. B. \& R.
Boucard's Sparrow.
231. MELOSPIZA FASCIATA (Forst.) Scott.

Song Sparrow. [363.]
$231 a$. MELOSPIZA FASCIATA FALLAX BAIRD.
Mountain Song Sparrow. [367.]
231 b. MELOSPIZA FASCIATA HEERMANNI BAIRD.
Heermann's Song Sparrow. [364.]
231 c. MELOSPIZA FASCIATA SAMUELIS BAIRD. Californian Song Sparrow. [343,365.]
231 d. MELOSPIZA FASCIATA GUTTATA (NOTt.) BAIRD. Rusty Song Sparrow. [366.]

231 e. MELOSPIZA FASCIATA RUFTNA (Brandt) Baird.
Sooty Song Sparrow.
232. MELOSPIzA CINEREA (GM.) Ridgw.

Aleutian Song Sparrow.
233. MELOSPIZA PALUSTRIS (Wils.) BAIRD.

Swamp Sparrow. [369.]

```
            PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. }18
234. MELOBPIZA LINCOLNI (AUD.) BAIRD.
    Inncoin's Finch. [368.]
235. PASSERELLA ILIACA (MRRREM) SW.
                            Fox-colored Bparrow. [374.]
235a. PASSERHLIA IHIACA UNALASHKENSIS (GM.) RIDOW.
    Townsend's Sparrow. [375.]
235%. PASSERELLLA IHIACA MEGARHYNCEA (BAIRD) RIDGW.
    Thick-billed Sparrow. [376a.]
235a. PASSERHLLA ILIACA SCHISTACEA (BAIRD) ALLEN.
    Slate-colored 8parrow. [376.]
236. EMBERNAGRA RUFIVIRGATA LAWR.
    Texas Sparrow. [373.]
237. PIPILO ERYTEROPHTHALMUS (LINN.) VIEILL.
                Chewink; Towhee. [391.]
237a. PIPILO ERYTHROPETEALMUS ALLENI COUEs.
                Florida Towhee.
238. PIPILO MACULATUS ARCTICUS (SWAINS.) COURS.
                            Northern Towhee. [393.]
238a. PIPILO MACULATUS MEGALONYX (BAIRD) COUES.
                            Epurred Towhee. [394.]
238b. PIPILO MACULATUS OREGONUS (BELL) COUES.
                Oregon Towhee. [392.]
238c. PIPILO MACULATUS CONSOBRINUS RIDGW.
        Guadalupe Towhee.
238d. PIPILO MACULATUS CARMANI BAIRD.
                            Socorro Towhee.
239. PIPIIO CEIOORURUS (TOWNs.) BAIRD.
    Green-tailed Towhee. [398.]
240. PIPILO FUSCUS MESOLEUCUS (BAIRD) RIDGW.
                            Cañon Towhee. [397.]
240a. PIPILO FUSCUS ALBIGULA (BAIRD) COUB8.
                                    Saint Lucas Brown Towhee.
240 b. PIPILO FUSCUS CRISSALIS (Vig.) CoURS.
                        Callfornian Brown Towhee. [396.]
2A1 PIPILO ABERTI BAIRD.
                            Abert's Towhee. [395.]
242. CARDINAIIS VIRGINIANUS (Briss.) BP.
                            Cardinal Groabeak. [390.]
242a. CARDINALIS VIRGINIANUS IGNEUS (BAIRD) COURS.
                Baint Lucas Cardinal.
```

```
182 PROCEEDINGS OF UNITED STATES NATIONAL MUSECM.
243. PYRRHULOXIA GINUATA BONAP.
    Texan Cardinal. [389.]
244. ZAMELODIA LUDOVICIANA (LlnN.) Coues.
    Rose-breasted Grosbeak. [380.]
245. Zamelodia melanOCEPHALA (Swans.) Cours.
    Black-headed Grosbeak. [381.]
246. GUIRACA CAERULEA (Linv.) Swains.
    Blue Grosbeak. [382.]
247. PASEERINA PARELIINA (Br.) RIDGW.
    Blue Bunting. [383.]
248. PAbgERINA CYANEA (LinN.) Gray.
    Indigo Bunting. [387.]
249. PASSERINA AMCaNA (SAy) Grat.
    Lazuli Bunting. [386.]
250. PABSERINA VERSICOLOR (BoNap.) Gray.
    Varied Bunting. [385.]
251. PASgmrina CIRIs (Linn.) Gray.
    Painted Bunting; Nonpareli. [384.]
252. SPERMOPEILA MORELETII PUCHERAN.
    Morelet's Seedeater. [388.]
253. PHONIPARA ZENA (LINN.) BRYANT.
    Black-faced Seedeater.
254. BPIZA AMERICANA (Gm.) BoNap.
    Black-throated Bunting. [378.]
255. SPIZA TOWISEENDI (AUD.) RIDGW.
    Townsend's Bunting. [379.]
256. CALAMOSPIZA BICOLOR (TOWNs.) BONAP.
    Lark Bunting. [377.]
257. DOLICHONYX ORYZIVORUS (LINN.) SWAINs.
    Bobolink. [399.]
258. MOLOTHRUS ATER (Bodd.) Gray.
                            Cowbira. [400.]
258a. MOLOTHRUS ATER OBSCURUS (GmEL) COUEs.
    Dwarf Cowbird.
259. MOLOTHRUS दaNEUS (WAGL.) CAbAN.
    Bronzed Cowblrd.
260. XANTHOCEPHALUS ICTEROCEPEALUS (BONAP.) BD.
    Yellow-headed Blackbird. [404.]
261. AGBLIEUS PHCBNICEUS (LinN.) Vibill.
    Red-and-buff-shouldered Blaokblrd. [401.]
```

PROCEEDINGS OF UNITED STATES NATIONAL MUSBUM.
261a. AGELAUS PEGSNICEUS GUBERNATOR (Wagl.) Coues.
Red-and-black-shoulgred Blackbird. [402.]
262. AGELIAUS TRICOLOR (NUTt.) Br. Red-and-white-ahouldered Blackbird. [403.]
263. STURNELLA MAGNA (Linn.) Swanss.

Meadow Lark. [406.]
263a. STURNELLA MAGNA MEXICANA (Scl.) Ridow. Mexican Meadow Lark.
264. STURNELLA NEGLECTA AUd.

Western Meadow Lark. [407.]
265. ICTERUS VULGARIS DAUD.

Troupial. [408.]
366. ICTERUS AUDUBONII Gibaud.

Audubon's Oriole. [409.]
267. ICTERUS WAGLERI SCL

Wagler's Oriole. [412.]
268. ICTERUS PARISORUM BoNap.

Bcott's Oriole. [411.]
209. ICtERUS CUCULLATUS Swains.

Hooded Oriole. [413.]
270. ICTERUS SPURIUS (Linv.) Bp. Orchard Oriole. [414.]
2i1. ICTERUS GALBULA (Linv.) Coues.
Baltimore Oriole. [415.]
272. ICTERUS BULLOCKI (SWains.) Bp. Bullock's Oriole. [416.]
273. SCOLECOPHAGUS FERRUGINEUS (Gm.) Swarns. Rusty Blackbird. [417.]
274. BCOLECOPHAGUS CYANOCEPHALUS (WAGL.) CADAN. Brewer's Blackbird. [418.]
275. QUISCALUS MACRURUS SWAINs.

Great-talled Grackle. [419.]
276. QUISCALUS PALUSTRIS SwaINs.

Mexican Boat-tailed Grackle.
277. QUISCALUS MAJOR Vieml.

Boat-talled Grackle. [420.]
278. QUISCALUS PURPUREUS (Bartr.) Leicit.

Purple Grackle. [421.]
278a. QUISCALUS PURPUREUS AGLAIUS (BAIRD) Couks. Florida Grackle. [422.]

278b. QUTSCALUS PURPUREUS haneus Ridaw. Bronzed Grackle.
[299.] STURNUS VOLGARIS Linn.
European Starling.
280. CORVUS CORAX CARNIVORUS (Bartr.) Ridow.

American Raven. [423, 424.]
231. Corvus cryptoleucus couch.

White-necked Raven. [425.]
282. CORVUS FRUGIVORUS BABTL.

Common Crow. [426.]
282a. CORVUS FRUGIVORUS FLORIDANUS (BAIRD) Ridaw. Florida Crow. [427.]
$292 b$ CORVUS FRUGIVORUS CAURINUS (BAIRD) Ridgw.
Northwestern Fish Crow. [428.]
283. CORVUS Ossifragus wils.

Finh Crow. [429.]
284. PICICORVUS COLUMBIANUS (WILs.) Br. Clarke's Nutcracker. [430.]
285. GYMNOCITTA CYANOCEPHALA MAX. Maximilian's Nutoracker; Piñon Jay. [431.]
286. PICA RUSTICA HUDSONICA (Scop.) BAIRd. Black-billed Magpie. [432.]
887. PICA NUTTALLI AUd.

Yellow-billed Magpie. [433.]
288. psilorbinus morio (Wagl.) Gray.

Brown Jay. [444.]
289. CYANOCITTA CRISTATA (LINN.) StricKl. Blue Jay. [434.]
200. Cyanocitta btellert (Gm.) Cabak. Steller's Jay. [435.]
290 a. CYANOCITTA STELLERI FRONTALIS Ridaw. Blue-fronted Jay.
290 b. CYANOCTTTA STELLERI ANNECTENS (BARD) Ridew. Black-headed Jay.
200 c. CYANOCITTA STELLERI MACROLOPHA (Barrd) Ridaw. Liong-crested Jay. [436.]
201. APHELOCOMA FLORIDANA (Bartr.) Caban. Florida Jay. [439.]
252. APHELOCOMA WOODHOUSEI (BAIRD) RIDGW. Woodhouae's Jay. [438.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
293. APHELOCOMA CALIFORNICA (Vig.) Caban. California Jay. [437.]
294. APEELOCOMA ULTRAMARINA COUCEHII BAIRD. Couch's Jay. [441.]
295. APHELOCOMA SORDIDA ARIZONII RIDGW. Arizona Jay. [440.]
296. XANTHURA LUXUOSA (Less.) Bp. Green Jay. [442.]
297. PERISOREUS CANADENSIS (LINN.) BP. Canada Jay. [443.]
297 a. PERISOREUS CANADENSIS CAPITALIS BAIRD. White-headed Jay.
297 b. PERISOREUS CANADENSIS FUMIFRONS RIDGW. Smoky-fronted Jay.
298. PERISOREUS OBSCURUS RidGw. Oregon Jay.
[299.] ALAUDA ARVENSIS Linn. Sky Lark.
300. EREMOPHILA ALPESTRIS (FORST.) BOIE. Bhore Lark. [302.]
300a. EREMOPEULA ALPESTRIS LEUCOLAMMA COUES. White-throated Shore Larle.

300 b. EREMOPHILA ALPESTRIS CHRYSOLEMA (WAGL) COUES Mexican Shore Lark.
301. MILVULUS FORFICATUS (GM.) Swains. Scissor-talled Flycatcher. [123.]
[302.] MILVULUS TYRANNUS (LiNN.) Bp.
Fork-talled Flycatcher. [122.]
303. TYRANNUS DOMINICENSIS (GM.) Reich.

Gray Kingbird. [125.]
304. TYRANNUS CAROLINENSIS (LinN.) TEMM.

Eingbird; Bee Martin. [124.]
305. TYRANNUS MELANCEOLICUS COUCHII BAIRD.

Couoh's Kingbird. [128, 129.]
306. TYRANNUS VERTICALIS SAY. Western Kingblad. [126.]
307. TYRANNUS VOCIFERANS SWAINs, Canain's Kingbirc. [127.]
308. PITANGUB DERBIANOS (KAUP) SCL. Mexican Pitangus.

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
309. MYIOZETETES TEXENSIS (Giracd) Scl. Giraud's Flycatcher.
310. MYIODINASTES LUTEIVENTRIS BONAP. Henshaw's Flycatcher.
311. MYIARCHUS MEXICANUS (KaUP) Lawr. Mexican Great Crested Flycatcher. [132.]
312. MYIARCHUS CRINITUS (Linn.) Caban.

Great Crested Flycatcher. [130.]
313. MYIARCHUS CINERASCENS LAWR.

Ash-throated Fiycatcher. [131.]
314. MYIARCHUS LAWRENCEI (GIRAUD) BAIRD.

Lawrence's Flycatcher. [133.]
315. SAYORNIS FUSCUS (GMEL) BAIRD.

Phoobe Bird; Pewee. [135.]
316. SAYORNIS SAYI (BoNAP.) BAIRD.

Say's Pewee. [136.]
317. SAYORNIS NIGRICANS (SWAINs.) Br.

Black Pewee. [134.]
318. CONTOPUS BOREALIS (Swanvs.) Baird.

Olive-sided Flycatcher. [137.]
CONtopus pertinax caban.
Coues's Flycatcher.
CONTOPUS VIRENS (Linn.) Caban.
Wood Pewee. [139.]
321. CONTOPUS RICHARDSONII (SW.) BAIRD.

Western Wood Pewee. [138.]
322. EMPIDONAX FLAVIVENTRIS BAIRD.

Yellow-bellied Flycatcher. [144.]
323. EMPIDONAX DIFFICHIIS BAIRD.

Western Yellow-bellied Flycatcher. [144a.]
324. EMPIDONAX ACADICUS (Gmel.) Baird.

Acadian Flycatcher. [143.]
325. EMPIDONAX PUSILLUS (Swains.) Bd.

Little Flyoatcher. [141.]
3% a. EMPIDONAX PUSILLUS TRAILLII (AUD.) BATRD.
Traill's Flycatcher. [140.]
326. EMPIDONAX MINIMUS BAIRD.

Least Flycatcher. [142.]
327. EMPIDONAX HAMMONDI (XANTUB) Bd.

Hammond's Flycatcher. [145.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
328. EMPIDONAX OBSCURUS (SWAINs.) BAIRD. Wright's Flycatoher. [146.]
329. EMPIDONAX FULVIFRONS (GIRAUD) SCL Fulvous Flycatcher.

39 a. EMPIDONAX FULVIFRONS PALLESCENS COUES.
Buff-breasted Flycatcher.
330. PYROCEPEAIUS RUBINEUS MEXICANUS (SCL) COUES.

Vermilion Flyoatcher. [147.]
331. ORNITHION IMBERBE (SCL) COUES.

Small-billed Flycatcher.
332 PACEYREAMPEUS MAJOR (BONAP.) SCI
Thick-billed Flycatcher. [121.]
33. HADROSTOMUS AGLAIT (Lafr.) CAB.

Rose-throated Flycatcher. [120.]
33. EUGENES FULGENS (SWAINs.) GOULD.

Refulgent Eummingbird.
335. TROCHILUS COLUBRIS LINN.

Ruby-throated Hummingbird. [101.]
36. TROCEILUS ALEXANDRI BOURC. \& MULS.

Black-chinned Hummingbird. [102.]
33. CALYPTE COSTE (BOURC.) GOULD.

Costa's Hummingbird. [106]
338. CALYPTE ANN 7 (Less.) Gould.

Anna's Hummingbira. [10\%.]
339. SELAEPEORUS PLATYCERCUS (SWAINB.) BP.

Broad-tailed Hummingbird. [104.]
30. SELASPHORUS RUFUS (GMEL.) AUD.

Rufous Eummingbird. [103.]
31. SELASPEORUS ALLENI HENsH.

Allen's Eummingbird.
34. ATTEIS HELOISA (Less.) Reicr.

Heloise's Hummingbird.
34. STELLULA CAILIOPE GOULD.

Calliope Hummingbird.
34. CALOTHORAX LUCIFER (Swains.) GRAY.

Lucifer Eummingbird.
34. AMAZILIA FUSCICAUDATA (FRAEER) RIDGW. Rieffer's Eummingbird.
36. AMAZILIA YUCATANENSIS (CABOT) GOULD.

Bufi-bellied Eummingbird.

347. BASHINNA XANTUSI (LAWR.) Elliot.

 Xantus's Eummingbird.348. IACEE LATIROSTRIS (SWAING.) ELLIOT. Broad-billed Eummingbird.
349. CYPSELUS SAXATILIS WOODK. White-throated Swift. [107.]
350. CYPSELOIDES NIGER BOREALIS (KENNERLY) RIDGW. Black Swift. [108.]
351. CEATURA PELAGICA (LINN.) BAIRD. Chimney Bwift. [109.]
352. CEATURA VAUXII (Towns.) DEKAY. Vaux's Swift. [110.]
353. ANTROSTOMUS CAROLINENSIS (GM.) GOULD. Chuok-will's-widow. [111.]

35゙. CAPRIMULGUS VOCIFERUS (WILS.) BP. Whip-poor-will. [112.]
355. PHALAENOPTILOS NUTTALLI (AUD.) RIDGW. Poor-will. [113.]
356. NYCTIDROMUS ALEICOLLIS (GM.) BURM. Parauque Goatsucker. [116a.]
357. CEORDEILES POPETUE (VIEILL) BD. Nighthawk. [114.]

357 a. CHORDEHLES POPETUE HISNRYI (CAss.) ALLEN. Western Nighthawk. [115.]

357 b. CEORDEILES POPETUE MINOR (CabaN.) RIDGW. Cuban Nighthawk.
358. CHORDEILES ACUTIPENNIS TEXEN8IS (LNWR.) RDGW. Texan Nighthawk. [116.]
359. CAMPEPRILUS PRINCIPAIIS (LINN.) GRAY. Ivory-billed Woodpeoker. [72.]
360. PICUS VILLOSUS Linn.

Hairy Woodpecker. [74.]
360 a. PICUS VILLOSUS LEUCOMELAS (BODD.) RIDGW. Great White-backed Bapsucker.

360 b. PICUS VILLOSUS HARRISI (AUD.) ALLEN. Earris's Woodpecker. [75.]
361. PICUS PUBESCENS LINN. Downy Woodpeoker. [76.]
361a. PICUS PUBESCENS GAIRDNERI (AUD.) COUKS.
Gairdner's Woodpecker. [77.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
362. PICUS QUERULUS WILS.

Red-cookaded Woodpeoker. [80.]
363. PICUS SCALARIS WAGI Texan Bapsucker. 「70.1

363 a. PICUS SCALARIS LUCABANUS (XANT.) RIDGW. Saint Lucas Sapaucker.
364. PICUS NUTTALII Gamb. Nuttall'e Woodpecker. [78.]
365. PICUS STRICKIANDI MALH. Strickland's Woodpeoker.
366. XENOPICUS AIBOLARVATUS (Cass.) BAIRD. White-headed Woodpecker. [81.]
367. PICOIDES ARCTICUS (SWAINB.) GRAY. Black-backed Three-toed Woodpeoker. [82.]
368. PICOIDES TRIDACTYLUS AMERICANUS (BREHM) RIDGW. Banded-backed Three-toed Woodpecker. [83.]

368 a. PICOIDES TRIDACTYLUS DORSALIS (BAIRD) RIDGW. Striped-backed Three-toed Woodpecker. [[84.]
369. SPHYRAPICUS VARIUS (LiNn.) BAIRD. Yellow-bellied Woodpecker. [85.]

309a. SPHYRAPICUS VARIUS NUCEALIS BAIRD. Red-naped Woodpecker. [86.]
369 b. SPHYRAPICUS VARIUS RUBER (GM.) RIDGW. Red-breasted Woodpecker. [87.]
370. SPHYRAPICUS THYROIDEUS (CASs.) BAIRD. Black-breasted Woodpecker. [88,89.]
371. HYLOTOMUS PILEATUS (LINN.) BAIRD. Pileated Woodpecker; Logoock. [90.]
372. CENTURUS CAROLINUS (L.) BP. Red-bellied Woodpecker. [91.]
373. CENTURUS AURIFRONS WAGL. Golden-fronted Woodpeoker. [92.]
374. CENTURUS UROPYGIALIS BAIRD. Gila Woodpeoker. [93.]
375. MELANERPES ERYTHROCEPEALUS (LINN.) SW. Red-headed Woodpecker. [94.]
376. MELANERPES TORQUATUS (WiLs.) BONAP. Lewis's Woodpecker. [96.]
377. MELANERPES FORMICIVORUS (Sw.) BP. Californian Woodpecker. [95.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
377 a. MELANERPES FORMICIVORUS ANGUSTIERONS BAIRD. Narrov-fronted Woodpecker.
378. COLAPTES AURATUS (LINN.) SW.

Yellow-ahafted Ficker. [97.]
378a. COLAPTES AURATUS HYBRIDUS (BAIRD) RIDGW. "Eybrid" Fioker. [98 a.]

378b. COLAPTES AURATUS MEXICANUS (Sw.) RIDGW. Red-shafted Flickor. [98.]
379. COLAPTES CERTSOIDES (MALH.) BAIRD. Malherbe's Filcker. [99.]
300. COLAPTES RUEIPIIEUS RIDGW. Guadalupe Ficker.
381. MOMOTUS CIERULEICEPS GOULD.

Blue-capped Motmot [119.]
382. CERYLE AICYON (LINN.) BoIk.

Belted Kingfisher. [117.]
383. CERYLE AMERICANA CABANISI (TBCHUDI) COURE. - Texan Kingfisher. [118.]
384. TROGON AMBIGUUS GOULD.

Coppery-talled Trogon. [65.]
385. GEOCOCCYX CALIFORNIANUS (LEs8.) BAIRD.

Road-runner; Chaparral Cock. [68.]
386. COCCYZUS SENICULUS (LATH.) VEELL.

Mangrove Cuckoo. [71.]
387. COCCYZUS AMERICANUS (LINN.) BP.

Yellow-billed Cuckoo. [69.]
388. COCCYZUS ERYTEROPETEALMUS (WILS.) BAIRD.

Black-billed Cuokoo. [70.]
389. CROTOPEAGA ANI LINN.

Savannah Blackbird. [66,67.]
390. CROTOPEAGA SULCIROSTRIS SWAINS. Groove-billed Crotophaga,
391. RHYNCHOPSITTA PACHYRHYNCHA (SWAWN.) BP. Thick-billed Parrot [64.]
392. CONURUS CAROIINENSIS (LINN.) KUEL.

Carolina Parakeet. [63.]
393. CONURUS HOLOCELORUS BREVIPES BAIRD.

Booorro Parakeet.
394. ALUCO FLAMMEES AMERICANUS (AUD.) RIDGW. American Barn Owl. [47.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
395. ASIO AMERICANUS (STEPM.) SHARPE.

American Long-eared Owl. [51.]
396. ASIO ACCIPITRINUS (PALL.) NEWTON.

Short-eared OwL [52.]
397. STRIX NEBULOSA FORST.

Barred Owl [54.]
397 a. STRIX NEBULOSA ALLENI RIDGW.
Florida Barred Owl.
393. STRIX OCCIDENTALIS (XANT.) RIDGW.

Spotted Owl.
399. ULULA CINEREA (GMEL.) BP.

Great Gray Owl [53.]
[399a.] ULULA CINEREA LAPPONICA (RETZ.) RIDGW.
Lapland Owl.
400. NYCTALE TENGMALMI RICHARDSONI (BP.) RIDGW.

Richardson's Owl. [35.]
401. NYCTALE ACADICA (GMEL.) BP.

Saw-whet Owl. [56,57.]
402. SCOPS ASIO (Linn.) Bp.

Little Screech OwL [49.]
402a. SCOPS ASIO FLORIDANUS RIDGW.
Florida Bcreech OwL.
402b. SCOPS ASIO MACCAILI (CAss.) RIDGW.
Teran Screech Owl. [50.]
402c. SCOPS ASIO MAXWELLIA RIDGW.
Rocky Mountain Bcreech Owl.
402d. SCOPS ASIO KENNICOTTII (Elliot) Ridaw.
Northwestern Screech Owl.
403. SCOPS TRICEOPSIS WAGL.

Mexican Screech Owl.
404. SCOPS FLAMMEOLUS (LICHT.) SCL.

Flammulated Bcreech Owl.
405. BUBO VIRGINIANUS (GM.) Br.

Great Horned Owl. [48.]
40ふa. BUBO VIRGINIANUS EUBARCTICUS (HOY) RIDGW.
Wentern Eorned Owl.
405b. BUBO VIRGINIANUS ARCTICUS (SWANs.) CASs.
Arctic Horned Owl
405a BUBO VIRGINIANUS SATURATUS RIDGW.
Duaky Eorned Owl.
406. NYCTEA SCANDIACA Linn. Snowy Owl [61.]
407. EURNIA FUNEREA (LiNN.) RICH \& \$w.

American Hawlc Owl. [62.]
[407a.] SURNIA FUNEREA ULULA (Linn.) Ridaw.
European Hawk Owl.
408. SPEOTYTO CUNICULARIA HYPOGAA (BONAP.) RIDGW.

Burrowing Owl. [58,59.]
408a. SPEOTYTO CUNICULARIA FLORIDANA RIDGW.
Florida Burrowing Owl.
409. GLAUCIDIUM GNOMA WAGL.

Callfornia Pigmy Owl. [60.]
410. GLAUCIDIUM PHAI.ENOIDES (DAUD.) SCI \& SALV.

Ferruginous Pigmy Owl.
411. MICRATEENE WHITNEYI (COOPER) COUES.

Whitney's Pigmy Owl.
412. HIEROFALCO GYRFALCO CANDICANS (GM.) RIDGW. White Gyrfalcon. [11.]

412a. EIEROFALCO GYRFALCO ISLANDUS (GM.) RIDGW.
Iceland Gyrfalcon. [12.]
412 b. HIEROFALCO GYRFALCO SACER (FORst.) RIDGW.
McFarlane's Gyrfalcon.
412c. HIEROFALCO GYRFALCO OBSOLETUS (GM.) RIDGW.
Labrador Gyrfaloon.
413. HTEROFALCO MEXICANUS POLYAGRUS (CAss.) RIDGW.

Prairie Falcon. [10.]
414. FALCO PEREGRINUS NAVIUS (GM.) RIDGW.

American Peregrine Falcon; Duck Hawk. [5,6.]
414a. FAICO PEREGRINUS PEALEI RIDGW.
Peale's Falcon.
415. FALCO ALBIGULARIS DAOD.

Chestnut-thighed Falcon. [8.]
[416.] RESALON REGULUS (Pall.) Blyth.
European Merlin.
417. RESALON COLUMBARIUS (LINN.) KAUP.

Pigeon Hawk. [7.]
417a. ZSALON COLUMBARIUS SUCELEYI RIDGW.
Black Merlin.
418. ESALON RICHARDSONI RIDGW.

Richardson's Merlin.

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
419. RHYNCHOFALCO fUSCO-CARULESCENS (Vielli.) Ridgw. Aplomado Falcon. [9.]
420. Tinnonculus sparverius (Lins.) Vikill.

Sparrow Hawk. [13.]
420a. TINNUNCULUS SPARVERIUS ISABELLINUS (SWains.) Ridaw. Isabelline Sparrow Hawk.
421. TinNUNCULUS SParverioides (Vig.) Gray. Cuban Sparrow Hawk.
[422.] tinnunculus alaudarides (Gm.) Gray. European Kestril.
423. POLYBORUS CHERTWAY (JACQ.) CAban. Caracara Eagle. [45.]
424. POLYBORUS lutosus Ridaw.

Guadalupe Caracara.
425. Pandion haliab̈tus carolinensis (Gm.) Ridow. American Osprey; Fish Hawk. [44.]
426. elanoides forficatus (Lins.) Ridew.

Swallow-tailed Kite. [34.]
427. blandos gladicus (Bartr.) Couts. White-talled Kite. [35.]
428. ICTINIA SUbCTARULEA (BARTR.) Coces. Missisaippi Kite. [36.]
429. ROStriamus sociabilis plumbeus Ridaw. Everglade Kite. [37.]
430. CIRCUS Hudsonivs (Linv.) Viell Marsh Hawk. [38.]
431. ACCIPITER COOPERI BoNap. Cooper's Hawk. [15, 16.]
432. ACCIPITER FUSCUS (GMEL.) Bp. Sharp-shinned Hawk. [17.]
433. ASTUR ATRICAPILLUS (Wils.) Bf. American Gosbawk. [14.]
433a. ASTUR ATRICAPILLUS StRIATULUS Ridaw. Western Goshawk.
434. ANTENOR UNICINCTUS HARRISI (AUD.) RIDAW. Harris's Hawk. [46.]
[435.] buteo vulgaris leach. European Buzzara.
436. buteo borebalis (Gy.) Viell. Red-tailed Hawk. [23.]
Proc. Nat. Mus. $80-13$

194 Proceedings of United states national museum.
4: 3 a. BUTEO BOREALIS KRIDERI Hooprs.
Krider's Hawk.
436 b. BUTEO BOREALIS CALURUS (Cass.) Ridgw.
Western Red-tail. [20,24.]
436c. buteo borealis lucasanus Ridgw.
Saint Lucas Red-tail.
436d. BUTEO BORLALIS SOCORROENSIS RIDGW.
Socorro Red-tail
43\%. BUTEO COOPERI CASS.
Cooper's Henbawk. [29.]
438. BUTEO HARLANI AUd.

Harlan's Hawk. [22.]
439. bUteo Lineatus (Gm.) Jard.

Red-shouldered Hawk. [25.]
439a. buteo lineatus elegans (Cass.) Ridaw.
Red-bellied Hawk. [26.]
440. buteo abbreviatus Caban.

Zone-tailed Hawk.
441. BUTEO ALBICAUDATUS Viell.

White-tailed Hawk.
442. BUTEO SWAINSONI BONAP.

Swainson's Hawle. [18, 19, 21, 28.]
443. BUTEO PENNSYLVANICUS (WiLs.) BP.

Broad-winged Hawk. [27.]
444. URUBITINGA ANTHRACINA (Licht.) Lafr.

Mexican Black Hawk.
445. asturina nitida plagiata (Licut.) Ridgw. Mexican Goshawlc. [33.]
446. ONYCEOTES GRUBERI Ridgw.

Gruber's Hawk.
447. ARCHIBUTEO LAGOPUS SANCTI-JOHANNIS (GMEL.) Ridgw.

American Rough-legged Hawk. [30,31.]
448. ARCHIBUTEO FERRUGINEUS (Licht.) Gray.

Ferruginous Rough-leg. [32.]
449. AQUILA CHRYSAËtUS CANADENSIS (Linn.) Ridaw. Golden Eagle. [39.]
450. THRasaËtus harpyia (Linn.) Gray.

Harpy Eagle.
451. HALIEEETTUS LEUCOCEPHALUS (Linn.) SAvig.

Bald Eagle ; Gray Eagle. [41, 43.]

45\%. HALIEEËTUS ALBICILLA (LINx.) LEACH.
Gray Sea Eagle. [42.]
453. PSEUDOGRYPHUS CALIFORNIANUS (SHAW) RIDGW.

Californian Condor. [\%]
454. CATEARTES AURA (Livn.) Illig.

Turkey Buzzard. [1.]
455. CATEARISTA ATRATA (WiLs.) Less.

Black Vulture; Carrion Crow. [3.]
4-6. COLUMBA FASCIATA SAY.
Band-tailed Pigeon. [445.]
45. COLUMBA ERYTHRINA LICUT.

Red-billed Pigeon. [446.]
453. COLUMBA LEUCOCEPHALA LINN. White-crowned Pigeon. [447.]
459. ECTOPISTES MIGRATORIA (LINN.) SW. Passenger Pigeon. [448.]
460. ZEN EEDURA CAROLINENSIS (LINN.) BP. Mourning Dove. [451.]
461. ZENEDURA GRAYSONI BAIRD.

Socorro Dove.
462. ZEN REDA AMABILIS BP.

Zenaida Dove. [449.]
463. ENGYPTILA ALBIFRONS (BP.) Cours. White-fronted Dove.
464. MELOPELIA LEUCOPTERA (L.) BP. White-winged Dove. [450.]
46̄̃. CHAMAPELIA PASSERINA (L.) SWAINS. Ground Dove. [453.]

SCARDAFELLA INCA (Less.) Bp.
Scaled Dove. [452.]
467. GEOTRYGON MARTINICA (GM.) BP. Eey West Dove. [454.]
468. STARNCENAS CYANOCEPHALA (LINN.) BP. Blue-headed Dove. [45j.]
469. ORTALIS VETULA MACCALLI (BAIRD) RIDGW. Chachalaca; Texan Guan. [456.]
470. MELEAGRIS GALLOPAVO LINN.

Mexican Turkey. [458.]
470a. MELEAGRIS GALLOPAVO AMERICANA (BARTR.) COUEQ Wild Turkey. [457.]
i96 proceedings of united states national meseum.
471. CANACE OBSCURA (Say) Bp.

Dusky Grouse. [459.]
471a. CANACE OBSCURA FULIGINOSA RrDGW. Sooty Grouse.

471 b. CANACE OBSCURA RICHARDSONII (DOVGL.) BAIRD. Richardson's Grouse.
472. CANACE CANADENSIS (Linv.) Bp.

Canada Gronee; Spruce Partridge. [460.]
472a. CANACE CANADENSIS FRANKLINI (Dovgl) BAIRD Franklin's Grouse. [461.]
473. BONASA UMBELLUS (Linv.) Stepi.

Ruffed Grouse. [465.]
473a. BONASA UMBELLUS UMBELLOIDES (DOUGL.) BAIRD.
Gray Ruffed Grouse. [465a.]
473b. BONASA UMBELLUS SABINEI (Dougl.) Coues.
Oregon Ruffed Grouse. [466.]
474. LAGOPUS ALBUS (GM.) AUd.

Willow Ptarmigan. [467,470.]
475. Lagopus rupestris (Gm.) Leach.

Rock Ptarmigan. [468.]
476. LAGOPUS LEUCURUS SW.

White-tailed Ptarmigan. [469.]
477. CUPIDONIA CUPIDO (Linn.) Baird.

Prairfe Hen. [464.]
477a. CUPIDONIA CUPIDO PALLIDICINCTA RIDGW.
Lesser Prairie Hen.
478. PEDICECETES PHASIANELLUS (L.) Elliot.

Northern Sharp-talled Grouse.
478a. PEDIGEETES PHASIANELLUS COLUMBIANUS (ORd) COURA
Common Sharp-tailed Grouse. [463.]
479. CENTROCERCUS UROPHASIANUS (BP.) SWALNs.

Sage Cock. [462.]
480. ORTYX VIRGINIANA (L.) Bp.

Bob-white ; American Quall. [471.]
480a. ORTYX VIRGINIANA FLORIDANA Cours.
Florida Quail.
480b. ORTYX VIRGINIANA TEXANA (LAWr.) Cours
Texan Quail. [472.]
481. OREORTYX PICTA (DOUGL) BAIRD.

Mountain Quail. [473.]

481 a. OREORTYX PICTA PLUMIFERA (GOULD) RIDGW.
Plumed Quail.
482. LOPHORTYX CAIIFORNICA (SHAW) BP.

Californian Quail. [474.]
483. LOPHORTYX GAMBELI NUTT.

Gambel's Quail. [475.]
484. CALLIPEPLA SQUAMATA (Vig.) GRAY.

Scaled Quail. [476.]
485. CYRTONYX MASGENA (LESS.) Gould.

Massena Quail. [477.]
486. ARDEA OCCIDENTALIS AUD.

Great White Eeron; Wuirdemann's Heron. [488, 480.]
487. ARDEA HERODIAS LINN.

Great Blue Heron. [487.]
[488.] ARDEA CINEREA LINN.
Common European Heron.
489. HERODIAS ALBA EGRETTA (GMEL) RIDGW.

American Egret. [486, 486a.]
490. GARZETTA CANDIDISSIMA (GMEL.) BP.

Snowy Heron. [485.]
491. DICHROMANASSA RUFA (BODD.) RIDGW.

Reddish Egret; Peale's Egret. [482,483.]
492. HYDRANASSA TRICOLOR LUDOVICIANA (WILS.) RIDGW.

Louisiana Heron. [484.]
493. FLORIDA C.ERULEA (LINN.) BAIRD.

Little Blue Feron. [490.]
494. BUTORIDES VIRESCENS (LIN\&.) BP.

Green Heron. [493.]
495. NYCTIARDEA GRISEA NAVIA (BODD.) ALLIEN.

Black-Crowned Night Heron. [495.]
496. INYCTEDARODIUS VIOLACEUS (Lins.) REICH.

White-crowned Night Heron. [496. $]$
497. BOTAURUS LENTIGINOSUS (MONTAG.) STEPR.

American Bittern. [492]
498. ARDETTA EXILIS (GMFL.) GRAY.

Least Bittern. [491.]
499. MYCTERIA AMERICANA LINN.

Jabiru.
500. TANTALUS LOCULATOR LINX.

Wood Ibls. [497.]

 PROCEEDINGS OF UNITfid STATES NATIONAL MUSEUM.
 501. EUDOCIMUS ALBUS (1 inv.) Wagl
 White Tbis [499.]
 502. EUDOCIMOS RUBER (Lins.) Wagl.
Scarlet Tbib. [498.]
503. PLEGADIS FALCINELLUS (Linn.) KaUp.
Glossy Ibis. [500.]
504. PLEGADIS GUARAUNA (Linv.) Ridgw.
White-faced Glossy Ibis. [500a.]
505. AJAJA ROSEA (Brigs.) Ridgw.
Roseate Spoonbill. [501.]
[506.] HAMATOPUS OSTRALEGUS Linn.
European Oystercatcher.
E07. HAMMATOPUS PALLIATUS TEmM.
Amarican Oystercatcher. [512]
506. HITMATOPUS IVIGER PALL.
Bluck Oystercatcher. [513.]
507. STREPSILAS INTERPRES (LiNN.) ILLIG.
Tarnstone. [515.]
508. STREPSILAS MELANOCEPHALA Via
Black Turnstone. [516.]
509. aperiza virgata (Gmel.) Gray.
Surf Bird. [511.]
[12.$]$ Vanellos cristatus Meyer.
Lapwing.
\%3. seUatarola helvetica (Linn.) Cuv
Black-belied Plover. [510.)
[E14.] CEARADRIUS PLUVIALIS LINX.
Golden Plover.
510. CHARADRIUS DOMINICUS MULL.
American Golden Plover. [503.1
[515a.] CHARADRIUS DOMINICUS FULVUS (GMEL.) Ridgw.
Pacific Golden Plover.
511. OXYECHOS VOCIFERUS (Lins.) Reich.
Killdeer. [504.]
512. $\boldsymbol{\pi}$ GIALITIS SEMIPALMATA (BoNAP.) CABAN.
Semipalmated Plover. [507.]
b18. agGIALITIS HIATICULA (Linv.) Boig.
Ringed Plover.
[519.] 届GIALITIS CURONICA (Gmel.) Gray.
Little Ringed Plover.

pLOCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

520. EgGIALITIS MELODA (ORd) Bp.

Piping Plover. [508.]
520a. EGIALITIS MELODA CLRCUMCINCTA RidgW.
Belted Piping Plover.
522. OCETHODROMUS WILSONIUS (ORD) REICH. Wilson's Plover. [506.]
523. PODASOCYS MONTANA (Towvs.) Coure. Mountain Plover. [505.]
[524.] SCOLOPAX RUSTICULA LINN. European Woodcock.
525. PEILOHELA MINOR (Gmel.) Gray. American Woodcock. [522.]
[526.] Gallinago media leach. English Snipe.

526a. GALLINAGO media wilsoni (Temm.) Ridgw. Wilson's Snipe. [523.]
527. MACRORHAMPHUS GRISEUS (Gmel.) Leach. Red-breasted Snipe; Gray Snipe. [524.]

527 a. MACRORHAMPHUS GRISEUS SCOLOPACEUS (SAY) Cours, Red-bellied Snipe; Greater Gray-back. [5\%.]
528. MICROPALAMA HIMANTOPUS (BONAP.) BALRD. stilt Sandpiper. [536.]
529. TRINGA CANUTUS Linn.

Knot; Robin Snipe. [526.]
530. ARQUATELLA MARITIMA (BRUNN.) Baibd. Purple Sandpiper. [528.]
531. arQuatella couesif Ridgw. Aleutian Sandpiper.
532. ARQUATELLA PTILOCNEMIS (Coues) Ridgw. Prybilov Bandpiper.
[533.] actodromas acuminata (Horsf.) Ridgw. Sharp-tailed Sandpiper.
534. ACTODROMAS MACULATA (Vieill.) Coves. Pectoral Sandpiper. [531.]
ACTODROMAS COOPERI (BAIRD) COURS. Cooper's Sandpiper. [527.]
596. ACTODROMAS FUSCICOLLIS (Vieill.) Ridgw Bonaparte's Sandpiper. [533.]
proceedings of untted states national museum.
537. ACtODROMAS BAIRDII Coces. Baird's Sanappper.
533. ACTODROMAS MINOTILLA (Vieml) Br. Least Sandpiper. [532.]
[539.] PELIDNA ATPINA (LINN.) BOIE European Dunlin.
539a. PEIIIDNA ALPINA AMERICANA CASs.
Red-backed Sandplper. [530.]
[540.] Pelidna subarquata (Guld.) Cov.
Curlew Sandpiper. [529.]
541. EREUNETES PUSILLUS (LINN.) CASS.

Semipalmated Sandpiper. [535.]
5H1a. EREUNETES PUSILLUS OCCIDENTALIS (LAWR.) COUES,
Western Sandpiper.
642. CAIIDRIS ARENARIA (Linn.) Illig.

Sanderling. [534.]
543. IIMOSA FEDOA (LINn.) ORD.

Marbled Godwit. [547.]
544. LIMOSA LAPPONICA NOV E-ZEALANDIA GRAT.

Pacific Godroit.
545. LIMOSA H ARMASTICA (LiNn.) COUES,

Hudsonian Godwit. [548.]
[546.] LIMOSA FGOCEPHATA (LINN.) LEACH. Black-tailed Godwit.
[547.] TOTANUS GLOTTIS (LiNN.) Bechist. Green-shank. [538.]
548. TOTANUS MELANOLEUCUS (GMRI) VEELL. Greater Yellow-legs; Tell-tale. [539.]
549. TOTANUS FLAVIPES (GMEL) ViELLL.

Yellow-legs. [540.]
550. RHYACOPHILUS BOITTARIUS (WiLS.) CASS.

Solitary Sandpiper. [541.]
[551.] RHYACOPEILUS OCEROPUS (LINN.) RIDGW. Green Sandpiper.
502. SYMPEEMIA SEMIPAIMATA (GMEL.) HARTL. Willet. [537.]
553. HETEROSCELUS INCANUS (GMEL.) COUEA. Wandering Tattler. [542.]
[554.] MACHETES PUGNAX (LINN.) CUV. Ruff. [544.]
555. BARTRAMIA LONGICAUDA (BECHST.) BP.

Bartram's Bandpiper; Field Plover. [545.]
556. TRYNGITES RUFESCENS (ViEill.) Caban.

Buff-breasted Sandpiper. [546.]
557. TRINGOIDES MACULARIUS (Linn.) GRAY.

Spotted Sandpiper. [543.]
558. NUMENIUS LONGIROSTRIS WILs.

Long-billed Curlew. [549.]
ง59. NUMENIUS HUDSONICUS LATH.
Eudsonian Curlew. [550.]
560. NUMENIUS BOREALIS (FORST.) LATH.

Eskimo Curlew. [551.]
[561.] NUMENIUS PHEOPUS (LiNN.) Lath. Whimbrel.
[562.] NUMENIUS TAHITIENBIS (GMEI.) Cass.
Bristle-thighed Curlew.
563. PEAIAROPUS FULICARIUS (LINN.) BP.

Red Phalarope. [521.]
564. LOBIPES HYPERBOREUS (LINN.) CUV. Northern Phalarope. [520.]
5\%\%. STEGANOPUS WILSONI (SAB.) COOEs. Wilson's Phalarope. [519.]
566. RECURVIROSTRA AMERICANA GMEL. American Avocet. [517.]
567. EIMANTOPUS MEXICANUS (MULL.) ORD.

Black-necked stilt. [518.]
568. PARRA GYMNOSTOMA WAGL.

Mexican Jacana.
569. RALLUS ELEGANS AUD.

Red-breasted Rail. [542.]
570. RAILUS OBSOLETUS RIDGW.

Californian Clapper Rail.
571 RALLUS LONGIROSTRIS CREPITANS (GMEL.) RIDGw.
Clapper Rail. [553.]
571a. RALLUS LONGIROSTRIS SATURATUS Hexse.
Loulsiana Clapper Rail.
572. RAILUS VIRGINIANUS LINN.

Virginian Rail. [554.]
[573.] PORZANA MARUETTA (LEACH.) BP.
Spotted Crake.

202 Proceedings of United states national museum.
574. PORZANA CAROLINA (Linn.) Baird. Sora Rail. [555.]
575. PORZANA NOVEBORACENSIS (GMEl.) Baird. Little Yellow Rail. [557.]
570. PORZANA JAMAICENSIS (GMel.) Baird.

Little Black Rail. [556.]
5:Ga. PORZANA JAMAICENSIS COTURNICULUS BATRD. Faralione Rail.
[5i7.] CREX PRATENSIS Bechst. Corn Crake. [553.]

5is. IONORNIS MARTINICA (Linn.) Reice. Purple Gallinule. [561.]
579. GALLINULA GALEATA (Licht.) Bp. Florida Gallinule. [560.]
580. FULICA AMERICANA Gmel. American Coot. [559.]
581. ARAMUS PICTUS (Bartr.) Coues. The Limpkin. [481.]
582. GRUS AMERICANA (LINn.) TEmm. Whooping Crane. [478.]
583. GRUS CANADENSIS (Livn.) TEmm. Sandhill Crane. [479.]
534. GRUS FRATERCULUS CASs. Little Crane. [480.]

5s5. PHCENICOPTERUS RUBER LINN. American Flamingo. [502.]
[586.] OLOR CYGNUS (LINN.) Bp. European Swan.
[507.] OLOR MINOR (PaLl.) Br. Bewick's Swan.
588. OLOR AMERICANUS (Sharpless) Bp. Whistling Swan. [561 a.]
530. OLOR BUCCINATOR (Rici.) Wagl. Trumpeter Swan. [562.]
590. Chen C mRULEsCENS (Linn.) Ridaw. Blue-winged Gcose. [564.]
591. CHEN HYpERBOREUS (PAlL.) BoIE. Snow Goose. [563.]
591a. CHEN HYPERBOREUS ALBATUS (CAss.) RidG. Lesser Snow Goose [ت゙isa.]

PROCEEDINGS OF CNITED STATES NATIONAL MLSEUM. 203
592. CHEN ROSSII (Baird) Ridow.

Ross's Snow Goose.
[593.] ANSER ALBIFRONS GMEL.
European White-fronted Goose.
593a. ANSER ALBIFRONS GAMBELI (HAItL.) Coces.
American White-fronted Goose. [$565,566$.
594. BERNICLA CANADENSIS (Linv.) Bote.

Canada Goose. [507.]
594a. BERNICLA CANADENSIS HUTCHINSI (Sw. \& Rice.) Woodi.
Hutchins's Goose. [569.]
594b. BERNICLA CANADENSIS LEUCOPARIA (Brandt) Cass.
White-cheeked Goose. [568.]
594 c. BERNICLA CANADENSIS OCCIDENTALIS (BAIRD) DALL \& BANy. Larger White-cheeked Gcose. [507 a.]
595. BERNICLA BRENTA (Pall.) Steph.

Brant. [570.]
596. BERNICLA NIGRICANS (LAWr.) CAss.

Black Brant. [571.]
[597.] BERNICLA LEUCOPSIS (Temm.) Doir.
Barnacle Goose. [572.]
593. PHILACTE CANAGICA (SEvast.) Bannist. Emperor Goose. [573.]
599. DENDROCYGNA AUTUMNALIS (LINN.) EYT.

Black-bellied Tree Duck. [574.]
600. DENDROCYGNA FULVA (GaEl.) BURM.

Fulvous Tree Duck. [575.]
601. ANAS BOSCAS Linn.

Mallard. [576.]
602. ANAS OBSCURA GMEl.

Black Duck. [577.]
603. ANAS FULVIGULA Ridgw.

Florida Black Duck.
604. CHAULELASMUS STREPERUS (Linn.) Grat.

Gadwall. [584.]
605. DAFILA ACUTA (Linn.) Bosap.

Pintail. [578.]
[606.] MARECA PENELOPE (Linn.) Selby.
Widgeon. [586.]
607. MARECA AMERICANA (GMEL.) STEPE.

Baldpate. [585.]

204 proceedings of united states national musetml
608. SPatula Clypeata (Liny.) Bore. Shoveller. [583.]
609. QUERQUEDULA DISCORS (Linx.) Steph. Blue-winged Teal. [581.]
610. QUERQUEDULA CYANOPTERA (VirmL) CAss. Cinnamon Teal. [582.]
[611.] Nettion Crecca (Linn.) Kaup. Englinh Teal. [580.]
612. Nettion Carolinensis (Gakl.) Bard. Green-winged Teal. [579.]
613. AIX SPONSA (LiNn.) Boie.

Wood Duck; Summer Duck [587.]
614. FULIX MARILA (Linv.) Baird.

Scaup Duck. [588.]
615. FULIX AFfinis (Eyt.) Baird.

Little Blackhead. [569.]
616. Fulix Collaris (Donov.) Bahid.

Ring-billed Blackhead. [590.]
617. AYTHYA VALLISNERIA (Wils.) Boir.

Canvas-back. [592.]
618. Aythya americana (Eyt.) Bp. Redbead. [591.]
619. Clangula islandica (Gmel.) Bp.

Barrow's Golden-eye. [594.]
620. CLANGULA GLAUCIUM AMERICANA (Bp.) Ridgw. American Golden-eye. [593.]
621. Clangula albeola (Link.) Steph.

Butterball; Bufflehead. [595.]
62. HISTRIONICUS MiNUTUS (LINx.) Dresser.

Haxlequin Duck. [396.]
(623. Harelda glacialis (Llny.) Leach. Long-tailed Duck; Old Squaw. [597.]

- 624. Camptolmmus labradorius (Gmel) Gray. Labrador Duck. [600.]

625. POlysticta stelleri (Pall) Brandt. Steller's Duck. [598.]
626. Lampronetta fischeri brandt.

Fischer's Eider. [599.]
627. SOMATERIA MOLlissima (Linn.) Bors.

Common Eider.

```
    PROCEEDINGS OF UNIIED STATES NATIO:IAL MUSEUY, 20j
G27 a. SOMATERIA MOLLISSIMA DRESSERI (S』ARPE) COURA.
    American Eider. [606.]
G23. SOMATERIA V-NIGRA GRAY.
    Pacific Elder. [607.]
629. SOMATERIA SPECTABILIS (LINN.) BOIE.
    King Eider. [608.]
G30. CEDEMIA AMERICANA SW. & RICR.
    American Scoter. [604.]
[G31.] MELANETTA FUSCA (LINN.) BoIE.
    Velvet Scoter.
632. MEHLANETTA VELVETINA (CASs.) BAIRD.
    American Velvet Scoter. [601.]
633. PBIONETTA PERSPICILLATA (LINN.) KAUP.
    Surf Duck. [602.]
634. ERISMATURA RUBIDA (WILS.) BP.
        Ruddy Duck. [609.]
635. NOMONYX DOMINICUS (LINN.) RIDGW.
    Black Masked Duck. [610.]
636. MERGUS MERGANSER AMERICANUS (CA88.) RIDGW.
    American Sheldrake. [611.]
637. MERGUS SERRATOR LINn.
        Red-breasted Sheldrake. [612.]
638. LOPEODYTES CUCULLATUS (LINN.] REICH.
        Hooded Sheldrake. [613.]
639. TACHYPETES AQUILA (LINN.) VIEILL.
        Frigate Pelican. [619.]
640. PELECANUS ERYTHRORHYNCEUS GMEL
        American White Pelican. [615.]
641. PELECANUS FUSCUS LINN.
        Brown Pelican, [616.]
642. PHALACROCORAX CARBO (LINN.] BP.
        Common Cormorant. [020.]
643. PHALACROCORAX DILOPHUS (SW. & RICH.) NUTT.
    Double-crested Cormorant. [623.]
    643a. PHALACROCORAX DILOPHUS FLORIDANUS (AUD.) RIDGW.
        Florida Cormorant. [624.]
    643b. PHALACROCORAX DILOPHUS CINCINNATUS (BRANDT) RIDGW
        White-crested Cormorant. [622.]
    644. PHAIACROCORAX MEXICANUS (BPANDT) RIDGW.
        Mexican Cormorant. [625.]
```

645. PHALACROCORAX PENiCILLAtUS (Brandt) Heerm.

Brandt's Cormorant. [626.]
646. PHALACROCORAX VIOLACEUS (Gmel.) Ridgw.

Violet-green Cormorant. [627.]
GGGa. PHALACROCORAX VIOLACEUS RESPLENDENS (ACD.) RHGW. Baird's Cormorant.
647. PHALACROCORAX BICRISTATUS PALL

Red-faced Cormorant.
648. PHALACROCORAX PERSPICILLATUS Pall. Pallas's Cormorant. [621.]
649. PLOTUS ANHINGA LiNn.

American Anhinga; Snake Bird. [628.]
650. SULA BASSANA (Linn.) Briss.

Gannet. [617.]
651. SULA CYANOPS SUNDEv.

Blue-faced Gannet.
652. SULA LEUCOGASTRA (BODD.) SALV.

Booby Gannet. [618.]
653. SULA PISCATOR (LINN.) BP.

Red-footed Booby.
654. PHAËtHON flavirostris Brandt.

Yellow-billed Tropic Bird. [629.]
655. PHAËTHON RTHEREUS LINN.

Red-billed Tropic Bird.
656. RHYNCHOPS NIGRA LiNN.

Black Skimmer. [697.]
657. PAGOPHILA EBURNEA (Phipps) KaUr.

Ivory Gull. [676, 677.]
658. RISSA TRIDACTYLA (LINN.) BP.

Kittiwake Gull. [6г2.]
658a. RISSA TRIDACTYLA KOTZBUEI (BP.) Cougs.
Pacific Kittiwake.
659. RISSA BREVIROSTRIS Brandt.

Red-legged Eittiwake. [074,675.]
660. Lards glaucus brenn.

Glaucous Gull; Burgomaster. [656.]
661. Lards Leucopterus Faber.

White-winged Gull. [658.]
662. LARUS GLAUCESCENS Licht.

Glanoous-winged Gull. [657,659.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM
C63. LARUS MARINUS LINr.
Great Black-backed Gull. [600.]
6G4. LARUS OCCIDENTALIS AUD.
Western Gull. [G62.)
[665.] LaRUS AfFiNIS Reinh.
Siberian Gull.
666. LARUS ARGENTATUS Brevx.

Herring Gull.
GG6a. LARUS ARGENTATUS SMITHSONIANUS Couzs.
American Herring Gall [661.]
667. Larus cachinnans Pall.

Pallas's Herring Gull.
668. Larus Californicus Lawr.

Californian Gull. [663.]
609. LaRUS DELAWARENSIS Ord.

Ring-billed Gull. [664.]
6\%. LARUS BRACHYRHYNCHUS RICH.
Short-billed Gull.' [664a, 665, 673.]
[671.] LaRUs Cands Linn.
Mew Gull.
672. LARUS HEERMANNI CAss.

Heermann's Gull. [666.]
673. LARUS ATRICILLA Linv.

Laughing Goll. [667.]
644. LARUS FRANKIINI SW. \& RICH.

Franklin's Gull. [668, 669.]
675. LARUS PHILADELPHIA (OrD) Gray.

Bonaparte's Gull. [670.]
6.6. RHODOSTETHIA ROSEA (MACGIL..) Brech.

Ross's Gull. [678.]
677. XEMA SABINEI (J. Sabine) Lfach,

Sabine's Gull. [680.]
678. CREAGRUS FURCATUS (Neb.) Bp.

Swallow-tailed Gull. [679.]
679. Sterna anglica Montag.

Gall-billed Tern. [681.]
680. STERNA CASPIA PALL.

Caspian Tern. [682.]
681. STERNA REGIA GAMB.

Royal Tero. [683.]
682. STERNA ELEGANS Gamb.

Elegant Tern. [684.]
683. STERNA CANTIACA ACUFLAVIDA (CABOT) Ridaw.

Cabot's Tern. [685.]
684. STERNA TRUDEAUI AUD.

Trudeau's Tern. [687.]
685. STERNA FORSTERI NUTT.

Forster's Tern. [691, 686.]
686. STERNA FLUVIATHIIS NAUM.

Common Tern. [689.]
687. STERNA MACRURA NAUM.

Arctic Tern. [690,693.]
688. STERNA DOUGALLI Montag.

Roseate Tern. [692.]
689. STERNA ALEUTICA BAIRD.

Aleutian Tern.
690. STERNA ANTILLARUM (LESS.) COUES,

Least Tern. [694.]
691. STEERNA FULIGINOSA GMEL

Sooty Tern. [688.]
692. STERNA AN 尾STHETA SCOP.

Bridled Tern.
693. HYDROCHELIDON LARIFORMIS SURINAMENSIS(GMEL.)RIDGW.

Black Tern. [695.]
[694.] HYDROCEELIDON LEUCOPTERA (WEIEN. \& SCHINZ) BOIE.
White-winged Black Tern.
695. ANOUS STOLIDUS Linn.

Noddy Tern. [696.]
696. MEGALESTRIS SKUA (BRUNN.) RIDGW.

Skua Gull. [652.]
697. STERCORARIUS POMATORHINUS (TEMM.) VIEIL

Pomarine Jaeger. [603.]
698. STERCORARIUS PARASITICUS (LINN.) SCHEFT.

Richardson's Jaeger. [654.]
699. STERCORARIUS BUFFONI (BOLE) COUE8.

Long-tailed Jaeger. [65\%.]
700. DIOMEDEA NIGRIPES AUD.

Black-footed Albatross.
701. DIOMEDEA BRACEYURA TEMM.

Short-tailed Albatross. [631.]
proceedings of united states national museum. 209

```
[702.] DIOMEDEA CULMINATA GOULD.
    Yellow-nosed Albatross. [632.]
```

703. PECEBETRIA FULIGINOSA (GMEL) BP.
Sooty Albatross. [633.]
704. OSSIFRAGA GIGANTEA (GM.) ReICH.
Giant Fulmar. [634.]
705. FULMARUS GLACIALIS (LINN.) STEPH.
Fulmar Petrel. [fij).]
705a. FULMARUS GLACIALIS PACIFICUS (AUD.) BP.

Pacific Fulmar. [6 iki.]
70§b. FULMARUS GLACIALIS RODGEREI (CASs.) COUES.
Rodger's Fulmar.
70ti. PRIOCELLA TENUIROSTRIS (AUd.) RIDGW.
Slender-billed Fulmar. [6:5\%.]
70\%. PRIOFINUS MELANURUS (BunN.) RIDiw.
Black-tailed Shearwater.
[708.] PUFFINUS KUHLII (BoIE) Bp.
Cinereous Shearwater. [651.]
709. PUFFINUS MAJOR FABER.

Greater Shearwater. [647.]
710. PUFFINUS CREATOPUS COOPER.

Pink-footed Shearwater.
[711.] PUFFINUS ANGLORUM TEMM.
Manx Shearwater. [649.]
712. PUFFINUS AUDUBONII FiNsch.

Dusky Shearwater. [6ivo.]
713. PUFFINUS GAVIA (FOBST.) FiNsCh.

Black-vented Shearwater.
714. PUFFINUS FULIGINOSUS STRICKL.

Sooty Shearwater. [$0 \mathrm{H} \%$.]
715. PUFFINUS GRISEUS (GM.) FINsCH.

Dark-bodied Shearwater.
716. PUFFINUS TENUIROSTRIS Tкмм.

Slender-billed Shearwater.
717. CESTRELATA HASITATA (Temm.) Couks.

Black-capped Petrel. [63%.]
[71४.] CESTRELATA BULWERI (JARD. \& SELBY) COUEs.
Bulwer's Petrel.
[719.] DAPTION CAPENSIS (LINN.) STVPH.
Pintado Petrel; Cape Pigeon. [6:39.]
1roc. Nat. Mus. $80-14$ Sept. 1, 18 so.
procedings of united states national musecm.
720. HaLOCYPTENA MICROSOMA Cours. Least Petrel.
procellaria pelagica linn.
Stormy Petrel; Mother Carey's Chicken. [645.]
oceanttes oceanica (Kuhl) Cours.
Wilson's Petrel. [644.]
723. CYMOCEOREA LEUCORREOA (VIEILI.) COUES.

Leach's Petrel. [642.]
Cymochorea melanta (Br.) Cougs.
Black Petrel. [643.]
cymochorea homochroa Cours.
Ashy Petrel.
OCEANODROMA FURCATA (GMEL.) BP.
Fork-tailed Petrel. [640.]
OCEANODROMA HORNBYI (GRAY) BP.
Hornby's Petrel. [641.]
FREGETTA GRALLARIA (ViEILI.) Br.
White-bellied Petrel. [646.]
729. ACHMOPHORUS OCCIDENTALIS (Lawr.) Couks.

Western Grebe. [704.]
730. ACHMOPHORUS CLARKII (LAWR.) COUEs.

Clark's Grebe. [705.]
731. PODICEPS HOLBOLLL REINH.

American Red-necked Grebe. [702, 703a.]
75\%. DYTES CORNUTUS (GM.) KAUP.
Horned Grebe. [705.]
[733.] DYTES AURITUS (LiNa.) Ridgw.
Eared Grebs. [70s.]
733a. DY'ES AURITUS CALIFORNICUS (LAWR.) RIDGW.
American Eared Grebe. [707.]
734. TACEYBAPTES DOMINICUS (Linn.) Coues.

St. Domingo Grebe. [708a.]
735. PODILYMBUS PODICEPS (LINN.) LAWR

Thick-billed Grebe. [709.]
7:6. COLYMBUS TORQUATUS BRUNN.
Loon. [698.]
777. COLYMBUS ADAMSI GRAX:

Great White-billed Loon.
73\%. COLYMBUS ARCTICUS LINN.
Black-throated Diver. [699.]

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.
739. COLYMBUS PACIFICUS LAWR.

Pacific Diver. [700.]
740. COLYMBUS SEPTENTRIONALIS LINN.

Red-throated Diver. [701.]
741. ALCA IMPENNIS LINN.

Great Auk. [710.]
742. UTAMANIA TORDA (Linn.) Leach.

Razor-billed Ank. [711.]
743. FRATERCULA ARCTICA (Linv.) StEPB.

Common Puffin. [715, 716.]
743a. FRATERCULA ARCTICA GLACIALIS (Leach) Ridaw.
Large-billed Puffin. [714.]
744. FRATERCULA CORNICULATA (NaUm.) Gray.

Horned Puffin. [713.]
745. LUNDA CIRRHATA PALL

Tufted Puffin. [712.]
74i CERATORHINA MONOCERATA (Palle) Cass.
Horn-billed Puffin. [717, 718.]
747. PHALERIS PSITTACULA (Palle) Temm.

Parrot Auk. [723.]
748. SIMORHYNCHUS CRISTATELLUS (Pall.) Merrem.

Crested Auk. [719, 720.]
749. SIMORHYNCHUS PYGMAUS (GMEL.) Ridow.

Whiskered Auk. [721.]
750. Ciceronia pusilla (Pall.) Ridgw.

Least Auk. [7\%2, 723.]
751. PTYCORHAMPHUS ALEUTICUS (Pall.) BRANDT.

Cassin's Aute [724.]
752. ALLE NIGRICANS Lisk.

Sea Dove; Dovekie. [738.]
753. SYNTHLIBORHAMPHUS ANTIQUUS (GM.) COUFs.

Black-throated Guillemot. [736.]
754. SYNTHLIBORHAMPHUS WURMIZUSUME (TEMM.) COUEs.

Temminck's Guillemot. [737.]
75. BRACHYRAMPHOS MARMORATUS (GM.) BRANDT.

Marbled Guillemot. [732, 733.]
756. BRACHYRHAMPHUS KITTLITZI BRANDT.

Kittlitz's Guillemot. [735.$]$
757. BRACHYRHAMPHUS HYPOLEUCUS XANTUS.

Xantus's Guillemot.

212 PROCEEDINGS OF UNITED STATES NATIONAL MUBEUM.
758. BRACHYRHAMPHOS CRAVERI (EALVAD.) COUEs.

Craver's Guillemot.
759. BRACHYRHAMPHUS BRACHYPTERUS BRANDT. Short-winged Guillemot. [734.]
760. URTA GRYLLE (Linn.) BRCNN.

Black Guillemot. [726.]
761. URIA COLUMBA (Pall.) Cass.

Pigeon Guillemot. [727.]
762. URIA CARBO (Pall.) Gray.

Sooty Guillemot. [728.]
763. LOMVIA TROILE (Linn.) Brandt.

Common Guillemot. [729,730.]
763a. LOMVIA TROILE CALIFORNICA (Bryant) Couks.
Callfornia Guillemot.
764. LOMVIA ARRA (Pall.) Bp.

Thick-billed Guillemot.
764a. LOMVIA ARRA BRUNNICHI (SCh.) RIDGW.
Brunnich's Guillemot. [731.]

APPENDIX.

The following tables are intended as a condensed analysis of the changes which have taken place in North American ornithology since 1859, with other items of intereat in the same connection.

Catalogue No
a. Species eliminated from the catalogue of 1859.
4. Cathartes burrovianus, Cassin Not North American ${ }^{\dagger}$
6. Falco ngriceps, Cassin $=$ No. 414 .
16. Accipiter mexicanus, Swains. $=$ No. 431 .
19. Buteo baimdif, Hoy $=$ No. 442 , young.
21. Buteo insignatus, Cassin = No. 442 , melanistio.
24. Buteo montanes, Nuttall = No. $436 b$, lighter phase.
28. Buteo oxypterus, Cassin = No. 442, young.
30. Abchibuteo lagopl's, Gray $=$ No. 447, light phase.
40. HaliaEtus pelagicus, Siebold. Not North American.
41. HallaEtes washingtonii, Jard. $=$ No. 451, young female.
56. Nyctale albiyrons, Cassin $=$ No. 401, young.
59. Athene cuniculahla, Bon. The true cunicularia is a Sonth American form.*
66. Crotophaga regirostme, $\mathrm{Sw} .=\mathrm{No}$. 3 e 9.
73. Campephilus imperiaíis, Gray. Not North American.
88. Sphybupicus whliamsonit, Baird $=$ No. 370, adull male.
100. Lampornis mango, Swains. Not North American. [=L. violicauda (Bodd.) Ell.]
129. Tyrannus melaxcholicus, Vieill. Not North American.

16fa. Var. Mniothita longhrostmis, Baird. \dagger
171. Geothlypis veleatus, Cab. Not North American.
215. Mytodioctes bonapaktei, Aud. = No. 127, young.
239. Collybio elegans, Baird. An Asiatic species (Lanius lahtora, Sykeb.).
242. Vireo vibescens, Vieill. $=$ No. 135 ?

253a. Var. Mimus cacidates, Baird. Not separable from polyglottus.
$259 a$. Harporhynchús vetula, Baird = No. 15.
261a. Habpuhiynchés longicauda, Baird. Scarcely gaparable from rufus.
272. Troglodytes americantes, Aud. $=$ No. 63.
$289 a$. Var. Parus albescens, Baird = No. $41 a$.
309. Carpodacus haemormous, Wagl. Not North American $!$
311. Chrysomithis stanleyi, Borap. Not North American. [=C. barbata (Mol.).]
312. Chrysomitbis yarbelli, Bonap. Not North American.
324. Levcosticte abctou's, Bonap. No sufficient evidence of occurrence in North Amenca.
329. Plectrophanes melanomus, Baitl = No. 189.
365. Melospiza gouldif, Bairl = No. 231 c.
405. Tilvpialis mhitahe, Bohap. Not North American.

[^18]Catalogue No.
424. Corvus cacalotl, Wagl. = No. 280.
470. Lagopua americanue, Aud. $=$ No. 475.
482. Demiegretta pealif, Baird $=$ No. 491, white phase.
$426 a$. Herodias egretta v. californica $=$ No. 489.
488. Ardea wurdemannii, Baird = No. 486, colored phase.
494. Butorides brunnfecens, Baird. Not North American.
514. Haematopus ater, Viellot. Not North American.
566. Anser frontalis, Baird = No. 593a, young.
603. Pelionetta trowbhidgil, Baird $=$ No. 633 .
605. Oidemia bimaculata, Baird $=$ No. 632, young.

6:30. Diomedea exulans, Linn. Not North dmerican.
659. Labus chalcopterus, Lawr. $=$ No. 662.
665. Larus suckleyt, Lawr. = No. 670, young.
663. Chroicocephalus clevilates, Br. $=$ No. 674, young, second year.

Git. Chroicocepialus minutus, Bruch. Not North American.
673. Rissa septenthionalis, Lawt $=$ No. 6\%0, adult.
675. Rissa nivea, Bruch $=$ No. 609.
677. Pagophila bibachytaris, Hülb. $=$ No. 657 .
686. Sterna havelli, Aud. $=$ No. 685, winter plumage.
693. Sterna pikei, Lawt. $=$ No. 687 , young.
703. Podiceps chietatu8, Lath. Not North American!

703a. Podiceps cooperi, Lawr. =No. 731, young.
716. ©agmatomina labradobia, Cas. = No. 745, young.
718. Cerorhina suckley1, Cossiu $=$ No. 740 , young.
720. Phaleris tetractla, Stephens $=$ No. 748, winter dress.
722. Phaleris michocehos, Brandt $=$ No. 750 , summer dress.
730. Urla megvia, Brimnich $=$ No. 763 , indicidual phase.
733. Brachyrhamphús wrangelif, $\mathrm{Br},=\mathrm{No} .755$, wimter drers.
seven of the ubove are included in Couen's "Check List of North American Birds" (1873), vix, numbers $88,100,309,488,563 a, 603,693$. and 703 ; the equivalent numbers of the "Check List" being, rappectively, 305. 274, 141a, 450, 480a, 518a, 568, and 600 -nome of them bearing a different name from that given in the Smithoonian catalogne. Benides the foregoing, there are given in the "Check Liet" the following untenable names:
146a. Egiothus linaria (L.) Cals. rar. Fleseesckns, C8. $=$ No. 179, midoummer dres. 157bis. Centronyx ochrocephalus, Aiken = No. 191, autumnal plumage.
[107.] Passer domesticus, Ling. An introduced species.
215a. Icterus spurius (L.) Bp. var. affinis, Lawr. Not separable from I. spurius. [283.] Agyntria linnei (Bp.) -. Not North American. [= A. tobaci (Gm.) Ell.] 374a. Chamepelia passerina (L.) Sw. var. pallescens, (Bd.) Cs. Untenable race.
$445 t e r$ [appendix]. Ibis thalassinus, Rillg. $=$ No. 504, young.

b. Species and races described or added to the North American fauna since 1859.*

6. Turdus iliacus, Linn.-Cf. Reinhardt, Ibis, 1861, 6. (Greenland; two exampler.)

7a. Merula migratohia phopinqua, Ridgw.-Turdus migratorious propinquas, Bull. Nutt. Orn. Club, ii. Jan. 1877, 9. (Western U. S.)
8. Merula confinia, Baird.-Twrlue confimis, Review Am. B. i. 1864, 29. (Todos Santos, Cape St. Lucas.)
14. Harporhynchen cinfreve, Xantun-Proc. Philal. Acad. 1Ri9, 298. (Cape St. Lucas.)
14a. Harporiynchus cinereus bendirei, Coues,-Am. Nat. vii. June, 1873, 330, fig. 69. (Tucson, Arizona; C. Bendire.)

[^19]Catalogue No.
15a. Harporiynchu's curvirostms palmeri, Ridgw.-H. curvirostris, var. palmeri, Ridgw. in Coues's Key, 1872, 351. (Arizona.)
18. Harporhynchus graysoni, Baird.-Cf. Lawr. Aun. Lye. N. Y. x. Feb. 1871, (Socorto I.)
20. Cyanecula suесіса (Linn.) Brehm.-Cf. AdAms, Ibis, 187\&, 422. (St. Michael's, Alaska; seven examples.)
31. Regulus obscurưs, Ridgw.-R. calendula obscurus, Bull. U. S. Geol. \& Geog. Surv. Terr. ii. No. 2, Apr. 1, 1876, 184. (Guadalupe I., Lower California.)
33a. Regulus satrapa olivaceus, Baird.-R. satrapa, var. olivacens, Baird, Review Am. Birds, i. July, 1864, 65 (in text). (Western United States.)
34. Phylloscopus borealis (Blas.) Dress.-Phyllopneнste kennicolti, Baird, Trans. Chicago Acal. i. $1 \not \subset 69,313$, pl. 30, fig. 2. (St. Michael's, Alaska.)
44. Parus cinctus, Bodd.-P. sibiricus (Gm.) Ridgw. Bull. Nutt. Orn. Club, ii. Jan. 1878, 37. (St. Michael's, Alaska; L. M. Turner.)
4ia. Parub nlfescens neglectus, Ridgw.-P. rufercems, β, neglectus, Proc. U. S. Nat. Mus. i. Apr. 25, 1879, 485. (Const California.)
57. Campylorhynchús affinis, Xantus.-Proc. Philad. Acad. 1859, 298. (Cape St. Lucas.)
iba. Salpinctes obsoletus guadalupensis, Ridgw.-Bull. U. S. Geol. \& Geog. Surr. Terr. ii. No. 2, Apr. 1, 1876, 185. (Guadalupe I., Lower California.)
jima. Catherpes mexicanus consperbles, Ridgw. - C. mexicunus, var comsperaus, Rilgw. Am. Nat. Oct. 1873, 602. (Middle Province of U. 8.)
Dub. Thiyothores ludoviciands mamensis, Ridgw.-T. ludovicianus (Lath.) var. miamensis, Am. Nat. ix. Aug. 1875, 469. (Miami River, E. Florida.)
bia. Theyomanes bewicki spilurus (Vig.) Baird.-Review Ain. Birdg, i. 1864, 126. (Pacific slope of United States.)

61b. Thryomanes bewicki leucogaster, Baird.-Review Am. B. i. 1864, 127. (Southern border of U. S.)
62. Thryomanes brevicalda, Ridgw.-Bull. U. S. Geol. \& Geog. Surv. Tert. ii. No. 2, Apr. 1, 1876, 186. (Guadalupe I., Lower California.)
64. Troglodytes insularis, Baird.-Cf. Lawr. Ann. Lyc. N. Y. x. Feb. 1871, 3, (Sucorro I.)
65a. ANORTHURA TROGLODYTES PACIPICU8, Baird.-T. hyemalis, var. pacificus, Review Am. B. i. 1864, 145. (Pacific coast U. S.)
66. Anorthira alascensis, Baird.-Troglodytes alascensis, Trans. Chicago Acad. i. 1869, 315, pi. 30, tig. 3. (St. George's Island, Alaska; W. H. Dall.)
6ia. Trlmatodytes palustris paludicola, Baird.-Cibtothorus palustris, var. paIndicola, Review Am. B. 1. 1864, 148. (Pacific coast U. 8.)
69. Motacilla albu. Lilii.-Cf. Reinhardt, Ibis, 1861, 6. (Greenland.)
70. Budylea flara (Limn.) Gray.-Cf. Barrd, Trans. Chicago Ac. i. 1869, 3, pl. 30, fig. 1. (St. Michael's, Alaska; Pease \& Bannister.)
72. Anthus pratensis (Lisn.) Bechst.-(ff. Paulsex, ed. Hölboll, Fann. Grünl. 1846, E4; Reinh. Ibis, 1861, 6 (Greeuland); B. B. \& R. Hist. N. Am. B. i. 1874, 173. (St. Michael's, Alaska.)

74a. Mniotilla raria borealis (Nutt.) Ridgw. [See p. 213, foot-note.]
da Helminthophaga lawrencei, Hertick.-Proc. Philad. Acad. 1874, 220, pl. xv. (New Jersey.)
82. Helminthophaga :evcobronchialis, Brewster.-Am. Sportaman, v. Oct., 1874 ; Eull. Nutt. Orn. Club, i. 1876, 1, plate. (Massachusetts.)
83. Helminthophaga luclé, Cooper.-Proc. Calif. Acad. Sci. July, 1861, 120. (Ft. Mojave, California.)
86a. Helminthophaga celata lutescens, Ridgw.-H. celata, var. lutegcens, Riilgw. Am. Jour. Sci. \& Arts, third ner. iv. Dec. 1872, 457. (Pacific const U. S.)
89. Pábula pitiayumi insularis (Lawt.) Ridgw.-Parala insulatis, Lawr. Ant. Lyc. N. Y. x. Feb. 1871. (Socorto I., N. W. Mexico.)

Catalogur No.
89a. Parlea pitiayumi nighboha, Cones.-P. nigrilora, Bull. U. G. Geol. \& Geog Surv. Tert. iv. 1×7N, 11. (Hidalgo, Texas; (8. B. Sennett.)
92. Peucedramus olivaceus (Giraul) Cones.-Sylvia oliracea, Giraul, Texan Birds, 1<41, 14, 1. vii. fig. 2. ("Texas.")-Dendraca oliracen, HeNsH. Am. Sportman, v. :12*, Feb. 20, 1875 ; Orn. Wheeler's Exp. 187
103a. Dfininheca domivica albilohs, Buird.-l). Dominica, var. albilora, Am. Nat. vii. Oct. 1 к̄i 3,605 . (Mississippi Valley, sonth to Guatemala and Honduras.)
104. DFndreca gracle, Coues.-Cf. Baird, Keview Ain. B. i. 1×GH, 210. (Ft. Whipple, Arizona; Coues.)
106. Denimoca chiysoparia, Scl. de Salv.-Cf. Baird, Review Am. B.i. 18GA, 12e, foot-note. (San Antonio, Texas; Heermann.)
113a. Drendrgea Palmabcim hypochrysea, Ridgw.-Buil. Nutt. Orn, Club, Nov. $1 \times 76,4,4 \overline{\text { mig. (Atlantic States.) }}$
116a. Hiviz's nevius notabilis, Grinnell.-Gf. Ridqw. Proc. U. S. Nat. Mns. iii. March 27, 1xdu, 12. (Black Hills, Wyouing.)
12ía. Wilarinia mishlla mileolata (Pall.) Ridgw.-Myiodioctea puillus, var. pilco lata, Rimiw. Am. Jour. Sci. \& Arts, iv. Jec. 18i:, 45\%; Am. Nat. vii. Oct. 187:3, 607. (Pacific const N. Am.)
131. Cardellina rubrifrons ((iiraud) Scl.-Muscicapa rubrifrons, Giraud, Texan Birdx, 1841, pl. vii. tig. 1. ("Texas.")-Cardellina rubrifrons, Henslaw, Oru. Wheeler's Exp. 1875, 211. (Arizoun.)
132. Basileuterms culicirorms (Licht.) Bp.-Muscicapa brasieri, Girnnd, Texan Birds, 1841, pl. vi. fig. 2.
134. Banileuterus bellii (Girnud) Bcl.-Muscicapa belli, Girand, Texan Birds, 1841, pL. ix. fig. 1.
1:39a. Vikeosylvia gilva swainsoni, Baird. - Vireo ewainsomi, Baird, B. N. An. 183e, 336 , in text. (Pacific coast U. S.)
141b. LaNivimeo solitamics plumbecin (Cones) Allen.-Vircosylvia plumbea, Cones, Proc. Philad. Acaul. 18fi6, 73. (F't. Whipple, Arizona.)
146. Virko pusillus, Cones.-Proc. Philad. Acad. 18G6, 76. (Date Creek, Arizona.)

14\%. Vimeo vicinior, Comes.-Proc. Philad. Acal. 1\&t6, \%\%. (F't. Whipple, Arizona.)
1496. LaNiL's Le'movicianles hobustus, Bairl.-Collurio Luloricianus, var, robustas, Am. Nat. vii. Oet. 1873 , iOB. (Californial)
164a. Pyilanga sestiva coopehi, Ridgw.-I'yranga cooperi, Proc. Philad. Acad. 1®69, 130. (S. W. Enited States.)
167. PyRnilvla Cassini, Buird. - P. coccimea, var. cassini, Trans. Chicago Acad. i. 18k9, 316, pl. 29, fig. 1. (Nulato, Alaska; W. H. Dall.)
170a. Carpotacus frontalis rhodocolpus (Caban.) Ridgw.-Cf. Ridgw. Am. Jour. Sci. \& Arts, v. Jan. 1873, 39. (Coant of Califormia.)
171. Carpodace's amplus, Ridgw.-Bull. Li. S. Geol. \& Geog. Surv. Tetr. ii. No. 2, Apr. 1, 1876, 18\%. (G’malupe I., Lower Cal.: E. Palmer.)
175a. LevCOSTICTE TEPHROCOTIS hTTORALIA (Baird) Ridgw.-L. littoralin, Baird, Trans. Chicago Acnd. i. 1869, 31s, pl. 28, tig. 1. (Sitka, Alaska.)
176. LeUCOSticte atrata, Kidgw.-Am. Sportsman, July 18, 1874, 241. (Colorado: C. A. Aiken.)
177. Leucosticte aligtrabis, Allen.-L. tephocotia, var. amstralia, Allen. Cf. Ridgw. 13ull. Essex Inst. V. Nov. 1873, 189. (Mt. Lincoln, Colorndo.)
178a. Efiotiles cantescens mxilipes (Cones) Ridgw. - Tijiothus exilipes, Coves, Proc. Philad. Acad. Nov. 1861, 385. (Arctic America.)
179a. Egiothus linaria holbölli (Brehm) Ridgw.-Linaria holbïll, BReHM, Vüg. Dentachil.
180. EGIOTHUs BREWSTERI, Ridgw.- Egiothus (Havirontris var.) brewsterii, Ridgw. Am. Nat. July, 1872, 433. (Wultham, Mass.)
182a. Asthagalinus p\&althia arizonse (Cones) Ridgw.-C.mexicana, var. arteona, Cones, Proc. Philad. Acad. 1866, 82. (Ft. Whipple, Arizoua.)

Catalogue Nu.

192. Passerculds phanceps, Maynard.-Am. Nat. vi. 187\%, 637. (Ipswich, Mass.)
193. Pashercelés quttater, Lawr.-Am. Layc. N. Y. viii. 1867, 473 (Cape St. Lucas)。 Cf. Coopkr, Oru. Cal. i. 1\&70, 185.
197a. Poocetes gramineus confinis, Bairl.-P.gramineus, var, confinis, Baird, B. N. Am. 1858,448 , in text. (Western U. S.)
192a. Cutcrnicelu's passerinus perpallidus, Ridgw.-C. passerinus, var. perpallidus, Ridgw. in Cones's "Key", 1872, 137. (Western U. S.)
201a. Ammodromus caddacuter neisoni, Aller.-Proc. Boaton Soc. xvii. Murch, 1×.55, 93. (N. E. Illinois.)
194. Ammodromus nigrescens, Ridgw.-A. maritimus, var. nigrescens, Ridgw. Bull. kissex Inst. Dec. 1873, 193. (Iudian R., Florida.)
204a. Chondentes gran:mica strigalus (Sw.) Kidgw.
Mr. H. K. Coals, of Chisngo, IL, has lately called my attention to cercain differences between easters (typical) and western mpecimens of this species, which, upon examination of a large eries, I Ind to be quite constant and auliciently appreciable to wartunt the recognition of a weatern race. Wewtern birda being exactly like those from Mexico in thome pointa in which they difter from castern specimens, Swainson's nane strigatus (Chondeates strigatus, Philon. Jour. i. 1827,435 , based upon the Mexican birv, in available for the weatern and mouthern race.

20ta. Zonotrichia Gambeli intermedia, Ridgw.-Z. lewophrys, var. intermedia, Ribgw, Bull. Essex Inst. Dec. 1873, 198. (Middle Province of U. S., north to Alaska.)
2lla. Spizella soclalis amzona, Couew.-S. socialis, var. arizona, Cours, Key, 180\%, 143. (Ft. Whipple, Arizona.)
216. Junco aikeni, Ridgw.-J. hyemalis, var. Aikeni, Ridgw. Am. Nat. Oct. 1873, 612, 614. (Mts of Colorado; C. E. Aiken.)
219. Jinco annectens, Baird.-Orn. Cal. i. 1870, ict. (Rocky Mts., Ft. Bridger to Arizona aud New Mexico.)
\&ars. Jusco insulakis, Ridgw.-Bull. U. S. Geol. \& Geog. Surv. Terr. ii. No. 2, Apr. 1, 1-76, 1~8. (Guadalupe I., Lower Cal.; E. Palmer.)
 Bull. Essex Inst. Nov. 1573, 191. (Middle Province of U. S.)
2q6. Precea astivalis helinoensis, Ridgw.-P. illinocnsis, Bull. Nutt. Orn. Club, Oct. 1879, 219. (Texas to S. Illinois.)
2z. Peucen arizune, Ridgw.-P.usticalis, var. Arizona, Ridgw. Am. Nat. Oct. 1873, 615. (S. Arizona.)
229. Pelcea cabpalis, Coues.-Am. Nat. vii. June, 1873, 322. (Tucson, Arizona; C. Bendire.)
230a. Peceda rupiceps boucardi (Scl.) Ridgw.-(f. Hensinaw, Orm. Wheelers Exp. 1874, 117. (S. Arizona and S. New Mexico.)
231d. Melospiza fasciata gullala (Nutt.) Ridgw.
This is the "M. rufina" of the old catulogue. The true M. rufina (Brandt) is ularger and darker form from Sitka, rediscovered since the publication of "Birds of North America' (1858).

231e. Melospiza fusciata rufina (Brandt) Ridgw.-(f. B. B. \& R. Hist. N. Am. B. ii. 1874, 29. (British Columbia to Sitka.)
222. Melospiza cinerea (Ginel.) Ridgw.-"M. insignis", Baird, Trans. Chicago Acad. i. 1609, 319, pl. 29, fig. \therefore. (Kadiak, Alaska; F'. Bischoff.)
2sa. Pipllo reytimopifthalmus alleni, Coles.-I'.alleni, Coues, Am. Nat. v. Aug 1851, 366. (Florida.)
eibc. Pipilo maculatez consobmeles, Ridgw.-Bull. U. S. Geol. \& Geog. Eurv. Terr. ii. No. 2, Apr. 1, 1876, 189. (Guadalupe I., Lower Cal.)
2zed. Pipilo macelatus carmasi (Lawr.) Ridgw.-lipilo carmani, Lawr. Anu. Lyc. N. Y. x. 1871. 7. (Socorro I., N. W. Mexico.)

Catalogue No.
240a. Pipllo fuscus albigula (Baird) Ridgw.-P. albigula, Baird, Proc. Philad. Acad. Nov. 1859, 305. (Cape St. Lucas.)
242a. Cardinalis vibginianus ignevs, Baird.-C. igneus, Baird, Proc. Philad. Acad. Nov. 1859, 305. (Cape St. Lucas.)
253. I'honipara zena (Linn.) Bryant.-Cf. B. B. \& R. Hist. N. Am. 13. ii. 1874, 93. (Key West, Florida; H. W. Henshaw.)
258a. Molothrus ater obscurus (Gmel.) Cones.-M. obscurus, Cass. Proc. Philad. 1806, 18. (Lower California.)
259. Molothrus aneus (Wagl.) Cab.-Cf. Merridi, Bull. Nutt. Orn. Club, i. July, 1876, © (Ft. Brown, Texas.)
263a. Sturnella magna mexicana (Scl.) Ridgw.-(G. Brewer, Bull. Nutt. Orn. Club, iii. July, 1878, 152. (F't. Brown, Texas; J. C. Merrill.)
256. Quiscalus palustris (Swains.) Cassin.-"Q. major", Gamnel, Jour. Philad. Acad. i. 1847, 47. (Gulf of California.)*

2\%8b. Quiscalus versicolor fenfus, Ridgw.-Q. aneur, Ridgw. Proc. Philad. Acad. 1869, 134. (Mississippi Valley, Hudson's Bay Terr., Maine, etc.)
[279.] Sturnus culgaris, Liun.-C'f. Reinilardt, Ibis, 1861, 7. (Greenland.)
290a. Cyanocitta stelleri prontalls, Ridgw.-Cyanura stelleri, var. frontalis, Ridgw. Am. Jour. Sci. \& Arts, third ser. v. Jan. 18i3, 41, 43. (Sierra Nevada, California.)
290b. Cyanocitta stelleri annectens, Baird.-Cyanura stelleri, var. annectens, Bairl, in B. B. \& K. Hist. N. Am. Birds, ii. 1874, 281, in text. (Northern Rocky Mts.)
297a. Perisoreve canadenais capitalis, Baird.-P. canadensis, var. capilaliz, Baihd, Bull. Essex Iust. v. Nov. 1873, 193. (Rocky Mountaius.)
29zb. Perisoreus canadensis fummrons, Ridgw.-Proc. U. S. Nat. Mus. iii. March 27, 12R0, 5. (Coast of Alaska.)
298. Perisorluy obscurus, Ridgw.-P. canadensis, var. obscurus, Ridgw. Bull. Essex Inst. Nov. 1873, 194. (Northwest coast of U. S.)
[299.] Alauda arvensis, Linn.-Cf. Dresser \& Sharpe, Birds Eur. pt. -, and B. B. \& R. Hist. N. Am. B. ii. 1874, 136. (Greenland and Bermuda.)

300a. Eremophila alpestmis leucolema, Coues.-Birds N. W. 1874, 38. (Interior plains N. Am.)
300b. Eremophila alpestris chrysoluma (Wagl.) --E. cornuta, var. chrysoloma, BaIRd, B.N. Am. 18iv, 403, in text. (Southwestern U. S.)
308. Pitangus derbianus (Kaup) Scl.-P. derbyanus, Cours, The Country, July 13, 1573, 184. (Lomita, Texas; G. B. Sennett.)
309. Myiozetcter texensis (Giraud) Scl.-Muscicapa texenain, Giravd, Texan Birds, 1841, pl. 1. ("Texas.")
310. Hyiodinastes luteiventris, Bonay.-Cf. Hfashaw, Orn. Wheeler's Exp. 1875, 346, pl. xiv. (S. Arizona.)
319. Contopus pertinax, Cab. \& Hein.-Cf. Coues, Proc. Philad. Acad. 1866, 60. (Ft. Whipple, Arizona.)
329. Empidonax fulrifrons (Giraud) Scl.-Muscicaja fulrifrons, Giraud, Texan Birds, 1841, pl. ii. ("Texas.")
329a. Empidonax flevifrons pallescens (Cones) Ridgw.-Mitrephorus pallezcens, Coces, Proc. Philad. Acad. 1860, 63. (Ft. Whipple, Arizona.)
331. Ornithion imberbe (Scl.) Cones.-"O. incanescens", Coues, The Country, July 13, 1878, 184. (Lomita, Texas; G. B. Sennett.)
331. E'ugence fulgens (Sw.) Gould.-Cf. Henshaw, Am. Nat. Apr. 1874, 241; Orn. Wheeler's Exp. 1875, 379. (Mt. Graham, Arizoua.)
341. Sklasphorus alleni, Henshaw.-Bull. Nutt. Orn. Club, ii. 1877, 54. (Coast of California.)

[^20]
Catalogue No.

342. Athis heloisat (Less. \& Del.) Rich.-Cf. Elliot, Illustr. Am. B. i. 1869, xxi. xii. plate. (El Paso, Texas; J. H. Clarke.)
343. Stellula calliope, Gould.-Calothorax calliope, Xantus, Proc. Philad. Acad. 1859, 190. (Ft. Tejon, Cal.)
344. Calothorax lucifer (Sw.) Gray.-"Doricha enicura", Hensh. Am. Sportsman, v. 328, Feb. 20, 187i; Orn. Wheeler's Exp. 1e7i, 381. Cf. Lawr. Bull. Nutt. Orn. Club, ii. Oct. 18:7, 108. (Camp Bowie, Arizona.)
345. Amazilia fuscicaudala (Fras.) Ridgw.-"Pyrrophana riefferi", Merrilie, Bull. Nutt. Orn. Club, i. Oct. 1ẫ6, 88. (Ft. Brown, Texas.) (f. Ridgw. Proc. U. S. Nat. Mus. i. 1-8 ${ }^{2}, 147$ (synonymy and diagnosis).
346. Amazilia yncutanensis (Cabot) Gould.-"A. cerrimeirentris", Merrhil, Bull. Nutt. Orn. Club, ii. Jan. 1277, 26. (F't. Brown, Texas.) Cf. RH\&W. Proc. U. S. Nat. Mus. i. 1eju, lits (synonymy and diagnosis).
347. Babllinna xantesi (Lawr.) Elliot.-Amazilia xantuxi, Lawr. Abn. N. Y. Lyc. vii. April, lecio, $109(=9)$--Heliopedica castancocauda, Lawr. t. c. 145 ($=$ ס) . (Cape St. Lllias.)
348. Iache latirostris (Sw.) Elliot.-Circe latirostris, Hewsh. Aru. Sportsman, v. Feb. 20, 1875 ; Orn. Wheeler's Exp. 1875, 320. (Chiracahua Mts., S. Arizona.)
357b. Chordeile popetue minor (Cab.) Ridgw.-Cf. H.B \& R. Hint. N. Am. B. iii. 1574, 520. (Mimui, Florida; C. J. Maynarel.)
360a. Picus rillosus leucomelas (Bodd.) Ridgw.-Picus Irucomelan, Botd. Tabl. P. E. $17-3$ (ex. Pl. Enlmm, 34. lig. $1=9$ ad.).
363a. Picus scalaris lecasante (Nant.) Coher- - P. lucuzanuz, Xantus, Proc. Philad. Acad. 1-0il, 2.)x, 302. (Cape. St. Lucas.)
349. Picus atrichlandi, Malh.-(f. Hensmaw, Am. Sportaman, v. 32f, Feb, 20, 1stio; Orn. Whaceler's Exp. 1×75, 3*9. (S. Arizona.)
gifa. Melanelipes fohmichores angestifrons, Baird.-M. formicinorus, var. anguatifrone, Bahbl, Orn. Cal. i. 1870, 405. (Cape St. Lucas.)
350. Colaptes hefiphets, Ridgw.-C. mexicanus rufipileus, Bull. Geog. \& Geol. Surv. Terr. ii. No. \%, Apr. 1, 1876, 191. (Gundalupe I., Lower Cal.)
351. Crotophaga sulcirostris, Swains-Cf. Coues, The Country, July 13, 1878, 14. (Lomita, Texas; G. B. Sennett.)
352. Coserve holochlobes brevipes, Baird.-Conuru* holochlorus, var. breripen, "Bairl, Ms.", Lawr. Ann. Lye. N. Y. x. 1871, -. (Socorto 1.)
 (Clearwater, s. Florida.)
353. Sthix occhoentalis (Xant.) Rilgw.-Syrnium occidenlale, Xantces, Proc. Philahl. Acad. 1259, 19?. (Ft. Tejon, Cal.)
399a. Elula cinerea lappoaica (Retz.) Ridgw.-Syrmium lapponicum, Ripgw. Bull. Nutt. Orn. Club, iii. Jan. 1~78, :37. (St. Michael's, Alaska; L. M. Turner.)
402a. Scops asio flomdanua, Ridgw.-S. asio, var. Floridamm, Ridgw. Bull. Essex Iust. Dec. 1-7.3, 200. (Florida.)
402c. SCops asio maxwrilis, Ridgw.-S. asio, e, maxmellia, Ridgw. Field \& Forest, June, 187, 210, 21\%. (Bonlder Cu., Colorado.)
402d. Scops Asio kewnicotth, (Elliot) Cones. - S. Remnicottii, Fillot, Proc. Philad. Acad. 1807, 63; Illnstr. Am. B. 1eti9, pl. 11. (Sitkn, Alaskn; F. Bischoff.)
354. Scops trichopsis, Wagl.-"S. asio, var. maccalli" B. 1. \& K. Ilist. N. Am. B. iii. 1874, 52. (New Moxico.)
 N. California.)

405a. Bubo virginianus subarchicus (Hoy) Ridgw.-Bubo subarcticus, Hoy, Proc. Philad. Acad. vi. 1852, 211. (Wisconsin.) [="var. arcticus" of Hist. N. Am. B. iii. 1874, 64.]
405b. Bubo rirginianus arcticus (Swains.) Cass.-Bubo arcticus, Swains. F. B. A. ii. 1831, 86, pl. 30. (Interior of fur countries.)

Catalogne No
40jc. Hebo virgixianue satematue, Ridgw.-Orm. 40th Parallel, 1877, 572, foot-hote。 (Northern coast N. Am.) $[=$ "var. pacificus" of Hist. N. Am. B. iii. (ij.]
407a. Surnia funerca ulula (Linn.) Ridgw.-Cf. Ruxiw. Bull. Nutt. Orn. Club, iii. Jan. $1 \in 7 \kappa, 38$. (St. Michacl's, Alaska; L. M. Turner.)
408a. Sphotito cuniculaikia flomdana, Ridgw.-S. cunicularia, var. floridana, Ridiw. Am. Sportsmin, iv. No. 14, July 4, 1874, 216. (Sarnsota Bay, Florida.)
410. Glaucidium phalaroiden (Daud.) Scl. \& Salv.-G. ferrugincum (Max.) Coces, Am. Nat. vi. 1*7\%, 370 . (Tusson, Arizona; C. Bendire.)
411. Michathene Whitsevi (Cooper) Cohes.- dihene whilneyi, Cooper, Proc. Cal. Acad. Sci. ii. 18ius, 11 N. (F't. Mujave, S. E. California.)
412b. Mierofulco gyrfalco sacer (Formt.) Ridgw.-I'. sacer, Fonster, Philos. Trans, Ixii. 177.2,'3x3, 423. (Hudson's Bay Terr.)

412c. Hierofalco sacer obsolctus (Gm.) Kidgw.-Falco obsolctus, Guel. S. N. i. 1724, 26\%. (Hudson's Bay 'Terr.)
414a. Falco peiteghinles realei, Ridgw.-F. communis, var. Pealei, Ridqw. Bull. Essex Inst. Dec. 187:3, 201. (Northwest cuast N. Aus.)
416. Eisalon regulus (Pall.) Blyth. -Falco asalon Niwton, Man. Nat. Hist. Greenl. 187%, p. 96. (At sea, near Greenlaud, lat. $57^{\circ} 41^{\prime}$ N., long. $35^{\circ} 23^{\prime} \mathrm{W}$.)
417a. Asalon Columbarivg sucklevi, Ridgw.-F'alco columbarius, var. Suchleyi, Riogw, Bull. Lisex Inst. V. Dec. 187:3, 201. (Northwest coast N. Am.)
418. Esalon Richardsonii, Ridgw.-Falco (Iypotriorchis) richardsonii, Ridgw. Proc. Philad. Acad. Dec. $1870,145$. (Interior of North America.)
421. Tinnипсиlu* sparcerioide* (Vig.) Gray. (Florida.)*
422. Tinnunculus alaudarius (Gm.) Gray.-Cf. Newton, Man. Nat. Mist. Greenl. 1875, 96. (Off Cape Furewell, Grecnland.)
424. Polyborles letosus, kidgw.-Bull. U. S. Geol. \& Geog. Surv. Tort. No. 6, $2 d$ ser. Feb. 8, $1876,45 \%$. (Guadalupe I., Lower Californin.)
433a. AstLR ATHICAPILLUS STRIATULUS, Ridgw.- A. palumbarius, var. striatulus, Ridgw. in Hist. N. Am. B. iii. 1874, 240. (Western N. Am.)
435. Buteo vulgaris, Leach.-Cf. Maynaid, Bull. Nutt. Orn. Club, i. No. 1, April, 1876, 2-6. (Pawpaw, Mich.)
436a. BLTEO BOREALIS KHDEM, -"B. borealis, variety kriderii," Hoopes, Proc. Philad. Acad. 1873, 238, „l. v. (=juv.; Winuebago Co., Iowa.)
436c. BUTEO Borealis lucasantis, Ridgw.- B. bortalis, var. lucasanus, Hist. N. Am. B. iii. $1074,258,285$. (C.ape St. Lncas.)

436d. BLTEO BORFEALIS SOCOHROENSIS.
In the "Procecdiugs" of the Boston Society of Natural Hintory, 1871, p. 42, Mr. Lawrence refers to a "Buteo borealis, var. montanus. Nutt." as being very abnndant on the island of Socorro, where it is the only spectes of hawk to be found, and where it is a "constant resideut, rearing itn young, and nabaisting entirely on land crabs", etc, In tho same paper, p. $10, \mathrm{Mr}$. Lawrence upplien the same name to a hawk ocuurring abundantly on the Tres Marias Islands, and there aubsisting "cntirely upon the Igunna lizard and raboits." In "History of North American Bitels", vol. $2 i i$, p. $28 i$ (1874), Ireferred the Tres Marias bird to Buteo borealis var costaricensis, and described our only specimen from that locality as the youns of that form, although 1 hal not, from want of specimens, been able to compare it with the corresponding age of the Central American birl. Inow have strong doubts as to its beine the same as n. costaricensis. while as to the hawk found on Socorro I regaril it quite certair that it is, like the Carucara of Cualalupe (Polyborue lutons), a species or race peculiar te that remote imland, the birise of which are for the most part entirely local. I therefore pro pose to name, provinionally, the Sucorro Hawk \boldsymbol{H}. borcalis socorroensis.
440. Buteoabbrciatus, Cabasis, in Schornb. Gniana, iii. $1 \times 4 \times, 739 .-$ "B. zоносегсия, Scl.", Cooprir, Orn. Cal. i. $1 \sim 70,479$. (Coast of California, near San Diego.)

[^21]
Catalogue No.

441. Buteo albicaudatus (Vieill.)-B. albocaudatue, Coves, The Country, i. 184, July 13, 1878. (Lomita, Texas; G. B. Sennett). Cf. Ridgw. Proc. U. S. Nat., Mus. i. Oct. 2, 1888, 154 (synonymy and descriptions).
442. Erubitinga anthracina (Licht.) Nitzsch.-Cf. Henshaw, Ain. Sportsman. v. 328, Feb. 20, 1875; Orn. Wheeler's Exp. 1875, 420. (Arizona.)
443. Onychotes gruberi, Ridgw.-Proc. Philad. Acad. Dec. 1870, 149. (California.)
444. Thrasatus harpyia.

According to Dr. Felix L. Oswald, in the American Naturalist, 1878, p. 151, a specimen of the Harpy Eagle wae ahot at the "delta of the Rio Grunde", in Texas, by Profesaor S. B. Buckley, State geologist of Texas. A full account of the circumatance in given in Dr. Oawald's interesting article. I have seen somewhere a record of the occurrence of this specles in Louiniana, but cannot now lay hand on the reference. According to my recollection, the recorl may be found in an old number of the "Proceedings" of the Philadelphia Academy of Sciences, or else of the Zoological Society of London.
461. Zenedura grayboni, Baird.-Cf. Lawrence, Aun. Lyc. N. Y. x. 1871, 17; Proc. Boston doc. xiv. 1871, 299. (Socorro I.)
463. Engyptila albifrons (Bp.) Coues.-Echmoptila albifrons, Cones, Bull. U. S. Geol. \& Geog. Surv. Terr. iv. No. 1. 1888, 48 (South Texas); Ridgw. Proc. U. 8. Nat. Mus. i. Oct. 1878, 158 (syuonymy).
471a. Canace obscura fuliginosa, Ridgw.-C. obscura, var. fuliginoza, Ridgw. Bull. Essex Inst. Dec. 1673, 199. (Northwest coast, Oregon to sitka.)
471b. Canace obscura richardsonii (Dougl.) Ridgw.-Tetrao richardsonii, "Sabine, MSS.", Dovgl. Linn. Trans. xvi. $1829,141$.
47ia. Cupidonla cupido pallidicincta, Ridgw.-C. oupido, var. pallidicincta, Ridgw. Bull. Essex Inst. Dec. 1873, 199. (Southwestern prairios.)
478a. Pedicceles phasianellus columbianus (Ord) Ridgw.-Phasianus columbianus, Ord, Guthrie's Geog. 21 Am. ed. ii. 1815, 317.-Pediecetes columbianus, Elliot, Pr. Ac. Nat. Sci. Philad. 1862, 403.
4e0a. Obtyx vimginiana flohidana, Coues.- D. virginianus, var. foridanus, Coues, Key, 1872, \%27. (Florida; J. A. Allen.)
481a. Oreortyx picta plumifera (Gould) Ridgw.-Ortyx plumifera, Gould, P. Z. S. 1837, 42.
486. Ardea cinerea, Linn.-Cf. Reinh. Ibis, 1861, 9. (Greeuland.)
499. Mycteria americana, Linn.-Cf. Coues, Check List, 1873, 135. (Austin, Texas.)
506. Hematopus ostralegus, Linn.-(f. Reinh. Ibis, 1861, 9. (Greenland.)
512. Vanellus cristatus (Linn.) Meyer.-(ff. Reinh. Ibis, 1e61, 9. (Greenland.)
s14. Charadrius plurialis, Linn.-Cf. Newton, Man. Nat. Hist. Greenl. 1875, 101. (Greenland.)
515a. Charadrius dominicus fulows (Gmel.) Ridgw.-C. Juleus, Coues, Elliott's Prybilov Islands, 1875, 179; Birds N. W. 1874, 450, foot-note. (Prybilov Islanda, Alaska.)
518. Egialitis hiaticula (Limn.) Boic.-Cf. Newton, Man. Nat. Hist. Greenl. 1875, 101. (Greeuland.)
519. Agialitis curonica (Guel.) Gray.-Introduced as A. microrhynchus, Ridgw., n. s., Am. Nat. viiii. Feb. 1874, 109. ("San Francisco, Cal.")
520a. Egialitis meloda cibcumcincta, Ridgw.-A. melodus, var. circumcinctus, Am. Nat. viii. Feb. 1874, 109. ("Plains between Missouri River and Rocky Mountains.")
5\%. Scolopax rusticula, Linn.-Cf. Baird, Am. Jour. Arte \& Sciences, xli. May, 1866, \%5. (New foundland.)
526. Gallinago madia, Leach.-Cf. Reini. Ibis, 1N61, 11. (Greenland.)
531. Ahquatella coulsh, Ridgw.-Bull. Nutt. Ori. Club, July, 1880, 160. (Aleutian islands and contiguous coast of Alueka.)
532. AhqUatrlla ptilocnemis (Coues) Ridgw.-"Tringa crassiros/ris", Dall, Am. Nat. viii. 1873, 635 (St. Paul's I., Alaska).-Tringa ptilocnemis, Coues, Elliott's Prybilov Islauds, 1875, foot-note.

Catalogue No.
533. Actodromas acuminata (Horsf.) Ridgw.-Obtdined at St. Michael's, Alaska, hy Mr. E. W. Nelsou, U. S. Signal Service.

The aingle example forwarded hy Mr. Nelson is without date or exact locality, and I have been unable to get from him the desired information, my letter to him on the subject having doubtless miscarifed. The species is so important an addition to the fauna, however, that it cannot be overlooked is the present connection, reluctant as we are to publish a note of its occurrence without being able to furnish those data from the pen of Mr. Nelan himacif, which would do him full justice, an the first discoverer of this Indian mpecies on this ctutinent.
537. Actodnomas bairdit, Cones.-Proc. Philad. Acad. 1861, 194. (Arctic America.)
539. Pelidna alpina (Linn.) Boie.-Tringa alpina, Newton, Man. Nat. Hist. Greenl. 1eis, 103. (Greenland.)

541a. Ereunetes pusillus occidentalis (Lawr.) Coues.-E. occidentalis, Lawr. Proc. Philad. Acad. 1864, 107. (Pacific coast U. S.)
544. Limosa lapponica nota-zealandia, Gray.-L. uropygialis, Baird, Truns. Chicago Acad. i. 1869, 320, pl. 32. (Alaska.)
546. Limosa agocephala (Liun.) Leach.-Cf. Reinh. Ibis, 1861, 11. (Greenland.)
551. Rhyacophilus ochropus (Liun.) Ridgw.-Cf. Brewer, Bull. Nutt. Orn. Club, iii. Jan. 1878, 49. (Nova Scotia.)
561. Numenius phoopus (Linn.) Lath.-Cf. Reinit. Ibis, 1861, 10. (Greenland.)

56\%. Numenius tahiliensis (Gmel.) Cass.-"Numenius femoralis, Peale", Ridgw. Am. Nat. July, 1874, 435. (Kadiak, Alaska; F. Bischoft.)
568. Parra gymnostoma, Wagl.-Cf. Merrill, Bull. Nutt. Orn. Club, i. Nov. 1876, 8 (F't. Brown, Texas); Ridgw. Proc. U. 8. Nat. Mus. i. 1878, 167, pl. iui. (synonymy and descriptions).
570. Rallus obsoletus, Ridgw.-R. eleganx, var. obeolefur, Ridiw. Am. Nat. viii. Feb. 1874, 111. (Coast California.)
571a. Raldus longirostris saturatus, Hensh.-Cf. Ridgw. Bull. Nutt. Otn. Club, July, 1880, 140. (Louisiana.)
573. Porzana maruella (Leach) Bp.-"Ortygometra porzana (Linu.)", Reinh. Ibis, 1851, 12. (Greeulaud.)
576a. Porzana jamaicensis coterniculus, Baird.- Po jamaicensia, var. coturniculus, Baird, Am. Nat. viii. Feb. 1874, 111. (Farallone Islands, California.)
586. Olor суgиия (Linn.) Bp.-" "ygnus føти, Ray", Reinh. Ibis, 1861, 13. (Greenland.)
587. Olor minor (Pall.) Bp.-"Cyguи\& bewichii", Sw. \& Rich. F. B. A. ii. 1831, 46% ("Igloolik [Arctic America], lat. 66°, June 19, 1823." Said to breed "on the sen-coant within the Aretic circle." The description, from specimens killed at locality quoted above, is of the true O. minor, or Bewick'y Swan.)
592. Chen rossil (Baird) Ridgw.-Anser rossii, "Baikd, MSS.", Cas8. Proc. Philad. Acad. 1861, 73. (Arctic America.)
503. Anser albifrons (Gm.) --Cf. Reinir. Ibis, 1861, 12. (Greenland.)
603. Anas fulvigula, Ridgw.-A. obscura, var. fulvigula, Am. Nat. viii. Feb. 1894, 111. (Florida.)

627a. Somaterin mollissima dnesseri (Sharpe) Coues.-S. dresseri, Sharpe, ann. Mag. N. H. July, 1ヶ71, 51, figs. 1, 2.

This bird has been callod by all American writers S. mollisrima. The true Eider, horever, has only lately bean detectod in America, it being the form found by Mr. Kumlies breeding abundantly on the west aide of Cumberland Gulf.
631. Melanetia fusca (Linn.)-Cf. Reivhardt, Vid. Meid. Nat. Fōr. Kjobenharn, 1879, 1. (Souih Greenland.)
646a. Phalacrocorax violacens resplendens (Aud.) Ridgw.-Graculus bairdii, "Grqber, MSS.", Cooper. Proc. Philad. Acad. Jan. 186̄̄, 5. (Farallone Islands.)

Catalogue No.

647. I'halacrocorax bicristatus, Pallas.-"Graculus bicristatus, I'allas", Baird, Trans. Chicago Acal. i. 1×i9, -, pl. 33. (St. George's I., Alaska; W. H. Dall.)
648. Sula cyanops, Sundev. -Cf. Lawh. Proc. Boston Soc. xiv. 1671, 302. (Socorro I.)
649. Sula piscator (Linn.) --Cf. Lawn. Proc. Boston Sor. xiv. 1-72, 303. (Socorro I.)
650. Phaëthon athercue, Linn.-Cf. FREKE, sci. Proc. Roy. Dubl. Soc. 1e79." (Banks of Newfoundland, Angnst, 1e\%6.)
6ti5. Larus afinix, Reinh.-Vid. Medd. Nat. För. Kjobenhavn, 18ỉ3, 78. (Gireenland.)
GGba. Labus abgentaten smitheonianus, Cones. - Lo amithsonianus, Coles, Proc. Philad. Acad. 1862, 220. (North America.)
651. Larus cachinnans, Pall.-"Larus borealis, Brandt", Baird, Trans. Chicago Acad. i. 1869, 305. (St. Michael's, Alaska; Bischotf.)
652. Larus canu*, Linn.-Cf. Brewer, Bull. Nutt. Orn. Club, iii. Jan. 18is, 50. (Labrador; Cones.)
653. Sterna aleutica, Baird.-Trans. Chicago Acad. i. 1869, 321, pl. 31, fig. 1. (Kadiak, Alaska; Bischoff.)
654. Sterna anastheta, Scopoli.-Sterna (Maliplana) anosthata, Coues, Key, 1e72, 322 (Florida.)
655. Hydrochelidon leucoptera (Meisn.) Boie.-Cf. Brrwer, Am. Nat. March, 1e74, 188. (Lake Koshkonong, Wisconsin; T. Kumlipn.)
70jb. Fulmarus glactalis rodgersi (Cuss.) Couer.-F. rodyeraio, Cass. Proc. Philad. Acad, 18fi2, 290 (North Pacitic); Baind, Trans. Chicago Acad. i. 1 1469,323 , pl. 34, fig. 1 (St. Georges I., Alaska).
656. Puffinus creatopls, Cooper.-Cf. Couks, Proc. Philad. Acad. 146.4, 131. (Coast Califormia.)
657. Puffins gaxia (Forst.) Finsch.-l'. opisthomelan, Coves, Proc. Pbilad. Acad. 1864, 139. (Coast California.)
658. Pufinus grisens (Gmel.) Finsch.-Nectris amaurosoma, Coves, l'roc. Philad. Acad. 1864, 124.
659. Puffinus temuirohtris, Temm.-Nectris tenuirostris, Dall \& Bannister, Truns. Chicago Acad. i. 1669, 303. (Kotzbue Sound.)
660. Estrelata bulweri (Jard.) Gigl. \& Salvad.-Thalassidroma bulweri, Newton, Man. Nat. Hist. Greenl. 1875, 108.
661. Halocyptena microsoma, Coues.-Proc. Philad. Acad. 1864, 78. (Coast of California.
662. Cymochorea homochroa, Cones.-Proc. Philad. Acad. 1864, 77. (Coast of California.)
663. Colymbus adamsi, Gray.-Proc. Zoül. Soc. Lond. 1×59, 167. (Alaska.)

763a. Lomvla trohle Calfornica (Bryant) Cohes.-Catarracter californiour, Bryant, Proc. Boston Soc. N. H. (Farallone Islands.)
764. Lomcia arra, Pall.-Cephus arra, Pall. Zoög. Rosso-As. ii. 1811, 347. (Alaska.)
c. List of Vorth American genera which have been described or added to the fanna since 1459, together with those whose names or orthography have been changed since that date.

1. Hylocichla, Baird, Review Am. B. i. June 2, 18f4, 12 (type, Turdus mustelinия, Gmel.).

The Turdus musicu of Europe is a strict congener of T. mustelinus, and it is posaible that some generic name may have been based upon it previous to the imposition of Hylocichia.

The T. iliacu, although not agreeing strictly with T. ciscivorus in details of external atructure, is still hardly differunt enough to entille it to separation. It is much more like true Turdus than cither of the otber American genera (Hylocichla and Merula).

[^22]7. Merula, "Leacb, 1816" (type, Turdus merula, Linn.).

The proper generic division of the typical thrushes in a matter of considerable dificulty. Of the North American \&eneric groups, Hylocichla and Hesperocichla of Baird are snffici ently isolated, the latur being repreaented by a single species only, the former by all she smaller spotted species, bosides the Song Thrush (Turdu musicus, Linn.) of Fiurope. I find no American species agrecing at all clonely with Turdus riscicorus (the type of Trenden) in form; aud a gencric division based wholly or chiefly on coloration being out of the question. I find no other alternative than to alopt for the Robin and other American thrushes naualy reforsed to "Planesticus" of Bonaparte (1854) the name Merula, Leach (1816), there being so esaential diffrence in form between the type of the latter. Turdue merula, Linn. (Merula nigra, Leach) and our Lobin (T. migratorius, Linn.); while a number of the Neot nopical -pecies exhibit the same aexual difference in coloration as T. merula. I would also refers so Merula the following Old Word forms: Turdus pilaris, Linn. (type of Areeuthornis, Kaup 1829), Therdus atrogularis, Temm. (type of Cichloides, Kaup, 1829), Turdus torguatus, Lias. (type of Thoracocincla, Reich., 1850), with perhaps some others.
9. Hesperocichla, Baird, Review Am. B. i. July, 1864, 32 (type, Turdus notian, Gmel.).
12. Galeoscoptex, Cabanis, Mus. Hein. i. 1850, 82 (type, Muscicapa carolinensis, Linn. I.
19. Cinclus, Bechstein, Gemein. Naturg. 1802 (type, Sturnus cinclus, Linn.). [Cf. Baikd. Review Am. B. i. 1864, 59, foot-note.]
20. C'yanceula, Brehm, Vög. Deutschl. 1828 (type, Motacilla suecica, Linn.).
34. Phylloacqus, Boie, Isis, 1826, 792 (type 1)
50. Aumparus, Batrd, Reviow Am. B. i. Aug. 1864, 85 (type, Eqithalus faciorpe, Sundev.).
61. Thryomanes, Sclater, Cat. Am. B. 1e6i, 22 (type, Troglodytes bewicki, Aud.).
65. Inorthura, Renvie, Montagu's Orn. Dict. 2d ed. 1831, 570 (type, d. communie, Rennie $=$ Motacilla (roglodytes, Linn.).
67. Telmatodytes, Cabauis, Mus. Hein. i. 1850, 78 (type, Certhia palustria, Wils.).
69. Motacilla, Linneus, S. N. 1735 (type, M. alba, Linn.).
70. Budytes, Cuvier, Rigg. An. i. 1817, 371 (tjpe, Motacilla flara, L.).
76. Helonaa.-Lelinaia, Audubon, Synop. 1ヵ39, 66 (type, Sylvia stcainsoni, Aud.). [Orthography emended by Agassiz, Nomencl. 1sit. Cf. Newton, P. Z. S. 1879,552.]
9j. Pemssoglos8a, Baird, Review Am. B. i. 1864, 180 (type, Motacilla ligrina, Gm.).
92. Peucedramus, Coues, in Henshaw's Orn. Wheeler's Survey, 1075, 201 (type, syl via oliracea, Giraud).
115. Siurus.-Cf. Coues, Bull. Nutt. Orn. Club.
124. Wilsonia, Bonaparte, Comp. List. 18:3x, 23 (type, Sylvia mitrata, Aud.). [C\%. Coues, Bull. Nutt. Oru. Club, April, 1880, 95. ${ }^{\circ}$]
131. Cardellina, "Dubus", Bonnp. Consp. i. 1850, 312 (type, Cardellina amicta, Dubus $=$ Muscicapa rubrifrons, (Giraud).
132. Ebgaticus, Bairl, Review Am. B. i. May, $186{ }^{5}, 264$ (type, setophaga rubra, Swains.).
133. Basileuterus, Cubanis, in Schomb. Guiana, iii. 1848, 666 (type, Sylvia vermicora, Vieill.).
135. Vireosylvia, Bonaparte, Comp. List. 14it, ${ }^{2} 6$
140. Lanivimeo, Baird, Review Am. B. i. May 23, 1dib, 345 (type, lireo flavifrome, Vieill.?).

[^23]Catalogue No.
148. Laniuz, Linnaus, S. N. ed. 10. 1758,93 (type, L. excubitor, Linn.). [Cf. Cones, Birds Colorado Val. i. 1878, 539.]
153. Petrochelidon, Cabanis, Mus. Hein. i. 1850, 47 (type, Hirundo melanogaster, Sw. $=P$. scainsoni, Scl.).
155. Tachycineta, Cabanis, Mus. Hein. i. 1850, 48 (type, Hirundo thalassina, Sw.).
157. Cotile, Boie. - Cf. Wearton, The Ibis, Oct. 1079; Coues, Bull. Nutt. Orn. Club, April, 1880,96.
158. Stelgidopteryx, Baird, B. N. Am. 1858, 312, in text (type, Hirundo serripennis, Aud.).
167. Pyrrhula, Brisson, Orn. 1760 (lype, Laxia pyrrhula, Linn. = Emberiza coccinea, Sandb.).
172. Lozia, Linnaus, S. N. ed. 10, i. 1758, 171 (type, L. curvirostra, Linn.).
181. Astragelinus, Cabanis, Mus. Hein. i. 1851, 159 (type, Fringilla trislis, Liun.).
187. Centrophanes, Kanp, Ent. Gesch. Eur. Thierw. 1829 (type, Emberiza lapponica, Linn.).
190. Rhymchophanes, Baird, B. N. Am. 1858, 432, in text (type, Plectrophanes maccowni, Lawr.).
224. Amphispiza, Coues, Birds N. W. 1874, 234 (type, Emberiza bilineata, Cass.).
24. Zamelodia, Coues, Bull. Nutt. Orn. Club, v. April, 1850, 98 (type, Loxia ludoviciana, Linn.).
24. Passerina, Vieillot, Analyse, 1816, 30 (type, Tanagra cyanea, Linn.). [Cf. Coues, 1. c. 96.]
253. Phonipara, Bonaparte, Consp. i. 1850, 494 (type, Loxia canora, Gmel.).
254. Spiza, Bonaparte, Obs. Wils. Orn. 1825 (part); Specc. Comp. 18:7, 47 (type, Emberiza americana, Gmel.!). [See antea, 3.]
279. Sturnus, Linneus, 8. N. ed. 10, i. 1758, 167 (type, S. vulgaris, Linn.).
25. Gym
299. Cyanocitla, Stricklaud, Ann. Mag. N. H. xv. 1845, 260 (type, Corvus cristatus, Linn.). [Cf. Coues, Bull. Nutt. Orn. Club, April, 1אe0, 98.]
291. Aphelocoma, Cabanis, Mus. Hein. i. 1851, 221 (type, Garrulus californicus, Vig.).
299. Alauda, Linneus, S. N. ed. 10, i. 175\%, 165 (type, A. arvensis, Linn.).

30e. Pilangus, 8waineon, Zool. Jour. iii. 1827, 165 (type !).
309. Myiozrtetes, Sclater, ex. Schiff,-Myiozeta, "Schift:", Bp. Compt. Rend. xxxviii. 1854, - (type 9).-Myiozeteles, Scl. P. Z. S. 1859, 46.
310. Myiodinastes, Bonaparte, Compt. Rend. xxxviii. 1854, 657 (type i).
331. Ormithion, Hartlaub, Jour. fur Orn. 1853, 35 (type, O. inerme, Ilartl.).
332. Pachyrhamphus, "Gray, 1838" (type, Pachyrhynchus curieri, Spix = Tityra viridis, Vieill.).
353. Hadrostomes, Cabanis, Mns. Hein. ii. Oct. 24, 1859, 84 (type, Tityra atricapilla, Vicill.).
334. Eugenes, Gould, Mon. Troch. pt. xii. 1856 (type, Trochilus fulgews, Swains.).
337. Calypte, Gould, Introd. Troch. oct. ed. 1661, 87 (type, Ornismya costa, Bourc.).
342. Athis, Reichenbach, Aufz. der Colib. 1853, 12 (type, Ornismya heloisa, Less. \& Delattr.).
343. Stellula, Gould, Introd. Troch. oct. ed. 1861, 90 (type, Trochilus calliope, Gould)
34. Calothorax, Gray, Gen. B. 1840, 13 (type, Cynanthus lucifer, Swains.).
345. Amazilia, Lesson.-Amazilis, Less. Ind. Gen. et Syn. du Gen. Troch. 1832, p. xxvii. (type, Orthorhynchus amazili, Less.).-Amazilia, Reich. Av. Syst. Nat. 1849, pl. 39.
347. Basilinna, Boie, Isis, 1831, 546 (type, Trochilus leucotin, Vicill.).
348. Inche, Elliot, Synop. Troch. March, 1879, 234 (type, Cynanthus latirostris, Swaina.).
39. Cypselus, Illiger, Prodr. 1811, 229 (type, C. apus, Linn.). [Cf. anted, 6.]
350. Cypseloides, Streubel, Isis, 1848, 366 (type, Cypselus fumigatus, Natt.). [Cf. Sclates. P. Z. S. 1865, 614.]
354. Caprimulgus, Linnıue, S. N. ed. 10, i. 1858, 193 (type, C. europars, Linn.). [CS Proc. U. S. Nat. Mns. i. 1878,143 ; ib. iii. 1680, 5.] Proc. Nat. Mus. $80-15$ Sept. 4, 1880.

Catalogue No.
355. Phalenoptilus, Ridgway, Prob. U. S. Nat. Mus. iii. March 27, 1860, 5 (type, Caprimulgus nuttalli, And.).
366. Xemopicus, Baird, B. N. Am. 1858, 83, in text (type, Leuconerpes albolarvatus, Cass.).
394. Aluco, Fleming, Phil. Zool. ii. 1838, 236 (type, Strix flammea, Linn.). [Cf. NewTON, Yarrell's Brit. B. ed. 4, i. 150; Ibis, v. 94-105.]
395. Asio, Brisson, Orn. i. 17i6, 28 (type, Strix otus, Linn.).
397. Strix, Linnæus, S. N.ed. 10, i. 1758,92 (type, 8. stridula, Linn.). [Cf. Newtox, lbis, ser. iii. vi. 94-105.]
399. Clulu, Cuvier, Reg. An. i. 1817, 329 (type, Strix uralensis, Pall.).

In Mistory of North American Birds (rol. ili, pp. 28-30) I adopted for the Great Gray Owl (Strix cinerea, Gmel) the subgeneric name Scotiaptex, Swains., bused upon this specien, and on p. 8 of these Procpedings raised the same name to generic rank. A subavquent examtuation of Strix uralensia, Pallas, howerer, reveals the fact that the latter is atrictly con. generic with S. cinerea and S. lapponica, and haring been made the type of a genus Oluda by Cuvier, in 1817, the latter name muet take precedence over deotiaptex, which wae not founded antil 1831.
408. S̄peotyto, Gloger, Handb. Natnrg. 1842, 226 (type, Strix cunicularia, Mol.).
411. Micrathenfo, Cones, Proc. Philad. Acad. 18u6, 51 (type, Athene vhitneyi, Cooper.).
412. Hierofalco, Cuvier, Reg, An. i. 1817,312 (type, Falco candicans, Gm.).
416. Esalon, Kaup, Natỉrl. Syst. 1829,40 (type, Falco casalon, Gmel. $=F$. regulus, Pall.)
419. Rhynchofalco, Rilgway, Proc. Boaton Soc. 1873, 46 (type, Falco femoralis, Temm. = F fusco-carulescens, Vieill.).
426. Elanoides, Vieillot, Nour. Dict. xxiv. 1818, 101 (type, F'uloo furcatus, Linn.).
434. Antenor, Ridgway, Proc. Boston Soc. Nat. Hist. May, 1873, 63 (type, Faloo unicinctus, Temm.).
444. Urubitinga, Lesson, Rev. Zool. 1839, 132 (no type!); Lafr. in d'Orb. Dict. Hist. Nat. ii. 1842, 786 (type, Falco urubitinga, Gm. =F. zonurue, Shaw).
446. Onychotes, Ridgway, Proc. Philad. Acad. Dec. 1870, 142 (type, O. gruberi, Ridgw.).
450. Thrasaëtus, Gray, Proc. Zool. Soc. Lond. 1837, 108 (type, Falco harpyia, Linn.).
451. Haliceitux, Savigny.-This is the original and correct orthography. [Cf. Grar, Handb. i. 1869, 16; CoUes, Bull. Nutt. Orn. Club, Apr. 1880, -.]
45it. Pseudogryphus, Ridgway, in B. B. \& R. Hist. N. Am. B. iii. Jan. 1874, 337, 3:38 (ty fe, Vultur californianus, Shaw).
455. Catharista, Vieillot, Analyse, 1816, 21 (type, Fultur urubu, Vicill. $=$ F. atrata, Bartr. Cf. RıDGw. Bull. Nutt. Orn. Club, April, 1880, 80).
463. Engyptila, Sundevall, Met. Nat. Av. Disp. Tent. 1872, 156 (type, Columba rufarilla, Rich. \& Bern.).
467. Geotrygon, Gosse, Birds Jam. 1847, 316, foot-note (type, G. sylvatioa, Gosae= Columba cristata, Tumm.).
469. Orialis.-Cf. Wharton, The Ibis, Oct. 1879, 450. [二Ortalifa, Merrem (false orthography).]
471. Canace, Reichenbach, Av. Syst. Nat. 1851 (type, Tetrao canadenais, Linn.).
491. Dichromanassa, Ridgway, Bull. U. S. Geol. \& Geog. Sury. Tetr. iv. No. 1, Feb. 5, 1878, 246 (type, Ardea rufa, Bodd.).
492. Hydianassa, Bairl, B. N. Am. 1858, 660, in text (type, Ardea Indoriciana, Gnel. $=$ A. tricolor, Mûll.).
499. Mycteria, Linnans, S. N. i. 1758,140 (type, M. americana, Linn.).
501. Eudocimus, Wagler, Isis, 1832, 1232 (type, Scolopax rubra, Linn.). [Cf. Ellot, Ibis, 1877, 482.]
503. Plegadis, Kanp, Skizz. Ent. Gesch. 1899, 82 (type, Tantalus falcinellus, Linn.). [Cf. Schatef \& Salvin, Ibis, 1878, 11\%.]
505. Ajaja, Reicheubach, Handb. 1851, p. xvi. (1ype, Platalea ajaja, Linn. $=P$. rosa, Briss.). [Cf. Ridaway, Proc. U. S. Nat. Mus. iii. 1880, 10.]

Catalogue No.
512. Fanellus, Meyer, Vög. Dentschl. i. 1810, 10 (ex. Linn. 1735; type, Tringa rancllus Linn.).
516. Oxyechus, Reichenbach, Av. Syst. 1853, Introd. p. xviii. (type, Charadrius vociferus, Liun.).
522. Ochthodromus, Reichenbach, 1. c. (type, Charadrius wilsonius, Ord).
323. Podasocys, Cones, Proc. Philad. Acad. 1866, 96 (type, Charadrius montanus, Towns.).
524. Scolopax, Linnsus, S. N. ed. 10, i. 1758, 145 (type, S. rusticula, Linn.).
530. Arquatella, Baird, B. N. Am. 1858, 717 (type, Tringa maritima, Briun.).
533. Actodromas, Kaup, Sk. Ent. Eur. Thierw, 1829, 37 (type, Tringa minuta, Leisl.).

5is. Pelidna, Cuvier, Règ. An. 1817, 490 (type, Tringa alpina, Linn.).
547. Totanus, Bechstein, Nat. Dentachl. 1803 (type, Scolopax calidris, Linn.).

5i4. Machetes, Cnvier, Règ. An. 1817 (type, Tringa pugnax, Linn.). [Cf. Coces, Bull. Nutt. Orn. Club, Apr. 1880, 100.]
5 5̄5. Bartramia, Lesson, Traité Ois. 1831, 553 (type, B. laticauda, Less. = Tringa longicauda, Bechst.). [Cf. Couer, 1. c.]
564. Lobipes, Cuvier, Règ. An. 1817 (type, Tringa hyperborca, Linn.).
565. Steganopus, Vieillot, Enc. Mèth. 1823 (type, S. tricolor, Vieill. = Phalaropus wilsomi, Sab.).
568. Parra, Linnsus, S. N. i. ed. 12, 1766, 259 (type, P. jacana, Linn.). [For generic characters and illustrations, see these Proceedings, vol. i. pp. 166, 167, pl. iii.]
578. Ionornis, Reichenbach, Av. Syst. 1853, 21 (type, Fulica martinica, Linn.).
586. Olor, Wagler, Isis, 1832, 1234 (type, Cygnus musicus, Bechat. = Anas cygnus, Linn.).
590. Chen, Boie, Isis, 1822 (type, Anas hyperborea, Pall.).
598. Philacte, Bannister, Proc. Philad. Acad. Nov. 1870, 131 (type, Anas canagicus, Sewast.).
619. Clangula, Fleming, Philos. Jour. 1828 (type, Anas clangula, Linn.). [Cf. Dresser, B. Eur. pt. xlvi. Dec. 1875; Coues, Bull. Nutt. Orn. Club, April, 1880, 101.]
655. Nomonyx, Ridgway, Proc. U. S. Nat. Mns. iii. March 27, 1880, 15 (type, Anas dominica, Linn.).
642. Phalacrocorax, Brisson, Orn. 1760 (type, Pelecanus carbo, Linn.). [Cf. Shanpf, Cat. B. Brit. Mas. iii. 1877, 14G, foot-note.]
646. Megalestris, Bonaparte, Consp. ii. 18i6, 206 (type, Larus catarractes, Linn. $=$ Catharacta skua, Brünn.). [Cf. Coues, B. N. W. 1874, 603, 604, where, however, Buphagus, Mchring, is adopted ; but Mchring's names being inadmissible," Mogalestris, Bp., "strictly its only synonym" seems the only one available.
703. Phabetria, Reichenbach, Av. Syst. Nat. 1853, pl. 26, fig. 348 (type, Diomedea fuliginosa, Gmel.).
704. Owifraga, Hombron \& Jacquinot, Compt. Rend. xviii. 1844, 356 (type, Procellaria gigantea, Gmel.).
706. Priocella, Hombron \& Jacquinot, Compt. Rend. xviii. 1844, 357 (type, Procellaria glacialoides, Smith $=P$. tentuirostris, Aud.).
707. Priofinus, Hombron \& Jacquinot, Compr. Rend. xviii. 1844, 355 (type, Procellaria cinerea, Gmel. $(t)=P$. melanura, Bonn.).
717. Estrelata, Bonaparte, Consp. ii. 1855, 188 (type, Proeellaria hasitata, Temm.).
720. Halocyptena, Cones, Proc. Philad. Acad. 1864, 78 (type, H. microsoma, Coues).
721. Procellaria, Linuseus, 8. N. ed. 12, i. 1763, 212 (type, P. pelagica, Linn.).
722. Oceanites, Keyserling \& Blasius, Wirb. Eur. 1840, 238 (type, Procellaria oceanica, Kahl.).

[^24]Catalogue No.
723. Cymochorca, Coues, Proc. Philad. Acad. 1864, 75 (type, Procellaria leucorrhos, Vieill.).
726. Oceanodromu, Reichenbach, Av. Syst. 1853, xviii. (type, Procellaria furcata, Gmel.).
730. Echmophorus, Coues, Proc. Philad. Acad. 1832, 225 (type, Podiceps occidentalis, Lawr.).
732. Dytes, Kaup, Syst. Ent. Eur. Thierw. 1829 (type, Colymbus cornutus, Gmel.).
734. Tachybaptes, Reichenbach, Syst. Nat. Av. 1853, pl. 2 (type, Colymbus minor, Gmel.).
742. Etamania, Leach, Syst. Cat. 1816 (type, Alca torda, Linn.). [Cf. Coues, Proc. Philad. Acad. 1868, 18, 19.]
743. Fratercula, Brisson, Orn. 1760 (type, Aloa arcica, Linn.). [Cf. Coues, Proc. Philad. Acad. 1868, 21.]
745. Lunda, Pallas, Zorgr. Rosso-As. 1811, 363 (type, Alca cirrhata, Pall.). [Cf. Coues, Proc. Philad. Acad. 1868, 26.1
746. Ceratorhina.-Cf. Coues, Key, 18́72, 341. [=Cerorhinca, Bonap. Ann. Lyc. N.Y. ii. 1828, 428 (falee orthography).]
748. Simorhynchus, "Merrem, —, 1819 (type, Alca cristatella, Pall. fide G. R. Gray)". [Cf. Coues, Proc. Philad. Acad. 1863, 35.]
750. Ciceronia, Reichenbach, Av. Syst. Nat. 1853, - (type, Phaleris microceros, Brandt $=$ Uria pusilla, Pall.).
752. Alle, Link, Beschr. Natur.-Samml. Univ. Rostock, 1806, 17 (type, A. nigrican, Link = Alca alle, Linn.). [Cf. Coues, Bull. Nutt. Orn. Club, iv. Oct. 1879, 244.]
753. Synthliborhamphus, Brandt, Bull. Acad. St. Petersb. ii: 1837 (type, Alca antiqua, Gmel.).
763. Lomvia, Brandt, Bull. Acad. St. Petersb. ii. 1837, 345 (type, Colymbus troille, Linn.) [Cf. Coues, Proc. Philad. Acad. 1868, 75.]
d. Species included in the catalogue which have not yet (according to the records) actually been taken within the prescribed limits.
[The following species enumerated in the catalogue have not, to this date, been taken within the United States; but all are known to occur so near our southern border as to render it quite certain that their capture within our limits is bat a question of time and investigation. There are also included in this category all the species which are peculiar to the islands of Socorro and Guadalupe and the peninsula of Lower California.]
8. Merula conpinis. (Cape 8t. Lucas.)
14. Harporhynchus cinereus. (Cape St. Lucas.)
18. Harporhynchus graysoni. (Socorto.)
31. Regulus obscurus. (Guadalupe.)
43. Parus meridionalis. (Highlauds of Mexico.)
49. Paaltriparus melanotis." (Highlande of Mexico.)

55a. Certhia familiaris mexicana. (Highlands of Mexico.)
57. Campyloriyncius affinis. (Cape St. Lucas.)

58a. Salpinctes obsoletus guadalupenbis. (Guadalupe.)
62. Thryomaneb brevicauda. (Guadalupe.)
89. Parula pitiayumi insularis. (Socorto.)
171. Carpodacus amplus. (Guadalupe.)
195. Passerculus guttatus. (Cape St. Lucab.)
223. Junco inglearis. (Guadalupe.)

23bc. Pipilo maculatub Consobrinus. (Guadalnpe.)
238 d. Pipilo maculatus carmani. (Socorto.)
940a. Pipilo fuscur albigula. (Cape St. Lucas.)

[^25]Catalogne No.
267. ICterus wagleri. (Mexico.)
288. Peilorhinus morio. (E. Mexico.)
291. Aphelocoma ultramarina couchil. (E. Mexico.)
347. Basilinna xantesl. (Cape St. Lucab.)

363a. Picus scalaris lecasanes. (Cape St. Lncas.)
377a. Melanerpes formetvorus angustiprons. (Cape 8t. Lucas.)
320. Colaptes bufipileus. (Guadalupe.)
381. Momotus cernleiceps. (E. Mexico.)
384. Trogox ambigute. (Mexico.)
393. Conurus holochlorus brevipes. (Socorto.)
415. Falco albigularis. (Whole of tropical America.)
424. Polybobus lutosus. (Guadalnpe.)
653. Sula placator. (Socorto.)
655. Phethon ethereus. (Newfoundland banks; Socortol)
460. ZENEDCRA GRAY8ONI. (Sucorto.)

Of the following species given in the catalogue no specimens are known to have been taken within the limits of the United States, with the exception of those described and figured in Giraud's "Sixteen Specien of Texan Birds" (1841)."
59. Catherpes mexicanus ($=$ Certhia albifroms, Giraud).
130. Setophaga miniata (= Muscicapa derhami, Giraud).
132. Ergaticus muber ($=$ Parus leucotis, Giraud).
153. Basilegterus cllicivores ($=$ Muscicapa brasieri, Girand).
134. Basileuteru's bellil (=Muscicapa bellif, Giraud).
160. Euphonia Elegantissima (=Pipra galericulata, Girand).

182b. Astragalinus pealtria mexicanus (=Fringilla texensis, Giraud).
309. Myiozetetes texensls (=Muscicapa texensis, Giraud).
314. Myiarches Lawrencei (=Tyrannula laurencii, Girand).

369 . Empidonax fulvifrons (= Muscioapa fulvifrons, Giraud).
c. Species (chiefty Palaarctic) which occur only as stragglers or visitanta in Eastern North America, or which occur regularly only in Greonland and adjacent portions of the continent. \dagger
[6.] Turdes miaces. Accidental in Greenland.
[69.] Motacilla alba. Accidental in Greenland.
[178.] Egiothu's canescens. Resident in Greenland.
[279.] Stunnes vulgaris. Accidental in Greenland.
[41:2.] Hierofalco gyrfalco islandus. Reeident in South Greenland.
[416.] Esalon regulus. Accidental in Greenland.
[422.] Tinnuncules alaudahics, Accidental in Greenland.
[435.] Buteo vulgaris. Accidental in Michigan ! [Cf. Maynard, Bull. Nutt. Orn. Club, i. 18.]
452. Halleetus albicilla. Resident in Greenland.
[488.] Ardea cinerea. Accidental in Greenland.
[506.] Hematopus osthalegles. Accidental in Greenland.
[514.] Charadrius pluvials. Accidental í Greenland.
518. Eqialitis hiaticlla. Breeding in Greenland and west of Cumberland Gulf.
[524.] Scolopax rusticula. Accidental in Newfoundland and Eastern United States.
[526.] Gallinago media. Caenal in Greenland and Bermudas.

[^26]Catalogue No.
[539.] Pelidna alfina. Breeds in Greenland and Hudson's Bay Territory.
[540.] Pelidna subarquata. Casual in Eastern North America (several meards).
[546.] Limosa Egocephala. Accidental iu Greenland.
[547.] Totanve glottis. Accidental in Florida.
[551.] Rhyacophiles ochropus. Accidental in Nova Scotia.
[554.] Machetes pugnax. Casual in Eastern North America (several reconds).
[561.] Numenius Pheopes. Accidental in Greenland.
[573.] Porzana maruetta. Accidental in Greenland.
[577.] Crex prateissis. Casual in Eastern North America, including Greenland.
[566.] Olor cyanus. Accidental in Greenland.
[587.] OLOR minor. Casual (1) in fur countries.
[593.] Anser albifrons. Breeds in South Greenland.
[597.] Bernicla leucopsis. Casual in Eastern North America.
[611.] Nettion crecca. Casual in Eastern North America.
627. Somateria mollissima. Resident in Greenland acd west side of CumLerland Gulf.
[631.] Meranetta fusca. Accidental in Greenland.
[665.] Larus affinis. Accidental in Greenland.
[694.] Hydrochelidon levcoptera. Accidental in Wisconsin.
[711.] Puffinčs anglorum. Canual (1) off Atlantic coast.
[717.] Estrelata hesitata. Accidental off Atlantic coast of U. S.
[718.] Estrelata bulweri. Accidental near Greenland.
728. Fregetta grallaria. Accidental off coast of Florida.
[733.] Dytes auritus. Breeds in South Greenland.
743a. Fraterclela abctica glacialis. Resident in Greeuland.

f. Palcearetic and oceanic species occurring only in Alaska and other parts of the Pacific coast.

[20.] Cyanecula suecica. St. Michael's, Alaska, June 5, 1850. (See p. 215.)
[34.] Piylloscopus borealis. Brceds in Alaska.
[44.] Parus cinctes. Abundaut resident in Alaska.
[70.] Budytes flava. Breeds abundantly in Alaska.
[167.] Pyrhicla cassini. Resident (1) in Alaska.
[399a.] Ulula cinerea lapponica. ('asual (9) in Alaska (St. Michael's).
[407a.] Survia flemerea Ullla. Casual (1) in Alaska (St. Michael's).
511. Aphriza virgata. Casual along entire Pacific coast of America.
[515a.] Charadrićs dominicus fulves. Regular autumnal visitant to Alaska.
[519.] Egialitis curonica. Accidental in California (\%).
[533.] Actodnomas acuminata. Accidental on coast of Alaska.
544. Limosa lapponica novie-zealandie. Abudant visitant to Alaska.
553. Heteroscelcs incanus. Whole Pacific coast. (Breeds.)
[562.] Numeniús tamitiensis. Accidental in Alaska (Kadiak).
[702.] Diomedea culminata. Accidental off mouth of Columbia River (Audabon).
[703.] Phabetria flliginosa. Casual off Pacific coast.
[704.] Ossifraga gigantea. Accidental off Pacific const of U. 8.
706. Priocella tenuirobtme. Casual (9) off Pacific coast.
707. Priofines melanures. Accidental off coast of California.
710. Puffinus creatopu's. Accidental (\uparrow) off coast of California.
713. Puffinus gavia. Casual (1) ofl coast of Lower California.
715. Puffinus oriseus. Casual (?) off coast of Lower California.
716. Puffines tenuirostris. North Pacific (casuali).
[719.] Daption capensis. Accidental off coast of Califoruia.
g. Palaaretic species occurring both in Greenland and Alaska, but not recorded from any intermediate point in North America.
Catalogre No.
[21.$]$ Saxicola enanthe. Breeds in Greenland and on west side of Cumberland Gulf.
[72] Anthus pratensis. Accidental (1) in Greenland and Alaska.
[512.] Vanellus cristatc8. Accidental in Greenland (and Alaska 9).
[ti06.] Mareca penelope. Occura in various parts of North America, south to North Carolina, and San Francisco.
h. Tropical American species occurring only in southern portions of Enited States.

EAStERN PROVINCE, including ylorida and COAST of texas.*
137. Vireosylvia calidris barbatula. (South Florida.) Hab. Cuba.
159. Certhiola bafamensis. (Indian Key.) Hub. Bahamas.
184. Chrysomitais votata. (Accidental in Kentucky, fide Audubon.) Hab. highlands of Mexico and Guatemala.
253. Phonipara zena. (Key Weat.) Mab. Weat Indiea in general.

2tio. Icterus vulgaris. (South Carolina, etc.) Hab. Jamaica and northern Sonth America.
302. Milrulus tyrannus. (Accidental in Missiswippi, New Jersey, etc.) Hab. whole of tropical Sonth America east of the Andes, Atlantic const region of Central America (and Mexico 1).
303. Tyrannus dominicensig. (Florida.) Hab, whole of Weat Indiee.

357b. Chordeiles popetue minor. (Florida.) Hab. Cuba and Jamaica.
306. Coccyzu's sexiculus. (Florida, Louisiana?) Hab. West Indies and parts of northern South America.
329. Crotophaga any. (Tortugas; near Philadelphia!) Hab. West Indies and parta of northern South America.
420a. Tinnuyculus bparvehius isabelinnus.
4:1. Tinvúnculus spairvemoides. (Florida.) Hab. Cuba.
429. Rostrhamus sociabilas plumblus (Flotida.) Hab. Tropical America in general.
458. Columba leucoclphala. (Flotida Keys.) Hab. West Indies; Honduras.
462. Zeneda amabili8. (Florida Keyb.) Hab. Greater Antilles.

46\%. Gbotrygon martinica. (Florida Keys.) Hab. Weat Indies,
468. Starnqenas cyanocephala. (Florida Keys.) Hab. Cuba.
502. Eudocimus ruber, (Louisianal) Hab. Northern Sonth America; Jamaica.
503. Plegadis falcinellus. (Florida, atraggling northward.) Hab. Eastern Hemisphere chiefly.
578. Ionornis martinica. (Southern portions in general, straggling northward.) Hab. whole of tropical America.
581. Aramus pictus. (Florida.) Hab. West Indies and Atlantic coast of Central Awerica.
525. Phowicopterus nuber. (Florida Keys.) Hab. West Indies and shores of Gulf of Mexico and Caribbean Sea; Galapagos.
635. Nomonyx dominicus. (Accidental on Lake Champlain and in Wisconsin.) Hab. whole of tropical America.
692. Sterna anestheta. (Florida.) Hab. tropics generally.
734. Tachybaptes dominicus. (Lower Rio Grande, in Texas.) Hab. Tropical America in general.

[^27]
SOUTHWESTERN BORDER-TEXAS TO CALEORNIA.

[The species of this list which are peculiar to the more clevated portions of Mexico and Guatemala (including the contiguous sonthern border of the United States) are distinguished by an asterisk (*) prefixed to the number. The avi-fauna of temperate Mexico is decidedly more nearly related to that of the Western Province of North America than to the tropical fauna of the Mexican tierra caliente or hot coast-region. The genera of Neotropical affinities are priuted in itulics.]

Catulogue No.

- 13a. Harporiynchus rufes longirostris. (Lower Rio Grande.)
* 15. Harporhynchus curvimostris. (Lower Rio Grande.)
- 26. Phainopepla niteng. (Texas to California.)
* 37. Lophophanes atrocristatus. (Lower Rio Grande.)
* 39. Lophophanes wollweberi. (New Mexico; Arizona.)
* 49. Psalthiparus melanotis. (Nevadat)
* 50. Auriparl's flaviceps. (Texas to Arizona.)
* 56. Campylorhynchus brunneicapillus. (Texas to California.)
* 59. Catherpes mexicanus. (Lower Rio Grande 1)
* 60a. Thiyothonus ludovicianus berlandieri. (Lower Rio Grande.)
* 61b. Thityomanes bewicki leucogaster. (Lower Rio Grande to Arizona.)
* 83. Helminthophaga iucif. (Arizona.)
* 89a. Pailula insularis nigrilora. (Lower Rio Grande.)
* 92. Peucedramus olivaceus. (Lower Rio Grande 1 Arizona.)
*104. Denidraca gracle. (Arizona.)
*103. Dendrgeca chrybopalia. (Texas.)
*129. Shtophaga picta. (Lower Rio Grandel Arizona.)
*130. Shtophaga miniata. (Lower Rio Grande f)
*131. Camdelliva rubrifross. (Lower Rio Grande I Arizona.)

132. Fikgaticus rebeir. (Lowor Rio Grande l)
133. Basileuterus culicivorus. (Lower Rio Grande 1)
134. Basileuterus bellii. (Lower Rio Grande 1)
*136. Vireosylvia agibis flavo-viridis. (Lower Rio Grande 1)
*14. Vireo atricipillus. (Texas.)
*147. Vireo vicinior. (Avizona; Southern California.)
135. Euphonia clegantiseima. (Lower Rio Grande 1)
*163. Pyranga hepatica. (New Mexico; Arizona.)

* 164a. Pyranga febiva cooperi. (New Mexico; Arizona.)
*182a. Astragalinu8 psaltria arizonz. (Upper Rio Grande to Arizona.) 182b. Astragalinus psalitria mexicanus. (Lower Rio Grande 1)

215. Spizella atrogularis. (Lower Rio Grande to Lower Califormia.)
216. JUNCO CINEREU8. (Arizona.)
*227. Peuchea arizona. (Lower Rio Grande to Arizona.)
*230a. Peucian ruficeps boucardi. (Arizona.)
217. Embernagra rufivirgata. (Lower Rio Grande.)
*241. Pipllo aberti. (Arizona.)
*242a. Cardinalis vibginianus igneus. (Arizona; Lower California.)
*243. Pyhnulloxia sinuata. (Lower Rio Grande to Lower Califormia.)
250. Passerisa versicolor. (Lower Rio Grande.)
218. Spermophila moreletii. (Lower Rio Grande.)
*258a. Molothitus ater obscurus. (Texas to Lower California.)
219. MoLothre's ENEL's. (Lower Rio Grande.)

263a. Sturnella magna mexicana. (Lower Rio Grande.)

Catalogue No.

*266. Icterus audebonir. (Lower Rio Grande.)
*268. Icterus parisohum. (Texas to Lower California.)
*269. Icterus cucullatus. (Texas to Lower California.)
-275. Quiscalcs macrubus. (Lower Rio Grande.)
*276. Quiscalľs palusthis. (Heal of Guif of Califorvial coast of Louisiana.)
*295. APHELOCOMA sURDIDA ARIzONE. (Atizona.)
*296. Xanthura luxuosa. (Lower Rio Grande.)
*334. Eugenes fllgens. (Atizona.)
*342. Atthis heloise. (Texas.)
*344. Calothorax lucifer. (Arizona.)
345. Amazilia fuscicaudata. (Lower Rio Grande.)
*346. Amazilia yucatanensis. (Lower Rio Grande.)
*348. Lache latirostris. (Arizona.)
356. Nyctidromus albicollis. (Lower Rio Grande.)
-358. Chordelles acutipennis texensis. (Texas to Lower Califoraia.)
*363. Picus scalaris. (Texas to Atizona.)
*365. Picus stricklandi. (Arizona.)
-373. Centuble aurifrons. (Lower Rio Grande.)
*374. Centurve tropygialis. (Arizona.)
383. Ceryle americana cabinisil. (Texas to Arizona.)
390. Crotophaga sulcirostris. (Lower Rio Grande.)
*391. Rhy chopsitta Pachybhyncha. (Rio Grande Valley 1)
*402b. SCOP8 a8Io maccalli. (Texas.)
*403. Scops trichopsis. (New Mexico; Stockton, Cal. 1)
*404. SCOP8 flammeolus. (North to about 40° in higher western monntains.)
410. Glalccidicm phalenoides. (Texas and Arizona.)
*411. Micbathene whitney1. (Arizona; S. E. California.)
419. Rhynchofalco fusco-cerulescens. (Texas; New Mexico.)
434. Antenor unicinctug harribi. (Lonisiana to Lower California.)
440. Butfo abbreviatus. (Arizona; Southern California.)
441. Buteo albicaudatus. (S. Texas.)
444. Crbifinga anthracina. (Arizona.)
445. Asturina nitida plagiata. (Atizona.*)
450. Thrasetus harpyia. (Lower Rio Grande; Louisianal)

45\%. Columba erythrina. (S. Texas.)
*463. Engyptila albifrons. (S. Texns.)
464. Melopelia leưcoptera. (Texns to Lower California.)
*466. Scardafella inca. (Southem Texas.)
*469. Ortalis velula maccalli. (S. Texas.)
*470. Meleagris gallopavo. (New Mexico; Upper Rio Grande in Texas.)
483. Lophortyx gambel. (W. Texas to Arizona.)
464. Callipepla squamata. (W. Texas to Arizona.)
485. Cyrtonyx massena. (W. Texas to Arizona.)
499. Mycteria americana. (Southern Texas.)

ENTIRE SOUTHERN BORDER.
423. Polyborus cheriway.
427. Elanes gladeus.
455. Catharista atrata.
465. Chamepelia passerina.

[^28]i. Supposed valid species described by Audubon and Wilson, which have not since boen wel with, and of which no specimens are known to exist in collections.
Catalogue No.
32. Requlue cuvikri, Aud. Orn. Biog. i. 1832, 288, pl. 55 ("Banks of Schnylkil River, Pa., June, 1812").-Bairi, B. N. Am. 1858, 228 ; Review, i. 1864, 66.B. B. \& R. Hist. N. Am. B. i. 1874, 75, pl. 5, fig. 7.
91. Pemissoglossa carbonata (Aud.) Ridgw.-Sylvia carbonata, Aud. Orn. Biog. i. 1831, 308, pl. 60 (Kentucky).-Dendroica carbonata. Baird, B. N. Am. 1858 , 287; Review, i. 1865, 207.-Perissoglossa carbonata, B. B. \& R. Hist. N. Am. B. i. 1574, 214, pl. 12, fig. 3.
112. Dendreca montana (Wils.) Baird.-iylvia montana, Whlb. Am. Orn. v. 1812, 113, pl. xliv. fig. 2 ("Blue Mts. of Pennsylvania").-Aud. Orn. Biog. v. 294 ("California").-Dendroica montana, Baird, B. N. Am. 1858, 279; Review, i 1865, 190.-Dendreca montana, B. B. \& R. Hist. N. Am. B. i. 1874, 271.
126. Wilsonia minuta (Wils.) Bp.-Muscicapa minuta, Wils. Am. Orn. vi. 1812, 62 , pl. 1. fig. 5.-Aud. Orn. Biog. v. pl. 434, Bg. 3; B. Am. i. pl. 67.- Myiodioctes minutus, Baird, B. N. Am. 1858, 293; Review, 1865, 241.-B. B. \& R. Hist. N. Am. B. i. 1874, 316, pl. 16, fig. 2.

l. List of untenable species and races of North American birds described since 1858.

1. Hedminthophaga ruficapilla var. ocularis, B. B. \& R. Hist. N. Am. B. i. 1874, 191. (Chicago, Ill.) = No. 85.
(1) 2. Helminthophaga ruficapilla var. gutturalis, B. B. \& R. Hist. N. Am. B. i. 1874, 191. (East Humboldt Mts., Nevada; Ft. Tejon, Cal.) =No. 859
2. Helminthophaga oelata var, obscura, B. B. \& R. Hist. N. Am. B. i.1874, 192. (Georgia and Florida.) $=$ No. 86.
3. Hirundo bicolor var. vespertina, Cooper, Am. Nat. x. Feb. 1876, 91. (Califormia.) $=\mathrm{N} .155$.
4. Collyrio chemungensis, Gregg, Proc. Elmira Acad. i. 1870, 9. (New York.) = No. 148, juv.
5. Hesperiphona respertina var. montana, Ridow. in B. B. \& R. Hist. N. Am. B. i. 1874, 449, pl. 22, fig. 4. (Southern Rocky Mts. and mountain regions of Mexico.) = No. $16 \overline{5}$.
(!) 7. Loxia atrata, von Homeyer, Jour. flur Orn. 1879, 179. (North America.) $=$ No. 173 भ' *
6. Leucosticte campestris, Baird, Orn. Cal. i. 1870, 163. (Colorado.) =No. 175a (individual variation).
(१) 9. Linaria brunnescens, von Homeyen, Jour. für Orn. 1879, 184. ("Lapland, Grōnland, Schweden.") $\dagger=$ No. 179a?
[^29]Catalogue No.
10. Egiothus fuscescens, Coues, Proc. Philad. Acad. 1861, 222. (Labrador.) =No. 179 (midsummer plumage).
11. Egiothus rostratus, Coues, 1. c. (Greenland.) $=$ No. $179 a$ (midsummer plumage).
12. Centronyx ochroocphalus, Aiken, Am. Nat. vii. 1873, 237. (El Paso Co., Colorado.) $=$ No. 191 (autumual plumage).
13. Passerculus caboti, B. B \& R. Hist. N. Am. B. iii. 1874, pl. xlvi. fig. 9. (Nahant, Massachusetts.) = No. 233. [Not described!]
14. Spizella cura, Coces, The Ibis, 1865, 118, 164. (Ft. Whipple, Ariz.) $=$ No. 215 , young.
15. Passerella obscura, Verrily, Proc. Boston Soc. ix. 1862, 153. (Anticosti L.) $=$ No. 235, young.
16. Hedymeles melanocephalus var. capitalis, B. B. \& R. Hist. N. Am. B. ii. 1874, 74. (Pacific coast of Mexico and United States.) =No. 245.
17. Guiraca carulea var. eurhyncha, Coues, Am. Nat. viii. 1874, 563. (Mexico.) =No. 246.
18. Dolichonyx oryzivorus var. albinucha, Ridaw. Bull. Essex Inst. v. Nov. 1873, 192. (Miscouri plains to Salt Lake Valley.) =No. 257.
19. Empidonax pygmaus, Minot, Land and Game Birds New England, 1877, -. (Near Boston, Mass.) [Avis fictita!]
20. Dryobates hyloncopus, Cab. \& Helne, Mus. Hein. iv. June 25, 1863, 69. (San Jos6, Cal.) = No. 360b.
21. Dryobates homorus, Cab. \& Hein. Mus. Hein. iv. June 25, 1863, 65. (California.) $=$ No. 361a.
22. Picus cuvieri, Malif. Mon. Pic. i. 1861, 85, pl. 22, fig. 3. (North America.) $=$ No. 360, \& ad.
23. Picus turati, Mali. Mon. Pic. i. 1861, 125, pl. 29, figs. 5, 6, 7. (California and Rocky Mountains.) $=$ No. 361, o ad.
24. Chamapelia pusserina var. pallescens, Barrd, Proc. Philad. Acad. 1859, 305. (Cape St. Lucas.) = No. 465.
25. Pediocretes kennicotti, Suckl. Proc. Philad. Acad. 1861, 361. =No. 478.
26. Bonasa jobsii, Jaycox, Am. Nat.
27. Ibis thalassinus, Ridgw. Am. Nat. viii. Feb. 1874, 110. (Pacific coast of America, from California to Chili.) $=$ No. 504, juv.
28. Andea cyanirostris, Corx, Birds of the Bahama Islands, 1800, -. (Bahamas.) $=$ No. 492 , breeding plumage.
29. Cygnus passmorei, Hinck8, Pr. Linn. viii. 1864, 1. (Toronto, Canada.) $=$ No. 589, juv.
30. Bernicla barnstoni, Ross, Canad. Nat. vii. April, 1862, - $=594$, var. \ddagger
31. Bernicla leucolama, Muray, Edinb. Phil. Jour. April, 1859, 226, pl. 4, fig. 1. =594, var.
32. Pelecanus occipitalis, Rigdw. Am. Sportsman, iv. 1874, 297. (Nevada.) =No. 640 , adult, breeding plumage, after loss of occipital crest, the latter replaced by dusky-grayish patch.
33. Thalasseus caspius var. imperator, Cours, Proc. Philad. Acad. 1862, 538, in text. (North America.) =No. 680.
34. Sterna portlandioa, Ridgw. Am. Nat. viii. 1874, 433. (Portland, Maine.) =No. 667, juv., second year
35. Sterna fuliginosa var.' crissalis, Barrd, Pr. Boston Soc. xiv. 1872, 285. (Socorro 1., N. W. Mexico.) =No. 681.

[^30]k. List of exotic species which have been attributed to North America by various authors, but apparently without sufficient evidence of their occurrence.*

1. Anthus cervinus, Pall.-Zander, Jour. fïr Orn. Extrahefti. 1853, 64. (Aleutian Islands.)
2. Geothlypis aquinoctialis (Gmel.) Caban.-Sylvia delafieldii, AUd. Orn. Biog. V .183 , 307 ("Oregon").-Trichas delafieldii, Aud. B. A. Am. ii. 1841, 81, pl. 103.Geothlypis velalus, Bsird, B. N. Am. 1859, 243; Cat. 1859, No. 171.
3. Lanius lahtora, Syker.-Lanius elegans, Swains. Faun. Bor. Am. ii. 1831, 122 (fur countries).-NuTr. Man. ii. 1832, 566. [Not Collurio elegans, Baird.]
4. Progne lencogastra, Baird.-P. chalybea, Cass. Illustr. 1856, 246 (California, fide J. G. Bell).
5. Astragalinus yarrelli (And.) Caban.-Carduclis yarrelli, Aud. Synop. 1839, 117 ("California"); B. Am. iii. 1841, 136, pl. 184.-Chrysomitris yarrelli, BAIRD, B. Am. 18:8, 421 ; Cat. 1859, No. 312.
6. Astragalinus barbatue (Mol.) -.-Carduelis stanleyi, AOd. Synop. 1839, 118 ("California"); B. Am. ǐi. 1841, 137, pl. 185.-Chrysomitris stanleyi, BA1RD, B. N. Am. 1858, 420 ; Cat. 1859, No. 311.
7. Hypolia arcton (Pall.) Ridgw.-Leucosticte arctoa, Caban. Mus. Hein. i. 1851, 154 ("Russich-America").-Leucosticte arctous, BA1RD, B. N. Am. 1858, 430; Cat. 1859, No. 324.
8. Carpodacus hamorrhous (Licht.) Scl.-Baird, B. N. Am. 1858, 417, foot-note (North America ${ }^{9}$) ; Cat. 1859, No. 309.
9. Loxia pityopsittacue, Bechst.-Cf. Nuttall, Man. Otn. Land Birds, ed. 1892, 537 ("high northern regions of America", fide Temmince).
10. "Zonotrichia" pileata (Bodd.) --Fringilla mortonii, AUd. Orn. Biog. v. 312; B. Am. iii. 1841, 152, pl. 190 ("North California").
11. Cywchramus schaniclus (Linn.) Boie.-Emberiza schoniclus, Nutt. Man. Orn. Land Birds, ed. 1832, ii. 506 ("vicinity of Harrisburg in Penneylvania", fide Audubon).
12. Melanocorypha calandra (Linn.) Boie.-Alauda calandra, Linn., Sw. \& Rick. F. B. A. ii. 1831, 244 ("fur countries"; spec. presented by the Hudson's Bay Co. said to be in the British Museunı).-Nutt. Man. ii. 1832, 580.
13. Trupialis militaris (Linn.) Bp.-BaIrd, B. N. Am. 1858, $5: 33$ ("Califoruia"); Cat. 1859, No. 405.
14. Icterus melanocephalus (Wagl.) Gray.-Cass. Illustr. 1856, 137, pl. 21 (Texas and New Mexico).-Baird, B. N. Am. 1858, 543 (not given as North American!); Cat. 1859, No. 410.
15. Calocitta colliei (Vig.) Finsch.-"Pica bullockii, Wagl.", Aud. B. Am. iv. 1842, 105, pl. 229 ("woody portions of North California").-Garrulue bullockii, NutT. Man. i. 1832, 230 ("Columbia R.").
16. Tyrannus melancholicus, Vivill.-Baird, B. N. Am. 1858, 176 (not given as North American) ; Cat. 1859, No. 129.
17. Lampornis violicauda (Bodd.) Elliot.-"Trochilus mango, Linn.", Aud. Orn. Biog. ii. 480 ; B. Am. iv. 1842, 186, pl. 251 ("Florida Keys").-Lampornis mango, Baird, B. N. Am. 1858, 130 ; Cat. 1859, No. 100.
18. Campephilus imprrialis (Gould) Gray.-Picus imperialis, Aud. Orn. Biog. v. 313; B. Am. iv. 1842. 212 ("Rocky Mountains and North Californin).-Cass. Illustr. 1856, 285, pl. 49.-Baird, B. N. Am. 1858, 82; Cat. 1859, No. 73.

[^31]19. Hylotomes scapllaris (Vig.) Ridgw.-"Picus lineatus, Linv.", aud. Otn. Biog. v. 315; B. Am. iv. 1842, 233 ("Columbia River").
20. Strix stridula, Linn.-S. aluco, Nutt. Man. 1. 1832, 135 (Newfoundland and Hudson's Bay).
21. Carine noctia (Scop.) Kaup.-"Strix passerina, Linn.", Aud. Orn. Biog. ${ }^{\text {V }}$ 269.-"Surnia passerina, Linn.", AUD. B. Am. 1. 1840, 116 ("Pictou, Nova Scotia").
22. Speotyto cunicularia (Mol.) --Athene cunicularia, Cass, in Baird's B. N. Am. 1858, 60 ("North America, west of Rocky Mountains").
23. Thalarsonetle pelagicus (Pall.) Kaup.-Aquila pelagica, Pall. Zō̈gr RossoAs. i. 1811, 343 (Russian America, fide Steller).-Haliaëtus pelagicue, Cass. Illustr. 1856, 31, pl. 6; in Baird's B. N. Am. 1858; Baird, Cat. 1859, No. 40.
24. Sarcorhamphus gryphus (Linn.) Dum.-Cathartes gryphus, Bonap. Am. Orn. iv. 1833, 318, pl. 22.-Nctt. Man. i. 1832, 35.
25. Gyparchus papa (Linn.) Glog.-Cathartes papa, Nutt. Man. i. 1832, 40 ("from the 30 th degree of north latitude to the $32 d$ in the southern hemisphere").
26. Cathartes berrovianus, Cabs. in Baird's B. N. Am. 1858, 6 ("Lower California"); Bardd, Cat. 1859, No. 4. [Cf. Ridgway, Bull. Nutt. Orn. Club, v. April, 18*0, 83.]
27. Lophortyx elegans (Leas.) Nutt.-Orfyx elegane, Nutt. Man. ed. 1840, i. 792 ("L'pper California", fide Lesson).
28. Betorides brensescens (Gundl.) Baird.-Baird, B. N. Am. 1858, 677 (in text); Cat. N. Am. B. 1859, No. 494.
29. Hamatopus ater, Vieill.-Humatopus townsendii, AUD. Orn. Biog. v. 1839, 247, pl. 427; B. Am. v. 1842, 245, pl. 3e6.-Hamatopus ater, Baird, B. N. Am. 1858, 700; Cat. 1859, No. 514.
30. "Tringa" platyrhyncha, Temm.-Nutt. Man. i1. 1832, 114 (Aretic America, fide Temminck and Bonaparte).
31. Actodromas mineta (Linu.) Kaup.-Tringa minuta, Sw. \& Rich. F. B. A. ii. 1831, 365 (Nelson and Hayes Rivers; "seen abundantly in the autumn").Nutt. Man. ii. 1634, 119.
32. Actonromas temmincki (Leisl.) Ridgw.-Tringa temminchi, Nutt. Man. ii. 1832, 119 (Arctic America).
33. Totavles calidris (Linn.) Bechst.-Sw. \& Rich. F. B. A. ii. 1831, 391 ("Hudson's Bay"; spec. in British Musenm).-Nutt. Man. ii. 1834, 155.
34. Heliornis fulica (Bodd.) --H. surinamensis, NutT. Man. ii. 1832, 510 ("accidental visitor in the Middle States of the Union").
35. Anser segetum (Gmel.) Lonap.-Nutt. Man. ii. 18:22, 348 (Canada and Hudson'a Bay).
36. Cairina moschata (Linn.) Caban.-Anas moschata, Nutt. Man. ii. 1832, 403 Lower Mississippi and Gulf coast of U. S.).
37. Edemia sigra (Linn.) Hen.-Fuligula nigra, Nutt. Man. ii. 1832, 423 ("coast of the United States").
38. Mergellu's albellus (Linn.) Selby.-Mergus albellus, Wils. Am. Orn. iii. pl. lxxi. fig. 4 (New England and New York; nimerous).-Nutr. Man. ii. 1832, 467.-Aud. Otn. Biog. iv. 350; B. Anı. vi. 1843, 4u才, pl. 414 ("Lake Barataria, not far from New Orleans").
39. Phalacrocorax graculus (Linn.) Leach.-Nett. Man. ii. 1822, 484 ("South of Greenland"; United States in winter).
40. Phalacrocorax pygmaus, Pall.-Nutt. Man. ii. 1832, 487 (Northern North America, fide Bonaparte).
41. Phalacrocorax africanus (Gmel.) Dumont.-Nutt. Man. ii. 1832, 488 ("United States", fide Audubon).
42. Larce fusccs, Linn.-Nutt. Man. ii. 1832, 302 (Greenland, Newfoundland, and Hudvon's Bay).
43. Larue capistratu's, Temm.-Nutt. Man. ii. 1832, 290 (Delaware R. and Chesbpeake Bay).
44. Larus minutce, Pall.-8w. \& Rich. F. B. A. ii. 1831, 426 (given on Sabine's authority).-NUtT. Man. ii. 18.2, 289.-Chroicocephalus minutus, Lawr. is Baird's B. N. Am. 18i8, 853.-Baird, Cat. 1859, No. 671.
45. Diomedea extcans, Linn.-Nutt. Man. ii. 1832, 340 ("accidentally to the coast of the central part of the Union").-Lawr. in Baird's B. N. Am. 1858, 8e1.Baird, Cat. 1859, No. 630.
46. Podiceps cristatus (Linn.) Lath.-Sw. \& Rich. F. B. A. ii. 1831, 410 (thronghout fur countries).-Nutt. Man. ii. 1832, 250.-Lawr. in Baird's B. N. Am $1858,893 .-B a i r d$, Cat. 1859 , No. 703.
47. Tachybaptes minor (Linn.) Coues.-Podiceps minot, Nctt. Man. ii. 1832, (Hudson's Bay).
2. Partial list of foreign birds which have been introduced to the Cnited Statex, and thoor which have been captured after escape from confinement.
species introdoced with a view to their natcralization.*

1. Passer domesticus (Linn.) Leach. Enropean House Sparrow. The attempted naturalization of this bird has proved decidedly successful. The case is 80 notorious that further comment is unnecesary.
2. Passer mostanus (Linn.) Stephens. European Tree Sparrow. Has become naturalized in the vicinity of Saint Louis, Mo., but the history of its introduction is unknown. (See Merrill, Bull, Nutt. Orn. Club.)
3. Alauda arvensis, Linn. Skylark. Partially naturalized in the vicinity of Cincinnati, on Long Island, and perhaps other localities.
4. Coturnix communis (Linn.) Bonn. European Quail. Introdnced to various local ities in the Eastern United States, and partially naturalized.

grecies which have been captcred after escape from confinement. \dagger

1. Amadina rebro-nigra, - Brunswick, Maine, March, 1879; Leale A. Lee (Allen, Bull. Nutt. Orn. Club, April, 1880, 119.) Hab. India.
2. Crithagra butyracea, -- South Scituate, Maba, in midwinter. (Brewer, Proc. Bort. Soc. xx. 271.) Hab. South Africa.
3. Ligurinus chloris (Linn.) Koch. Lowville, Lewis Co., N. Y., March 19, 1878 ; R. B. Hough. (Cf. Bull. Nutt. Orn. Club, Apr. 18e0, 119.) Hab. Europe.
4. Carduelis elegans, Steph. Eastern Mabsachusette, many captnres. (Ailex, Bull. Nntt. Orn. Club, Apr. 1880, 120.) Hab. Europe.
5. Serinus meridionalis, Brehin. Western Massachusetts, in winter. (Allex, L. c.) Hab. Europe.
6. Convus frugilegus, Linn. Washington, D. C., Angust, 1879.

An example of this species was seen by me in August, 1879, in the grounds of the Agricut tural Department in Wanhington. It was perched in a maple tree near one of the ontbuild. inge, was very tame, and tlew laboriously, at if very recently eacaped from confinement. I $a m$, as yet, ignorant of the history of this apecimen, nor have I since seen it.
7. Conurus xanthogenive, Bp. Hab. St. Thomas, West Indies.

An example of this apecies, shot in a grove near Washington, by Dr. D. W. Prentise, is in the National Museum collection. Of courae it wae an escaped cage-bird.
8. Chenalopex fegyptiaca (Linn.) Steph. Carnarsie, Long Island, Jan. 3, 1877. (Aкhvrst, Bull. Nutt. Orn. Club, ii. Apr. 1877, 52.) Hab. Southern Europe and Africa.

[^32]Table of families of North American birds, showing number of genera and specien of each according to the foregoing catalogue.*

[^33]Table of families of North American birds-Continned.

	Number of the cats logue.	Number of genera.	Number of sps ciea.
58. Phonicopterids	585	1	1
59. Anatidre....	586-638	30	$53+6=5$
60. Tachypetidx	$6: 39$	1	
61. Pelecanidæ	640-641	1	2
62. Phalacrocoracid	642-648	1	$7+3=10$
63. Plotids	649	1	
64. Sularidx	650-653	1	4
65. Phaeithontidae	654-655	1	2
66. Rhynchopsidm	$(6) 6$	1	1
67. Laridzo.....	(6) 78 -605	9	$39+2=41$
66. Stercorariids	696-699	2	
69. Procellariidx	700-728	15	$29+2=31$
70. Podicipitidæ	729-735	5	$7+1=8$
71. Colymbidse.	736-740	1	
72. Alcidm	741-764	14	$24+3=20$

sUMMARY.

Number of species... 764

CONCORDANCE.

sac of alogen	$\begin{gathered} \text { No. of } \\ \text { neo. cot- } \\ \text { alogne } \end{gathered}$	$\begin{gathered} \mathrm{Na} \text { of } \\ \text { old car } \\ \text { logan } \end{gathered}$	$\begin{gathered} \text { Na. of } \\ \text { neal } \\ \text { Alosual } \end{gathered}$	$\begin{aligned} & \text { Na of } \\ & \text { old cat } \\ & \text { oltoreme } \end{aligned}$	$\begin{gathered} \text { No. or } \\ \text { naw } \\ \text { anceroue } \end{gathered}$	$\begin{aligned} & \text { Na. of } \\ & \text { old cat } \\ & \text { olverue } \end{aligned}$		Na. of oid cre alogee	$\begin{gathered} \text { Naw of } \\ \text { Nato } \\ \text { alocacu } \end{gathered}$	Na of alcrue.	Rad
1	454	35	427	69	387	102	336	135	315	167	74
2	453	36	428	70	388	103	340	136	316	$167 a$	748
3	455	37	429	71	386	104	339	137	318	168	88
4	-	38	430	72	359	105	338	138	321	169	75
5	414	39	449	73		106	337	139	320	170	122
6	414	40		74	360	107	349	140	3259	171	
7	417	41	451	75	$360 b$	108	350	141	325	172	120
8	415	42	452	76	361	109	351	. 142	326	173	121
9	419	43	451	77	361 a	110	352	143	324	174	118
10	413	44	425	78	364	111	353	144	3222.	175	119
11	412	45	423	79	363	112	354	$144 a$	323	176	123
12	$412 a^{\prime}$	46	434	80	362	113	355	145	327	177	1230
13	420	47	394	81	366	114	357	146	328	178	7
14	433	48	405	82	367	115	$357 a$	147	330	179	76
15	431	49	402	83	368	116	358	148	1	$1 \geqslant 0$	79
16	431	50	4025	84	36 a	116a	356	149	$5 b$	181	81
17	432	51	395	85	369	117	3882	$149 a$	$5 a$	182	78
18	442	52	396	86	$369 a$	118	383	150	5	183	85
19	442	53	399	87	3696	119	381	151	2	$183 a$	84
20	$436 b^{\prime}$	54	397	88	370	120	333	152	4	184	86
21	442	55	400	89	370	121	3392	153	$4 a$	185	87
22	438	56	401	90	371	122	302	154	3	186	115
23	436	57	401	91	372	123	301	155	7	187	116
24	4366	58	408	92	373	124	304	156	9	188	117
25	439	59	408	93	374	125	303	157	21	189	107
26	$439 a$	60	409	94	375	126	306	158	22	190	109
27	443	61	406	95	377	127	307	159	23	191	108
28	442	62	407	96	376	128	305	1100	24	192	115
29	437	63	392	97	378	129	-	161	30	193	94
30	447	64	391	98	37×6	130	312	162	33	194	95
31	447	(55)	384	$98 a$	378 a	131	313	163	32	195	96
32	448	66	3 E 9	99	379	132	311	164	19	196	102
33	445	67	389	100	-	133	314	165	71	197	100
34	426	68	385	101	335	134	317	166	73	198	111

－Concordance－Continued．

		Nan of odid oit ald	$\begin{gathered} \text { No. of } \\ \text { mew } \\ \text { Alogat. } \end{gathered}$	$\begin{gathered} \text { No, of } \\ \text { sold } \\ \text { Alactic. } \end{gathered}$	$\begin{aligned} & \text { No. of } \\ & \text { now rat- } \end{aligned}$ alvigue.	$\begin{gathered} \text { No of } \\ \text { cold cat } \\ \text { and cato } \end{gathered}$	$\begin{gathered} \text { Kon of } \\ m y y \end{gathered}$	Non of old cat－ aloge	No of new cat aturae aluerue．		$\begin{aligned} & \text { No. of } \\ & \text { Dew cat. } \\ & \text { alosue. } \end{aligned}$
190	112	259	15	318	172	378	254	440	295	500	50.3
200	93	2 L 9 a	15	31×4	172a	879	255	441	294	500a	504
201	9＊	260	1：3a	319	173	3 EO	244	442	296	501	505
202	101	261	13	：20	179	381	245	443	2917	502	
2003	93	261a	13	321	178	38.2	246	444	2×8	503	515
204	97	232	56	328	175	3 S 3	247	445	456	504	516
205	110	245	591	323	17.4	3×4	20\％1	446	45%	505	523
206	90	$2{ }^{2} 4$	58	324	－	315	250	447	4 W	506	522
207	91	265	（6）	325	186	386	249	448	459	507	517
208	113	2ti6	60a	326	1×7	3×7	$24 \times$	449	$4{ }^{(1) 2}$	508	520
200	1113	2317	61	358	$1 \times$	388	252	450	414	509	521
210	114	260	67	328	1－9）	309	243	451	460	510	513
211	124	269	（i8	329	1×9	390	244	452	446	511	511
212	124	270	63	330	190	391	237	453	465	51\％	517
213	125	271	$63 a$	331	191	$3{ }^{3}$	$238 b$	454	467	513	50 C
214	127	272	63	332	193a	393	23%	455	46 w	514	
215	127	273	65	3303	193	394	crua	456	469	515	509
216	132	274	35	334	194	895	241	457	$470 a$	516	510
217	124	27.5	55	335	1：33	396	240 b	458	470	517	566
218	129）	276	Tha	346	196	397	240	459	471	51＊	518
219	130	27%	51	337	197	398	239	4100	472	519	565
220	161	28.8	$51 a$	305	198	399	苭7	461	472a	520	564
221	164	289	52	339	199	400	258	4192	479	521	563
些2	163	2－0）	53	340	200	401	261	463	478a	522	525
2253	162	$2-1$	54	341	201	412	2610	464	477	523	524 a
224	160	208	27	342	202	403	268	445	473	524	527
225	154	203	28	343	231 c	404	260		47\％	$5 \% 5$	527 a
226	153	2×4	29	344	204	405	－	466	4736	526	529
227	153	2×5	36	345	2016	406	263	417	474	52%	535
2088	156	2381	37	346	2070	407	264	41%	475	520	530
289	157	2208	36	347	808	408	265	469	476	54，	540
250	158	2×3	30	348	20\％	409	266	470	475	5250	siva
23.1	152	2×9	$41 a$	349	209	410		471	4＊0	531	$5: 4$
\％ 210	152	2×90	$41 / 8$	320	222	411	268	472	4×06	$5: 32$	5038
23	150	290	41	$3{ }^{2} 1$	221	412	267	473	4×1	503	$5: 36$
253	151	291	416	35	218	413	269	474	4×2	534	542
24	26	－xt	43	35.3	220	414	270	47.5	483	55	541
$0{ }^{2} 5$	25	293	42	304	217	415	271	476	4×4	5.46	$512 \times$
236	118	294	40	355	$2{ }^{2} 4$	416	272	477	485	535	$5 \mathrm{Si2}$
27	149	295	41	356	225	417	278	47＊	5×2	5：3	547
20	149a	－	45	337	210	418	254	479	5－3	5.39	548
－20		28	49	35%	214	419	275	4×0	5×4	540	549
240	13 J	2 w	47	3 B 9	211	420	277	481	5×1	541	550
241	136	299	48	360	212	421	278	4×2	419	542	553
24.2		300	50	361	213	422	2781	463	491	543	558
943	137	311	159	362	215	423	2×0	4×4	442	544	554
24	1 \％	302	3001	363	331	424	$2 \sim 0$	485	490	545	555
245	1：91）	303	16	364	2416	4\％${ }^{5}$	2×1	4×16	4－9	546	5515
246	14.5	304	16%	36%	231c	426	2×2	$48 t i a$	4×9	5.47	25.3
247	142	35	16 m	Stic	2：11d	4：27	2crul	4×7	407	$5-4 \times$	545
245	143	306	16\％a	367	cisha	428	$2 \mathrm{~F}+\mathrm{b}$		4×6	［－49	5.50
249	144	318	169	3id	244	4．2）	2×3	4×9	448	550	559
250	141	30 s	170	369	2238	430）	924	$4!6$	493	501	560
21	141a	209	－	370	${ }^{2} 26$	431	2×5	491	49%	55.2	569
2 F	140	301	184	371	228	432	2×6	492	497	2503	$5 \overline{1}$
253	11	311		312	230	433	2×7	493	494	5.54	572
2531	11	312	－	378	236	$4: 3$	2×0	494	－	55，	544
204	12	31.3	1×1	37.4	235	4.6	290	495	495	556	586
哭5	10	314	1×2	375	，2：35a	4：3；	290 C	496	496	557	575
46	16	315	$1 \times 2 a$	376	2355	$4: 7$	293	497	500	55.6	577
207	16	316	1×3	876a	2\％\％	4388	292	498	50.	$5 \cdot 5$	506
258	17	317	1N0	377	056	439	291	499	501	560	579

Proc．Nat．Mus．80－16

Concordance-Continued.

$\begin{aligned} & \text { Ka, of } \\ & \text { old or } \\ & \text { old actu } \end{aligned}$	$\begin{gathered} \text { No. ot } \\ \text { wew cat. } \\ \text { shogue. } \end{gathered}$	$\begin{aligned} & \text { No. of } \\ & \text { old cat. } \\ & \text { aldgue } \end{aligned}$	$\begin{gathered} \text { No. of } \\ \text { new } \\ \text { alocul } \end{gathered}$	$\begin{aligned} & \text { Na of } \\ & \text { ndd ent } \\ & \text { alcoeve } \end{aligned}$	$\begin{gathered} \text { No. of } \\ \text { new ent } \\ \text { andone } \end{gathered}$	$\begin{gathered} \text { Kuc of } \\ \text { old cat. } \\ \text { alogue. } \end{gathered}$		$\begin{gathered} \text { Moo of } \\ \text { old or } \\ \text { ald col } \\ \text { logut. } \end{gathered}$	$\begin{gathered} \text { Ka. or } \\ \text { neme cat- } \\ \text { alofue. } \end{gathered}$	$\begin{gathered} \text { Ma or } \\ \text { ald ont } \\ \text { anome } \end{gathered}$	$\begin{aligned} & \text { sod } \\ & \text { now } \\ & \text { nlomer. } \end{aligned}$
561	578	589	615	620	642	651	706	681	679	710	741
561 a	588	590	616	621	6.48	652	696	682	680	711	742
562	589	591	618	622	6436	653	697	683	681	712	745
563	591	592	617	623	64.3	654	698	684	$6{ }^{2} 2$	713	74
$563 a$	$591 a^{\text {a }}$	593	620	624	$643 a$	655	699	685	683	714	743 a
564	590	594	619	625	644	656	6150	686	685	715	743
565	593 a	595	621	626	645	657	66.2	687	684	716	745
566	$593 a$	596	622	627	646	658	661	688	6×1	717	746
567	594	597	623	628	649	659	662	689	686	718	746
$567 a$	594 c	598	625	629	604	660	663	690	687	719	743
568	$594 b$	599	626	630	-	661	$664 a$	691	185	720	748
569	$594 a$	600	624	631	701	662	664	692	688	721	749
570	595	601	633	63.2	702	663	668	693	687	7×2	750
571	596	602	633	633	703	664	669	694	690	723	750
572	597	603	633	634	704	664a	670	695	693	724	751
573	598	604	630	635	705	665	670	696	695	725	747
574	599	605	632	636	$705 a$	666	672	697	656	726	760
575	600	606	627 a	637	706	667	673	698	736	727	761
576	601	607	628	638	717	$66^{6} 8$	674	699	738	748	76
577	602	608	629	$6: 59$	719	669	634	700	739	729	763
578	605	609	634	640	726	670	675	701	740	730	763
579	612	610	635	641	727	671	-	702	731	731	764
580	611	611	636	642	723	67%	658	703	-	732	750
581	609	612	637	643	724	673	674	703a	731	733	75
582	610	613	638	644	322	684	659	704	729	734	759
583	608	614	-	645	721	675	659	705	730	735	756
584	604	615	640	646	728	676	657	706	7:32	736	753
585	607	616	641	647	709	677	657	707	733a	737	754
586	606	617	650	648	714	678	676	708	733	738	732
587	613	618	652	649	711	679	678	$708 a$	734		
588	614	619	639	650	712	680	67%	709	735		

INDEXTO THE GENERA.

[The numbers refer to the first species of each genus in the catalogue.]

Page.		G.		Page
Ciceronia	750			
Cinclus	19	Galeorcoptes		12
Circus	430	Gallinago		526
Cistothorus	68	Gallinula		579
Clangula	619	Garzetta		490
Coccyzus	386	Geococcy x		325
Colaptes	378	Geothlypis		120
Coluinba	456	Geotrygon.		467
Colymbus	736	Glaucidinm.		409
Contopus	318	Grus		5×2
Conurus.	392	Gniraca		246
Corvus	250	Gymnocitta		285
Cotile	157		H.	
Coturniculus	198	Hzematopus		506
Creagrus	678	Hadrostomus		333
Crex	577	Haliweitus		451
Crotophaga	3×9	Halocyptena		720
Cupidonia.	477	Harelda		623
Cyanecula	20	Harporhynchus		13
Cyanocitta	289	Helminthophaga		78
Cymochorea	723	Helmitherus		77
Cypseloides.	350	Helonsea		76
Cypselus	349	Herodias		429
Cyrtonyx	485	Hesperiphona		165
		Hesperocichla		9
Dafila	605	Heteroscelus		553
Daption.	719	Hierofalco.		412
Dendrocygna	599	Himantopus		367
Dendroca.	93	Hirundo.		154
Dichromanassa	491	Histrionicus		622
Diomedea	700	Hydranasea		192
Dolichonyx	257	Hydrochelidon		693
Dytes	732	Hylocichla		1
		Hylotomus		381
Ectopistes.	459		I.	
Engyptila	463	Inche		348
Elanoíles	426	Icteria		123
Elanus	427	Icterus		265
Eimbernagra	236	Ictinia		428
Empidonax	324	Ionornis		578
Fremophila	300			
Ereunetes	541		J.	
Ergaticus	133	Junco .		216
Erismatura	634		L.	
Fiudocimus	501	Lagopus....		434
Eingenes.	334	Lampronetta		626
Euphonia	160	Lanius		148
		Lanivireo		140
Falco	414	İarus ...		660
Florida.	493	Leucosticte		174
Fratercula	743	Limosa.		543
Fiugetta.	728	Lobipes		564
Fulica.	580	Lomvia		764
Fulix		Lophodytes.		638
F'ulmaris.	705	Lophophanes		36

Galeorcoptes 12Gallinula579
Garzetta33
Geothlypis 120Glaucidinn409
Grus 2
Gymnocitta 285
Hzematopus333
Halizeitusfi23
Harporhynchus 13Helmitherne77
Helonsea 76165
Hesperocichla 9Hi412
Himantopu154
Histrionicus 6Hydrochelidon693
HyInche-Icterus265.578
Junco 16
Lagopus626
Lanius 148660
Leucosticte543
Lobipes764Lophophane36

	Page.		Page
Psilorhinus	248	Strix.	397
Ptycorhamphus	751	Sturnella	263
Pufinus	708	Sturnus	279
Pyranga	161	Sula	650
Pyrthula	167	Surnia	40%
Pyrrhuloxia	243	Symphemia	502
Pyrocephalus	330	Synthliborhamphus	753
Querquedula	609	Tachybaptes	734
Quiscalus	275	Tachycineta.	155
		Tachypetes.	639
Rallus	569	Tantalus	500
Recurvirostra	566	Telmatodytes.	67
Regulus	30	Thramaeitus..	450
Rholostethia	676	Thryomanes.	61
Rhyacophilus.	550	Thryothorus.	60
Rhynchofalco.	419	Tinnunculus.	420
Reynchophanes	190	Totanus	547
Rhynchops	656	Tringa	529
Rhynchopsitta	391	Tringoides	558
Rissa........	658	Trochilus...	33
Rostrhamus	429	Troglodytes	63 3
		Trogon... Tryugites	354
Salpinctes	58	Turdus.	6
Saxicola.	21	Tyrannus	303
Sayornis	315		
Scardafella	466		
Scolecophagns	273	Ulula	399
Scolopax	524	İria	760
Scops	402	Urubitinga	44
Selasphorus	339	Ctamania	742
Setophaga	128		
Sialia	22		
Simorhynchus	748	Vanellus	512
Sitta	51	Vireo	148
Siurue	115	Vireosylvia	136
Somateria	627		
Spatula	608		
Speotyto	408	Wilmonia	124
Spermophila.	252		
Sphyrapicus.	369		
Spiza	254	Xanthocephalus	200
Spizella	210	Xanthura	296
Squatarola	513	Xema	677
Starucnas	468	Xenopicus.	366
Steganopus.	565		
Stelgidopteryx	158		
Stellula	343	Zamelodia.	24
Stercorarius	697	Zenada	462
Sterna	679	Zenwdura	460
Strepsilas .	509	Zonotrichia	206

OV THE IDENTITY OF THE GRNYM LELRENNIA, LOCKINGTON, WETH LYCODOPMES, COLLETT.

By THEODORE GILL.

In the Proceedings of the Zoological Society of London for 1879 (at pp. 380-381) Mr. Robert Collett has published a communication "On a fish of the genus Lycodes from the Pacific." The article was read at the meeting held April 1, 1879, and published in the part (II) issued August 1, 1879.

In this article Mr . Collett describes at length the species referred to, under the name Lycodes pacificus, and gives a figure of the head and anterior part of the body. The diagnosis is as follows:
"Vomerine and palatine teeth none. Coloration uniform yellowish grey. The body is scaly, the head and pectorals naked. The head is contained four and six-tenths, the height of the body nine times, in the total length. Lateral line very indistinct.
"M. B. 6 ; D. (circa) 92 ; A. 71 ; C. (circa) I, 1 ; P. 18.
"Hab.—Japan (Mus. Berol.)."
At the end of the description Mr. Collett expresses the following opinion:
"The absence of vomerine and palatine teeth, a character quite peculiar to the species, will perhaps necessitate its removal to a separate genus, for which I propose the name Lycodopsis."

In the Proceedings of the United States National Museum for 1879 (at pp. 326-332) Mr. W. N. Lockington has given "Descriptions of new genera and species of fishes from the coast of California." The signature in which it appears was issued March 25, 1880.

In this article Mr. Lockington describes what is considered to be a new generic tspe, under the name Leurynnis paucidens. The diagnosis of the genus is as follows:
"Generic characters.-Family Zoarcida, allied to Lycodes. Ventral fins present, short; no teeth on vomer and palatines; dorsal and anal fins continued without interruption around the tail; scales small, but evident. The napne is from $\lambda \varepsilon u \rho \dot{c}_{5}-8 m o o t h$; ©̈ves-vomer, in allusion to the character which chiefly distinguishes the genus from Lycodes."

Selecting characters to compare with those mentioned in Mr. Collett's diagnosis, we have the following:
"No vomerine or palatine teeth.-Color olivaceous, the scales lighter than the skin; the color formed by numerous dark points, which are continned also upon the head. Upper surface of head darker, abdominal surface lighter than other portions. Vertical fins margined with black.-Scales roundish, smooth, separate, imbedded in the skin, uniform over the whole of the body, except upon au area on the upper surface in front of the dorsal, where they are smaller, and region near base of pectorals scaleless. Head scaleless-the ridges somewhat prominent.-

Length of head 4$\}-4 \frac{2}{3}$ times in the total length.-Greatest depth of bods from a little more than ten to a little less than eleven times.-No lateral line."
M. B. 6 ; D. $90 ;$ A. 70 ; P. 18.

As will be thus seen, the two fishes are certainly congeneric, and are evidently very closely related. Even the slight discrepancies are appar. ently such (as in the case of the color) as result from difference of interpretation of the same characters. The vertical fins in the Californian form, however, are distinctly said to be "margined with black," while in the Japanese form it is at least implied that they are not. It is quite probable, nevertheless, that even these alleged differences may be found to be rather of degree than of kind. In view, however, of the difference of distribution, it is reasonable to suppose that the two forms will be found to be distinct, and, as the genus appears to be perfectly valid, they will rank as species, with the following names:

1. Lycodopsis pacificus.

Lycodes pacificus Collett, Proc. Zool. Soc. London, 1879, p. 381.
Hab.-Japan.
2. Lycodopsis paucddens.

Leurynnis paucidens Lockington, Proc. U. S. Nat. Mus. 1879, p. 326. Hab.-California.

DEMCRIPTION OP A NEW CHIROID FIAF, MTRIOLEPIM RONIPER, THOM MONTERES RAY, CAEIIOBNIA.

By W. N. LOCKINGTON.

Myriolepis, gen. nov. (Chirida).
Body oblong, rather stout; mouth moderate; cardiform teeth in both jaws, slightly larger anteriorls; no canines; teeth on vomer and palatines; preopercle entire; no spines about the head. Gill-openings separated by a narrow isthmus; gill-rakers short. Brauchiostegals seven. Psendobranchia present. Dorsal fins two, united at base, the first with about 14 rather stiff spines, the second with as many soft rays. Anal short, of about 13 rays, without distinct spine. Scales very small, ctenoid, covering the whole surface of the body and head and the greater portion of all the fins except the first dorsal. Lateral line single.

Etymology: $\mu v \rho_{i o v, ~ m y r i a d ; ~}^{\lambda \varepsilon \pi i s, ~ s c a l e . ~}$
This genus bears little resemblance to any of the previously known Chirida, its general appearance being quite Serranoid. It has, however, a bony stay conuecting the suborbital and preoperculum, and possesses the technical characters of the Chirida, in which group it should form a distinct subfamily, differing especially in the shorter anal fin without distinct spines.

Myriolepis zonifer, sp. nov.

Lower jaw slightly projecting; snout to summit of ascending process of premaxillary inclined backwards at about 45°; forehead slightly con-
cave longitudinally; dorsal outline, from occiput to caudal peduncle, regularly arched, the highest point at anterior part of first dorsal; mandible straight; abdominal outline regularly curved.

Greatest depth 3_{18} times, depth of caudal peduncle 12 , length of head $3 \frac{9}{10}$, length of pectoral $4 \frac{1}{2}$ in total length to extremity of caudal fin; orbit (longitudinal diameter) $5 \frac{1}{5}$, mandible $2 \frac{1}{8}$, interorbital width about 29 in length of head.

Gape straight, maxillary extending to a little in front of the center of the pupil, its upper edge received in a groove below the preorbital for most of its length.

Teeth of mandibles and intermaxillaries slender, sharp, recurved; in several rows in front, gradually diminishing laterally to a single row; front teeth slighty longer than lateral teeth. A few similar but smaller teeth on vomer and palatines. Upper pharyngeals with a cushion of similar teeth; lower pharyngeals slender, with a patch of similar teeth in the form of a very obtuse triangle, the internal row largest.

Gill rakers short, ciliated, those on the anterior aspect of the first pair of gill-arches longer than the others.

Branchiostegals seven; gill-membranes continuous below, but attached to an isthmus throughout the entire length of their junction except the posterior margin.

Nostrils just above a line joining the upper margin of the orbit with the tip of the snout, simple, elliptical, the posterior far the larger.

Eyes lateral, subelliptical, the upper margin of the orbit less curved than the lower; interorbital space wide, slightly convex transversely.

Longitudnal diameter of orbit $1 \frac{1}{3}$ in length of snout.
Opercular bones without spines or denticulations.
Pectoral base vertical; pectoral broadly lanceolate, the upper margin carved; 5th ray longest; 4th, 6th, 7th, and 8th only slightly shorter, thence diminishing rapidly downwards. Tip of pectoral about vertical with base of 11th ray of spinous dorsal, but considerably short of the vent. Rays twice branched.

Ventrals inserted a little behind pectorals, their length $1 \frac{3}{3}$ in that of the pectorals. Rays twice bifurcate.

Spinous dorsal commencing about opposite 20th scale of lateral line; first spine very short; $2 d$ and $3 d$ rapidly increasing ; 4th longest; thence diminishing regularly to 12 th ; 13th and 14th directed backwards, horizontal, their points only free; 15th spine at base of 1st soft ray.

Third ray of soft dorsal longest, thence diminishing regularly; rays split up at tips.

Anal commencing about opposite base of 7 th ray of $2 d$ dorsal, and preceded by two weak spines hidden in membrane. First soft ray longest ; rays split at tips.
Caudal with many accessory rays and about sixteen principal rays, so that its lateral margins are convex ; posterior border somewhat emargihate; rays much divided at tips.

Lateral line continuous to end of caudal peduncle, not very conspicuous; tubes simple. From its origin to above the pectoral it curves downwards, thence follows parallel to the dorsal outline till it reaches the caudal peduncle, along which it is median.

Scales of body small, strongly ctenoid, larger upon hinder part of trunk and on caudal peduncle than anteriorly, and smallest on head and under pectoral base. Scales elongate, almost rectangular, but with the free margin concex, imbedded portion striated. Entire surface of gillcovers, branchiostegal rays, mandibles, maxillaries, preorbitals, and snout scaly, the only scaleless portions being the lips and the portions of the gill-membrane folded up between the rays. A shallow, scaleless groove at sides of 1 st dorsal.

The vertical fins, except the spinous dorsal, covered almost to the tips of the rays with similar but smaller scales, and the paired fins similarly covered on their exterior surfaces.

A band of small scales along some of the anterior spines of the 1st dorsal.

Dorsal region and head, to the level of the upper margin of maxillary and of pectoral fin, black; four broad transverse black stripes between pectorals and caudals.

The spaces between these bands, the abdomen, and the lower part of the head white.

The 1st band is at about the center of the length of the pectoral, and fades out level with the lower margin of that fin; the $2 d$ is anterior to the vent, and almost encircles the body; the $3 d$ continues to the anal base, but is much lighter on its lower portion; while the 4 tll encircles the caudal peduncle.

A 5 th but narrower black band encircles the candal base, and two black bands cross the caudal, the posterior one broadest; rest of caudal white. All the other fins banded or blotehed irregularly with black and white, the former predominating. The ctenoid tips of the scales are white.

I have only seen a single specimen of this fish. Before the description was written it was exposed to alcohol for about two months.

It was obtained in San Francisco market August, 1879, and was taken in Monterey Bay.

In appearance it somewhat resembles some of the small-scaled Serranida or Rhypticide. The presence of a suborbital stay, however, shows that its aftinities are really with the Chirida.

Dimensions of type (No.	- United States National Musuem).	
		Inchee.
Total length, to tip of caudal.		11.75
Greatest depth, about..		3.2
Greatest thickness, at opercles.		1.72
Depth of caudal peduncle, about		. 98
Length of head.		3.02
Iuterorbital width.		1.05
Length of smout.		. π

Inches.
Longitu linal diameter of orbit 58
Length of lower jaw, in straight line 1.42
Length of upper jaw, in straight line 1.15
Tip of suout to insertion of pectoral, abont 3.00
Tip of snout to origin of dorsal, along axis of fish 3.62
Tip of snout to origin of dorsal, along dorsal profile 4.03
Tip of snout to origin of anal, along axis of fish 6.45
Tip of lower jaw to insertion of ventrals, along abdominal profile. 3.32
Width of pectoral base 90
Length of pectorals 2.40
Length of ventrals 1.50
Length of base of 1st dorsal to XIIth spine 2.08
Height of longest (4th) dorsal spine 1.25
Length of baee of 2 d dorsal 2.60
Height of longest (3d) ray of dorsal 1.44
Length of base of anal 1.62
Height of longest (lat) ray of anal 1.38
Fin formula.-B. 7; D. XII + 11, $\frac{1}{18}$; A. $\frac{2}{1}$; P. 18; V. b; C. lat.line circa 128-134.
DESCRIPTION OP A NEW MPECEEA OF RAT, RAIA RHINA, FROM THECOANT OR CALIPORNIA.

By DAVID S. JORDAN and CHARLES H. GILBERT.

Raia rhina, sp. nov.
Disk rather broader than long, the snont very sharp and long-acuminate. Outer angle of pectoral sharp; posterior edge of pectoral nearly straight. Region from pectoral angle to snout slightly convex, then almost uniformly and strongly concave to near the tip of the snout, which tapers to a sharp point. A straight line from the snout to the tip of the pectoral passes far from the edge of the disk. Length of snout nearly four times the interorbital width.

Interorbital space quite narrow, very little concave, somewhat depressed in the middle. Nasal ridges separated for more than half their length. Supraocular ridges slightly elevated. Eyes larger and much longer than spiracles. Ventral fins deeply emarginate. Caudal fin reduced to a small fold. Dorsal fins moderate, rather close together, the interspace less than the base of the fin.

Female with the spines on the body moderately strong, arranged as follows:

Five or six rather strong spines above the eyes. Two in front of the center of the back. None along the middle line of the back until opposite the posterior end of the ventrals, where a median series begins on the tail. A lateral caudal series on each side, and two or three long sharp spines between the dorsal fins.

Roughnesses on the skin above rather large, sharp-pointed, and evidently stellate. Those on the snout especially conspicuously stellate and larger than the others. These prickles are everywhere present on the
upper parts of the body, but they are not erenly distributed, and in most regions they are placed quite wide apart. They are largest and most numerous on the nasal ridges, interorbital space, middle region of back and tail, and anterior part of pectorals. On the base and edges of the pectorals and on the ventrals the prickles are few and small. On the middle portion of the pectorals they are rather numerous. Underside of disk everywhere prickly except along the edges of the fins; the prickles largest under the snout.

Male not seen, probably differing, as in the other species; in the sparser prickles above, in the absence of a lateral caudal series, and in the pres. ence of stouter prickles on the anterior part of the pectorals and of claw. like spines on the posterior part. Mouth somewhat arched. Teeth about $\frac{49}{4}$. Nasal flap rather less than half the width of the mouth.

Coloration essentially as in Raia binoculata. Light brown above, vaguely mottled with paler; the usual dark ring at the base of the pectorals most distinct in fresh examples, and probably in the young.

This species is known to us from three examples. Adult females, 26 to 29 inches in length. One from Monterey Bay and two from San Francisco Bay. The one from Monterey was referred to in our deseription of Raia stellulata as a long-nosed form or variety of Raia binoculata.

Raia rhina, is related to Raia cooperi and Raia binoculata. From the latter it differs in the much sharper and longer snout, in the less concave interorbital space, and in the much greater roughness of the body, the small prickles, even in the female of R. binoculata, being confined to the snout, interocular space, and a portion of the median region of the back and the tail, the fins being perfectly smooth. The male has the usual patches on the pectoral fins, and the back almost or quite smooth.

From Raia cooperi, Raia rhina differs in the much smaller size in length, the adult of Raia cooperi reaching at least a length of more than six feet. It also differs in form, color, interorbital width, armature, \&e., as will appear from the following description of a young male example of Raia cooperi, $27 \frac{1}{2}$ inches in length, from San Francisco.

Disk broad, its widest part much behind the middle, the pectoral angle rather sharp, and the posterior edge very little convex. The anterior margin of the pectoral is at first slightly convex, then concave, then, opposite the eyes, again very slightly convex, then again slightly concave; the snout itself not very sharp, although long.

Interorbital space very broad and almost flat (deeply concave in R. binoculata), only slightly depressed in the middle, the nasal ridges well separated for usually two-thirds their length. Supraocular ridge not at all elevated. Eyes quite small, shorter than the spiracles.

Ventral fins not deeply emarginate (becoming more deeply emarginate in the adult). Caspers, in this example (which, although larger than the adults of the other species, is evidently immature), very small, scarcely exserted beyond the ventral edge. Claw-like pectoral spines not yet developed. Caudal fin wantiug. Dorsal fins moderate, not far
apart, the interspace less than the length of the base. Tail with a slight lateral fold.

Spines on body small and few. Two or three very small ones over the eye, one at the center of the back, with a minute one in front of it. None along the median line of the back, the median caudal series beginging at the base of the ventrals. These spines are quite small, but grow larger backward.

Asperities above in the form of minute prickles, somewhat stellate. These are very minute, except along the median line of the back and tail, and there they are smaller than in R. stellulata or R. rhina. Tail entirely prickly above. A broad band of prickles along back to interorbital space. Entire pectoral fin minutely prickly, rather coarsely so anteriorly. Nasal ridges prickly.

Ventrals mostly covered with minute prickles, as is the under side of the snout and the region around the mouth. A row of rather coarser prickles along the edge of the disk anteriorly, on the under side.

Jaws rather strongly curved. Teeth somewhat tricuspid, $\frac{18}{38}$.
Length of nasal flap about half the width of the upper jaw.
Body light brown, with many rather large, faint, round whitish spots, which are very distinct in the young. A vague blackish ring at base of pectoral.

Raia cooperi is rather common from Monterey Bay to Vancouver's Island, and probably north to Alaska. It is often brought into the markets of San Francisco with the binoculata. We have seen examples of all sizes from six inches to six feet in length. A skin of an individual six feet in length was obtained by us at Victoria. In its stomach were two specimens of Cottus polyacanthocephalus, each a foot long. Thus far no examples of any of the other species over $2 \frac{1}{2}$ feet in length have been noticed.

Table of mesuniremente.							
Extreme length, in inchew.	28.81)	20, 25	27.65	21.6	23.45	24	17.45
length of disk, in inches $=100$	18.40	16.85	17.3	13	14.90	14. 13	10.10
Disk, greatent wiulth	103	111	119	106	11:3	113	$1: 1$
Widsh midway betweon snout aud motth	11			16. 7			41
W illh at froni of eyew	41			45.5			58
Distance from snout to pectoral angle		77.5	86. 5		78.5	77
Histance from enont to birst gilloprening				50. 5			
lintance from suout to mouth...........	$31)$	99.5	$\underline{9}$	2. 5	2	21	24
Dintance from firat to dast gill-opening	12	17	13.5	12.8			14
Width of month	15.5	14.5	15.5	15	15.5	15.5	18
Distance betweea nowir		13.2	15		13. 5	12.5	
Diameter of orbit....	5. 5	13	5	5. 5	7.5	7	8
Leagth of mornt from ey	3	30.5	28.5	$\because 3$	27.3	23.5	23
ferugits of mamal fiap.		7			8.5		
Distance between firat gill-openings	28.3	25.5		25.5	23.5	25	31.5
Distance betwren last gill-openings	16.5	17	17.7	14.3	10.5	15	18
Interorbital width.	8	*	10.5	$\stackrel{H}{4}$	7.5	7.8	4
Tail, longth	57	5	(ti)	17	593		71.5
Distance betwcen doneals	,	3.5	3	3.8		110.5	5

Neeaf Bay, Wash., May 31, 1880.

DESCRIPTION OF A NEW GPRCEES OF PARROT OF TRE GENEN CHRYSOTIE, FROM THE IMIAND OF DOMINICA.

By GEORGE N. LAWRENCE.

Chrysotis nichollsi.

Male f-The general color of the plumage is grass-green, darker above and on the breast and abdomen tinged with yellow; the feathers of the hind neck and back are bordered rather narrowly with black, those of the wing coverts are without the black borders; the feathers of the lower part of the throat, of the upper part of the breast, and of the sides of the neck change to verditer-green on a side view and are edged with black; the bases of some of the feathers of the breast and abdomen are dull red, and they are just perceptibly edged with black; the sides are dark green; the fore part of the head as far as upon a line with the anterior angle of the eye, lores, sides of the head, and the throat are of a medium shade of ultramarine-blue, lighter in color on the throat; in some lights the blue color has a grayish cast; the feathers of the top of the head are varied with bright green and azure blue and are narrowly bordered with black; the primaries have their inner webs black, the first primary is entirely black, the second and third have their onter webs dark blue for three-quarters their length, terminating with black, the other primaries have their outer webs green for most of their length, passing into dark blue for a short space, and ending with black; the extreme ends are narrowly margined with whitish ash; the wing speculum is of a bright scarlet red, occupying a space on the onter webs of the first three secondaries of about three inches; there is a small yellow mark where the red joins the terminal dark blue of these feathers, which have the outer webs green at their bases; the other secondaries have their outer webs green, with a subterminal blue spot, and ending with black; the fourth secondary has an elongated yellow mark on the middle of the outer web; all the secondaries have their inner webs black; the outer webs of the tertiaries are green, the inner are black with their ends green; the wing coverts are of the same color as the back, but the concealed portions of the inner webs of the greater coverts are black; the outer edge of the wing is dull light yellow; the quills underneath have the basal two-thirds of their length dull verditer-blue, the terminal portion is black; the under wing coverts are green; the first outer tail feather has the outer web dark blue for two-thirds its length, the terminal third is greenish yellow; the inner web is scarlet at the base for nearly half its length, which color is separated from the yellowish end by a space of dull green; the second, third, and fourth feathers differ from the first only in having the basal parts of their outer webs green; the central tail feathers are dark green, ending with dark yellowish green; upper tail coverts dark green, with their ends yellowish; the under tail coverts are yellowish green; the upper mandible is whitish-
horn color, with the sides yellowish, the under is grayish-horn color, yellowish at the base; feet blackish.

Length (skin) from end of upper mandible over the culmen, 20 inches; from top of head, 18 inches; wing, 93 ; tail, 63 ; tarsus, 1.

Habitat.-Dominica, West Indies.
Type in National Museum, Washingtot, received from Dr. H. A. Alford Nicholls.

Dr. Nicholls sent a second specimen in spirits, which was made into a skin, and on dissection proved to be a female. It does not differ materially in plumage from the other specimen, the blue of the face only appearing a little duller. It is rather smaller; the bill and feet are weaker. From a comparison of the two I think the specimen specially described is a male.

This new species in some respects resembles C.cyanopis (Vieill.), said to be from the Antilles, but the precise locality not known, and C. bouqueti (Bechat), from St. Lucia, all having blue heads. The first, C. cyanopis, is described as having the face dark ultramarine-blue, but it differs from the new species more especially in the top of the head and the chin being dark blue, the throat and entire under surface wine-red, and the larger wing coverts dark indigo-blue, besides minor differences. In dimensions they are much the same.

I have a fine specimen of C. bouqueti before me belonging to the Museum of Comparative Zoology, Cambridge, and kindly loaned by Professor Allen. In this the blue is nearly of the same shade as in the new species; it is a little lighter in color on the front, but the blue does not extend so far down on the throat, the lower part of which is scarlet; the breast and abdomen are vinous red intermixed somewhat with green; the color above is a lighter green; the black borders to the feathers of the hind neck and back are broader; the colors generally are much brighter; it is a smaller species, with weaker feet and a blackish bill; it measures from the end of the upper mandible $16 \frac{1}{2}$ inches, though the wings and tail fully equal in size those of C. nichollsi.
I have named this fine species as a well-merited compliment to Dr. Nicholls for his assiduous endeavors to supplement Mr. Ober's work in Dominica.
The specimens of Chrysotis were sent in March, 1879, with some other species, to Martinique, to be forwarded to the Smithsonian, but they remained there for about twelve months, and were not received in Wash. ington until May of this year. Dr. Nicholls wrote Professor Baird at that time concerning the parrot as follows:
"The 'Ciceru' (not 'Cicero') parrot.
"The bird was shot at Campbell, and was bought in the market, where it was exposed for sale as food. The feathers were off the neck when bought. Skin was tirmly adherent to a thick layer of fat. The specimen is scarcely worth sending. I do so, howevar, as the feathers near the head are a different color to those of the Cicero parrot."

The other birds sent were as below, to which are added Dr. Nicholls's notes:

1. Euphonia flavifrons (Sparm.).
"Bird caught at head of Roseau Valley; never seen in the island until lately. Feathers of breast curl up over the wings when the bird is at rest, and during sleep the bird is rolled up like a ball."
2. Myiadestes Genibarbis, Sw
"Sifflem montagne."
3. Elainea martimica (Linn.).
"Caught in Roseau; white feathers on head very conspicuous when bird at rest."
4. Ereunetes petrificatus (111.).
"' Bécass;' common at the mouths of the rivers during the hurricaue months."
5. Charadrius virginicus, Borkh.
"'Oiseau marine.' Shot in plowed land near to Roseau in November, 1878."
6. Tringa madulata, Vieill.
"'Bat-ma.' Caught in December, 1878, near to the mouth of the Roseau River."

Professor Baird has lately received from Dr. Nicholls a letter, dated 25th May, 1880, with another consigument of birds, of which I give the names and the notes of Dr. Nicholls thereon:

1. Chrysotis nichollsi, Lawr.
"The green parrot which I have been so long trying to obtain. It is now scarce and is seldom seen away from the deepest woods of the widest part of the island. It builds its nest in the forks of the highest forest trees, and it is usually seen in flocks. It is called by the natives 'perroquet,' which is simply French for parrot. As an example of the difficulty in obtaining this parrot I may mention that although I offered a good reward for a dead specimen I failed to get one. The specimen now sent was shot by a friend of mine; it was evideutly a bird which had strayed from a flock."

Dr. Nicholls says of it in his letter: "It may possibly turn out to be the 'green parrot' which Mr. Ober failed to obtain."

I infer from the above that Dr. Nicholls considered this to be different from those sent a year ago, as in his letter of that date he says: "I am sorry to say that I have been unable to obtain specimens of the green parrot, but I hope to be successful before long."

This specimen, however, only differs from the type of C. nichollsi in being smaller, with a weaker bill, which is quite dusky in color.

Dr. Nicholls may be correct in his suggestion that it is the "parrot" No. 33 of the Dominica catalogue. If so, Mr. Ober must have been misled. as to its size, which he states to have been that of the Carolina parrot.
2. Nyctiardea violacea (Linn.).
"' Crabier montague.' Caught in a dark ravine in the mountains near Roseau and bronght to me alive. I kept it for more than a week, feeding it on cray-fish and land-crabs, which it devoured with avidity. It died suddenly."
3. Charadrius virginices, Borkh.
"Golden plover. Shot on sea-beach."
4. Anous stolidus (Linn.).
"'Twa-oo.' Brought to me alive when very young and I kept it alive for nearly a year, when it was choked by a careless child. It became very tame. It used to fly on to the roof of my house and bathe in a duckpond in the garden. I gave it fish cut into small pieces."

5. Strix flammea var nigrescens, Lawt.

"Owl. It is, I think, different in plumage and certainly smaller than one I had some years ago. This bird was caught in the town of Roseau and brought to me. I kept it alive for several weeks, when it died suddenly. It woke up usually just before dark and then partook of its meal of five or six small lizards or a monse. On introducing a live lizard into its cage it darted down upon it with great quickness; it seemed to be more of a spring and a drop than anything else; it then held the animal in its claw for a minute or so and regarded it intently, then with its sharp beak it divided the spinal colnmn just behind the head. This occurred once and again, and it would thus appear that the owl is endued with the instinct of the easiest and surest way of killing its prey. The lizard when dead was seized by the head, and by a series of jerks or turnings up of the head the owl actually threw it down its throat. If the lizard was rather large the owl would rest for a while with the tail of the reptile hanging out of its mouth."
I think this specimen is a male; the larger one spoken of was probably a female.
6. Tringa minutilla, Vieill.
"'Bécass.' Caught near to the mouth of Roseau River."
New York, June 15, 1880.

THE ECLACHON OR CANDREFISH OF THE NORTHWRET COAST.

By JAMES G. SWAN.

This paper I have prepared from my own notes made during a cruise on the United States revenue-steamer Oliver Wolcott to Alaska, during the summer of $\mathbf{1 8 7 3}$, as special commissioner to procure articles of Indian manufacture for the National Museam, to be exhibited at the Centennial celebration at Philadelphia, and from information derived from Mr. Robert Tomlinson, clerk to Kincoleth Mission, Nass River, British Columbia; from Mr. Charles F. Morrison, chief trader Hudson's Bay Proc. Nat. Mus. $80-17$

Sept. 15, 1880.

Company, at Fort Simpson, British Columbia; and from reports of Rer. Mr. Duncan, of Metlakatla Mission, British Columbia, made to the Church Missionary Society, at London, and to Messrs. Langley \& Co., Victoria, to whom I am indebted for the copy of Professor Redwood's report. which I give entire. The description of the Eulachon by Sir John Rich. ardson is, I believe, the earliest, and but little can be added to it. As I have no copy of his works at hand I cannot give his description, which I regret.

JAMES G. SWAN.

Neam Bay, Clallam County, Wash., January 31, 1880.
This fish, known to scientists as the Thaleichthys pacificus, and also as Osmerus pacificus, resembles the common smelt in size and general outward appearance, and is found on Puget Sound occasionally with the sand-smelt Hypomesus olidus.

The Eulachon, however, differs from all other varieties of the smelt family by having its entire body permeated with a peculiar fat, which, on being extracted, is of the consistence and color of soft lard, and is used largely by the natives as an article of food.

By a rectifying and deodorizing process, Messrs. Langley \& Co., chem. - ists, of Victoria, British Columbia, have succeeded in preparing an oil which appears to possess the remedial qualities of cod-liver oil in a remarkable degree, and is more agreeable to both palate and stomach. The quantity of this fatty substance is so considerable that when the fisb is dried it can be set on fire like a torch and will consume its whole length like a candle, from which fact its common name of "Candle-fish" is derived. This adipose matter when first extracted, even when fresh caught, has a strong, disagreeable odor and a peculiar taste which is very unpalatable to most white persons. The fresh fish, however, has no unpleasant smell about it. It has somewhat of the same cucumber odor as the smelt, or rather an odor which resembles that of the bruised leaves of the wild syringa, Philadelphus L., which is a somewhat common shrub on the shores of Puget Sound and other portions of the northwest coast. When fried, like the smelt it is a most delicious pan-fish, or even when simply boiled, as the natives usually cook it, or toasted on a stick before the fire, it is most excellent and nutritious food.

The Eulachon are found in limited numbers at certain seasons in the Columbia River, Shoal-water Bay, Gray's Harbor, and at the mouth of the various small streams of the coast, and also in the waters of Puget Sound, where they are taken in seines and nets with smelt and other varicties of small fish, but they are thin and poor, and not to be compared to the same varieties further north. Even those taken in Fraser's River, near the bouudary line between Washington Territory and British Columbia, are superior to those taken further south, and are sold in the Victoria market, where their excellence is highly prized. The few secured on Puget Scund are sold by the fishermen as smelts. The best
kinds are caught further north, and great quantities are salted by the IIudson's Bay Company, at their trading post at Fort Simpson, British Columbia, and either sold in the Victoria market or shipped direct to Loudon in tierces, barrels, and kits.

As an article of food and for the grease or fat contained in them, the Eulachon are highly prized by the Indians of Northern British Columbia and Southern Alaska, where they abound; particularly at the Nass River, British Columbia, where they are annually taken in enormous quantities, and where they seem to attain their rery finest condition.

The Nass River flows into Portland Inlet near the fifty-flith parallel of north latitude, near the sonthern boundary of Alaska, and 30 miles north-northeast of Fort Simpson, British Columbia. At its mouth it widens out into a bay called Nass bay or Strait, in which are various shoals favorable for the Eulachon sparning grounds.

There are other rivers and streams in British Columbia and Alaska at the mouths of which Eulachon are taken, but as the Nass River fishery exceeds them all, and is, in fact, the principal place where the business is carried on by both whites and Indians, a description of that fishery will suffice.

The principal run of the fish reaches Nass River in the latter part of March, generally from the 16 th to the 22d, varying in exceptional years from the 28th to April 4. When the season approaches the Indians assemble in great numbers; not ouly the Nishka, or natives of the Nass . country, but from hundreds of miles distant, some in canoes and some overland. In former years quarrels and fights among the different tribes were common, but of late years the influences of the missions at Metlakatla, Kincoleth, and Fort Simpson have produced a favorable change, not only in inducing them to be more peaceful, but to lay aside their old heathen superstitions, one of which was that all the fish eaten for the first four or flve days after they commence to arrive must be either fried or toasted; no one was allowed to boil any, as they believed that if any were boiled the fish would immediately leave the river; they were also strictly forbidden to drink water after a meal of fish, lest there should be rain which would hinder the drying. These ceremonies are now abandoned in a great measure, and but seldom practiced at the present time.

The Eulachon only travel up the Nass River as far as the flood tides reach, which is from 15 to 20 miles from its mouth. For about 7 miles from Nass Strait the river is unsuited for fishing operations. From thence to the Nass Village, at the head of tide-water, is a succession of sand-bars, and these form the spawning beds of the fish. Every available spot along the banks of the river is occupied by the Indians during the fishing season, who erect temporary wigwams for themselves.

As the fishing season approaches the arrival of the fish is anxiously watched by the natives, as it is a season of the year in which they are generally out of food.

The fish usually swim in deep water till they reach the mouth of the river, and during their passage up the strait are followed by innumerable enemies. Porpoises, seals, dog-fish, ground-sharks, and halibut harass them in the strait, and if they rise to the surface they are attacked by clouds of gulls, ducks, and other sea-fowl.

The bishop of British Columbia, who visited the Nass River in 1863, writes concerning the fisheries:
"Such a scene of life-man life, bird life, fish life-I had never before conceived. Orer the fish was an immense cloud of innumerable gulls: so many and so thick were they as they hovered about looking for the fish that the sight resembled a heavy fall of snow. The fish are caucht in vast quantities. I saw hundreds of tons collected together, and the nets hauled in bushels at a time."

When the fish reach the mouth of the river they generally rise to the surface of the water, and are caught by the natires with a pole about 18 feet long, slightly flattened into an oar-shape at the lower end. Into one edge of this flattened blade are stuck a row of wooden pins or pieces of wire sharpened. This implement is thrust down and with both hands drawn rapidly through the water, and the fish are impaled on the pins and are shaken off into the canoe in the same manner as the Indians about Puget Sound take herrings. The number of Eulachon caught in this way form a good estimate of the probable run of the fish for the weason, whether they will be plentiful or not.

As soon as the fish make their appearance at the sand-bars fishing operations begin in earnest. In former years a sort of large landing net, called by the natives Banak, was used, but of late these have been discarded for purse-nets. About an hour after the tide has begun to ebb two strong poles are driven into the sand at the bottom of the river about 12 feet apart; to these the net is attached, the mouth being kept open by inserting two small sticks across it. It is then depressed in the water until the under rim rests on the sand; the fish are drawn into the aperture by the force of the current.

The nets are generally six or eight fathoms long. A long crooked stick is used for raising the narrow end of the net. If it contains fish it is hauled into the canoe and, by loosening a string, its contents are easily shaken out. Sometimes the net for its whole length becomes blocked with fish. The greatest care and skill are then necessary to prevent its being carried away by the current.

Another difficulty, and the cause of much damage to the nets, is the loose ice. The fish first come about the time the ice begins to break up. Of course, there are exceptions to this rule. Some years the ice remains solid until after the fish are caught, in which case holes have to be cut in the ice to put down the nets; other years, again, the ice has all disappeared before the fish arrive.

When the tide begins to flow, the nets are all taken in and all the fish caught are thrown in heaps on the ground close to the wigwams. With
a good run of fish, each net ought to catch about tro tous each tide. When a sufficient supply of fish has been obtained they are not boiled down at once, but are left on the ground iu heaps from six to ten days, accorling to the state of the weather. This is done to facilitate the boiling, as the grease separates more rapidly from the fish after a partial decomposition than when fresh. The perfume which permeates the atmosphere at this time is certainly not to be found among the extracts and essences of Lubin or Rimmel. As has been said of the odor of the skunk, "it may be healthy, but is rery offensive, and a little of it goes a great way." As an Irishman once remarked to me of a similar stench, "the smell of it would kill flies," which is saying a great deal for its energetic power.

After the fish have remained exposed on the ground five or six days a portion of them are strung up for drying by having their heads interworen with thin strips of bark; they are then washed and haug on racks to dry ; they are not covered up, but are thus exposed to the at mosphere in all weathers for three or four weeks and get perfectly dried and firm, and form a chief article of food for the Indians, who either toast them over the fire or boil them. They also use them as torches. It is only necessary to set them on fire and they will continue to burn until consumed.

In extracting the grease from the fish the Indians place them in large mooden boxes and boil them by means of red-hot stones. As the greaso rises to the surface it is skimmed off, and when all has risen the residue of the fish bodies is taken out and pressed to get all the still adherent portion. A ton of fish makes from $2+1$ to 30 gallons. This is then put in wooden boxes• and any convenient receptacle, and forms a lucrative article of trade among the natives, and is known in Sitka and other white set tlements as small-fish grease.

Within a few years, and since the Indians have seen the "rockers" of the miners, they have introduced wooden boxes, with sheet-iron bottoms. These auswer very well, and save time, labor, and trouble. About the same time a white man attempted the plan of extracting the grease by heating the fish in a basin floating in boiling water and then subjecting it to pressure, but the attempt proved a failure. Another plan attempted was to cold-press the fish, and for the purpose a powerful serew. press was erected, but that also proved a failure. My own impression is that the grease could be successfully extracted by steam, as is now done at the oil works at Skidgate, Queen Charlotte's Islands, in extracting oil from dog-fish livers. Still, there may be some chemical reason why the grease yields to incipient decomposition, which may suggest some preparation which can produce a similar result.

The ordinary price for the grease at Nass is twenty-fire cents per gallon, but in seasons of scarcity the price adrances from one dollar to one dollar and twenty-fice cents per gallon, although the latter figure is seldom attained.

The Indson's Bay Company salt a great quantity of these fish for export. They are simply put into casks or butts when first caught, and lightly salted. After remaining two or three days a brine is formed. They are washed in this brine, resalted, and packed in tight barrels, casks, or kits. For smoking, they are allowed to remain in brine a day or two, then strung on slender sticks, which are passed through the eyes, and hung in the smoke. When freshly smoked they have a bright golden appearance, much like red herrings, and are most delicious eat. ing, but they are so excessively fat that they will not keep unless ther are smoked quite dry. This is a tedions process, and turns the shin a dull dusty color.

There is a second run of Eulachon in Nass River towards the end of June, but the quality is inferior, and but little grease is made from them.

The Eulachon come suddenly in countless myriads into Nass River, and after spawning depart as suddenly. They evidently pass the remainder of the year in the deep water south of the Alentian Islands, and make their appearance almost simultaneously in Cook's Inlet aud Cross Sound, Alaska, where they are very abundant, and in Nass River. They make their appearance in Fraser's River a few weeks later, but are not as fat or as plentiful as they are farther north.

As a remedial agent, Eulachon oil is considered by some of the best authoritics who have tested it as equal to codliver oil. Others who have testel its effects only among Inclians are in doubt of its efficacr. But it should be borne in mind that the Indians of the coast, who live exclusively on a fish diet, and on the alga and other products of the ocean, rich in iodine, bromine, and phosphates, are not so easily affected by cod liver or Eulachon oil as white people who reside if the interior, and partake of the usual regimen of civilized life. Hence, some pessons who have administered Eulachon oil to coast Indians have been surprised at the want of success, and have hastily condemned it as worthless. A diet of new milk, fresh from the cow, would undoubtedly prove as efficacious for the coast tribes as cod-liver or Eulachon oil is for white people.

The following is a copy of a report made by Theophilus Redwood, esq., F. R. S., professor of chemistry and pharmacy to the Pharmacentical Society of London, to Messrs. Langley \& Co., Victoria, British Columbia, who kindly furnished it to me for this paper. Professor Redwood writes:
"Eulachon oil, although differing in its source from cod-liver oil, is said to resemble it in its properties, and to have been substituted for it as a remedial agent. In examining the oil, therefore, it was considered important to determine in what points it resembles and where it differs from, cod-liver oil. In taste and smell I cannot indicate any marked difference. Its tendency to congeal is much greater than that of cod-liver oil. At 50° Fahr, the Eulachon oil has the consistency of soft butter, and it does not become fluid until heated above 70° Fahr. The
portion separated by filtration at 60° remains bright at all temper. atures above that point, and has a very slight yellowish tint, resembling that of the best pale cod-liver oil. When a few drops of sulphuric acid are added to a small quantity of the oil, placed in a porcelain capsule, it assumes a deep brown tint, without in the first instance affording the violet color which is produced under similar circumstances by cod-liver oil. If, however, the mixture thus formed lee allowed to remain exposed to the air for several hours the violet color becomes developed. If an ounce or two of the Eulachon oil be boiled with abont twice its volume of distilled water, and the water after being carefully separated and filtered be evaporated to dryness, a small quantity of a brown extractive matter will be left, which closely resembles the extract obtained under similar circumstances from cod-liver oil.
"The Eulachon oil readily saponifies with caustic alkali, and the soap, after being decomposed with acetate of lead, yields oleate of lead to ether, but the oleic acid resulting from the decomposition of this is not brown like that obtained from cod-liver oil.
"Eulachon oil, therefore, although in some respects resembling codliver oil, differs from it in some of its chemical and physical characters. The resemblance to cod-liver oil is, however, greater than that of any other oil I am acquainted with that is not extracted from a fish liver. "THEOPH. REDWOOD."

It would have been interesting if Professor Redwood had given the exact analysis of Eulachon oil, as that of the cod liver has been fully given in various medical works. The student of medicine could have thus been able to have compared the two together, and have found what constitutes their medicinal value.

Professor Redwood says that the oleic acid resulting from the decomposition is not brown like that of the cod-liver oil. The brown color is owing to the presence of a peculiar substance obtained by an analysis of codlliver oil by De Jongh, and named by him gaduin, but it has not been ascertained that gaduin is in any way connected with the virtues of the oil.

It has been thought that the action of the liver carbonizes the oil in a manner and thus renders it more susceptible of being taken up and assimlated by the systems of persons to whom it is administered. It is not improbable that the biliary principles associated with the oil are concerned in its peculiar influences. Winckler has inferred from his researches that cod-liver oil is an organie whole, differing from all other fixed oils. Eulachon oil, althongh a body oil, instead of a product of the liver, seems to possess properties essentially different from all other fishoils, and future analysis may show that the curative principle of cod-liver oil does not lay in any of the causes mentioned, but in some hitherto undeveloped principle, which is identical with that of the Enlachon. I tind no mention of the Eulachon in the voyages of Portlock,

Dixon, Means, Marchard, or Vancourer, except that Means mentions them casually as sardines, and says the Indians are as fond of them and make quite as much account of them as they do of salmon. They are found in countless myriads in the waters of Alaska Territory, but hitherto no other use has been made of them in that Territory except as an article of food for the Indians.

If some of the canneries of Alaska would try the experiment and put them up in oil similar to sardines, I predict that a lucrative trade would result. No regular statisties of the Eulachon tishery have ever been kept either in British Columbia or Alaska, and the foregoing meager account of a very important food-fish is all that I have been able to procure.

DESCRIPTEON OF TWO NEW NPECEESOE FIAEIES, ASCEIICETEYS RHODOEELU AND HCTTALINA CEEDALE, TROM NEAII BAI, WASIIANGTON TERERITORI,

By DAVID S. JORDAN and CHARLES H. GILBERT.

Ascelichthys, genus nova.
Family of Cottidce. Borly rather robust, corered with naked skin. Head comparatively broad and depressed, covered with naked skin. Preopercle with a simple, strongly hooked spine. Villiform teeth on jaws, vomegr, and palatines. No slit behind fourth gill. Gill membranes broadly united, free from the isthmus. No rentral fins. Spinons dorsal of low flexible spines. Other fins normally developed. This genus has the general appearance of Oligocottus, but is distinguished at once from all the known genera of the family by the absence of the ventral fins; hence the generic name from aбxshy=, without leg, and $\% 00=$, 6 sh.
Ascelichthyn rhodorun, sp. nov.
Lody rather plump, broad, and low anteriorly, nearly cylindrical mesialiy, becoming compressed behind. Head comparatively broad and low, ovate, regularly narrowed forward, and rounded anteriorly. Eyes rather large, placed high, separated by a slightly concave interorbital space, narrower than the eye. Mouth rather large, nearly horizontal, the maxillary extending to opposite the posterior border of the ese. Lower jaw slightly shorter than upper. Lips rather full, the upper jaw protractile. Teeth small, in villiform bands on jaws, vomer, and palatines. The palatine bands long and narrow. Pseudobranchæ large, Gill-rakers almost obsolete. No slit behind the fourth gill. Brauchiostegals six. Gill-membranes broadly united, free from the isthmus. A low, fringed dermal flap above the posterior part of each eye. No other cirri anywhere, and no trace anywhere, on body or head, of dermal prickles or scales. No nasal spines. Nostrils both with short tubes, the anterior the longer.

Suborbital stay very slender, barely reaching the preopercle. Preopercle with a rather short simple spine, strongly hooked upwards and in-
wards, concealed in the skin. A concealed downward-directed spine below this. A domnward-directed spine on front of opercle below.

Skin comparatively thin and loose. Lateral line complete and continuous.

Dorsal fins connected by a membrane about half the height of the first dorsal. Dorsal spines low and weak, nearly uniform in height, the middle spines very slightly higher than the others, the highest less than the diameter of the eye, the two anterior close together. The spines all very slender. The enveloping membrane very thick.

Soft dorsal nearly twice as high as the spinous part. Anal about as high as second dorsal, its rays more robust. Pectoral fins rather broad and short, strongly procurrent below, the lower rays thickened. Long. est rass reaching past rent to beginning of second dorsal. No trace of ventral fins, either externally or under the skin.

Fin rays: Dorsal IX or X-18 or 19; A. 13; P. 16.
Anal papilla very small. Six pyloric cxca. Intestines short, about as long as body, with one flexure. Stomach filled with Chiton, Patella, small Crustacea, nnails, and worms.

Coloration oliraceous, usually rather dark, and shaded with greenish, but sometimes with whitish saddle-like blotches, one on each side of the head, oue on preopercle, one at front of dorsal, one most conspicuous opposite the junction of the two dorsals, and two smaller ones under sec. ond dorsal. On most of the specimens these markings are but faintly indicated. Belly somewhat dusky. Lips, in most specimens, edged with vermilion, especially the lower.

Spinous dorsal fin dusky, black in the middle and in front above, with a conspicuous edging of bright crimson. This marking is rarely faint or obsolete. Soft dorsal, anal, and caudal dusky, edged with paler. Pectoral dusky, edged with paler, and slightly barred at base, especially im the paler specimens.

This species is known to us from about 200 examples, from two to four inches in length, obtained by us at Waadda Island, in Neeah Bay, near Cape Flattery, at the entrance to the Straits of Juan de Fuca. It is found in the greatest abundance at this locality under rocks between tide-marks. It is less active in its movements than the species of Oligocottus, and unlike them it is often found out of the water, left in damp places under the rocks by the receding tide.

The following species have been obtained by us in this locality, which is the richest in rock pool fish of any which we have anywhere secn:
Xiphister macosus, Xiphister rupestris, Xiphister chirus, Ascelichthys rhodorus, Gobiesox reticulatus, Anoplarchus atropurpureus,

Murenoides lætus, Apolichthys flavidus, Apodichthys fucorum, Oligocottus globiceps, Oligocottus maculosus, Scytalina cerdale.

Talle of proportional measurements.
Species: Aacelichthya rhodorus.

Scytalina, gen. nov.
Family Congrogadida, allied to Congrogadus Guinther.
Body anguilliform, cylindrical anteriorly, compressed behind, covered with very small, imbedded cycloid scales. No lateral line. Head broad, with tumid cheeks, broader than body, resembling a serpent's head. Lower jaw slightly projecting. Each jaw with two strong canines in front, besides which is about one series of small, close-set conical teeth in the lower jaw and a broad patch in the upper. A single series of small teeth on vomer and palatines. Branchiostegals six. Gill-openings very wide, the membranes broadly counected below and free from the isthmus. Pseudobranchia small, present. A slit behind fourth gill. Tongue largely free anteriorly. Intestines short, without pyloric cacca. Pectoral fins rery small. No ventral fins. Dorsal fin very low, without spines, beginning near the middle of the body. Anal similar, and beginning nearly opposite it. Tail rounded behind. Caudal tin well dereloped, joined to dorsal and anal. Vent near the middle of the body. No anal papilla.

Etymology : diminutive of Scytale, a genus of serpents, in allusion to the form of the head and neck and the fang-like canines.

The relations of this genus seem to be with Congrogadus Giinther, from
which it differs in the presence of canines and in the short dorsal fin. This is the first species of the family thus far known from north of the equator.

Scytalina cerdale, sp. nov.
Body elongate, cylindrical anteriorly, compressed behiud, covered with very small imbedded scales. No lateral line. A slight vertebral streak and three very obscure dusky lateral streaks simulating lateral lines.

Head broader than long, with tnmid cheeks and constricted neek, much resembling the head and neck of a small smake. Form of snout subconic, the head abruptly narrowed at the eyes, below which is a slight vertical groove. Snout depressed, rounded at tip.

Interorbital space rather broad, posteriorly concave, a median wrinkle extending along the vertex to the muchal depression. All these depressions are rather apparent than real, being due to the tumidity of the cheeks, which encroach ou the other parts.

Eyes quite small, directed almost upward, nearly even with the top of the head. Lips full, the upper separated by a crease from the skin of the forehead, the lower with free margin. Skin of forehead with two or three dermal flaps on each side. In one of these the anterior nostrils and some mucous prores open. Posterior nostril near the eye, with a very small flap. Edge of lower lip sparsely fringed, below which the skin has several coarse pores with dermal tlaps.

Gaue of mouth rather wide, extending a little beyond the eyes. Lower jaw slightly projecting, its front with two strong, conic, divergent ca. nines. Between these, and behind, along the sides of the jaw, is a series of smaller close-set conical teeth. Upper jaw with two smaller canines, closer together than those in the lower jaw. Edge of upper jaw with close-set conical teeth, apparently in a single row behind, widening into a broad band in front. A single series of small teeth on vomer and palatines.

Brauchiostegals seven. Gill-openings very wide, the membranes broadly connected and free from the isthmus. Pseudobranchise small. Gill rakers almost obsolete. Gills four, a slit behind the fourth. Opercle very short, the thmid cheeks encroaching upon it.
l'ectoral fins rery small, a little below the axis of the body, their length a little more than the diameter of the eye. No ventral fius. Dorsal fin very low, of soft rays only, which are short and weak, imbedded in the skin. Its insertion a little in front of first ray of aual and slightly in advance of the middle of the body. Tail apparently isocereal, rounded behiml, with a well-developed caudal fin, which is rounded behind, and composed of rays longer and much slenderer than those in the dorsal and anal. No constriction between dorsal and anal and caudal, the rays of the former fins being joined to the latter at their full height. Anal precisely like dorsal and nearly coterminous with it. Vent immediately in front of anal. No anal papilla.

Intestinal canal a simple short tube, without crecal appendages. Air bladder obsolete, or reduced to a filmy membrane. Nothing found in the stomach.

Flesh color, with much mottling of purplish above, in fine, close pattern, so that the light areas appear in the form of pale spots. Lower parts finely speckled like the back, except the belly, which is nearly plain. l'ins similarly colored.

Anal nearly plain. Caudal reddish edged.
Fin rass not readily counted. Dorsal about 41. Anal 36.
Two specimens of this species were obtained by us at Witadda Island; a third was seen, but it escaped us. It inhabits piles of shingle and small bowlders near the mark of lowest tides, and when disturbed makes its way downward with great celerity through small crevices into the water. The specimens taken are each about $5 \frac{1}{2}$ inches in leugth.

Table of proportional measurements.
Species: Scytalina cerdale.

on camarappivaeha, a new type or brongrg

By JoHn A. HEDER.

A singular organism, which I will name Camaraphysema obscura, was first observed by me on living oysters from Chesapeake Bay, attached to hydroids growing on those mollusks. The single specimen which I obtained measured less than half an inch in length, aud consisted of a larger and smaller individual (person), united basally to a common attachment, constituting a corm or colony. The color was yellowish, or clirts white; the form of the branches was eylindrical, club-shaped, covered by a tough skin (ectoderm?), which was perforated at intervals, giring rise to tubular, funnel-shaped, oscular openings of exceedingly variable form, according to their condition of expansion. The margin of the funnels was entire and exceedingly thin and tough; this portion was capable of being thrown into longitudinal folds and withdrawn or iuverted inwards into the basal portion. These fumnels communicated at their bases with chambers, lined, apparently, with a single layer of cells (endoderm ?). No mesodermal structures were observed, unless the single egg which I noticed in the first clearage stage. from its apparent position, is to be regarded as a prodnct of this layer.

The chambers were lined thronghout the entire organism with a similar layer of nucleated, columnar cells, as was shown by a scries of crosssections, but no evidence of a collar or flagelium could certainly be detected as forming the inner extremities of the cells. The embryos observed were nearly all in the blastula or morula stage of development, and appeared to lie superimposed upon the living cellular pavement of the chambers, except the one observed in the stage of first cleavage, which seemed to lie in contact with the membranous wall of its chamber. The whole organism was composed of very irregular chambers, scparated from each other by an apparently almost structureless membrane, probably of an ectodermal nature. The only evidence of structure here was the presence of faint, delicate striations when the edges of the walls were transversely cut across and viewed with high powers. No spicnles were to be found in any situations; no fibers, as in the genus Spongia; but the whole supporting structure consisted, as stated before, of the structureless ectodermal membrane, which was perforated and produced at intervals into the funnel-shaped oscular organs.

The chambers in the center or axis of the cylindrical body of the organism could not certainly be made out to communicate with those next to the membranous, funnel-bearing body-wall; but these axial chambers appeared to differ in no way from the outer ones in structure. They were lined like the external chambers with cells, and, like them, contained ova in different stages of development, together with brown material, apparently dirt or remains of ingested food, which would appear to klow that there was some sort of communication with the oscular funnels. Only once did I find what I beliered to be an intercameral
demi-canal, pared in the same way with cells as the chambers themselves.

Not seeing the sponge in an absolutely fresh condition, I conld not observe the action of the funnels in life; but once while the whole sponge was still in a comparatively fresh condition, and under observation in a zoophyte trough, I saw one of the inverted funnels suddenly everted and expanded to apparently its fullest extent. I was also unable to detect the slightest evidence of any other kinds of openings besides the funnels into the organism, and these were of about the same size throughout. This fact, together with others which I have stated, remores all doubt as to the sponge nature of the organism.

There is no form known to me in literature which corresponds to this in structure. Halisarca does not have a tough membranous ectoderm, while the Physemaria have an ecto-skeleton, composed of the shells of Foraminifera. But as the existence of the Plysemaria has been apparently doubted by some zoologists, the position of Camaraphysema becomes an interesting question. At any rate it may be safely placed close to the fleshy sponges, and may possibly constitute a distinct family.

The account now offered, while it is not as complete as might be desired, rests upon sufficient evideuce to make it desirable that the fullest possible description of the organism should be put upon record for the benefit of those who may have the opportunity of extending or confirm ing my interpretation of its anatomical and embryological features. While I could hardly convince myself at first that I did not have before me some one of those curions compound Ascidians of the suborder Synascidir, the absence, however, of a common cloacal cavity and any indications of a branchial apparatus or a digestive canal satisfied me that I was not dealing with a tunicate, but that I should have to look among the very lowest of the sponges for its nearest affiues.

I have stated that no collar or flagellum could be detected as forming the inner extremities of the cells lining the cavities. This fact does not, however, render it improbable that such structures exist in the living animal, as it must be borne in mind that both Bowerbank and Carter have called attention to the circumstance that the flagellate cells of sponges withdraw their collars and flagella after death. The extreme irritability of sponges notorions, and to one who sees it for the first time would be considered remarkable, and it is not unlikely that Camaraphysema partake's of this characteristic, known to be well-nigh common to all the members of the group.

The exact locality from whence this species was derived could not be ascertained; all that the writer could learn was that the lot of oysters from whence he had obtained his specimen had certainly been brought from the waters of the Chesapeake. It is to be hoped that more specimens will be brought to light, as the writer in investigating his unique specimen was obliged to sacrifice it in order to make his study as complete as possible by slicing it up into sections.

explanation of the figlre on preceding page.

Fig. 1.-Embryo in the mulberry atage of development, eularged 250 times.
Fig. 2.-Embryo in the condition of the first cleavage, showing the unclei and nucleoli of its cells distinctly and an egg membrane, 250 diameters.
Fig. 3.-Fimbryo in mulberry stage of more frefuent ovoid form, 250 dinmeters.
Fig 4.-Part of a cross-section of the larger branch of the animal, showing the chambered character of the organism, the membranous septa, the oscular funnels in various conditions of extension, and the eggs and embryos in place; 25 diameters.
Fig. 5.-The whole animal of Camarajhysema obscura, enlarged 7 times.
Fig. 6.-A small portion of a cross-section similar to Fig. 4, showing the single layer of cells which pave the walls of the chambers, with the embryos in position in ove of the latter. The stria on the cut edges of the walle of the chambers and the peculiar conformation of the oscular funuels are indicated. Eularged 200 times
Fig. 7.-Fonr of the pavement cells lining the chambers, magnified 900 times, showing their nuclei distiuctly.

DENCEIFTHON OF TWO NEW BPECIEN OF BCOPELOID EIMEIEN,

By DAVID S. JORDAN and CHARLES H. GILEERT.

Sudis ringens, sp. nor.

The type of this species is in very poor condition, having been taken from the stomach of a Merlucius, itself found in the stomach of an Albicote (Orcynus alalonga $=$ Orcynus pacificus Cooper). The process of digestion has destroyed the adipose fin, the ventral fins, and the skin of one side, and the back part of the head is considerably mutilated. Fortunately, the anterior part of the head, with the jaws and teeth, is not at all injured, and the dorsal and anal fins are well preserved. There is, therefure, no doubt concerning the classification of the fish, and as it is the only one of its trpe yet found in the Pacific, and evidently different from S. hyalina, a description of it seems desirable, even though our material is not complete.

Body very slender and elongate, compressed, the depth forming about one-sixteeuth of the length. Head rather slender, anteriorly pointed and molerately depressed, so much injured behind the eyes that its ex. act form posteriorly cannot be ascertained. Mouth large, horizontal, the gape extending more than half the leugth of the head. Margin of the upper jaw formed entirely by the very slender, nearly straight premaxillaries, which are closely appressed to the long and slender maxillaries. Maxillaries extending to below the eye, nearly as far as the mandibular joint. Tip of upper jaw emarginate. Tip of lower jaw rather broad, turned up, and fitting in the notch of the upper jaw. Premaxillaries armed with a series of small, sharp, subequal, close set teeth, which are booked backward. A long slender canine in front on each side.

Lower jaw with abont ten sharp, slender teeth on each side, these teeth very unequal, some of them short, three or four very long and cauine-like. Near the front is one fang-like tooth on each side, then it considerable interspace, behind which the others are arranged partly in two rows. Most of these teeth, especially the inner and larger ones, and the anterior canines, are freely depressible. A long series of teeth on the palatines, one or two of the anterior teeth on each side and one or two others long, slender, and fang.like. Tongue free anteriorl?, ronghish, but apparently without teeth.

Opercular bones very thin and membranaceous. Branchiostegals about seven. Gill-membranes not connected. Gili-rakers short, sharp, spine-like.

Scales nearly all lost. The few preserved are very large, cycloid, their diameter nearly a fourth of the depth of the body.

Dorsal fin inserted somewhat behind the middle of the body, at a distance of nearly 4 times its base in front of the anal, its height a little greater than the length of its base. It is composed of $11(\mathrm{I}, 10)$ rays. Adipose dorsal not preserved.

Proc. Nat. Mus. 80-18
Sept. 28, 1880.

Anal fin anteriorly nearly as high as the dorsal, its posterior rays lor. The number of rays npparently I, 25, possibly I, 24 or I, 26. Ventral fins totally obliterated. Pectoral tins placed low, rather short, aboat as long as the maxillary. Caudal fin short, narrow, apparently forked.

The coloration is apparently light olive, the sides silvery, with dark punctulations. Fins plain. Peritoneum silvery, underlaid by black pigment.

Table of measurements.

Total length.. 6.60 inches
Length to base of caudal .. 6.2 inches $=100$
Body:
Greatest depth .. 6
Least depth.. 2
Length of caudal peduncle ... 6

Head:

Length of naxillary ... 9
Length of mandible .. 11 .
Length of snont 8

Dorsal:

Distance from snout... 57

Greatest height. .. 7
Anal:
Distance from snout.. 80
Leugth of base.. 14

Pectoral length ... 8

Anal rays.. $1 .{ }^{\text {e. }}$

This species differs from Sudis hyalina as described by Dr. Guinther (Cat. Fishes Brit. Mus., r, 420) chiefly in the dentition, canine teeth being present on the premaxillaries and palatines, as well as on the mandible. The head is also shorter and the mouth apparently larger in proportion.

Myctophum crenulare, sp. nov.

Form much compressed, deepest in front of the base of the pectorals, bluntly convex anteriorily, tapering behind. Ventral region much more arched than dorsal. Caudal peduncle long and very slender. Head short and high, abruptly rounded in profile, the snout very blunt. Jaws equal, the suout not projecting beyond the mouth. Maxillary vers slender, scarcely widened to its tip, and not dilated, its extremity reaching beyond the eye to the margin of the preopercle.

Premaxillaries anteriorly on a level of the pupil. Teeth very small, present on all the dentigerous bones. Rami of the maudible nearly parallel, coming together in a sharp keel below.

Orbital margin above and in front with a thin membranaceous rim. that in frout distinct and formed by the upturned edge of the preorbital. Nasal bones membranaceous, their edges upturned, forming a horizontal
groove. A groove between the frontal bones. Orbital margins separated by a groove from the preopercle. Margin of preopercle very oblique. All the membrane bones extremely thin, membranaceous. Eye large, $3 \frac{1}{2}$ in head. Gill-rakers long and slender. Head 33 in length to base of caudal ; depth 42 .

Head and body completely covered with thin membranaceous scales, those on the middle of the sides not elevated and not noticeably larger than the others. Free edges of all the scales crenulate, some of them, especially on the back, with the crenations acute, but without spines, the scales not being really ctenoid or spinous. About 45 scales in a longitudinal series.

A phosphorescent spot on each mandible near the symphysis, 33 pairs of spots along the belly, 6 in front of ventrals, 6 between ventrals and origin of anal, and 21 between front of anal and base of caudad.

Caudal peduncle above and below with two or three backward-directed spines, which are apparently the exserted tips of vertebral processes.

Fin rays (not quite certain, the tips being frayed out): Dorsal about 12 , anal about 16 , the fins rather low.

Origin of dorsal nearer the snout than the base of candal, much behind the base of the ventrals. Ventrals short, not reaching half way to vent. Pectorals reaching base of ventrals.

Color very dark steel-blue above, silvery on sides and below, with dark metallic luster. The usual phosphorescent spots present, as above described. No evident cream-colored blotch on the back of tail.

Myctophum crenulare is known to us at present from a single specimen, about $1 \frac{1}{2}$ inches long, taken from the stomach of an Albicore (Orcynus alalonga) in Santa Barbara Chanuel, July 11, 1880. It had evidently just been swallowed, and is in fairly good condition.

It belougs to that division of the genus "Scopelus" called by Dr. Günther "Myctophum" (Cat Fishes Brit. Mus., v, 405). As the latter name has priority over Scopelus, it must be retained as a generic name for some or all of these fishes.

Table of masurements.
Extreme length 2.20 inchesLength to base of caudal... 1.80 inches $=100$Body:
Greatest depth 23
Leust depth of tail 4
Length of candal peduncle 22
Head:
Greatest length 27
Width of interorbital 6
Length of maxillary 19
Length of snout 3
Diameter of eye 8
Dorsal, distance from snont 51
Anal, distance from snout 54
Pectornl, length 94
Ventral:
Length 12
Distance from suout 39
Dorsal rays 12
Anal rays 16
Number of scales in longitudinal series 45
Number of phosphorescent spots 33
Santa Barbara, Cal., July 15, 1880.
DENCRIPTION OF TWO NEW APECHES OF FLOENDERA (PAROPRETE IBCHYRUH AND HIPPOGLOSAOIDEBELASAODON, FEOM PCEET'S sound.
By DAVID S. JORDAN and CHARLES H. GILBERT.
Parophrys ischyrus, sp. nov.

Body rhombic-oblong, less deep than in Platichthys stellatus or Lepidopsetta bilincata, and with the head more pointed and protruding, bnt less so than in Parophrys vetulus. Body tapering from the middle to the head and tail, the four bounding lines but little curved and quite regular. Caudal peduncle strong, compressed, and rather long. Head comparatively long, a slight angle over the eye, and the snout protruding and not obtuse. Lips full, simple. Mouth moderate, oblique, the lower jaw slightly projecting and somewhat more developed on the blind side,

Teeth about $\frac{5+25}{10+22}$ in number.
Teeth in one series, rather close set, some on both sides of the jaw. but more numerous on the blind side, somewhat irregular in length, some of them movable. In form the teeth are somewhat compressed and incisor-like and bluntish, but not as notably so as in some related species. No teeth on vomer and palatines.

Maxillary reaching past the front of the orbit, nearly to the pupil. Auterior nostril with a flap. Posterior nostril almost simple. Tongue free. Eyes rather large, the upper directed upward, the lower slightly in advance of the other. An area covered with smooth skin in aid behind orbit of upper eye.

Interorbital space rather broad, somewhat elevated mesially, continuous, with a slightly marked ridge above the opercle and forking forwards, the lower branch ending in a blunt prominence.

Snout behind nostrils, interocular ridge, and posterior part of head covered with scales like those on the body, but smaller and rougher. Preorbital very narrow, naked. Skin of head continuous over the edge of the preopercle. Gill opeuings above not continued forward. Gillrakers short, slender, and weak, about 12 below the angle of the arch. Branchiostegals seven. Lower pharyngeal bones separate, each with two rows of coarse, blunt teeth.

Scales moderate in size, thick and firm, adherent, not closely imbricated, anteriorly separated. Those on the tail oblong and a little im-
bedded, those on the head and anterior regions rather regularly arranged, but not close together.

Scales strongly ctenoid everywhere, each with a semicircle of six to ten upward-directed spinules on its posterior edge. Those on the head and body are similar, the former being a little smaller and rougher, especially behind the eyes, where they are somewhat stellate.

Left or blind side of the body uniformly scaled like the eyed side, the scales similar and almost as strongly ctenoid. Preopercle nearly smooth. Rest of head with small rough scales, similar to those on the right side, but farther apart.

Candal, middle part of dorsal and anal, and bases of pectorals and ventrals with small rough scales in series, running up the rays on the right side. On the blind side the base of the caudal with small rough scales. Other fins naked.

Lateral line conspicuous, its scales less rough than the others; a very slight curve anteriorly, otherwise straight. A distinct short accessory lateral line on both sides, extending to about the tenth dorsal ray. A series of pores around lower eye behind. No enlarged scales along lateral line or at the bases of the fins.

Lateral line with about 88 pores; about 80 scales in a longitudinal series above the lateral line.

Dorsal fin beginning over the pupil, its first rays turned slightly toward the blind side, low in front, the rays regularly increasing to behind the middle of the body, then similarly diminishing. Anal fin similarly formed, preceded by ant antrorse spine. Highest rays of dorsal and anal about equal and nearly half the length of the head.

Caudal fin large, somewhat double-truncate, the middle rays produced Pectoral a little more than half the length of the head, that on blind side shorter. Veutrals reaching to anal. Rays of dorsal and anal all simple.

Dorsal rays, 79-76; anal, 52-57; ventrals, 6. Eyes and color on the right side.

Color above light olive-brown, vaguely clouded with light and dark Fins reddish-brown ; a few roundish dusky blotches on dorsal and anal, resembling in position the black vertical bars found in Platichthys stel. latus. Pectoral and caudal tipped with dusky. Blind side white, either immaculate or else with small round rusty spots. Left side of head sometimes rusty tinged.

This species is known to us from four examples obtained with a seine in the harbor of Seattle, Washington Territory. We place it temporarily in the genus Parophrys, inasmuch as it has the techuical characters at present assigned to that genus, i. e., the small mouth with blunt uniserial teeth, and the straight lateral line with its accessory dorsal branch. The character of cycloid scales assigned to Parophrys needs moditication, as in Parophrys retulus most of the scales on the cheeks and tail are slightly ctenoid.

It is, howerer, evident that there is no special affinity existing between the present species and Parophrys vetulus, and no very close relation between either and Lepidopsetta isolepis Lockington, which, by its technical characters, would be also a Parophrys. The nearest natural ally of Parophrys ischyrus is perhaps Lepidopsetta bilinenta, and the present arrangement is to be accepted only until the relations of these forms can be more fully investigated.
Hippoglossoides elassodon, sp. nov.
Body oblong-elliptical, strongly compressed, the dorsal and rentral outlines regularly and pretty strongly arched. Caudal peduncle moderate, about as long as deep and growing wider behind.

Head rather large, bluntish, its upper profile continuous with the outline of the back. Depression over the eve slight. Mouth comparatively large, very oblique, the upper jaw somewhat concave in outline, the lower correspondingly convex, the gape considerably wider on the blind side than on the right side. Lower jaw rather strongly protruding, with a considerable symphyseal knob. Maxillary rather narrow, reaching to opposite the middle of the pupil or beyoud, the maxillary on the blind side much longer than the other. Premaxillary anteriorly ou the lerel of the interocular space.

Upper jaw with a single series of small conical teeth, which are not very sharp. These teeth are somewhat larger in front than on the sides, and also more widely set. Everywhere they are quite small, mach smaller than in Hippoglossoides jordani, and not larger than in H. exilis. Lower jaw with a single series of rather close-set teeth similar to those in the upper jaw, or slightly larger; those on the sides smaller than the anterior teeth. Number of teeth about $\frac{35+45}{25+35^{\circ}}$

Fyes large, nearly even in front, the upper eye directed somewhat upward, but not reaching the dorsal line. Interorbital space a narrow sharp ridge, with about two rows of minute scales; 10 to 15 rows of scales in an oblique series on the cheeks. A series of mucous pores around lower eye behind. Preorbital narrow. Auterior nostril with a rather long flap, posterior with a slight tube

Gill-rakers long, sleuder, and straight, 15 to 17 below the angle of the arch, their inner margins feebly dentate. Pyloric coca 4.

Scales small, firm, less readily deciduous even than in H. jordani, rough to the touch, with the spinules short and firm. Scales on head similar, but more imbedded, those on the tail larger and rougher

Scales on blind side small, mostly smooth, except on the caudal perluncle, where they are larger and rough ctenoid, like the scales on the right side. The scales along the base of the dorsal and anal and those near the lateral line more or less ctenoid. Scales along left side of head small. non-imbricate, those on the preopercle and posterior part of the cheeks becoming obsolete. The amount of roughness on the scales below is subject to considerable variation.

Lateral line very prominent, as in H. exilis, the tubes coarse, their number (88 to 92) less than that of the transverse series of scales.

Scales: 41 to $50 ; 110$ to $120 ; 35$ to 44.
Lateral line slightly rising anteriorly, but without arch. No acces. sory lateral line. Rays of all the fins on the eyed side (except the posterior part of dorsal and anal) and of the caudal on the left side covered high up with series of narrow ctenoid scales.

Fins well developed, of firm texture, the tips of the rays protruding.
Dorsal fin beginning immediately in front of the pupil, its auterior rays low, the others regularly increasing backwards to a point much behind the middle of the fin, then becoming rapidly shorter, the highest rays nearly half the length of the head and more than the length of the caudal peduncle.

Anal fin preceded by a spine, its highest rays opposite to or in front of those of the dorsal and equal to them, the others rapidly shortened. Caudal long, double-truncate or convex, the middle rays considerably produced, as in H. exilis, more than in $\Pi_{\text {. jordani. }}$

Pectoral tin half the length of the head, that on blind side shorter. Ventrals moderate, reaching past front of anal, their inner rays shortened.

Dorsal rays, 77 to 84 ; anal rays, 59 to 63; ventrals, 6.
Color light olivaceous brown, nearly uniform on the body. Fins grayish, obscurely and irregularly blotched with dusky. Blind side plain.

This species differs from Hippoglossoides jordani and H. exilis, the two species thus far known from the Pacitic coast of the United States, in the preseuce of but a single row of teeth in the upper jaw. From 11. jordani it further differs in the much smaller teeth, fewer fin rays, and more convex caudal. From H. exilis the small scales and firmer texture at once distinguish it. Its nearest relative is probably the Atlantic species, Hippoglossoides platessoides, which has a larger number of rays in the vertical fins.

Hippoglossoides elassodon is known to us by about 20 examples of different sizes, all obtained with hook and line from the wharves at Seattle and Tacoma, in Washington Territory.

Table of proportionate measurements.

Specties Locality \square	Parophrye iachyrus.				Hippoglossoides elanowlete.							
	Seattle.		Sevatilo.		Searte.		Taksom					
		$\begin{gathered} \text { 100the } \\ \text { of } \\ \text { lengith. } \end{gathered}$	Inchen and 1ublise.	$\begin{aligned} & \text { wooths } \\ & \text { of } \\ & \text { leogth. } \end{aligned}$	Incheve and lugthe.	100tlan of length	Inches ami 1unthe.	Iooth of lemgthe				
Extrome length. Length toend of midillecauiat rays. Hoadiv Gireatent height Leant heifigt of tail Length of caudal peduncle	$\begin{aligned} & 15.05 \\ & 14.30 \end{aligned}$		$\begin{aligned} & 14.20 \\ & 11.50 \end{aligned}$		$\begin{aligned} & \text { a. } 20 \\ & 7.80 \end{aligned}$	$\begin{aligned} & \text { 12. } 90 \\ & 10.50 \end{aligned}$					
		${ }^{43} 4$		451		41						
		104		4		10						
Heart												
		3 ${ }^{1}$		3112		130		1				
Lemgth of longest gill-maker						3		1				
Le-ngth of masillary from tip of sirout						13		12				
bevasth of maxiliary (from tip of ennut, blinel site).								4				
Lengit of maskitio						163		15				
Dintaseer frum munt to orbit Diameter of orbit..........		12		${ }_{5}^{6}$		8		9				
Dorscl:												
1hatance from mnoat						8		9				
Height at lougeat ray Anal:												
Mintaner from snout,						15		明				
Number if tuben in luteral line...\| bs bs												
Number of ceeat appendages...						4						

Astoria, Oreg., June 16, 1880.

ACTEEH**

By S. THI CATTIE, Arnheim, Holland.

As is well known, Darwint has called attention to the experience of Giinther that the females of fishes are in almost all cases larger than the males. This was perhaps the reason that Syrski, in $1874, \ddagger$ in investigating the reproductive organs of eels, directed his attention more especially to the smaller individuals, where he was fortunate in finding what is called by many the organs of Syrski, and also considered to be the male genital apparatus. Afterwards, in a variety which is kuown

[^34]in France under the name of Anguille pimperneau, Dareste* found the same organ. It appears that only in one case (Anguilla bostoniensis) have living spermatozoa been found in a male eel, as we learn from a communication to the Zoologischer Anzeiger, vol. ii, No. 18, p. 15, by A. S. Packard. The male in this case was about 430^{mm} long (17 inches). That the finding of such specimens is so very rare should not astonish us, since the young eals migrate to the deep sea, where the reproductive organs complete their development very rapidly (6 to 8 weeks), when spawning takes place; the old eels, the females as well as the males, dying after the reproductive act is consummated. Though on this account the spermatozoa, and in most cases their testicular mother cells, are wanting, the investigation of the histological structure of the organ of Syrski may still bring us somewhat nearer to the truth.

If one examines partially grown eels measuring $200-500^{\mathrm{mm}}$ in length one will find a moderate broad band in the abdominal cavity of some of them, attached at its inner margin by a narrow duplicature of the peritoneum to the air-bladder, the other margin, however, hanging free in the cavity of the abdomen. This band extends from the liver to behind the anal opening, and is covered by thousands of fat cells. A lobular organ, consisting also of fat cells, overlies the hinder portion of the alimentary canal and ovarium. I found the eggs to average 0.75^{mm} in diameter from specimens $20-50 \mathrm{~cm}$ in length. Treated with acetic acid and ammoniacal carmine solution, a large nucleus and nucleolus became visible. In other examples, although the fat lobules were present, the broad band was absent. But in exactly the same position and along the dorsal aspect of the abdominal cavity a quite thin band or strip of tissue of glass-like transparency is attached, and likewise by a fold of connective tissue (peritoneum), to the air-bladder, and extends from the liver to behind the anal opening. This band or strip of tissue is crenated along its free margin, the lobes of which measure 0.75^{mm} in length and $0.5^{m m}$ in depth, their convex portion depending into the abdominal cavity. In this Syrskian or lobed organ one finds, along the margin where it is attached, a fine canal, the efferent seminal duct, which, upon being tinged with carmine, becomes quite distinct, and which may also be demonstrated by means of injections. The histological structure of the foregoing lobulated organ was investigated by Freud.t He found an areolar structure with connective tissue corpuscles, similar to the histological structure of the immature testes of fishes. My preparations had a similar appearance as long as the smaller examples were the subjects of investigation. In the largest specimens of eels with lobulated organs incestigated by me (445^{mm} long) I found cylindriform strings, which passed from the bases to the tips of the lobes, and were filled with cells. After repeated trials with the most different reagents, I did not succeed in clearly distinguishing a nucleus in these cells. My observations

[^35]were made with a Zeiss immersion, objective K , oculars 2 and 3 . According to Jacoby,* Von Seibold saw similar strings of cells in an eel, in which the lobes were very strongly dereloped. These strings of cells presented to the eye the most undoubted similarity to the testicular mother cells of spermatozoa. I also believe that the strings of cells observed by me must be regarded as such. In no case did I observe auy spermatozoa.

Previous to my investigations into the histology of the testicular lobes of the eel, I occupied myself with the question whether there were not some other external characters distinguishing the sexes besides the already mentioned difference in size and length. Jacoby remarks as follows upon this point:
"1. A distinetly broader snout in the female as compared with the slender, either elongated or short, and pointed snout of specimens with the lobulated organs.
"2. A lighter coloration of the female, usually quite green on the back and yellowish or yellow on the belly, whilst the other sex is much darker greeu in color, often an intense black on the back, with always a more marked metallic luster on the sides, and usually whitish on the belly.
"3. A further and important external character is an appreciable difference in the beight of the dorsal fin (a point confirmed by me). All the females lave a distinetly higher and wider dorsal than males of the same size.
"4. And, finally, we may note, although not a constantly appreciable character, the greater diameter of the eye of the male. Eels with strikingly small eyes scem almost always to be females. Eels which have a Syrskian organ usually have relatively large eyes, though large-eyed females are equally common."

Jacoby then gives some measurements, the averages of a great nnmber of eels measured by him, from which the actual value of his characters becomes apparent. I believe, nevertheless, that he attaches too much importance to some of his characters, and some others, not less important, he has not noticed at all.

Out of a great number of eels measured by me I select the following, in which the measurements given in the parallel rows are taken from pairs the lengths of which are, as nearly as possible, the same:

[^36]| | | | | | | | Bejght of the dorsal fin. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm. | mm. | mm. | mm . | min. | mm. | mm. |
| $1\left\{\begin{array}{l}\text { \% } \\ 8\end{array}\right.$ | 270 | -4. | | 8 | | 35 | |
| | 325 | -4 | 88 | ${ }_{9}$ | 4.5 | 37 | 7 |
| $1{ }^{1} 8$. | 324 | - 5 | 9 | 10 | 5 | 30 | $\dot{4}$ |
| | 317.5 | -4 | 0 | 9 | 4 | 40 | 0.5 |
| III 8 | 327.5 | 6 | 10 | -10 | 5 | 40 | 7.5 |
| IV $\left\{\begin{array}{c}\text { c. }\end{array}\right.$ | 345 | -4. | 8 | +10 | 5 | 41 | 6 |
| T 8. | ${ }_{355}^{344}$ | | 9 +9 | +10 | 8 | 43 | - 7 |
| V ${ }^{\circ}$ | 335 8.9 | 5 | $+{ }_{10}^{9}$ | 9 10 | ¢ +5 | 41 | $-\frac{7}{7.5}$ |
| | 3.9 | -4.5 | + 8 | -9.5 | + 5 | +41 | -7 |
| V1 | 3:18 | 5. | 10 | 10 | 5 | | +8 |
| VII ${ }^{\text {¢ }}$ | 378 375 | 4.5 | 11.5 | 10 12 | 5 5 | 43 | 7 +8 |
| VIII ${ }^{\text {s }}$ | 385 3×9 | ${ }_{4}^{6.5}$ | ${ }_{9}^{11} 5$ | 12 | 5 8 | 45 | $+\frac{8}{7}$ |
| VIII ${ }^{\text {\% }}$ | 380 | - 8.5 | 10.5 | 11.5 | 4.5 | 47.5 | +8 |

-4 indicates nomewhat leas than $4 ;+4$ somewhat more than 4.
From this table the conclusion is reached that all the females have the dorsal fin higher than those specimens of the same length presumed to be males, and that with age this dif-
 ference becomes still more marked.
The larged-eyed character of cels with the lobulated organs has appeared to me to be too uncertain a feature, so much so that, according to the foregoing table of measurements, the same feature might be assumed as characteristic of the females. On the other hand, I attach great importance to the broader snont of the female in contrast to the slender and pointed snout of the male. But the snont of the female is not only broader, but also more depressed, and has the eyes more prominent, a feature to which I would call special atteution, and one which I do not find in the male. In contrast, the snout of the male cel is more convex, as will be seen by comparing the accompanying outline sketches.

If one will only notice the width or slenderness of the dorsal, and more especially the broad, depressed snout of the female, with the prominent eyes, as compared with the slender, convex snout of the male, it will require little trouble to pick out the specimens from these data conjectured to be males.

On an arerage amongst twenty cels, measuring $300-500^{m m}$ in length, furnished me by different fishermen, I found 5 cels with lobulated organs or 25 per cent. If, however, I paid attention to the two most impor-
tant characters, namely, the relative proportions of the dorsal and snout, by their help picking out those specimens which appeared to be males, I actually found 80 to 90 per cent. of the individuals so selected to be males with the Syrskian organ.

I found it impossible to discover distinctive sexual differences of coloration; all the males and females investigated by me were of a white color ventrally, green above, with a metalic luster on the sides.

FHOM LOWEETCALIFORNIA.

By W. N. LOCKINGTON.

Sparus brachysomus n. sp.
D. $\frac{12}{12}$; A. $\frac{3}{11}$; P. 15 ; V. $\frac{1}{\overline{5}}$; C. $3-9-8-3$; L. lat. cir. 50 .

Body compressed, high; snout and forehead rising in nearly a straight line, at an angle of about fifty degrees with the axis of the body, to the occiput. From this point the dorsal outline arches upwards to the third dorsal spine, then downwards in a continuous arch to the end of the dorsal fin. Abdominal outline much less curved than the dorsal, the anal portion more curved than the anterior portion, lower jaw curved, outline between lower jaw and ventrals nearly straight.

Greatest depth 23 ; length of head about $3_{1} \frac{1}{1}$; dorsal base about $2_{10} \frac{3}{0}$; pectoral about 32 times in the greatest length ; snout (along axis of body)年; orbit 41 ; interocular width $3 \frac{33}{48}$ in the length of the head; least depth of caudal peduncle $5 \frac{1}{4}$ times in the greatest depth.

Posterior extremity of maxillary falling somewbat short of the anterior margin of the orbit, its upper margin concealed beneath the preorbital throughout; no prominent knob at upper extremity. Lower jaw shorter than the upper.

Nostrils simple; the posterior a large elongated slit close in front of the orbit and on a level with the lower half of the eye; the anterior a small circular foramen situated at a lower level than the posterior and about one-fourth of the diameter of the eye in advance of it.

Interocular space considerably convex transversely, but ouly slightly so longitudinally.

Posterior margin of preoperculum straight and vertical, lower line convex, the angle of junction strongly rounded. Operculum ending in a flat point; suboperculum membranous at tip.

Numerous conical teeth in front of the jaws, the anterior row considerably larger than those behind. Three rows of molars in the upper jaw, two in the lower. In the specimens examined there are 9 large incisors in the mandible, forming a bold are, the interior of which contains about five irregular rows of crowded cardiform teeth, reaching back to the anterior small molars. Upper jaw similar, with 7-10 large incisor teeth.

Number of molars in each row of lower jaw variable, but asually 0 on each side, those of the inner row increasing in size to the last, or to the penultimate, which sometimes exceeds the last in size. Teeth of outer row also increasing in size posteriorly, but to a less extent and less regularly, so that the binder four molars of the inner row are much larger than their neighbors in the outer row. The two inner rows meet at an acnte angle, the anterior pair in contact.

Inner row of molars of intermaxillaries consisting of 21 teeth, of which 6-7 form a row on each side, and increase in size to the hindermost or the one in front of it, while the remainder form a curved line of small tubercular teeth of even size along the inner side of the front of the jaw, behind the band of incisors. Outer row of molars 8 in number, similar to those of the lower jaw. Middle row formed of more numerous (about 14) and, on the whole, smaller teeth than either of the outer rows, increasing in size posteriorly, so that, though the anterior five or six are rery small, the posterior ones are about equal in size to the smaller teeth of the outer row. The hindmost four or tive teeth of the inner row in all cases exceed greatly in size any teeth in the other rows.

Gill-rakers cousisting of clusters of pin-like, sleuder teeth set upon tubercles; those of the last two pairs of branchial arches largest. The principal clusters of teeth are triangular, with several rows of teeth, the largest behind, the other rows diminishing in length and in size of teeth as they succerd each other anteriorly.

Pharyngeal bones, upper and lower, corered with a dense cluster of teeth similar to those in front of the jaws. The inner row of the lower pharyngeals larger than those in front, which are about four in number, and the anterior teeth rather larger than the posterior.

Dorsal commencing immediately over the pectoral base; first spine about one-fourth the length; second spine eleven-twenticths of length of third; fourth broken in specimen examined; fifth slightly shorter; and the remaining spines decreasing regularly to the twelfth, which is less than half as long as the third.

Rays of soft dorsal twice bifurcate.
Second anal spine longer than the third and abont twice as long as the first, which is inserted a little behind the pectoral base; rays twice bifurcate.

Caudal deeply and triangulately emarginate on its hinder border, the free portion of the central rays abont one third the length of that of the outer rays. Uuter pair of principal rays undivided, most of the others four times bifurcate.

Fifth ray of pectorals longest, fourth but little shorter, lower rays tapering rapidly, producing a rather narrow elongate fin; rays twice bifurcate.

First soft ras of ventrals longest; rays three times bifurcate.
Scales large, broader than long, slightly striated and scalloped on their engaged margin, posterior margin rounded, anterior somewhat angular, the center advancing. Scales of body subequal, operculum and
preoperculum with rather smaller scales, those of interoperculum smaller still. Margins of orbit scaleless, the scales of occiput, which are rather small, advancing to a point very slightly in advance of the anterior orbital margin. Cheeks, jaws, and fins scaleless.
Lateral line approuching gradually nearer to the dorsal outline toward the posterior portion of the body, and running a little above the center of the caudal peduncle; pores simple.

Color, in alcohol, dark brown on snout and cheeks, fading to silvery on sides and rest of body; behind the pectorals there are traces of golden reflections.

On the orbital margin, just above the posterior nostril, there is a tubercular projection of the bone.

Several specimens of this species were sent from Magdalena Bay, Lower California, by Mr. W. J. Fisher. They were unfortunately in rather bad condition, so that the tips of the rays of the soft dorsal and anal are broken off both in the example described and in others which were carbolized and dried.
One of the examples is in the National Museum, Washington, D. C.
This species should probably be placed in the genus Calamus Poer, which includes also the Pagellus calamus of Cuv. \& Val., but as I have not Poey's work at hand I leave it in the Linnæan genus Sparus.Dimensions.Inches
Total length from tip of snout to tip of candal lobe 14. 60
Total lergth from tip of snout to end of middle caudal rays. 12. 37
Grentest depth across pectoral base 5. 25
Depth of caudul peduncle 1. 00
Length of head to tip of opercular spine 3. 4\%
Tip of snont to upper pectoral axil 3. 90
Tip of snout to origin of anal 7.70
Tip of snouc to origin of dorsal, along dorsal outline 5.55
Tip of suont to anterior axil of ventrais, along abdominal outline 4. 33
From orbit to tip of upper jaw, in straight line 2.25
Upper margin of orbit to level of center of interocular space 37
Longitudinal diameter of eye 76
Width of interocular space 92
Length of suout 1. 62
Tip of snout to end of maxillary 1. 52
Length of pectorals, center ray 3. 48
Length of ventrals 2. 40
Length of base of dorsal 6.17
Leugth of base of spinons dorsal 3. 88
Leugth of first spine of torsal 53
Length of second spiue of dorsal 1. 10
Length of third spine of clorsal 2.03
Leagth of fifth spine of dorsal 1.97
Length of anal base 2. 15
Length of first anal spine 45
Length of second anal spine 94
Leugth of third anal spine 33
Greatest thickness at operculum 1.75
Greatest distance from abdominal outline to lateral line 4. 05

DESCREPTION OF SEVEN NEW SPECEEH OF SERAETOID TIMRES, FROM THE COABT OP CAIIRORNIA.

By DAVID S. JORDAN and CHARLES H. GILBERT.

The Sebastoid fishes of the coast of California have been referred by Professor Gill to four genera: Scbastodes (type paucispinis), Nebastosomus (type melanops), Sebastomus (type rosaceus), aud Sebastichthys (type nigrocinctus), the first separated by the small size of the scales, the others mainly differentiated by the degree of development in the spines of the head. The genus Sebastodes we consider valid, referring to it only paucispinis, although the affinities between paucispinis and the group termed Scbastosomus are not remote, as is shown by the smooth head, protruding lower jaw, small scales, and longer anal fin in the latter group.

The discovery by us of numerous additional species not known to Professor Gill renders it evident to us that the groups Sebastosomus and Sebastomus cannot be maintained as genera distinct from Scbastichthys, and that, in order to recognize them as subgenera even, a different distribution of the species must be adopted.

The Californian species known to Professor Gill are distributed by him as follows:
Genus Sebastodes.
paucispinis.
Genus Sebastosomus.
melanops.
simulans.
flavidus.
ovalis.
pinniger.
Genus Sebastomus.
elongatus.
rosaceus.
ruber.
anriculatus. •
nebulosus.
Genus Sebastichthys.
nigrocinctus.
The following arrangement expresses our present views as to the relations of the species known to us, so far as it can be shown in a linear series.
Genus Sebastodes.
pancispinis.
Genus Sebastichthys.
Series (or subgenus) Sebastosomus. melanops.

simulans. flavidus.
ovalis.
Series (or subgenus) Sebastichthys. atrovirens. pinniger.
elongatus.
rubrivinctus.
auriculatus.
vexillaris.
chlorostictus. rosaceus. constellatus.
ruber.
rastrelliger.
nebulosus.
fasciolaris.
serriceps. nigrocinctus.

Of the foregoing species we have examined a large series of all except ovalis, rubrivinctus, and nigrocinctus. All the species except nigrocinctus, ovalis, and rubrivinctus are of frequent occurrence in the San Francisco markets.

The characters drawn from the presence or absence of the different pairs of spinous ridges on the top of the head are among the most reliable in this group, although not hitherto accurately given by the describers of the species. Some individual irregulantics may be observed, but these are usually readily detected.

For these spines we have adopted the following names: Nasal: those near the unstrils; preseut in all our species of Sebastichthys. Preocular: for those above the front of the eye; present in all except flavidus and simulans. In melanops the ridge is present, but it usually does not end in a spine. Suprancular: above the eye; present in all but simulans, melanops, and flavidus. Postocular: close behind these; present in most of the red species, usually wanting in others. Tympanic: behind the postocular, and generally present. Occipital: long ridges on the posterior part of the head on each side of the occipital crest. These ridges eud is spines iu all except melanops, simulans, and flavidus. Coronal:
a pair of distinct spinous ridges in front of the occipital ridge; present in one species only-auriculatus. Nuchal: close behind the occipital; in one species (serriceps) large and distinct, in the others either wanting or often coalescent with the preceding.

Two suprascapular spiues are present in all the species except auriculatus, which has three on each side.

The following table gives the names of the spinigerous ridges on the top of the head usually present in each species, beginning with those in which the ridges are least elevated:

	Paira.
Paucispinis, preocular, occipital	2
Flavidus, nasal	1
Melanops, nasal and preocular	1 or 2
Simulans, nasal	1
Oralis, nasal, preocular, supraocular, jostocular, tympanic, and occipit	6
Pinniger, nasal, preocular, supraocular, postocular, tympanic, occipital	6
Atroriren, nasal, preocular, supraocular, occipital, and sometimes tympa	5
Elongatus, nasal, preocular, supraocular, tympanic, occipital	5
Rastrelliger, nasal, preocular, supraocular, tympanic, occipital	5
Auriculatus, nasal, proocular, supraocular, tympanic, coronal, occipital, and often nuchal.	7
Vexillaris, nasal; preocular, supraocular, occipital, and sometimes tympanic	4 or 5
Chlorostictus, nasal, preocular, вupraocular, postocular, tympanic, occipital	6
Rubrininetus, nasal, preocular, supraocular, tympanic, occipital..................	5
Rosaceus, nasal, preocular, supraocular, postocular, tympanic, occipital	6
Constellatus, nasal, preocular, supraocular, postocular, tympanic, occipital.....	6
Nebulosus, nasal, preocular, supraocular, tympanic, occipital	5
Ruber, nasal, preocular, supraocular, postocular, tympanic, occipitad	\%
Fasciolaris, nasal, preocular, supraocular, tympanic, oceipital...................	5
Serriceps, nasal, preocular, supraocular, tympanic, occipital, nuchal	6
Nigrocinctus, nasal, preocular, supraocular, postocular, occipital	5

The character of the gill-rakers has been hitherto unnoticed. In this regard the species may be grouped as follows:

1. Long and slender : flaxidus, simulans, ovalis, pinniger, melanops, atrovirens.
2. Long and rather strong: rexillaris, elongatus, chlorostictus, rosaceus.
3. Stout and rather short, usually not clavate, but constricted toward the tips: rubrivinctus, auriculatus, constellatus, ruber.
4. Stout, short, compressed, and clavate: nebulosus, fasciolaris, serriceps, nigrociactus.
5. Very short, broader than high : rastrelliger.

SEBASTICHTHYS ATROVIRENS sp. nov.

Allied to S. pinniger. Body oblong, not very stout, not tapering rapidly backward. Head moderate, rather pointed, its apper outline with a slightly curved slope from the snout to the nuchal region.

Mouth moderate, not very oblique, the lower jaw little projecting, the rather slender maxillary extending to the posterior border of the pupil; the premaxillary below the horizon of the pupil. Maxillary largely scaly. Eye large, about three and a half times in length of head.

$$
\text { Proc. Nat. Mus. } 80-19 \text { Sept. } 28,1880 .
$$

Ridges on top of head rather low, not ending in very prominent spines. The following pairs are present: Nasal, preocular, supraocular, and occipital, four in all. Occasionally the tympanic spine is also developed, although very small. The nasal spines are quite prominent. The preocular and superocular moderately so, but short. The occipital spines are comparatively short and low.

Preorbital bone with the neck very narrow, scarcely one-fifth the diameter of the eve, provided anteriorly with two stout spines, which project backward.

Preopercular spines short, but rather sharp, the second longer and slenderer than the others, all of them pointed. Suboperele and interopercle with spines. Opercular and suprascapular spines sharp.

Interorbital space rather broad and slightly convex, widened back. ward, a little depressed on each side next the supraocular spine, its width less than that of the eye and more than the length of the oceipital spine.

Gill-rakers long and slender, but stouter, rougher, and shorter than in S. pinniger, 9 above the angle and about 22 below; the longest twofifths the diameter of the eye, about half the interorbital space.

Scales on the head rather large, about 15 in a cross-series on the checks abore the suborbital stay. Preorbital scaly.

Scales ou body large and somewhat more regularly arranged than usual. Accessory scales present, but not numerous; 52 transverse series of scales.

Dorsal spines moderate, the fifth and sixth spines highest, the others regularly shortened each way, the twelfth about as long as the first, the membrane joining the thirteenth less than half way up; the highest spine rather less than half the length of the head and lower than the soft rays, which are rather high. Caudal slightly rounded.

Anal fin short and high, its spines slender, the second shorter than the third, and not much stronger. Pectorals long and narrow, reaching past the vent and nearly to the beginning of the anal, their length seven-eighths that of the head, their base quite narrow, less than the diameter of the eye. Ventrals long, reaching just past the vent.
D. XII, I, 14; A. III, 7.

Color similar to that of S. rastrelliger, but paler, usnally olive-green, marbled with darker; belly pale yellowish green; fins olivaceous. Sometimes this species is quite dark, but it never shows red tints either on body or fins.

This species is closely related to S. pinniger, from which it differs in the absence of the postocular and tympanic spines and in the coloration, S. pinniger being always chiefly orauge-red. Externally it resembles S. sastrelliger most, but it may be known at once from the latter species by the long gill rakers and narrow pectorals.
S. atrovirens is very abundant from Point Concepcion as far as San Diego. About Catilina Island it is the most abundant species of the
genus. It is frequently seen in the San Francisco markets. It reaches a length of about 15 inches, and is usually known as Garrupa or Grouper.

Sebastichtiys rubrivinctus sp. nov.

Body robust, rather deep and compressed, tapering behind to a slender caudal peduncle.

Head long, acute in profle, there being a nearly straight slope from a bony prominence in front of the spinous dorsal to the tip of the lower jaw. Month rather large, oblique, the lower jaw strongly projecting. Maxillary broad, scaleless, extending to opposite the middle of the eye; anterior edge of premaxillary on the level of the lower borter of the eve.

Ridges on top of head quite low, fise pairs of them ending in spines, which are bluntish and depressed. Nasal, preocular, supraoculur, tympanic, and occipital spines present. In one example the nasal spiues are covered by the skin. Ocular ridges not much elevated.

Interorbital space flattish, narrow, not so broad as the eye, not widened behind, covered with rather sparse, almost cycloid, scales. Two long frontal ridges extend the length of the iuterorbital space. These are covered with bare skin. Behind and between these are two shorier ridges occupying the place of the coronal ridges found in S.auriculatus. These two are covered by naked skin, and do not end in spines. Tympanic spines well developed. Occipital ridges long, curved, diverging behind.

Suborbital stay very prominent, its tip nearly reaching the preopercle.
Preopercle with five very strong spines, the three uppermost very long and sharp, the second the longest. Subopercle and interopercle entire. Opercle above with two sharp, long spines. Supraseapular with two strong spines. Preorbital very wide, its neek two fifths the diameter of the eve, with one sharp spine and a large prominence, which usually ends in a spine also.

Eye extremely large, its diameter 33 in length of bead.
Gill-rakers rather short, rather robust, much compressed, toothed on the inner margin, the longest about one-fourth the length of the eye. Gill-rakers $8+20$ in number, about $4+16$ of them being free.

Scales on head all small and thin, mostly cycloid, the minute acces. sory scales extremely numerous. Scales of body smoother than usual, the accessory scales numerous on the posterior part and on the nuchal region, where the scales generally are smaller and more crowded than ou the flanks.

Dorsal spines robust, rather high, the fifth the highest, not quite half the length of the head; those behind rapidly shortened to the twelfth; the twelfth spine lower than the first and much less than half the height of the fifth, its membrane joining the thirteenth spine below its middle. Soft rays about equal in height to the spines. Caudal fin very slightly emarginate. Anal rather low, its second spine much longer and stronger than the third, both robust. Pectorals moderate, not reaching vent;
the base moderate, nearly equal to the diameter of the eye. Ventrals not reaching tips of pectorals.
D. XIII, $14 ;$ A. III, 7. Scales in about 48 transcerse series.

Color very pale rose-red, almost white, with cross-bars of a deep, intense crimson-red, these bands broadest on the back. One of the bands runs across the eye, snont, suborbital, and maxillary, with indistinct boundaries; the next across the nuchal region and front of dorsal and opercle; the next across the middle of the spinons dorsal, including the ventrals and the posterior half of the pectorals; another across the soft dorsal and anal; another across the base of the caudal, the fin itself being deep rose color. The other fins share the color of that part of the body against which they lie.

This species is known from two examples, each about one foot long, taken on a reef in Santa Barbara Channel, by J. Weinmiller, February 14, 1880.

Afterwards about eight others, larger than the original types, were taken in deep water near Monterey. It is known to the fishermen as the "Spanish Flag," and is the most brilliantly colored large fish on the Pacific coast.

Its relations to the other red species are not intimate.
Sebastichthys vexillaris sp. nov.
Body stout and compressed; the back elevated; the form rather deeper and more elliptical than in the other red species. Head moderate; the profile moderately acute. Mouth rather large, moderately oblique, the broad maxillary usually extending to a point somewhat behind the orbit. Premaxillary anteriorly on the level of the lower edge of the pupil. Jaws subequal, the lower somewhat projecting, but without symphyseal knob; the upper jaw not emarginate.

Ridges on top of head long and low, rather broader and lower than in the other red species; their spines rather depressed. The following pairs of spines are present, four or five in all: Nasal, preocular, supraocular, occipital, and sometimes tympanic. The nasal spines are promineut; the preocular spines are quite conspicuous and extend well backward; the supraocular ridge is depressed and broad, its spine triangular; the occipital spines are rather long and diverge backward. In some specimens a tympanic spine is present, which is wanting in the others. The interorbital space is broad and flattish, broader than in related species, about equal to the diameter of the orbit. It is occupied by two raised ridges, which are covered by the scales. In large specimens these ridges are quite obscure.

Preopercular spines moderate; some of them usually divided into two, three, or four at tip, the middle one the largest. The degree of division of these spines is quite variable, but at least the middle spine is usually divided.

Posterior border of the interopercle with a strong spine, above which
are one to three conspicnous spines on the subopercle. Opercle with two diverging spines, above which are two suprascapnlar spines.

Eye moderate, high up, 4 to 42 in head. Preorbital with the neck very broad, with two bluntish downward directed spines in front, its narrowest portion two-fifths the diameter of the eye. Suborbital stay short and rather weak. Maxillary and preorbital with fine scales.

Gill-rakers rather long and strong, compressed, toothed on the inner margin, shorter than in atroxirens, the longest slightly clavate, about half the length of the eyc; the number about $\frac{8}{19}$, nearly all of them free.

Scales moderate, with few accessory smaller ones, in 55 transverse series.

Dorsal spines very strong and high, about as in chlorostictus, higher than in any other species; the first abont half as long as the eye; the fourth the highest, more than half the length of the head, and much higher than the soft rays. The twelfth spine is a little higher than the first, and its inembrane joins the thirteenth about half-way up. Membrane of spinous dorsal rather more deeply incised than in other species. Soft dorsal rather high, but lower than the spines.

Anal spines much smaller than in rosaceus, etc.; the second not longer than the third, and not much stronger; about two-thirds as high as the soft rays. Soft rags of anal high. Candal truncate. Pectoral shorter than head, not reaching the vent; its base rather broad.

Ventrals moderate, not reaching vent.
D. XIII, 16; A. III, 6.

Color rather bright and pale, yellowish red, becoming lighter below, the reddish and yellowish forming large and irregular areas, sometimes one shade predominating, sometimes the other. A pink cross-blotch on the back at the base of the second and third dorsal spines. Upper parts of the bead mostly pink, with broad olive shales rumning backward, one on the lower lip, one on the maxillary, one from preorbital region downward, one from the eye back ward and downward across the cheeks, and another across the opercular spines. Fins all pinkish red; the membranes olive. Top of head usually with alteruating cross-shades of pinkish and yellowish. In some specimens the yellowish shades are replaced by light olive. Others are quite red; others still are quite brownish. The spots on the back show a tendency to the rosy spots found in constellatus and rosaccus.

This species was first known to us from two specimens taken on a reef in Santa Barbara Channel. A single example was afterwards noticed in the museum of the California Academy of Sciences, and numerous others have been since obtained in the San Francisco markets, where it is very common. It reaches a larger size than its relatives, chlorostictus and constellatus, found in the same markets, and, like them, it has been confounded by previous observers with rosaceus and auriculatus. It may be known from its relatives by its high dorsal spines, low
anal spines, and the smaller number of ridges on the top of the head. its relations are probably more near to S. nebulosus than to the other red species.

Sebasticititys chlorostictes sp. nov.
Body oblong, tapering into a rather slender caudal peduncle, the back not much elevated. Head moderate, the protile rather steep, with a nearly even slope.

Mouth large, oblique, the maxillary reaching to behind the pupil, the premaxillary in front below the level of the large eye. Jaws equal in the closed mouth, the tip of the lower fitting into the emarginate upper jaw; a rather conspicuous symphyseal knob. Preorbital sinuate, usually with two or three flat spines.

Ridges on top of head rather sharp and high, ending in sharp spines. These ridges are longer than in nebulosus and serriceps, and much less elevated. - These ridges are much higher than in vexillaris; about as in constellatus.

The following pairs of spines are present: Nasal, preocular, supraocular, postocular, tympanic, and occipital-6 pairs.

Iuterorbital space concave, with two rather prominent ridges.
Preopercular spines rather sharp, the second longest and slenderest; the lower bluntish, but well developed. Opercular epines sharp; suprascapular spines well developed. A spine on interopercle aud on subopercle.

Gill-rakers long and rather strong, not clarate, the longest about twofifths the diameter of the eye. They are longer than in any other of the red group, rather longer than in vexillaris. Scales on head less developed than in S. constellatus; the snout wholly free from scales. Mantible nearly or quite naked. Scales on body moderate, in about 55 transverse series.

Dorsal spines very high, nearly as high as in rexillaris; the fourth highest, oue-third higher than the soft rays, which are also considerably elevated.

Dorsal fin rather deeply emarginate; caudal fin emarginate; anal fin not very high, its second spine much higher and stronger than the third, about as high as the soft rays. Pectorals with moderate base reaching beyond tips of ventrals, about to vent.
1). XIII, 14; A. III, 6 .

Color rather light olivaccons above, and pinkish overlaid with golden on the sides. Head light red and golden. Three roundish light spots placed as in constellatus and rosaceus, but much less distinct. There are no small light spots on the body. The upper parts of the body, from just below the lateral line, are closely covered with small ronnd spots of a clear olive-green. These spots are most distinct on the back and the top of the head. On the sides of the body, just above and below the lateral line, these spots form two continuous series, following the course
of the lateral line. Eses above with green spots. Fins nearly plain red; the dorsud spotted with olive.

This species is known to us from numerous specimeus obtained in the San Francisco market, taken in deep water at Monterey. It is not rare, but it has been hitherto confounded with rosaceus, from which it may be known at once by the green spots and the great height of the dorsal.

Sebastichteys constellatus sp. nov.
Body rather robust, heavy forwards, tapering into a rather slender caudal peduncle. Head rather pointed in profle, the slope nearly straight from the tip of the snout to the base of the dorsal.

Mouth large, oblique, the lower jaw slightly projecting beyond the emarginated tip of the upper jaw. A conspicuous knob just beyond the symphysis of the lower jaw.

Maxillary very broad, extending to beyond the live of the pupil, its middle part with many small scales; premaxillary in front just below the level of the eye.

Ridges on top of the head well developed, rather high and narrow, ending in moderate spines. The following pairs are present: Nasal, preocular, supraocular, postocular, tympanic, and occipital. The interorbital area has two prominent ridges covered by the scales, and not ending in spines. Behind these is a deep concavity. The nasal spines are bluntish, the preocular sharp, the supraocular ridge rather short, the postocular and tympanic similar to each other. The occipital ridge is long, curved, ending in a sharp spine. Two suprascapular spinea. Preopercle with its first and third spines triangular, bluntish, the second long and sharp, the fourth and fifth reduced to bluntish prominences. Opercle with two strong spines above. Slight spines on the subopercle and interopercle.

Preorbital wide, its neck about one-third the diameter of the orbit, its edge lobed, without spines.

Eye large, $4 \frac{1}{2}$ in head.
Muzzle and preorbital scaled to the tip of the snout more completely than in other species, mandible scaly.

Gill-rakers short, very thick, compressed, clavate, with a tuft of spinelike teeth at tip, the longest of them about one.fifth the diameter of the eye, their number $3+24$ free ones, besides rudiments. Scales strongly ctenoid, the accessory scales largely developed; 53 transverse series.

Dorsal spines rather strong, rather low, the fourth the longest, a little more than one-third the length of the head. Twelfth spine rather short, shorter than the first, its membrane joining the thirteenth spine about half-way up.

Soft dorsal rather low, about equal to the spines.
Anal with the second spine robust, curved, considerably longer than the third, higher than the soft rays. Caudal very slightly eunarginate.

Pestorals reaching beyond tips of rentrals, about to vent, their length two thirds that of the head.
D. XIII, 13; A. III, 6.

IIead densely covered with small scales; a series across the cheeks along the upper edge of the suborbital stay usnally numbering 30 to 40 , the increased number being due to the greater development of the accessory scales.

Color rather light, bright orange-red, the back olive shaded, the belly yellowish. Cheeks with red and yellowish shades. Head and body everywhere closely covered with small roundish pale spots. The spots above are light rose color ; below are nearly white and larger. Four or five roundish rosecolored spots on the back, besides some mottlings of a similar shade. The first spot, often obscure, under the fourth dorsal spine; the next near the lateral line under the eighth dorsal spine; the next close to the junction of the two parts of the dorsal; the fourth under the end of the soft dorsal; a fifth sometimes near the base of eighth dorsal spine. Opercular flap with a rosy spot. Fins light reddish, shaded with olive, or nearly uniform. Dorsal speckled at base with light and dark.

This beautiful species was first noticed by us in Santa Barbara Channel, where a single example was obtained. It is abundant in the markets of San Francisco, where it has been confounded with rosaceus on account of the similarity of the piuk spots. The numerous stellate light spots, however, distinguish it at sight. It is very closely related to rosaceus, however.

The discovery of three species in the waters of California having the light spots supposed to distinguish S. rosaceus, invalidates the identilication of that species with the similarly spotted S. oculatus of Chili.

Slebastichtays rastrelliger sp. nov.

Body rather oblong, deepest at the shoulders, slowly tapering backward to a rather deep caudal peduncle; head short, rather blunt and leep, the upper profile straight; mouth moderate, little oblique, the maxillary reaching to the posterior margin of the eye, the premaxilliary rather below the level of the eye; jaws equal, the lower convex, not produced at tip, and without symphyseal knob.

Preorbital bone morlerate, the width of its neek abont two-fifths the diameter of the eye, its free margin simuate, without spines.

Eye morlerate, anterior, its diameter about $4 \frac{1}{2}$ in head.
Ridges on head strous, but broad and depressed, ending in small spines. The following pairs present : Nasal, preocular, supraocular, tympanic, and occipital, five in all. The occipital ridges are very long, equaling the diameter of the orbit; preopercular spines short and stout, the two upper subequal; operenlar spines usually very broad and flat, their posterior edge sometimes serrated or bifid; suprascapular spines strong; slines on interoperele and subupercle small, sometimes obsolete; inter-
orbital space moderate, less than the diameter of the eye, flattish, with two low ridges; spines of head little divergent backwards.

Gill-rakers cery short, wide, compressed, the longest as wide as high, the shortest much wider and not free, all strongly toothed on anterior margin and side; the number about $\frac{7}{14}$, only 6 to 9 of them being morable.

Scales on body large, the accessory scales almost wanting; about 45 transverse series, and about 50 in the course of the lateral line.

Dorsal spines low, the fifth highest, about two-fifths the length of the head; the last spines not much shortened; the fin comparatively little emarginate; soft rays considerably higher than the spines. Caudal tin slightly rounded. Anal tin short and high, its spines low, the second as high as the third and much stouter. Pectorals rather short, reaching vent, their base extremely broad, its width greater than the length of the eye and abont one-third the length of the head; the lower rays much thickened. Ventrals moderate, not quite reaching the tips of the pectorals.
' D. XIII, 13; A. III, 6.
Color blackish green, with paler mottlings, the sides spotted with darker; belly pale greenish, often many scales on the side, each with a darker spot; paired fins dark, often tinged with reddish; other fins chiefly olivaceous, mottled with darker; anal fin often spotted with black. The brightness of the olive and greenish shades is quite variable, but the species is always without bands or distinct markings and withont distinct red.

This species is extremely abundant from Point Concepcion to Santa Catalina Islaud, and large numbers come into the San Francisco market. It may be known at once from all the others by the small gill-rakers ("rastra") and by the breadth of its pectoral fins. It grows to the length of about 15 inches.
S. rastrelliger is intermediate, in regard to the development of the spines, between the groups termed Sebastomus and Sebastosomus hy Professor Gill. Its relations with S. nebulosus are most intimate, and it forms the base of a scries ascending in degree of roughness of head, terminating in the extreme of S. nigrocinctus.

Sebasticithys fasciolaris Lockington, nom. sp. nov.
(Sebastes fasciatus Girard, not of Storer.)
The form described and figured by Girard as Sebastes fasciatus is, in our opinion, specifically distinct from Scbastes nebulosus of Ayres, with which it has usnally been identified.

The name fasciatus is preoccupied in this group. We have therefore adopted the above name, proposed by Mr. Lockington in MSS.

Scbastichthys fasciolaris is very closely related to S, nfulosus. It is rather stouter, and the slope of the profile is steeper. The ridges on
the top of the head are much higher and stronger, especially the occipital ridge, which forms a wall-like elevation, much as in S. serriceps. The sides of this ridge are vertical, or even directed upward.

The color of this species is very constant and quite distinct from that of nebulosus. It is nearly black, everywhere speckled with whitish. There are coarse yellowish blotches on the sides of the head and body; and a broad, yellowish, lateral band. This band begins on the membrane of the third aud fourth dorsal spines, and extends downward to the lateral line, which it follows to the tail. The edges of this band are very uneven, and it is of varying width, but it is always distinct and continnons. The body is mottled with light and dark, and the fins are all blackish, with pale spots.

In the bluntish spines of the sides of the head, the horizontal mouth, with shortish subequal jaws, the short, thickish gill-rakers, the high - dorsal spines, and moderate, subequal anal spines, this species agrees with S. nebulosus. Both species are common in the San Francisco market, in about equal abundance.

Measurements in hundredths of length to base of caudal.

			$\begin{aligned} & \frac{E}{E} \\ & \frac{E}{2} \\ & \frac{E}{4} \end{aligned}$				
Borly:							
Greateat height	38	36	30. 5	40	36	34.5	41
Leanst height of tail	11	12	12	10	12.5	0.5	-
Greateat lensth	35	41	37.5	38	37.2	40	42
Snout	10	1	9.2		8.5	10	11.3
Orbit	8.5	8.5	11	0. 5			11.5
Interorbital space.......	5	${ }^{6}$	8.	5.7		6.8	.
1 easa width of preorbital	3	2.5	1.5	3			25
Maxilary .i............	18.	20	17	16	17.5	18.5	30.6
Longest gill-raker	2.5	1.5	3.5	2.3	3	3.8	8
Occipital ridge	${ }_{5}^{6}$	8	${ }^{6}$	9.3	6.5	7.5	8
Suprameular ridgo.	5	0	6		5	5. 2	6
Dorsam: Stome to dorsat	32.5	3.7	3.3	38	33	3 L 2	
Longest spine	13.	13	16	16	21	21.5	15
Lowgest ray.	15.5	10	19	15	15.2	10.7	14
Anal:							
Base	13.5	15	15	12.5	15		
Second mpine	14	12	14.5	15	14.6	11.6	16
Third spine	14	${ }^{*}$	15	13.5	12.2	14.5	13
Longest ray	$\underline{22}$	10	20	20	20	18	15
Caudal, leurth.	20.5	30	21	15.3	17. ${ }^{\text {a }}$	18	18.5
Pectoral lengith	27	27	32	24	27		24
Width of base.	11.	11	8.8	9.5	11	9.5	10
Ventral, longth.	- 28.5	x119	24. 5	-19.5	2	21	18
1ronzal.......	K11, 13	X1M, 13	XII1, 14	X111. 14	XIII, 13	XIII, 13	XIM1, 14
Anal	11.5	111,0	111, 7	111.7	111,6	111, 6	11I, 6
Trumaterse rows of scalcs, :-	on	47	47	50	56	42	48
Lencth to base of caudal, in inches	8.7	9.25	7. 25	0.7	11.3	9.3	
Extreme length, in inches...	10.4	11.3	8.75	11.3	14. 25	11.2	8.55

San Francisco, Calo, February 28, 1880.
Note.-The publication of this paper has been accidentally delayed for some time. Meanwhile the writers have discovered a number of additional species of Sebastichthys descriptions of which precede those of the present species, although of course no allusion is made to them in this earlier paper.

DEACEIPTION OF A NEW ESBIOTOCOBD (ABEONA AUEORA),

By DAVID S. JORDAN and CHARLES HI. GILBERT.

Body very elongate, with dorsal and ventral outlines evenly curved; caudal peduncle very long, thick at base; snout blunt and rounded, top of head everywhere transversely convex and the occipital region but little depressed.

Mouth small and oblique, the lower jaw somewhat shorter than the npper and included. The maxillary reaches but two thirds the distance to front of orbit; premaxillaries anteriorly about on a level with lower rim of orbit.

Teeth long and strong, somewhat compressed and incisor-like, arranged in a close series; each tooth with three short-rounded lobes near the end, the middle lebe the longest; their form precisely as in Abeona minima. These incisor teeth are crowded, with the lobes overlapping, and often with one slipped entirely behind the others.

Scales of cheeks in three distinct series below, in one posteriorly. Behind this outer row and well separated from it are, in the upper jaw, from two to several distinct canines, there being usually a pair near the middle of the jaw. Gill-rakers rather feeble, of moderate length. Lower lip thin, with a frenum.

Dorsal fin with the spines from the fifth or sixth to the eleventh, longer than the others, about equal to each other and to the longest soft ray. Pectorals not reaching as far as do the ventrals, which scarcely reach the vent. Caudal forked for nearly half its length. Ventral groove almost obsolete; the distance from ventrals to vent about equals the length of the anal fin.

Lateral line with 40 to 45 scales (4-43-13).
Color bluish black above, becoming lighter on lower half of sides silvery below. Opercles and lower half of sides punctate with black dots and shaded with light orange or rose red, the latter here more intense on the centers of the scales. A broad grayish area extending backward from the axil of the pectorals, without orange tints aud darkened by black puuctulations on the edges of the scales; this area ends opposite the origin of the anal fin; above it the orange shade forms a rather distinct band from the lips to the base of the caudal. Axil of pectorals black, especially above. Fins plain, speckled with blackish. Anal somewhat yellow.

Fin rays: D. VIII, 17 ; A. III, 20.
The intestines were filled with a species of Ulva, indicating a vegetable diet.

This species is known to us from fifteen examples taken in the bay of Montery, and purchased by us in the San Francisco market.

It agrees with Abcona minima in the peculiar dentition characteristic of that genus, as well as in the large scales and shortened fins. Its form is, however, quite different, resembling more the genera Brachyistius and Cymatogaster. It is a considerably larger fish than Abcona minima; its dorsal spines are weaker and the number of fin rays is greater.
(D. IX, 14; A. III, 16-in Abcona minima.)

From Cymatogaster aggregatus it is widely separated by the different dentition; with Brachyistius frenatus Gill it has closer affinities, but the two species belong to different genera.

This latter species has been but once observed, and no description has been yet published, merels a brief note enumerating some of its peculiarities. We therefore subjoin a fuller account, drawn from a fine specimen obtained by us at Santa Barbara.

Brachyistius frenatus Gill.*

(Proc. Acad. Nat. Sci. Phila., 1862, 275.)
Body elongite, compressed, the body proper regularly efliptical, with long candal peduncle. Head long, very slender and pointed, much depressed above the eyes, the snout projecting. Mouth very small, terminal oblique, the small maxillary falling much short of the orbit. Lips rather thin, the lower with a frenum. Teeth long and slender, somewhat lanceolate, few in number, arranged in a single series.

Preorbital broad. Cheeks with about two rows of scales; opercles with three. Eye large, anterior, about 3 in head.

Gill-rakers numerous, long and slender.
Scales large, 42 in the course of the lateral line. Dorsal spines high and rather strong, the first low, the others rapidly increasing to the sixth and seventh, the eighth shorter, the soft rays a little higher than the highest spines.

Candal peduncle nearly as long as the head, not very slender. Caudal fin rather deeply forked.

Anal spines feeble, the fin elevated in front. Ventrals reaching soft rays of anal. Pectorals reaching first anal spine. Ventral groove very short.
D. VIII, 15; A. III, 22.

Color dark olive-brown above, with lighter stripes along the rows of scales. Below everywhere a brilliant light coppery red; each scale with a light blue spot and dark punctulations. Head colored like the body. Fins all light reddish, plain, the dorsal somewhat dusky. A streak of sky-blue spots below and in front of the eye.

Measurements of Abeona aurora.

We have since obtained this species in very great numbers at various places along
the coast from Los Angeles to Vancouver's Island. Ditrema brevipinne Gunther is
undoubtedly tho same species.
Body:
Greatest depth 86
Least depth of tail 14
Length of caudal peduncle 21
Head:
Greatest length 25.5
Width of interorbital area 9
Length of snout 7
Length of maxillary 6
Diameter of eye 7
Dorsal:
Distance from snont 37.5
Length of base 43.5
Height of longest spine 12
Height of highest soft ray 12
Anal:
Length of hase 16.5
Height of longest ray 9
Caudal:
Length of middle rays 13.2
Length of outer rays 95
Pectoral, length 24
Ventral, length 19
Dorsal rays VIII, 17
Anal rays. III, 20
Scales 4-4:3-13
Transverse series below lateral line 35Say Francisco, Cal., February 28, 1880.DEMCREPTHON OF A NEW FHOUNDEE (PLATYSOMATICHTEYEGTOnIA\&, FEGA THE COA\&T OF CAEIEORNIA.

Ry David s. Jordidan and charles m. GHEBERT.

Body extremely elongate for the family, thin, and strongly compressed. Fead rather long and slender; the snout somewhat pointed. Mouth extremely large and oblique, the lower jaw included; the maxillary very long and slender, reaching much beyond the eye, its length about half that of the head. Premaxillary in front above the level of the lower eye.

Teeth in the upper jaw anteriorly long, slender, and wide-set. Some of the teeth very freely depressible, the larger ones scarcely movable. Posteriorly the teeth are much smaller, close-set, and fixed in two rows; the inner row continuous with the larger anterior series, the outer row extending outside of some of the enlarged teeth.

Teeth in the lower jaw very sharp and slender, long, and wide-set, alternating with shorter ones, which are very freely depressible. Outside of the larger teeth is a series of small, fixed, close-set teeth. The larger teeth in each jaw are distinctly arrow-shaped. Pharyngeal teeth apparently in one row.

Eyes large, dextral, their anterior margins abont even with each other; the upper eye larger and directed obliquely upward. A conspicuous ocular ridge about the upper eye, becoming continuous with the lateral line. Interorbital space narrow, not half the width of the eye, scaly, as is the space in front of it. Cheeks wide, the posterior edge of the preopercle free. Opercle rather short and weak. Premaxillary protractile, capable of little protrusion.

Gill-rakers long and strong, about $4+13$ in number, the longest more than half the diameter of the eye.

Scales very small and thin, irregularly arranged, their margins weakly ciliated, in about 135 transverse series; about 100 tubes in the course of the lateral line. The lateral line is nearly straight, gently ascending in front. No accessory limes. Scales on blind side similar.

Dorsal fin beginning just behind the middle of the eye, its rays low, especially anteriorly, its greatest height considerably behind the middle. Candal fin somewhat forked. Anal tin higher than the dorsal, its highest rays abont midway. No spine before anal. Caudal peduncle long and slender, about as long as the maxillary. Pectoral fins short, the one on the right or eyed side longest, its leugth nearly equal to that of the maxillary. Ventral fins very short, reaching just past the vent.

Fin rays: D. 101; A. 85.
Color plain brown, with darker punctulations. Left side white, the many dark points giving it a soiled appearance. Fins dusky.

This species is known to us from one example over a fuot long, bought in the San Francisco market, and taken just outside the Golden Gate. It doubtless reaches a much larger size, and the adult is probably less slender than this example.

It differs from its congener, the Greenland Halibut, Platysomatichthys hippoglossoides, of the North Atlantic, in the slenderer body, larger mouth, longer gill-rakers, and narrow interorbital space, but the two appear to agree in all respects of generic value.

We regret the necessity of using the clumsy and inappropriate generic name Platysomatichthys for these fishes instead of the name Reinhardtius proposed by Professor Gill. The former name, although later in date, has priority of definition.*

Table of measurcments of Platysomatichthys stomias.

Extreme length

12.9 inches

Length to base of candal ... 10.9 inches $=100$

Greatest depth of body 30
Least depth ... 07
Length of caudal peduncle... 12
Length of head .. 28
Number of gill-rakers .. 4, 11

Length of suout 068
Length of maxilliary ... 152

[^37]Lergth of mandible 108
Greatest width of maxillary 03
Diameter of orbit 07
Distance from suout to dorsal 116
Length of base of dorsal 79
Greatest height of dorsal 094
Distance from snout to anal 346
Length of base of anal 615
Height of longest ray 105
Length of middle candal rays 142
Length of onter caudal rays 185
Distance from snout to pectoral 295
Length of pectoral (right side) 128
Distance from snout to ventral 127
Length of neutral 057
Dorsal rays 101
Anal rays 65
Number of tubes in lateral line 98San Francisco, Cal., March 1, 1880.

DESCRIPTION OF A NEW EMEIOTOCOID FIMR (CEMATOGAETERE HOAACELH), HRON TME COABT OF CALIEORNA.

Ry DAVID S. JORDAN and CHARLES H. GILEERET.

Body rather elongate, deepest at the shoulders; the profile thence to the occipnt convex, the occipital and interorbital region considerably depressed; body tapering backwards from the shoulders into a short and slender candal peluncle.

Head small, thick, the snout blunt. Mouth rather large, little oblique, the lower jaw included; maxillary slightly passing the vertical from the front of the orbit; premaxillary anteriorly on a level with the inferior margin of the pnpil. Eye very large, its diameter about one-third the length of the head; interorbital region very broad. Lower lip with a narrow frenum, above which its margin is narrowly free.

Teeth large, in a single row, much as in Cymatogaster frenatus, but blunter, slightly compressed and truncate at tip, somewhat incisor-like, the edge, however, entire. Teeth few and distant, about $\frac{12}{8}$; none on the sides of the lower jaw. They are larger, blunter, and more wide-set than in Cymatogaster aggregatus.

Scales on the cheeks in three series below.
Gill-rakers small and weak, much as in Cymatogaster aggregatus, curved and apparently smooth.

Scales large, but rather smaller than in any of the related species, 50 in the course of the lateral line.

Spinous dorsal high; the first spine two fifths the length of the highest; the sixth to tenth of nearly equal height, and higher than the soft rays. Anal fin with the base oblique and convex, the spines rather strong, more or less curred, as in Abeona.

Caudal fin narrow, forked for more than half its length, the lobes rather pointed. Pectoral fins small, not reaching to the tips of the ventrals, which attain the anal.

Fin rays: D. X, 18; A. III, 20.
Color in alcohol silvery, strongly flushed with rose-red, darker above. Top of head orange. A very distinct oblong chocolate-colored spot above the lateral line at the origin of the soft dorsal fin. Another much smaller one just below the end of the soft dorsal. Fins immaculate, slightly tinged with reddish. In life the color was silvery, with the rosy flush less distinct.

This species is known from a single specimen found by Mr. W. N. Lockington in the San Francisco market. A few others have since been obtained from sweep nets in deep water.

In its relations it is intermediate between the species which we have taken to be Brachyistius frenatus Gill and the common Cymatogaster aggregatur. The frenum of the lower lip is too little developed in the large. scaled Embiotoroids (Abeona, Cymatogaster, "Brachyistius") to be nsed for generic disunction. Abeona is well set off by the tricuspid teeth, but the dentition of Cymatogaster and Brachyistius is essentially the same, the slightly more incisor-like form of the teeth in Brachyistius being scarcely definable as a generic character.

The numbers of fin rays do not afford very good generic characters, as will be seen by the following enumeration:

	Doraal.		Anal.	
Cymatogaster aggregatus.	IX,	20-21	III,	22-24
Brachyistius rosaceus.	X ,	18	III,	20
Brachyistius frenatus.	VIII,	15	III,	22
Abcona aurora.	VIII,	17	III,	20
Abeona minima.	IX,	14	III,	16

We therefore provisionally refer the present species, with Brachyistius frenatus, to the genus Cymatogaster.

Table of measurements.

Extreme length	5.92 inches	
Length to base of caudal	4.70 inches $=$	100
Body:		
Greatest depth		40
Least depth of tail		11 ¢
Length of caudal peduncle.		15
Head:		
Gratest length		30
Wiulth of interorbital area		8
Length of snout.		67
Length of maxillary		84
Diameter of eyo.		$10 \pm$
Dorsal:		
Length of base..		50
Heigbt of highest spine.		15
Height of longest ray...		15

Anal:
Lengtis of base 21
Height of longest ray 9
Distance froms ventrals 2%
Caudal:
Length of middle rays. $1: 3$
Length of outer rays 26
Pectoral, leugth 27 $\frac{1}{2}$
Ventral, leugth :3
Dorsal rays x. 18
Anal rays 111, 20
scales (i-51)-16
San Francisco, Cal., March 2, 1880.

DEACRIPTION OF A NEW APECEESOF DEEP-WATEREINR (ICHCHRTHIS LOCKENGTONI, FROM THE COAST OF CALBERNAA.
 By DAVID S. JORDAN and CHARLES H. GILBERT.

Icichthys sern. wov.
Allied to Icorteus Lockington, but the body lower and more cfonsate, not compressed at the bases of the vertical tins. Head moderate; reves lateral; mouth terminal, little oblique, with small, sharp, terth in one series, in the jaws only. Gill-openings very wide, continuons. (iillrakers long. Pseudobrachia present. Branchiostegals t. Bowly enfirely scaly. Lateral line continuous, unarmed. Bases of fins without spinules.

Dorsal and anal fins long and low, composed of sott rays only. l'ecetoral fins moderate. Ventral fins small, thoracie, I, 5. Pylorice rorea about 6, large. Bones all very flexible, cartilaginous.

The scaly boty fully distinguishes this species from Icostens, with which singular geras its affinities are intimate, althongh the known species do not resemble each other closely.
(Etymology : exw, to yield or submit; zous, fish-in allusion to the tlexible skeleton.)

Icichthys lockingtoni kp. uov.
Body oblong, moderately elongate, somewhat compressed, the candal peduncle rather slenter.

Head moderate, compressed, with vertical cheeks, rather broad and slightly convex above, the snout abruptly descendiug, hence bluntish in profile. Profile nearly straight from upper part of snout to the nape.

Mouth inoderate, little oblique, the slender maxilhary scarcely widened at the tip, extending to rather below the front of the pupil, the anterior edge of the premaxillary on the level of the lower rim of the eye. Lips thin. Cpper lip not protractile. Premaxillary tapering backward, not forming the whole margin of the upper jaw. Maxillary behind slipping entirely muder the membranous edge of the preorbital. Preorbital rather

$$
\text { Proc. Nat. Mus. } 80-20
$$

sept. 28, 1880.
wide, with one or two series of rather large, thin cycloid scales. These scales perhaps covered the cheeks also in life. At present no other scales are present on the head in the typical example. Lower jaw prominent, projecting in front, but included at the sides. Teeth in jaws only, minute, sharp, closely and evenly set, much as in Icosteus anigmaticus, but rather larger and less numerons.

Eyes large, lateral, longer than snout, their diameter contained about 4 times in the length of the head. Cheeks rather wide. Preopercle with a prominent crest, behind which are some radiating mucous cavities; the bone with a broad, prolonged, Hlexible membranaceous edge, covered with radiating strix, each of which ends in a slightly exserted flexible point. Opercle and subopercle rather large, extremely thin, and each crossed by numerous conspicuous radiating strie.

Gill-openings wide, not separated by an isthmus, the membranes not connected. Pseudobranchise present. Branchiostegals 7. Gill-rakers long, slender, sharp, their length nearly three-fourths the diameter of the eye. They are rather close-set and moderately stiff. Gills 4, a slight slit behind the posterior gill.

No bony stay connecting suborbital and preopercle.
Scales very small, appareutly cycloid, soft and smooth to the touch, covering the body evenly, but becoming smaller below. Lateral line nearly straight, apparently continuous, bit not conspicuous on the middle part of the body. It does not run up on the caudal fin. There are on it no traces of the spinules, so conspicnous in Icosteus anigmatians.

Scales (too small to be accurately counted) in about 120 transverse series.

Dorsal fin long and low, begiming opposite a point nearly midway between the vent and the base of the ventrals; the number of rays 39 to 40 . All the rays are sott and articulated, and apparentiy all except the first are brauched. The first rays are very low, the fin gradually rising posteriorly, the highest about one-third the length of the head. The base of the tin is somewhat scaly.

Anal fin entirely similar, but shorter, beginning slightly in frout of the middle of the body (without caudal), and ending just in front of the last rays of the dorsal; its rays about 28 .

Caudal broad, fan-shaped, on a slender peduncle; the accessory rays numerous and recurrent. The fin is broken, so that its outline cannot be ascertained.

Pectorals as in Icostous, with the carpal bones slightly exserted, as if pedunculate, the base a little below the axis of the body, the outline rounded. The fin is short and small, its length less than that of the head.

Veutrais short and small, thoracic, placed a little behind pectorals, with one obsolete spine and tive soft rays, one of which is slightly filamentous. The fin is about one-third the length of the head.

Fin rays not beset with spinules,

Vent normal, immediately in front of the anal, withont papilla.
Air-blatller apparently wanting. Pyloric coeca about 6, rather long.
Bones all soft and flexible, as in Icosteus anigmaticus. The skin, however, not thick and tough, as in the latter species, but thin and scaled.

Coloration in spirits plain brown, lighter below; the skin somewhat punctulate.

Measurements of typical example.

Least depth... 9
Length of head ... 20

Interorbital width ... 5 3t
Distance from suout to dorsal.. 3^{37}
Length of base of dorsal..
Height of dorsal ... 7

Base of anal .. 32

Length of ventral..
Number of tin rays:
Dorsal... 39
Anal ... 28
scales in lateral line.. 120
The single example of this species at present known Was obtained in the market of San Francisco by Mr. W. G. W. Marford, with two of the original types of Icosteus anigmaticus. It has been presented by the California Academy of Sciences, for whom it was originally obtained, to the United States National Museum. Its specific distinctness from Icostens anigmaticus was first noticed by Mr. Lorkington, and we have seen fit to name the species for him, in recognition of his important work in Californian ichthyology.

The two species are called "deep-water tish" by the deaters.
As before noticed, the relations of this genus are evidently with the associated genus Icosteus, but the two genera hear little resemblance to any form known to us. Thes will probably constitute a distinct family or subfamily, in the Trachinoid group.

This family (Icosteide) may be defined as follows:
Bods oblong, compressed. Heat moderate, marmed; the suborbital without bony stay. Mouth terminal, little oblique; the premaxillary not protractile; the maxillary slender. Teeth minute, sharp, erect, in one series on the jaws only. No barbels. Gills 4, a slit behind the fourth. Gill-openings wide; the membraues free rom the isthuns. Gill rakers slender. Branchiostegals 7 .

Dorsal and anal tins long, without spines. Caudal tin, with many recurrent accessory rays, on a slemder peduncle。 Pectoral fins rounded, with the carpal bones slighty exserted. Ventral fins thomeice, 1,5 , or I, 4. Vent normal, without aual papilla. Psendobranchit present.

Skeleton imperfectly ossified, the bones Hexible, so that the whole booly is limp and destitute of firmness.

The two genera may be thus compared:
"Head aud body nakod, cowored with rather thick torgh skin; lateral line and fin rays beset with spinules. Dorsal and anal rather hogh, the body at their bases closely compressed. Howsal rays, 5ll to 5an; anal rays, 35 to 40 ; ventrals rather long, I, 4

Icostels.

* Head partly and the borly wholly covered with small scalos. Lateral liue and fins rays smooth. Dorsal and anal fins low, their bases little compressed. Dorsal rays, 35 to 40 ; аиal rayn, 25 to 30 ; ventrals nhort, I, 5................ Icicutuys.

San Francisco, Calo, Merch 12, 1880.
 UNITET NTATE: NATEONAT, MENEUM。

Hy ROBERT RIDGWAY.

The following catalogue enumerates all the species of Humming Birds which are contained in the collection of the National Museum, with the localities represented, the latter being in many cases additional to those given in standard text-books relating to this family of birds. The chief aim of the list is to show what species are wanted to complete the collection, and exchanges to this end are respectfully solicited. Many of the species of the list are represented by in incomplete series of specimens, often by a single skin only, aud of these additional specimens are desimable, especially if from a locality not mentioned in the list. Such species are indicated by an asterisk prefixed to the name.

The names and mumbers correspond with those of Elliot's "List of Described Speries of Mumming Birds," published hy the Smithsonian Institution. ${ }^{2}$

[^38]＊13．Phzoptila sordida Gould．
S．Mexico（Oaxilcal）．
＊16．Phæthornis yaruqui（Hourr．）（iould．
Eenator．
1月．Phzethornis emilize（hunrr．）Bonap．
Costa livea；Colombia．
＊19．Phæthornis augusti（Bourr．）Bouap．
Venezucla．
＊20．Phaethornis pretrii l．esw．
Brazil．
－Pl．Phathornis superciliosus（Iinn．）Swaina．
Ibalitit．
28．Phathornis longirostris（Lons．）Caban．of Hein．
Mexico；（ruatemala：Colombia（Turbo）；Pamama：E：Peru（Pebam）；${ }^{2}$
（＇hiriqui．
－然3．Phathornis hispidus（Gould）（irin．
F．Ecuador（Rio Napo）．
＊24．Phathornis syrmatophorus（iould．
（Quito．

＂Bogota＂．
＂26．Phathonis eurynome（La＊N．）（irily．
Brazil．
＊$勹$ \％．Phzethornis squalidus（Temm．）Bonap．
Southern Brazil；Rio Negro．
28．Phathornis longuemareus（I．ess．）（iray．
Trinidad；＂Brazil＂．
99．Phzthornis adolphi Gould．
Gnatemala；Costa Kira；Panamar New（ivenamlat Turbo）．
＊30．Phzethornis griseigularis fipuld．
Colombia．
＊31．Phzethornis striigularis（rould．
Colombia．
36．Eupetomena macroura（（imel．）Bon：ıl．
Brazil（Bahia）．
＊37．Eupetomena hirundo foulif．
Bolivia．
38．Sphenoproctus pampa（Less．）Cimuld．
Guatemala．
＊39．Sphenoproctus curvipennis（Licht．）Gould．
E．Mexico（Mirador）．

[^39]* 40. Campylopterus largipennis (Borli.) Cah. \& Hein.

Cayenne.

* 12. Campylopterus rufus Less.
(inatemala (Dueñas; Gmatemala City).
* 41. Campylopterus obscurus (iould.

İ. Peru (Tebas).
44. Campylopterus lazulus (Bonnalt.) Bonap.

Colombia; W. Pert.
45. Campylopterus hemileucurus (Ticht.) Cab. \& Hein.
F. Mexico (Jalapa); IIonduras; Veragua; Cinatemala; Costa Rica.

* 46. Campylopterus ensipennis (swains.) Less.

Tobago.

* 47. Campylopterus villavicencio (Bunrc.) Gould.

Rio Nipo.

* in. Campylopteras roberti (Sulvin) Gould.

Ginatemala (Choctum, Vera Paz).
*5\%. A phantochroa cirrochlorin (Vieill.) (iould.
Brazil.
54. Caeligena clemenciae I،es.
L. Mexico (Mirador).

* fon. Caligena henrici (Lew.) Cab. \& Hein.

Guatemala.
56. Cæligena viridipallens Bourc. \& Muls. Guatemala (Coban, Vera Paz; Gnatemala City); "Mexiro".

* 5\%. Caligena hemileuca (Kalsin) Filliot.

Costa Rica.
ix. Lamprolzma rhami (less.) Reich.
E. Mexico (Orizaba and Mirador); Guatemala (Cimalemala City).
59. Orcopyra calolzema Salvin.

Costa lica.

* (6). Oreopyra leucaspis Gould.

Chiriqui.
G2. Oreotrochilus pichincha (Bourc. \& Muls.) Bp.
Pichincha.

* iis. Oreotrochilus chimborazo (Delattr.) Gould.

Chimborazo.

* if. Oreotrochilus estella (D'Orb, \& Lafr.) Gould.

Bolivia (La Paz).
*6. Oreotrochilus leucopleurus Gould. Chili (Valle del Yero).
(i火. Lampornis violicauda (Bodd.) Elliot.
"I'lorida"; Brazil (Bahia); Guiana; Veneznela: I'anama; Colombia (Bugota and Cartagena); E. Peru (Pebas); Trinidad; Demerara.

[^40]69. Lampornis mango (Linn.) Goser. Jamaica.
50. Lampornis prevosti (Less.) (ionld. Mexico (Tehuantepec).
71. Lampornis viridis (Aud. \& Vieill.) Gould. Porto Rico.

- 73. Lampornis gramineus (Gimel.) Gould. Guiana.

55. Lampornis dominicus (Linn.) Elliot. St. Thomas; Haiti ; Porto Rico.
56. Eulampis holosericeus (Linn.) Gould.

St. Thomas; Martinique; Dominica; Antigua; Gualeloupe; St. Vincent; Grenada; Barbuda; Tobago; St. Bartholomew, and Barbadoes.
7. Eulampis jugularia (Linn.) Gould.

Martinique; Dominica; Gmaleloupe, and St. Vincent.
7*. Lafresnaya flavicaudata (F ramer) Bonap.
Colombia (Bogota and Popayan).

* 29. Lafresnaya gayi (Bourc. \& Mulж.) Bp.

Ecuador (Quito).
co. Chalybura buffoni (Less.) Reich.
Venezuela (Laguayra); Colombia; Panama.

* 2 . Chalybura isaura (Gonld) Salv.

Veragua; Costa Rica.
88. Chalybura melanorrhoa Salvin.

Costa Rica.

* 84. Chalybura caruleiventris (Reich.) Cab. \& Hein.

Colombia (Bogota).
8.). Florisuga mellivora (Linn.) Bonap.

Guatemala; Bogota; E. Peru; Tobago; Guiana (Demusatia) ; licuat
dor (Quito); Tres Marias, W. Mexico! [?]
8(i. Florisuga fusca (Vipill.) Reich.
Brazil (Bahia).
\%. Petasophora anais (Less.) Gould.
Colombia; Ecuador (Quito and Puna I.) ; Bolivia (Ia l'ir).

88. Petasophora thalassina (Swain*.) Gould.

Mexico (Jalapa and Tres Marias); Guatemalat (V. de F'urgo, $\bar{\sigma}, 000 \mathrm{ft} .$, and Guatamala City).
89. Petasophora cyanotis (Boure.) Coulu.

Costa Rica; Veragua; Colombia.
"92. Petasophora serrirostris (Vieill.) Benap.
Brazil.
93. Petasophora delphinze (Less.) Bonap.

Trinidad; Colombia; Guatemala (Coban, Vera Paz).
*94. Panoplites jardini (Hourc.) Gould.
Ecuador (Quito).

```
9.). Panoplites flavescens (Londl.) (ionli)
```

 Colombia (Bogota).
 " 96. Panoplites matthewsi (Hbure.) (imull.
E. Eiruador (Rio Najo); E. Peru (Pubas)
97. Phreolzema rubinoides (Boure.) Reich.
Colombia.
99. Clytolæma rubinea (imm .) (ronld.
Brazil.

* 100. Clytolama aurescens Gould.
E. Periu (Pebas)

103. Iolzma frontalis (Lawr.) Gould.
E. Pertu (l'phas).
${ }^{1}$ 11月. Eugenes fulgens (swains.) Fiould.
Arizona; F. Mevico; Cuatemala.
10\%. Eugenes spectabilis (Lawr.) Muls.
Costar lica.

* 109. Eugenia imperatrix (ionld.
Eenador (Quito).

111. Heliodoxa jacula tiould.
Costa Rica; Veragua; Colombia.

* 112. Heliodoxa jamesoni (Bonrr.) Gonld.
E'cnador (Quito); Bogota.

113. Heliodoxa leadbeateri (Bourr.) (ionhl.
Colombia: "Rio".
*114. Pterophanes temmincki (Boiss.) Goull.
Bogota; Quito.

* 115. Patagona gigas (Vieill.) Cray.
(Quito; Chili ; Peru (near Urmbambat).

116. Docimastes ensiferus (Boiss.) Coull.
Ecuador (Quito); Bogota.
117. Helianthea typica (Less.) (ionht.
Colombia.
118. Helianthea bonapartii (Boiss.) fiould.
Colombia.

* 123. Helianthea lutitiz (Delattr. \& Bonru.) (iomh).
Colombia (Popayan); Quito.
* 130. Bourcieria fulgidigula Conld.
Ecuidor (Quito).

131. Bourcieria torquata (Boiss.) Gionld.
Colombia (Bogota).

* 133. Bourcieria wilsoni (Delattr. \& Bourc.) Bp,
Venador (Quito).
* 1:36. Bourcieria prunelli (Bourc. \& Muls.) Bp.
Colombia (Bogota).
* 1:\%. Bourcieria caeligena (Lem.) lilliot. Bogotal (:).
- 13s. Bourcieria columbiana killiot. Colombia (Bogota).
* 140. Hemistephania johannze (Bonrr.) Rrich. Colombia (Bogota).
* 141. Hemistephania ludoviciæ (Bonre. \& Muis.) Reich. Colombia (Bogrota).
* 142. Hemistephania rectirostris (Gould) Elliot. Ecnador.
* 144. Hemistephania veraguensis (Salv.) Filliot. Costa Rica.
14.. Floricola longirostris (Vipill.) Elliot.

Mexico (Chiapas); Guatemala (Dneñas); Costa Rica; Pansma; Trinidad.
147. Floricola constanti (Delattr.) Elliot.

Costa Rica; Guatemala; San Salvalor; Chiapas: Mazatlan.
-14K. Floricola leocadize (Boure.) Elliot.
Mexico (Tehnantepec, Acapulco, and Mazatlan).

* 149. Lepidolarynx mesoleucns (Trmm.) Reich.

Brazil.
150. Heliomaster fuxcifer (shaw) Elliot.

Brazil; Buenos Ayres (Conchitas).
152. Heliotrypha exortis (Fras.) Elliot.

Colombia (Bogota).
15\%. Heliangelus clarissze (1)e Long.) Bp.
Colombia (Bogota).

* 156. Heliangelus strophianus (Gonld) Bp.

Ecuador (Quito).

- 161. Urosticte benjamini (Bourc.) Gonld.

Ecuador (Quito and Nanegal).
102. Eustephanus galeritus (Mol.) Reich.

Chili (Santiago).

- 16\%. Topaza pella (Linu.) Gray.

Cayenne; Demerara.
167. Aithurus polytmus (Linn.) Cab. \& Hein.

Jamaica.
169. Thalurania glaucopis (Cimel.) Gonld.

Brazil (Rio and Bahiat); "Tres Marias Islands"1|?:?].
170. Thalurania columbica (Boure. \& Muls.) Gould.

Costa Rica; Veragua; Panama; Colombia.

- 171. Thalurania furcata (Gmel.) Goull.

Guiana (Demerara) ; Trinidad.

* 173. Thalurania nigrofasciata (Gould) Bp.

Eeuador (Quito) ; E. Peru (head Huallaga R.); Upper Amazons:

[^41]```
- 17\%. Thalurania eriphile (Lesw) 13p.
 Brazil (Rio Grande do Sul); Ecuador (quito).
* 179. Thalurania bicolor (Gmel.) Elliot.
 Dominica.
180. Mellisuga minima (Linn.) Bp.
 Jamaica; St. Momingo; Haiti (Pt. an Prince().
- 1世2. Microchera parvirostris Lawr.
 Costa lica (Angostura).
1*?. Trochilus colubria Linn.
 Eastern North America (numerous lonalities); Mexion; Ginatemala;
Costa Rica; Veragua.
1N4. Trochilus alexandri Bourc. \& Muls.
 California; Nevada; Utah; New Mexico; Arizona.
* 1\%\%. Calypte costre (Boure.) Gould.
 Guatemala; W. Mexico (Mazatlan); S. Califormia (Ft. Tejon); Cape
St. Lucas; Arizona.
186. Calypte annæ (Less.) Gould.
 California; Arizona.
* \(18 \%\). Calypte helenæ (Lemb.) Gonld.
 Cuba.
189. Selasphorus platycerous (Swains.) Bp.
 Guatemala; Mexico (Mirador); Arizona; New Mexico; Colorado;
Utah; E. Nevada; Wyoming (Ft. Bridger).
* 190. Selasphorus ardens Salvin.
 Costa Rica.
192. Selasphorus alleni Henshaw.
 California (coast-region, Santa Cruz to Nicasio).
194. Selasphorus rufus (Gmel.) Aul.:
 Columbia R., Oregon (3 specimens, types of Audulon's works!):
Sitka, Alaska; Ft. Steilacoom, Washimgton Terr.; Dakota; Sevada;
California; Colorado; Idaho; Arizona; New Mexico; Texas (El Paso);
table-lands of Mexico, south to Mirader.
193. Selasphorus scintilla Gould.
 Costa Rica; Veragua.
"197. Atthis heloisæ (Less.) Reich.
 E. Mexico.
-19\%. Atthis ellioti Ridgw.
 Guatemala.
199. Stellula calliope Gould.
 New Mexico; Arizona; California (Ft. Tejon, Ft. Crook, Honey Lake,
\&e.); Nevada; Montana (Ft. Ellis).
*202. Heliactin cornuta (Max.) Boie.
 Brazil.
- 204. Calothorax lucifer (Swainso) Gray.
 E. Mexico (Mirador); Arizona.
 'S. rufus of Elliot's list.
 is. henehari of Elliot's list.
```

-205. Acestruara mulsanti (Bourro) (iould.
Ecuador (Quito).
*207. Acestrura heliodori (Boturc.) Gould.
Colombia (Bogota).
213. Doricha enicura (Vieill.) Reich.

Guatemala (Coban and Guatemala City).
214. Doricha elizee (Less. \& Delattr.) Gouhl.

Jalapa; Mirador; Merida; Yucatau.
*215. Doricha bryantze Lawr.
Costa Rica; Veragua?

* 216. Doricha evelynze (Bourc.) Gould.

Bahamas (Nassan, New Provideuce).
217. Doricha lyrura Gould.

Bahamas (Inagua).
"218. Myrtis fanny (Less.) Reich.
Ecuador (Quito).
$\therefore 20$. Tilmatura duponti (Less.) Cub. \& Hein.
Guatemala.
[23. Calliphlox amethystina (Gmel.) Reich.
Trinidad; Brazil.
-225. Lophornis stictolophus Salv. \& Elliot.
Colombia (Bogota).

- 226. Lophornis delattrii (Less.) Gonh].

Panama; Veragua?
*228. Lophornis ornatus (Borld.) Gould.
"Brazil"; Trinidad.

- 230. Lophornis magnificus (Vieill.) Gould.

Brazil.
231. Lophornis helena (Delattr.) Reich.
"Mexico"; Guatemala.
*273. Lophornis verreauxi (Bourc.) Reich.
E. Peru (Pebas).
-234. Lophornis chalybea (Vicill.) Bp.
Brazil.
*235. Popelarial tricholopha Reich.
Colombia.
236. Popelaria langsdorfil (Bourc. \& Vieill.) Rillgw.

Brazil ; E. Peru (Pebas).
*2. 2s. Popelaria conversi (Bourc. \& Mılк。) Rialgw.
Costa Rica.
E40. Steganura underwoodi (Iess.) Reir:h.
Colombia (Bogota).
-241. Steganura melananthera (Jad.) Reich.
Ecuador (Quito).
247. Lesbia gouldi (Lodd.) Reich.

Colombia (Bogota).

[^42]316. PROCEEDING OF UNITED states NATIONAL MUSEUM.

250 . Lesbia amaryllis (Bourv.) Roich.
Columbia (Bogota); Eeuador (Quito).
di3. Cynanthus forficatus (Linn.) Bp.
Bogota ; (Quito.
*29. Oxypogon guerini (Boiss.) Gobla.
Colombia.

- 261. Rhamphomicron olivaceus Lawr.

Bolivia (La Paz).
262. Rhamphomicrou heteropogon (Boiss.) Bp.

Colombia (Bogota).
*2i3. Rhamphomicron herrani (Delater. \& Bown.) (iomld.
Ecuador (Quito).
*264. Rhamphomicron stanleyi (Bourc. \& Muls.) (iomld.
Bolivia (La Paz).
266. Rhamphomicron microrhynchum (Boiks.) Bpp.

Bogota; Quito.
*268. Avocettula recurvirostris Swaius.
Guiana.
276. Metallura tyrianthina (Lodd.) Bp.

Bogotal; Quito.
*2r8. Chrysuronia humboldti (Bourc. \& Muls.) Reich.
Buenaventura, Ist. Panama. ${ }^{1}$

* 279. Chrysuronia ænone (Less.) Bp.

Colombia.
*280. Chrysuronia josephinæ (Bonre \& Muls.) Reich.
E. leru (Pehas).
*281. Chryauronia eliciz (Bourc. \& Muls.) B1.
Guatemala (Masagraa, Pacific coast).
282. Chrysuronia chrysura (Less.) Bp.

Brazil; Argentine Republic (Conchitas).
*287. Bchistes geoffroyi (Bourc. \& Muls.) Gould.
Bogota.
288. Heliothrix auritua (Gimel.) Boie.

Brazil ; Colombia (Bogota).
*209. Heliothrix auriculatus (Licht.) Gray.
Brazil.
290. Heliothrix barroti (Bourc.) Gray.

Guatemala; Costa Rica; Veragua; Panama.
291. Chrysolampis moschitus (Linn.) Bọie.

Tobago; Trinidad; Brazil (Rio Janeiro aml Bahia): (olombia (Rogota and Cartagena).
292. Bellona cristata (Linn.) Muls.

Grenada; St. Vincent; Barbadoes; "Venezucla". ${ }^{2}$
[ㅇำ2a.] Bellona ornata (Gould) Ridgw:
St. Vincent.

[^43]293. Bellona exilis ( lim .) Muls.

Dominica; St. Thomas; Martinique; Antirnta; Cillaleloupe; Barsbuda; Porto Rico; St. Bartholomew.
-204. Cephalolepis delalandi ( ${ }^{2}$ ioinlo.) Lould.
Brazil (Rio Graude do Sul).

* 2.0 . Cephalolepis loddigesi (Gouhd) Bin

Brazil.
:99. Adelomyia melanogenys (Fras.) (imuld.
Bogota: Quito.
301. Abeillia typica Bouap.

Guatemala.
302. Klais guimeti (Bourc. \& Muls.) Keich.

Costa Rica; Veragua; Colombiat.
:303. Agleactis cupripennis (1Bourc. © Muls.) Bp.
Colombia; Lecualor (Quito).

* : M A . Aglaactis caumatonota ( (iould) 13p.

Peru (Matara, prov. Ayatucho).'
*30\%. Eriocnemis derbiana (Delattr. \& lioure.) Bp.
Ecuador (Quito).
309. Eriocnemis aureliae (linure. d Muls.) Ruidh.

Colombia (Bogota).

- :311. Eriocnemis lugens Ciould.

Ecuador (Quito).
*:112. Eriocnemis alinae (Bourc.) Roich. Colombia.
*31\%. Eriocnemis luciani (Bonrc.) Reich. Ecuador (Quito).
316. Eriocnemis cupreiventris (Fias.) Reicls.

Colombia (Bogota).
3:0. Enocnemis vestita (Ionghuem.) Reich.
Colombia (liogota).

- is-4. Panterpe insignis Ciah。 \& Hein.

Costa Rica.

* :22\%. Uranomitra quadricolor (Vicill.) Reioll. Orizaba; Mizatlin.
* Bisti. Uranomitra violiceps (Gonld) Cab. N Hein.

Mexico (Orizaba mud Mazatlant).
:82. Uranomitra viridifrons Elliot.
s. Mexico (Tehnantepec).
535. Uranomitra cyanocephala (Less.) lieich.

Mexico (Mirador, Tehuanteper, Chiapas, Tres Marias); (illatemallat (Vera Paz).
330. Uranomitra francize (Bulure.) Reich.

Colombia (Bognota).

[^44]- 33:. Leucippus chionogaster (Tschudi) Gould.

Bolivia (La Paz).
*3:3. Leucippus chlorocercus (iould.
I. Peru (Pebas).
334. Leucochloris albicollis Vicill.

Brazil.

* 335. Agyrtria niveipectun Cab. \& Hein.

Trinidad.

* ikit. Agyrtria leucogaster (Gmel.) Rwich. Brazil (Bahia).
* 348. Agyrtria milleri (Boure.) Reich.

Colombia.
:59. Agyrtria candida (Bourc. \& Muls.) Cab. \& Hoin.
S. Mexico (Tehnantepec); Guatemalit.
341. Agyrtria brevirostris (Less.) Reich.

Brazil (Rio Graude do Sul).

* 347. Agyrtria tephrocephala (Vieill.) Eilliof.

Brazil ; Surinam.
" 349. Agyrtria fluviatilis (Gould) Heine.
E. Ecuador (Rio Napo).
*356. Elvira cupreiceps (Lawr.) Muls. Costa Rica.
*is\%. Elvira chionura (Gould) Muln. Costa Rica (I)ota).

- 35:N. Callipharus nigriventris (Lawr.) Filliot. Costa Rica.
 Guatemala.
*361. Eupherusa egregía sel. \& Sals. Costa Rica.
3fi2. Polytmus thaumantias (Liun.) Cab. \& Hein.
Trinidad; Vencemela; Bogota!
" 363 . Polytmus viridissimus (Vicill.) Eilliot.
Guiana; Surinam?
* :uc. Amazilia dumerili (Lesw.) Hp.

Eenatol ( P'una I., (inaẏaquil).
369. Amazilia cinnamomea (Lesw.) Elliot.

Yucatan; Nicarainat Tehumntepec ; Mazatlau; Sitn Salvador.

- 370. Anazilia graysoni Latwr.
W. Mexico (Tres Marias Islatmels).
- 371. Amazilia yucatanenses (Cabot) (rould.

Mexico (Julapa); S. Texas (Ft. Brown).
882. Amazilia fuscicaudata (Fras.) Ridgw。
S. Mexico (Cordova and Tehuantepec); S. Texas (Ft. Brown): (inatemala; Nicaragua; Costa Rica; Colombia; licuador (Guayaguil).
*373. Amazilia viridiventris (Reich.) Elliot.
Colombia (Bogota).
355. Amazilia beryllina (Licht.) Gould.

Mexico (Jalapa); Guatemala.
*376. Amazilia edwardi (Del. \& Bourc.) Bp. Panama.
${ }^{-3}$ 37. Amazilia niveiventris (Gould) Ellint. Costa Rica.
-378. Amazilia mariæ (Boure.) Elliot. Guatemela.
-359. Amazilia cyanura Gould. Guatemala (Pacific side); Realejo.
3e. Amazilia erythronota (Less.) Elliot. Tobago; Trinidal.
38. Amazilia sophiæ (Bourc. \& Muls.) Bp. Costa Rica; Nicaragua.
387. Amazilia cyanifrons (Bourc.) Elliot. Colombia (Bogota).
$\because 3$. Basilinna leucotis (Vieill.) Boie.
Mexico (Jalapa, Mirador, and Mazatlan); Guatemala (Chilasco, Vera Paz).

- 390. Basilinna xantusi (Lawr.) Elliot. Cape St. Lucas.

291. Eucephala grayi (Del. \& Bourc.) R'elo.

Ficuador (Quito).
:297. Eucephala crerulea (Vieill.) Gould.
Trinidal; Guiana; Demerara; Bahia.

- 401. Juliamyia typica Bonap.

Panama; Bogota; Turbo.

* 402. Juliamyia feliciana (Less.) Guuld.

Ecuador (Guayaquil); Bogota!
403. Damophila amabilis (Gould) Reich.

Costa Rica; Panama; Bogota; Turbo.

- 404. Iache latirostris (Swaius.) Elliot.
W. Mexico (Colima, Mazatlan, and Tres Mariasi; Arizona.
- 406. Iache doubledayi (Bourc.) Elliot.

Tehuantepec (Chihuitau).
408. Hylocharis sapphiria (Gm.) Gruy.

Brazil (Bahia and Rio Grande do Sul); Demerara.
409. Hylocharis cyanea (Vieill.) Gray.

Brazil (Bahia and Rio Grande do Sul); Surinam.
410. Cyanophaia cæruleigularis (Gould) Elliot.

Panama; Cartagena; "Centr. Am."
411. Cyanophaia goudoti (Bourc.) Elliot.

Colombia (Eogota).

* 4iz. Cyanophaia luminosa (Lawr.) Eilliot. Colombia (Cartagena).
- 414. Sporadinus elegans (Vicill.) Bp.

St. Domingo.
415. Sporadinus ricordi (Gorv.) Bl. Cuba.

- 416. Sporadinus maugæi (Vicill.) 1p. Porto Rico.

418. Chlorostilbon caniveti (Le'sw.) 13p.

Mexico (Mirador, Jalapa, and Tehuantepec); Yucatan (Merida); Guir temala; Costa Rica.
419. Chlorostilbon pucherani (Boure. \& Muls.) Ell.

Southeastern Brazil (Rio Grande do Sul) ; W. Mexico ('Tres Marias) [:害?]. ${ }^{1}$
420. Chlorostilbon splendidus (Vicill.) Elliot.

Buenos Ayres (Conchitas) ; Paragnay (lio P'aranat).
4:1. Chlorostilbon haberlini (Reich.) Cah \& Hein.
Colombia (Bogota).
$4 \% 2$. Chlorostilbon angustipennis (firas.) (ionld.
Costa Rica (Cartago); Pauamat; Quito; Lis. leru (l'ebas).
4iz3. Chlorostilbon atala (Less.) (ioulfl.
Trinidad.
: 425. Panychlora poortmani Bourc.
Colombia (Bogota).

* 42\%. Panychlora stenura Cub \& Hoin.
"New Granada."


##  

## Hy DAVID S. JORDAN and CHARLES H. GHLBEET.

Allied to Ditrema (Phanerodon) furcatum. Body unusually elongate, slenderer than in Ditrema furcatum, tapering into a long and slender caudal peduncle. Back little elevated. Profile slightly depressed above the cyes, the snont rather projecting.

Mead small, triangular in profile, the snout rather acute. Mouth small, oblique, the maxillary not reaching the front of the eye. Bremaxillary anteriorly rather above the level of the lower alge of the pupil. Lower jaw slightly included in the closed month. Treeth smaller and fewer in number than in $D$. furcutum, conical, in one series, $\frac{8}{6}$ or less in number (about $\frac{15}{12}$ in D. furcutum).

Eye moderate, about as long as snout, 33 in length of head. Inter-

[^45]Females vanted.
orbital space strongly convex thanswarsely. Cheeks with three rows of scales.

Gill-mkers rather small, but longer and strouger that in D. furcatum, the longest about one-thirl the dianerer of the orbit.

Scales moderate, averaging rather smaller than in D. jurcutum, abont 5-70-13.

Spinons dorsal comparatively low, the tirst spiue short, the others rapidly increasing to the fifth, after which the others are nearly of equal length, but gradually increasing to the last. The first soft ray is a little higher than the highest spine. The other soft rays are gralually shortened.

The caudal tin is deeply forked, the lobes being about equal. In In. furcatum the upper lobe is evidently the longer. Anal tin low, its spines moderately developed. Pectorals not reaching to the tips of the ven. trals, which searcely fall short of the dinst anal spine.

Fin rays: D. $5, \because 3 ;$ A. 1H, 29 .
Coloration light dusky olive abowe, silvery below, with pearly reftecetions. Scales above the axis of the body each with a golden-red spot at base, the outer margin of the scales tinged with light blue. These spots fade in alcohol, but are conspicuous in life, forming reddish streaks along the rows of scales.

Membrane of dorsal, anal, and vential tins light olivegreen. Traces of a dark shade on upper part of first rays of soft dorsal. No black at. base of dorsal. A distinct black blotch on upper third of furst eightrays of the aual. Ventrals broadly tipped ecith reddish black, as in Hyperproropon argenteus. Pectorals aud caudal entirely plain, the black eder ing to the latter fin, characteristic of $D$. furcutum, being entirely wanting. Premaxillaries and end of snont distinctly dusky. hris silvery, reddish above.

In Ditrema farcatum the color is nearly plain, pale, olivaceons, and silvery, the seales with bright reflections, but without distinct red markings. The sides are more silvery than in D. atripes, and there are more back punctulations. The naked portion of the base of the soft dorsal is black. There is no dark shade on the ventrals, and the candal is disstinctly margined with black behind. The dark anal spot is similar in the two species, but it is sometimes wanting in $I$. furcatum.

The species Ditrema argyrosumu (Phnerodon arg!rosomus Gill, E'mbiotoca argyrosomu Girard), if distinct from Ditrema furcatum, is unknown to us. It differs, according to Girard, in having the anal III, :24, bat the types had been mutilated and this count may, periaps, be erroneous.

Measwrements of Ditremu furcatum and Ditroma atripes in 100the of length to base of casdal jin.

|  | Ditrema furcatun. | Ditrema atripes. |
| :---: | :---: | :---: |
|  | Inches. | Inches. |
| Extreme length | 10.3 | 9. 15 |
| Length to baso of caudal | 8.18 | 7. 35 |
| Body: |  |  |
| Height | - 39 | . 38 |
| Lenat height of tail | -12 | - 113 |
| Length of caudal peduncle from cnel of anal tin | . 107 | . 23 |
| Head: |  |  |
| Length | . 363 | . 283 |
| Wideh of interorbital area | 0 | - 083 |
| Leagh of snout. | - 07 | . 078 |
| Lenirth of gillorakers | -01 | . 018 |
| Length of maxillary. | . 075 | . 075 |
| Lengith of mandibie | . 075 | -092 |
| Diameter of orbit... | .075 | . 0.2 |
| Dorsal: |  |  |
| Leugth of hase | . 512 | - 48 |
| Jeoberls of tifth spine | . 085 | . 085 |
| Leagh of highest mine | . 09 | . 010 |
| Length of highent ray | . 12 | . 113 |
| Anal: |  |  |
| Length of base | .80 .06 | . 275 |
| Cautal: |  |  |
| Middle raye | . 09 | . 093 |
| Lipper lobe | . 256 | . 23 |
| Lower lobe | . 24 | - 24 |
| Pectomls, longth | -25 | . 26 |
| Ventrals, length | $\times 155$ | $\times 176$ |
| Dorsal......... | X. 25 | X, 24 |
| Anal. | IIL 33 | 14, 29 |
| Tubes in lateral line | 70 | 71 |
| Rows of scales above laternl line | 6 | 8 |
| hows of scales below lateral line | 13 | 13 |

The present species was described from two specimens, similar in size, obtained in the San Francisco market, and probably caught in Monterey Bay. Later, about 200 others were obtained at Monterey and Santa Crus, but the species has not yet been noticed elsewhere on the coast.

We refer this species for the present to the genus Ditrema, of which Phancrodon Girard is considered by us a symonym.

We have not seen the Japanese type of the genus, Ditrema temmincki, but in external characters at least it agrees with Phanerodon.

San Fraxcisco, Cal., March 14, 1880.

##  MALIGERI, FEOM THE COAST OFCALIPORNIA.

## By DAVID S. JORDAN and CHARLES H. GILBERT.

Allied to Sebastichthys nebulosus and more remotely to Sebastichthys rexillaris. Body oblong, moderately robust, the profile with a regular but not very steep slope. Mouth moderate, nearly horizontal, the jaws equal when closed, the upper jaw somewhat emarginate. Maxillary reaching to near the posterior border of the eye; premaxillary in front below the level of the eye. Preorbital 1:solecate, its neck about onethird the width of the large eye, with an angular lobe.

Spinous ridges on the top of the head rather prominent, much as in nebulosus, but lower, a little less depressed than in rexillaris. The following pairs are present: Nasal, preocular, supraocular, tympanir, and occipital, tive in all. The nasal spines are very strong. The preoular and supraocular are broad and sharp. The tympanic spines are smatler than in related species. The occipital ridges are short and comparattively weak, the point rather depressed.

Preopercular spines very short, but all distinct, the upper one broad, the second longest and most acute. Opercular spines large, the upper very loug and strong. Bluntish spines on subopercle and interopercle. Two suprascapular spiues. Interorbital spare rather deeply and somewhat evenly concave, with a rather deep pit anteriorls.

Gill-rakers about $10+20$, stout, moderately long, rather longer than in nebulosus, somewhat clavate, the longest about equal to the diameter of the pupil.

Scales moderate, rough, in abont 55 transverse rows. Accessory scales developed.

Dorsal spiues very high and strong, the fouth spine highest, usually: more than half the length of the head, the last spines low, so that the fin is deeply emarginated.

The membrane of the spinoux dorsal is very deeply incisen, more than half the anterior edge of each of the middle spines being above the membrane ; even four-tifths of the length of the highest spine is sometimes free anteriorly. This is subject to some variations, but in all cases the bare portion of the spines is much higher than in other species. Soft dorsal high, but lower than spinons dorsal. Candal truncate.

Anal fin rather low, the spines short. Second anal spine a little higher than the third, not two thirds the height of the soft rays.
D. XIII, 12; A. III, 7.

Pectoral fins extremely broad and rounded, as in s. rastrelliger, the tips reaching beyond the tips of the ventrals, but not to the rent. The base of the fin is greater than the diameter of the eye and about twice the length of the occipital ridge. In both sexes the lower rays are thickened and fleshy.

Prevailing color a warm brownish yellow, sometimes quite yellow on the sides and below, the back sometimes considerably olive, sometimes reddish tiuged. Sides of head, front of back, and thoravic region usually most distinctly yellow. The coloration mottled and clouded, but without distinct markings except the small spots with which the auterion region is closely covered. They are smallest and most distiuct on the thoracic and scapular region. Here they are of a clear orange-brown color. On the top of the hoad they become more orange, and on the anterior part of the back they become larger and of a bright clear orange. Posteriorly they blend with the ground color. 'lop of head with dusky cross-shades. Sclerotic coat of eye spotted above with orange.

Fins all with the membranes slaty black; the pectorals and dorsal

## 324 PROCEFDINGS OF UNITED STATES NATIONAL MLSECM.

paler at base and spotted with reddish. Membrane of the third dorsal spine searcely palar than that of the secomb. There are no other traces of the light areas found in nebulosus and fasciolaris. There are usually traces of brownish shades radiating from the eye and alternating with yellowish areas.

This species is not rare in the San Franciseo markets. The specimens from which the above description was taken, four in number, were obtained in the neighborhood of the Farallones. It is frequently taken in deep water in Monterey Bay and in the Straits of Fuca; it is very abundant, reaching a large size. It is one of the larger species, agreeing in size and aplearance with S. vexillaris. Its relations are, however, more nearly with $S$. nebulosus, and it forms a transition from the brown to the red series.

Table of mearu'cments.
Length to base of caurlal ..... $=100$
Body:
Greatest height ..... 37.5
Least height of tail ..... 11.8
Head:
Greatest length ..... 38.5
Length of occipital ridges ..... 6.3
Length of supraocular ridges ..... 4. 3
Length of preocular ridgess ..... 2.2
Interorbital width ..... 7.9
Length of suont ..... 9.2
Length of gill-rakers ..... 3.5
Length of maxillary ..... 19.5
Diameter of orbit ..... 10.5
Dorsal:
Longest sprine ..... 23
Longest ray ..... 17.5
Least height of membrane between third and fonth spines ..... 4.5
Anal:
Second spime ..... 12.3
Third spine ..... 12
Longest ray ..... 18
Caudal, length ..... 17
Pectora\}
Length ..... 告
Widlh of base ..... 11
Ventral, leneth ..... 22
Dorsal ..... XIII, 12
Anal ..... III, 6
Lateral line (rows of seales) ..... 47
Extreme length, in inches ..... 15.45
Length to base of caudal, in inches ..... 13. 1San Firavcisco, Cal., March 15, 1880.

##  TIEE MAIEFETH OE MAN FEANCIMCO.

## Ey W. N. LOCKINGTON.

In the review of the Pleuronectide of Sam Franciseo (Proc. U. S. Nat. Mus. 1879, 69-10s), a species belonwing to the wemus Lepidopsettr (Gill) is described as identical with the I'latichthys umbrosus of (iirand (Pac. Rail. Rep., $x, 14!$, 1850 ). At the epoch when this deseription was written, as well as on previons oceasions when a comparison was instituted between this species and the description of Gitad above refered to, several discrepancies were noted, get it was not supposed possible that that author had redescribed one of Dr. Ayresis speries when the deseription of the latter was accessible to him.

Such, however, as first pointed ont le 1)r. Gill, turns ont to be the case, and Platichthys rmbrosus (Grd.) must sink into a synonym of Lepidopsette bilineatre (Ayres), while the form dreseribed by we as $L$. umbrosa needs renaming.

The synonymy of the two spereies will be as follows:

## Lepidppsetta bilineata.

Platessa bilimeata Ayres. I'ror. C'al. A'anl. Nat. scio, i, 40.

Lepidnpsetle bilimeata (iill, I'roce. Phil. A"ad. Nat. Sci.

- Lepidopselta umbroka (iill, Iroce. Phil. Acad. Nat. Aci.

Lepidopsetta isolepis sp, mov.

This species is not closely related to L. bilincatu. Its chenoid seales, almost uniform over the head and body, its nearly stanght lateral line. its smaller exes, with a broader, flattish interorbital sparer, as well as the differences in the form and the number of fin ravs, completely distimgish I. isolepis from $I$. bilineata.

Typical examples are in the Cnited states National Musemm.

 MAT EREACHMCO THAEN:TN.

## Ry DAVID G. JORDAV.

During the infancy of the Califormia Academy of Sciences the reports of its proceedings were published in the Daily Placod Times and Transeript, a newspaper then issued in Sin lianceseo.

In the files of this paper for 1854 orem deseriptions of new speries of fishes from the San Fianciso markets, by Dr. W. P. (ijhbons and Dr. W. O. Ayres. The destriptions of Dr. Gibbons ware som atter repub.
lisher in the l'mecerlings of the Acarlemy of Natural Sciences of Philadelphial (15.゙t), and identifications of them have been carefully mate by Alexander Agassi\% (Proe. Boston Soe. Nat. Hist., 1861, 122). By this means the names given by Dr. (ibbons have taken their proper places in symonsmy.

The deseriptions published by Dr. Ayres have, on the contrary, not. berot moticod, sof far as I know, hans subsequent anthor, not even by Dr. Ayres himself, who soon after redescribed the same species as new, apparmitly not considering the first publication as a sufficient one, as oue species at least received a new name on the second description.

The following are the species in question :

## 1. L.cисімен* !ibbosur Ayres.

Stouter and thickir than any proviously deseribed spenies of the genus. Month small. About bot seales in the lateral line Brown aboge: silvery below. Wright about apmaml. (Daily Phacer Tumes and Transoript, issme of May 30, 18.2.)

This description is not very explicit, but we are to remember that the species was described from the fish market of San Francisco, and that the five species then common in the markets were the subjects of the firs descriptions. The following species of Cyprinoid fishes are taken in the Lower sacramento River, and are now, as then, abundant in the market of San Francises: Ptychochilus oregonensis, Ptychochilus ${ }^{\text {v }}$ orax, siboma crassicaude, Pogonichthyx incquilobux, Oifhodon microlepidotus, anul C'utostomus occidentulis.

The description of Leuciscus giblosus above quoted, as well as a more elabomate one afterwards published of "Latinin gibbosa," applies to siloma crassicauda only among the fishes which come to the San Francisco marlict. The name gildosus was published in May, 18idt ; the name crussicaula in August, $185 \%$. We have therefore no alternative but to drop, the latter very characteristic name, and call the species siboma gibbose, or, perhaps beiter, Telestes gibbosa, for the robust candal pethurle hardly furnishes a suticient reason for a genus Siboma. In Ayres's time, as now, this suecies was known in the market as the "Chub."
$\therefore$. Anciscons microlopidotas Ayres (1. C., May 30).
This species, afterwards more fully deseribed as Gila microlepidota, is the well-known brlhoton microlepidotus.

lonm muela like that of Lenciscos pulchellus, though a little more sidender. Anal fin bunger. C'andal much arenated. Scaldes 60. Size of the preceding.

This is evidently the species deseribed in August of the same year by Baird and Girard as Pogonichthys inequilobus, umler which name it was afterwards mentioned by Dr, Ayres.

It must therefore take the less appropriate mame of Pogonichthys macrolepillotus. This is now the "Split-tail" of the markets.

borly slender: head much elongate. Color silvery, becoming darker on the back. Scales abont su; mach larger than any other known Leuci*cus, weighing, it is aaid, 30 phnmes on more, loat gromerally varing. as we find it in the markets, from 5 to 20 poumeds. This is the speciey bere kuow a as sahmon Trout, \$c.

This species was described soon after by Dr. Ayres in the Proceedings of the California Academy of Sciences, 1854, p. 19, as Gila grandis. It is apparently identical with the prior Ptychochilus oregonensis of Richardson. This species is now no longer called "Salmon Trout," its market name being "Pike."

The small-scaled Ptychochilus (? vorax of Girard) was not then noticed by Dr. Ayres.
5. Catostomus occidentalis Ayres (1. c.).

Soon after reconsidered by Dr. Ayres, in the Proceedings of the California Academy, under the same name, and also still later by Professor Agassiz (Am. Jourval Sci. Arts, 1850) , still as Catostomus occidentalis.

San Fraficisco, Cal., Mareh 20, 1880.

## NOTE ON "NEMA" AND"DACENTELE."

## Hy DAVID S. Jorndan.

In the Bnlletin of Hayden's United States Geological and Geographieal Survey, vol. ir, No. 2,1878 , I published "Notes on a collection of fishes from the Rio Grande at Brownsville, Tex." In this paper are characterized two new species, "Sema signifer" (p.399), and "Dacentrus lucens" (p. 667).

These species must be suppressed. The former is a foetal Embiotocoid, apparently Cymatogaster aggregatus, the other is the young of Hysterocarpus traskii.

The latter discovery was made before the paper was printed, but jy inadvertence it was sent to the press during my absence in the field.

Of course neither of these species really came from the Rio Grande at Brownsville, Tex., and their presence in a jar otherwise containing only Texas fresh-water fishes is the only excuse for the gross blunders as to their relationships.

San Francisco, Cal., March 20, 1880.

## DESCRIPTIOX OF A NEW NCORPENOID FIAH (AERABTLCHTRIE PRORIGEL), FROM MONTEREX BAY, CALIPORNIA.

## Hy DAVID S. JORDAN and CHARLES H. GILBERT.

Allied to s. ocalis and S. elongatus, having the mouth, spines, and fins of the former and the color and general appearance of the latter.

Body elongate, a little deeper than in S. elongatus and somewhat more compressed, tapering slowly backward into a slender caudal pednncle, which is rather shorter and stouter than in S. elongatus.

Head rather short and small, the profile somerhat steeper than in $\$$. elongatus. Mouth small, much as in S. ovalis, the short, narrow maxillary extending to below the middle of the ere, the premaxillary on the
level of the lower margin of the pupil. Lower jaw strongly projecting, with a conspicuons symphyseal knob. Eye very large, longer than snout. Preorbital with its neek extremely narrow, armerl with a slight spine.

Spinons ridges on top of head very low and weak, about as in S. ora. lis, rather lower and narrower than in $\mathbb{S}$. atrovirens and S. pinniger. The following pairs of spines are present: Nasal, preocular, supraocnlar, tympanic, and occipital, five pairs in all, ans in S. elongatux. The ridges are most of them partly covered by seales. Preocular spine little prominent. Supracular ridge very little developed, its length two-fifths that of the eye (in s.clongatus two-thirds). Tympanic spine minute. Occipital ridge not conspicuous, the spine depressed.

Preopercular spines sharp, rather shorter than in S. elongates, but similar, the second longest, the points of all directed backward rather than radiating. Opercular spines moderate; bluntish points on suls. opercle and interoperele. Two bhutish suprascapular spines.

Interorbital space broad, nearly as broad as the eye, somewhat regularly convex, the middle being elevated. In $S$. elongotus, as in most of the red species, the interorbital space is transversely concave.

Gill-rakers very long, slender, and numerous, about $10+30$, the long. est longer than the supraocular ridge, and about half the diameter of the eye.

Scales rather small, as in N. oralis, in abont 65 transverse series, the accessory scales rather few.

Dorsal fin very low, as in S. orulix, not deeply emarginate, the shortest (twelfth) spine two-thirds the height of the fifth, which is little more than one-third the length of the head. Soft dorsal low, nearly twice as high as long, the highest ray about equal to the longest spine. Candal fin moderately forked. Anal fin very low, its length about equal to the height of its longest ray. Second spine much longer and stronger than the third, scarcely shorter than the longest ray.

Pectorals shortish and rather narrow, the base rather wider than the eve, the tips reaching beyond the tips of the ventrals to the vent.
D. XIII, 13; A. III, 7.

Coloration very similar to that of S. elongatus, red, with olive mark. ings. There is, however, more blackish and less greenish.

Ground color bright light red. Body mottled above with dusky olive. green, the gromad color forming distinct blotches under the third dorsal spine and under the first and last rays of the soft dorsal. Lateral line running in the middle of a rery distinct continuous red stripe, precisely as in S. elongatus. Head above with purplish cross-shades. Opercle with a dusky bloteh; two olive shades radiating from the eve. Lips and tip of lower jaw blackish (red in clongatus). Eyes red. Caudal fin bright red, speckled with dark olive. Spinous dorsal bright red, the posterior part of each membrane blackish; soft dorsal olive and red; lower fins bright light red, with shades of olive-yellow.

This species is known to us from about eight examples obtained in the San Franciseo market. They came from Monterey Bay, in a box containing Sebastichthys rosaceus, constellatus, elongatus, and chlorostictus. species all similar in size and redness of color. Later about sixty examples were obtained, all from deep water about Monterey and the Fimallones.

The relations of Nehastichthys proriger seem to be most intimate with S. oralis (Ayres), from which it differs in the more elongate form, the red color, and the absence of the postocular spine. It resembles superficially S. elongatus most, and its position is evidently between oralis and elongatus. Its relations with S. pinniger are also not remote. To the green S. oralis, S. proriger bears the same relation that the red S. pimniger loes to the green S . atrovirens.

In the following table comparative measurements of S. pinniger, oralis, and elongatus are given for purposes of comparison with proriger:

Table of comparalice meusuremeuts.

|  | $\frac{e_{0}^{\prime}}{5}$ | 感 | 昆 | $\begin{aligned} & \text { Lís } \\ & \text { C } \\ & \text { E } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Tutal lancth, in inchea | 8 | 9. 45 | 12. 6. | 8. 28 |
| lexgth to hase of caudal ( $=100$ ) | 7.0 |  | 10.7. | 7.17 |
| Body: |  |  |  |  |
| Tricatest ily pth | . 32 | . 30 | . 285 | . 38 |
| latat depth of tail | . 09 | . 09 | . 09 | .129 |
| ITed: |  |  |  |  |
| lireateat leusth | . 38 | . 34 | . 38 | . 168 |
| Snons | . 085 | . 087 | . 087 | . 10 |
| Orbit | . 08 | . 045 | . 105 | . 10 |
| Interorbital apace | . 08 | . 08 | - 0.97 | . 17 |
| Irmorbital, leant width | . 01 | . 013 | . 028 | . 016 |
| Maxillary | . 123 | . 14 | . 17 | . 17 |
| Mandible |  | . 18 |  |  |
| Longent gill-raker | . 03 | .045 | . 043 | . 055 |
| Greipital ridye | . 055 | . 06 | . 07 | . 07 |
| Supracular ridge | . 032 | . 04 | . 07 | . 04 |
| Dormal: |  |  |  |  |
| bistance from mout | . 327 |  | .33 |  |
| longeat mpine | . 11 | . 12 | . $1: 15$ | . 16 |
| Longent noft ray | . 12 | . 128 | . $1: 7$ | . 168 |
| Jength of bias |  | . 59 |  |  |
| Anal: |  |  |  |  |
| leagth of base | . 14 | . 13 | . 12 | . 16 |
| Second spine | . 11 | . 14 | . 1.5 | . 13 |
| Third spine. | - 09 | . 118 | . 106 | . 145 |
| longest moft ray | . 12 | .15 | . 135 | . 195 |
| Caudal: |  |  |  |  |
| Middle rays | . 12 | . 13. | . 128 | . 18 |
| Guter may | .17 | . 175 | . 175 |  |
| Peetoral: |  |  |  |  |
| Length | . 275 | . 28 | . 28 | . 30 |
| Widich of base | . 09 | . 09 | - 09 | . 098 |
| Ventral length | - 20 | - 19 | . 19 | - 295 |
| Scales, number of transverae row | 63 | 65 | 45 | 48 |

Monterey, Cal., March 2J, 1880.

##  TIIECOANT OECALIEORNLA.

## By DAVID S. JOHDAN And CIIATLES HI. GILIBEIET.

Body elongate, tapering rapidly to the long tail, everywhere broader than high. 'It is highest and broadest at the shoulders, but is lower and narrower than the head.

Head acutely triangular as viewed from above, the profile irregularly sigmoid; lower surface of head and body plane from the head to the tail. Mouth U-shaped, entirely inferior, the maxillary reaching to opposite the front of the pupil, the premaxillary in front to the base of the posterior pair of rostral spines. The distance from the anterior margin of the premaxillaries forward to the tip of the rostral spines equals more than half the length of the suout, more than half the diameter of the eye, less than one-fifth the length of the head. Lips thickish. Epper jaw protractile. Teeth small, in a villiform band, none evident on the vomer or palatines. Maxillary mandible and branchiostegal region with souse small seattered cirri; under side of suout with few barbels or none. Eyes large, nearly as long as snout, 3 in in length of head, the orbital bones forming a raised ridge around them. Interorbital space transiersely concave, nearly straight longitudinally, with a lengthwise groove and two slight ridges. Profile depressed at the front of the eyes, thence nearly straight to the tip of the rostral spines.

Spines on head highly developed. On each side a stout straight ros. tral spine projecting horizontally forwards; at its base a stont spine curved backwards, upwards, and outwards; behind this a smaller one projecting upwards. Orbital ridge above serrated, and with two prominent recurved spines, one in front, the other behind; behiml these a ridge on each side confluent with the dorsal ridges and each with four spines; between these the top of the head is ronghish and somewhat concave, with traces of a median keel. At the occiput is a conspicuous pit between the above-mentioned ridges, broader than long and longer than deep. Just below these ridges, on each side, is another and more prominent ridge, also ending in four spines, the last very strong; this is continuous with the upper lateral keel of the body; below this, on the opercle, is a strong keel ending behind in a spine; still lower is an irregular ridge, armed with two or three irregular series of spines and tubercles, extending from the preorbital along the subortal and preopercle, ending in a stout preopercular spine; behind the pectorals this ridge again appears as the long lateral ked of the body.

Along the lower margin of the preopercle are three or four more bluntish spines. There are on the head between seventy and eighty more or less developed spinous processes.

Isthmus rather wide.
Body with four ridges on each side, formed by the series of scales. Each scale ending in a stroug recurved spine, its roots forming strixe on
the scales. Between the two lateral keels are traces of another keel; traces also exist between the two dorsal keels in front.

The spines are developed on all the keels except in frout and behind on the two abdominal ones. The two dorsal keels, at about the eighth scale in front of the caudal inn, coalesce, after which the median furrow is obliterated and the spines continue double.

Just below the point of junction the abdominal keels also unite. The two lateral ridges remain distinct thronghout. At the base of the tail, on each side, is a median spine between the lateral ridges.

The abdominal ridges are farthest apart behind the base of the ventrals, in front of which and behind which they converge, but anteriorly they do not meet. Breast with six or eight polygonal plates. Belly transersely conves, with traces of a furrow, into which the ventrals are depressible. Vent just behind the middle of the length of ventrals. Lateral line about forty.

Doral beginning behind the seventh dorsal scale, and extendingover eight scales, four scales intervening between it and the soft dorsal, which covers seven scales. The anal begins under the end of the first dorsal, and extends over eleven scales. Dorsal spines very delicate and Hexible. Pectorals reaching the eleveuth scale in the upper lateral series. Ventrals beginning opposite the fifth seale and extending to the teuth.

Color nearly obliterated-dark brown, with blackish cross-bars, involving the fins. One bar across candal, one across posterior part of soft dorsal and anal, one across posterior part of spinons dorsal and front of anal, and one across front of spinous dorsal. Pectorals black, with whitish edging. Caudal and ventrals blackish. Belly white.

Jimensionx, in hundredths, of length to base of caudal fin.
Total length 4.1 inches
To base of caudal ..... $3.6 \mathrm{inches}=100$
Height of booly ..... 12
Height of tail ..... 4
Width of body ..... 14
Length of heal ..... 25
Winlth of head. ..... 19
Depth of head. ..... 12
Diameter of orbit ..... 7
Length of snout ..... 9
Length of rostral spine ..... 2.3
Cleft of mouth ..... f. 5
Width of mouth ..... 6.5
Width of occipital pit ..... 6
Space betweet dorsals ..... 8
From front of maulible to tip of rostral spine ..... 6
Isthmus ..... 6
Length of spinous dorsal ..... 12.5
Length of soft dorsal ..... 12.5
Length of anal ..... 18
Leugth of pectoral ..... 18
Length of ventral ..... 8
Length of candal ..... 13.6

This species is known to us from about ten specimens pieked ont of piles of prawns in the san Francisco market. They are taken in the sweep-nets of the "Paranzalle" off Point Reses.

It belongs to the group or genus termed Podothecus by Protessor Gill (typified by Agonus acipenserinus), which is distinguished from Agon** cutaphructus by the longer spinons dorsal and by the greater number of plates on the breast. Agomus rulsus differs from Agonus acipenserinus in the much rougher head, the narrow suborbital, and in the slight dered. opment of the barbels, as well as in many minor respects.

Agonus acipenserimus is rather stoutor, the head broader and smoother above, the turbinal bones more widely separated. The nasal spines are similar in the two species, as well as the position of the month. The preocular spine is obsolete, the interorbital space is broader and not corrugated, with two longitudinal ridges. Posterior part of head comparatively smooth, without pit at the occiput. Ridges and spines on posterior part of head continuous with those on the body, as in A. vulsus. but higher than those on the bods, instead of smaller, as in the latter. latter. Opercular ridge small, the bones feebly striate.

Suborbital region quite broad and smooth, with a strong ridge beneath. on which are three strong retrorse spines, below which is a groove. Preopercle with two radiating ridges, each ending in a spine. About 28 spiuous projections on the head in all, the number on the suborbital region much less than in rulsus. Eye much smaller than in A. vulsus, much shorter than snout, nearly 4 in head. Ocular ring not serrated, developed only above the eye. Body similarly armed, but the spines rather blunter and the back and belly less concave. There are no series of spines aloug the bases of pectorals and candal. The abdominal series join behind close to the end of the ventrals, as the dorsal series close behind the second dorsal. The dorsal tins are separated by about two scales. The ventral fins are short, the fin scarcely half the length of the snout, the reut close behind its base; no visible groove ("Porlothecus") at their base. Pectorals reaching about to front of anal. Breast with about nine large plates. Isthmus present.
D. IX, 7; A. 8. Lat. I. isi.

Barbels greatly developed, as long as the diameter of the eye, arranged in three tufts, one at each angle of the month and one under the snont. None on the branchiostegal region. The type of the present description of Agonus acipenserinus is in the museum of the California Academy of Sciences, and came from Vancouver's Island. It does not agree well with the account of Podothecus peristethus of Gill, although Professor Gill considers the two ideutical.*

## San Frajcisco, Cal., Mareh 1, 1880.

[^46]
## 



## By FRED．M．ENDICII．

Albite．
Allanite．
Allophanite．
Altaite．
Alum．
Amalgau．
Amber．
Amblygonite．
Amphibolite．
Actinolite．
Asbestus var．
Hornblende．
Tremolite．
Analcite．
Anatase．
Andalusite．
Chiastolite．
Anglesite．
Anhydrite．
Anorthite．
Anthrophyllite．
Antimony．
Apatite．
Apophyllite．
Aragonite．
Argentite．
Arguerite．
Arsenicum．
Asphalt．
Atacamite．
Aurichalcite．
Azurite．
Barite．
Baritocalcitp．
Berthierite．
Beryl．
Biotite．
Bismuth．
Bitumen．
Boracite．
Borax．
Bromyrite．
Brookite．
Brucite．
Cacoxenite．
Calamine．
Calaverite．
Calrite．
Caucrinite．

Caslinite．
Caruallite。
Carpholite．
Cassiterite．
Celestite．
Cerargyrite．
Cerite．
Cerussite．
Cervantite．
Chabasite．
Chalcanthite．
Chalcocite．
Chalcodite．
Chalcopyrite．
Chlorastrolite．
Chlorite．
Chloritoidite．
Chondrodite．
Chromite．
Chrysoberyl．
Chrysolite．
Cimmarite．
Clinochlorite．
Clintonite．
Cobaltite．
Columbite．
Copiapite．
Copper．
Copperasito．
Coquimbitr．
Corundophyllite．
Corundum．
Cryolite．
Cryptomorplite．
Cuprite．
Cyanite．
Danburite．
Datholite．
Deweylite．
Diallogits．
Diamond．
Diasporite．
Dolomite．
Domeykite．
Dufrenitc．
Embolite．
Emerald．
Emplectite
Enstatite．

Epictotc．
Rpmatnitr．
Fimbescite．
Ervthrite．
Euchroite．
Euphyllite．
Euxenite．
Fergusonite．
Fibrolite．
Fluorite．
Forsterites．
Fowlerite．
Franklinite．
Gadolinite．
dalenite．
Garnet．
Almandite．
Grossularite
Melanite．
Ouvarovite．
Pyropite．
Suressartite．
Gehlenite．
（renthite．
Gesserite．
（iibbsite．
Glauberite．
Glockerite．
Gocthite．
Giold．
riraphite．
Greenockite．
Gysum．
Selenite var．
Malite．
Llarmotomite．
Hauerite．
Hansuannito．
Hausnite．
Haydenite．
Helvinite．
Hematite．
Columuar．
Compact．
Micaceone．
Ochreons．
Spucular．
Tabular．
Hessite．

| Heulandite. | Opal. | Quartz-Continued. |
| :---: | :---: | :---: |
| Hortonolite. | Fire opal. | Hornstone. |
| Howlite. | Milky opal. | Jasper. |
| Hydromagnesitf. | Precions opal. | Noraculite. |
| Hydrotalcite. | Semi-opal. | Onyx. |
| Hypersthenite. | Wax opal. | Prase. |
| Idocrise. | Wood ораи. | Rosy. |
| Ilmeaite. | Orpiment. | Sandstone tlexible. |
| Iodyrite. | Orthoclase. | Sardonyx. |
| Iolite. | Adularia. | Siliceous sinter. |
| Iridosmine. | Amazoustone. | Silicified wood. |
| Iron (meteoric). | Chesterlite. | Smoky. |
| Jamesonite. | Moonstone. | Quicksilver. |
| Jeffersite. | Ossidian. | Realgarite. |
| Kermesite. | Pumice. | Retinite. |
| Labradorite. | Sunstoue. | Rhodonite. |
| Lanarkite. | Ozocerite. | Ripidolite. |
| Lapis lazuli. | Pectolite. | Rutile. |
| Laumontite. | Peridot. | Samarskite. |
| Lazulite. | Petzite. | Sassolite. |
| Leonhardite. | Pharmacosiderito. | Scapolite. |
| Lepidolite. | Phlogopite. | Scheeletinite. |
| Leucite. | Pickeringite. | Scheelite. |
| Liebethenite. | Picrophyllite. | Schirmerite. |
| Limonite car. | Pitchblende. | Schreibersite. |
| Linnæite. | Pitticite. | Scorodite. |
| Liroconite. | Polybasite. | Serpentine var. |
| Maguesite. | Polyhalite. | Chrysotilite. |
| Magnetite. | Polymyguite. | Ophite. |
| Magnolite. | Prehnite. | Precious. |
| Malachite. | Psilomelanite. | Siderite. |
| Manganite. | Pyrargyrite. | Sillimanite. |
| Marcusite. | Pyrite. | Smectite. |
| Margarite. | Pyrolusite. | Smithsonita. |
| Meerschaum. | Pyromorphite. | Sphalerite. |
| Meiouite. | Pyrosclerite. | Spinel. |
| Melaconite. | Pyroxenite. | Spodumen. |
| Melanosiderite. | Angite. | Stannite. |
| Mesolite. | Coccolite. | Staurolite. |
| Metacinnabarite. | Hedenbergite. | Stephanite. |
| Millerite. | Jeffersonite. | Stercorite. |
| Mimetite. | Malacolite. | Stibnite. |
| Mineral cual var. | Sahlite. | Stilbite. |
| Molybdenite. | Uralite. | Strontianite. |
| Molybdite. | Pyrrhotite. | Struvite. |
| Muscovite. | Quartz. | Sulphur. |
| Garnet inclusions. | Agato. | Sussexite. |
| Hematite inclusions. | Amethyst. | Sylvanite. |
| Magnetite inclusions. | Arenturine. | Sylvite. |
| Tourmaline inclusions. | Basanite. | Tachydrite. |
| Natrolite. | Chalcedony. | Talc. |
| Nephelite. | Carnelian. | Tellurite. |
| Nitre. | Chresoprase. | Telluriam. |
| Oligoclase. | Crystal. | Tennantite. |
| Aventurine oligoclase. | Flint. | Teachemacherite. |
| Olivenite. | Heliotrope. | Tetrahedrite. |

Thomsonite.
Titanite.
Topaz.
Pscaite.
Tourmaline.
Troilite.
Trona.
Turquois.
Ulexite.
Vermiculite.

Vivianite. Wad.

Asbolite.
Wavellite.
Warwickite.
Wheelerite.
Whitneyite。
Willemite.
Witherite. Wolframite.

Wollastonite.
Wolfenite.
Senotimite.
Zaratite.
Zincite.
Zircon.
Zoisite.
Zorgite.

##  

## By DAVID S. JORDAN and CHARLES H. GILBERT.

Hemirhamphus rosæ, Ay. nov.
Allied to Hemirhamphus unifasciatus and other typical species of the genus.

Body rather elongate, moderately compressed; the greatest depth being one-ninth of the length from the snout to the base of the caudal. Leugth of the whole head, including the lower jaw, contained 29 times in the leugth from tip of lower jaw to base of caudal. Length of the lower jav beyond the tip of the upper jaw $4 \frac{1}{2}$ times in the same length. The length of the head from the tip of the upper jaw is contained $3_{\text {b }}^{4}$ times in the trunk (without head or caudal).

The triangular part of the premaxillaries is convex, slinghtly carinated - above, and about as broad as long. The eye is rather large, somewhat less than the interorbital space, and about half of the postorbital part of the head. Mandible elongate, the narrowed tip slightly bent downward; the bone bordered on each side for its entire length by a conspicuous membrane, the membranaceons part being about as wide as the bony portion itself. Upper surface of mandible convex, grooved. Teeth in both jaws small, even, all of them apparently unicuspid. Top of head nearly plane, very slightly convex. Preorbital rather long; its diameter two-thirds that of the eye.

Scales rather small, very deciduous, about 63 in a longitudinal series. Fin rays: D. I, 13; A. I. 14.
Dorsal and anal fins not at all scaly ; the dorsal a very little longer than the anal and inserted slightly in front of it; the anterior rays of dorsal and anal moderately elevated. Caudal fin moderately forked; the lower lobe the longer; the middle rays nearly twice the diameter of the eye. Pectoral fin a little longer than the postorbital part of the head. Insertion of ventral fin slightly nearer the tip of the caudal fin above than the eje, and midway between the gill-opening and the base of the caudal. Ventrals a little shorter than the postorbital part of the head, not reaching vent.

> Color translucent green, with the usual silvery band somewhat broader than a scale. Belly white. I dark vertebral band mate of three streaks of dark points. Edges of scales with dark punctulations. Fins plainLower jaw dark blood-color; the ground-color red, rendered datk ly punctulations. Bordering membrane deep red.

## Tible of proportional measurements.


Length from tip of upper jaw to base of tail...................... 4.00) inchem $=101$
Body:
Greatest depth ....................................................................................... 11 妾



Heal:


Width of interorbital arèa.................................................................... is


Diameter of orbit ...............................................................................
Dirsal:


Greatest height .......................................................................................
Anal:
Distance from snout. ................................................................................ is
Length of base.................................................................................... 14
Caudal:
Length of upper гаув....................................................................... 13
Length of middle rays ........................................................................ 11

Pectoral length ....................................................................................... 11
Ventral:
Distance from snout . ................................................................ 63

Dorsal rays ...................................................................................... I, 1:

This species is abundant in the bay of San Diego and in the harbor of San Pedro. At San Diego we obtained in the winter, a very large number of immature individuals. At Wilmington we secured one specimen nearly adult, and saw numerous others swimming about near the surface in the muddy waters of the harbor.

We have named this species for Miss Rosa Smith, of San Diego, who has given much attention to ichthyology, and to whom the National Museum is indebted for many specimens of San Diego fishes.

San Diego, Cal., August 10, 1880.

## DESCRIPTIONS OF MEVEN NEW APECERM OP PIAIES FROM DEEP SOUNDINGS ON THE BOUTHERN NEW ENGLAND COAST, WITHI DIAGNONEN OF TWO INDESCRIBED CENERA OF FLOUNDERS AND A GENUS RELATED TO MERLUCIUS.

## By G. BROWN GOODE.

On the 4th of September, 1880, the Fish Commission steamer "Fish Hawk" made a two days' trip from the summer station at Newport, R. I., to the edge of the Gulf Stream. Several hauls of the trawl-net were made at the following stations: Nos. 865, 866, 867; lat. $40^{\circ} 5^{\prime}$; long. $70^{\circ} 23^{\prime}$ W.; depth, 65 fathoms. No. 868 ; lat. $40^{\circ} 1^{\prime} 42^{\prime \prime}$ N.; long. $70^{\circ}$ $22^{\prime} 30^{\prime \prime}$ W.; depth, 162 fathoms. No. 869 ; lat. $40^{\circ} 2^{\prime} 18^{\prime \prime}$ N.; long. $70^{\circ}$ $23^{\prime} 6^{\prime \prime}$ W.; depth, 192 fathoms. No. 870 ; lat. $40^{\circ} 2^{\prime} 36^{\prime \prime}$ N.; long. $70^{\circ} 22^{\prime} 58^{\prime \prime}$ W.; depth, 155 fathoms. No. 871 ; lat. $40^{\circ} 22^{\prime \prime} 54^{\prime \prime}$ N.; long. $70^{\circ} 23^{\prime} 40^{\prime \prime}$ W.; depth, 115 fathoms. No. 872 ; lat. $40^{\circ} 5^{\prime} 39^{\prime \prime}$ N.; long. $70^{\circ} 23^{\prime} 52^{\prime \prime} \mathrm{W} . ;$ depth, 86 fathoms.

T'ine results of this day's work are unparalleled in the history of the Commission. Over 120 species of invertebrates and fishes were added to the fauna of Southern New England. The list of fishes uever before seen south of Cape Cod is as follows. The other fishes taken in the same hauls are also mentioned, inclosed in brackets:

1. Glyptocephalus cynoglossus, (Linn.) Gill; young; 869,870.
2. Monolene sessilicauda, n. s., n. g.; 870, 871.
3. Citharichthys arctifrons, n. s.; 871, 872.
4. Citharichthys unicornis, n. s.; 870, 871.
5. Thyris pellucidus, n. s., n. g. ; S71, 872.
6. Macrurus Bairdii, Goode \& Bean; adult and young; 870.
7. Macrurus carminatus, n. 8.; 870.
8. Hypsicometes gobioides, n. s.; 871 .
[Phycis chus8, (Walb.) Gill] ! (No. 25905) ; 866.
[Merlucius bilinearis, (Mitch.) Gill]; adult and young; 870, 871, 872.
9. Phycis Chesteri Goode \& Bean; adult and young ; 868, 869, 870.
[Phycis regius, (Mitch.) Gill]; s70.
10. Lycodes Verrillii, Goode \& Bean; 870.
11. Anarrhichas lupus, Linn.; young; 866.
12. Peristedium miniatum, n. s.; $865,872$.
13. Sebastes marinus, (Limn.) Liitken, 870, 871.
14. Raia, unkn. spec. (with numerous closely studded spines); 871.
15. Raia, unkn. spec. (in egg, with very long tail); 869.
16. Myxine glutinosa, Linn.; 869, 870.

On this same ground Gloncester fishermen, in 1879, obtained numerous: specimens of Lopholatilus chamaleonticeps never elsewhere taken.

The occurrence of Phycis regius and Merlucius bilinearis at such great. dupths is worthy of mention.

Proc. Nat. Mus. 80-22
Nov. 23, 1880.

In the following paper are described the following genera and species, apparently never before observed:

> Monolene, n. g. $\}$ Pleuronectida.
> Thyris, n. g.
> Hypsicometes, n. g. Merluciida 9
> Monolene sessilicaula, n. s.
> Citharichthys arctifrons, n. s.
> Citharichthys unicornis, n. s.
> Thyris pellucidus, n. s.
> Macrurus carminatus, n. s.
> Hypsicometes gobioides, n. s.
> Peristedium miniatum, n. s.

I am greatly indebted to Mr. Frederick Gardner, jr., who has assisted in the preparation of this paper.

Monolene, ${ }^{*}$ new genus.
A genus of pleuronectoid fishes with thin elongate body and sessile candal fin. Eyes upon left side very close together, and near to profie. Mouth moderate; the length of the maxillary less than one-third that of the head. Teeth miuute in the jaws, in single series, nearly equal on both sides, though perhaps a trifle stronger on the bind side; absent on vomer and palatines. Pectoral fin upon blind side totally absent. Dorsal fin commences in adrance of the eye upon the snout. Dorsal and anal rays simple. Caudal fin sessile, almost confluent with dorsal and anal. Ventrals normal. Scales rather large, etenoid upon colored side, eycloid upon blind side. Lateral line marked; on colored side strongly and angularly curved above the anterior two-thirds of the pectoral; on the blind side straight, rising slightly as it approaches the region of the gill-opening. Gill-rakers few, feeble. Vertebræ 43.

Monolene sessilicauda, new species.
Extreme length of specimen described $\mathbf{0 . 1 5 6}{ }^{\mathrm{m} .}{ }^{\text {. }}$
The height of the body (33) is about three-eighths of the total length (without caudal), and is equal to twice the distance of the origin of the ventral from the snout (19); its height over the ventrals (25) is about five times the longitudinal diameter of the lower eye (5), the least height (8.5), at the base of the tail, slightly greater than the length of the lower jaw (8). The body is thin its greatest width (5) not exceeding the longitudinal diameter of the orbit.

Scales subcircular, with irregular outline, abont 2 millimeters in diameter, or in diameter about one-fourth (1.25) the diameter of the eye. The posterior edge of each scale upon the colored side is pectinate with abont fifteen denticulations. The scales of the blind side are oval, non-pec-

[^47]tinate, about as large as those of the colored side. The head is everywhere closely thatched with scales, even to the edges of the lips, and small scales occur on the bases of the candal, pectoral, and ventral fins, and upon the rays of the vertical fins nearly out to their tips. There are about 23 rows above and 25 below the lateral lines on the colored side, behind the carve of the line.

Lateral line of colored side strongly bent in its anterior part over the base and anterior two-thirds of the pectoral fin. There are about 92 scales in the lateral line, 72 of them in its straight portion. The are of the curved portion of the lateral line (12) is slightly more than double the distance of its highest portion above the line of the straight portion of the line were it continued (5). The curve of the line is very peculiar, having two angles; that nearest the head being most obtuse. The lateral line on the blind side is nearly straight, slightly ascending above the abdominal cavity.

The length of the head (20) equals one fifth of the standard length, and four times diameter of eye, or length of perculum (5). Distance from suout to margin of upper eye (5) much greater than distance to lower eye (3), and less than length of the maxillary (5.5), the posterior margin of which passes the perpendicular from the anterior margin of the lower eye. The width of the interorbital area is very small, less than one-sixth of the diameter of the eye. The length of the mandible (8) is two-fifths of the head.

The dorsal fin begins upon the snont in the perpendicular from the anterior margin of the lower eye. It is composed of from 99 to 104 simple rays (in five specimens), the longest of which in the posterior fourth of the fin ; their length (9) nearly half that of the head. The anal fin begins between the tips of the rentral, close to the vent, and under the insertion of the pectoral. It is composed of 79 to 84 simple rays, the longest in the posterior fourth; their length (7) slightly more than one-third the length of the head.

The caudal is sessile, rounded, the middle rays in length (17) nearly double the longest dorsal rays.

The pectoral, present only on the colored side, is inserted close to the branched opening, its length (15) three-fourth that of the head.

The ventrals are upon the mediun ventral line, even in length (6), slightly shorter or nearly equal to the longest rays of the anal.

Color on the left side ashy brown, with numerous more or less distinct darker brown spots. On the bliud side white. Pectoral blackish, with traces of lighter transverse bands.

Radial formula: D. 99-103; $\Lambda$. 79-84. Lateral line (92).
Eleven specimens, ranging in length from 094 to $\mathbf{1 5 6}$ millimeter, were taken, September 4, in hauls 870 and 871.

| Current number of specimen ...... Loculity | $\begin{gathered} 28,004 . \\ 870 . \end{gathered}$ |  | 26,0046. |  | 20,004c. |  | 28,004c. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Milli. meters. |  | Milt. nueters. | $\begin{aligned} & 100 \mathrm{~h} s \\ & \text { of } \\ & \text { length. } \end{aligned}$ | Milli. meters. | $\begin{aligned} & \text { looths } \\ & \text { of } \\ & \text { length. } \end{aligned}$ | Milli. | $\begin{aligned} & \text { 100the } \\ & \text { of } \\ & \text { leagth. } \end{aligned}$ |
| Extreme lencth .......................... In |  |  |  |  |  |  |  |  |
| Ludy: |  |  |  |  |  |  |  |  |
| Greatest heluht.................. |  | 38 5 |  |  |  |  |  |  |
| Greatert circumference |  | 25 |  |  |  |  |  |  |
| Height at ventrals |  | 25 |  |  |  |  |  |  |
| Lenest beight of tail |  | 8.5 |  |  |  |  |  |  |
| Hearl: |  |  |  |  |  |  |  |  |
| Distance from anout to upper eye |  | 5 |  |  |  |  |  |  |
| Wilth of intermitial area <br> Distanco from nuut to lower eye |  | 7.5 3 |  |  |  |  |  |  |
| Length of opervulum . ......... |  | 5 |  |  |  |  |  |  |
| Iength of maxillary. |  | 5.5 | ....... |  |  |  |  |  |
| Length of mandiblo |  | 8 |  |  |  |  |  |  |
| Diameter of orbit, longitudinal. |  | 5 |  |  |  |  |  |  |
| Doreal (epinons): |  |  |  |  |  |  |  |  |
| Greatest beight.... |  | 0 |  |  |  |  |  |  |
| Anal: |  |  |  |  |  |  |  |  |
| Diatance from smout |  | 2 |  |  |  |  |  |  |
| Heightat longest ray.. |  | 7 |  |  |  |  |  |  |
| Caudal: |  |  |  |  |  |  |  |  |
| Pectoral: |  |  |  |  |  |  |  |  |
| Distance from suout |  | 21 |  |  |  |  |  |  |
| Lengeth |  | 15 |  |  |  |  |  |  |
| Ventral: |  |  |  |  |  |  |  |  |
| Distance from snout leagth. |  | 19 |  |  |  |  |  |  |
| Toraal |  | 103 |  | 102 | 99 |  | 103 | 103 |
| Anal |  | 84 |  | 81 | 81 |  |  | 79 |
| Number of acales in lateral line. |  | *92 |  |  |  |  |  |  |
| Number of transverse rows above Jateral line |  |  |  |  |  |  |  |  |
| Nmber of transrerse rows below |  |  |  |  |  |  |  |  |
| Nurober of vertebrse. |  | 5 |  |  |  |  |  |  |

Cithariohthym, Bleeker.
A genus of pleuronectoid fishes. Month rather wide, the length of the maxillary almost one-third that of the head. Eyes upon left side, the upper one very near to profile. Teeth quite minute, on a single scries in each jaw, rather more prominent upon the blind side. Vomerine and palatine teeth none. Pectoral fin upon blind side much shorter and with fewer rays than upon colored side. Ventrals also asymmetrical, the sinistral one upon the median ventral line, the dextral one slightly in advance and crowded up upon the blind side. Dorsal fin commences in front of the eye upon the snont. Dorsal and anal rays simple. Candal fin subsessile, its peduncle not much developed. Scales large, flexible, cycloid, very deciduous Lateral line strongly defined, straight or very slightly curved anteriorly. Gill-rakers short, rather stout, flexible. Vertebre 34 (in C. arctifrons). Gill membranes broadly united below the throat; gill rakers lanceolate. Branchiostegals 5.

Citharichthys arctifrons, new species.
Extreme length of specimen described 137 millimeters.*
The height of the borly (37) is about three-eighths of its total length (without caudal), and is equal to about four times the height of the tail (9) and about five times its thickness (7).

The scales are irregularly polygonal, cyeloid; the largest about 6 millimeters in diameter; the diameter (5) nearly equal to that of the eye. The scales are flexible, loosely arranged, and very easily detached, so that it is difficult to secure a specimen in good order. Small scales on the rays of the ventral fins. There are forty scales in the lateral line (ou the colored side), which is sharply defined and straight, and seven or eight above and the same number below the lateral line at the broadest part of the body.

The length of the head $\left(24-24 \frac{1}{4}\right)$ is about one-fourth that of the body, and four times the diameter of the eye (6). The interorbital space (1) is very narrow, equal to the difference in the distances from snout to lower eye (4) and snout to upper eye (5). The length of mandible $(10-104)$ is about double the latter distance; the length of the maxillary $(7-74)$ slightly more than the greatest width of the body.

The dorsal fin begins npon the snout, above the anterior margin of the npper eye. Its greatest height $(13-15)$ is about three times the distance of its anterior ray from the snout. It is composed of 82 to 83 simple rays. The anal begins under the axil of the pectoral, its greatest height (14-15) equal to or slightly exceeding half the distance of its anterior ray from the snout. It is composed of 67 simple rays.

The caudal is subsessile, triangular, of 16 rays; its length about equal to that of the head. In dorsal, anal, and caudal the rays appear to project beyond the connecting membrane half or two-thirds of their own leugth.

The pectorals are inserted far below the lateral line and close to the gill-opening. The pectoral on the colored side is composed of more rays $(9-10)$ than that of the blind side ( 7 ), its length (17-19) being about double that of its mate ( $\bar{i}-9)$. The ventrals are composed of 4 rays.

Color dirty light brown.
Radial formula: D. 82-3; A. 67; C. 16; P. 0-10-7; V. 5 ; L. lat. 40.
Numerous specimens, rauging in length from 90 to 140 millimeters, were taken, September 4 , in hauls $870-871$. The females were full of ripe spawn. It is not probable, therefore, that the arerage size of the species is much greater than that of the specimeus described.

[^48]| Curyant namber of apecimen <br> Iancaley | $\begin{gathered} 25,908 . \\ 871 . \end{gathered}$ |  | 87 L |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Milli meters | 1002hn of beugth. | Mill. meters. | 1000 he of length. |
|  |  |  |  |  |
| Longth to chat of middle caudal raye | 111 | 100 | 102 | 100 |
| 1-ody: |  |  |  |  |
| Cirentent hrirht of milde dormal |  | 32.5 |  | 37 |
| lireatest widih |  | 7 |  |  |
| Loost luight of tall |  | 9 |  |  |
| Hearl: |  |  |  |  |
| (iverteat length |  | 24.25 |  | 24 |
| Width of intervebital area |  |  |  | 1 |
| Lenzth of smont to apper eyo. |  | 5 |  | 5 |
| Lengith of masillary |  | 7.25 |  | 7 |
| Lu-neth of mandiblo |  | 10.25 |  | 10 |
| Nistance from mhout to lowet ryo |  | 4 |  | 4 |
| Limmeter of orbit, longitudimal. |  | 6 |  | 6 |
| Dorsal (spluons) : |  |  |  |  |
| Wistaisce from snout |  | 4.75 |  | 8 |
| Lemgth of bose |  | 88 |  |  |
| Createst height, posterior |  | 15 |  | 13 |
| Atral: |  |  |  |  |
| Jength of luase.... |  |  |  | c |
| Iloight at lungent ray, posteriur \& |  | 14 |  | 15 |
| Courlal: |  |  |  |  |
| Leugth of midlle rays |  | 25. 50 |  | 23 |
| Pectoral: |  |  |  |  |
| bintance from smout Leneth |  | 25 |  | 25 |
|  |  |  |  |  |
| Distance from snout |  | 22 |  | 21 |
| Length |  | 11 |  | 10 |
| Doreal ... |  | 83 |  | S2 |
| Anal. |  | 67 |  | 67 |
| Caudal. |  | 16 |  |  |
| Pectoral |  | 10-7 |  | $9-7$ |
| Yentral |  | 5 |  | 5 |
| Nimber of acales ia lateral line, from root of ventral obliquely |  |  |  |  |
| Sumber of transvereor rows above lateral line. |  | 40 |  | 1 |

## Citharichthys unicornis, new species.

Extreme length of the specimen described (No. 26003) 69 millimeters.
The greatest height of the body (47) is slightly less than its length, and is about $4 \frac{1}{4}$ times its least height at the tail (11). The body is mach higher than in C. arctifrons, its greatest height over the pectorals, the contours then descending in almost straight lines to the base of the tail. The thickness of the body ( 6 ) is less than in C. arctifrons, being contained. nearly seventeen times in the standard length.

The scales are thin, deciduons, smaller than in C. arctifrons. There are about forty scales in the lateral line, which is slightly curved over the pectoral, and, as nearly as can be determined in the denuded specimens before me, about twelve rows above and twelve below the lateral line at the broadest part of the body.

The length of the head (25) is one-fourth of the standard length and about three times the diameter of the eye (9), or the distance from the snout to the upper eye (9). The interorbital space is wide (4), equal to the length of the snout, and diagonally crossed by a strong ridge, a continuation of two ridges which form the upper boundary of the lower and the lower boundary of the upper orbit.

The length of the maxillary (11) is less than half, that of the mandible
(13) more than half, that of the head. The teeth are minute, in single rows, closely set in the jaws, somewhat stronger upon the blind side. A strong short spine above the snout, at the anterior termination of the ridge at the lower margin of the upper eye. Hence the specific name unicornis.

The dorsal fin begins at the side of the preorbital spine, its anterior rays being slightly crowded over upon the blind side. It is composed of 73 to 75 simple rays. Its greatest height (13) is half the length of the head.

The distance of the anal from the suout (33) is one-third of the standard length. The number of rays is 60 ; their longest (13) equal in length to the longest dorsal rays.

The caudal is pointed, triangular, subsessile; its length (22) twice that of the maxillary (11) and two-thirds the distance from the snout to the anal (33). The pectorals are inserted far below the lateral line. The pectoral of the colored side is twice as long (18) as the diameter of the eye, that of the blind side as long (13) as the longest dorsal rays. The former is composed of 10 rays, the latter of 4.

The length of the ventrals (11) is half that of the caudal. They are asymmetrically placed, as is described under the generic diagnosis.

Radial formula: D. $73-75$; A. 60 ; P. 4 right, 10 left; L. lat. 40.
Color ashy gray, with dark lateral line. Eyes black.


Thyris," new genns.
I feel much hesitation in describing as a member of a new genus this little heterosome fish, which has all the appearance of being the larval form of some larger species. Since, however, it has attained almost the size at which one of the associated species begins breeding, and since I am unable to assign it to any genus already described, it seems desirable to give it a name which may serve to designate it, at least for the time being.

Diagnosis.-A genus of heterosome fishes, with soft, transparent, elongate body. Head very short (in the single species contained about $5 \frac{1}{2}$ times in total length of body). Mouth small, toothless. Eyes upon left side, close together, the lower slightly in advance of the upper. Pectoral fin upon blind side shorter and with fewer rays than upon colored side. Ventrals crowded together upon median keel of body, their bases prolonged upon this keel. Dorsal fin commences in front of the eye upon the snout. Dorsal and anal rays simple. Caudal finsubsessile, almost confluent with dorsal and anal. Scales very small, thin, easily detached. Dorsal line marked, straight. Body translucent, colorless (except for three longitudinal stripes in the single species). The vertebre can almost be counted through the flesh when the fish is held up to the light, and the arrangement of the gills is clearly visible through the opercular bones.

## Thyris pellucidus, new species.

The length of the specimen described (No. 26005) is 72 millimeters.
The height of the body (32) is about one-third of its length (without caudal), the least height of the tail (7) one-fourteenth. The body is thin, pellucid, larval-like, divided into three longitudinal tracts by depressions at the bases of the rows of interspinous processes, as in Glyptocephalus.

The scales are small, thin, easily detached (none remain upon the specimen except a few in the lateral line). The number of transverse rows is estimated at one hundred and twenty, the number of rows above and below the lateral line at the widest portion of the body serenteen or eighteen. The scales in the lateral line are provided with a large central canal. The lateral line is straight on both sides.

The head is very small; its length (18) contained about five and onehalf times in the total length of the body. The eyes are small, protruding, the upper almost perpendicularly above, though perhaps slightly posterior to the lower. The diameter of the eye (2) equals the width of the interorbital space (2) and is double the distance (4) from the snout to the upper eye, that from the snout to the lower eye (3) being intermediate. The mouth is small, the shape of the opening being somewhat like that in Solea, the upper jaw being somewhat hook-shaped. The length of the upper jaw (4) is two-thirds that of the mandible (6).

The dorsal commences on the snont in advance of the eje, and is con-

[^49]posed of 96 to 102 long, flexible, simple rays, their tips apparently extending far beyond the connecting membrane. The length of the longest rays (14) is donble the least height of the body at the base of the tail (7).

The anal fin originates at a distance (22) from the snout contained four times and one half in the length of the body. It is composed of 76 to 81 rays, the longest of which are as long as the head.
The pectoral is inserted close to the gill-opening and far below the lateral line (midway from the black stripe apon the lateral line to the black stripe at the base of the interspinous processes of the anal fin). The pectoral upon the blind side is short, its length (2) equal to the diameter of the orbit, composel of about four or five rays; that apon the colored side longer, its length (3) equal to that of the snout, and composed of about twelve rass. The ventrals are both crowded upon the ventral keel, their bases prolonged upon the keel, their tips embracing the origin of the anal.

Radial formula: D. 96-102; A. 76-81; P. 12 left, 4-5 right.
Color: In life colorless, translucent. In alcohol yellowish white. Three prominent blackish longitudinal stripes or lines upon the left side. The stripe running from the branchial cleft to the base of the tail is less prominent than the two at the bases of the interspinons processes. On the lateral line of the right side there is no stripe, though the two lateral stripes are as prominent as upon the other side. Eyes black.

| ('urrent number of apecimen Lue:ality | 2 $2,005$. <br> 870, yîl, and 872 |  |
| :---: | :---: | :---: |
|  | Milli. meters. | 100tha of length. |
| Extreme lencth | \% |  |
| Lenigth to end of midile camal rave | 60 | 100 |
| Body: ${ }^{\text {a }}$ Sreatent beime |  |  |
| Greatent belght .i. |  | $3 \frac{3}{7}$ |
| Hesal: |  |  |
| Greatest helyht |  | 2 H |
| 1 Distance from smout to upper cye |  | 4 |
| 1istancen from mout to lower eyo |  | 3 |
| Width of interorbital area |  | 2 |
| Length of mandiblo. |  | 4 |
| Diameter of orbit... |  | ${ }_{2}^{6}$ |
| Dorsal (spinous) : |  |  |
| 1bistanee from snout |  | 25 |
| Gireakest height.... |  | 14 |
| Anal: |  |  |
| Distance from mnoat. . |  | 22 |
| Height at longest ray |  | 18 |
| Caudal: |  |  |
| Pectongil of midale raym |  | 19 |
| Pectoral: ${ }_{\text {Diatance }}$ from soout |  |  |
| Length ............ |  | 3-2 |
| Ventral: |  |  |
| Distance from snout |  | 10 |
| Dorsal |  | (10-1103 |
| Anal.... |  | 70-81 |
| Pectomal |  | $12 \mathrm{~L}, 4$ - 11 |
| Number of scalew in lateral |  |  |

[^50]Macruras carminatus, new species.
A single specimen, 248 millimeters in length, was obtained, September 4, at statiou 871. It is most closely related to M. ceelorhynchus (Risso) Bonap. and to M. atlanticus Lowe, but differs in the number of fin-rays and in other characters.

The body is less elongate and stouter than in M. Bairdii, Goode \& Bean, though its greatest height (12.5) is, as in M. Bairdii, one-eighth of total length. The difference in general appearance is due to the fact that in M. carminatus the ventral contour retreats less rapidly.

The scales are large, heary, the free portions covered with long vitreous spines arranged in nine or ten rows. These scales resemble the oldfashioned wool cards. Hence the speciflc name, from carmen, a wool-card. The spines are thicker and more closely set than in M. Bairdii, and there is no specialization of the central row. The number of scales in the lateral line cannot be determined, though it probably does not exceed 100, but there are about five transverse rows above it and twelre below it, counting from the vent obliquely backward. In M. Bairdii there are 152 in the lateral line, six above and nineteen or twenty below.

Length of head (21) contained a little less than five times in total length. Width of interorbital area (4) about equal to vertical diameter of orbit, and about one-fifth of the length of the head. Length of snout, horizontal diameter of ese, length of postorbital portion of head about equal (7). Length of operculum (35) half that of snout.

Snout long, sharp, depressed, triangular, the lower surface more nearly parallel with the axis of the body than in M. Bairdii. The lateral ridges are pronounced and are contained in a straight line under the eyes and upon the preopercula. Strong horizontal ridges continue from the supra* orbital margins to the gill-openings, parallel with the subocular ridges. Nostrils immediately in front of the orhit. Barbel very short.

Teeth small, conical, somewhat recurved, arranged in villiform bands.
Distance of first dorsal from snout (23.5) about four and one-half times the length of its base (5), its distance from anterior margin of orbit much less than the length of the head. First spine very short, harilly perceptible above the skin. Second spine about half as long (11) as the head, slender, unarmed. When laid back, its tip reaches the origin of the second dorsal (the filanent is destroyed). The decrease in the length of the spines is very gradual, the sixth being nearly as long as the second, so that the fin is not so triangular in shape as in M. Bairdii.

The second dorsal begins in the perpendicular from the seventh ray of the anal. The anal is much higher than in M. Bairdii, the length of the longest rays (2) nearly equal to half the width of the interorbital area.

Anal fin inserted under the eighteenth scale of the lateral line (as nearly as can be judged from the distorted specimen). Its longest rays are as long as the width of the interorbital area.

Distance of pectoral from shout equal to twice its own length (11),
which is about equal to the length of the dorsal spine. Its insertion is below the middle of the depth of the body and below the level of the center of the orbit. Its tip does not reach to the perpendicular from the origin of the anal.

Insertion of ventral behind pectoral and slightly in advance of the insertion of the dorsal. Its distance from the snout (22) is greater than twice its length (9). Its long filament does not reach to the origiu of the anal fin.

Radial formula: D. 1, IX, $80+$; A. $76+$; P. 13 ; V. 7.
Color silvery gray. The thick, closely-set spines are matted with oozy mud which cannot be removed. This is doubtless the result of the hard usage experienced in the trawl-net.


Hypsicometes,* new genus.
A small specimen, much contracted and distorted from immersion in strong alcohol, is the only material upon which to base this description. Although not quite satisfled that the relations of this fish are most nearly with Merluciida, I venture to assign it temporarily to a position in this farnily, hoping that additional material may contirm my present belief. In some respects it resembles the Blennioids, but pseudobranchiz are absent.

Diagnosis.-A genus of fishes in general form closely resembling Merlucius, but with the elongate body covered with large scales (not

[^51]much more than half as many in lateral line as in M. bilinearis nor onethird as many as in M. vulgaris). Mouth rather small. A separate caudal. Two dorsal fins, the first composed of a few long rays, the second with longer base. One elongate anal. Ventrals well developed, with broad base composed of six rays. Teeth on the vomer and in the jaws in two or three rows, rather feeble. The eyes large, near together, looking upward. No barbel.

Hypaicometes gobioides, new species.
The general appearance of the fish is snggestive of a species of Gobius.
Head rather broad and somewhat depressed; its greatest width (13) about equal to the greatest height of the body (12), and less than onehalf its length (30), which is contained three times and one-third in the standard length. The cleft of the mouth is horizontal, extending to the perpendicular from the anterior margin of the orbit. The snout is broad, rounded, as long (10) as the longitudinal diameter of the eye. The interorbital space is namow (2), one-fifth the length of the snout, the eyes large, very close together, looking upward. The length of the maxillary (13) is equal to the greatest width of the head. The mandible is much longer. Teeth minute, in two or three rows on jaws and on romer. Gillopening wide, the membranes united over the isthmus near the snont.

Body shaped much as in young of Merlucius, the least heigbt of the tail (5) about half of the greatest width of the body (11). The scales are large, about 58 transverse rows from gill-opening to base of caudal. The character of the scales and the position of the lateral line cannot be decided from the specimen described.

The dorsal originates above the base of the pectoral, and consists of six or seven flexible rays as long (10) as the snout. The second dorsal has a base four times as long (10) as the snout, and extends nearly to the base of the candal. It is composed of about seventeen rays, the longest slightly longer (11) than the longest in the first dorsal.

The origin of the anal is under that of the second dorsal; its base length (48) is equal to the distance of its anterior ray from the snout (48). It is composed of about sixteen rays, the longest of which (10) is equal to the longest in the first dorsal.

The caudal is truncate, its length (18) three-eighths of that of the base of the anal.

The insertion of the pectoral is distant from the snont (33) one-third of the distance from snout to base of caudal. Its length (10) equal to the height of the first dorsal.

The ventrals are far apart, with broad bases lying flat upon the rentral surface, composed of six rays. They are situated far in advance of the pectorals and their length (14) equals two-fifths of the distance from snout to first dorsal.

Radial formula: D. VI (or VII), 17 ; A. 16; V. 6 ; L. lat. 158.
Color grayish, with obscure cloudings. Belly lighter. A large black blotch upon the base of the upper caudal rays.

|  | Milli. meters. | 100ths of length. |
| :---: | :---: | :---: |
| Estrume lengrh | 54 |  |
| Lenght to ead of middle caudal ray | 46 | 100 |
| Budy: |  |  |
| Gneateat heiche |  | 11 |
| Least height of tail ..... |  |  |
| Head: |  |  |
| Grentent length |  | 30 |
| Wreateat winth of. interorbital area |  | 13 |
| Length of mpout ........ |  | 10 |
| Lemeth of mavillary |  | 13 |
| Diameter of orbit, longitudinal |  | 10 |
| Dorsal (spiuous) : |  |  |
| Distance from mu |  | 33 |
| Length of have. |  |  |
| Greatest height |  |  |
| Dorsal (soit): |  |  |
| Height at longest ray |  | 11 |
| Anal : |  |  |
| IVistanee from snout |  |  |
| Length of base. |  | 48 |
| Helfigt at longest ray |  | 10 |
| Caudal: |  |  |
| Lensth of middle raya |  | 18 |
| oral: <br> Distanco from anout |  |  |
| Levirth ............. |  | 10 |
| Ventral: |  |  |
| Distance from smouk |  | 23 |
| Length |  | 14 |
| Dorsal |  | I-[VII], 17 |
| Anal |  | 10 |
| Tentral |  |  |
| Nimber of acales in lateral li |  | [58] |

Peristedium miniatum, new species.
Total length of type (No. 26023) 300 millimeters.
The greatest width of the body (20) is equal to its greatest height (19.5), being one-fifth of its total length without caudal. The general armature of the body is much like that described by Giinther under Peristethus brevirostre.* The number of plates between the gill-opening and the base of the tail is from twenty-seven to twenty-nine. There are four series of spiny plates on each side, the spines of the abdominal series becoming vory weak and obsolete towards the tip of the tail.

The length of the head ( 40.15 ) is two-fifths of the total length without caudal. The length of the preorbital processes (7) is contained about three times and one-half in the distance from their extremities to the anterior margin of the orbit. The interorbital space is deeply concave, its width ( 6.75 ) contained between six and seven times in the length of the bead. Protuberance on the forehead rery slight. The length of the snout (22.5) is more than half that of the head (in young less). The diameter of the eye ( 65 ) is contained between six and seven times in the length of the head. There is one pair of spines npon the upper surface of the snout behind the base of the preorbital processes, and another larger pair upon the preorbital processes, one upon each. The ridge of the preoperculum terminates in a depressed, short, sharp-pointed spine. The number of small tentacles upon either side of the lower jaw is about

[^52]ten, the smallest nearest to the symphysis. The long tentacles at the angles of the mouth are fringed and extend to the base of the pectorals. In other respects Giinther's description of $P$. brevirostre is ample for this species.

Color bright crimson.
Radial formula: D. VII, 18; A. 17 ; C. 16; P. $2+10$; V. 6. L. lat. 27 on one side, 28 on the other.

Three other specimens had the following: D. VIII, 18; A. 17. D. VII, 18; A. 18. D. VII, 18; A. 18.

The measurements of adult and young specimens are given. The fish when taken seemed to be in the height of the spawning season.


## DRACRIPTION OF A NEW SPECIES OF ICTERUS FROM TRE WEAT NDIES.

## By GEORGE N. LAWRENCE.

## Icterus oberl.

Male: Head, neck, upper part of breast, back, wings, and tail black; lower part of breast, abdomen, under tail-coverts, and rump lightbrownish chestnut, with the concealed bases of the feathers of a clear light yellow; the thighs are yellow, with a wash of chestnut; edge of wing and under wing-coverts yellow; bill black, with the sides of the under mandible bluish for half its length from the base; tarsi and toes black.

Length (skin), $8 \frac{1}{2}$ inches; wing, 373 ; tail, 4 ; tarsus, $\frac{7}{8}$; bill, $\frac{7}{6}$
The female has the upper plumage of a dull greenish olive, with a yellowish tinge, the front and rump inclining more to yellow; the tail feathers are yellowish green; quills brownish black; the primaries and secondaries are edged narrowly with dull yellowish gray; the teptiaries are margined with fulvous; wing-coverts dark brown, margined with fulvons; edge of wing vellow; the under plumage is of a rather dull dark yellow ; the breast and under tail-coverts are of a deeper or warmer color; the sides are greenish olive; bill and legs as in the male.

The young male resembles the female in plumage, but has the back somewhat darker.

Types in National Museum, Washington.
It differs from all its allies, which are somewhat similarly colored, in having the shoulders black, instead of yellow or chestnut.

Seven specimens were obtained.
In the early part of March of the present year, Mr. Ober left for the West Indies, intending to explore as many of the islands not visited on his first expedition as his limited time would permit. He returned after an absence of six months, and his collections sent to the Smithsonian Institution were placed in $m y$ hands for examination. Among them I found but one new species, viz, the Icterus above described, procured in Montserrat.

It seems but a fitting compliment that the only new species commemorative of the second expedition of Mr. Ober should bear his name.

The catalogues of the birds obtained by him in the different islands will be published in the Proceedings of the National Musenm as soon as he furnishes me with his notes and observations thereon.

Octobet 15, 1880.

## DEACRIPTION OF A NEW EPECIEAOR NOTIDANOID BEAEEK IEEK-  

## Ey DAVID S. JORDAN and CHARLES H. GILBERT.

## Hexanchus corlnus, sp. nov.

Head large, broad, depressed and very blunt anteriorly; the length of snout from front of mouth little more than half the interorbital space and rather less than the distance from the front of the mouth to angle of the mouth.

No median tooth in upper jaw. Two sharp, slender teeth in front of npuer jaw, behind which is a row of four others similar but a little larger; the two outer larger than the inner, all without basal cusps. Behi d these are four others similar and still a little larger. These are directed backward, and should not be considered as functional teeth.

The first of the large teeth in the upper jaw is larger than the succeeding teeth. It has a sharp point hooked outward, and a single strong cusp on its outer margin, its inner edge not serrate. The second tooth, on both sides, has the basal cusp obsolete. The third tooth is like the first, but a little smaller. The fourth tooth is slightly serrated on the inner margin, aud has two strong cusps on the outer at base. The fifth and sixth are similar to the fourth, but more strougly serrate on the inuer margin. The seventh, eighth, and ninth are small, and the number of cusps is increased, so that they approach the form of the teeth of the lower jaw.

The median tooth of the lower jaw is very small, with a slight median cusp and three cusps on the outer margin, the uppermost the largest. The first lateral tooth has six cusps; the first the largest, the others progressively decreasing; the long edge of the first cusp is finely serrated, but has no basal cusp. The second, third, fourth, and fifth teeth are precisely similar in size and form to the first. The sixth and seventh are somewhat smaller. In the smaller specimen, from Soquel, the inner edge of the tgeth is not serrated. Behind the large teeth in each jaw is the usual series of small blunt teeth, which in this species are little developed.

Nostrils near the tip of the snont. Furrow of skin at angle of mouth reaching half way from the angle of the mouth to the gill-opening. Eyes large, 2 the length of the snout. Spiracles small, far behind the eyes. Gill-openings 6. Pectoral moderate, as long as from first gill-opening to tip of lower jaw. Ventrals small, reaching past front of the small dorsal. Dorsal a little higher than anal, and terminating over the middle of the latter fin. Tail long, twice as long as head, a little less than of the total length, little bent upward; its basal lobe little developed; the scales on its upper edge somewhat enlarged.

Color very dark sooty, almost black above, grayish black below, without spots or distinct markings. A very obscure grayish lateral streak. Inside of upper lip blotched with black. Young specimen clear brown.

This species is known to us from two specimens, the larger, a fenrale 43 inches in length, the type of the present description, having been obtained by James G. Swan, assistant to the United States Fish Commission, at Neah Bay, near Cape Flattery. The other was secured by Mr. Gilbert at Soquel, on the Bay of Monterey.

This species is closely related to Hexanchus griseus Raf. of the Merli. terranean and Eastern Atlantic.' It differs chiefly in the form of the teeth of the lower jaw, which are serrated on the inner edge, and have on the apper or outer edge ouly six cusps instead of eight or nine.

Another Notidanoid shark, belonging to the related genus Heptranchias, distinguished by the presence of seven gill-openings instead of six, is found with the present species in the same waters. This is Heptranchias maculatus, the Notorhynchus maculatus or Notorhynchus borealis of Ayres and Gill. This species differs from Heptranchias indicus, with which it has been confounded by Giinther and Dnméril, in the lack of a median tooth in the upper jaw, and in the longer tail, which forms rather more than a third of the total length.

Heptranchias maculatus is rather common on the coast of California from Monterey northward. In Humboldt Bay it is especially abundant, and the pursuit of it for the oil in its liver is an industry of some importance.

The teeth in this species undergo some changes with age, and at least are suhject to some individual variations, as will be seen from the following descriptions, which may be compared with Professor Gill's account of the jaws of Notorhynchus maculatus (Proc. Ac. Nat. Sci. Phila. 1862, 495) from Nisqually, Washingtou Territory.

## Description of Heptranchias maculatus, juv., from Soquel.

Head rather depressed, broad, rounded. The nostrils almost at the tip of the snout. Length of the snout much less than tho interorbital width. Spiracle rather large, nearer the gill-openings than the eye. A long furrow at the angle of the mouth, above which the upper lip extends backward in a broad fold.

In the upper jaw no median tooth; two small teeth near together, well in front, simple and pointed; two a little larger, behind and outside of these; then two more, similar, near together and directly within the first pair ; then directly behind the second pair mentioned two much larger ones, pointed, each with a conspicuons cusp on the outer edge near the base on each side, and one or more denticulations. The next tooth is similar, rather larger and directed more outward. The remaizing five or six grow still more oblique, but are otherwise similar in form and size, but a little more serrated.

The median tooth in the lower jaw is broad, with two (or threc) strong dentations on each side, directed outward, aud a very small median cusp Proc. Nat. Mus. 80-23
at tip. The other teeth are very similar to each other, six in number on each side and slightly increasing in size from the middle. They are much broader than high, and armed with about four sharp points turned ontwarl, besides one or two smaller ones. The first point is longest, and has a small cusp on its side, so that strictly one might call the second cusp longest.

Gill-openings 7, high ; pectorals moderate, truncate and slightly concare behind; ventrals moderate, rather backward; anal small, the single small dorsal just in front of it, covering most of the interspace between it and the ventrals.

Tail very long, forming a little more than one-third the length (23). A notch near its tip below; the lower lobe a little developed. Upper edge of tail with about three series of scales, much enlarged, so that its entire elge is finely serrated.

Described from two specimens from Soquel, each 18 inches long, one male, the other female.

## Description of the jazs of Heptranchias maculatus, adult, from Humboldt Bay.

No median tooth in upper jaw. Upper jaw with two transverse series of teeth on each side of symphysis, the outer series usually with two, the inner with four or five teeth, some of which are placed externally to the main row. They are lanceolate from a quadrate base, the points directed backwards and curved slightly outwards, without cusps or serrations. First tooth of main series similar to symphyseal teeth, but larger and broader, with a larger or smaller cusp at base on outer side and with or withont minute serrations on base of inner side; from this towards corner of mouth there is much variation in the development of cusps and serratures, the teeth, however, constantly approximating in shape those of the lower jaw, always differing in being smaller, with external margins more inclined, and with the central cusp larger in comparison to others and more distant from them. Sometimes on each side are four or five teeth, bicuspidate and without serrations on inner edge; in other jaws the second or third tooth firom symphysis has three or more cusps on the outer margin, and with serrulations or a single cusp at base on inner side. The last large tooth on each side usually broad and low, with the two margins subequal, without prominent median cusp; the inner margin minutely serrate; the outer with seven or eight cusps.

In lower jaw the tecth are much larger than in upper, and are uniform in shape and style of armature; they are wide from a quadrate base, the onter margins comparatively little inclined and with the cusps regularly and rapidly graduated, usually seven in number; the inner margins short, gibbous and mnch curved, always distinctly serrate; median tooth upright, without median cusp, and with three or four cusps on each margin.

Each jaw has laterally about 12 transverse series of small linear teeth,
scarcely elevated above surface of jaw, resembling the lateral teeth of Heterodontus, but much smaller and without median crest.

Teeth ca. $\frac{12-7-2-2-7-12}{12-6-1-6-12}$.
We may note here, as further additions to the list of sharks on our Pacific coast, the occurrence of Somniosus microcephalus (Bloch) Gill in Puget's Sound; of Lamna cornubica L. in Monterey Bay; and of a species closely related to Eulamia lamia (Risso) Gill in San Diego Bay. The shark recorded by us as Pleuracromylon laris (Proc. U. S. Nat. Mus. 1880,52 ) is Rhinotriacis henlei Gill. This species is not a genuine Triacis, and it appears to us to be congeneric with P. laxis, from which it differs in the greater development of the basal cusps of the teeth.

## Table of measurements.

Species, Hexanchus corinus J. \& G.; sex, \&. Locality, Neah Bay, Waahington Territory.


[^53]
# NOTICE OF RECENT ADDITIONS TO THE MARINE INVERTERRATA, OF THE NORTHEASTEREN COAST OF AMERICA, WITI DEMCREPTHONS OF NEW GENERA AND BPECEES AND CKITBCAL REMAREA ON OTHERA. 

PART IL-MOLLUSCA, WITH NOTES ON ANHELIDA, ECHINODERMATA, ETC., COLLECTED BY THE UNITED STATES FISH CUMMISSION.

## By A. E. VERRILL.

The species included in the following paper, unless otherwise stated, have been collected by the parties employed by the United States Fish Commission for several years past in exploring the waters and investigating the marine animals of this coast.* This work has been under the immediate direction of the writer, who has personally taken a part in most of the very numerous dredging excarsions. The total number of stations dredgel or trawled amounts to over 1,200 . Among the large number of persons who have taken in more or less important part in these explorations, in connection with the invertebrate department, I may particularly mention Prof. S. I. Smith, Prof. A. S. Packard, Mr. Sauderson Smith, Mr. Richard Rathbun, Prof. I. E. Webster, Mr. Oscar Harger, Mr. E. B. Wilson, and Mr. S. F. Clark.

During the last three years Mr. Sanderson Smith has given special assistance in caring for the testaceous Mollusca in the dredging season, dnd has also been engaged with the writer at various other times in the working up of the Mollusea of Northern New England for publication. Owing to the great accumulation of materials, this will necessarily take much time. In the meap time the following catalogue will afford much useful information as to the additions recently made to our molluscan fauna.

This season, the most interesting and prolific region of our coast hitherto explored was discovered upon the outer bank, or slope, situated from 70 to 80 miles south of Martha's Vineyard, and from 90 to 115 miles south of Newport, R. I.

In September and October three very successful trips were made to this region.

The first of these trips was made September 3 to 5 , south of Martha's Vinevard, about 70 to 80 miles (stations 865 to 872 ), where the depth was from 65 to 192 fathoms. The bottom was mostly fine compact sand, with some mud, and with a large percentage of Foraminifera. The

[^54]second trip was made September 12 to 14, nearly south from Newport, 90 to 105 miles, where the depth was from 85 to 325 fathoms (stations 873 to 881 ). The third trip, October 1 to 3 , was to the same region, but somewhat farther west and south, and in deeper water (stations 891 to 805). At all these stations, except 867, a large beam-trawl was used; at 867 a heary "rake-dredge", of a new form, was used with good success.

All these stations are situated in the region designated on the charts as "Block Island soundings", and nearly all proved to be exceedingly rich in animal life, the vast abuudance of individuals of many of the species taken being almost as surprising as the great number and variety of the species themselves.

In this region the slope is exceedingly gradual till the depth of 75 to 100 fathoms is reached, at about 90 miles from the coast; the slope then becomes much more rapid, but yet not steep, and the bottom is of very fine compact sand, mingled with more or less mud, fragments of shells, and sometimes with small stones,* and generally has a smooth and rather hard surface, well adapted to support a very great variety of animais of nearly all classes. In some places the material is softer mud and sand; in others it is covered with broken shells and great numbers of sponges, hydroids, and worm-tubes.

Many species owe their existence, on these bottoms, to the suitable piaces of attachment furnished by the large tubes of annelids, which formed a marked feature in many of the localities.

In several localities with muddy bottoms ( $569,879,880,804$ ), we trawled large quantities (several thousands in all) of very singular, large, round, unattached worm-tubes, occupied by a large, undescribed species of Hyalincecia. $\dagger$ These tubes are firm and transluceut, composed of a tough substance resembling the quills of birds. They are open at both ends, but often have internal septa near the larger end; they are often more than a foot long, and about a third of nn inch in diameter at the

[^55]larger end, but taper gradually toward the smaller one, and are nearly straight. They may possibly at times stand erect in the mud, but this is doubtful; in most cases they probably lie free on its surface, and the large and powerful anuelid inhahiting them probably has the power of dragging them about; otherwise it would be impossible to account for the numerous hydroids, actinians, sponges, \&c., which often cover them.

On the harder bottoms, in the shallower localities, especially at stations 865 to 867 , we obtained great quantities of a very different, unattached worm-tube, composed of bivalve shells, entire and broken, arranged so as to form a strong. thattened covering around a thin silken, central tube. These are made by a pale, opalescent species of Nothria (near N. conchylega), allied to Hyalinocia. In the localities last named we also took large quantities of another very different kind of wormtube, made by another Annelid of the same family, a large species of Eunice or Leodice.* This tabe is sometimes half an inch in diameter, more or less attached. irregularly bent, often branched, or with sideopenings at the angles. It is composed of a parchment-like material, and is usually covered with hydroids, sponges, actinians, ascidians, \&c.

The sand and mud usually contain a large percentage of calcareous Foraminifera, many of which are remarkably large and handsome species, often more than $\tilde{5}^{m}$ or $6^{m}$ in diameter. In some of the localities (as at stations $869,8 \% 4$, and 895 ) there were, in the mud, very largequantities of large sand-covered Rhizopods (Astrorhiza, Rhabdammina, \&e.), which assume a variety of irregularly branched and often rudely stellate forms, but many of them are rod-like, and nearly an inch in length.

Fishes, Crustacea, Annelids, Anthozoa, and Echinoderms, as well as. Mollusca, abounded in new and strange forms. Of many of these species, previously unknown in our waters, thousands of specimens were obtained. At several of the stations, especially at $880,881,893$, and 804, large numbers of the handsome Mopsea-like coral, Acanella Normani V., were taken; to these many fine specimens of the rare Pecten vitreus wereattached, and also several species of Actinians and Annelids. In many of the localities vast numbers of hermit-crabs (Paguride), of several species, occurred, inhabiting cases consisting of groups of the compound, sand-coated Actinians, mostly Epizoanthus Americanus V. The bases of these origiually covered dead shells of Gastropods or Pteropods, occupied by the crabs, but by some chemical process they have, in most cases, wholly removed the substance of the shell, so that the polyp constitutes the entire residence of the crab. Large numbers of huge Actinians, such as Bolocera Tuedice, Urticina nodosa, \&c., oc-

[^56]curred in most of the deeper dredgings. Large quantities of a large, handsome, but very fragile, cup-coral (Flabellum Goodei V.) occurred in the deeper localities, especially at stations $880,894,895$, but most of the specimens were ruined by being crushed by the great weight of the contents of the trawl. The animal of this coral is bright orange, with a purple center.

While many of the species of every class obtained here are arctic, or belong to the cold waters found at similar or greater depths on the coasts of Europe and in the Mediterranean, a few genera, like A vicula, Solarium, and Marginella, are related to southern or West Indian forms. A number of the most abundaut species of Crustacea and Echinoderms* had already been described from the collections made by Pourtales, off Florida.

Many free-swimming species, belonging to the Pteropoda and Heteropoda, of which we dredged the dead but perfectly fresh shells, were not previously known to occur so far north. They were associated with others of the same groups which had previonsly been taken living at the surface along our shores, but they all belong properly to the Gulf Stream fauna.

The frequent occurrence of nearly fresh shells of Argomauta Argo was also a matter of surprise to us, and indicates that this species must often be very common near our coast.

The very large collections of specimens obtained on these three trips have, as yet, been only partially examined, but enough has already been done to prove this region to be altogether the richest and most remarkable dredging ground ever discovered on our coast. The large number of new forms, combined with others previously known only from remote regions, constitute a very distinct fama, hitherto almost wholly unknown.

A considerable number of undetermined, and perhaps undescribed, shells from these localities are not included in this article.

[^57]Dredging stations on the outer bank in 1890.


The temperature determinations, owing to the violent motions of the steamer, are uureliable at stations 865 to 872 . At stations 873 to 878 the bottom temperature was usually $51^{\circ}$ to $53^{\circ} \mathrm{F}$.; at 879 to 881 it was 420 to $43^{\circ} \mathrm{F}$. ; at 893 and 894 , it was $40^{\circ}$.

## CEP円ALOPODA.

The great abundance of Cephalopods in the deep-water localities explored by us is a very interesting and important discovery. Eight species were taken this season. Some of these occurred in large numbers. This collection adds three genera to the New England fauna, two of them new and very curious.

## Eeteroteuthis tenera Verrill.

Amer. Journ. Science, xx, p. 392, for Nov., 1880 (published Oct. 25).
A small and delicate species, very soft and translucent when living. Body shortish, cylindrical, scarcely twice as long as broad, posteriorly usually round, but in strongly contracted, preserved specimens often narrowed and even obtusely pointed; front edge of mantle with a dorsal angle extending somewhat forward over the neek. Fins very large, thin, longer than broad; the outer edge broadly ronnded; the anterior edge extending forward quite as far as the edge of the mantle and considerably beyond the insertion of the fin, which is itself placed well forward. The length of the fin is about two-thirds that of the body; the base or insertion of the fin is equal to about one-half the body length; the breadth of the fin is greater than one-half the breadth of the body. Head large, rounded, with large and promiuent eyes; lower eye-lid slightly thickened. Arms rather small, unequal, the dorsal ones considerably shorter and smaller than the others. In the male the left dorsal arm is
greatly modified and very different from its mate. Lateral and ventral arms subequal. In both sexes, and even in the young, the suckers along the middle of the four lateral and two ventral arms are distinctly larger than the rest, but in the larger males this disparity becomes very remarkable, the middle suckers becoming greatly enlarged and swollen, so that eight to ten of the largest are often six or eight times as broad as the proximal and distal ones; they are deep, laterally attached, with a raised band around the middle and a very small, round aperture, fur. nished with a smooth rim. In the female the corresponding suckers are about twice as broad as the rest on the lateral arms. The suckers are in two regnlar rows on the lateral and ventral arms, in both sexes. In the male the left dorsal arm becomes thickened and larger from front to back, and usually is curled backward; its suckers become smaller and much more numerous than on the right arm. being arranged in four crowded rows, except near the base, where there are but two; the suckerstalks also become stout and cylindrical or tapered, their diameter equaling that of the suckers. The right arm remains normal, with two alternating rows of suckers, regularly decreasing to the tip, as in both the dorsal arms of the female. Tentacular arms long, slender, extensible; club distinctly enlarged, usually curled in preserved examples. The suckers on the club are numerous, unequal, arranged in about eight close rows; those forming the two or three rows next the upper margin are much larger than the rest, being three or four times as broad, and have denticulated rims. Color, in life, pale and translucent, with seattered chromatophores. In the alcoholic specimens the general color of body, head, and arms is reddish, thickly spotted with rather large chromatophores, which also exist on the inner surface of the arms, between the suckers, and to some extent on the tentacular arms and bases of the fins; outer part of fins translucent white; auterior edge of mantle with a white border. Length of body $25^{\mathrm{mm}}$ to $40^{\mathrm{mm}}$. Pen small and very thin, soft and delicate. It is angularly pointed or pen-shaped anteriorly, the shaft narrowing backward; a thin, lanceolate expansion or web extends along nearly the posterior half. Upper jaw with a strongly incurved, sharp beak, without a notch at its base. Lower jaw with the tip of the beak strongly incurved, and with a broad but prominent rounded lobe on the middle of its cutting edges.

Odoutophore with simple, acute-triangular, median teeth; inner laterals simple, nearly of the same size and shape as the median, except at base; outer laterals much longer, strongly curved forward.

Over 150 specimens of this interesting species were secured by the writer and others of the dredging party on the United States Fish Commission steamer "Fish Hawk", September 4, 1880. It was particularly abundaut at stations 870 and 871 , in about 125 to 150 fathoms, on the rapidly sloping outer bank of the coast, under the inner edge of the Galf Stream. Both sexes occurred in about equal numbers, and also the young, of various sizes. It was also taken in considerable uumbers
at stations 865 to 867 , in 65 fathoms ; 872 to 880 , in 86 to 252 fathoms. It was also obtained by Mr. A. Agassiz, at similar depths, in the same region, as well as farther south, earlier in the season, while dredging on the Coast Survey steaner "Blake".

This species was associated, at station 869, in 192 fathoms, mud, with Octopus Bairdii and Rossia sublecis. It can easily be distinguished from the latter and other species of Rossia, not only by the large suckers of the lateral arms, but still better by the inequality of the suckers on the tentacular club. The latter character is obvious in specimens of both sexes and of all ages.

Gonatus amcenus (Möller) Gray.
G. O. Sars, Mollnsca Regionis Arctica Norvegire, p. 336, pl. 31 ; pl. xvii, fig. 2 ( 6 gures excellent).
A good specimen of this species, in nearly perfect preservation, was recently presented to the United States Fish Commission by Capt. Willian Demsey and crew, of the schooner "Clara F. Friend". It was taken from the stomach of a cod, off Seal Islaud, Nova Scotia.

## Calliteuthis Verrill.

Amer. Journ. Sci., xx, p. 393, for Nov., 1880 (published Oct. 25).
Form much as in Histioteuthis, but without any web between the arms. Body short, tapering to a small free tip; fins small, united behind the tip of the body. Siphon united to the head by two dorsal bands; an internal valve. Mantle connected to the sides of the siphon by lateral elongated cartilages and corresponding grooves on the sides of the siphon. Arms long, free; suckers in two rows, largest on the middle of the lateral and dorsal arms. Eyes large, with oval openings. Buccal membrane simple, sack-like.

## Calliteuthis reversa Verrill.

Loc. cit., p. 893.
Arms long, tapering, the lateral pairs equal ; the dorsal and ventral about equal, somewhat shorter than laterals; tentacular arms slender, compressed (the ends absent). Fins sinall, thin, transversely rhomboidal, white. Color reddish brown. The ventral surface of the body, head, and arms is more ornamented than the dorsal surface, being covered with large, rounded verrucæ, their center or anterior half pale, the border or posterior half dark purplish brown; upper surface of body with much fewer and smaller scattered verrucæ; a circle of the same around the eyes; inner surfaces of arms and bnceal membranes chocolate-brown. Total length, $133^{\mathrm{mm}}$; to base of arms, $67^{\mathrm{mmm}}$; mantle, $51^{\mathrm{mm}}$; of fin, $17^{\mathrm{mm}}$; breadth of fins, $24^{\text {min }}$; of body, $20^{\mathrm{man}}$; dianeter of eye-ball, $16^{\mathrm{mun}}$.

Station 894, 365 fathoms.

## Alloposue Verrill.

Amer. Journ. Scl., xx, p. 393 (published Oct., 1980).
Allied to Philonexis and Tremoctopus. Body thick and soft, smooth; arms all (in the male only seven) united by a web extending nearly to
the ends, the length of the arms decreasing from the dorsal to the ventral ones; suckers sessile, simple, in two rows; mantle united firmly to the head by a broad dorsal band and by a ventral and two lateral commissures, the former placed in the median line, at the base of the siphon; free end of the siphon short, well forward. In the male the right arm of the third pair is hectocotylized and developed in a sack in front of the right eye; as found in the sack it is curled up and has two rows of suckers; the groove along its edge is fringed; near the end the groove connects with a rounded, obliquely placed, lateral, concave lobe, with interior plications. The terminal portion of the arm is a lanceolate thickened process, with ridges on the inner surface.

The permanent attachment of the mantle and neck, by means of commissures, is a very distinctive character.

Alloposus mollis Verrill.
Loc. cit., p. 394.
Body stont, ovate, very soft and flabby. Head large, as broad as the body; eyes large, their openings small. Arms rather stout, not very long, webbed nearly to the ends, the dorsal $60^{\text {mum }}$ longer than the ventral arms; suckers large, simple, in two alternating rows. Color deep parplish brown, with a more or less distinctly spotted appearance. Length, total, $160^{\mathrm{mm}}$; of body to base of arms, $90^{\mathrm{mm}}$; of mantle, beneath, $50^{\mathrm{mmm}}$; of dorsal arms, $70^{\mathrm{mm}}$; breadth of body, $70^{\mathrm{mm}}$. Seven specimens were taken. The sexes scarcely differ 'in size. Station 880 , in 225 fathoms (2 ठ, 1 \&) ; 892, 487 fathoms; 893, 372 fathoms; 895, 238 fathoms.

## Argonauta Argo Linné.

The capture of a living specimen, probably of this species, on the coast of New Jersey, has been recorded by Rev. Samuel Lockwood.* It was, nevertheless, very surprising to us to find its shells, or fragments of them, very common in nearly all our deeper dredgings, 70 to 100 miles off the southern coast of New England. At station 894 two entire and nearly fresh shells were taken, and another nearly complete. They belong to the common Mediterranean variety.

## GASTROPODA.

Bela (Leach) H. \& A. Adams; G. O. Sars, \&c. Pleurotoma (pars) Jeffreys and many earlier authors.
The species of this genus are numerous on our coast, but their identification is difficult, owing to the very poor and insufficient descriptions of many European writers. $\dagger$ Möller's Greenland species, especially, are

[^58]badly described. The publication of the excellent work of G. O. Sars has at length rendered it possible to identify many species, hitherto doubtful, with his Norwegian forms, though there may still be doubt as to the proper application of the names given by earlicr writers, and even as to the actual specific distinctness of all the forms that he has described. The sexual variations he has not taken into account. Dur. ing ummerous dredging expeditions made in the past treuty years, the writer has obtained a large series of specimens of Bela, which he has reserved for a more complete revision hereafter; but some of the more conspicnons forms not yet recorded from New England, and in part not known as American species, are here mentioned. Figures of all these and others have been engraved for a more detailed paper and will, it is hoperl, soon be published.
Bela Pingelii (Möller, 1842) H. \& A. Adams, i, p. 92, 1858.
G. O. Sars, Moll. Reg. Arct. Norv., p. 2.3, pl. 16, fig. 5, $18 \% 8$.

This very distinet species has been repeatedly dredged by me at Eastport, Me, and by the United States Fish Commission parties in Casco Bay, Massachusetts Bay, on George's Bank, and off Nova Scotia. It has not unfrequently been confounded by authors with B. cancellata. It is our most slender and elongated species, with evenly rounded whorls, strongly cancellated, over the whole surface, by numerous slender, longitudinal ribs and revolving raised lines or cinguli, which are about equally prominent, and form small, round nodules where they cross the ribs.

Bela Sarsil Verrill, sp, nov.
Bela cancellata G. O. Sars, op. cit., p. 224, pl. 23, fig. 31 ; pl. viii, fig. 9 (not of Couthouy).
This name is proposed for the species described and figured by G. O. Sars as B. cancellata. The same species was formerly collected by Dr. A. S. Packard at Labrador, and sent to us by him under the name of B. exarata. It is a small, strongly sculptured species, with obtuse, angular-shouldered whorls, and is especially distinguished by its few broad and strong ribs, crossed by rather distaut revolving lines, giving it a coarsely cancellated surface.

Bela cancellata (Mighels) Stimpson, Check List.
Fusus cancellatus Mighels, Proc. Boston Suc. Nat. Hist., i, p. 50, 1841 ; Boston Jourd. Nat. Hist., iv, p. 52, pl. 4, fig. 18, Jan., 1842.
Bela cancellata Gould, Invert. Mass., ed. if, p. 355 , description (not the figure, 63).

The true Bela cancellata (Mighels) is a common shell on the New England coast, in 20 to 60 fathoms. It is an elougated species, with tug. acute spire, and with the whorls moderately and obtusely shouldered at some distance below the suture, the flattened portion above the shoulder being destitute of revolving lines, but crossed bs the numerons oblique ribs, which are strongly bent at the shoulder and take a sigmoid form.

Below the shoulder the cinguli are numerous and prominent, crossing the prominent narrow ribs so as to produce a distinct, but not coarse, cancellation. It most resembles the figures of B. elegans and B. angulosa of Sars. It is perhaps the original B. declivis (Lovén), but does not agree with Sars's figure.

## Bela tenuicostata M. Sars.

G. O. Sars, op. cit., p. 237, pl. 17, figs. 1 a, b; pl. ix, fig. 6 (dentition).

Specimens apparently identical with this species were dredged by me, in moderate depths, at Eastport, Me., in 1864, 1868, and 1870. It was also taken this season at stations 893 and 894 , in 365 to 372 fathoms. It is closely related to B. decussata Couth., but has smaller and more numerous ribs, and is, therefore, more finely cancellated. It may be only a variety of B. decussata. The latter is easily distinguished from all our other species by its oval form, rounded, scarcely shouldered whorls, crossed by very numerous small, narrow, flexuous, sigmoid ribs, which are strongly bent backward near the suture, in conformity with the very distinct, rounded sinus of the lip. The whole surface, except close to the deep suture, is covered with numerons rather fine, close, raised, revolving cinguli, giving the surface a rather finely and regularly cancellated structure.

Bela Trevelyana (Turton) H. \& A. Adams.
This has been recorded by Jeffreys from the Gulf of Saint Lawrence. He formerly united B. decussata with it, but has subsequently (in Mollusca of Valorous Expedition) distinguished them. I have myself seen no American shells agreeing elearly with English specimens of $B$. Trevelyana. The latter resembles $B$. decussata in form and size, but has the ribs nearly straight and the cancellation coarser than in our shell.

Bela impressa? (Beck) Mörch, Catal. Moll. Spitzberg, p. 17, 1869.
Pleurotoma impressa Leche, Kongl. Svenskn Vet.-Akad. Handl., Bd. 16, p. 54, pl. 1, fig. 16, 1878 (author's separate copy).
I refer doubtfully to this species a small but very distinct shell frequently dredged by us, in 10 to 70 fathoms, all along the coast, from off Cape Cod to Nova Scotia. It was also dredged this season at stations 812 to 815 , in 27 fathoms, off Block Island.

The shell is greenish white, short oval, with about five whorls, which are distinctly flattened and angularly shouldered near the deep suture. There are on the last whorl about twenty rather broad, flat ribs, which are a little prominent and usually slightly nodose at the shonlder, but they disappear a short distance below. The most characteristic feature is that the surface is marked by rather fine, but regular and distinct, revolving grooves or sulci, which are rather distant, with flat intervals. Of these there are usually about three or four on the penultimate whorl, and about twenty on the last, the greater number being below the middle, on the siphon, where they become closer; one of the sulci, just below
the shoulder, is more distinct, and crosses the ribs so as to give their upper ends a subnodulons appearance; below this there is usually a rather wide, smooth zone; no revolving lines above the shoulder. Aperture about half the length of the shell, rather wide, angular ; canal short. There is a very distinct, moderately deep, posterior sints; the middle of the outer lip projects forward strongly. Ordinary specimens are about $6.5^{\mathrm{mm}}$ long; $3.5^{\mathrm{mm}}$ broad; aperture, $.3^{\mathrm{mm}}$ long.

Our shell is not so stout as that represented in the figure of Leche, but it agrees very well in other respects.

Bela exarata (Müller) H. \& A. Ad., Genera, i, p. 92, 1838.
G. O. Sars, op. cit., p. 222, pl. 16, 6g. 18; pl. ix. fige. 1 a, $b$ (dentition, \&c.).Verrill, Trans. Conn. Acad., $\mathbf{v}, \mathrm{pl} .43$, fig. $\mathrm{15}^{\circ}$
A regularly cancellated species of Bela, agreeing with Greenland specimens sent under this name from the University Museum of Copenhagen, is not uncommon, ranging from off Massachusetts Bay to the Bay of Fundy and Nova Scotia. It does not agree perfectly, howerer, with G. O. Sars's figure of the shell, but its dentition agrees well with his figure and seems to be characteristic. The color of the shell is nsually pale greenish or greenish white; texture thin; size medium; whorls turreted, flattened, angularly shouldered close to the suture, with the angle of the shoulder rather sharply nodose. Ribs numerons, regular, nearly straight, narrow but rounded, separated by concave interrals of equal or greater width. Whole surface covered with regular and rather strong, elevated, revolving cinguli, which cross the ribs and produce on them small, rounded nodes, and give a very regularly and strongly cancellated appearance to the whole surface. On the penultimate whorl there are about four cinguli below the angle. The flattened space above the shoulder is crossed by the ribs and covered with numerous fine revolving lines. Length, $10^{\mathrm{mm}}$; breadth, $4.5^{\mathrm{mm}}$; length of aperture, $5.5^{\mathrm{Jmm}}$. A more elongated form, similar to the above, but with the angle of the whorls still more sharply nodose, also frequently occurs. This I have supposed to be the male of the same species, but it agrees closely with Sars's figure of Bela mitrula (Lovén). The dentition of B. exarata closely resembles that of the latter, as figured by Sars. The teeth are unusually long and large for the size of the shell, rather slender, somewhat curved, acute, with one side excarated to near the tip; basal part short, a little thickened, notched deeply on one side, obtuse.

Living specimens were also drelged this year at stations 880,892 , and 894, in 252 to 487 fathoms.

Bela rugulata (Müller) H. \& A. Ad., Genera, i, p. 92, 1858. G. O. Sars, op. cit., p. 230, pl. 23, fig. 6; pl. viii, figs. 13 a-c (dentition).

This is one of the several species that have commonly been confounded under the name of "Bela turricula".

Our shell agrees well with the figures and description given by G. O. Sars, both as to its external characters and dentition. The sculpture
is rather coarse, the ribs being strong, with wider and concave intervals; the whorls are strongly angularly shoulderel, each of the ribs ending in a distinct nodule, formed by the first spiral groove below the shoulder, which is stronger than the rest; the flattened subsutural area is nearly or quite destitute of spiral lines, but is crossed by slight flexuous extensions of the ribs; the whole surface below the shoulder is covered with strong spiral lines, between the ribs. On the upper whorls a few of the revolving lines are stronger than the rest, forming with the ribs a coarsely cancellated structure.

The dentition is very characteristic, and entirely different from $B$. exarata, B. harpularia, and other allied forms. The uncini are broad, flat, lanceolate, with a sharp, slightly barbed tip, and with a broad bilobed base.

This species has frequently been dredged by us in Massachusetts Bay, Bay of Fundy, \&c., in 5 to 50 fathoms.

Bela simplex (Middend.).
G. O. Sars, Moll. Reg. Arct. Norv., p. 239, pl. 17, fig. 4; pl. 23, fig. 11; pl. ix, fig. 9 (dentition).
Bela lerigata Dall (teste G. O. Sars).
One dead, but fresh, small specimen, from station 894 . The whorls are very convex and evenly rounded, nearly smooth, but covered with fine and close spiral lines, crossed by still finer lines of growth; sub. sutural zone smooth. The apex of the spire is acute. The three apical whorls are chestuat-brown; their surface is fincly decussated by equal lines runuing in opposite directions.

Bela hebes Verrill, ap. nov.
Shell short-fusiform or suborate, with a short, blmt spire and fire well-rounded, slightly turreted whorls: suture impressed. Sculpture numerous small, regular, raised, spiral ridges, with wider interspaces, those just below the suture stronger and more distant; lines of growth faint. Aperture narrow-ovate. Outer lip expanded below the suture, then regularly rounded, thin; the posterior sinus is broad and shallow; canal short and broad, straight; columella regularly incurved. Epidermis thin. greenish white. Length, $8^{\mathrm{mm}}$; breadth, $5^{\mathrm{mm}}$; length of aperture, $5^{\mathrm{mm}}$; its breadth, $1.80^{\mathrm{mm}}$; length of body-whorl, front side, $6.35^{\mathrm{mm}}$.

Stations 891 and 892 , in 500 and 487 fathoms; four specimens.
Pleurotoma (Pleurotomella) Agasaizii Verrill \& Smith.
Amer. Journ. Sci., xx, p. 394, for Nov., 1880 (published Oct. 25).
This large and elegantly sculptured species occurred sparingly, living, in many of the off-shore localities ( $869,871,874,877,880$ ), in 65 to 252 fathoms, but it was taken in larger numbers at stations 891 to 895 , in 238 to 500 fathoms. The two nuclear whorls are rery small, chestnutbrown, scarcely carinated, rounded, with the surface finely cancellated by lines running obliquely, in two directions, but close to the suture only the transverse lines appear.

Pleurotoma (Pleurotomella) Pandionis Verrill, sp. nov.
Shell large, thick, dull brownish yellow, with a very acute, elerated spire; whorls nine, very oblique, moderately convex, concare below the suture; whole surface covered with close lines of growth, which recede in a broad curve on the subsutural band; numerous fine, unequal, raised, spiral lines corer the whole surface, except the subsutural band. The upper whorls are also crossed by sixteen to eighteen blunt, trans. verse ribs, about as broad as their interspaces, most elevated on the middle of the whorls, fading out above and below. A perture elongated, narrow; sinus broad and well marked, just below the suture; canal short, nearly straight. Operculum absent. Length, $43^{\mathrm{mm}}$; breadth, $14.5^{\mathrm{mm}}$; leugth of aperture, $10^{\mathrm{mm}}$; its breadth, $5.5^{\mathrm{mm}}$.

A large specimen was taken alive at station 895, in 238 fathoms.
Pleu:otoma Carpenteri Verrill \& Smith.
Amer. Journ. Sci., xx, p. 395 (pnblished Oct., 1880).
Only a few specimens were taken, stations 871 to 873 , in 86 to 115 fathoms.

This species very likely belongs to Mangelia, but I have had for examination no specimens with the animal.

Taranis Morchi? (Malm) Jeffreys, Annals and Mag., v, 1870.
G. O. Sars, Moll. Reg. Aret. Norv., p. 220, pl. 17, fig. 8.

Two good examples of a prettily sculptured shell, which I refer doubtfully to this species, were taken at station 894 , in 365 fathoms, off Newport, R. I. They do not agree fully with Sars's figure and description.

Whorls six, the lower ones sharply angnlated and carinated. There are five revolving, nodulous carinse on the body-whorl, one close to the suture; the second and most prominent surrounds the periphery; the other three are on the anterior half; some faint additional ones appear on the canal; the three preceding whorls have the subsutural and the sharp centrol carina, and usually the thind carina is more or less exposed at the suture. Between the first and second carine the surface is flat or slightly concave. The whorls are crossed by numerous thin, delicate, flexuous, regularly spaced, raised ribs, which are conspicuous between the carine, and prodnce sharp nodules where they cross them. The nucleus is small, rounded, light chestnut-brown, minutely cancellated with microscopic lines running in two directions. Sinus of the lip shallow, rounded. Length, $4^{\mathrm{mm}}$; breadth, $2^{\mathrm{mm}}$.

The principal difference between our specimens and the form figured by Sars is that in the latter there are more carinæ, two of which surround the periphery, instead of one.

Taranis pulchella Verrill, sp. bov.
A smaller and more slender species than the preceding, with a more acute spire, and with the carina sharp, but not nodulous. Whorls seven, angular, the lower ones carinated and shouldered. Body-whorl
with six revolving caring, besides one or two on the canal ; one is just below the suture; the three largest surround the periphery, the median one most prominent. Between the subsutural and second carins the surface is concave and crossed by numerous elevated, thin, curved riblets, corresponding to the labial sinus; similar but less prominent and less curced riblets cross the interspaces between the other carine, but do not cross the carinæ themselves. Penultimate whorl with the subsutural and two peripheral carinæ. Preceding whorls without distinct carinæ, except the subsutural one, but with the curved, transierse, raised riblets well developed. Nuclear whorls very small (surface eroded). Aperture narrow, angular; canal short, slightly turned to the left; outer lip with a distinct, evenly ronded sinus below the subsutural carina. Columella slightly incurved and flattened. Length, $2.20^{\mathrm{mm}}$; breadth, $.90^{\mathrm{mm}}$; length of body-whorl, $1.40^{\mathrm{mm}}$; of aperture, $.93^{\mathrm{mm}}$.

Station 892, in 487 fathoms; one specimen.
Marginella roscida (?) Ravencl.
A single dead specimen, closely resembling this species, was taken at station 865 , in 65 fathoms.
Tritonofusus latericeus (Möll.) Mörch.
Sipho latericeus G. O. Sars, Moll. Reg. Arct. Norv., p. 276, pl. 15, fig. 8; pl. x, fig. 24 (dentition).
Several specimens, apparently of this species, were taken at stations 804 and 895 , in 238 to 365 fathoms, of Newport. It had previously been dredged in the Gulf of Saint Lawrence by Dr. J. W. Dawson.

Our shell is long-fusiform, with an clevated, acute spire; whorls eight, moderately convex, crossed by strong, prominent, rounled ribs (about eighteen on the last whorl), separated by concave interstices. wider than the ribs; whole surface covered with fine and regular spiral grooves, defining raised spiral lines of about double their width; these lines cross the ribs as well as their interspaces. Nuclear whorl small, a little eccentric and incurved. Aperture long-ovate, narrow. Canal somewhat elongated, nearly straight, narrow; the outer lip is contracted or incursed at its base. Length, $20^{\mathrm{mm}}$; breadth, $8^{\mathrm{mm}}$; length of aperture, $10^{\mathrm{mm}}$; its breadth, 3 mm .
Neptunea (Sipho) cælata Verrill, sp. nov.
Shell resembling the last, small, subfusiform, with an elevated spire, which is less acute than in the preceding, while the aperture is shorter and the canal is shorter and more recurved than in that species. Whorls six, moderately convex, with impressed sutures, the upper whorls decreasing more rapidly. Nuclear whorls very small, regular, smooth, not distinctly incurved. Sculpture broad, rather prominent, rounded ribs, with wider concave interspaces, and over the whole surface numerous small, narrow, unequal, raised spiral lines, separated by wider grooves The whole surface is also covered with very fine and regular raised lines of growth, which cross and roughen the spiral raised lines, and are more

Proc. Nat. Mus. $80-24$
Dec. 21, 1880 .
conspicuous in the grooves, producing a fine decussated structure. On ihe last whorl are fourteen to sixteen of the transverse ribs or folds; these become obsolete just below the periphery, so that on the base there are only spiral lines and lines of growth. Aperture narrow ovate. Outer lip evenly rounded in the middle, but contracted at the base of the canal, which is short, rather narror, and distinctly recurved. Columella decidedly curved. Epidermis thin, yellowish white, closely adherent, with distinct lines of growth. Length, $14.5^{\mathrm{min}}$; breadth, $\mathrm{im}^{\mathrm{mm}}$; length of aperture, with canal, $7^{\mathrm{mm}}$; its breadth, $3^{\mathrm{nm}}$; length of bodywhorl, front side, $10^{\mathrm{mm}}$. Stations 891 to 895,238 to 500 fathoms, with the preceding; several specimens, living.

Neptunea (Sipho) arata Verrill, sp. nov.
Statious 869 to 880,893 to 895 ; common. Nearly all our deep-water specimens relatel to N. Stimpsoni Mörch (=Fusus Islandious Gould) differ widely from the common shallow-water form, in having the whole surface much more strongly sulcated by broader, deeper, and less numerous spiral grooves. On the upper whorls there are seven or eight of these broad grooves, separating tlattened spiral ridges of about the same width; on the last whorls the ridges become broader, and each of them is divided at summit by a smaller secondary groove. The canal is rather long, slightly recurved. Columella twisted, but not much bent. Epidermis not pilose, yellowish brown, often in raised lines along the lines of growth. Color within aperture bluish white, the columella and canal tinged with flesh-color or pale salmon. Length, $80^{\mathrm{mm}}$; breadth, $30^{\mathrm{mm}}$; lengelh of aperture, with canal, $45^{\mathrm{mm}}$; its breadth, $14^{\mathrm{mm}}$.

The typical, nearly smooth variety of N. Stimpsoni Mörch is perhaps the same as N. glabra Verkruzen, sp. (=Sipho glaber G. O. Sars).

Neptunea (Sipho) propinqua (Alder).
Fusus propinquus Alder, Catal. Moll. North. \& Durh. ; Jeffreys, British Conch., iv, p. 338; v, pl. 8.3, fig. 3.
N‘ptunca propinqua Verrill, Amer. Journ. Sci., xvi, p. 210, 18. ..
This shell was first taken by us, in 1877, off Cape Sable, and off Halifax, Nova Scotia, in 88 to 100 fathoms, where it was common. This season it occurred in abundance, living, and of good size, in most of our outer dredgings, being the most common species of this family, except N. pygmata. It occurred at all the stations from 865 to 874,876 to 850 , 893 to 895 , ranging in depth from 65 to 487 fathoms. It was most abundant at 869 to 871,894 and 895 , in 115 to 365 fathoms.

Although it does not agree perfectly with the Luropean specimens of N. propinqua that I have had for comparison, I have recorded it ander this name, largely in deference to the opinion of Mr. W. H. Dall, who has made a special study of this group, and who has had some of our epecimens for comparison.

This shell is somewhat stouter and more ventricose than the ordinary forms of N. Stimpsoni and N. arata, from which it differs, also, in having
an olive-colored, ciliated epidermis; the canal is shorter and more curved and twisted; the suture is slightly channeled, and the aperture is broader than in either of these species. The sculpture consists of regular, narrow, spiral grooves. The aperture is white.

## Buccinum cyaneum Brug. ; Stimpson.

Buccinum Grönlandicum G. O. Sars, op. cit., p. 259, pl. 25, fig. 1; pl. x, fig. 11 c, b (non Stimpson).
This species was dredged in the summer of 1879, by the "Speedwell", off Cape Cod, in 90 fathoms. It was dredged by us in 1877, off Cape Sable, Nova Scotia, in 80 to 90 fathoms, compact sand, and off Halifax, in 100 fathoms, and has often been brought in from the banks off Nova Scotia by the Gloncester fishermen, but it was not previously actually known from the New England coast.

## Nassa nigrolabra Verrill, sp. nov.

Shell minnte, long-ovate, nearly smooth, pale olive, with the edges of the lips blackish. Whorls five, slightly rounded, with shallow sutures; spire elerated, not very acute. Surface covered with close, regular, microscopic lines of growth, and with less distinct revolving lines ; caual with a few minute, distinct, spiral grooves. Aperture short-ovate; canal wide and very short; outer lip rounded, with edge flaring, thickened and revolute, with a row of minute norlules on the inside; inner lip consisting of a broad, smooth, glossy, brownish-black deposit of enamel on the body-whorl and columella; columella nearly straight ; no umbilicus. Length, $2.85^{\mathrm{mm}}$; breadth, $1.40^{\mathrm{mm}}$; length of aperture, $1.20^{\mathrm{mm}}$.

Station 870, in 155 fathoms; one specimen. It is referred to Nassaonly provisionally. The animal is not known.

Lunatia nana (Möller).
G. O. Sars, op. cit., p. 159, pl. 21, figs. $16 a, b ;$ pl. v, fig. 14 (dentition).-Verrill, Proc. Nat. Mus., ii, p. 117, 1879.
In addition to the localities off Cape Cod and on Le Have Bank, previously cited by me, this species has been taken at other localities on our coast. It was taken by Prof. S. I. Smith and myself at Eastport, in 1864; by Prof. H. E. Webster at Seal Cove, Grand Menan, in 18i2; by Mr. J. F. Whiteaves in the Gulf of Saint Lawrence ; and by our party in 1880, tweuty miles south of Block Island, in 28 fathoms.

Lunatia levicula Verrill, sp. nov.
Shell light, thin, and rather delicate, broad-ovate; spire moderately elevated, subacute. Whorls five, evenly rounded; suture distinct. Aperture ovate, well rounded below. Onter lip short, sinuous along the edge, the upper portion considerably advancing where it joins the body-whorl. Inner lip partially reflexed over a rather small, deep umbilicus, but not thickened, and forming a mere film on the body-whorl, above the umbilicns. Surface covered with distinet and rather coarse, sinuous lines of growth, parallel with the edge of the lip, and, like it, advancing as they approach the suture. Color (of a dead but fresh
shell) pale brownish jellow; the spire, when worn, and the interior, yellowish brown. Other specimens are white or yellowish white. Length, $32^{\mathrm{mm}}$; breadth, $25^{\mathrm{mm}}$; length of aperture, $27^{\mathrm{mm}}$; its breadth, $15^{\mathrm{mm}}$.

This shell was first dredged by me near Eastport, Me., in 1870. It has since been dredged by the United States Fish Commission parties in Casco Bay, Me., and also off Block Island, stations 812 to 814, in 26 to 28 fathoms. It is still a very rare species. It has some resemblance to Acrybia flava, on account of the lightness and thinness of the shell, as well as in form, but the shape of the aperture is different, and there is a distinct umbilicus. The columella is also much less incurved.

Lamellaria pellucida Verrill.
Amer. Journ. Sci., xx, p. 395, for Nov. (published Oct. 25, 1880).
Animal broad-elliptical, well rounded, both anteriorly and posteriorly; back convex or somewhat swollen, smooth, without tubercles; branchial sinus, in anterior edge of mantle, shallow but distinct; tentacles slender, tapered; eyes small, black, on the outer basal portion of the tentacles; foot oblong, well developed, reaching nearly to the posterior end of the mantle when extended. Color of the mantle yellowish brown, blotched irregularly with dark brown; some specimens were paler, others darker brown.

Odontophore long and narrow, with three rows of teeth; central tooth much smaller than the lateral, its basal part oblong, with nearly parallel sides and squarely truncate at the end; tip acute-triangular, strongly curved forward, with a prominent, sharp, median denticle, and a row of four or fise much smaller denticles on each side. Lateral teeth very large, strongly incurved, and hollowed out on the concave surface, with both edges serrate; the inner edge has the serrations coarser, not reaching the tip, which is smooth, stout, acute. The basal portion of the lateral teeth is furnished with a broad, sinnous, aliform lobe on the outer edge; the basal end is slightly expanded and obtusely round or subtruncate.

The most important difference between the dentition of this species and that of $L$. perspicua and $L$. latens (Miill.) is in the form of the basal portion of the median teeth; in both the European species this is divided into two divergent lobes, separated by a deep notch.

Shell ovate, with a well-formed spire, very thin and delicate, smooth, lustrous, and transparent. Aperture broad-ovate, much larger than the body of the shell, but not so large and open as in L. latens. The interior of the spire cannot be seen in a ventral view, but is visible in an end view from the front. The spire is oblique, somewhat elevated, and slightly pointed, with a minute nuclens. Whorls three, well rounded; sutures impressed. Onter lip very thin, sloping or somewhat flattened posteriorly, somewhat expanded and well rounded anteriorly; inner lip receding in a deep, regular incurvature of the borly- whorl, which has a sharp, thin edge that winds spirally into the interior of the spire. Sculp-
ture none, except indistinct lines of growth; surface smooth and shin. ing throughout.

Length of the animal in life about $15^{\text {nim }}$ to $20^{\mathrm{mm}}$; length of shell, $12.5^{\mathrm{mm}}$; breadth, $10^{\mathrm{mmen}}$.

Stations 870 to 872 , south of Martha's Vineyard, in 86 to 155 fathoms, fine sand ( 16 specimens, living).

The shell of this species, in form, closely resembles that of the European L. perspicua (not of Gould), but the differences in the mantle and dentition will clearly separate it. Specimens of both sexes occurred, and they had the same form and color externally.

The "Lamellariu perspicua" of Gould was based, in part at least, upon Marsenina glabra. A species of Lamellaria occurs at Eastport, Me., which may be distinct from the preceding.

Marsenina prodita (Lovén) Bergh.
G. O. Sars, Moll. Reg. Arct. Norv., p. 151, pl. 12, figs. 5 a-c; pl. v, figs. 7 a, $b$
(dentition).-Verrill, Trans. Conn. Acad., v, pl. 42, figs. 2 , 2 a,

This species was taken, living, at Eastport, Me., by Irof. S. I. Smith and myself, in 1864 and 1868. It is easily recognized by its compara. tively prominent, acute spire, turned to one side, by its obliquely elongated aperture, and by the margin of the outer lip being slightly inflexed near the suture. It has not been previonsly recorded from the American coast, south of Greenland.

Marsenina glabra Verrill.
Oxinoë glabra Conthouy, Boston Journ. Nat. Hist., ii, p. 90, pl. 3, fig. 16, 1838. Lamellaria perspicua (pars) Gould, Binnes's ed., p. 3:is, fiy. 607 (1).
Marsenina micromphala Bergh.-G. O. Sars, op. cit., p. 151, pl. 21, figs. 10 a-d.Verrill, Trans. Coun. Acad., v, pl. 42, figm. 1, 1 a.
This species is not uncommon at Eastport, Me., where I collected it in $1859,1861,1863,1864,1868,1870$, and 1872 . It was dredged last year by our party, on the "Speedwell", off Cape Cod, in 34 fathoms. It has a much smaller and less prominent spire than the preceding, and a more regularly oblong-oval aperture. The shell is smooth, white, thin, and delicate in both species, but more translucent in the present one.

There can be no doubt, from the description and figure, that the Oxinoe glabra of Couthouy was a Marsenina indistinguishable from this species, which is the commonest of the group on our coast. The M. micromphala, well described and figured by Sars, appears to agree perfectly with our form, both in the animal and shell.

Gould appears to have confounded two or more species under his $L$. perspicua. His figure (158) in the first edition does not represent this species; the figure 607 of Binney's edition is different, and may be this shell. As a genuine Lamellaria, having its shell entirely inclosed in the mantle, also occurs on our coast, not rarely at Eastport, Me., it is not improbable that Gould may have bad its shell among those examined by him. Its identity with L. perspicua of Europe is very doubtful, however.

Marsenina ampla Verrill, sp. nor.
Trans. Conn. Acad., v, pl. 42, figs. 3, 3 a.
Shell broad-oval, white, nearly opaque, fragile, with conspicuous lines of growth, but otherwise smooth; whorls scarcely two; last whorl very large, constituting nearly the entire shell, and nearly concealing the first whorl, which appears only as a minute incurved nucleus, situated in an apical depressiou. Aperture broad, oblong-oval, showing the iuterior of the spire to the apex. Outer lip thin, distinetly expanded and slightly shouldered near the suture, somewhat straight along the right and left sides, regularly rounded in front, slightly excurved where it joins the inner lip, which consists of a narrow and thin coating, conformable to the columella surface, but with a distinct, narrow groove, and with the edge slightly raised as a narrow lamina in the umbilical region. The columella-edge is sigmoid and very much incurved in the umbilical region.

Length, $11^{\mathrm{mm}}$; breadth, $8^{\mathrm{mm}}$; depth of last whorl, $5^{\mathrm{mm}}$.
Eastport, Me. Dredged in 1868, by the writer.
Velutella cryptospira (Middend.).
G. O. Sars, Moll. Keg. Aret. Norv., p. 149, pl. 21, figs 9 a-c.

A good living example of this shell was taken by us in 1877, off Halifax, Nova Scotia, in 57 fathoms (station 82).

The shell is very thin, translucent, yellowish horn-color, flexible, and but slightly calcified, with no sculpture except fine lines of growth. The spire is suall, incurved, and depressed, so that the apical whorl is not visible in a front view. The aperture is elongated. The outer lip expands rather abruptly posteriorly, and is prolonged anteriorly.

Length, $8^{\mathrm{mm}}$; breadth, $5^{\mathrm{mm}}$; length of aperture, $6.5^{\mathrm{mm}}$.

## Trichotropis conica Möller.

Kröyer's Tidss., iv, p. 85, 1812.-G. O. Sars, op. cit., p. 163, pl. 13, fig. 3.
A single dead, but large and characteristic, specimen of this very distinct species was taken in the Gulf of Maine, off Cape Sable, Nova Scotia, in 75 fathoms, by the United States Fish Commission party, on the "Speedwell", in 1877. It is easily recognized by its conical spire and its flatteued base, covered with revolving grooves and ridges. The revolsing ribs on the spire are stronger than those on the base, and unequal.

Rissoa (Cingula) harpa Verrill, sp, nov.
Shell small, white, translucent, acute-conical, with five very convex, rounded whorls and deeply impressed sutures; body-whorl large; apical whorl very small, smooth, regular. Sculpture very regular, wellraised, roundel, transverse ribs, about twenty-six on the last whorl, separated by spaces rather wider than the ribs; and fine, close, microscopic spiral lines, which cover the interspaces. Aperture nearly circular, slightly effuse in front. Outer lip thin, regularly rounded; inner lip retlexed in the umbilical region, and continued on the body-whorl ouls
as a thin layer of enamel. Umbilicus a small but distinct chink. Length, $2.75^{\mathrm{mm}}$; breadth, $1.80^{\mathrm{mm}}$. Animal unknown.

Dredged by us off Massachusetts Bay, 1877, station 34, in 160 fathoms; and off Newport, at stations 892 and 894 , in 487 and 365 fathoms.

Cingula turgida (Jeff.) Verrill.
Rissoa turgida Jeffreys_-G. O. Sars, Moll. Reg. Arct. Norv., p. 183, pl.10, figs. $12 a, b$.
A very small, white species, with smooth, rounded whorls and distinct umbilicus. Station 892 , in 487 fathoms.

Cingula Jan-Mayen (Fricle) Verill.
Ris*oa Jan-Mayeni Friele, Nyt. Mag. Naturv., 1877 (auth. cop., p. 4, fig. 4).
Cingula Jan-Mayeni Verrill, Amer. Journ. Sci., xvii, p. 311, Apr., 1879.
This species was common at stations 801 to 894 , in 238 to 500 fathoms. A single specimen occurred at station 880. It was originally from off Greenland, 70 to 300 fathoms. Whiteaves has dredged it in the Gulf of Saint Lawrence, 200 fathoms, but it had not hitherto been taken on the New England coast.

Lepetella Verrill.
Amer. Journ. Sci., xx, p. 396, Nov., $18 \times 0$.
Shell small, smooth, oval or oblong, limpet-shaped, conical, with a simple subcentral apex, not spiral. Animal much as in Lepeta, but with distinct eyes. Odontophore trenioglossate, with seven regular rows of teeth; median tooth a rather broad, thin plate, with incurved, smooth, convex edge, narrower than the base; inner lateral tooth stout, with a broad base and a single incurved, terminal denticle; second lateral tooth larger, with a broader dlat base and two terminal incurved denticles; outer laterals smaller, flattened, subtriangular plates.

Lepetella tubicola Verrill \& Smith.
Loc. cit., p. 396, 1860.
Shell thin, white, smooth, conical, with the apex acute and nearly central; apertare broad elliptical, oblong, or subcircular, usually more or less warped, owing to its habitat; edge thin and simple. Sculpture none, lines of growth slight, outer surface dull white; inner surface smooth, with the pallial markings faint. Length of largest specimens, $3.75^{\mathrm{mm}}$; breadth, $3^{\mathrm{mm}}$; height, $2^{\mathrm{mm}}$. On inside of old tubes of Hyalinocia artifex V.; twenty-seven were taken from one tube. Stations 869, 192 fathoms, and 894,365 fathoms.

Lovenella Whiteavesii Verrill, loc. cit., p. 390, 1830.
Cerithopsis coslalatus Whiteaves (non Müller).
A small aud elegant species, allied to L. metula (Lovén). Elongated, subulate; spire regularly tapering to the acute apex; whorls nine, slightly convex, with a prominent, nodulous, revolving carina below the middle, and a smaller one just below the suture; on the body-whorl another less elevated and scarcely nodose carina revolves in line with
the edge of the lip; below this the base is smooth. Whorls crossed by numerous transverse, curved, elevated, rounded costa, which are about as wide as their intervals, and in crossing the two upper cingula form small rounded nodes at their intersections. Aperture broad; columella much incurved above; canal distinctly excurved and twisted; outer lip with three angles corresponding with the three carinz. Length, $4.5^{\mathrm{mm}}$; breadth, $1.5^{\mathrm{mm}}$. The largest specimen measures, in length, $6.25^{\mathrm{mm}}$; in breadth, $2^{\text {mro }}$. Stations 891, 892, and 894, in 365 to 500 fathoms; Gulf of Saint Lawrence, 200 fathoms, J. F. Whiteaves.

Truncatella truncatula (Drap.).
Jeffrey's British Conch., iv, p. 85, pl. iv, fig. 1.-Verrill, Amer. Journ. Sci., xェ, p. 250, Sept., $18<0$.
This species was found by the writer, living in considerable numbers, and of all ages, among the docks at Newport, R. I., July, 1880. It occurred among decaying sea-weeds thrown up at high-water mark, both among the vegetable matter and on the under sides of stones. It was associated with Alexia myosotis, Assiminea Grayana, Anurida maritima, Orchestia agilis, \&e.

It may possibly have been introduced in recent times by commerce, like the Littorina littorea, now so common on our shores; but if so, it has, like the latter, become thoronghly naturalized. This is the first time that it has been observed on our coast, so far as known to me.

Solarium boreale Verrill \& Smith, sp. nov.
A small, pretty, pale yellowish brown species, with a strong carina-like, rounded, nodulous rib around the periphery. Height, $2.5^{\mathrm{mm}}$; breadth, $5^{\mathrm{mm}}$.

Two living specimens from station 871,115 fathoms. The spire is low and flattened; nuclear whorl smooth, obliquely incurved, reddish ; bodywhorl strongly keeled, triangular ; above the keel, flattened, and near it, are about six small spiral ribs, separated by impressed lines; upper surface of whorls also crossed by numerous flexuous, transverse, low ribs, with shorter ones interpolated toward the periphery. Base a little convex, about as much so as the spire; toward the periphery corered with numerous fine spiral lines; also covered with many low ribs radiating from the umbilicus, around which they are nodulous. Aperture triangular, with a notch corresponding to the keel.

Scalaria Pourtalesii Verrill \& Smith.
Amer. Jouru. Sci., xx, p. 395, Nov., 1880.
Three fine specimens, one of them living, from stations 871,873 , and 874 , in 85 to 115 fathoms.

## Scalaria, sp.

An undetermined Scalaria, having the sculptare much as in S. Grönlandica, but more slender in form, was taken at station 873. The spiral lines are rery distinct between the ribs, and also extend over them.

Scalaria Dalliana Verrill \& Smith.
Amer. Journ. Sci., xx, p. 395, Nov., 1880.
Several specimens, living, from stations $869,870,871$, and 874 , in 65 to 155 fathoms.

Acirsa gracilis Verrill, sp. nov.
Shell white, with a long, slender, regularly tapered, rather acute spire and deeply impressed sutures. Whorls eight, evenly rounded, all except the last crossed by slightly raised but distinct rounded ribs, separated by wider interspaces; the ribs are most elevated just below the sutures and on the upper whorls. Lower whorls with numerous (eight or more) fine, slightly impressed spiral lines, producing narrow spiral cinguli, of which the lowest on the last whorl is strongest and borders the base of the shell, which is convex and smooth. The spiral lines are absent near the sutures. Mouth round-ovate, slightly effuse in front. Inner lip slightly reflected. No umbilicus.

Stations 873 and 594 , in 100 to 365 fathoms.
This species is much more slender than Acirsa costulata Migh., sp., 1841 ( $=$ A. borealis and A. Eschrichtio of authors), and its ribs are more reg. ular and distinct. A. prolonga Jeffireys has much finer sculpture.

Aclis Walleri Jeffress.
G. O. Sars, Moll. Reg. Arct. Norv., p. 196, pl. 11, fig. 18.

Three living specimens were taken at stations 892 and 894, in 487 and 365 fathoms.

Aclis striata Verrill, sp. nov.
Shell small, white, somewhat lustrous, fragile, with moderately eleyated spire; whorls six, well rounded, with deep sutures, the last one ventricose. Sculpture numerous fine, close, spiral grooves, covering the whole surface. Aperture simple, ovate. Outer lip thin, with a wide and rather deep sinus below the suture, but projecting strongly forward in the middle, where it is regularly rounded, then recedes somewhat anteriorly, joining the inner lip in an even curve. Inner lip discontinuous, slightly concave and reflected in the umbilical region, where it joins the body-whorl. Umbilicus narrow, but deep. Nuclear whorl small, regular, smooth. Length, $4^{\text {min }}$; breadth, $2^{\mathrm{mm}}$.

One specimen was dredged by me in the Bay of Fundy, near Eastport, Me., in 1868; another was dredged in deep water off Newport, R. I., this season, by the United States Fish Commission.

This species is provisionally referred to Aclis because of its general resemblance to known species of that genus. Both my specimens were dead, and I have, therefore, no means of knowing the structure of the animal. Its regular apical whorl shows that it is not an Odostomia. The marked sinus of the outer lip and the distinct umbilicus are features not found in any other shell of our coast of similar size and appearance. Dead and broken specimens might be taken for bleached Cingula aculeus,
but the latter has a different aperture, continuous lip, and no umbilicus, and its sculpture is coarser.

Calliostoma Bairdii Verrill \& Smith.
Amer. Journ. Sci., xx, p. 396, for Nov., 1880 (published Oct. 25).
Stations 865 to 874 , in 65 to 192 fathoms; many living specimens. Most common at stations 869 and 871 , in 192 and 115 fathoms.

Margarita regalis Verrill \& Swith.
Amer. Journ. Sci., xx, p. 397, for Nov., 1880 (published Oct. 25).
Stations $870,871,880$ to 895 , from 115 to 500 fathoms. Most abundant at stations 892 to 894 , in 365 to 487 fathoms.

Margarita lamellosa Verrill \& Smith.
Amer. Journ. Sci., xx, p. 397, for Nov., 1880 (published Oct. 25).
Stations 869 and 871,115 to 192 fathows. Only two specimens obtained.

Margarita, sp. nov.
A small, elevated, conical, nearly smooth, white, and iridescent species, with a small, narrow umbilicus, was dredged by us off Halifax, Nova Scotia, in 187\%. The specimen is not now at hand for accurate description.

Machæeroplax bella (Verk.).
G. O. Sars, op. cit., p. 137 , pl. 9 , figs. 5 a-c.

An elegant species, allied to $M$. varicosa, but with more elaborate sculpture. As in the latter, the whorls are crossed by oblique, flexuous, rounded, transverse folds, but there are, in addition, in M. bella four conspicuous revolving ribs on the last whorl; the upper one is large and nodulous, giving the whorls an angular or somewhat carinated form; the two lower ribs are smaller and close together, the third one at, and the fourth just below the basal angle of the whorl. On the other whorls only the two upper ribs are visible. Base with curved transverse ridges. crossed by fine revolving lines. Umbilicus moderately large and deep, with very distinct spiral lines within it.

Off Cape Sable, Nova Scotia (loc. 47), 90 fathoms, fine, compact sand, United States Fish Commission, 1877. One living and one dead specimen. New to the American coast.

Cyclostrema trochoides (Jeff. MSS.) Friele.
Arch. Math. Naturv., 18:6, p. 308, pl. 4, tigs. 2a,b-G. O. Sars, op. cit., p. 131, pl. 8 , figs. 9 a-c.
A few specimens of this little shell were trawled at stations $\mathbf{S 9 2}$ and 894, in 487 and 365 fathoms. "In our specimens the umbilicus is, in most cases, a narrow chink, but in one it is closed. There are distinct spiral lines immediately around the umisilicus. It is new to the American waters.

Assiminea Grayana Leach.
Jeffrey's British Couch., v, p. 99, pl. 4, fig. 1; pl. 97, fig. 5.-Verrill, Amer. Journ. Sci., xx, p. 250, Sept., 1880.
This was found in July of this year, by the writer, living among decaying sea-weeds, at high-water mark, between the docks at Newport, R. I. It was associated with Alexia myosotis and Truncatella truncatula, and was rather more abundant than either of the latter. Drawings of the animal of this and the two species last named were made by Mr. J. H. Emerton. The animal agrees well with the figures and descriptions of the European examples. It has not been recognized as American before.

## Eulima intermedia Cantraine.

G. O. Sars, op. cit., p. 210, pl. 11, fig. 20 ; pl. xviii, fig. 41.

Several living specimens were taken at stations $870,871,874,876$, and 875 , in 85 to 155 fathoms. It has previously been known from deep * water in the Mediterranean, and off the Canary Islands, Lofoden Islands, and Finmark ( 200 to 300 fathoms).

This shell is more slender than E. oleacea. The sutures are not at all impressed; the whorls are fluttened so that the spire has a regular, long-conical form. Aperture regularly ovate. The surface is smooth, polished, and shining. Color of shell pure white, translucent; in life the animal shows through, giving it a pale orange or salmon color. Length, $5.6^{\mathrm{mm}}$; breadth, $1.6^{\mathrm{mm}}$.

## Eulima distorta Deshayes.

G. O. Sars, op. cit., p. 210, pl. 11, fig. 23.

A single living specimen of this curious little shell was obtained at station 871, in 115 fathoms.

Turbonilla nivea Stimpson, Check List.
Chemnilzia nirea Stimpson, Proc. Boston Soc. Nat. Hist., iv, p. 114, 1851; Invert. Grand Manan, p. 23, 1853.
One perfect specimen of this very rare shell was dredged at station 871 , in 115 fathoms.

It is distinguished by its very slender, elongated form, with twelve flattened, closely coiled whorls and slightly marked sutures. The sculpture consists of well-marked, regular, transverse, rounded ribs, with smooth interstices; no spiral lines. Color white; surface shining. Apical whorl small, incurved, and reversed. Length, $6.5^{\mathrm{mm}}$; breadth, $1.5^{\mathrm{mm}}$.

Tarbonilla Rathbuni Verrill \& Smith.
Amer. Journ. Sci., xx, p. 393, Nor., 1880.
Sereral fine living specimens were taken at stations 865 to 867 , in 64 and 65 fathoms, and at stations 893 to 895 , in 238 to 365 fathoms.

Dedicated to Mr. Richard Rathbur, of the United States Fish Com. mission.

Turbonilla formosa Verrill \& Smith.
Amer. Jonrn. Sci., xx, p. 398, Nov., 1880.
A few living examples of this elegant shell occurred at stations 801 and 892 , in 487 to 500 fathoms.

Turbonilla Smithii Verrill, sp. nov.
Shell long and slender, smooth, polished, white, with a narrow spiral band of light yellowish brown or red just above the suture. Whorls up to twelve, much flattened, little oblique, closely coiled, with the sutures only slightly impressed; apical whorl small, incurved. Sculpture none. Aperture irregular oblong-ovate; outer lip nearly straight for about half its length, rounded and slightly prominent auteriorly. Columella lip nearly straight anterionly, but curved inward and twisted posteriorly, with a slight spiral fold that winds into the shell. Length, $7.5^{\mathrm{mon}}$; breadth, $1.5^{\mathrm{mm}}$.

Stations 871, 873, and 876, in 100 to 120 fathoms.
This elegant and very distinct species I have dedicated to Mr. Sanderson Smith, of the United States Fish Commission party.

Eulimella ventricosa (Forbes).

$$
\text { G. O. Sars, op. cit., p. 209, pl. 11, fig. 19; pl. 22, fig. } 16 .
$$

A single dead specimen, not in good condition, but apparently belonging to this species, was dredged by us at Eastport, Me., in 1868. A perfect specimen was dredged by us this season, at station 873 , in 100 fathoms. This last has a distinctly incurved, small, nuclear whorl; whorls nine, smooth, polished, white, well rounded, with deep sutures. Aperture broad-ovate, slightly effuse in front. Outer lip broad, well rounded in the middle and projecting well forward. Length, $3.6^{\mathrm{mm}}$.

Odostomia unidentata (Mont.).
G. O. Sars, op. cit., p. 201, pl. 11, figs. 6-8.

Odostomia modesta Stimpson.-Gould, Invert. Mass., ed. ii, p. 327, fig. 596.
A single specimen occurred at station 871 , in 115 fathoms. This shell appears to be much more rare on the American than on the European coasts.
Odostomia (Menestho) sulcata Verrill, sp. nov.
Shell small, white, long-ovate; spire regularly tapered, acute; whorls about six, moderately convex, covered with many regular, rather strong, revolving grooves. Nuclear whorl strongly inflexed and reversed. Aperture regularly ovate. No tooth on the columella. Length, $2.80^{\mathrm{mm}}$; of body-whorl, $1.80^{\mathrm{mm}}$; breadth, $1.40^{\mathrm{mm}}$; length of aperture, $1.10^{\mathrm{mma}}$; its breadth, $70^{\mathrm{mma}}$.

Stations 871 and 894 , in 115 and 365 fathoms.
This differs from all other related species of our coast, except 0 . striatula Couth. ( = Menestho albula Gould, non Fabr.), in being strongly grooved spirally; from the latter it differs in having fewer whorls and a regularly tapered, acute spire, and in having the spiral lines coarser and fewer. Perhaps it is more closely related to the real Menestho
albula of Greenland, which, according to Jeffreys, is distinct from our shell, so named by Gould. These three forms all belong to Menestho Möller (= Liostomia G. O. Sars).

Auriculina insculpta? (Mont.).
G. O. Sars, op. cit., p. 204, pl. 11, figs. 11, 12; pl. xviii, fig. 38 (operculum).

A single dead and probably immature specimen, which I refer doubtfully to this species, was taken at station 892 , in 487 fathoms. It agrees nearly, in form and sculpture, with the figure (12) given by Sars, but our shell is shorter, ovate-fusiform. There are five slightly convex whorls; the anterior half of the body-whorl is covered with distinct, fine, spiral grooves; nuclear whorl rounded, rather large, partially incurved. Aperture narrow-ovate; a slight fold on the columella; no umbilicus.

Diaphana Brown, 1827 (restricted); H. \& A. Adams.
Ctriculus (pars) Brown, Ill. Brit. Conch., 1844 (non Schumacher, 1817). Ctriculus G. O. Sars, Moll. Reg. Arct. Norv., p. 285.
In 1827 Brown proposed the name Diaphana for certain species of shells figured by him (but not described), which now are known to belong partly to the restricted modern genus Ctriculus and partly to Amphisphyra Lovén, 1846. But he did not then define the genus, and in a later edition of his work (1844) he discarded the name and substituted Utriculus for it.* But Ctriculus had been used by Schumacher, in 1817, for a different genus (Conidce). Lovén's name (Amphisphyra), established by him for Brown's second section of Utriculus, should, therefore, be retained for that group, which is a good genus. Diaphane and Ctriculus, as used by Brown, were absolutely synonymous, but Diaphana, as used $\mathrm{b}_{:}$G. O. Sars, is a synongin of Amphisphyra. In its original sense, Diaphana might be rejected, because undelined. But since Utriculus had been preoceupied, it seems necessary to retain Diuphana for the first section of Brown's genus, corresponding nearly with Utrieulus of G. O. Sars. This is also in accordance with the nomenclature in $\Pi . \& A$. Adams's Genera of Shells.
The absence of an odontophore in Diaphana $\Pi . \mathbb{\&}$.. Adams $=$ Utriculus Sars, is certainly a very important character by which the genus can easily be distinguished from Cylichna and Amphisphyra. But this genns cannot always be distinguished from Cylichna by the shell alone. On that account Loven, Jeffreys, and other able concholoyists have referred some of the species of "Ctriculus" to Cylichna.
Diaphana nitidula (Lovén) Verrill.
Cylichna nifidula Lovén, op. cit., p. 142, 1846.
Čtriculus nitidulus G. O. Sars, op. cit., p. 286, pl. 17, fig. 13 ; pl. 28, fig. 3; pl. xi, figs. $6 a, 6 b$ (gizzard, \&c.).
This shell has been dredged by us in several localities in deep water off the coast of New England and Nova Scotia, and by Mr. Whiteaves in the Gulf of Saint Lawrence. This season it was taken at stations 891,892 , and 894 , in 365 to 500 fathoms.

[^59]It is a small, very smooth, white shell, in form closely resembling young specimens of Cylichna alba, for which it may easily be mistaken. It lacks the fine spiral lines usually seen on the latter, and is rather more narrowed posteriorly. The apex of the spire is occupied by a shallow depression, and there is no umbilicus.
Diaphana gemma Verrill.
Amer. Journ. Sci., xx, p. 399, Nov., 1880.
Shell oblong, suboral, widest a little in front of the middle, truncate posteriorly and obliquely rounded anteriorly, with a distinct umbilicns, and also with a narrow, deep pit at the apex. Texture of shell rather solid, somewhat thickened. Outer lip rising somewhat above the spire, forming a rounded posterior angle; throughout most of its length only slightly convex, often nearly straight; anteriorly, a little expanded and produced, well rounded, thickened. Inner lip more thickened, with the edge a little revolute, but leaving a small and regular umbilicus. Aperture narrow posteriorly, ovate anteriorly. Surface smooth and glossy, without any sculpture over the middle region, but with several well-defined, not crowded, but fine spiral grooves at each end, visible with a lens. Color grayish white. Length, $4.2^{\mathrm{mm}}$; breadth, $2.5^{\mathrm{mm}}$.

Stations 871 and 873,100 to 115 fathoms, fine sand, south of Martha's Vineyard and Newport, R. I.

I have had no opportunity to examine the animal of this species, and refer it to Diaphana, provisionally, because of its resemblance to $D$. umbilicata. It may prove to be a Cylichna. It has some resemblance to $C$. occulta Mighels ( = C. propinqua Sars). The latter is, however, destitute both of the pit at the summit of the spire and of the umbilicus, and its surface is everywhere covered with distinct spiral lines. Our shell is shorter and stonter than D. umbilicata.
Diaphana conulus (Desh.).
Utriculus conulus G. O. Sars, op. cit., p. 287, pl. 17, figs. 17 a-c.
A perfect living specimen of this very distinct species was taken at station 570 , in 155 fathoms. It has not been recorded hitherto from the American coast.
Amphisphyra globosa Li.vén, 1846.
Diaphana globora G. O. Sars, op. cit., p. 290, pl. 18, figs. 3 c, 4 ; pl. xi, fig. 12 (dentition).
Specimens agreeing in all respects with Sars's figures, referred to above, were dredged at stations 870,871 , and 894 , in 115 to 365 fathoms, south of Martha's Vineyard and Newport.

[^60]The name pellucida clearly has priority for this species, and should be adopted; moreover, hyalina had been previously used. Jeffreys, although he admits the priority of Brown's name, claims that it is "obsolete" because no one has used it, "except its author". But Lovén, A. Adams and others have correctly adopted it. Moreover, Jeffreys himself does not apply this idea in regard to "obsolete" names in many other cases, as, for example, in the case of Margarita olicacea (Brown), an "obsolete" name revived by him to replace argentata Gould.

Cylichna Gouldii (Conth.) Verrill.
Bulla Gouldii Couthony, Bost. Journ. Kat. Hist., ii, p. 181, pl. 4, fig. 6, 18:38.
Etriculus Gouldii Stimpson.-Gonld, Invert. Mass. (second ed.), p. 217, fig. 508.
Living specimens of this species, of large size and in considerable numbers, were dredged by us in 1879 , off Cape Cod, and especially on the sandy portions of Stellwagen's Bank, Massachusetts Bay, in 15 to 25 fathoms.

An examination of the animal shows that it has a gizzard, with calcareous plates, while its dentition agrees with Cylichna, to which it should be referred, notwithstanding the character of the spire of the shell. The median teeth are deeply bilobed; the inner lateral ones large and hooked; outer laterals four on each side, slender, spiniform.

This species is very distinct from Diaphana pertenuis ( $=$ Bullat pertenuis Migh.), with which it has sometimes been confounded. The latter occurred at station 894.

## Philine amabilis Verrill.

Amer. Journ. Sci., xx, p. 398, Nov., 1850.
Animal large, about an inch long, even in alcoholic specimens. In preserved specimens the anterior lobe is large, oblong, truncate behind, obtusely pointed in front, slightly narrowed backward; lateral lobes large; posteriorly the thin membrane covering the shell projects backwards beyond it, and its free edge is divided into several wide, but short, lobes; foot large.

Odoutophore with a large inner lateral, hook-shaped tooth on each side, having its inner edge very finely serrulate and each of its lateral edges bordered by a sharp ridge; outside of these there is on each side a single, very much smaller, slender, spiniform, very sharp, slightly bent tooth.

Shell large, but exceedingly thin and delicate, diaphanous, lustrons, and iridescent, with a very wide aperture. The outline is broad-oblong, rounded at both ends; the outer lip, forming the greater part of the shell, is evenly rounded posteriorly, and scarcely projects beyond the level of the spire; in the middle it projects forward in a regular curve, and recedes rapidly in front, where it also becomes slightly broader, and forms a very obtuse, rounded angle; the anterior end is broadly rounded and very much cut away, so that in an end view, from the front, the whole interior of the spire is visible. The inner lip is thin and sharp-
edged, and recedes in a broad curve anteriorly, so that the body of the shell is relatively very small. There is a small, shallow pit in the place of the spire. Sculpture inconspicuous; many lines of growte, and very fine, wavy, spiral strix, visible with a lens, cover the whole surface, which has a glistening and opalescent or pearly luster.

Length of the entire animal, $25^{\mathrm{mm}}$ or more; length of shell, $15^{\mathrm{mm}}$; breadth of shell, $10{ }^{\mathrm{mm}}$.

Several living specimens from station 876 , about 100 miles south of Newport, R. I., in 120 fathoms.

This is one of the largest species of the genus, and one of the most beautiful and delicate.

## Philine Finmarchica M. Sars.

G. O. Sars, op. cit., p. 298, pl. 18, figs. $10 a-d$; pl. xii, fg. $1 a, b$ (dentition).

Off Cape Sable, Nova Scotia, 90 fathoms, fine sand, 1877; 70 to 75 miles south of Martha's Vineyard, 65 to 192 fathoms.

```
Philine fragilis G. O. Sars.
G. U. Sars, op. cit., p. 296, pl. 18, figs. \(11 a-c\); pl. xii, fig. 2 (dentition).
```

Off Cape Sable, Nova Scotia, 90 fathoms, fine, compact sand, 1877;
Jeffrey's Ledge, Gulf of Maine, 88 to 92 fathoms, 1874 , several large living specimens.

Philine cingulata G. O. Sars.
G. O. Sars, op. cit., p. 297, pl. 26, figs. 7 a-c; pl. xii, fig. 3.

Off Cape Sable, Nova Scotia, 90 fathoms, with the preceding. Taken this season at stations 892 and 894 , in 487 and 365 fathoms.

These four species of Philine are new to the American coast. Probably additional species of this genus will be detected when all our collections shall have been fully examined.

## Pleurobranchza tarda Verrill.

Amer. Journ. Sci., xx, p. 398, Nov., 1880.
Body subovate, stout, thick, often nearly half as broad as long, usually less, tapering backward and blunt posteriorly; front broad, convex or subtruncate; back more or less convex or swollen in the middle, with the surface wrinkled or irregularly reticulated, with the sunken lines brown, the reticulations smaller posteriorly. Dorsal tentacles short, stout, wide apart, ear-like, subtubular, having a slit on the outer side, with the edges often rolled in. Gill rather large, well exposed in a dorsal view, situated on the right side, behind the middle, and equal in length to nearly one-fourth the body, plumose, bipinnate, with 15 or 16 pinnæ on the upper side. Foot broad, often nearly as wide as the mantle, subtruncate or rounded in front, narrowed and obtuse posteriorly, ordinarily not extending beyond the mantle. The mantle edge is but little prominent, except along the right side. Proboscis protruded in most of the specimens, large, thick, obtusely tapered close to the end, which is emarginate, showing the large odontophore in a
broad, vertical noteh. Reproductive organs large and prominent ; the two orifices are situated on a large tubercle in front of the gill. The male organ, in extension, is long, slender, usually curled, truncate, about equal in length to half the breadth o? the body; it is a tubular organ, with a slit along the lower side, formed by the rolling up of a long, thin, membranons process. At the posterior edge of the tubercle there is a shorter, flat-pointed process, connected with the female organs. Color of dorsal surface yellowish brown, lighter or darker, and retienlated with dark brown, often specked with flake white; gill and proboscis dark purplish brown; the proboscis with a darker dorsal pateh; tentacles sometimes crossed by dark brown bands. Foot salmon-color. Odontophore very large and broad, with 150 to 170 rows of teeth; no metlian teeth; all the tecth are similar in structure, and show only a gradual change in form aud size from the inner to the outer ones. The inner ones are elongated, slightly curved, narrow lanceolate, with a very acute point and with a smaller, narrow, sharp denticle on the immer edge, parallel to but shorter than the main point ; the outer teeth gradnally become shorter, blunter, with a smaller denticle, which finally nearly disappears. Length, usually $30^{\mathrm{mm}}$ to $40^{\mathrm{mm}}$; breadth, $10^{\mathrm{mm}}$ to $14^{\mathrm{mm}}$.

About 20 miles sonth of Block Island (stations 814 to 817 ), in 38 fathoms; about 70 to 74 miles south of Martha's Vineyard (stations 865 to 89 ), in 65 to 102 fathoms, fine, compact sand, very abundant ( 140 specimens). Also 90 to 100 miles sonth of Newport, R. I., in 85 to $2: 5$ fathoms (stations 873 to 879 ). Closely resembles Pleurobranchea NorceZenlandice in form and color. The latter is a littoral species.

Derdronotus elegans Verriil, sp. nov.
Forn and general apparance nearly as in D. arborescens, but rather more slender. Branchiar with rather longer stems and less numerous branches than in the latter, but similarly arranged. Tentacle sheaths with the terminal lobes not so finely divided, and with a smaller branch on the onter side, near the base. Frontal processes of the head numerous, large, with elongated stems, and not so much branched as in $D$. arborescens. Color everywhere nearly uniform pale salmon; tentacles more rellowish. The dentition is peculiar and distinguishes it easily from both our other species. Median tooth stont, smooth, entirely destitute of lateral denticles; its free portion, in a dorsal view, is broad-triangnlar, almost as broad as long, acute at tip; base transversely elliptical, a little broader than the free portion. Lateral teeth about ten on each side, slender, the onter two or three shorter, blunt or subacute; the others are successively longer and larger, and each has a more acute and more oblique tip than those that precede it, except the inner one, which has a shorter tip, with longer spinules. These lateral teeth are rather suddenly curred inward where they begin to taper, and beyond the curve the tip becomes nearly straight again, and very acute, while the anterior elge of the carvature is corered with slender, sharp spinules.

Proc. Nat. Mus. $80-\Omega$
Dec. 28, 1880.

The dentition of this species is very different from that of $D$. robustus and $D$. arborescens. Both of these have the median teeth serrated, and uifferent in form; the latter has broader and less acute lateral teeth.

Ofl Cape Cod (station 330), 26 fathoms, September 6, 1879.
Doris complanata Verrill.
Amer. Journ. Sci., xx, p. 399, Nov., 1880.
Body depressed, broad-elliptical, well rounded, both in front and behind, the mantle extending much beyond the foot all around, its edge usually undulated. The lower side of the mantle is stiffened with spicules; upper surface slightly convex, nearly smooth, but covered with small, rather distant, and but slightly prominent, conical elevations. Dorsal tentacles large, stout, subclavate (not seen in full extension), with very numerous, crowded, thin, high, lamelliform plications or folds over the entire upper portion; retractile into cavitips having plain, sharp edges Gills large, the two lower, on each side, partially confluent at base, bipinnately and tripinnately divided, retractile into a large common cavity, which has plain edges. Anal papilla a prominent, eylindrical tube in the center of the branchial wreath. Foot relati ely small, obtusely rounded posteriorly, emarginate in front, and with a transcerse sulcus on the front edge. Head small, rounded in front, with a free, short, thick, ovate tentacle on each side. Odontophore broad, with about seventy to eighty rows of teeth; no median teeth; abont trentrtwo to twenty-four lateral teeth, on each side, are stont, hook-shaped, with sharp points, and a slight lobe on the outer curvature and another on the inner side; outside of these there are twelve or more shorter, flattened teeth, with obtuse or rounded, incurved, and sharply dentienlated or spinulated ends; the outermost teeth are smallest. Length, $50^{\mathrm{mm}}$; breadth, $25^{\mathrm{mm}}$.

Color, above, dull yellowish brown to dusky brown, irreqularly finely specked and blotehed with dark brown; gills dark brown.

About 70 miles south of Martha's Vineyard, station 872, in 85 fathoms, among sponges (eleven specimens).

This large species is closely related to D. Johnstoni and D. planata of Europe. It differs from both in its dentition, in having stonter and blunter dorsal tentacles, with more numerous lamellie, and in having shorter and blunter oral tentacles.

Polycerclla Verrill, gen, nov.
Body elougated-ovate, haring the same form as Polycera. Mantle little developed. Dorsal tentacles (rhinophores) not laminated and not retractile, without sheaths. A row of papille along each side of the back, extending beyond the gills. Gills three, pinnate, situated in the middle of the back, nearly as in Polycera. Foot auricled. Odontophore with six rows of teeth; median row absent ; inner laterals large, curved, with three denticles; two outer rows much smaller, simple, hook shaped.

Polycerella Emertoni Verrill, sp. nov.
Body small, elongated-orate, rather narrow, somewhat angular, about as high as broad, sometimes higher than broad, tapered and somewhat acute posteriorly, narrowed a little at the neek. Head high, convex above, sometimes bilobed, but often rounded in front, capable of changing its form to a great extent, the part in front of the dorsal tentacles being eapable of considerable elongation and of contracting to a truncate form. Foot high and narrow, obtuse posteriorly, the anterior angles prolonged into short but prominent auricles, often curved backward and pointed, at other times short and blunt. Dorsal tentacles rather long, not retractile, but capable of considerable contraction; in extension their length is often equal to the breadth of the neek; they are fusiform or subclavate, blunt, smooth or showing only slight, transverse, irregular wrinkles, chaugeable in form, sometimes nearly cylindrical, at other times swollen in the middle or toward the tip. Edge of the mantle indicated ouly by a slight, often crenulated, ridge along each side and around the head. Above this edge there is a row of small papilla, of which two on each side are in advance of the dorsal tentacles; two are opposite to them, and four or five on each side occupy the space between the tentacles and gills; a row of five or six, on each side, extends beyond the gills to near the end of the body, the posterior ones becoming very small. Behind the gills there are three or four pairs of larger and longer papilla, situated more dorsally; of these the two pairs next to the gills are longest, and are often nearly equal to the dorsal tentacles in size and length; they are usually somewhat swollen in the middle and blunt at the tip. Two or three pairs of much smaller papille are situated on the back, in front of the gills. Gills three, narrow, elongated, pimate, subplumose, not finely divided, curved backward, not retractile, about equal in length to the dorsal tentacles; the pinne are few, alternate, generally incurved, those toward the base more slender.

Color sellowish green to olive-green, varied with lemon-yellow, and blotched and specked with darker green or blackish; foot, tevtacles, gills, and dorsal papillie lighter greenish yellow, sparingly specked with dark green.

Length, $5^{\text {mm }}$ to $6^{\mathrm{mm}}$; breadth, $1^{\mathrm{mm}}$; height, $1.12^{\text {mm }}$; length of rhinophores, $88^{\mathrm{mm}}$.

The odontophore is very minute. The tecth of the inner row, on each side, are relatively very large and long, stous, with the shaft bent backward and the end abruptly curved forward and divided into two sharp denticles; another sharp denticle is situated laterally, below the others. The two outer lateral rows of teeth are much smaller and less than half the length of the inner ones, nearly equal in size and form, simple, strongly curved forward, and very acute.

This species was first taken by the writer at Wood's Holl in September, 1855, at the surfice, among eel-grass; and on hydroids from the piles of Long Wharf, New Haven, Conn., October, 1875. At Newport, IR. I., it has been found several times by Mr. J. H. Emerton and the writer, in

July and Angust, on filamentous algæ, especially Ceramium rebrim, growing on the mooring buoys and piles of wharves in the harbor.

In confinement it often leaves the algre aud creeps at the surface of the water, foot upward.

The eggs of this species were laid in confinement, July 24, at Nerrport, R. I. They form a long, narrow, oblong or strap-shaped, white mass, attached by one edge to filamentous alga; the eggs are arranged in numerous rows.

Coryphella nobilis Verrill, sp. nov.
A large and elongated species, with stout dorsal tentacles and large, flattened, pale-salmon dorsal papillx. Foot broad, elongated, tapering and acute posteriorly; anterior angles considerably elongated, in the form of acute tapering processes, having a distinct longitudinal groove or fold. Head rather small, rounded, in front slightly convex or nearly straight, lower side concare. Oral tentacles rery stont, flattened, gibbous near the end, with a small, somewhat upturned, round, acute tip. Dorsal tentacles (rhinophores) very large and stout, arising close together, longer than the oral ones, tapered, subacute, thickly covered with small, conical papilla or warts. No eyes could be detected. Dor. sal papillæ arranged in numerous transverse, oblique rows, each of eight to ten or more papillæ (except posteriorly); they are small and much crowded along the sides; the upper ones are much longer, stout, mostly flattened, widest beyond the middle, tapering to the lanceolate tip.

Color of foot and body translucent white; on the back there are visible, through the integument, salmon-colored vessels, running from one group of dorsal papills to another and connecting with their nuclei; the dorsal papille are pellucid white externally, with a palesalmon nucleus, becoming paler and whitish near the tip; dorsal tentacles pale yellowish green; oral ones pellucid white.

Length, about $63^{\mathrm{mm}}$, or 2.5 inches; length of dorsal tentacles, $15^{\text {ma }}$ (. 6 inch); of longest dorsal papillæ, 12 mm (.5 inch).

The odontophore has a central row of large teeth, with a moderately prominent, acute, central denticle, and usually six smaller denticles on each side; lateral teeth without distinet denticles on the edge, rather large, wide at the base, which is emarginate, the outer lobe extending further back, inner edge slightly wary and uneven, but not denticulate.

Off Cape Cod, in 75 fathoms, mud and broken shells, 1879. One specimen only.

In form and color this species resembles C. salmonacea, but the latter, which occurs at Eastport, Me., has the dorsal papillz more crowded, and its dentition is very different, for the lateral teeth are strongly denticulated along the edge to near the tip.

[^61]The dentition of this species is peculiar, but agrees better with that
of Coryphella than with that of any of the related genera. It was originally referred to Cuthona on account of the lateral expansions of the head. The odontophore is remarkably high and narrow; the central teeth are dark brown, large, strong, with the median point very large, compressed, aud curved forward, projecting far beyond the small, sharp, lateral denticles, of which there are usually eight or nine on each side; lateral teeth thin, pale, comparatively small, narrow, acute, without any denticles, or rarely with some very small ones near the base, which is rounded and but little expanded.

This species occurs from Massachusetts Bay to Halifax, Nova Scotia, and from low-water to 50 fathoms.

## Facelina Bostoniensis (Conthouy) Verrill \& Emerton.

This species has been very much misunderstoon, and totally different species* have often beeu confounded with it. It is, however, very easily distinguished from all of our other species. It is the only known species from the New England coast that has the dorsal tentacles distinctly laminated or plicated.

It is a true Facelina, having only a single row of teeth, with the central denticle prominent.

It is common from above low-water to 20 fathoms, on Obelia and other hydroids, from Massachusetts Bay to Block Island and Newport, R. I. This season it occurred abundantly among Obelia geniculata, on Laminaria, off Block Island, in 18 to 20 fathoms, associated with large numbers of Lamellidoris muricata.

This species is very closely related to the European species, Facelina Drummondii (Thomp., 1843) and $\boldsymbol{F}$. elegans (Alder \& Hancock).

## Facelina pilata (Gould) Verrill \& Emerton.

In its dentition this species agrees closely with the preceding, having but a single row of teeth, of nearly the same form. It should be referred properly to Facelina, although it does not agree strictly with the diagnoses of that genus, especially in respect to the lamination of the dorsal tentacles, which are, in this species, nearly smooth. This character is, however, variable in this genus, the lamine being very prominent in $F$. coronata, rudimentary in $F$. elegans, and absent in F. pilata.

Cratena Veronicæ Verrill, sp, nov.
Size moderate, about $25^{m m}$ in length, rather stont. Dorsal papilla cylindrical, obtuse, moderately slender, arranged in twelve to fifteen regular transverse series on each side, the middle ones containing eight to ten or more papillæ; anterior groups smaller, situated well forward,

[^62]in front of the dorsal tentacles. Oral and dorsal tentacles nearly equal in length, moderately long, tapered, blunt. The dorsal tentacles appear slightly wrinkled transversely. Eyes black, conspicuous, near together, just behind the bases of the dorsal tentacles. Foot narrow, with broad, rounded anterior angles. Head moderately large, its outline nearly semicircular in front, and projecting considerably in advance of the bases of the oral tentacles.

Color variable. In some specimens the nuclei of the dorsal papillie and the biliary ducts from them are dark green, the nuclei appearing to be lobulated or floculent; the outer sheath is translucent whitish, with an interrupted streak of flake-white on the distal half, and with unequal specks and spots of the same scattered over the surface, while on the outer side, near the end, there is a patch of orange; tip translucent white. In front of the bases of the dorsal tentacles there is a dark green patch. Tentacles white.

In other specimens, taken at the same time, the nuclei of the dorsal papills were salmon-colored, but the subterminal patch of orange and the streak and specks of flake-white were as in the green variety; the body was translucent white; dorsal tentacles white, tinged or faintly reticulated with flake-white; oral tentacles with a streak of flake-white on the posterior side.

Odontophore narrow, with a single row of teeth; these have thirteen sharp denticles, the median one scarcely as long as those next to it ; the anterior border of the tooth is nearly semicircular, with a notch on each side near the outer euds, which run backward, as short processes, somewhat enlarged and emarginate at the end.

Off Cape Cod (station 328), in 23 fathoms, among hydroids, September 6, 1879.

This species is nearest allied to Cratena olivacea (Alder \& Mancock), but differs in the form of its teeth, as well as in its coloration. It is also allied to Cratena viridis, of Europe. In case either of the older names (Cavolina and Montagua) be retained for this group, this species should be so named. But both of these names having been previously used for other genera, they should be discarded.

Cratena gymnota (Couthouy) Verrill \& Emerton.
Montagua Gouldii Verrill, Invert. Viney. Sunnd, p. 667 (author's copies, p. 373), 1873.

This species, which is common on littoral hydroids, from Massachusetts Bay to New Haven, Conn., is a typical Cratena Bergh* (= Cacolina Alder \& Hancock = Montagua auth.), and is very closely allied to C. aurantiaca (A. \& I.) of Europe, with which its dentition agrees very nearly, even in minute details. In C. gymnota the coloration, also, is often similar to that of C. awrantiaca, but the dorsal papillie are fewer

[^63]and longer, and their clusters are less numerous and less crowded. In case it be thought necessary to unite the two forms, Couthouy's name has priority.

## Tergipes despectus (Johnst.) Alder \& Hancock.

The genuine despectus was distinguished from $G$. exigua by Mr. J. Н. Emerton, at Salem, Mass., in 1879, when he made characteristic drawings of both and preparations of the odontophores, which I have examined. During the present year he has found the former near Newport, R. I., on hydroids (Obelia) at low-water. The species described and figured by Gould (Binney's edition) under this name is really the Galvinia exigua Alder \& Hancock, differing widely in its dentition, there being three rows of teeth, instead of the single row, seen in Tergipes. But the T. despectus of my report on Invertebrates of Vineyard Sound, 1873, was correctly named. Both species are found under the same conditions, but, according to Mr. Emerton, G. exigua is found in the spring and early summer, while T. despectus occurs later in the summer and in autumn.

Acmæa rubella? (Fabr.).
Tectura rubella G. O. Sars, Moll. Reg. Aret. Norv., p. 121, pl. 8, figs. 5 a,b; pl. ii, fig. 11 (dentition).-Jefliress, Ann. and Mag. Nat. Hist., for Murch, 1877, p. 231.
One specimen, without the animal, was dredged at station 894. It appears to agree closely with the species referred to, except that the apex is not obtuse, and its color is pale yellowish white. There is no sculpture except irregular and rather distinct lines of growth. The apex is acute, bent directly backward, and situated at about the posterior fourth. The base is oblong-oval. Length, $5.5^{\mathrm{mm}}$; height, $2.75^{\mathrm{mm}}$.

## HETEROPODA.

## Carinaria Atlantica Ad. \& Reeve (\%).

Fragments occurred at station 865 . They may have belonged to $C$. Mediterranea.

Atalanta Peronii Lesueur.
D'Orbigny, Voy. Amer. Mérid., Moll., p. 171, pl. 12, figs. 1-15; Hist. l'Isle de Cuba, Moll., i, p. 102, 1853.
Near George's Bank, latitude $41 \circ 25^{\prime}$ north, longitude $65^{\circ} 5^{\prime}$ to $65^{\circ} 30^{\prime}$ west (Messrs. S. I. Smith and O. Harger, 1872).

## PTEROPODA.

Although the Pteropods are all, properly speaking, oceanic species, it is undoubtedly true that a certain group of species will be found to be characteristic of the waters adjacent to each coast. Hitherto those observed and recorded from near the shores of New England have been chiefly northern or arctic species, which follow the course of the arctic current along our coast. For this reason, in the winter and spring, the beantiful Clione papilionacea is frequently found as far south as Vineyard

Sound and the shores of Rhode Island. The Spirialis Gouldii Stimp. is probably also an arctic species, and is very closely related to, if not identical with, S. balea of the Arctic Ocean.* There are, however, a few of the more tropical species that have been alrealy recorded as occasionally cast ashore dead, upon the southern shores of New England. Of these Diacria trispinosa and Cavolina tridentata are the most common. Of the former, I have also received numerous examples, with the animal in good condition, obtained by Mr. Samuel Powell, at Newport, R. I., several years ago, from the stomach of a blue-fish. This season two living specimens of it were taken off Block Island by Messrs. V. N. Edwards and N. P. Scudder, of our party. The fresh shells of this species were dredged by us in 1871, near Martha's Vineyard, and this year we found it in abundance and perfectly fresh, in all our onter dredgings, 70 to 100 miles off shore. It was associated with Diacria trispinosa Gray and several other species, named below, but was far more numerons than any of the others. The following species are here introduced because of their common occurrence, evidently in large numbers, within a few miles of our coast. Several of them have not been recorded from so far north before, even in mid-ocean.

Cavolina longirostris (Les. MSS., Mv.) H. \& A. Ad.
Hyalca longirostris Blainv., Dict. Sci. Nat., xxii, p. 81.-Rang, Hist. Nat. Pterop., p. 41, pl. 2. figs. 7-10, 1852.
Cazolina longirostra Gray, Catal. Moll. Brit. Mus., Pteropoda, p. 8.
This small but elegant species occurred frequently in our dredgings, but not in large numbers (stations $867,870,876,891,894, \& c$. ).

Cavolina uncinata (D'Orb.) Gray, $1850 ; \mathrm{H} . \& \mathrm{~A} . \mathrm{Ad}$.
Hyalaa uncinata D'Orb., 1836.-Rang, Hist. Nat. Pterop., p. 37, pl. 2, figs. 1114, 1852.
This occurred in many localities, with the last. Our specimens differ from the figures referred to in having the median posterior spine more hooked and more abruptly bent, so as to make nearly a right angle with the shell.

Cavolina inflexa (Les.) Gray.
Hyalaa inflexa Lesneur; Blainv., Dict. Sci. Nat., xxii, p. 80.
One perfect and full grown specimen from station 894.
Clio pyramidata Browne; Linne; Gmelin.
Cleodora pyramidata Peron \& Les.; Lamarck.
Cleodora lanceolata Rang, Ann. des Sci. Nat., xvi, p. 497, pl. 19, fig. 1.
Clio pyramidata Gray, Catal. Moll. Brit. Mus., Pteropoda, p. 12, 1850.
Several fresh but somewhat broken specimens of this species occurred at statious 865,891 to 894 .

[^64]
## Balantiom recurvum Children.

Journ. Roy. Inst., xv, p. 220, pl. 7, fig. 107, 1829.-Gray, Catal. Moll. Brit. Mus., Pteropoda, p. 14, 1850.
Cleodora balantiam Raug, Mag. Zool., 1834; Hist. Nat. Pterop., p. 52, pl. 5, fig. 12 ; pl. x, fig. 7, 1852.
Fragments occurred at stations 865 and 869.
Styliola recta (Lesuear, MSS.) Blainr., Man. Mal., 1825.
Creseis acicula Rang, Ann. des Sci. Nat., I, xiii, p. 318, pl. 17, fig. 6, 1823.
Creseis clara Rang, Ann. des Sci. Nat., I, xiii, p. 317, pl. 17, fig. 5, 1828.
Creseis acus Esch., Zool. Atlas, iii, pl. 15, fig. 2, 1831.
Cleodora acicula Rang, Hist. Nat. Pterop., p. 56, pl. 7, figs. 5, 7, 1852.
Near George's Bank, latitude $41^{\circ} 25^{\prime}$, longitude $65^{\circ} 5^{\prime}$ to $65^{\circ} 30^{\prime}$, September, 1872, at surface (Messrs. S. I. Smith and O. Harger).

Stylola virgula (Rang) Gray.
Crescis cirgula Rang, Ann. des Sci. Nat., I, xiii, p. 316, pl. 17, fig. 2, 1828.
Cleodora rirgula Rang, Hist. Nat. Pterop., p. 57, pl. 13, figs. 20-21, 1852.
Near George's Bank, with the preceding.
Spinalis MacAndrei Forbes \& Hanles, ii, p. 384.
Spirialie retroversus (Flem.), variety $\mathbf{P}$ MacAndrei, Jeffreys, Brit. Conch., $\nabla, ~ p . ~$ 115, pl. 4, fig. 4 ; pl. 98, fig. 5.-G. O. Sars, Moll. Reg. Arct. Norv., p. 330, pl. 29, figs. $3 a-f$; pl. xvi, fig. 19 (dentition).
Several entire and perfectly fresh specimens occurred at station 804.
They agree with the form called var. MacAndrei by Jeffreys.
Cymbulia calceolus Verrill.
Amer. Journ. Sci., xx. p. 394, Nov., 1880.
Test thick, transparent, broad-ovate or elliptical, rounded at both ends, covered, above and below, with low, rounded verruce; ; aperture large, occupying more than half the length of the test, broad-ovate, posterior margin nearly straight; edges simple, unarmed. Animal pale pink, with a brown nucleus; fins very large, connate, broadly rounded; their outline taken together forms a long ellipse, considerably louger and somewhat broader than the test. Length of test of a medium-sized specimen, in alcohol, $19^{\mathrm{mm}}$; breadth, $11^{\mathrm{mm}}$; expanse of fins, $23^{\mathrm{mm}}$; their breadth, $122^{\mathrm{mm}}$. The largest specimens have the test about $40^{\mathrm{mm}}$ long, $20^{m 0}$ broad. Stations 865 to 872 (near the surface), common; about 30 miles east-southeast of Block Island, at surface, October 2, 1880 (Messrs. Scudder and Edwards).

Halopsyche Verrill, nom. nov.
Pryche Rang, 1®25 (non Psyche Linn6, 1735, neo Psyche Schrank, 1801).
The name Psyche having been twice used before it was employed by Rang, it will he necessary to substitute another name for this genus of Pteropods. I therefore propose Halopsyche.
The type, and onls known species, Halopsyche globulosa (Rang), inhabits the waters of Newfoundland and Nova Scotia.

## SOLENOCONCHA.

## Dentalium occidentale Stimp.

Shells of Nuw England, 1851 (based on D. dentale Gonld, 1st ed., p. 155, fig. 5, not of European authors).
Dentalium dentale Gould, Invert. of Mass., 2d ed., p. 236.
Dentalium abyssorum M. Sars, 1858.
Dentalium striolatum Jeffreys (non Stimpson).
Antalis striolata G. O. Sars, Moll. Reg. Arct. Norv., p. 101, pl. 7, fig. 1; pl. 20, figs. $10 a, b$; pl. i, figs. $1 a-c$, dentition (uon Stimpson sp.).
This species is abundant on muddy bottoms, in 50 to 300 fathoms, all along the coast of New England aud Nova Scotia.

Mr. Jeffreys, misled by a singular and uuaccountable mistake, has constantly applied to this sulcated species the name given by Stimpson to our common, shallow-water, nearly smooth form. In this mistake G. O. Sars and others have followed him.

The question as to the specific distinctness of these two forms I do not propose to discuss at this time, but it is equally desirable that the respective names should be correctly applied, whether we regard the forms as varieties or species. Of D. striolatum, I have dredged thonsands of specimens in shallow water in the Bay of Funds, in the same region where Stimpson's original specimens were taken, and among them no specimens of " $D$. occidentale" are to be found. In other localities, however, both species occur together. Both were taken this seasou on the outer banks, off Newport. But D. occidentale was by far the most common, and was abundant in the deeper stations, where 1 . striolatum did not oceur at all.

Among the specimens taken by us there are many that are more strongly ribbed and sulcated than usual, the ribs being more or less angular and clevated. In some of these, which are slender and about an inch long, the internal surface of the shell has grooves correspondiug to the external ribs, the shell being thin, but of uniform thickness, so that the two surfaces are parallel. In others of the same size the bore of the shell is smooth and round, the shell being thickened opposite the ribs. I am not prepared, however, to say that this is anything more than a varietal difference.

The form of the posterior notch varies in all our species (or varieties) from a shallow notch to a triangular cut, and even to a deep slit.

## Siphonodentalsum vitreum Surs.

G. O. Sars, op. cit., p. 103, pl. 7, figs. $2 a-c$; pl. i, figs. $2 a-f$ (dentition).-Verrill, Trans. Conu. Acad., v, pl. 42, fig. 19.
A fine, large specimen, probably belonging to this species, was dredged by the party on the "Bache", in 1873, in the Gulf of Maine (station 12 B ), in 60 fathoms, mud.

The shell is smooth, round, very thin, transparent, and lustrons. It is slightly curved and expands gradually to the anterior end. The posterior opening is swall and round, without lobes, but it probably has
been broken off squarely. Length, 12 mm ; diameter of larger end, $2.5{ }^{\mathrm{mmm}}$; of small end, $.5^{\mathrm{mm}}$.

Another specimen of similar character, $10^{\text {mon }}$ long and 2.5 $)^{\text {mun }}$ broad, was dredged in the Gulf of Maine, 107 fathoms (station 9 B ), 1873 . With the last-named specimen there was, howerer, a perfect living specimen, $7^{\text {man }}$ long and $2^{\text {mm }}$ broad, having the posterior end perfect and provided with the characteristic digitations around the opening.

Siphonentalis affinis (Sars).
(i. O. Sars, op. cit., p. 104, pl. 20, fig. 12.-Verrill, Trans. Conn. Acad., v, pl. 42, 1igs. $20 a-b$.
A specimen smaller and more slemler than the precerling species, and which I refer to S. affinis, was dredged by us, in 187T, in Bedford Basin, near Halifax, Nova Scotia, 35 fathoms, soft mud. It is $6^{\mathrm{mm}}$ in length, $1^{\text {num }}$ in breadth, slightly curved, round, smooth, glossy, and trans. lucent. The posterior opening is small and appears to be perfect ; it shows only a faint indication of a notch on the convex side.

Siphonentalis Lofotensis (M. Sars).
G. O. Sars, Moll. Keg. Aret. Norv., p. 104, pl. 20, figs. 11 a, b; pl. i, fig. 3.

A few specimens that agree well with the figures and description of this species were taken at station 801 , in 500 fathoms.

It is longer aud more tapered than the last, and much loss translucent.

## Cadulus propinquus G. O. Sars.

Moll. Keg. Arct. Norv., p. 106, pl. 20, figs. 1is a, b; pl. i, fig 5 (duntition).
This shell occurred in considerable numbers, living, at station 871 , in 115 fathoms. It is a small, polished species, rather ste'nter and more swollen than the next.

Cadulus Jeffreysi Monterosato.
Cadulus subfusiformis 1 Jeffreys, British Conch., v, p. 196, 1'. 101, fig. 3 (non Sars, teste Mouter.).
Several specimens of a small Cadulus, somewhat swollen in the middle and rather strongly bent, I refer to the above species. The posterior aperture is simple in most of them, but slightly notched ir others.

Station 871.
Cadulus Pandionis Verrill \& Smith.
Amet. Jonrn. Sci., xx, p. 397, Nov., 1880.
A very much larger, highly polished species occurred at many of the stations, but most abundantly at 869 to 871 and 873 to 877 in 85) to 192 fathoms. It is swollen on the convex side, in the middle, and slightly angulated or gibbous at about the anterior third. It is transversely elliptical in section; the anterior end decreases to the aperture, which is oblique, the lip being prolonged on the concave side. Posterior aperture small, with a semicircular notch above and below. Limgth, $10^{\mathrm{mm}}$; breadth, $2.25^{\mathrm{mm}}$; of mouth, $1.75^{\mathrm{mm}}$; of posterior aperture, $40^{\circ}$.

## LAMELLIBRANCHIATA.

Poromya granulata (Nyst) Forbes \& Hanley.
G. O. Sars, op. cit., p. 90, figs. 6 a, b.-Verrill, Trans. Conn. Acad., v, pl. 44, tiga. 3, 4.
Several adult living examples of this shell were dredged in 15:2 by Dr. A. S. Packard and Mr. C. Cooke, on the Coast Survey steamer "Bache", in the Gulf of Maine, in 150 fathoms, mud. This season it was taken at station 865 , in 65 fathoms. It has not previously been recorded as American.

In form and size it somewhat resembles Thracia myopsis, but is easily distiuguished by the small granules scattered over the exterior, and by the peculiar hinge, very different from that of Thracia. The right valve has a prominent, recurved, cardinal tooth. On the European coast it ranges from the Lofoden Islands to the Mediterranean, in deep water.

Poromya rotundata Jeffreys.
Annals and Mag. Nat. Hist., Dec., 1876, p. 494 (Valorons Espedition, Mollusca).
Shell rounded, thin, translucent, pearly within. External surface closely covered with small, rounded, obtuse granules, arranged mostly in close quincunx, and distinctly forming radiating lines, but in some parts appearing to be also in concentric lines. The narrow intervals between these lines of granules show the iridescent surface of the shell. These granules give a shagreen-like appearance to the shell. The granules show through on the inside, giving a finely tessellated appearance. The shell is but little longer than broad, convex ; rentral and anterior edges evenly rounded; posterior dorsal edge a little sloping, and forming an obtusely rounded angle where it meets the curvature of the pos. terior end. Hinge of right valve with a prominent conical tooth, fitting into a corresponding pit in the left valve.

South of Martha's Vineyard, stations S65 and S71, 65 to 115 fathous, living; North Atlantic, 1,450 fathoms (Jeffreys).

Iyonsiella abyasicola M. Sars; Friele.
Pecchiolia abysoicola G. O. Sars, Remarkable Forms Anim. Life, i, p. 25, pl. 3, figs。21-43; Moll. Reg. Arct. Norv., p. 103, pl. 20, figs. 5 a-d.
A few good living specimens of this interesting addition to the American fanna were dredged by our party this season, south of Martha's Vineyard and Newport, in 192 to 500 fathoms, fine, compact saud and mud (stations 869, 880, 891, 892, 894).
Lyonsiella gemma Verrill, sp. nov.
Shell small, iridescent, white, with raised radii, broad oval, widest and broadly roumled anteriorly, expanded and broadly rounded ventrally, posterior end short, narrowed, and tapered to an obtuse point. The beak is subcentral, but a little nearer the anterior end, prominent, indated, strongly curved inward and forward. Dorsal margin abruptly incurved opposite the beaks and decidelly expanded and excurved in
front of them, so as to rise nearly to a level with the umbos; internally, opposite the tips of the beaks, there is a smooth swelling within the margin. Hinge margin thin, toothless, but with an internal scar behind the beaks, where the ligament and ossicle were attached (the ligament is gone). Palial sinus rery small, angular. Shell less thin than in the preceding species. Sculpture numerous, very delicate, slightly raised lines, which radiate from the beaks over the whole surface; they are separated by much wider interspaces, which are smooth and iridescent, and not at all excarated. Length, $4.5^{\mathrm{man}}$; height (beak to ventral margin), $4{ }^{\mathrm{mm}}$.

One perfect specimen, station 892,487 fathoms, associated with $L$. abyssicola.

From the latter it differs widely in shape, having nothing of the rectangular form so characteristic of that species; the latter is also much less expanded anteriorly and much more so posteriorly, being far more inequilateral and more elongated.

Kennerlia glacialis (Leach) Carpenter.
Pandora glacialis Leach, Rosse's Voyage, appendix, p. 174.-Leche, Kongl. Vetensk.-Akad. Handl., Band 16, p. 11, pl. 1, tigs. 1 a, b, 1878 (author's copy).
Living specimens of this arctic shell were dredged at station 873, in 100 fathoms. It had previously been recorded from the Gulf of Saint Lawrence by Whiteaves, but was not known to occur on the New England coast. It differs widely from the common Clidiophora trilineata Cpr. (= Pandora trilineata Say), in the absence of the internal radiating ridges, in its more inequilateral and irregular form, and in the greater consexity of the upper valve. The lower valve is very flat, or even concave, and is marked externally with several distinet radiating lines.

## Neæra glacialis.

G. O. Sars, op. cit., p. 88, pl. 6, figs. 8 a-c.-Verrill, Trans. Conn. Acad., v., pl. 44, fig. $10 b$.
A form of Neara, agreeing perfectly with this, is common on muddy bottoms, in 50 to 192 fathoms, off the coasts of New England and Nova Scotia. We have dredged it off Cape Cod, off Cape Ann, off Casco Bay, in the Bas of Fundy, and in numerous localities in the Gulf of Maine and off Nova Scotia, since 18i2; and recently, south of Newport and Martha's Vineyard, in 65 to 500 fathoms. The larger specimens exceed an inch in length.

Among our numerous examples there is, however, considerable variation, both in the form of the shell and in the size and shape of the car-tilage-pit and lateral teeth. Moreover, the variations in the hinge are not correlated with the differences in the breadth and length of the rostrum. Therefore, it seems to me probable that this shell should be considered merely a variation of N. arctica. The latter, in its typical form, occurs in the same localities and in about the same numbers, and
some examples grow to even greater size, being 1.25 inches long. In our snecimens (see Trans. Conn. Acad., v, pl. 44, fig. 10 a) the rostrum is usually longer and narrower than in the specimen figured by Sars, approaching in this respect his figure of $N$. glacialis, but with the cartilage-pit as large and broad as in his N. arctica. In fact, the majority of our specimens may be described as intermediate between the two forms figured by Sars.

Neæra obesa Lovén (1846) $=\mathbf{N}$. pellucida Stimpson (1852).
Assosiated with the preceding, in most of the localities named, I have found another form, often .5 of an inch or more in length, which I consider identical with Neara obesa of Lovén, and which often agrees well with the figures of this species giren by G. O. Sars, but with the rostrum more commonly somewhat shorter. The cartilage-pit has the same form as the one figured by Sars. The young of this shell is the Neara pellucida of Stimpson, withont doubt. I have repeatedly dredged it in his original locality.

Neara obesa, as thus determined, is closely allied, in form and structure, to $N$. arctica and var. glacialis. Its texture is thinner, more delicate, more translucent, and smoother, or with less conspicuous lines of growth, and freer from adherent mud. These differences are not merely due to age, for 1 have examined both forms, of various sizes, from 10 of an inch or less, in length, up to the full-grown specimens.

The largest specimens of N. obesa are, however, rarely more than . 0 of an inch in length. The shell is usually very swollen and rentricose, rather abruptly contracted posteriorly at the base of the rostrum, which is rather narrow and not very long, but varies considerably in length and breadth. The cartilage plate is prominent, and projects inward so as to form a distinct angle.

Neæra jugosa S. Wood.
G. O. Sars, op. cit., p. $8^{2}$, pl. 6, figs. 9 a-c.

This species is easily distinguished from all others found on our coast by its conceutric raised lamelle. Station 894, 365 fathoms, off Newport, R.I.

Neæra rostrata (Spengler) Lovén.
G. O. Sars. op. cit., p. 89, pl. 6, figs. $7 a, b$.

Several fine, large specimens of this species mere dredged by ns about 70 to 75 miles south of Martha's Vineyard, in 85 to 115 fathoms, and 90 to 100 miles south from Newport, R. I., in 120 to 500 fathoms. It is easily distinguished from the forms above mentioned by its very long and narrow posterior beak or rostrum, and by the oval form of the shell. It has a nearly smooth surface.

## Neæra multicostata Verrill \& Smith, sp, nor.

This is a large and very distinct species, easily distinguished from all others known on our coast by the strong radiating ribs which cover the
whole surface of the shell. The shell itself is rather large, swollen, subovate, well-rounded ventrally, but obliquely subtruncate anteriorly. Rostrum rather short, narrow, well defined, tapered; on the rostrum there are eight or nine rather broad, low, radiatiny costie. The body of the shell is covered with regular, raised and strong, radiating costa, over fifty in uumber, separated by deep grooves of about the same width as the costa; anteriorly these ribs become small; posteriorly, near the base of the rostrum, fice or six become much larger than the rest, and have smaller ones alternating with them.

Color yellowish white; in life rosy, from the internal organs showing through. Length, $19^{\mathrm{mm}}$; beak to ventral edge, $12^{\mathrm{mm}}$.

South of Martha's Vineyard, 115 fathoms; about 90 to 100 miles south of Newport, 85 to 120 fathoms, stations $871,873,874,876$, \& e. Several living specimens of various sizes.
Cardium, sp.
A roundish species of Cardium, about $18^{\mathrm{mm}}$ in diameter, is represented by a single valve, in good condition. The surface is rather closely and regularly cancellated. The ribs are smooth, without scales or spines. It was taken at station 865 .

Astarte crenata Gray.
Parry's Voyage, app.-Friele, Catal. Nory. Nordmeer-Exp. Spitzl., Möll., p. 267, 1879.
1 Astarte crebricostata Forbes; Jeffeys; G. O. Sars; and other European writers.
Astarte crebricostata Gould, Invert., Mass., $2 l$ el., p. 12\%, fig. 440 (var. lene).
Astarte lens (Stimp., MSS.) Verrill, Amer. Journ. Sci., iii, p. 2N7, 147\%.
Large numbers of specimens, which seem to agree closely with the typical arctic and deep-water form of this species, were taken at nearly all the stations, in 6510500 fathoms. It was most abundant at stations 850, 894, 895.

These form series that appear to graduate into the large, broal, flattened form to which the name lens has been applied, which is abundant in the Bay of Fundy and Gulf of Maine, in 50 to 150 fathoms.

The typical form is smaller, more swollen, with the edges more rounded, and less expanded posterionly. All the forms have the edges regularly crenulated.

## Cryptodon Sarsii (Phil.).

dxinus Sarsii G. O. Sars, op. cit., p. CO, 11. 10, figs. 5a, b.
A single dead specimen of a shell agreeing very closely with this form, as figured by G. O. Sars, was dredged by our party, in 1870, off Cape Cod.

Crypton obesus Verrill.
Ancr. Journ. Sci., iii, p. 287, pl. 7, fig. 2, 1872.
I may take this oceasion to remark that Sars's figure (pl. 19, fig. i) oí C. obesus Verrill does not represent the large form described by me under that name, which is remarkable not only for its swollen form, but
also for its great height (from beak to ventral edge), as compared with its length, while the shell figured by Sars is broadly rounded, more like our typical C. Gouldii, of which I am inclined to consider it the adult state.

Very large and characteristic specimens of the typical C. obesus, sereral of them more than $15^{m \mathrm{~mm}}$ broad, but mostly dead, have been frequently dredged this season, off Newport, R. I., in 12 to 20 fathoms, and especially at stations $865-871,873,876$, and 877 , in 65 to 192 fathoms, south of Martha's Vineyard and Newport.
Cryptodon ferruginosus? (Forbes).
Axinus jerruginosus G. O. Sars, Moll. Reg. Arct. Norv., p. 63, pl. 19, figs. 10 a,b.
Living specimens were taken at station 871 , in 115 fathoms. They were thickly incrusted with iron-oxide, which adheres very tenaciously; beneath this crust the shell is usually much eroded.

Loripes lens Verrill \& Smith.
Araer. Journ. Sci., xx, p. 400, Nov., 1880 (published Oct.).
Shell rather thin, moderately convex, well rounded, nearly equilateral ; beaks acute, a little prominent, curved forward; lunule small, deeply excavated, cordate; ligamental area long, narrow-lanceolate, a little sunken, so that the ligament scarcely rises to a level with its edges. The posterior dorsal outline of the shell is nearly straight or but slightly convex; the posterior end is very obtusely rounded or subtruncate, making a slight angle with the dorsal edge and a very obtusels rounded one with the ventral edge, which is evenly curved and continuous with the regularly rounded anterior end; dorsal edge in front of the beaks incurved. Surface rather smooth, especially torard the umbos, but with more or less numerous and irregular lines of growth, marked by thin and slightly raised lines, which become more regular and more conspicuons at each end of the shell, and especially posteriorly. A faint ridge runs from the beak to the posterior ventral angle. A slight undulation or depression (often obsolete) runs from the beak to the upper part of the anterior edge, bounding a small anterior dorsal area. Hinge without any distinct teeth. Anterior muscular scar clongated, somewhat sinuous; posterior one small, ovate. Shell usually yellowish white; young specimens, when living, are translucent, fleshcolor, owing to the animal showing through. Length of the larger specimens, $14^{\mathrm{mm}}$; breadth or height, $12.5^{\mathrm{mnn}}$.

Dredged in 1859 in many localities ofr Cape Cod, in 50 to 100 fathoms; in 1850 common at nearly all the onter stations, in 65 to 192 fathoms (stations 885 to 877 ). Most of the specimens are dead, but fresh.

Tellimya ferruginosa (Mont.).
G. O. Sars, Moll. Reg. Arct. Norv., p. 70, pl. 20, figs. 1 a-c.

Montacuta ferruginosa Jefireys, Brit. Conch., ii, p. 210; v, pl. 31, fig. 9.
Several living specimens from stations 892 , 803 , and 804 , in 365 to 487 fathoms. They were all thickly coated with a brown ferruginous crust, beneath which the shell is usually eroded.

Leda unca Gould.
Proc. Bost. Soc. Nat. Hist., viii, p. 282, 1832.-Otia Conch., p. $239(=\boldsymbol{1}$ Leda acuta Conrad, described as fossil).
Many of our specimens are much larger than the shells described by Gould and Conrad. Our larger specimens are $13^{\mathrm{mm}}$ long, $8^{\mathrm{mm}}$ broad.

This shell is rather strong and thick, oval, swollen, rounded anteriorly, but posteriorly narrowed to an acute, short, angular beak, at the base of which there is a slight incurvature of the rentral edge. The nearly straight posterior dorsal edge slopes regularly to the beak, and is somewhat compressed or keeled. The whole surface is covered with numerous prominent, regular, rouuded, concentric ribs, separated by deep grooves of about the same width. On the posterior dorsal area these ribs are smaller, and are often nearly obsolete close to the edge.

Taken in considerable numbers, alive and dead, at many of the stations, both south of Martha's Vineyard and south of Newport, R. I., in 85 to 155 fathoms, especially at stations $871,873,874$, and 870 .

This species appears to be allied to L. Messanensis Cant. ( $=$ L. acuminata Jefi.), from deep water in the Mediterranean.

Leda pernula (Muller).
G. O. Sars, op. cit., p. 35, pl. 5, fig. 1 a-d.

A specimen that appears to be a typical example of this speceies was dredged by us in 1877, off Halifax, in 59 fathoms. It has a smooth, lustrous, yellowish-green epidermis. The concentric grooves are irregular and mostly obsolete, except anteriorly, where they are fine and close. The form is similar to that of L. tenuisulcata. Length, $23^{\mathrm{mm}}$; height, $10{ }^{\mathrm{mm}}$.

## Yoldia frigidia Torell.

Spitz. Moll., p. 148, pl. 1, fig. 3, 1859.-G. O. Sars, Moll. Reg. Arct. Norv., p. 39, pl. 4, figs. $11 a, b$.
This species occurred at station 894. It had not previously been obtained off the New England coast, but had been dredged in the Gulf of Saint Lawrence, by Whiteaves, in 200 fathoms.

Arca glacialis Gray.
G. O. Sars, op. cit., p. 43, pl. 4, figs. 1 a-c.-Verrill, Trans. Conn. Acad., v, pl. 44, fig. 5.
This species has been dredged in numerons localities by the various dredging parties of the United States Fish Commission, since 187:, in the Bay of Fundy, Gulf of Maine, off Cape Cod, on George's and Le Have Banks, and off Halifax, Nova Scotia, at various depths from 90 to 430 fathoms; about 70 to 75 miles south of Martha's Vineyard, in 115 to 192 fathoms, and south of Newport, in 85 to 500 fathoms. It attaches itself to pebbles or gravel-stones by a small but strong ventral byssus.

The shorter and more rounded form, known as Arca pectunculoides Scacchi, also occurs on our coast, as well as the deformed variety called var. septentrionalis by G.O. Sars. These appear to me to be mere variProc. Nat Mus. $80-26$
ations of A. glacialis. The shortest and most rounded forms that we have taken were dredged south of Martha's Vineyard and south of Newport, in 85 to 225 fathoms, this season.

Limopsis cristata (\%) Jeffress.
Ann. and Mag. Nat. Hist., 1876, p. 434; Proc. Zool. Soc. London, 1879, p. 5E5, pl. 46, fig. 8.
A few dead specimens, referred doubtfully to this species, occurred at stations 865 to 867 and at 870 and 871 , in 65 to 155 fathoms.

Limopsis minuta (Philippi).
G. O. Sars, Moll. Reg. Arct. Norv., p. 44, pl. 3, figs. 5 a-c.

Limopsis borealis Jeffreys, Brit. Conch., ii, p. 164 ; v, p. 174, pl. 100, fig. 3.
This shell was taken in abundance, living, at stations 893,894 and 895 , in 238 to 372 fathoms; in smaller numbers at 891 and 892 , in 487 to 500 fathoms; and sparingly at several other localities in 115 to 252 fathoms.

## Modiola polita Verill \& Smith.

Amer. Journ. Sci., sx, p. 400, for Nov., 1880 (published Oct. 25).
Two living specimens were taken at station 895 , in 238 fathoms.

## Avicula hirundo (9) L., var. nitida, nob.

The shell is very inequivalre, the right shell being smaller and flatter, and much bent inward near its ventral edge. The form is very oblique, with the anterior ear small and short, in the left valve, and separated from the body of the shell by a slight incurvature of the edge, from which a depression runs to the beak; right valve with a shallow byssal notch. Posterior ala short, triangular, with a rounded incurvature of the posterior edge of the shell, separating it from the body of the shell, which is produced and rounded at the end. Surface nearly smooth, glossy, and somewhat iridescent, with regular but inconspicuons lines of growth, which on the anterior ears rise up into thin, wavy lamelle.

Color translucent, pale yellowish, usually with a brown streak radiating from the beak to the outer edge.

Length, beak to outer edge, $13^{\mathrm{nm}}$; length of hinge-line, $11^{\mathrm{mm}}$; beak to end of posterior ala, 8 mm.

This shell was found in considerable numbers adhering to hydroids, in 65 to 192 fathoms, south of $\mathrm{Misrth}^{2}$ 's Vineyard (stations 865 to 867 , and 869 to 873). In form it resembles the young Acicula hirundo of Florida and the West Indies. It is, however, much smoother and more lustrous than any specimens of that species which I have hitherto seen, and may well prove to be a distiuct species, for which I would, in that case, propose the name nitida.

## Limeea subovata (Jeffireys).

Lima snbovata Jeffreys, Annals and Mag. Nat. Hist., Nov., 1876, p. 427.
Shell small, white, orate, nearly equilateral, with the valves convex, much swollen in the middle; beaks prominent, incurved; hinge-line straight, shorter than the sbell; ligament-pit narrow, elongated, lunate.

Sculpture very numerous ( 70 to 80 or more) radiating ribs, fine laterally, increasing in strength on each side to the middle, where there are two or three ribs considerably larger than the rest, with wider intervals; the ribs and intervals are crossed by fine, close, raised lines of growth.

Interior with radiating lines corresponding to the exterval ones. Length, $4^{\mathrm{mm}}$; height (beak to rentral edge), $7^{\mathrm{mm}}$; thickness, $4^{\mathrm{mm}}$. Station $880, \Omega 55$ fathoms, scarce; 891 to 894,365 to 500 fathoms, common.

Limata gibba (=Lima gibba Jeffreys, op. cit., p. 428) also difiers but little from our specimens.

Pecten fenestratus Forbes ( $\boldsymbol{\rho}$ ).
Report on Mollusca, \&c., of Sgean Sea, p. 146, in Proc. British Assoc. for 1843. Pecten inequisculptus Tiberi (teste Jeffreys).
A small, but elegantly colored and sculptured, inequivalve Pecten was taken living at station 872. Thịs I refer doubtfully to the above-named, Mediterranean deep-water species. In our two examples the upper valve is finely and regularly cancellated, with fine radiating and concentric lines; the under valve is covered with fine, raised, concentric ribs only. Ears prominent. Color whitish and different shades of red and brown, irregularly mottled.

## Pecten, sp. (near $P$. opercularis).

Fragmeuts of a large and peculiar Pecten occurred at stations 873 and 874. They closely resemble, in sculpture, the P. opercularis of Europe, except that the large ribs are triangular and carinated at summit, instead of rounded. These large ribs are separated by equally wide, concave interspaces, which, like the ribs, are marked by slightly concave, radiating furrows, and the surface of these furrows is covered with thin, concentric, slightly raised, wavy plates, the waves being limited by the fine radiating ridges between the grooves. Interior of valves with broad, flat grooves, alternating with flat ribs of the same widthColor grayish white, the ribs pale reddish.

## List of species enumerated in the preceding article.

[^65]* Neptunea (Sipho) arata Verrill.
* E. м. Nерtuнеа propinquи (Alder).
- N. G. k. Buccinum cyaneum Brug.
* Nassa nigrolabra V.
N. G.E. Lunatia nana (Möller).
- N. Lunatia levicula V.
* Lamellaria pellucida V.
- a. e. Marsenina prodita Bergh.
※. G. E. Marsenina glabra (Couth.) V.
* N. Marsenina ampla Verrill.
- P. E. N. V'elutella cryptospira (Middend.).
* G. E. N. Trichotropis conica Müller.
* m. Cingula harpa Verrill.
* E. Cingula turgida (Jeff.) V.
* N. G. E. Cingula Jan-Mayeni (Friele) V.
* Lepetella tubicola V. \& S.
* *. 8. Lovenella Whiteavesii Verrill.
* E. Truncatella truncatulus (Drap.).
- Solarium boreale V. \& S.
- Soalaria Pourtalesii V. \& S.
* Scalaria Dalliana V. \& S.
* Scalaria, 8p.
* Aeirsa gracilis Verrill.
* N. E. Aclis Walleri Jeff.
* *.s. Aclis striata Verrill.
* Calliostoma Bairdii V. \& S.
* Margarita regalis V. \& S.
* Margarita lamellosa V. \& S.
* N. Margarita, sp.
* E. N. Macharoplax bella (Verk.) Friele.
* E. Cyclostrema trochoides (J.) Sars.
* E. Assiminea Grayana Leach.
E. Eulima intermalia Cant.
- E. Eulima distorta Desh.
N. 8. Turbonilla nivea (Stimp.).
* Turbonilla Rathbuni V. \& S.
* Turbonilla formosa V. \& S.
* Turbonilla Smithii Verrill.
* E. N. Eulimella ventricosa (Forbes).
* Odostomia (Menestho) sulcata V.
N. E. Odostomia unidentat. (Mont.).
- E. Auriculina insculpta f (Mont.) G. O. Sars.
- N. E. Diaphana nitidula (Lovón).
N. E. Diaphana pertenuis (Migh.) V.
* Diaphana gemma V.
* E. Diaphana conulus (Desh.).
* E. Amphisphyra globosa Lovén.
N. B. Amphisphyra pellucida ( Br .) Lovón.
N. Cylichna Gouldil (Conth.) V.
* Philine amabilis Verrill.
- r. n. Philine Finmarchica Sars.
* E. N. Philine frugilis G. O. Sars.
- E. N. Philine cingulata G. O. Sars.
* Pleurobranchaza larda V.
* *. Dendronotus elegans V.
* Doris complanata V.
* 8. Polyocrella Emertoni V.
* *. Coryphella nobilis V.
x. Corypholla stimpsoni V.
m. Facolina Bostonicnsis (Couth.) V. \& Em.
M. Facrlina pilata (Gould) V. \& Em.
*     * \%. Cratena Veronicar V.
M. Cratena gymnota (Coutb.) V. \& Em.
* N. к. Targipes drapectu* (Johnst.) A. \& H.
N. E. Galvinia exigua A. \& H.
* N. e.g. Acmata rubella (Fabr.) Dall.
* O. Atlanta Peronii (Les.).
* O. Carindria Allantica Ad. \& K.
- O. Carolina longirostris (Les.).
* O. Carolina uncinata (Gray).
* O. Carolina inflexa (Les.) Gray.
* o. Clio pyramidata Linue.
* o. Balantium recurrum Children.
* O. Styliola acicula (Rang).
* O. Styliola virgula (Rang).
* O. Spirialis MacAndrei Forbes \& Han.
* 0. Cymbulia calceolus V.
x. Halopsyche globulosa (Rang) V .

天. E. Dentalium occidentale Stimpson.

* N. E. Siphonodentalium vitreum Sars.
* N. E. Siphonentalis affinis Sars.
* E. Siphonentalis Lofotensis G. O. Sars,
* E. Cadulus propinquus G. O. Sars.
* E. Cadulus Jeffreysii (Monteros.).
* Cadulus Pandionis V. \& 8.
* E. Poromya rotunilata Jeff.
*. E. Poromya granulala (Nyst) Forbes \& H.
- X. Lyonsiclla abyasicola Sars.
- Lyonsiclla gemma Verrill.
* พ. E. Kennerlia glacialis (Leach) Carp.
- N. E. Necera glacialis G. O. Sars.
N. E. Neera aretica Lovón.
N.E. Necta obera Lovón ( $=$ N. pellucida St.).
- E. Neara jugosa S. Wood.
- E. Niara rostrata (Speng.) Lovén.
* Neara multicostata V. \& S.
* Cardium, sp. ind.
* E. Tellimya ferruginosa (Mont.).
* E. Cryptodon Sarsii (Phil.).
M. Cryptodon obesus Verrill.
* F. Cryptodon ferruginosus 9 (Forbes).
* N. 8. Loripes lems V. \& S.
N. E. Aslarte crenata Gray ( $=$ A. lens Stimp.).
* 8. Leda unca Gonld.
* N. ع. Leda pernula (Mull.).
* E. Yoldia expansa Jeff. 1
* N. E. Foldia frigida Torell.
* N. G. E. Arca glacialis Gray.
N. E. Arca pectunculoides Scacchi.
* E. Limopsis cristala Jeff. 1
* E. Limopsis minula (Phil.).
* Modiola polita V. \& S.
* B. Avicula hirundof var. nifida V.
- N. E. Pecten vitreus (Gmel.) Wood.
N. E. Peoten Hoskynsi Forbes, var. pustulosus V .
* E. Pecten fenestratus Forbes 9
* Pecten, sp. (near opercularis).
- E. Limaca subovata (Jeff.) Monter.

PART III-CATALOGUE OF MOLLUSCA RECENTLY ADDED TO THE FAUNA OF SOUTHERN NEW ENGLAND.

## By A. E. VERRILL.

The following lists include 130 species of Mollusca that have recently been added to the fauna of Southern New England, mainly through the researches of the dredging party of the United States Fish Commission on the steamer "Fish Hawk". The greater portion of these, with several others undetermined or not yet described, were taken on September 4 and 13 and October 's, on the outer bank or slope, 70 to 115 miles south from Martha's Vineyard and Newport, R. I., in 65 to 500 fathoms. For a list of these localities see p. -.

In these lists those species which were unrecorded from or entirely new to New England or to the northeastern coast of America are indicated by an asterisk; previously undescribed species by two asterisks; those known previously from our northern coasts have N prefixed; those from the middle parts of the coast have m , and are neither specially southern nor northern; those oceanic species belonging to the surface fauna have o prefixed; southern forms are designated by s; those that are also known from Europe are designated by E ; those peculiar to America by A .

In the tables, living specimens are indicated by an asterisk; dead ones by a dagger; $m$ signifies many; $s v$, several; $r$, rare; $l$, unusually large; $j$, young.

List of Mollusca from the outer banks previously unknown south of Cape Cod.

|  | Statlons | $\begin{aligned} & 885 \\ & 10 \\ & 807 \end{aligned}$ | $\begin{aligned} & 872 \\ & 10 \\ & 8014 \end{aligned}$ | $\begin{aligned} & 870 \\ & 10 \\ & 878 \end{aligned}$ | 868 | $\begin{aligned} & 879 \\ & 880 \\ & 830 \end{aligned}$ | $\begin{aligned} & 803 \\ & 894 \end{aligned}$ | $\begin{aligned} & 801 \\ & 8.20 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depths in frithome | $\begin{aligned} & 64 \\ & 40 \\ & 65 \end{aligned}$ | $\begin{aligned} & 83 \\ & \text { to } \\ & 100 \end{aligned}$ | $\begin{aligned} & 113 \\ & 10 \\ & 10 \end{aligned}$ | 102 | $\begin{gathered} 2 \div 5 \\ 10 \\ 250 \end{gathered}$ | $\begin{aligned} & 365 \\ & t 0 \\ & 372 \end{aligned}$ | $\begin{gathered} 487 \\ \text { to } \\ 500 \end{gathered}$ |
|  | CEPRALOPODA. |  |  |  |  |  |  |  |
| - | Callitenthin reversa Fortill |  |  |  |  |  | - 1 |  |
| ** | Heteroteuthin tenera Verrill | m. | \% m . | \% m. | - mi. | - 81. |  |  |
| x. A | Komais nublevis Verrill |  |  | - 2 | * av. | - 3 | - 2 |  |
| x. | Oetopus Baivelii Vertill |  |  | * $\mathrm{sv}^{\text {c }}$ | -svo | - 3 c . | - 8r. | $\cdots$ |
| 0. | Allopmans mollin Vemill |  |  |  |  | - 3 | - 2 | -1 |

List of Mollusca preciously unknown south of Cepe Cod-Continned.


List of Mollusca preriously unhnown south of Cape Cod-Continned.

|  | 8tations ............................................ | $\begin{gathered} 805 \\ 10 \\ 867 \end{gathered}$ | $\begin{gathered} 872 \\ \text { t11 } \\ \text { 8it } \end{gathered}$ | $\begin{aligned} & 870 \\ & 60 \\ & 6.8 \end{aligned}$ | 848 | $\begin{aligned} & 879 \\ & 8.10 \\ & k=5 \end{aligned}$ | 8038 | $891$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depthe iv fathoms ..................................... | 64 to 65 | $8 i$ to 100 | $\begin{aligned} & 115 \\ & 10 \\ & 155 \end{aligned}$ | 182 | $\begin{aligned} & 2: 5 \\ & 11 \\ & 259 \end{aligned}$ | $\begin{gathered} 305 \\ 10 \\ 372 \end{gathered}$ | $\begin{aligned} & 487 \\ & 4.1 \\ & 500 \end{aligned}$ |
|  | PTEROPODA. |  |  |  |  |  |  |  |
| * | Cymbulia calceolan V |  |  | - | $\ldots$ | \% m . |  | - 2 |
| - 0 | Cavolina uncimata (D'Orb + Gra | 12 |  | 12 |  |  | + 8 s . | +1 |
| - 0.4 | Cavolinim lengirontris (Les.) | 11 |  | 1 8v. |  |  | 18 sp . | + sy |
| - 0. | Cavolina inflexa (Les.) Gray |  |  | .... |  |  |  | 11 |
| - 0. | Clio pyramidata Lioné | $\dagger 1$ |  |  |  |  | 12 | 12 |
| - 0. | Balantinm recurvum Chil | +1 |  |  | 11 |  | + |  |
|  | SULENOCONCIA. |  |  |  |  |  |  |  |
| S. R. | Dentalimmocidentale Stimp. ( $=$ D. abyseorum Sars) |  | 12 | - Br . | * ar. | - 1 | - sr. | -m. |
| ** | Dentaliom (slender var) |  |  |  | - $\frac{18}{}$ |  | tav. | fav. |
| 2. | Cadulus Juftreysii (Monteros.) |  |  | - nl . |  |  |  |  |
| - E | Cadulua propinquus C. O. Sanm |  |  | nr. |  |  |  |  |
| S. $E$ | Siphonodentalium ritreum Surs |  |  |  |  |  |  | 11 |
| - \%. $\mathbf{E}$ | Siphonentalia Lototensis Sars... |  |  |  |  |  |  | 12 |
|  | LAMELLIBRANCBIATA. |  |  |  |  |  |  |  |
| x. $\pi$ | Sasdoava Norvegien (Speng.) Woodv |  | $\dagger$ | 1 |  |  |  |  |
| N. 2 | Cyrtodaria diliqua (Spemg.) Woorlw.. |  |  | 1 |  |  |  |  |
| - N. 2 | Puromyg gramalata (Nrat) F. de Han | -1 |  |  |  |  |  |  |
| * S.E. | Ponomya rotundata Jeff .... | -2 |  | -1 |  |  |  |  |
| s. ${ }^{\text {c }}$ | Negera obesa Lowón ( $=\mathbf{N}$. pellucida St.) | * 8 ¢ | * | - m . | -1 |  | * 8 sv . | - m. |
| N. R | Negurn arctica lovera |  |  |  | - sv. | " m . | -sv. |  |
| - x. E | Nemra glacinlin O. O. Sars |  |  |  | * sv. | - 8v. | * m . | - 2 |
| - ${ }^{-1}$ | Neems romtrata (Speng.) Love Neara jugoas 8 . Woor |  | 8 x . | - sv |  |  | * 8 \% | 1 |
| *** | Nesera multicostata V. se is |  |  | - вv. |  |  | -2 |  |
| - E . | Lyomsiella abyssicola Sars |  |  |  | $\cdots$ | $\because 1$ | * 8 ¢. | - Av |
| -* | Lvonsiella gemman $V$. |  |  |  |  |  |  | 11 |
| - x.t | Kennerlla glacialis (Leach.) Carp |  | 2 |  |  |  |  |  |
| x. z | Cardiam IRandicum Linue | fs. |  |  |  |  |  |  |
|  | Cardium. sp. n. (cancellate |  |  | 11 |  |  |  |  |
| - x | Loripee lens V. \& S. | ¢ m . | - 41 | - m . | 11 |  |  |  |
| * R. | Cryptonlon ferrusinosus (Forbea) |  |  |  |  |  | * 8 | 4 |
| - 2 | Tellinva ferrugimosa (Mont.) |  |  |  |  |  | * 8 \% | * sv. |
|  | Astar te cromata (imay ( $二 \mathbf{A}$. lens St., var.) | ' II |  | *m. | * $83^{\circ}$ |  | - $\mathrm{m}^{\text {m }}$ | -1 |
| 8. E | Nucula delphinotonta Mighels . . . . . . . . . |  |  | - nv. |  | -1 | * Bv. |  |
| ${ }^{*} \mathrm{E}$. | Yoldia expansa $f$ cof. (\%) |  |  |  |  |  | -2 |  |
| K. | Yoldia lucida Loven |  |  |  | nt | -sv. | * m, | - 2 |
| - x. E . | Yoldia frigida Torell <br> Yoldia thraciformis (Storer) |  |  |  | - |  | - |  |
| ${ }^{\circ} \mathrm{s}$ 8. | Leda unca Glat ... ......... | + 8v. | * 13. |  | - sv- | - 8v. |  |  |
| - E | Limopsis cristats Jeff. | 11 |  | 18 |  |  |  |  |
| - E. | Limopsis mimuta (Phil |  |  | * ${ }^{\text {av* }}$ |  | * m . | * 11. | 3 |
| N. 1 | A res glacinlis Gray. |  | * m. | - ma. | - 11 | - II . | - 17. | - 8\%. |
| N. EL | Area pectnnculoies Sc. (f var. of last) |  | - mi. | - m. |  |  | \% m. |  |
| 8. L | Arca, var, septentrionalis...... |  |  |  |  |  | - *v. |  |
| ** | Modiala polita V. \& S.....t. |  |  |  |  | - 2 |  |  |
| x.er | Cremella dectisata (Mont.) Mace | r. |  | r |  |  |  |  |
| 8. R | Dsarydium vitweum (Mひ̈) Tosell |  |  |  |  |  | * m. | - m. |
| -8. | Avicula birumiol var. mitdas F | * m . |  | * 2 | -1 |  | -n. | m. |
| \%. 2 | Preten Ishandicua Muller. |  | $t \mathrm{r}$. |  |  |  |  |  |
|  | Peeten (mear opercularis) .... |  |  | $\dagger$ |  |  |  |  |
| - \%. PR | Pecten vitrens (Gmel) Woodl |  |  | tsv. | -85. | * 3m. | - m. |  |
| X. E. | Pecten Hosky nsi Forlos, var. pustulosus V........ |  |  | * 1 |  |  | * $r_{\text {. }}$ |  |
|  | Ppeten fencetratus Forbed $=$ Inequisoniptus Tib |  |  | -1 |  |  |  |  |
|  |  |  |  |  |  | - 1 | - m . | - 8 \%. |
|  | BRACIIOPODA. |  |  |  |  |  |  |  |
| 1. 2 | Torebratulins enptentrionalis (Conth.) (789 sv.) |  |  |  | - 1 |  | - m. |  |

List of Mollusca from the outer banks preriomsly knoten from the shallow waters south of Cape Cod.

|  | Stations ..................................... $\{$ | $\begin{aligned} & 865 \\ & \text { to } \\ & 866 \end{aligned}$ | $\begin{aligned} & 872 \\ & 10 \\ & 874 \end{aligned}$ | $\begin{aligned} & 670 \\ & 10 \\ & \text { 1078 } \end{aligned}$ | 803 | $\begin{aligned} & 870 \\ & 880 \\ & k 80 \end{aligned}$ | ${ }^{\text {8994 }}$ | ${ }_{\text {801 }}$ (1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depthe in futhome .............................. $\{$ | $\begin{aligned} & \text { es } \\ & \text { to } \\ & 65 \end{aligned}$ | $\begin{gathered} 85 \\ \text { to } \\ \text { to } \end{gathered}$ | $\begin{aligned} & 115 \\ & \text { to } \\ & 250 \end{aligned}$ | 102 | $\begin{aligned} & \text { s.5 } \\ & \text { to } \\ & 525 \end{aligned}$ | $\begin{aligned} & 305 \\ & 10 \\ & 372 \end{aligned}$ | $\begin{aligned} & 4 \pi \\ & 10 \\ & 500 \end{aligned}$ |
| K. 1 | CEPILALOPODA. Ommastrepbes illecebrosa (Len.) V GAStroroda. | $\cdot 1$ |  |  |  |  | * 2 |  |
| N. E | Bela pyramilalis (Ström) |  |  |  |  |  |  |  |
| K. ${ }_{\text {K. }}$ | Bucciumu nnilatum Linnó, Neptunea Stimpuoul (Mörch) |  |  | 11 |  |  |  |  |
| K. A. | Neptunea Stimponi (MJurcb) | $t$ | 4 m . | \%m. | - br. |  |  |  |
| M. A | Trita trivituta (Say) Ad. . | - | $\stackrel{1}{1}$ | ma. | -x. | 8x. |  | 11 |
| N. K | Antsris rosacea (ilid.) Ad | 12 |  | . | - 1 |  |  |  |
| K. A. | Antryis zunalia (Lins.) Y |  |  | ${ }^{\text {max }}$. |  |  | : m. | -im. |
| K. ${ }_{\text {K. }}$ | Nutica clunan Brod. \& Sowerby |  |  | tow | 12 | * av. | * sk. | *ur. |
| ${ }_{\text {E. }}^{\text {a }}$ A. | Lethatia bovos, var. (wide umil.) |  | $\bullet 1$ |  |  | 1 |  |  |
| M.A. | Lumutis herom, var, triueriats (Say) | 11 | 11 | 13 |  |  |  |  |
| M.A. | Crucibulhm atriatum (Suy) $\mathbf{A d} \ldots$ |  | 11 | 11 |  |  |  |  |
| M. ${ }_{\text {M }}^{\text {M }}$ | Mrechamaplas noseyra (Couth.) Friele |  |  | $t 1$ | 11 |  |  | -12 |
| A A. | Turhonilis interrapta ${ }^{\text {a }}$ dd . ...................... |  | 11 |  | 1 |  | -s. |  |
| x. $\mathrm{E}_{\text {c }}$ | Philime quadruta (Vond) Forb. \& Han |  |  | 11 |  |  |  |  |
| \%. ${ }^{\text {c. }}$ | Cy luchatalla (Brown) Lovéu.......... |  |  | \% sv , |  |  | $t$ |  |
|  | PTEROPODA. |  |  |  |  |  |  |  |
| 0. E | Cavolina trikentata Gray | t | 1 sx : | 1 mm | 1 sv . | tm. | 1 nv . | 1 mm |
|  | SOLENOCONCHA. |  |  |  |  |  |  |  |
| K. E. | Dentalium atriolatum Stimp |  |  | 1 |  |  |  |  |
|  | LAMELLIBRANCHIATA. |  |  |  |  |  |  |  |
| N. E | Teredo megotara Hanley |  | * mi. |  |  | * mi. |  |  |
| M. A. | Eusatella Americuma (did.) V | 13 |  |  |  |  |  |  |
| M. A. | Cluluphom triliseata (Say) Carp | 11 |  | +1 |  |  |  |  |
| M.A. | Thracia Courali Conth . |  | 12 | 1 mv |  |  |  |  |
| 3. A. | Spinula molitisaimat Gray | 11 |  |  |  |  |  |  |
| ${ }_{\text {M. }}^{\text {M. A. }}$ A. | (evenis aretata (Con.) Ad, | 1 ms . | t wv. | !ev. | - |  | 1 sr |  |
| K. ${ }_{\text {K. }} \mathrm{R}$ |  |  | $\pm 1$ | ! mv. |  |  |  |  |
| 4. A | Cinlista convera (Say) Ad |  | 1 | ge. |  |  |  |  |
| M. A. | Candium pimunlatum Conral |  | $t$ | -13. |  |  |  |  |
| 3. A. |  | 1 m | $t$ | ${ }^{7} \mathrm{ma}$. |  |  |  |  |
| n.k | Cryptulon mbays Y |  |  |  |  |  |  |  |
| y.A | Solemata velima Say | tav. | 1 \#v. | $\mathrm{fm}_{1} \mathrm{~m}$ | 1 |  |  |  |
| M. A. | Venericardia borcalls (Con.) Car | ${ }^{\text {ma }}$ | * m. | ${ }^{\circ} \mathrm{m}$. | - 11 |  |  |  |
| N.A. | Astarte cantunes Suy |  |  |  |  |  |  |  |
| M. A. | Astarte quadrann Gild | , |  |  |  |  |  |  |
| M. A | Astarte undutas (ild | tin. | * mi. | * 1 |  |  |  |  |
| M. A | Nucula proxima say |  | , |  |  | - 8 |  |  |
| K.k | Mosliala modiolus (Limne) Turt | - nv. | ${ }^{\text {min }}$ |  | 1 |  |  |  |
| M. A. | Crebstla glandinla (Totten) Ad. |  |  |  |  |  |  |  |
| $\cdots$ m. | Pecten tenuicuntatun Migh | - m. | $\stackrel{\circ}{\text { bvi }}$ | tas. |  |  |  |  |
| K. E | Anomia aculeata Müll | ${ }^{\text {m }}$. | *8v. | - av. | - |  |  |  |

List of recent additions to shallow-water Mollusca of Southern New England.*

Parasira catenulata Steenstrup. Oceanic. Mediterranean.<br>*Truncatula truncatulus (Drap.). Littoral. European.<br>Littorina littorea. Littoral; abundant. European.<br>- Assiminea Grayana Leach. Littoral. European.<br>Ancula cristata Lovén. Northern and European.<br>- Polycerella Emertoni Verrill. Littoral.

Scyllea Edecardsii Verrill. Littoral. Southern and oceanic.
Coryphella Mananensis (Stimp.) Verrill. Off Race Point, Long Island Sound, 40 fathoms.

Stiliger fuscata, (Gld.) Bergh. Massachusetts Bay.
Tcrebratulina septentrionalis (Couth.). Off Block Island, 15 fathoms. Northern.

## DESCRIPTION OFA NEW APESIEAOP NEVICHTRYS (NENICHTEIS AVOCETTA), FROM PUGET BUUND.

## BY DAVID S. JORDAN and CHARLES IH. GILEERT.

Nemichthys avacetta, sp. nov.
Color translucent white, the lower half of the body covered with small, round, black spots, sharply defined; among these some smaller spots. Belly near the median line black. Upper half of body plain, colorless. Pectorals and dorsal plain. Anal speckled.

Body band-shaped, but not strongly compressed; deepest in the middle, tapering behind to the long and very slender filament-like tail, and anteriorly to a very long and slender neck, which contracts immediately behind the head. Skin smooth. No lateral line.

Head proper small, short and rather broad; concave between the eyes, with two median ridges; full and broad behind the eyes, with three longitudinal ridges. Lower part of head narrow, sharp, so that the head would be triangular in a vertical section. Eye very large, vertically placed, its length one-third that of the head without snout. Nostrils each simple (two on each side), rather large, close in front of eye, without tube or flap. Maxillary extending to close behind the eye, the mandible somewhat farther. Jaws prolonged, becoming very slender, long, acuminate, needle like at tip, somewhat recurved. Upper jaw the longer, and nearly four times the length of the rest of the head, being 7-8 times its greatest depth. Both jars with small, very numer-

[^66]ous, retrorse, close-set, sharp teeth. Jaws bony, their lateral surfaces with retrorse roughnesses. Head naked, covered with skin.

Gill-openings rather large, oblique, ruuning downward and forward, separated by a rather narrow isthmus. Pectorals well developed, half longer than eye. No ventrals. Vent under middle of the length of the pectorals (when depressed); the anal fin beginoing close behind it and extending to the tail; its rays soft and rather slender; the membrane delicate; its height greatest near the middle and anteriorly, where it is somewhat less than height of body, becoming obsolete on the long caudal filament. Dorsal similar to anal, but lower, begiuning close behind the occiput and running to the tail.

Table of measurements.

|  | Inches | $\begin{gathered} \text { looths } \\ \text { of } \\ \text { lengib. } \end{gathered}$ |
| :---: | :---: | :---: |
| Extreme length. | 21.40 | 100 |
| Bualy: |  |  |
| Greatest depth | . 33 | 1.6 |
| Wepthat neck | . 15 | . 8 |
| Bead: <br> Greatest loncth |  | 10 |
| Greatest depth. | . 25 | 1.2 |
| Leugth of mnont | 1. 70 | 7.6 |
| Diametor of orbit | . 18 | 1 |
| Anal: |  |  |
| (irentest height. | . 28 | 1.3 |
| Pectoral: |  |  |
| Lemgth | . 30 | 1.5 |

The specimen which is the type of the present description was taken in May, 1880, in the harbor of Port Gamble, and was placed by its cap. tor in the museum of the University of Washington Territory, at Seattle. The president of the university, Prof. A. J. Anderson, presented it to the United States National Museum. Its movements in the water are said to be extremely active.

Fishes of this type offer comparatively few specific characters, and we are able to separate this species from Nemichthys scolopaceus Rich. of the Atlantic by differences in proportion only. According to the detailed descriptiou and figure of the latter species given by Lowe and Brandt (Leptorhynchus or Belonopsis leuchtenbergi, Mém. Acad. St. Pétersb. Sar. Etrang., 1854, vii, 171-174), Nemichthys avocetta is distinguished by the much slenderer head, longer beak, and higher anal fin, the greatest height of the latter being nearly equal to the length of the pectoral and more than the depth of the head. So far as known to us, this is the first species of the genus thus far taken in the Paciff. A recent newspaper account of the capture of a sea-serpent at Victoria, British Columbia, perhaps refers to a second example of the same species.

Seattle, Wash., June 10, 1880.

## DEACEIPTION OF A NEW MPECKEA OF PARAIEPIE (PARAIEPIS CORUSCAN世), FIEON THE BTRAITS OF JUAN DE PUCA.

## By DAVID S. JORDAN and CHARLES H. GILBERT,

## Paralepis coruscans, sp. nov.

Allied to $P$. borealis Reinh.
Head and body very elongate, compressed, almost ribbon-shaped, of uniform width throughout, and preserving its depth forwards to occiput and backwards to origin of dorsal fin. From the insertion of the dorsal the body is gradually narrowed to the rery slender caudal peduncle, the base of anterior portion of anal projecting much beyond the ventral outline.

Abdomen compressed, subtrenchant.
Head long, wedge-shaped, its upper and lower outlines equally oblique. Snout very long and sharp, equaling half the length of the head, its tip on a line with the axis of the body. Eye large, its diameter onethird the length of the snont, placed high, with its upper margin on a level with the top of the head.

Head shaped somewhat as in Sphyrana. Jaws equal; gape very wide; maxillary reaching the vertical from the nostril; mandibular joint reaching the vertical from the anterior margin of the pupil.

Mandible closing inside the margins of the upper jaw, the latter being transversely much arched to receive it; tip of mandible fitting into an emargination between the intermaxillaries.

None of the teeth very large or fang-like. Intermaxillaries laterally with a single series of exceedingly minute teeth (as in Engraulis); anteriorly, however, on each side is a series of 4 or 5 rather long acicular teeth; the entire intermaxillary series is outside of the mandible in the closed mouth. Vomer with minute tecth. Palatine series long; the anterior teeth long and slender; the posterior short. Mandibular series working aganst the palatines; the teeth slender, distant, of different leugths.

Branches of the lower jaw transversely deeply concave. Maxillary and intermaxillary slender, intimately connected, sliding under a fold of the skin.

All the bones of the head rery thin, flexible, membrane-like. Preorbital long, very narrow, arched, extending forwards from orbit, reaching maxillary midway of its length. Suborbital chain likewise narrow.

Head with numerous sharp ridges; two forwards from the orbit; two pairs on the top of the head, converging forwards. Orbital ring slightly raised. Preopercular margin very oblique. Opercle with concentric strix and radiating lines.

Gill-openings very wide, extending forwards to vertical from nostril; isthmus anteriorly much compressed, thin and membrane-like, the gills of the two sides lapping over and meeting across the ridge. Mandibular rami and subopercles and interopercles of the two sides meeting below across the isthmus.

Gill-rakers similar on all the arches, short, immovable, much broader than long, each provided with 4 or 5 short needle-like spines. A slit behind fourth gill. Pseudobranchiæ developed, partly hidden by a fold of the membrane. Branchiostegals 7, the membranes overlapping anteriorly, as in the Salmonida.

Scales small, deciduous; those of the lateral line large, non-imbricate, plate-like, becoming smaller posteriorly, the series terminating abrubtly opposite middle of the base of the anal.

Fius all very small. Pectorals placed low, their length two-fifths that of the snout. Ventrals far back, entirely behind the dorsal, their distance from base of caudal half that from front of orbit. Distance from middle of dorsal basis to base of caudal half its distance from the tip of the snout.

Anal elongate, high anteriorly, its base terminating at a point distant one-half diameter of orbit from base of caudal. Adipose dorsal high and narrow, directly over the end of the anal.

Caudal small, widely forked, the middle rays two-fifths the length of longest. End of caudal peduncle emarginate, the caudal rays radiating from the upper and lower angles. (In the type specimen the two lobes of caudal are entirely separate, without trace of connecting membrane.) Rudimentary rays long, extending along upper and lower sides of caudal peduncle for a distance greater than diameter of orbit. Tips of adipose dorsal and posterior anal rays reach rudimentary caudal rass.

Dorsal rays 8; anal rays 31; pectoral rays 11; ventral rays 9; lateral plates 60 . Vent slightly behind base of ventral fins.

Color, in spirits, light olive-brown, becoming darker on the back, belly, and towards the tail. Above with a few small, distinct, black dots. Sides with some light brownish-yellow shading, a very narrow, leugthwise, silvery streak along the middle of the abdomen. Base of pectoral silvery, with a dark spot above. Bases of other fins jet-black, the color usually extending on the bases of the rays.

Sides of head silvery; opercles, top of head, and tip of snout dark; mandibular rami bright silvery, and provided each with a donble series of minute "phosphorescent" spots.

This species is known to us from a single specimen obtained in the harbor of Port 'Townsend, Wash., by Mr. Brown, assistant in the customoffice at Port Townsend, and by him presented to the United States National Museum. The type is 94 inches in length, and is in good condition.

Table of measurements.


Port Townsend, Wash., September 30, 1880.

## PEELIMINAERENOTICE OF THE CRESTACEA DREDGED, IT G4 TO  

## By S. I. SMITH.

A general account of three short dredging trips of the United States steamer Fish Hawk to the region, off the eastern end of Long Island, known as the Block Island soundings, has already been given by Professor Verrill in these Proceedings, and also in the American Journal of Science for the present month (vol. xx, pp. 300-403), and need not be repeated here, further than that the region examined is in latitude $39^{\circ}$ $46^{\prime}$ to $40^{\circ} 06^{\prime}$ north, longitude $70^{\circ} 22^{\prime}$ to $71^{\circ} 10^{\prime}$ west, and that on the first trip, September 3 to 5 , eight hauls (stations 865 to 872 ) were made, at depths ranging from 64 to 192 fathoms; on the second trip, September 12 to 14, nine hauls (stations 873 to 881) were made, in 85 to 325 fathoms;
and on the third trip, October 1 to 3 , five hauls (stations 801 to 895) were made, in 238 to about 500 fathoms. At station 872,86 fathoms, the bottom was covered with shells and sponges, but at all the other stations it was composed of fine sand and mud, varying in proportions and in compactness. The collections from the last trip have not yet been fully examined, and only a few of the species are recorded in the following pages. There was, however, a much smaller number of crustaceans obtained upon this last trip than upon the others.

The wonderful richness of the fanna of the sea-bottom in this region, in mollusks and echinoderms, has been shown in Professor Verrill's papers just referred to, and it is not less remarkable as regards the crustaceans. The richness, in both species and individuals, of this crustacean fauna would never have been suspected, and scarcely dreamed of, by one accustomed only to the meager fauna of the shallower waters of the south coast of New England. The larger part of the species secured from the great masses of material brought up in the trawl and clredge are Decapoda. There are comparatively few small species of Schizopoda, Cumacea, and Amphipoda, and further dredging will undoubtedly increase very greatly the number of species in these groups. The following enumeration is not complete even for the Decapola, and much less so for the other groups, as several of the species are represented by specimens insufficient for proper determination, while others are omitted because not jet satisfactorily determined.

The exact location, depth, character of bottom, and temperature for each of the stations are given by Professor Verrill in the papers above referred to, and in the following pages I give only the serial numbers of the stations at which the species occurred, and the range in depth from the shallowest to the deepest of these stations. In occasionally referring to localities of dredgings carried on by the Fish Commission in previous years, I give the serial numbers of the stations according to the "Lists of the Dredging Stations of the United States Fish Commission from 1871 to 1879, inclusive, with Temperature and other Observations, arranged by Sanderson Smith and Richard Rathbun", in the Commissioner's Report for 1879.

## BRACMYURA.

## Hyas coarctatus Leact.

Several specimens from 86 fathoms, station 872 , and 115 fathoms, station 871.

Collodes depressus A. Milne-Edwards, Crnst. Région Mexicaine, p. 176, pl. 32, fig. 4, 187 m.
I refer to this species a considerable number of specimens from stations $865,871,872,873,874,875,878 ; 65$ to 142 fathoms. Most of these specimens are much larger than those described by Milne-Edwards, and in all the larger, and in some of the smaller, specimens examined the three dorsal spines of the carapax and abdomen are almost wholly obsolete,
but in other respects they all agree well with the figures. In a few of the smallest specimens examined the spines are very nearly or quite as prominent as in the figures, while in other respects they are indistinguishable from specimens of the same size in which the spines are very small aud inconspicuous. In all the spineless specimens there is a more or less prominent tubercle in place of the spines of the carapax. As in the next species, the spines are probably specially characteristic of the young, and become more or less obsolete as the individual increases in size, the obsolescence being more rapid in some individuals than in others. I think there is very little doubt that this species is synonymous with C. trispinosus Stimpson, also described from very small specimens. The following measurements show the size of the specimens examined. In the largest males the chele* are stout, but little more than twice as long as broad, and the basal portion considerably swollen.

| Station. | Sex. | Length of carapax. | Brealth of carupax. | Ratio. |
| :---: | :---: | :---: | :---: | :---: |
| 874 | 8 | mm. 10.0 | $\mathrm{mm}_{7.0}$ | 1:0.79 |
| 871 | $\delta$ | 12.0 | 8.7 | 1:0.73 |
| \%CS | $\delta$ | 14.3 | 11.0 | 1:0.76 |
| 871 | d | 14.7 | 12.2 | 1:0.77 |
| 874 | 0 | 17.5 | 14.0 | 1:0.80 |
| 873 | 8 | 8.2 | 5.7 | 1:0.70 |
| 811 | 8 | 11.0 | 8.0 | 1:0.73 |
| 805 | \% | 13.1 | 10.3 | 1:0.78 |
| 878 | 8 | 14.0 | 11.0 | 1:0.78 |

Euprognatha rastellifera Stimpson, Bull. Mus. Comp. Zoul. Cambrilge, ii, p. 123 1870.-A. Milne-Edwarls, Crust. Régiou Mexicaine, p. 183, pl. 33, fig. 2, 1878.

Stations $865,869,871,872,873,874,877,878 ; 65$ to 192 fathoms; at nearly all these stations in vast numbers.

Many of the specimens are much larger than those deseribed by Stimpson and Milue-Edwards, males often being $15^{\mathrm{nmm}}$ in length of carapax. In all the large specimeus the spines of the carapax are much less conspicuous than in the young; the spines upon the orbital arches, upon the gastric, cardiac, and the summits of the branchial regions, and upon the basal segment of the abdomen, are often reduced to low and inconspicuous tubercles. In large males the chelæ are nearly as long as the carapax, more than a fourth as broad as long, and the basal portion considerably swollen. The whole animal is nearly naked and very free from foreign growths of all sorts, contrasting strongly in this respect with most of the Maioidea.

Lambrus Verriwi, sp. nov.
Allied to L. Pourtalesii Stimpson.
Female.-The carapax, including lateral spines, is about one and a fout th times as broad as long, with a broad longitudiual depression

[^67]either side, between the branchial region and the posterior part of the gastric and the cardiac region, and with the surface rough and tuberculose. The cardiac, with the posterior part of the gastric region, is raised into a continuous ridge, capped with a longitudinal line of four large spiniform tubercles, one on the gastric and three on the cardiac, besides a small one in the middle of the posterior margin. The cardiac and the two anterior gastric tubercles are erect and their tips nearly in the same horizontal line, while the posterior cardiac is situated much lower down on the posterior slope of the carapax and is directed upward and backward. In front of the gastric tubercle there are two mach smaller ones, in a transverse line, and in front of these there are usually four still smaller ones similarly disposed, so as to make a submedian line of three small tubercles either side, between the large gastric tubercle and the erect and prominent tubercle upon the crest of the orbital arch. In one of the specimens the most anterior of these three pairs of tubereles back of the orbits is obsolete. There is a deep longitudinal depression between the orbits, and extending a little back of them and forward to the narrow part of the rostrum. The rostrum is prominent, directed forward and downward, suddenly contracted just in front of the antennal fosse, leaving a dentiform tubercle either side, where the rostrum is suddenly narrowed; there is also a small tooth either side, near the tip of the rostrun. The antero-lateral margin is strongly incurved at the cervical suture, so as to approach closely and expose slightly from above the strongly tuberculo dentate, infero-lateral carina, which is itself slightly incurved at this point ; both in front of and behind the cervical suture, however, the margin recedes from the inferior carina, in front being directed upward at an oblique angle with the part behind the cervical suture. Above this angle there is a broad, conspicuous, and nearly smooth depression in the nearly vertical surface. The margiu between the cervical suture and the orbit is armed with two small tubercles near the cerrical suture, but the anterior two-thirds is unarmed and slightly concare in outline. Behind the cervical suture the margin is regularly and very strongly arcuate, and in front of the great branchial tooth, which really forms the lateral angle of the carapax, is armed with nine or ten teeth, of which the first three or four are small and somewhat tuberculiform ; the six posterior are larger, acutely triangular, and strongly laciniated, the four anterior of these six being nearly equal in size, the fifth larger and the sixth smaller than the others. The greatest brealth of the carapax is between the tips of the large fifth laciniated tooth each side, or, excluding the teeth, between the bases of the third and fourth teeth each side. The great branchial tooth is larger than any other, laciniated, and has a small tooth at the base in front and a larger one near the base behind; and still behind this last there is first a small and then a much larger tuberculiform spine on the concare postero-lateral margin, while the short posterior margin is armed with three prominent tubercles, with several smaller ones between. The
branchinl regions are prominent, tuberculose, and pitted, particularly upon the outer surface, and rise at the summit into a prominent spiuiform tubercle cither side, on a line with the anterior cardiac tubercle.

The chelipeds are very nearly as in L. Pourtalesii, but appear to be propertionally a little longer, and, judging from A. Milne-Edwards's figure of Pourtalesii, to have the marginal teeth more acute and more deeply laciniated. The meri of all the ambulatory legs are spinulose on both the upper and lower edges, as in Pourtalesii, while in the last pair there are, in addition, similar spines on the upper edge of the carpus and one near the middle of the upper edge of the propodus. The dactyli are about as long as the corresponding propodi, are very slightly compressed, and are corered with a dense velvet-like pubescence, except at the tips.

Mcasurements.

|  | $\left(\mathrm{Sta}{ }^{\ell} \mathrm{K}(\mathrm{~b}-\mathrm{i} .)\right.$ | $\text { (Sta. } \frac{8}{}$ | $\text { (Sta. } 8 \text { 8.‥) }$ |
| :---: | :---: | :---: | :---: |
|  | mm. | mm. | mm. |
| Lencta of carapax. | 4.0 |  | $3 \pm 8$ |
| Brualth including lateral epines | 30.0 | 33.0 | 41.0 |
| Itatio of leneth to breadth | 1:1.25 | 1:1.85 | 1:1.23 |
| lireatith excluding lateral spines | 26.0 | 28.0 | 35.3 |
| Length of cheliped fully extended | 57.0 | $6{ }^{\text {cis }} 0$ | 83.0 |
| Lemith of merus of cheliped | 20.0 | 23.5 | 32. 0 |
| Length of propoins of cheliped | 27.0 | 30.0 | 39.0 |

The conspicnons cervical emargination of the antero-lateral margin of the carapax, the cervical depression above the margin, the different antero-lateral margin in front of the cervical suture, and the spines or tubercles on the carpi and propodi of the last ambulatory legs appear clearly to distinguish this species from the Pourtalesii. The anterolateral margin between the cervical suture and orbit appears to be more like L. hyponeus, as figured by A. Milne-Edwards, though in other respects the hyponcus is unlike the present species.

Stations 865 to 867,$872 ; 65$ and 86 fathoms; three specimens, all females.

Cancer borealis Stimpson.-Smith, Trans. Conn. Acad., v, p. 39, pl. 8, 1879.
Stations $865,871,872,875,877,878,879 ; 65$ to 225 fathoms. Most of the specimens are small, and the largest is only $50^{\mathrm{mm}}$ in breadth of carapax.

Large specimens of this species yrere taken in abundance in the shallow waters off Newport.
Geryon quinquedens Suith, Trans. Conn. Aead., r, p. 35, pl. 9, figs. 1, 2, 1879.
Stations 851, 803 ; 252 and 372 fathoms.
This species grows to a much greater size than any of the specimens from which my original description was drawn. A male from 200 fathoms, off Nova Scotia, north latitude $42^{\circ} 37^{\prime}$, west longitude $62^{\circ} 55^{\prime}$, presented to the National Museum by Capt. Gr. A. Johnson and crew of

## 418 proceedings of united states national musedy.

the schooner Augusta A. Johnson, of Gloucester, Mass., gives the following ineasurements:
Length of carapax, including frontal teeth.......................................................... 88.2
Brealth, including lateral teeth.................................................................. 10L. 7
Breallh in front of lateral teeth .............................................................. 9i. 5
Length of posterior legs........................................................................... 180.0
Bathynectes longispina Stimpson, Bull. Mus. Comp. Zool. Caimbridge, ii, p. 146, 1870.- $\boldsymbol{\lambda}$. Milue-Edwards, Crust. Région Mexicaine, p. :234, pl. 4:3, lig. 1, 1079, Stations $871,872,874,879 ; 85$ to 295 fathoms.
Stimpson's and Milue-Edwards's specimens were from the Straits of Florida.

Acanthocarpus Alexandri Stimpson, Bull. Mus. Comp. Zool. Cambridge, ii, p. 153, 18 \%ิ0.
Stations 870 to $874,877,878 ; 85$ to 155 fathoms. At 878, 142 fathoms, forty-nine specimens were taken.

A large part of the specimens are much larger than those described by Stimpson, which were from 74 fathoms, in Pourtalès's dredgings in the Straits of Florida. A male, from station 878, gives the following measurements: Length of carapax, $10.9^{\mathrm{mm}}$; breadth, $16.8^{\mathrm{mm}}$; breadth between tips of carpal spines, with the chelipeds closed, $42^{\mathrm{mm}}$; length of carpal spine, 8 .

Ethusa microphthalma, sp. nov.
Female.-The carapax is as broad as long, but very much narrowed anteriorly, so that in front it is only half as broad as the widest part, which is at the swollen branchial regions posteriorls. The front between the orbits is less than half as wide as the entire front, and, as seen from above, is divided by a triangular median sinus and two slightly less deep sinuses at the extremities of the antenuulary fosse, and the angles between and outside of these sinuses are spiniform, so that the front between the eyes is armed with four similar and nearly equidistant spines, of which the lateral are slightly more prominent than the median. The orbital sinuses are nearly as deep as broad, and formed on the outside by the spiniform antero lateral angles, which reach nearly as far forward as the spines of the front. The antero-lateral margins are long and nearly straight. The dorsal surface is slightly convex and not deeply areolated, though the cervical suture is well marked, and the whole surface is granular and slightly pubescent, except on the cardiac and gastric regions, where the gramulation is nearly obsolete.

The eyes are small and on very short peduncles, so that they do not nearly reach the angles of the orbital sinuses; the cornea is terminal, not expanded, and the pigment is black.

The chelipeds are equal, small, and very slender; the chela is scarcely stouter than the carpus, the basal portion is smooth and nearly cylindrical, and the digits are alike, fully as long as the basal portion, strongly compressed, longitudinally grooved, slightly curved laterally,
and the prebensile edges straight and very regularly dentate. The two first pairs of ambulatory legs are nearly alike, twice as long as the chelipeds, and nearly or quite naked; the propodus is a little shorter than the merus, very slightly compressed, and smooth, but slightly grooved longitudinally ; the dactylus is once and a half as long as the propodus, very much compressed vertically, slightly curved, of nearly uniform breadth to a short distance from the acuminate tip, and very smooth. The third and fourth pairs of ambulatory legs are nearly alike, scarcely half as long as the first and second, slender, and covered with short pubescence, except upon the dactyli. The propodus is much shorter than the merus, not very much shorter than the carpus, nearly cylindrical, and not expanded distally; the dactylus is very short and strongly curved.

The single specimen seen, from station 878 (142 fathoms), gives the following measurements:
Leugth of carapax, including frontal spines................................................... 13.5.
Greatest breadih of carapax .............. ..................................................... 14. 0
Breadth between antero-lateral spines ............................................................. 7
Breadth between tips of inner angles of orbital sinuses..................................... 3. 1
Iength of cheliped.................................................................................... 18.0
Length of chela ............................................................................................... 8.
Brealth of chelu......................................................................................... 1.7

Length of sccond ambulatory leg............................................................. 36.0
Length of its propodus ........................................................................... 8. 0
Length of its dactylus ............................................................................... 12.0
Length of forrth ambulatory leg.................................................................. 18. 0

Length of its dactylus................................................................................ 1.
The very small eyes and the great breadth and prominent anterolateral angles of the carapax at once distinguish this species from $\boldsymbol{E}$. marcarone, of the Mediterranean, and f:om the Japanese E. sexdentatu. It is also evidently distinct from E. granulati Norman, which, howerer, has apparently not been fully described. The genus has not, I think, been recorded from America before, although a species occurs in the Bay of Panama.

## ANOMURA.

Iuatrelllua elegans Roux, Crust. Mediterranée, pl. 22, 1828.-Milne-Edwnrls, Hist. Nat. Crust., i, p. 277, 1と34.-De Hasn, Fauna Japonica, p. 109, 1837.-Lucas, Explor. de l'Algérie, Animanx Articulés, i, p. 3, pl. 1, fig. 1, 1^49.-Heller, Crust. sildlichen Europa, p. 147, pl. 4, tig. 14 (anterior part of carapax after Lucas).
Station 872,86 fathoms (three females) ; 874, 85 fathoms (fragment of carapax).

I have had no European specimens for comparison, and have seen only a tracing of Rouxs figure, with which the specimens before me agree well. In these specimens the propolus in the postevior pair of legs is a little more than two-thirds as long as the merus, and the dactylus is very short and closes against the somerhat oblique and spinous
distal extremity of the inferior edge of the propodus, which is ciliated along the rest of its length, while the merus is not ciliated. In Lucas's general figure the propodus is proportionally about a fourth shorter and the dactylus several times as long as in the specimens, the dactylus being very much as in the first three pairs of ambulatory legs; but the enlarged figure, $1 c$, of the terminal portion of the posterior leg is very different. The part apparently corresponding to the dactylus in the general figure is represented as composed of two segments, a shorter terminal one like the dactylus in the specimens, and a longer basal one like the terminal part of the propodus. I think there is little doubt that these figures were drawn from a specimen in which the very slender and delicate propodus of the posterior leg was partially broken and bent at about a fourth of the way from the tip to the base, and that the artist mistook the break for a natural articulation, and so represented it. Supposing this to be the case, Lucas's enlarged figure agrees very well with the specimens before me.

Homola barbata White, List Crust. British Museum, p. 55, 1847.-Cancer barbatus Fabricius, Entomologia Systematica, ii, p. 460, 1793.-Herbst, Krabben und Krebse, pl. 42, fig. 3.-"Dorippe spinifrows Lamarck, Animaux sans Vertèbres, v, p. 245, 1818 " (Heller).-Homola spinifrons Leach, Traus. Liuncan Soc. Lohdon, xi, p. 324, 1815; Zoological Miscellang, ii. p. 82, pl. 88, 1815-Deamarest, Considérat. Générales Crust., p. 134, pl. 17, fig. 1, 1825.-Milne-Edwards, Hist. Nat. Crust., ii, p. 183, pl. 22, figs. 1-4, 1837; Règne Animal de Cuvier, $3^{\text {rue }}$ édit., pl. 39, fig. 2.
Station 872; 86 fathoms; two males, the larger $19^{\mathrm{mm}}$ in length of carapax.

I have had no Mediterranean specimens for comparison, but the two before me agree perfectly with the figures and descriptions above referred to.

## Lyreidus Bairdii, sp, nov.

Female.-The carapax is regularly and strongly convex transrersely, about one and three-fourths times as long as the breadth at the anterolateral angles, back of which it narrows only slightly for half the length of the lateral margins, which then curve regularly round to the articu. lation with the abdomen. The rostrum, or median tooth of the deeply tridentate front, is acutely triangular, the breadth at base being equal to about half the length and greater than the distance between its tip and that of either of the lateral spines, which are spiniform, very acute, and directed forward. The orbital sinuses left between the median and lateral teeth are nearly as deep as broad and broadly rounded behind. The edge of the antero-lateral margin is rounded, but is armed with a small tubercle about a third of the way from the lateral to the anterior angle, and in front of this tubercle the carapax is suddenly nartorred, so that the margin in front of the tubercle is concave in outline as seen from above. The posterior half of the lateral margin is marked above by a distinct carini, but the anterior half is smoothly rounded.

The eye-stalks scarcely reach the tips of the lateral teeth of the front,
are broad at base, and narrowed to triangular tips. The eyes themselves are very small, black, and situated on the outer and inferior edge of the eye-stalks.

The chelipeds are nearly as long as the carapax, and similar in form to those of $L$. tridentatus. The propodns is short and very much compressed; the distal margin is transcerse and nearly as long as the length of the whole segment; the dorsal edge is thin and sharp, and terminates in a sharp tooth near the articulation of the dactylus; back of the thin digital process the inferioredge is armed with three or four acute teeth, decreasing in size proximally. The dactylus is compressed and very thin, with the outer edge regularly curved and sharp; the preheusilo edge is sharp and slightly irregular in outline, but not dentate, although the opposing edge of the propodus is armed with about five low teeth inside the lip. The first, second, and fourth pairs of ambulatory legs are very nearly as in L. tridentutus, as figured by De Haan. In the third pair, however, the propodus is nearly twice as broad as long, the inferior edge being expanded into a very thin, lroad, lamellar process nearly as large as the body of the segment, and with a ciliated and reg. ularly curved margin nearly semicircular in outline. The dactylus is nearly as broad as the propolus, lamellar throughout, articulated at the upper end of the proximal margin, which, below the articulation, is concave in ontline and ciliated to match the adjoining lamellar process of the propodus; the lateral margins are naked and convex in outline, except near the tip, which is sharply acuminate.

The abdomen is slightly more than two-thirds as long as the carapax, and agrees very closely with De IIaan's figure of the abdomen of the male of $L$. tridentatus in the form and proportions of the somites. In its natural position, the abdomen is bent at the fourth somite, and this somite is armed with a small spiniform tubercle, projecting from the middle of the dorsal surface.

The dorsal surface of the carapax and of the abdomen, the stermum, and the exposed surface of the external maxillipeds and of the chelipeds and ambulatory legs are naked, smooth, and highly polished, though the dorsal surface of the carapax is minutely punctate, the punctations being more numerons on the anterior portions. The subhepatic and the adjacent anterior pleural regions are slightly hairy or pubescent.

Professor Verrill tells me that the color of the entire animal shortly after it was placed in alcohol, and betore the color could have changed materially from that in life, was light orange-red.

The single specimen, from which the above description is drawn, gives the following measurements:

[^68]Station 873; 100 fathoms.
Another and very much smaller specimen, from station 876,120 fathoms, though differing very much from the larger specimen, is probably the young of the same species. The carapax of this specimen is proportionately longer; the orbital sinuses are much larger; the lateral spines of the front are more slender and much longer, longer even than the rostral tooth, and curved slightly outward and upward toward the tips; and the lateral spines are much longer and directed more outward. There is a small tubercle upon the third somite of the abdomen, and in place of the tubercle on the fourth somite there is an acute spine, much longer than the somite itself. There is also a small spiniform tubercle on the lower side of the ischium of the third pair of ambulatory legs.

## mm .

Length of catapax, including rostrum. .................................................................... 10. 3
Breadth of carapax just back of lateral spines .................................................... 7
Breath of carapax between tips of lateral spincs. .....................................6.8
Brealth of front between tips of lateral spines ............................................... 3. 6

Hemipagurua gen. nov.
The genus for which this name is proposed is allied to Spiropagurus Stimpsou (Proc. Acad. Nat. Sci. Philadelphia, x, 1858, p. 236 (74), 1859), but differs conspicuously in the form and position of the sexual appendage of the last thoracic somite of the male. In Spiropagurus this appendage (formed by the permanent extrusion of a portion of the vas deferens) arises from the cosa of the left side of the last thoracic somite; while in the genus here proposed it arises from the corresponding coxa of the right side, is shorter than in Spiropagurus, and curved in one plane round the right side of the abdomen.

The carapax is short and broad, and the anterior margin is obtuse, and does not wholly cover the ophthalmic somite between the eres. The portion in front of the cervical suture is indurated, but all the rest of the carapax is very soft and membranaccons, without any distinct induration along the cardiaco-branchial suture. The ophthalmic seales are well developed. The eve-stallis are short and the comea expanded. The antennula, antenne, and oral appendages are similar to those in Eupagurus; the exoporls of all the maxillipeds are, however, proportionally much longer than in that genus. There are eleven pairs of phyllobranchise, arranged as in Eupagurus bernhardus, but the two anterior pairs connected with the external maxillipeds are very small and rudimentary, and composed of a few slightly flattened papillie, so that they are, strictly speaking, trichobranchis. The chelipeds are slender and unequal. The first and second pairs of ambulatory legs are long, and have slender, compressel, and ciliated or setigerous dactyli; the third pair are only imperfectly subcheliform.

In the male, the second, third, and fourth somites of the abdomen bear sinall appendages upon the left side, as in most of the allied genera,
but the fifth somite is destitute of an appencage; in the female, the appendages of the second, third, and fourth somites are biramous and ovigerous, and there is usually a rudimentary uniramous appendage upon the fifth somite, as in the allied genera.* The uropods are very nearly or quite symmetrical, the rami of the right appendage being very nearly or quite as large as that of the left. The telson is bilubed at the ex. tremity.

As might be expected, the unsymmetrical development of the external sexual appendages of the males of the two species here described corresponds to a like unsymmetrical development of the internal sexual organs, and the following incomplete observations, made on ordinary alcoholic specimens in which the abdominal viscera are not sufficiently well preserved for a full anatomical or histological investigation, appear of sufficient importance to notice here, especially as nothing appears to be known of the internal structure of either species of Spiropagurus.

The right testis and vas deferens are much larger than the left. The lower part of the right vas deferens, in all the adults examined, is much more dilated than the left, and is filled (as is also the external part of the duct) with very large spermatophores of peculiar form. The left vas deferens is slender, much as in Eupagurus bernhardus, terminates in a small opening in the left coxa of the last thoracic somite, as in ordinary Paguroids, and contains spermatophores somewhat similar in form and size to those of Eupagurus bernhardus. In alcoholic specimens of $I$. socialis the spermatophores from the left vas deferens are approximately $0.16^{\mathrm{mma}}$ long and $0.03 \mathrm{~J}^{\mathrm{mm}}$ broad, with a slender neek about a third of the eutire length, and a rery thin and delicate lamella for a base. The spermatophores from the right vas deferens are over $2^{\mathrm{mm}}$ in total length; the body itself is oval, approximately $0.40^{\mathrm{mm}}$ loug and a third as broad; at one end it terminates in a very long and slender process, two or three times as long as the body; at the other end there is a similar but slightly stouter process, a little longer than the body, and expanding at its tip into a broad and very delicate lamella, approximately $0.35^{\mathrm{mm}}$ long by $0.20^{\mathrm{mm}}$ broad. The contents of the two kinds of spermatophores are, of course, not in a condition to show the structure of the spermatozoa, but they present a similar appearance in each case, and are apparently of about the same size.

Hempagurus socialis, sp. nov.
Male.-The part of the carapax in front of the cervical suture is about a fifth broader than long; the sides nearly parallel; the front margin sinuous, curving slightly forward in the middle and each side between the eye-stalks and the peduncles of the antenne, the middle lobe thus formed being scarcely more prominent than the lateral lobes, each of

[^69]which is armed with a minute spine, projecting forward just inside of the peduncle of the antenua; between these spines the edge of the front is upturned in a sharp marginal carina, which terminates each side in the spines themselves. The dorsal surface of this part of the carapax is consex in both directions, the protogastric lobes are protuberant and well marked, and nearly the whole surface is roughened, and more or less tuberculose, with transverse scabrons elevations, which give rise to numerous hairs. The branchial regions are slightly swollen, so that the breadth of the carapax posteriorly is greater than in front. All the portions back of the cervical suture are smooth and membranaceous.

The eye-stalks are about half as long as the carapax in front of the cervical suture, flattened and expanded distally, where they are about three-fourths as broal as long. The eye itself is black, and the cornea extends round either side so as to be crescent-shaped as seen from above. The ophthahic scales are less than half as long as the eye-stalks, narrow, triangular, and acute.

The first and second segments of the peduncle of the antennula are subequal in length, ahd the ultimate segment nearly once and a half as long as the penultimate, and almost as long as the eye-stalks. The superior, or major, flagellum is nearly as long as the ultimate segment of the peduncle; the thick, ciliated basal portion consists of about fourteen secments, and the slender terminal portion, which is nearly once and a half as long as the basal, of about five very slender and subequal segments. . The minor flagellum is about two-thirds as long as the majog and composed of about eight segments. The pedancle of the antennid. reaches by the eye nearly the length of the last segment, which is abont as long as the greatest diameter of the eye. The acicle is slender, acute, and slightly longer than the last segment of the peduucle. The thagellum reaches beyond the tips of the ambulatory legs.

The chelipeds are slender and very nearly equal in length, but the right is very much stouter than the left. In the right cheliped the merus and carpus are subegual in length, together nearly twice as long as the carapax, and both are rough and obseurely spinous, the spines being most conspicuous on the elges of the upper surface of the carpus, which is fully three times as long as broad, flattened above, and angular, but not distinctly carinated along either side. The chela is not far from twice as long as the carpus, nearly three times as long as broad, compressed vertically, evenly rounded, smooth and nearly naked above, but clothed with loug, soft hair beneath; the digits are longitudinal, not gaping, and t'he dactylus is about two-thirds as long as the basal portien of the propodus, and its prehensile edge is armed with a broad tooth near the middle. In the left cheliped the merus and carpus are simular to those of the right, but much more slender and a little longer; the carpus is about six times as long as broad, and the edges of the npper surface are rather more sharply angular than in the right; the chela is shorter than the right, but very sleuder, smooth, and nearly
naked; the digits are similar, longitudinal, slightly longer than the basal portion of the chela, compressed, slightly curved downward toward the tips, but the prehensile edges straight and very minutely serrate.

The ambulatory legs are very nearly equal in length, and slightly overreach the chelipeds; the merus is about as long as the left chela, and roughened with small spines on the upper and under edges; the propodus is shorter than the merus, compressed, smooth, and ciliated along the edges; the dactylus is a little longer in the second than in the first fair, but in both shorter than the propodus, very strongly compressed, very slightly twisted, about ten times as long as broad, aud thickly ciliated along both edges, except for a short distance along the lower edge near the tip.

The female is smaller than the male, and has proportionally shorter ambulatory legs, and chelipeds very much shorter and much more alike. The right chela is only about a third longer than the carpus, little more than a third as broad as long, and the digits are slender and nearly as long as the basal portion. The left cheliped is proportionally stouter than in the mate, and thus approximates to the right; the chela itself is scarcely more than a third longer than the carpus. The ambulatory legs overreach the chelipeds by nearly or quite the full length of the daotyli, but all the segments have very nearly the same relative proportions as in the male.

The eggs are few in number and very large, being about a millimeter in diameter in alcoholic specimens.

In young males the chelipeds and ambulatory legs are similar to those of the female.

Measurements.


The carcinœcium is very rarely a naked gastropod shell; in most of the sperimens seen it is either built up by a colony of Epizoanthus Americanus, like the carcinccium of Eupagurus Kröyeri, from the same stations, or is made up in a somewhat similar way by the single polyp of a species of Adamsia, the base secreted by the Adamsia being expanded ou either side and united below so as to inclose the crab in a broadly conical cavity, with only a slight spiral curvature. The nuclei about which these polypean carcinocia are formed are of varions origins; the majority of the Adamsia carcinceia appear to have been built upon fragments of pteropod shells, in some cases upon bits of worm-tubes, in one case upon the entire shell of a Cadulus, the greater part of the shell being left protruding from the base of the polyp. In the carcinccia formed by Epizoanthus the nucleus seems usually to have been absorbed, so that nothing is left distinguishable from the colony of polyps itself. In some cases the Adamsia has completely overgrown a swall Epizoan. thus carcinœcium, so that when the Adamsia is removed a perfect Epizoanthas carcinœcium is found beneath as a nucleus. The carcingecium of this species, and of $H$. gracilis as well, does not cover the animal to the same extent as is usual in the species of Eupagurus, the anterior part of the carapax evideutly being constantly exposed, its induration fitting tie aniral for such exposure. The Epizoanthus carcinocia are, however, very often disproportionally large for the crabs iuhabiting them, having grown out either side until they are several times broader than long. In spite of these often enormous carcinccia, both species of the genus probably swim about by means of the ciliated dactyli of the ambulatory legs, as Spiropagurus spiriger has been observed to do by Stimpson (Proc. Acad. Nat. Sci. Philadelphia, 1858, p. 248 (56), 1859).

Stations $865,870,871,872,873,874,876,877,878,850 ; 65$ to 252 fathoms. At inany of these stations it occurred in very great abundance.

Hemipagurus gracilis, sp. nov.
This is a smaller and more slender species than the last, and is readily distinguished from it by the smooth carapax, the longer and more slender eye-stalks, the long and acicular ophthalmic scales, and by the narrow dactyli of the ambulatory legs being longer than the correspouding propodi.

Male.-The carapax in front of the cervical suture is flat, smooth, nearly naked, and scarcely at all areolated. The anterior margin is rather more strongly sinuous than in $H_{\text {. socialis, and the lateral lobes are }}$ slightly angular and each is tipped with a minute spine, as in that species, but the marginal carina between these spines is much less distinct.

The eye-stalks are more than half as long as the carapax in front of the cervical suture, flattened and expanded distally, but only about half as broad as long. The eyes themselves are as in II. socialis. The ophthalmic scales are more than half as long as the eye-stalks, and are acicular and regularly acute.

The ultimate segment of the peduncle of the antennula is as long as
the eye-stalk and nearly twice as long as the penultimate segment. The major flagellum is as long as the ultimate segment of the peduncle, the basal portion of about eight segments, the terminal portion three times as long and of about five subequal and vers slender segments. The minor flagellum is about half as loug as the major, and composed of about six segments. The antenne are very much as in $I$. socialis.

The chelipeds are nearly equal in length and similar to those of $\Pi$. socialis, but in the right cheliped the inner edge of the upper surface of the carpus is angular, anl armed with a regular series of twelve to eightcen small spines, while the outer edge is rounded and unarmed; and the prehensile edge of the dactylus is armed with two irregular and indistinct teeth, corresponding with two irregular emarginations in the edge of the digital portion of the propodus. In the left cheliped the outer edge of the upper surface of the carpus is slightly roumled and scarcely at all spinulous, while the inner edge is armed as in the right cbeliped. The left chela differs from that of $U_{\text {. socialis in having the }}$ digital portion of the propodus considerably stouter than the dactylus, particularly toward the base.

The ambulatory legs are proportionally as long but more slender than in H. socialis; in both pairs the dactylus is longer than the propodus, curved slightly near the tip, about sixteen times as long as broad, sparsely ciliated along the upper edge, and very slightly setigerous along the lower.

The female differs from the male as in $\Pi$. socialis, but to a very much less extent, the chelipeds and ambulatory legs being only a little shorter than in the male, and the right cheliped only a little less stout and a little more like the left than in the male.

The eggs are few and nearly as large as in H. socialis.
Mcusurements.

|  | $\text { (Stai. } 874 \text { ). }$ | $\text { (Stan }{ }^{8}$ |
| :---: | :---: | :---: |
|  | mm. | \%m. |
| Length from front of campax to tip of alclomen | 12.0 | 11.2 |
| Luguth of earapax slong nuclinu line ..... | 3.4 | 4. ${ }^{3}$ |
| Jength of earapax from front to cerviona suture. | 2. \% | 2.1 |
| Brealth of carapax in tront | 2.8 | 2. 4 |
| Lencth of cesompalta | 1.6 | 1.5 |
| Greatest cliametcr of oyo | 3. 1 | 0.9 |
| Lemeth of pextuncle of antemmin. | 3.4 | 4. 2 |
| Length of thisnato swerment off the sawe | 1.6 | 1. 5 |
| Lewath of pedtuscle of antenna boyond iront | 2.3 | 1.1 |
| Leugtls of mitimate mosment of peiduncle ot antuena | 10 | 0. . ${ }^{\text {d }}$ |
| Lometh of richt chatiped. | 150 | 11.3 |
| Lemerts of cmerua | 4.0 | 2.8 |
| Lragth of properius | 0.0 | 4.4 |
| Brvorth of proporlus. | 2.4 | 1.8 |
| Length of slact slus | 2.0 | 1.7 |
| J.aneth of If-ft elseliped. | 13. 6 | 100 |
| Length of carpus. . | 3.8 | 2. is |
| Leneit ${ }^{\text {at propodus. }}$ | 5. 0 | [ is |
| Preadth of prupotias. | 1.1 | 1.0 |
| Length of "faetyina | 2.5 | 1.3 |
| Length of fisst aubulstory log, right dild | 16.1 | 1:8 |
| Lenerth of promodus ......... | 4.0 | 3. 3 |
| Lensit of claet tus | 5.11 | 1. 11 |
| L-ngth of mecont ambuls tory log, right sills | 17.0 | 14.11 |
| Lencth of propodus.... | 4.6 | 3.7 |
| Lounth of dic.jlum. | 5.4 | 4.5 |

The careincecium in all the specimens examined is a colony of $E_{i}^{2} i z o-$ anthus, but this species, like $\Pi$. socialis, probably sometimes inhabits an Adamsia carcinceinm.

Stations 865, $870,871,874,877,878 ; 65$ to 155 fathoms; associated with $I$. socialis, but not at all abundant.

Parapagurus pl!osimanus Smith, Trans. Conn. Acad., v, p. 51, 1879.
Stations $880,893,894 ; 252$ to 372 fathoms.
Since this species was described, from a single specimen tiken in 250 fathoms off Nova Scotia, a few alditional specimens have been brought in by fishermen from deep water off Nova Scotia. In all the specimens seen, the carcinœcium is built up by a compound actinoid polyp, as in the specimen first described. Some of the goung specimens show very plainly the gastropod shell, wheh serves as a nuclens about which the polypean carcinceium is built.

## Eupagurus bernhardus Brandt ex Linne.

Station 855; 6J fathoms; two small specimens.

## Eupagurua Kröyeri Stimpson.

Stations $869,870,877,878 ; 126$ to 192 fathoms; many specimens, mostly small, and all in carcinacia formed by colonies of Epizoanthus Americanus.

## Eupagurus, sp.

Stations 865 to 867,869 to 874,876 to 880,893 to $895 ; 65$ to 365 fathoms.

A species of about the size of $E$. Kr\&iyeri, and quite distinct from the species heretofore known upon our coast, and apparently distinct from all the described European species.
?Munida Caribza Stimpson, Anu. Lycenm Nat. Hist. New York, vii, p. 244 (116), 18゙0.
Stations $865 ; 871$ to $874,875,878 ; 65$ to 142 fathoms, Very abundant at $871 ; 115$ fathoms.

It is with considerable hesitation that I refer these specimens to Stimpson's species, which was very briefly described, apparently from a single very small specimen, and with no more precise indication of its habitat than is implied in the specific name. Very small specimens of the species before me agree very well, however, with Stimpson's deseription, except that he says, "eye-peduncles longer and the cornea less dilated that usual", while in the species before me the eye-stalks are just about as long as in M. Bamfia and the cornea fully as much expanded horizontally, though considerably more compressed vertically; but this vertical compression is perhaps what Stimpson referred to in speaking of the cornea as "less dilated than usual".

The species in hand resemble M. tenuimana G. O. Sars in the length and slenderness of the chelipeds, which are eveu longer and more slender than in that species, from which, howerer, it is sufficiently distinct.

The armature of the carapax, chelipeds, and anbulatory leas is more like M. Bamfia than tenuimana. There are usually six subequal and nearly equidistant spines upon the anterior half of the lateral margin of the carapas, of which one is in front of the cervical suture, three upon the hepatic region, and two upon the anterior part of the branchan region. There are no spines upon the posterior border of the carapax and none upon the abdomen, except two very suall ones on the anterior edge of the second somite. The chelipeds are very long and slender, in large specimens being a balf or more longer than the entire borly, nearly cylimitrical, and the merus and carpus sparsely armed witlisuall spines; but the chela, which is longer, but no stouter, than the merus, is without spines.

Four specimens give the following measurements:


## Macrura.

Arctus depressus, sp. nor.
This species is represented only by a single, small, and probably immature individual, but is apparently distinct from any known species of the genus, and is readily distinguished by the very broad and greatly depressed cephalo-thorax, which in these respects is like Ibacus, and by the conspicuous spines cach side of the posterior segments of the sternum. The depressed form is perhaps partially a character of immaturity, being an approach to the Phyllosoma-stages, and it is possible that the sternal spines disappear in the adult.

The carapax is less than half as thick as broad, and the breadth is much greater than the length along the middle line above, but slightly less than the length of the lateral margin, which is consex in ontline, so that the greatest breadth is near the middle of the length. The anterolateral angles are acute and very prominent, extemling far forward of the rest of the front and to a line slightly in advance of the first dorsally exposed segment (the true second peduncolar) of the antenna each side. The orbits are very large, almost completely open in front, and ocenpy fully a third of the width of the whole front. The median carina is low, being, even in the middle of its length, only a little higher than the lateral carine, and rises into two low, dentiform prominences, one
at about the middle of the carapax and another a little back of the anterior margin, and in frout of the latter the carina is almost wholly obsolete. The lateral carine are prominent along the iuner sides of the orbits, terminating in front in the elevated and irregularly dentate inner angles of the orbits. Just back of the orbit there is a hiatus in the carina, from which the carina extends uninterruptedly to near the posterior margin, though its crest is minutely and obscurely dentate. The surface of the longitudinal depressed spaces between the median and lateral carinze are naked and nearly smooth, and so is the narrow and slighty concave space between each lateral carina and the edge of the carapax, except for a line of small tubercles just outside the carina and a few additional ones ontside of these, near the postero-lateral angle. The lateral margin is thin and the edge sharp, and divided by a sharp incision at the cervical suture, by an incision slightly less deep a little way back of the cervical suture, and by two or three obscure notches along the branchial region, while the edge between these incisions and notches is irregularly and very minutely dentate.

The eyes are large, with an expanded cornea, and black. The tro lobes of the antennulary somite rise in front into small dentiform tubercles, and so do the tirst and second of the dorsally exposed segments of the antenne. The second exposed segment of the antenna is about as broad as long, carinated above, acutely angular in front, and the iuner and outer edges are each armed with three teeth, of which the anterior in each case is obscure. The terminal segment is short, and the slightly arcuate auterior margin is deeply five-lobed.

The sternum is triangular and very broad, the breadth between the bases of the posterior legs being nearly as great as the length along the median line. The edges are slightly raised above the bases of the legs, and terminate posteriorly, back of and below the base of the fifth leg, in a conspicuous spine, directed backward.

The abdomen, to the tip of the telson, is twice as long as the carapax along the median line above, is at base much narrower than the carapax, and tapers regularly and so rapidly that at the sixth somite it is little more than two-thirds as broad as at base. There is a slight median carina on the second to the fifth somite, and the dorsal surface is naked and sparsely punctate, but otherwise nearly smooth. The pleura of the second, third, fourth, and fifth somites are nearly perpendicular and slightly carinated in the middle; the second is broader than the others and nearly right-angled, but terminates in a spiniform tip, turned backward ; the third is angular, but not spiniform at the extremity; and the fourth and fifth are obtuse or rounded. The sixth somite is about as long as, but considerably narrower than, the fifth, and its pleura are small and narrowly triangular. The telson is much longer than broad, tapers very slightly distally; the posterior portion is very thin, delicate, and transparent, and the posterior edge is slightly curved and the angles rounded. The lamella of the uropods are as long as and much broader
than the telson, and, except a small portion near the base, are thin and transparent like the terminal part of the telson.

## Measurements.

Length from front of caranax to tip of telson
Length from tips of autemas to tip of telson ..... 23. 2
Length of carapax along median line above ..... 6. 2
Length of carapax along lateral margin ..... 0.0
Greatest breadth of carapax ..... 8.3
Breadth betweeu auterior angles. ..... 7.5
Bradth posteriorly ..... 6. 2
Greatest thickness of cephalo-thorax ..... 3.5
Brealth of tirst somite of ablomen ..... f. 1
Breadth of sixth somite of abdomen. ..... 4. 0

## Station 872; 86 fathoms.

In the outline of the edges of the segments of the antennze and in the divisions of the carinæ of the carapax this species is much like A. Americanus Smith (Amer. Journ. Sci., II, xlvii, p. 119, 1869 ; Scyllavus (Arctus) Gundlachi von Martins, Archiv fiur Naturgesch., xxxviii, p. 123, pl. 5, fig. 13, 1872), the yonng of which it may possibly prove to be, though this seems very improbable considering that the specimen just described is half as long as ordinary specimens of A. Americanus, which is known from the Gulf of Mexico and the West Iudies.

Nephropsis aculeatus, sp. nov.
Very closely allied to Nephropsis Stevarti Wood-Mason (Journ. Asiatic Society of Bengal, xlii, part ii, p. 39, pl. 4, 1873), described from a single female, $98^{\text {moo }}$ long and wanting the chelipeds, dredged in 260 to 300 fathoms in the Bay of Beugal.

Male.-In specimens $30^{\mathrm{mm}}$ to $34^{\mathrm{mm}}$ in length the rostrum is vers slightly longer proportionately than represented in the figures of $\boldsymbol{N}$. Stecurti, but in all other respects the carapax shors no differences whaterer. The abdomen is as represented in the figure of $N$. stercarti, except that the pleura of the second to the fifth somite, inclusive, project farther lownward and terminate in slender, acuminate, and spiniform tips, and that the pleuron of the sixth somite is sharply right-angled below, and not rounded. The uropods and telson show no differences whatever.

The chelipeds are equal, or very nearly so, about a fourth longer than the carapax, including the rostrum, and are carried with the chelie held horizontally, as in Nephrops and Homarus. The merus is about as long as the rostrum, and is armel near its distal end with a slender spine above and a similar one below. The carpus is short, a little longer than broad, slightly broader than the distal part of the merus, and is armed with three small spines-one near the middle of the inner edge, one at its distal end, and another beneath at the articulation with the chela. The chela is searcely longer than the merus and slightly broader than the carpus, somewhat compressed vertically, rounded above and below, and
without spines, except a few very minute dentiform ones along the inner edge of the propodus; the propodal digit is longitudinal and tapers to a slender incurved tip; the dactslus is a little longer and stouter than the propolal digit, and has a longer and more strongly curved tip, which closes beneath the tip of the propodus; the prehensile edges of both digits are sharp and minutely creunlate. The upper surface and the inner edge of the carpus and the upper surface and both edres of the chela are thickly clothed with very long and soft pubescence, directed distally. The succeeding pairs of legs are very nearly as in $N$. Stecarti. The second pair are about three-fourths as long as the chelipeds, slender and perfectly chelate. The third pair are a little longer than the second and not quite as perfectly chelate. The fourth are a little longer than, and the fifth about as long as, the chelipeds.

Very imperfect female specimens, considerably larger than the males above described, have the chelipeds a little larger and stonter proportionally than in the males, and the pleura of the second to the fifth somite of the abdomen very slightly less prolonged, but still acuminate and spiniform, and very different from $N$. Stecarti.

One of the males and an imperfect female give the following:
Measurements.

|  |  |
| :--- | :--- |

Station 873; 100 fathoms (3 males). Station 576; 120 fathoms (one very imperfect female from the stomach of Lopholatilus). Station 877 ; 126 fathoms (fragments of two or three specimens).

As Wood-Mason has remarked, the genus Nephropsis is closely allied
to Neplrops. The structure and arrangement of the branchice were apparently not examined by Wood-Mason, but in our species they agree with Nephrops Norcegicus, there being nineteen branchise upon each side, arranged like the nineteen posterior branchise of each side of Momarus. The branchia of the second maxilliped is wholly wanting, unless it is represented by a minnte, papilla-like process near the base of the epignath. The oral appendages agree perfectly with those of Nephrops Norregicus. The densely pubescent chelipeds, however, are very different from the naked and carinated chelipeds of Nephrops, and probably afford an additional generic distinction.

## Axius armatus, sp. nov.

Female.-The carapax is strongly compressed, about twice as long as high, smooth and nearly naked. The rostrum is narrow, acuminate, spiniform at the tip, and armed along each edge with four or five slender, acute, and spiniform teeth, directed forward and slightly upward. From the edge of the rostrum a sharp lateral carina runs back on each side more than a third of the way to the cervical suture. The dorsal carina is sharp anteriorly, extends back nearly to the cervical suture, but anteriorly only as far as the posterior marginal teeth of the rostrum, and is armed with two spiniform teeth just back of the base of the rostrum. About half way between the dorsal and lateral carine there is a very distinct subdorsal carina, parallel with and cxtending back nearly as far as the dorsal, and in front turned abruptly inward opposite the posterior dorsal tooth, but not quite reaching the dorsal carina.

The eyes are small and black.
The peduncle of the antennula reaches by the tip of the rostrum the full length of the last segment, aud the flagella are subequal in length and about as long as the carapax. The third segment of the peduncle of the antenna is armed with a slender spine on the lower side of the distal end. The distal spine on the second segment, at the base of the acicle, is slender, acute, and more than half as long as the rest of the segment, while the acicle is slender, straight, and as long as the fourth segment, which is slender, and about as long as the second segment together with its distal spine. The fifth, or last, segment is not more than a third as long as the fourth. The flagellum is more than twice as long as the carapax.

The merus of the external maxilliped is armed at the distal extremity of the lower edge with two very long and slender spines.

The larger cheliped is abont twice as long as the carapax, and the chela itself, to the tip of the dactylus, is nearly as long as the carapax. The propodus is strongly compressed, about half as broad as the entire length and three-fourths as broad as the length of the basal portion, which is convex on both sides and has the edges sharp and carinated. The digital portion is longitudinal, about three fourths the entire length, more than half as long as the basal portion, slightly upturned at the tip, Proc. Nat. Mus. 80-28

Jan. 10, 1881.
and armed with a stout tooth near the middle of the prehensile edge. The dactylus is as long as the basal portion of the propodus, about threefourths longer than the propodal digit, strongly curved toward the tip, and the prehensile edge is sharp and minutely crenulate, but not toothed, and closes by the inner side of the tip of the propodus. The smaller cheliped is similar in form to the larger, but is considerably shorter and very much more slender, and the propodal digit is proportionately longer and its prehensile edge thin and minutely multidentate. Both chelse are sparsely hairy on the digits and very slightly along the margins of the basal portions. The second pair of legs are very slender and a little longer than the carapax; the merus is about as long as the carpus and chela taken together; the carpus is less than half as long as and slightly narrower than the merus and abont three times as long as broad; the chela is slightly longer but scarcely broader than the carpus, and the digits are slender, longitudinal, not gaping, and a little shorter than the basal portion. The third and fourth pairs of legs are very nearly alike, and as long as the second, but more slender; the merus is about as long as the carpus and propodus together; the propodus is about a third longer than the carpus; and the dactylus is slender, nearly straight, and about two-fifths as long as the propodus. The fifth, or posterior, legs are cousiderably shorter and much more slender than the third and fourth pairs, being nearly cylindrical; the merus is about as long as the propodus; the carpus about three-fifths as long; the dactylus is about half as long as the carpus.

The abdomen is much narrower than the carapax and not expanded in the middle, the sides being nearly straight and parallel. The lamellie of the uropols are about as long as the telson, the outer as long as broad, the inner a little narrower. The telson is about a third longer than the sixth somite of the abdomen, about two-thirds as broad as long; the lateral edges are nearly parallel and each armed with about four small spines; the posterior margin is regularly arcuate. Near the middle of the dorsal surface there is a transverse line of four small spines, and there are one or two more between these and the tip.

An imperfect male specimen, wanting the chelipeds and most of the abdomen, has three spines in front on the dorsal carina, and the spines, of the rostrum slightly longer than in the female.

The single female gives the following:
Iength from tip of rostrum to tip of telson
mm. ..... 14. 0
Length of carapax to tip of rostrum.
Length of rostrum. ..... 3.1
Height of campax ..... 8.2
Brealth of carapax ..... 7.0
Length of right cheliped ..... 31.0
Length of lett cheliped ..... 25.0
Length of right merus. ..... 8.3
Leugth of left merus ..... 7.0
Length of right propodus. ..... 12.5
Length of left propodus
mm. ..... 9.0Breadth of right propodus
6.0Breadth of left propodis
3.1Length of right propodal digit
Length of left propodal digit ..... 4.5 ..... 4.0Length of right dactylus
8.0
Length of left dactylus ..... 5. ${ }^{2}$
Length of telson ..... 5.5
Breadth of telson. ..... 3. $\downarrow$

Stations 873 and 878 ; 100 and 142 fathoms.
This species is at once distinguished from A.stirynchus and A. serratus by the narrower and acuminate rostrum, the teeth on the dorsal carina, the form of the chelipeds, and the more slender second, third, and fourth pairs of legs. In A. stirynchus and serratus the carpus in the second pair of legs is short, expanded distally, and less than half as broad as long, and the chela is nearly or quite half as broad as long.

Axius serratus Stimpson (Proc. Boston Soc. Nat. Mist., iv, p. 222, 1852; Smith, Trans. Conn. Acad., v, p. 55, pl. 10, fig. 4, 1879) was dredged the past season from the "Fish Hawk", in 20 fathoms, sandy bottom, in Narragansett Bay; and large specimens, taken on George's Banks, have been presented to the National Museum by Capt. John Q. Getchell and crew of the schooner "Otis P. Lord", of Gloncester, Mass.

These specimens show that Stimpson's species is distinct from the European stirynchus. The serratus is at once distinguished by its broad and depressed abdomen, which expands laterally in the middle, and is much broader than the carapax. The fourth segment of the peduncle of the antenua and the acicle are both proportionally much longer in serratus than in stirynchus, being nearly as long as in the species just described. The upper edge of the propodus in both chelipeds is thin and strongly carinated in serratus, but thick and rounded in stirynchus, and the smaller cheliped is much narrower and has much longer and more slender digits in serratus than in stirynchus.

## Pontophilus Norvegicus M. Sars.

Stations 869, 870, 880, 881, 893, 894, 895 ; 155 to 372 fathoms.
The largest females are $74^{\mathrm{mm}}$ long, the largest male $47^{\mathrm{mm}}$. Several of the specimens belong to the variety with the broad and obtuse rostrum described by Sars.

## Pontophilus brevirostris, sp. nov.

Very closely allied to P. spinosus and $P$. Norvegicus, but readily distingaished from both these species by the very short rostrum, which is tridentate, with the median tooth scarcely broader and rery little longer than the lateral, about reaching to the cornea of the inner side of the eye and not projecting beyond the line of the spiniform outer angles of the orbits. The proportions of the body are more like spinosus than Norregicus, bat the carination and armature of the carapax are more
like Norregicus, while the sculpture of the distal somites of the abdomen is more like spinosus.

The dorsal carina of the carapax is armed with three spines, and usually a smaller fourth one in front of the others and just back of the hase of the rostrum; the subdorsal carina is armed with two spines, as in Norregicus, and often with a rudiment of a third behind these; the lateral carina does not extend back of the middle of the carapax, and is armed with a single spine, as in Vorregicus. There are no distinct caring on the first four somites of the abdomen, but the fifth somite is flattened above and has subdorsal carinæ slightly diverging posteriorly, and below these, each side, another carina, nearly parallel with the subdorsal; and the sixth somite is flattened above and subdorsally carinated, as in spinosus, though the carinze are not quite as conspicuous on either somite as in that species.

The eyes, antennula, and antennæ are very nearly as in $\boldsymbol{P}$. spinosus. The external maxillipeds reach a little beyond the tips of the chelipeds, the penultimate segment reaches nearly to the tip of the antennal scale, and the ultimate segment is a little less than twice as long as the peunltimate, while in P. Norvegicus it is about once and a half as long, and in P. spinosus much more than twice as long, as the the penultimate segment. The thoracic legs differ scarcely at all from those of $P$. spinosus.

The lamelle of the uropods are very nearly as in P. spinosus. The inner lamella reaches nearly or quite to the tip of the telson, is lanceolate, and six or seven times as long as broad; the outer lamella is abont a tenth shorter than the inner aud about four times as long as broad. The telson is once and a fourth to once and two-fifths as long as the sixth somite of the abdomen, is very narrow, slightly acuminate, and has a very narrow and acutely triangular tip, armed with only two very long, slender, and plumose setæ, which arise near together from the under side.

This species appears to be much smaller than either Norvegicus or spinosus. The following measurements are from two of the larger specimens:


Stations 865 to 867,870 to $874,877,878 ; 65$ to 155 fathoms. At most of these stations it was taken in great abundance.

## Hippolyte securifrons Norman.

Stations 897 and 850 ; 225 and 252 fathoms; three large females. The branchial formula of this species, written essentially after Huxley's method, is:

| Somites. | Polo. branchix. | Arthme bramehis. | Pleuro. bramehiae. |  |
| :---: | :---: | :---: | :---: | :---: |
| VII | 0 (ep.) | 0 | 0 | $=0$ (ep.) |
| VIII | $1(+\cdots \mathrm{p}$. | 0 | 0 | $-1(+p)$ |
| IX... | 0 (c-p.) | 0 | 0 | $=0(1-p .)$ |
| T | 0 (c) p ) | 0 | 1 |  |
| X1 | 0 (ep.) | 0 | 1 | $=-1(+\cdots \mu$. |
| XII | 0 ( -p.$)$ | 0 | 1 | $=11+$ ep. |
| XIII |  | 0 | 1 | $=1$ |
| SVI. | 0 | 0 | 1 | $=1$ |
|  | $1+6$ ep. | 0 | 5 | $6+6$ cp. |

## Bythocaris sp.

Stations 865 to $867,872,874,873$; 64 to 142 fathoms.
Pandalus propinquus G. O. Sars, Christiania Videnskabs-Selskalss Forhandlinger, $18 i 0$, p. 148 (4); ibid., $18 \pi 1$, p. 259 (16).
Stations $875,879,880,893,894,875 ; 142$ to 365 fathoms. The largest specimen is a female, over $110^{\text {mim }}$ in length.

This species was dredged in 1879 in the Gulf of Maine, off Cape Corl, station 305, N. lat. $42^{\circ} 9^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 41^{\prime}$, 118 fathoms, sott mul; and station 343, N. lat. 420 17', W. long. $69^{\circ} 51^{\prime}$, 116 fathoms, mud. A male, $74^{\mathrm{mm}} \mathrm{long}$, from station 305 , has the chelate second pair of legs reversed, the short one being on the left and the long one on the right! The legs themselves are of the normal size and structure, and the specimen appears to be perfectly normal in all other respects.

As far as I am aware, the species has heretofore been recorded only from deep water off the coast of Norway.

## Pandalus leptocerus sp. nov.

In size and general appearance much like P. Montagui (annulicornis), but more slender and readily distinguished from it, and from $P$. propinquas and borealis as well, by the minutely roughened surface and the presence of exopods upon the external maxillipeds.

The rostrum is from about once and a third to nearly twice as long as the rest of the carapax, and curved very slightly upward, but usually not as much so as in P. Montagui. Above, it is armed with eleven to thirteen teeth, of which one is near the tip, as in $P$. Montagui, and usually only two back of the orbit on the carapax proper, white a considerable space back of the terminal spine is unarmed, though this spate is usually shorter than in P. Montagui. Beneath, there are 6 to 8 teeth, as in P. Montagui. The entire surface of the carapax and abolomen is slightly roughened with short and irregular, transverse, punctate ridges, which give rise to very short, bristle-like hairs, while in I. Montagni, propinquus and borealis the surface is maked and very smooth. The
carapax is considerably more slender than in $P$. Montagui, and the posterior tooth of the dorsal carina is farther forward, being much in front of the middle. The ablomen is more slender than in P. Montagui; but, except for the greater slenderness, there is scarcely any difference in the form or proportions of the somites, or the form and armature of the telson and uropods. There are slender exopods, about a third as long as the ischia, at the bases of the external maxillipeds, but the endoports themselves are as in P. Montagui; the merus reaches to the base of the flagellum of the antenna, and the tip falls considerably short of the tip of the antemnal scale.

The first pair of legs are nearly as in P. Montagui. The right chelate leg of the second pair is shorter and stouter than in $P$. Montagui, and scarcely reaches the tip of the corresponding leg of the first pair; the ischium is about a fourth the entire length; the merus is only a little shorter than the ischium; the carpus increases in thickness distally, is a little longer than the ischium, not more than about once and a half as long as the merus, and usually composed of only five segments, the proximal half being wholly unsegmented or annulated, then three subequal and rery distinct segments, about as broad as long, and these followed by the terminal segment, which is about as long as the three next preceding; the chela is about half as long as the carpus and a little stouter than its distal end.* The left chelate leg is a little shorter and stouter than in P. Montagui, but has about the same number of seg. ments in the merus and carpus, and does not differ in other respects. The third, fourth, and fifth pairs of legs differ from those of $P$. Montagui in being a little more slender and in haviug much longer, much more slender, and nearly cylindrical dactyli, which are wholly unarmed, except a few small spinules beneath near the base.

[^70]Mcasurements.


Detailed measurements of each of the chelate legs, and the number of segments in the carpus, of nine of the above specimens are given below. The first three columns give the number, sex, and length of each specimen, as in the table above; columns four to nine give the entire length of the leg and the lengths of each of the five distal segments ; and the last column gives the number of segments in the carpus. For the left carpus this last number is not perfectly definite, as the segmentation becomes irregular and indistinct toward the proximal end.

| No. | Sox. | Length. | Right chelate leg. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Leugth. | Ischium. | Merus. | Carpus. | Propolus. | Dsctylus | No. megn in carp. |
|  |  | mm. | mm. | mm. | mm. | mm. | mm. | mm. |  |
| 1 | $\sigma$ | 52 | 13 | 8.4 | 2.7 | 4.1 | 21 | 0.9 | 5 |
| 2 | 0 | 60 | 15 | \$. 0 | 3.2 | 4.3 | 2.6 | 1.1 | 5 |
| 3 | $\bigcirc$ | 75 | 22 | 5.2 | 4.9 | 7.0 | 8. 8 | 1.5 | 5 |
| 6 | 8 | 80 | 27 | 5. 9 | 5.1 | 7.2 | 4.0 | 1.6 | 5 |
| 10 | 8 | 00 | 24 | 6.6 | 5. 8 | 7.6 | 3.9 | 1.6 | 5 |
| 7 | 8 | 82 | 20 | 6.5 | 4.4 | 6.5 | 3.2 | 1.2 | 18 |
| 4 | $\delta$ | 61 | 15 | 4.1 | 3.2 | 4.6 | 2.5 | 1.0 | 6 |
| 5 | \% | 65 | 16 | 4.0 | 3. 2 | 5. 0 | 2.5 | 1.0 | 8 |
| 8 | 8 | 84 | 22 | 6.5 | 1.6 | 7.0 | 3.4 | 1.3 | 8 |
| No. | Sox. | Length. | Ieft chelate leg. |  |  |  |  |  |  |
|  |  |  | Length. | Ischium. | Merus. | Carpus | Propodus. | Dactylus. | No. sezs. in carp. |
|  |  | \%m. | mm. | mm. | บท. | mт. | mm. | mm. |  |
| 1 | ${ }^{\circ}$ | 53 | 24 | 3. 5 | 4.5 | 10. 1 | 1.1 | 0.6 | 53 |
| 2 | d | 60 | 27 | 0.5 | 5. 0 | 12.3 | 1.2 | 0.6 | 53 |
| 3 | O | 73 | 33 | 9.0 | 8.0 | 15.0 | 1.9 | 0.9 | 8 |
| 0 | \% | 80 | 87 | 9.0 | 8. 5 | 14.0 | 2.0 | 1.0 | 64 |
| 10 | 8 | 00 | 41 | 10.3 | 8.8 | 18.2 | 2.0 | 1.0 | G |
| 7 | 8 | 82 | 89 | 10.0 | 8.4 | 17.6 | 1.9 | 0.9 | 63 |
| 4 | 8 | 61 | 27 | 6.7 | 6. 7 | 122 | 1. 1 | 0.6 | 54 |
| 8 | 8 | 65 | 27 | 6.6 | 5. 8 | 12. | 1. 2 | 0.6 | 52 |
| 8 | 8 | 84 | 39 | 9.0 | 8.8 | 17.5 | 1.9 | 0.8 | 56 |

Station 870, 155 fathoms (abundant); 873, 100 fathoms; 878, 112 fathoms (rery abondant). It was also taken in abundance this season at many stations in shallow water off Rhode Island.

In the dredgings off Cape Cod, in 1879, this species occurred at a great number of the stations, in 15 to 116 fathoms, and was very often associated with $P$. Montagui, and at 116 fathoms with $P$. propinquus. It was particularly abundant in 25 to 50 fathoms, several quarts of specimens often being taken at one haul of the trawl. In the dredgings previous to 1879 it occurred very much less abundantly, and was carelessly confounded with $P$. Montagui, under which name specimens of $\boldsymbol{P}$. leptocerus may have occasionally been distributed in the sets of specimens made up from the Fish Commission collections and distribated from the National Muscum. In the dredgings of 1875-78, it occurred sparing$1 y$, in 22 to 48 fathoms, in Massachusetts Bay ; and in 75 to 90 fathoms, in the Gulf of Maine, off Cape Ann, in considerable abundance and of large size ; in both localities associated with $P$. Montagui, aud in the Gulf of Maine with $P$. borealis also. In Casco Bay, in 1873, a few specimens only were taken. Among great numbers of specimens of $P$. Montagui from the Bay of Fundy I have not succeeded in finding a single specimen of the new species, although it very likely oceurs there. At Malifax, Nova Scotia, a few specimens only, most of them very small, were taken, and these were from 18 fathoms. In the region of George's Banks, in $187_{2}^{2}$, it was takeu in $30,45,50,60$, and 430 fathoms,
and appears to have been more common than P. Montagui, which occurred with the leptocerus in 30 and 45 fathoms, and alone in 28 fathoms.*

Pandalus tenuipes, sp. nov.
This species is smaller but has a proportionally thicker body than $P$ Montagui, and the surface of the carapax and abdomen are very minutely roughened. somewhat as in the last species, but the punctate ridges are much less conspicuous and much more thickly crowded than in that species.

The carapax, including the rostrum, is about two-fifths of the entire length, and the carapax proper is nearly as long as the rostrum, slightly swollen in the middle, somewhat contracted in front, as seen from above, and with the rostral carina extending back to about the middle, and armed, at about a third of the way from the front, with two to four slender teeth, crowded close together and rapidly decreasing in size posteriorly; but between these teeth and the posterior tooth of the rostrum the catina is wholly unarmed. The rostrum is curved upward a little more than in $P$. Montagui, is not expanded below, and is armed the whole length above with eight to ten teeth, which are usually more widely separated distally, though in some specimens the terminal two or three are crowded together near the tip; beneath there are six to ten small teeth.

The eyes are black and as broad as long, but shorter than in P. Montagui. The peduncle of the antennula reaches to near the middle of the antennal scale, and the two distal segments are subequal in length and each about as broad as long. The antennular flagella are subequal in length and much longer than the carapax, including the rostrum; the proximal half of the outer flagellum is very much thickened, the terminal portion very slender, as is the inner flagellum throughout. The antennal scale is approximately four-fifths as long as the rostrum, and of very nearly the same form as in $P$. Montagui. The external maxillipeds are very slender, reach to about the tip of the rostrum, and have well-developed exopods, fully half as long as the ischium; the ischium is a little longer than the rest of the endopod, which is composed, as in $P$. Montagui, of only two distinct segments beyond the ischium, and in this case these two segments are subequal in length.

The first pair of legs are very slender and reach to the tips of the external maxillipeds. The second (chelate) legs are exactly alike, and reach to or considerably by the tips of the anteunal stales. The ischium is a little longer than the merus; the carpus a little less than twice as long as the merus, slightly shorter than the anteunal scale, and composed of about fifteen segments, of which the proximal are separated by

[^71]indistinct articulations, while the four or five distal ones are separated by conspicuous articulations, of which the ultimate is about twice as long as broad, but the next three or four, each, only about half as long as broad. The chela is slender, only a very little stouter than the distal end of the carpus, nearly a third as long as the carpus, and about half as long as the merus, and the digits are alike, about as long as the bacal portion, slightly gaping, and with a very few long, setiform hairs. The third, fourth, and fifth pairs of legs are exceedingly slender, sparsely armed with minute spinules and slender setæ; and the dactyli are very long and slender, slightly and regularly bent, and flattened a little vertically (or in the direction of the plane of the cervature), and wholly unarmed; the fifth pair reach beyond the tip of the rostrum, and the fourth and third pairs are successively a little longer; the dactylus in the fifth pair is a third or a little more than a third as long as the propodus, in the fourth pair a little longer than in the fifth, and in the third pair not far from half as long as the propodus.

The abdomen is evenly rounded and not at all compressed above, and less geniculated at the third segment than in P. Montagui. The sisth segment is about once and two thirds as long as the fifth. The telson is about once and a half as long as the sixth segment, and terminates in an acutely triangular tip, armed each side with two long spines, of which the proximal is very much the longer, and at the extreme tip with a few long, plumose setr.

Measurements.


Some of the legs of these specimens give the following measure－ ments：

|  | Log． | $\begin{aligned} & \text { 麀 } \\ & \text { 爵 } \end{aligned}$ | $\begin{aligned} & \text { 音 } \\ & \text { 邑 } \end{aligned}$ | 菏 | $\begin{aligned} & \text { 曾 } \\ & \stackrel{⿸}{巳} \end{aligned}$ | 曹 | 管 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 1 | ${ }_{20}^{20}$ | 28．0 | 4．${ }_{3}{ }^{2}$ | 3.8 10.0 | ${ }_{4}^{6} .7$ | 5．3 | ${ }_{3}^{1.0}$ |
| 1 | sth | 24.0 | 20 | \％ 8 | 5．0 | 5.5 | 1.9 |
| $\stackrel{2}{2}$ | ${ }_{\text {did }}$ | 20． 7 | 2．${ }_{2}^{2.0}$ | 11.6 11.0 | 4.6 | ¢ 6.7 | 2.5 2.3 |
| 2 | 5th | 23．2 | 2.5 | 10.0 | 5.1 | 5.0 | 20 |
| 3 | 4th | 24.3 | 21 | 9.1 | 4.6 | 3.3 | $0 \cdot 3$ |
| 4 | ${ }_{\text {a }}$ | 23．${ }_{2}^{23.8}$ | 6 | ${ }_{5}^{8} .5$ | 3.4 9.7 | 6.7 2.7 | 1.5 |

Stations $870,871,873,877,878,880 ; 100$ to 252 fathoms．Three females from 878,142 fathoms，were carrying eggs．

The geuus Pandalus，as at present recognized，apparently contains species representing two or more genera，and the species just described is probably not strictly congeneric with $\boldsymbol{P}$ ．Montagui，the type species． The equal，chelate legs and the slender，unarmed dactyli of the third， fourth，and fifth pairs of legs separate P．tenuipes widely from Montagui． The oral appendages afford some characters not indicated in the above de－ scription．In $P$ ．tenuipes the proximal segment of the mandibular palpus is dilated，though not quite as conspicuously as in P．Montugui；the pos－ terior lobe of the scaphognath of the second maxilla is very short，broad， obtusely rounded at the extremity，and projects very little back of the base of the endognath，while in P．Montagui and the allied species it is very much prolonged and acutely triangular posteriorly；in the second maxilliped the dactylus is about as long as broad and articulated with the oblique distal end of the propodus，while in P．Montagui and its al－ lies the dactylus is a narrow plate，articulated by one edge to the distal part of the mesial edge of the propodus．

The branchiz of $P$ ．tenuipes are the same in number and arranged in the same way as in P．Montagui and P．boreulis；that is，there are twelve branchize plus seven epipods on each side；or，stated in full，the branchial formula is：

| Somites． | Poxio． brazchioe | Arthro branchite | Plearo． bnunchise． |  |
| :---: | :---: | :---: | :---: | :---: |
| VII | 0 （ep．） | 0 | 0 | $=0$（ep．） |
| VIII | 1 （1－ер．） | ， | 0 | $=1(+\mathrm{ep}$. |
| 1 x | 0 （ep．） | 2 | 0 | $=2(+\mathrm{cp}$. |
| X | 0 （ep．） | 1 | 1 | $=2(+\mathrm{ep}$. |
| XII | 0 （ep．） | 1 | 1 | ＝2（ + er ${ }^{\text {c }}$ ） |
| XIII | 0（ep．） | 1 | 1 | $=2(+e p$. $=2(+e p$. |
| XIV |  | 0 | 1 | $=1$ |
|  | $1+7 \mathrm{ep}$ | 6 | 5 | $=12+7$ cp． |

## 444 PROCEEDINGS OF UNITED states NATIONAL MUSEtM.

Penæus politus, sp. nov.
Male.-The carapax and abdomen are naked and smooth and the carapax is armed with well-developed antennal, hepatic, and branchiostegial spines, but the sulci are all shallow and indistinct. The rostrum is short, acute, aboct two-fifths as long as the rest of the carapax, scarcely overreaches the eyes, rises obliquely from the anterior part of the carapax, and then points straight forward; its dorsal crest is armed with seren or eight teeth, of which the posterior one is just back of the orbit, while the two or three most anterior ones near the tip are small or inconspicnous and nearer together than toward the base; the lower edge is ciliated and minutely multidentate, the teeth being slender, acute, and closely crowded, so that, to the naked eye, the edge appears entire. The dorsal crest extends nearly the whole length of the carapax, but gradually fades out posteriorly, and, at about a third of the way from the base of the rostrum to the posterior border, rises into a low and obscure dentiform prominence.

The eyes are very large, obliquely compressed, and black. The peduncles of the antennule reach to the tips of the autenual scales; the lamelliform appendages of the basal segments are small, narrow, and do not cover the eyes above, but lie concealed between the eyestalks; the second segments are slightly longer than the basal, while the third are not quite half as long as the second; the inner flagellum is about as long as the carapax, including the rostrum, and tapers regularly throughout its length; the outer flagellum is slightly shorter than the inner, and suddenly expanded toward the base, but the terminal portion more slender than in the inner flagellum. The antennal scales are about twice as long as the rostrum, rather more than a fourth as wide as long, and taper regularly to the broadly rounded tips. The terminal segment of the peduncle of the antenna is scarcely a fourth as long as the antennal scale, and the flagellum is slender aud much longer than the whole body.

The external maxillipeds are slender, and reach a little beyond the middle of the antennal scale, and their exopods to about the middle of the carpi of the endopods. The first pair of legs reach only to the middle of the carpi of the external maxillipeds, the second pair to near the middle of the propodi, and the third and fourth pairs to the tips of the external maxillipeds, and the fifth a little beyond the tips of the fourth pair. The dactyli of the fourth and fifth pairs are slightly compressed, and only about half as long as the propodi.

The first, second, and third abdominal somites are rounded abore, but the fourth, fifth, and sixth are compressed and sharply carinated dorsally. The sixth somite is very much compressed, longer than the fourth and fifth taken together, and about twice as long as high. The telson is shorter than the sixth somite, dorsally sulcated with the margins of the sulcus terminating posteriorly in a long spine either side of the tip, which is itself imperfect in the single specimen seen. The outer
lamelle of the uropods are abont as long as the sixth somite, oblong. elliptical, about four times as long as broad, and the terminal spine of the outer margin about a fourth of the way from the tip to the base. The inner lamella is a little shorter, and proportionally very slightly narrower. The bases of the first pair of abdominal legs are connected by a very large and complex sexnal appendage, nearly twice as long as the bases themselves.

The only specimen seen is from station 875 (142 fathoms), and gives the following measurements:

Sergestes arcticus Kröyer, Oversigt danske Videusk. Selsk. Forhandl. Kjübenhaven, 1*5j) p. (6); Monograph. Sergestes, Vidensk. Sclsk. Skr., v, naturvidensk. mathem. Afh., iv, pp. 240, 276, pl. 3, figs. 7, pl. 5, figg. 16, 1830.
Stations $880,881,891,893,894 ; 252$ to 500 fathoms; thirty specimens, most of them in good condition, and several about $60{ }^{\mathrm{mm}}$ in length.

## Sergesten, sp.

Station 893; 372 fathoms; three specimens, over $60{ }^{m \mathrm{~mm}}$ in length. The species is different from any described by Kröyer.

## SCHIZOPODA.

## Thysanopoda Norvegica Sars.

Stations 879, 850 ; 225 and 252 fathoms.
Lophogaster, sp.
Station 870; 155 fathoms. A species very distinct from $L$. typicus Sars.

Boreomysis arctica G. O. Sars, Christianiafjorlens Dybvandsfanna, p. 26, 1869 (extr. Nyt Magazin for Naturvidenskberne); Christiania Videnekabs-Selskals Forhandlinger, 1671, p. 264 (21).-Metzger, Jahresbericht der Comm. wissensch. Untersuchung der dentachen Meere filir 1872, 1873, Nordsee, p. 238, 1975. - Mysis arctica Krôyer, Et Bidrag til Kundskab oun Krubslyrfamilien Mysidæ, Naturhistorisk Tidsskrift, 1II, i, pp. 34, 42, pl. 1, fig. 5, 1861.
Station 891 ; 000 fathoms.
Pseudomma roseum G. O. Sars, Christiania Videnskabs Selskabs Forhandlinger, 1869, p. 154 (10); Carcinologiske Bidrag til Norges Fauna, Mysider, part i, p. 54, pl. 4, 1870; Hardangerfjordens Fauna, Christiania Videnskabe-Selskabs Forhandlinger, 1871, p. 263 (20); Archiv for Mathematik og Naturvidenskab, Kristiania, ii, p. 344, 1577.-Metzger, Jahreshericht der Comm. zur wissensch. Untersuchung der deutschen Meere für 1872, 1873, Norlsec, p. 288, 1875.Whiteaves, Report on further Deep-Sea Dredging Operations in the Gulf of St. Lawrence [in 1873], p. 10, [1874 ]].-Smith, Trans. Conn. Acad., v, p. 98, 1879.

Station 891; 500 fathoms.

# CUMACEA. 

Diastylis quadrispinosus G. O. Sars.
Stations $871,873,878 ; 100$ to 142 fathoms.

## STOMATOPODA.

## Lysiosquilla armata, sp. nov.

This species appears to be closely allied to $L$. spinosa Miers, from the Indian Ocean and New Zealand, or at least more closely than to any of the other species contained in Mr. Miers's recent review of the Squillide (Ann. Mag. Nat. Hist., V, v, pp. 1-49, pls. 1-3, 1880).

The carapax is smooth and about once and two-thirds as long as the breadth at the anterior margin, which is about two-thirds of the greatest breadth. The rostral plate is about half as broad as the anterior part of the carapax, very slightly longer than broad, the lateral edges not angulated, but strongly convex in outline, and curved regularly ronnd to the short but sharp and acuminate tip. The four exposed thoracic somites and the first abdominal somite increase rapidly in breaulth posteriorly, but from the second to the fifth somite the abdomen is of a nearly uniform width, which is about equal to the length of the carapas. The free thoracic somites, like the anterior abdominal, are smooth and unarmed, except that the first somite projects downward either side in a lamellar, transverse, dentiform process below the posterior margin of the carapax. The five anterior abdominal somites are evenly rounded above and smooth, but the posterior edge of the fourth somite is armed either side for about a fourth of its length from the lateral margin with slender, spiniform teeth, directed backward, and the entire posterior margin of the fifth somite is armed in the same way. The sixth somite is about three times as broad as long, only a little narrower than the fifth; the postero-lateral angle each side is armed with a stout, dentiform spine, back of and within which the dorsal surface is uneven and armed with five to seven spines or tubercles, of which the two or three most posterior are slender spines, but the others more or less tuberculiform and inconspicuous; the middle portion of the dorsal surface is smooth, and the posterior margin, except a short space each side, is armed with slender, spiniform teeth, as in the fifth somite.

The telson is nearly as wide as the sixth abdominal somite and about once and two-thirds as wide as long; the middle portion of the dorsal surface rises in a smooth, oval, longitudinal area, projecting behind above the posterior margin, limited each side by a line of short spinules, and its narrow posterior extremity truncated and three-lobed or obtusely tridentate; each side of this smooth area the surface is armed with many spinules or small tubercles, showing a tendency to arrangement in longitudinal lines; the lateral margins are expanded in front of the large lateral spines of the posterior margin and armed with a few spinules; the posterior margin is armed each side with three spines, of which the
two outer are large, dentiform, and have a spinale between them, while the terminal or inner spines are smaller, slender, and movable, and separated from the large lateral spines by a space armed with three or four spinules, while the margin between the movable spines forms an obtuse, re-entering angle, each side of which is armed with a close-set series of seven to ten slender spinules.

The eyes are large, as broad as the rostral plate, and black. The antennal scale is narrowly elliptical, about three times as long as broad, and the margins ciliated. The prehensile edge of the dactylus of the large "raptorial limbs" (second maxillipeds) is armed with ten slender spines, which decrease in length distally. The bases in each of the three posterior pairs of thoracic legs are armed on the outer side with a conspicnons, acute, and somewhat hooked spine, projecting over the articulation of the next seginent. The appendages of the antipenultimate segments of the three posterior pairs of thoracic legs are lamellar and broadly elliptical, though those of the anterior pair are a little shorter and those of the posterior pair slightly narrower than the others. The base of the uropods is armed above with a spinulose crest, running from the base to the articulation of the outer ramus, and at the distal end below with two dentiform spines as long as the inner ramus, below the articulation of which there is another but much smaller spine on the base. The proximal segment of the outer ramus is crested above, the distal part of the onter edge is armed with a crowded series of stout, spiniform seta, and the lamellar terminal segment is elliptical, nearly as long as the base, and has its edges ciliated. The inner ramus is much longer and narrower than the terminal segment of the outer ramus, which in other respects it resembles.

| Measurcments. |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |

Station 865, 65 fathoms (one male); 876, 120 fathoms (one somewhat matilated female, from the stomach of Lopholatilus).

## AMPHIPODA.

## Btegocephalus ampulla Bell.

One specimen from station 895; 238 fathoms.
Eplmeria loricata G. O. Sars, Archiv for Mathem. Naturvidenskab, Kristiania, iv, p. 450, 1879.
Stations 869 to 871, 879, 880, 893 to 895 ; 115 to 372 fathoms. Abundant at 869,102 fathoms, and 894,365 fathoms. Sars's specimens were
from 123 to 202 fathoms, north latitude $75^{\circ} 30^{\prime}$ to $80^{\circ}$, east longitude $17^{\circ} 50^{\prime}$ to $8^{\circ} 15^{\prime}$, west of Spitzbergen.

A few, mostly small, specimens of this species were dredged at different points in the Gulf of Maine, in from 32 to 110 fathoms, 1873, 1874, and 1878 , and in 88 fathoms (station 43), off Nova Scotia, in 1877. Mr. Whiteaves dredged it also in the Gulf of Saint Lawrence in 1871, 1872, and 1873. Some of these northern specimens were labeled "Epimeria cornigera " by me, and have been so referred to by Mr. Whiteaves, in his reports on dredging expeditions to the Gulf of Saint Lawrence, in the Annals and Magazine of Natural History for November, 1872, and in the American Journal of Science, III, vii, 213, 1874; and by Professor Verrill, in the last named serial, vii, p. 407, 411, 1874, and ix, p. 414, 18.5.

Haploops setosa Boeck, Christiania Videnskabs-Selskabs Forbandlinger, 1870, p. 228 (148); Scandinav. Arktiske Amphipoder, p. 541, pl. 30, fig. 7, 1276.-G. O. Sary, Archiv for Mathematik Naturvidenskab, Kristiania, ii, p. 350, 1877.

Station 880 ; 252 fathoms; one specimen.
I have examined numerous specimens of this species from different parts of the Gulf of Maine, the Bay of Fundy, off Nova Scotia, and from the Gulf of Saint Lawrence (Whiteaves). In the Bay of Fundy and off Nova Scotia the specimens were dredged in from 20 to 100 fathoms.

Ptilocheirus pinguis Stimpson.
Stations 865 to 867,$872 ; 65$ to 86 fathoms.
Ericthonius difformis Milne-Edwards.-Ccrapus rubricornis Stimpson.-Smith, Trans. Conn. Acad., iv, p. 278, 1880.
Station 861 ; 192 fathoms; three specimens.
Onciola irrorata Say.-Glauconome leucopis Kröyer.-Smith, Trans. Conn. Acad., ir, p. $280,1880$.

Stations 865 to 867,869 to $872,876,778 ; 65$ to 192 fathoms.
Neohela phasma, sp. nor.-Ncohela, nom. nov., vice Hela Boeck, preoc.
This species is apparently very closely allied to N. monstrosa Boeck,* but has well-developed eyes, and the propodus in the second pair of gnathopods is different in form, besides other slight differences.

Malc.-The head is about as long as and, including the stout lateral spines, fully as broad as the first somite of the pereon excluding its epimera; the anterior edge is slightly carinated and slightly concave in outline above the bases of the antennulx, leaving a slightly prominent and obtusely angular rostrum and a fully as prominent and more acute angle either side, just back of which the large and prominently convex eyes, salmon-colored in the recently preserved alcoholic specimen, are situated. The antennule are much longer than the rest of the animal ;

[^72]the first segment of the peduncle is nearly as long as the width of the head; the second segment is much more slender than the first and more than three times as long; the thirl segment is more slender than the second and considerably longer than the first; there is a well-developed secondary flagellum, as long as the third segment and composed of about nine sleuder segments; the primary flagellum is very slender and about one and a half times as long as the peduncle. The third segment of the peduncle of the antenna just reaches the distal end of the first segment of the peduncle of the antemula; there is a small, spiaiform tabercle on the outside of the first segment, in line with the lateral spine of the head and the spiniform anterior angles of the first and secombl epimera. The distal portion of each antenna is wanting in the single specimen examined.

The first gnathopods are of nearly the same form as in $N$. monstrosa, as figured by Boeck, but the inferior edge of the propodus is nearly straight, and the spine at the distal end is directed straight ont in line with the edge, and not downward as in the fignre of $N$. monstrosa. In the secoud pair of gnathopods the carpus is about twice as long as broad, and has the unarmed prehensile edge much less oblique than represented in the figure of $N$. monstrosa. The first three pairs of peraopods are very nearly as in $N$. monstrosa; the last two pairs are wanting in the specimen.

The pleon is nearly as high but very much narrower than the last so. mites of the percon: the first three somites are subequal in size and very similar in form; the fourth is as long but not quite as high as the third; the fifth is not more than two-thirds as long as the fourth; the sixth is only about half as long as the fifth. The telson is partially consolidated with the sixth somite, and somewhat triangular, with an obtuse tip. The uropods are as in $N$. monatrosa.

## Measurements.



Proc. Nat. Muß. $80-29$ Jan. 31, 1851.

Station 893; 372 fathoms; one specimen.
N. monstrosa, the type of this remarkable genus, and heretofore the only known species, was described from a single specimen, wanting most of the antennulie and antennæ, dredged in Christiania Fiord, in 20 to 30 fathoms; and G. O. Sars has recently recorded a siugle mutilated specimen, dredged in 1,215 fathoms, between Norway and Iceland, by the Norwegian expedition of 1876.

## ISOPODA.*

## Janira alta Harger ex Stimpson.

Stations 865 to 867,892 ; 65 to 487 fathoms.
Munnopsis typica M. Sars.
Station 878; 142 fathoms.

## Cirolana polita Harger ex Stimpson.

Stations 871, 873, 876; 100 to 120 fathoms.
Gnathia cerina Harger ex Stimpson.
Stations 865 to 867,892 ; 65 to 487 fathoms.
Syacenus infelix Harger, Marine Isopoda of New Eugland, Report United States Fish Commission, vi, for 1878, p. $387,1800$.
Stations 893 to 895 ; 238 to 372 fathoms.
The following tabular synopsis of the known geographical distribution and the bathymetrical range, as far as ascertained by the investigations on our own coast, gives the principal facts in regard to the distribution of the species, and it will also serve as a condensed list of the species enumerated in the foregoing pages. In the first column the species are checked which are known to ocenr in the Straits of Florida or anywhere in the Caribbean region; in the second, those known in the shallow waters (under 30 fathoms) of the south coast of New Englaud; in the third, those known from any part of the region from Cape Cod to Labrador ; in the fourth, those known to occur in Greenland; in the fifth, those known on the coasts of Northern Enrope or in the eastern part of the extreme North Atlantic; and in the sixth, those known from the Mediterranean.

[^73]List of the species enumerated in the foregoing paper, with a tabular statement of their gcographical and bathymetrical range.


A numerical summation of the columns of the above table gires the following:

|  |  |  |  |  | E <br> E <br> E <br> E |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brachyura | 0 | 4 | 2 | 3 | 1 | 1 |  |
| Anomira. | 10 | 1? | 1 | 3 | 1 | 2 | 2 |
| Mactura | 13 |  | 1 | 3 | 1 | 3 |  |
| Schizupoda | 4 |  |  | 2 | 2 | 3 |  |
| Cumavea. | 1 |  | 1 | 1 |  |  |  |
| Stomatopoda | 1 |  |  |  |  |  |  |
| Amphiputa. | 7 |  | 3 | 6 | 2 | 5 | 11 |
| Isoproma.... | 5 |  |  | 5 | 1 | 1 |  |
| Total. | 50 | 5 | 8 | 23 | 8 | 15 | 3 |

In addition to the above facts in regard to the distribution of the species, it should be added that two of the species, Lyrei/us Lairdii and Nephropsis aculeata, belong to genera heretofore known only from the Pacific region, and each represented there by a single species ouls; while a third species, Lysiosquilla armata, has its nearest known ally in a species known only from the same region.

Of the fifty species enumerated, fourteen are described as new and three others are indicated as probably new ; forty-three are here first recorded as belonging to the New England fauna south of Cape Col; twenty eight are new to the whole fauna from Cape Hatteras to Northern Labrador; and twenty-one are new to America, including Greenland. Of the forty three species new to the Southern New England fauna, fifteen are now known also from the New England fauna north of Cape Cod; and of the remaining twenty-eight, four were already known from the Straits of Florida, three from Greenland and Northern Europe, and two from the Mediterranean.

New Haven, Conn., November 12, 1880.

##   Mrectre.

## By DAVED S. JOKDAN and CHARLES H. GILBEET.

The writers have been engaged during most of the present year (1880) in making investigations of the fish and tisheries of the Pacific coast of the United States, in the interest of the United States Fish Commission and the United States Census Bureau. Extensive collections have been made at each of the principal fishing ports from New Westminster to San Diego.

In the present paper a catalogue is given of the species now known to inhabit the Pacific Ocean between the mouth of Fraser's River on the north and San Diego on the south. The names of the species not
seen by the writers are placed in italics. A rertical column is given for each of the principal localities, and a cross in any column opposite the name of a species indicates that we have obtained or examined, while in the field, specimens from the locality in question. In the last column, S. indicates a general southern distribution, most usually from Point Concepcion or Monterey to Magdalena Bay or Cape Sau Lucas; N. indicates a general northern distribution, usually from Mouterey or Cape Mendocino to Sitka, or beyond; C. indicates the distinctively Californian fauna, the abundance being usually greatest about Monterey and San Francisco. This fauna is chiefly composed of the two viviparous families Scorpanida and Embiotocida.

It will be noticed that the number of species obtained in Monterey Bay and about San Francisco is considerably greater than at any other points. This is partly due to the fact that these regions have more extensive fisheries than others. There is no doubt, however, that more species of fishes really oceur from Monterey to Point Reyes than elsewhere on the coast. Monterey Bay is the common meeting ground of the semi-tropical and semi-arctic fish fauna. There is nowhere an abrupt change along the coast. The three capes, Flattery, Mendocino, and Point Concepeion, are to some extent points of division.

*Syamathos arunclinuceun Gml .

+ Sragnalhus ifrierolineatum Ayres.
: Somi, ap. unv, Theuromichthys qualrituberculatas J. \& G. Proc. U. S. Nat. Mue. 1880, ilf, 50 yon Piruronec a quadrimberevtatus Pallia.
§Phoronecten perarcuatus Cope.


[^74]

[^75]

[^76]

[^77]| Name. |  | Culumbia River. | San Francisco. | - Sug Smaluont | "odeño plu' uug |  | $\begin{aligned} & \frac{8}{8} \\ & \frac{2}{2} \\ & \frac{5}{5} \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \frac{8}{8} \\ & \frac{8}{6} \end{aligned}$ | Greuterat abumdasce. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 248. 7aptoryx exampratus J. \& (\% |  |  |  |  |  |  |  | $+$ | S. |
| 244. Khimobatus iriserintis $J$. \& ( |  |  | $+$ |  |  | 4 | $\pm$ | $+$ | 8. |
| 245. Khinobatus productus Ayros |  |  | $+$ |  | + | T | $+$ | $+$ | 8. |
| 216. Torpenlo califormios Ayres |  |  | + | $+$ |  |  |  |  | C. |
| 247. Stuatina มug\%lna I)um |  |  | $+$ | $t$ |  | $+$ | 4 | $+$ | 8. |
| 248. Sommiosus microcephandum (13lo | $+$ |  |  |  |  |  |  |  | $\mathbf{N}$ |
| 293. Spualus meanthius L | $+$ |  | $+$ | + |  | $+$ |  |  | N |
| 250. Heterudentun fraveisci (Gri.) |  |  |  |  |  | + | $+$ | $+$ | 3. |
| 251. Notarlirnclane maculatus Ayr |  |  | $+$ | $+$ |  |  |  |  | $C$ |
| 252. Hoxumilum corinust d. \& G | $+$ |  |  | + |  |  |  |  | C. |
| 233. Cutulur ventri mus* (Garman) |  |  |  | $+$ |  | $+$ | + |  | 8. |
| 2-4. Muntolus hinuulne (J3lainvi.) J. |  |  | $+$ | $+$ |  | $\uparrow$ | $\pm$ | $+$ | 9. |
| 205. Rhinot riaceis lornloy dill |  |  | $+$ | + |  |  |  |  | C. |
| 2Fn. Triacio su-nifammiatum (iml |  |  | + | $+$ |  | $+$ | + | $+$ | C* |
| 257. (ralportrinus gnleus (Ta.) L3nin |  |  | $+$ | $+$ |  | $+$ | + | $+$ | 5. |
|  |  |  |  |  |  |  |  | $+$ | 8. |
| 250. (arcluntmom clatrens (L.) I3lain | $+$ |  | - |  |  |  |  |  | C. |
| 2wo. Enlamia lamia (Kisso) Gill . | + |  |  |  |  |  |  | 4 | 5. |
| 201. Sply 17as z.ymuna (L.) Raf |  |  |  |  |  |  |  |  | 5 |
| 202. Cotorlivum maximua (1..) Blain |  |  |  | $t$ |  |  |  |  | C |
| 202. Carvharmbon carrbarinat (J.0) J |  |  |  | $\pm$ |  |  |  |  | 5. |
|  |  |  |  |  |  |  | $+$ |  | S. |
| 265. Laruma commulica (linuel.) Flom |  |  |  |  |  |  |  |  | C |
| 206. Alopias vrulpen (Gmel.) Ikon |  |  |  | $+$ |  |  |  |  | C |
| 207. Fintomplaenus trinentatum (1aich |  | $+$ |  | $+$ |  |  |  |  | \% |
| 268. A numocoters plumbeus ( y $^{\text {rees) }}$ | $+$ |  |  |  |  |  |  |  | X. |
| 269. Polistotreuna dombeyi: (Mulle |  |  |  | $+$ |  |  |  |  | 8. |
| 270. Brancliontomn lanceolntum (Pa |  |  |  |  |  |  |  |  | 8 |
| Totals | 90 | 14 | 145 | 148 | 43 | 0 | 80 | 83 |  |

Species most abuniant northwarl (Alaskan fnnna)
Spectea mowt alunlant centrally (Californian finna) 76


Spectes found alno in Atlantic Ocean ......................................................................................................... 28
Specires not olitained by tho Commission 15
Specien not olitained by the Comminsion
Specres not recorded by previous writera 66

[^78]
## ON THE GENERIC RELATION OF BELONE EXILIE GIRARD. <br> By DAVID S. JORDAN and CHARLES H. GHLBERT.

The "needle-fish" (Belone exilis Girard), of the California coast, differs from the type of the genus Belone in the development of the gill-rakers. In Belone vulgaris the gill-rakers are well developed, long, and slender, and a patch of teeth is present on the vomer. In Belone exilis the gillrakers are entirely wanting, and there are no vomerine teeth. The gill-rakers are also wanting in the Atlantic species, Belone longirostris (Mitch.), Belone latimana Poey, Belone melanochira Poey, Belone notata Poey, and Belone hians (Cuv. \& Val.), and probably also in Belone cantruini, which is the type of the genus Tylosurus Cocco. The generic name Tylosurus may therefore be provisionally adopted for the species of Belone without gill-rakers. The candal keel on which the genus Tylosurus was based, and which is developed in T. exilis as in T. cantraini, has apparently no systematic importance.

Bloomington, Ind., December 2, 1880.

## 

## By DAVID S. JORDAN and CHARLES H. GILBERT.

A short visit to Provo, Utah, on Utah Lake, enabled one of the writers to make a small collection of the fishes of that locality. This collection has been since supplemented by an excellent series of the different species, presented to the United States National Museum by Peter Madsen and sons, fishermen at Provo. Four of the thirteen species obtained seem to be new to science.

## 1. Cottopsis semiscaber Cope.-Bull-head.

Two specimens. Professor Cope says of his types: "Skin prickly abore the lateral line, smooth below it posteriorly." Our specimens are villous above and below, as in Cottopsis asper, from which C.semiscaber differs chiefly in the less number of rays in the vertical fins.

The genus Cottopsis is distiuguished from Centridermichthys mainly by the absence of a slit behind the fourth gill, which, as I am informed by Dr. Güuther, is present in Centridermichthys fasciatus. Centridermichthys uncinatus, of the North Atlantic, agrees with Cottopsis in this respect, and should probably be referred to it. The American genera of Cot-
toids may be divided into two series, on the presence or absence of this slit, as follows:

Without slit.
Ascelichthys.
Psychrolutes.*
Cottunculus.
Uranidea.
Cottopsis (including Tauridea and
Potamocottus).
Cottus. $\dagger$
Artedius.
Hemitripterus.

With slit.
Blepsias.
Nautichthys.
Blennicottus.
Oligocottus.
Leptocottus.
Scorpænichthys.
Liocottus.
Triglopsis (including Oncocottus).
Gymnacanthus.
Aspicottus.
Icelus.
Triglops.
Hemilepidotas.
Melletes.
2. Coregonus williamsoni Grd.-Mountain Herring.

Very abundant.
3. Salmo purpuratus Pallas.-Lake Trout; Brook Trout.
(Salmo clarki Rich.)
Very abundant in Utah Lake; a food-fish of much value.
Specimens obtaiued do not differ in any visible respect from others taken in salt water in Puget Sound. This is apparently the parent stock from which S. spilurus, S. irideus, and S. gairdneri Rich., (S. truncatus Suckley) have scarcely yet become completely differentiated. $S$. henshawi Gill \& Jor. is a marked local variety of S. purpuratus.

## 4. Squalius tænia (Cope) J. \& G.-Leather-side Minnow.

Very abundant. We find it impossible to separate the genera Squalius, Telestes, Tigoma, Siboma, Cheonda, and Clinostomus, and we adopt for the whole group the name of Squalius. The genus Dobula was established by Rafinesque in the Ichthyologia Ohiensis (1820, p. 45). Although no type is stated, it was probably based on the Cyprinus dobula L., afterwards the type of Squalius Bonaparte.
5. Squalius montanus (Cope) J. \& G.

Also abundant.
6. Squalius cruoreus, sp. nov.

Allied to Squalius ardesiacus Cope, but with larger scales and shorter head.

[^79]Form of the species termed "Clinostomus", but less compressed. Body moderately elongate, somewhat compressed, symmetrical, the back considerably arched; caudal peduncle rather stont. Head subconical, laterally compressed, broad and rounded above; mouth short, oblique, jaws about equal. Premaxillary in front on the level of the lower edge of the pupil; maxillary reaching to opposite the front of the eye. Eye large, about as long as snout, $4 \frac{1}{2}$ in head. Isthmus narrow; scales firm, not closely imbricated; the belly with imbedded scales. Lateral line complete, raming low, but not greatly decurved. Dorsal fin inserted a little behind the ventrals, scarcely nearer base of caudal than snout. Caudal tin evenly forked. Pectorals shortish, not reaching nearly to the ventrals; the ventrals reaching to the vent. Head contained 4 times in length to base of caudal; greatest depth equal to length of head Fin-rays: Dorsal 9 ; abal 8. Scales 11-5ib-6. Teeth 2, 5-1, 2, withont evident masticatory surface. This latter character is, however, so variable in the Cyprmoids of this type as to be scarcely even of specific ralue. Back and tins dusky bluish; sides of body and head dark, with fine punctulations; a red spot at base of each ventral and of anal.

Numerons specimens, the longest 6 inches in length. This species is related to s.c crdesincus (Cope), but it has a deeper body and larger seales, the pectorals are shorter and length of the head proportionately less.
7. Squalius copei, ह?. nov.
( $\mathrm{H}_{\mathrm{y}}$ bopsis egregius Cope, Am. Rept. U. S. Geol. Surs. Terr. 1870, 438 ; Cope \& Yarrow, Wheelen's Expl. W. 100th Mer. v, 662, 1887; not Tiyoma egregia (iirarl.)
Numerous specimens of this species were obtained at Evanston, Wyo., of boys fishing with hook and line in tributaries of Bear River. It has not been observed in Utah Lake. As the original types of Tignma egregia, examined by us, have 66 scales only in the lateral line, the species called Tigoma egregia by Professor Cope is distinct from it, and may receive the above specitic bame.
8. Squalius atrarius (Girard) J. \& G.

This "chub" is very abundant in Utah Lake. It is exceedingly destructive to the young trout, well meriting the epithet of "devilish chub" applied to it by Mr. Madsen.
9. Squalius thomaleus, sp. nov.

Allied to Squalius niger (Cope), but with the large scales of Squalius squamatus (Gill).

Body robust, elevated anteriorly, somewhat compressed or flat-sided, although the back is very broad. Head broad, considerably concave in profile as seen from the side, as in the groups called Platygobio and Gila; the interocular space flattish, scarcely raised above the level of the upper edge of the eye. Suout rather broad, somewhat elevated at tip; the premaxillary on the level of the pupil; the form of the head reseinbling that of Chasmistes. Mouth very oblique, its cleft at an augle of about $4 \mathrm{j}^{\circ}$; the mandible much projecting. Maxillary extending to the
front of the eye. Eye small, anteriorly placed, its diameter $1 \frac{3}{4}$ in snout, 7 times in the length of the head. Isthmus very narrow, the gill-openings extending forward below. Teeth 2,5-4, 2; one of the teeth in the larger series with a broad, flattish, grinding surface, the others convex; the teeth comparatively short and stout. Scales large for the genus, subequal over the body, rather smaller on the belly, their texture firm, their exposed surfaces very broad and hexagonal. Dorsal fin inserted directly over the ventrals, behind the middle of the body. Caudal fin evenly forked, on a stout, rather long caudal peduncle, the rudimentary rays at its base not more than usually developed. Pectorals not long, extending three-fifths the distance to the ventrals; the ventrals about to the vent; the lower fins all short. Fin-rays: Dorsal 9; anal 8. Scales $10-55-5$. Length of head contained $3 \frac{1}{2}$ times in the total length to the base of caudal; the greatest depth of the body about the same.

Color blackish, tins all dusky. The ground shade is somewhat silvery, but the color is rendered very dark by the large number of small black specks.

The trpical specimens, two in number, are about a foot in length. This is therefore one of the largest members of the genus.

## 10. Apocope vulnerata Cope.

Numerous specimens, some of them 5 inches in length. The large specimens have the lateral line developed anteriorly only. Pectoral fins short, not reaching nearly to ventrals. Lat. 1. about 70.

## 11. Chasmistes liorus Jordan. - June Sucker.

A considerable number of fine specimens of this interesting species are in the collection, all of them about 18 inches in length. Color olivaceous above, with dusky mottlings formed of dark points; belly white; tins chiefly pale, shaded at the tips with dusky. Anal and lower lobe of candal tuberculate in the inales. Body slender, heavy at the shoulders, somewhat compressed, the caudal peduncle stoutish; depth of body at the shoulders half more than its thickness. Head not conic, low at the nape, and strongly concave in profle above, from the great prominence of the premaxillary spines, which form a conspicuous nose, elerated above the eye, and with its top even with the interorbital space, which is very broad and nearly flat. Preorbital large; suborbital moderate. Mouth large and very oblique, anteriorly on the level of the suborbital bones; the mandible strong, placed at an angle of $45^{\circ}$, its base below the nostrils, its length equal to that of the snout, which is about threesevenths that of the head. Upper lip somewhat protractile, narrow, vertical, its edge smooth; lower lip narrow, the two lobes well separated, very faintly plicate, the plicæ slightly uneven. No cartilaginous sheath to the jaws. Interorbital space nearly equal to length of snont. Eye swall, exactly median, 7 in head. Isthmus as broad as eye. Pharyngeal teeth essentially as in Catostomus. Scales much reduced in size and crowded anteriorly, those on the breast imbedded in the skin. Scales

7-61-9; 28 series in front of the dorsal. Insertion of dorsal nearly midway between snont and base of caudal, the fin elevated in front, the anterior ray twice the height of the posterior, and about equal to the base of the fin; the free margin of the fin nearly straight. Caudal fin deeply forked, the lower lobe the longer. Lower fins all small. Dorsal rays 11 ; anal 7.

## 12. Catostomus fecundus Cope \& Yarrow.-Etah Sucker.

This species occurs in Utah Lake in numbers which are simply enormous, justifying Mr. Madsen's assertion that the lake is the "greatest sucker pond in the universe". It is very destructive to the trout. It ascends the rivers in the spring to spawn at the same time as the latter species, on the eggs of which it feeds. In the interest of the food supply of Salt Lake City an organized attempt at the reduction or extirpation of this species may become necessary. The old trout feed largely on the young of this species, but the "suckers eat the trout first". No full description of Catostomus fecundus has been yet published. It will be seen from the following account that it is well separated from all its congeners, and that in many respects it approaches Chasmistes liorus. It is, in fact, probably the parent stock of the genus Chasmistes.

Body moderately stout, a little elevated, not much compressed, tapering into a long and slender caudal peduncle. Head subconic, the profile regularly decurved from the nape to the base of the premaxillary spines, which abruptly protrude, forming a distinct "nose", as in Chasmistes liorus. Preorbital long. Premaxillary a little below the level of the preorbital. Mandible large, oblique, placed at an angle of $30^{\circ}$ when the mouth is closed; its length about one-third that of the head. Upper lip protractile, full, pendant, with about four rows of coarse papillæ. Lower lip moderately developed, divided nearly into two parts by a broad emargination, each lobe with about six rows of coarse papillæ. Mouth not large. Interorbital space strongly convex, its width nearly equal to length of snout. Eye a little behind the mid. dle of the head, its diameter contained 7 times in the length of the head. Isthmus broader than eye. Scales 8-60-8, reduced in size forward; breast scaly.

Insertion of dorsal about midway between snout and base of caudal; the first ray nearly twice the height of the last, its length greater than that of the base of the fin. Caudal fin moderately forked, the lower lobe longest and widest. Pectorals loug, reaching more than half way to ventrals, the latter not to vent. Anal high. Fin-rays: Dorsal 11; anal 7 ; ventrals 9 . Length of head contained 4 times in total length to base of caudal ; greatest depth $4 \frac{1}{2}$ times. Color blackish above, silvery below, the fins slightly dusky tinged, the dark colors formed of black points.

This species seems to reach a smaller size than the other lake suckers.
13. Catostomus ardens, sp. nov.
( $\mathcal{f}$ Catostomus guzmaniensis Cope \& Yarrow; not of Girard.)
A large, thick-lipped species, allied to C. macrochilus, \&c.
Body rather elongate, subfusiform, little compressed, the back broad and somewhat elevated. Head conical, broad and convex above, the front regularly sloping from the nape to the snout. Mouth cntirels inferior, the mandible quite horizontal, the premaxillaries scarcely raised above the level of the base of the mandible. Upper lip very wide, full, pendant, with about eight rows of coarse, irregular papilla, of which the second and third rows from the inside are much larger than the others; upper lip continuous with the lower at the angle of the mouth . the lower lip cut to the base in the middle by a deep, abrupt incision Front of eye midway in head. Eye very small, 7 in head, 3. in the convex interorbital space. Isthmus broad, half broader than the eye. Fontanelle large, as in the other species noticed in this paper. Scales crowded anteriorly, 9-65-9. Breast with evident imbedded scales. Dorsal fin inserted a little behind the middle of the body, long and low, its anterior rays but three-fourths the length of the base of the fin, $1 \frac{1}{2}$ the length of the last rays; the free edge of the fin straight. Caudal fin short and broad, about equally forked, its upper lobe two-thirds the length of the head. Pectorals short and broad, their length threefourths that of the head. Ventrals short, not quite reaching rent. Anal very high, reaching caudal. Dorsal rays 13; anal 7. Length of head $3 \frac{2}{3}$ in body to base of caudal; greatest depth $4 \frac{1}{2}$. Teeth essentially as in the others.

Color blackish above, blotched with darker, the whole back and sides obscurely spotted; belly white; a narrow, bright, rosy, lateral band on the anterior part of the body, overlying the blackish ; fins mostly dusky mottled; top and sides of head rendered dusky by the presence of many dark specks.

This species is described from a large adult male nearly 18 inches in length, besides which we have a single young specimen.

There is another specimen in the collection, a large male fish 18 inches long, which agrees entirely with the type of C.ardens, with the following exceptions: The lower lip is wider, with less couspicuous, coarse, irregular papillx, in 8 to 10 rows; the upper lip with two rows of large papille and several series of small ones. The caudal fin is much larger, the upper lobe three-fourths the length of the head, the lower broader than the upper; the pectoral fin is very long, but little shorter than head; and the ventrals reach the vent. The dorsal has 12 rays, and is long and low, as in C. ardens. The scales on the breast are almost obsolete. The isthmus shows a structure very different from that of any other Catostomoid fish known. The gill membranes are partly free posteriorly, their free margius forming a broad fold across the narrow isthmus, as in the genus Cottus. This structure appears normal, and is not the result of injury. If it be permanent, thix form should probably constitute a distinct genus; if not, it may not be sepa-
rable as a species from Catostomus ardens. Meanwhile we abstain from giving a new name until more specimens can be obtained to settle the question.

Indiana State University, December 4, 1880.

##  

## By DAVID S. JORDAN and CHARELS H. GILBERT.

Sebastichthys chrysomelas, sp. nov.
(Sebastichthys nebulosus Jordan \& Gilbert, Proc. L. S. Nat. Mus. iii, 1と×0, 73, and elsewhere; not Sebastes nebulosus Ayres.)
In previous papers on the California rock-fish we have provisionally identified one of the common species as the Sebastes nebulosus of Ayres. Ayres himself, however, considered his owi nebulosus as without question the Sebastes fasciatus of Girard, which is the Sebastichthys fusciolaris of Lockington. The two species agree closely in general characters. but differ in the development of the spines on the head, and especially in color, the "fasciolaris" having the yellow markings in the form of small spots or specklings, which are confluent along the sides, forming a sort of band, the other species having the yellow areas all large. The original description of Sebastes nebulosus Ayres (Proc. Cal. Acad. Nat. Sci. i, 5,1854 ) applies in the main to both species; but the account of the coloration applies to S. fasciolaris Lockington, and not to our "S. nebulosus".

Ayres says:
"In color this fish is finely mottled with dusky yellow and dark brown; on the fins the latter hue predominates, and the lighter mottlings have rather a bluish aspect."

We propose, therefore, to consider fasciolaris a synonym of nebulosus, and to give to the species previously called nebulosus by us the new name chrysomelas, in allusion to its yellow and black coloration.

Description.-Body short and stout, not much compressed; highest at the origin of the first dorsal, thence tapering rapidly to the tail. Head short, bluntish, the profile very steep. Mouth rather small, nearly horizontal, entirely below the axis of the body. Lower jaw rather shorter than the upper in the closed month; no prominent symphyseal knob. Premaxillaries anteriorly on the level of the lower edge of the orbit; maxillary reaching the vertical from the posterior margin of the pupil.

Preorbital wide, its neck about half the diameter of the eye, its margin sinuate, usually with a spine.

Ridges on top of head very prominent, high and strong, ending in strong spines, which diverge backward. They are a little stronger than in S. carnatus, but lower than in S. nebulosus. The following pairs are present: Nasal, preocular, supraocular, tympanic, and occipital, five in all. Preopercular spines short and thick, the uppermost usually the

$$
\text { Proc. Nat. Mus. } 80-30 \quad \text { Feb. 16, } 1881 .
$$

longest. Opercular spines usual. A small spine on the interopercle and one on the subopercle at the junction of the two bones. Suprascapular spines present. Gill-rakers short, rather thick, compressed and somewhat clavate, the longest about two-ninths the diameter of the orbit. Scales moderate, rough, the accessory ones few; about $\overline{5} 6$ trans. verse series. Lower jaw, maxillary, nasal region, and space in front of eye naked.

Dorsal spines high and strong, the third to sixth spines subequal and highest, rather higher than the highest soft rays. Dorsal fin deeply emarginate. Second anal spine much stronger than third, the two about equal in length. Pectorals with very broad base, reaching beyond the tips of the ventrals, which reach nearly to the vent. The lower pectoral rays thickened. Caudal slightly rounded.
D. XII, I, 13; A. III, 6.

Coloration black and yellow; the latter shade is usually a clear, warm, brownish yellow, with some specks of deeper orange. It varies from a dusky orange to olivaceous yellow, the latter color more often seen on the belly. The dark shades are black or dark brown, with slight olive tinge. The colors are usually purest in specimens taken in deep water.

The dark color predominates on the back; the membrane between the third and fourth dorsal spines and an area at the base of these spines is always pale; a yellow blotch extends thence downward and backward, joining the light color of the belly. Another light area passes from near the angle of the opercle around the pectorals, uniting below them. Tbree other blotches occur along the back, one under the eighth dorsal spine, one under the last spine, and one under the last soft ras; from each of these irregular pale areas extend down the sides. The fins have the color of the region to which they belong. Head above with dusky cross-shades and faint bands radiating from the eye.

This species reaches a length of about 15 inches, and is found in large numbers on the coast of California, from the island of San Nicolas, which marks the southern limit of the abundance of the "rock-fish", to Cape Mendocino. It is common in the markets of San Fruncisco, although not one of the most abandant species. Its affinity with S.carnatus has been elsewhere noticed (Proc. U. S. Nat. Mus. iii, 1880, 74).

A table of measurements will be found on page io of vol. iii.
The species described by us as Sebastichthys rexillaris in vol. iii, p. 292, is represented in Puget Sound and the Gulf of Georgia by a variety or subspecies with lower dorsal spines and much darker and duller coloration, the dark shades being of a reddish brown. The latter form is apparently identical with Sebastes caurinus Richardzon, Ichth. Voy. Sulphur, i, 1844, 77, pl.41, fig. 1, described from Sitka.

The species may therefore take the name of Sebastichthys caurinus, and the California form that of subspecies vexillaris.

Indiana State, University, Bloomington, Ind., November 6, 1880.

##   

## By G. BROWN GOODE.

The following paper enumerates 51 species of fishes known to occur outside of the hundred fathom curve along the southern coast of New Englaud. Nearly all were obtained by the Fish Commission steamer "Fish Hawk" on its three trips to the "Lopholatilus Ground" in September. Several of the species were described a few weeks ago in another paper.

## MALTHEIDE.

## 1. Halieutzea senticosa, new species.

A single small specimen (No. 26088) was obtained, September 13, from station 879 , at a depth of 225 fathoms, and on October 2 , from station 895,238 fathoms, four specimens (No. 26175), ranging in length from $60^{\mathrm{mm}}$ to $140^{\mathrm{mm}}$.

The occurrence on the Atlautic coast of the United States of a species of the genus Halieutca, hitherto known only from China, is exceedingly interesting. A related genus, Halieutichthys, Poes, is represented in the West Indian fauna by the species Halieutichthys aculentus.*

Description.-Disk orbicular, nearly as wide as long; its length less than half that of the body; its lateral outlines prolonged on each side in a strong spine, armed at the tip with a group of irregularly arranged acicular spinelets. Body covered above with numerous stout, conical spines with stellular bases. These are largest upon the postdiscal portion of the body, where they are approximately arranged in about four irregular longitudinal rows upon each side of the dorsal fin. Closely set rows of these stout spines mark the onter margin of the lisk, and there is also a cluster of tive to seven upon each carpal peduncle. Outside of these marginal spines, upon each side, is an irregular marginal row of five depressed, knife-like spines, each ripped with a crown of three acicular spinelets. On the anterior margin of the disk the two rows of spines coalesce and form a bristling row of closely set spines, some pointing dorsally, some laterally, some rentrally. There are two kinds of spines upon the dorsal surface, in addition to the large ones already described: some large, somewhat remote from each other, conical, stellular; others, much more numerous and filling the interspaces, prickle-like, stellular. Belly armed with mumerous closely set spines of a similar kind. Snout somewhat projecting, armed with three many-

[^80]Lophius aculeatus, Mitchill, Amer. Monthly Magazine, ii, 1^18, p. 325 (specimen from Straits of Bahama).
Halientichthys aculeatus, Goobe, Proc. [f. S. Nat. Mus, ii, 1×79, p. 104 (ealling attention to Mitchill's description).-Goome \& Bean, ibid. p. 333 (specimen from Key West).
Halieutichthye reticulatur, Poey, Proc. Acad. Nut. Sci. Phila. 1863, p. 91 (epecimen from.Cuba).
tipped spines. A spine-armed ridge in front of the eyes, over the top of the snout. In this four spines are conspicuous, one in front of each eye, and between these a larger pair, in front of the supraorbital ridges. From these last-mentioned spines extend spine-armed ridges along the upper margins of each orbit. Under the snout is a cavity containing a barbel, pedicelled, with thick, club-shaped, trilobate tip. On each side of this cavity are the nasal openings.

The width of the mouth is equal to the distance between the centers of the pupils of the eyes, this being much less than in Halieutca stellata, in which the month is proportionally twice as large. The shape of the disk is less circular than in the Asiatic species, being intermediate between this form and Halieutichthys. Other points by which H. stellata may be distinguished are the absence of the strong lateral spines of the disk; the slighter specialization of the carpal peduncles; the greater proportionate size of the disk, which occupies two-thirds of the entire length of the fish; the less immediately axillary position of the gillopenings; the less spiny armature of the body, the spines upon the margin being smaller and less crowded; and the entire absence of spines upon the ventral surface.
D. 6; A. 4; C. 8; P. 13-15; V. Measurements.


## LOPHIIDE.

## 2. Lophius piscatorius, Linn.

A specimen, No. $26170,26^{\mathrm{cm}}$ long, containing immature ova, was taken at station 894 , at a depth of 365 fathoms; also a large specimen with immature ova, No. 26098 , from station 876,120 fethoms; and a smaller one, perhaps two years old, No. 26070 , from station $578,142 \frac{1}{2}$ fathoms.
3. Mancalias uranoscopus (Mnrray) Gill.

Ceralias uranoacopus, Murray, in Wyville Thompron, The Atlantic, 1e7e, ii, 1. 67, fig. 20 (Am. ed.).

Mancalias uranoscopue, Giti, Proc. L. S. Nat. Mus. i, $187 \times$ (Oct. 17), p. 22x.
A single specimen, No. 26159, 185 ${ }^{\text {man }}$ loug, was taken October 2 at station No. 893 , at a depth of 372 fathoms. It is of much interest, only one specimen having hitherto been found. This was dredged July 23, 1873, by H. M. S. Challenger, southeast of Madeira (lat. $22^{\circ} 18^{\prime}$ N., Iong. 220 $2^{\prime}$ W.), at a depth of 2,300 fathoms (temperature $1060^{\prime} \mathrm{C}$.). Mr. Mur. ray's description, which is sufficiently accurate except that our specimen has four instead of three rays in the second dorsal, runs as follows: The specimen is $90^{m \mathrm{mon}}$ in length from the snout to the end of the tail, compressed laterally, and of a uniform black color. The anterior spine of the first dorsal fin is produced into a long filament, ending in a pearshaped bulb, terminating in a very distinct, semi-transparent, whitish spot. This spine has its origin on the posterior portion of the head, and when laid back it reaches nearly to the tip of the tail. The second part of the first dorsal is placed far back on the body, and cousists of two short, fleshy tubercles, which lie in a depression in front of the second dorsal fin. The second dorsal has three rays; the anal is opposite the second dorsal and has four rays; the caudal has eight rays, the four central rays being much larger than the others, and bifid. The pectorals are small and have ten very delicate rays. The gill-opening is a slit situated below the pectoral fin. The upper jaw is formed by the inter. maxillaries, and is armed, together with the lower jaw, with a series of teeth of moderate size, which can be depressed inward as in Lophius. The skin is thickly covered with minute, embedded, conical spines. The eges are very small and are placed high up on the middle of the head. The presence of a fish of this group at so great a depth is of special iu. terest. From its stracture, and from the analogy of its nearest allies, there seems to be no reasonable doubt that it lives on the bottom. It is the habit of many of the family to lie hidden in the mad, with the long dorsal filament and its terminal soft expansion exposed. It has been imagined that the expansion is used as a bait to allure its prey, but it seems more likely that it is a sense-organ intended to give notice of their approach.

## ANTENNARIID压。

## 4. Chaunax pictus, Lowe.

Chaunax pictun, Lowe, Trans. Zool. Soc. Lond. iii, 1846, p. 339, pl. Li.-GU'ythere, Cat. Fish. Brit. Mus. iii, 1861, p. 200.-Gill, Proc. Acad. Nat. Sci. Phila. $18 \mathrm{c}_{3} 3$, p. 90 (generic diagnosis in synopsis of family); Bull. $\mathbf{L}$. S. Nat. Mus. i, $1 \times 78$, p. 222.

A single small specimen of a species of Chaunax, $37^{\mathrm{mm}}$ long, was obtained September 4 , at station 869, at a depth of 192 fathoms.
While there is a general agreement between the specimen deseribed from Madeira by Lowe under the name Chaunax pictus* and the immature individual of the same genus before me, there are certain characters, such as the slightly swaller number of fin-rays in dorsal and caudal, and the difference in the shape of these fins in the latter, which renders the question of their identity somewhat doubtful. I am unwilling, however, to establish a new specific name on this immature specimen, particularly since the shape of the fins is likely to be modified with age, and the difference in the radial formula is hardly of specitic importance. The sperimen is therefore provisionally referred to Lowe's species. A larger specimen from our coast is mach to be wished for. Lowe's was $406^{\mathrm{mm}}$ ( 16 inches) long, and "was taken with an ordinary bait and line at the Picos, a rocky shoal about a leagne from the shore of Camera de Lobos, a village five or six miles to the westward of Funchal, on the 12th of March, 1846 "; depth of water not stated. The color of this specimen was bright orange above, rosy at the sides, and with tins and tips vermilion; on the belly rosy white, with fins vermilion.
The color of our specimen, No. 26021, is brownish gray. The rostral tentacle is nearly as long as the diameter of the eye.
Radial formula : D. I, 10 ; A. 5; C. 7; V. [3]; P. 10.
Mcasurements.

|  | Milli. meters. | 100ths of length |
| :---: | :---: | :---: |
| Extreme length | 37 |  |
| Length to base of midde caudal raym | 27 | 100 |
| Boaly: |  |  |
| Crastent heiphe |  | 18 |
| Greatent width...i. |  | $1:$ |
| Heal ${ }^{\text {least beight of tail }}$ |  |  |
| (ireateat length (to brauchial aperture) |  | it |
| Greatest width |  | ${ }^{33}$ |
| With of interurbital |  |  |
| Leatith of maxiliars |  | 11 |
| Letath of maudibio |  | is |
| Diameter of orbit |  | 3 |
| Dornal tentaclo |  | 4 |
| Dorsal fin: |  | \% |
| Anal: |  |  |
| Distance from snout |  | 74 |

[^81]Measuremenls-Continued.


## PLEURONECTIDE.

## 5. Bippoglossus vulgaris, Fleming.

Pleuronecten hippoglossus, Linn. Syst. Nat. ed. x, i, p. 269
Hippogleasu* culgaris, Fleming, Brit. Animals, p. 199.-GOnther, Cat. Fieh. Brit. Mus. iv, 1862, p. 403.
Hippoglossus americanus, Gill, Proc. Acad. Nut. Sci. Phila. 1864, p. 220.
The New London halibut-smacks obtain many halibut on the south part of George's Banks and the neighboring shoals. An individual was taken, years ago, on the outer side of Fisher's Island, Connecticut. The halibut may, in all probability, be found to be abundant on the edge of the continental slope south of Cape Cod, since here have been recently obtained nearly all the species most constantly associated on the northern halibut grounds on the outer edges of La Have, Brown's, Sable Island, and other banks off the coast of Nova Scotia and Newfoundland.
6. Eippogloseoides platessoides (Fabricius) Gill.

Plearonectes plateqnoides, Fabricius, Fauna Groenlandica, 1780, p. 164 (excellent deacription).-"Vidensk. Selsk. Naturv. och Mathem. Afhandl. i, p. 50, pl. ii, fig. 2."

Cilharme phatessoides, Reinhardt, ibid. vii, $103 \%$, p. 130.-Króyer, in Gaimard, Voyages en Scaudiuavie, etc. pls. xxi (excellent figure).
Drepano (p)setta platessoides, Gill, Cat. Físh. E. Coast N. America, 1801, p. 50.
Hippoglossoides platessoides, Gili, Proc. Acad. Nat. sci. Phila. 1eG4, p. 217.Goode \& Bean, Cat. Fish. Essex Inst. 1879, p. 7.
Platessa dentata (not Pleuronectes dentatur, Mitchill), Storer, Rep. Fisb. Mass. 1899, 1. 143; Hist. Fish. Masw. 126it, p. 197, pl. xxx, fig. 3.
Hippoglossoidew dentatus, Gill, Cat. Fish. E. Const N. A. 1861, p. 50.-Gilsther, Cat. Fish. Brit. Mus. iv, 1862, p. 40.i.
Pomatopsetfa dentata, Gill, Proc. Acad. Nat. Sci. 1864, p. 217 (with def. of Pomatopselta, p. 215).
Hippoglonsoides limundoides, Goode \& Bean, Amer. Journ. Sci. \& Arts, xvii, $1876, \mathrm{p} .39$.
Not nunsual in deep water off Southern Massachusetts and Rhode Island, approaching the coasts in winter, but not taken in these trips of the Fish Cotnmission steamer.
7. Paralichthys oblongus, (Mitchill) Jordan.Pleuronectes oblonga, Mitchill Trans. Lit. \& Phil. Soc. N. Y. i, 1814, p. 391-Platessa oblonga, Storer, Syn. Fish. N. A. p. $225 .-D E K$ y Y, Zool. N. Y. Fish.1842, p. 299, pl. xlviii, tig. 156.
Chgnopsetta oblonga, Gill, Cat. Fish. E. Coast N. A. 1861, p. 50 (name of genus proposed; no definition); Proc. Acad. Nat. Sci. Phila. 180̈4, p. 218 218 (genus defined p. 216).
Pseudorhombus oblongus, GOnthar, Cat. Fish. Brit. Mus. iv, 180̈4, p. 425.Goode \& Bean, Cat, Fish. Ensrx Cu. \&e Mass. Bay, 1879, p. 7.
Paralichthys oblongus, Jordan, MSS.
Platesa quadrocellata, Storzer, Proc. Bost. Soc. Nat. Hint. ii, 1847, p. 242: Hist. Fish. Mass. 1867, p. 203, pl. xxxi, fig. 3.
Platessa quadrocularis, Gill, Cat. Fish. L. Coast N. A. 1861, p. 51.

Specimens were obtained at the following trawling stations: No. 26078, from station 873,100 fathoms.
8. Monolene sessilicauda, Goode.

Monolene sessilicauda, Goode, Proc. U. S. Nat. Mus. iii, 1680, p. $3: 38$.
Specimens were obtained from the following stations:

Fisthome

No. 26099, station 876.................................................................................. 120
No. 26109, station 877 ............................................................................. 126
9. Citharichthys arctifrons, Goode.

Citharichthys arctifrons, Goode, Proc. U. S. Nat. Mus. iii, 1880, 1. 341.
Specimens were obtained from the following stations:
Fathome.


No. 26117, station 876........................................................................ 120
No. 20118, station 876....................................................................... . . . . 120

No. 26129, station 874...................................................................................... 63 .

10. Citharichthys unicornis, Goode.

Citharichthys unicorniw, GOODE, Proc. IV. S. Nat. Mus, iii, 18et, p. 34:.
Specimens were obtained as follows :
Fathome.
No. 26003, station 870 ........................................................................... 15.
No. 26003, вtation 871 .... ........................................................................... . . . 155
11. Limanda ferruginea (Storer) Goode \& Bean.

Platessa ferruginea, Storer, Hist. Fish. Mass. 1867, p. 198, pl. xxx, fig. 4.
Myzopsetta ferruginea, Gidl, Cat. Fish. F. Coant N. A. 1 Nil, p. 51 (Lenus not defined) ; Proc. Acal. Nat. Sci. Philn. 18fid, p. 217 (genus rlefined), et alibi.
Pleuronectes ferrugincus, GOnther, Cat. Fish. Brit. Mus iv, 1062, p. 44\%.
Limanda forruginea, Goode \& Bran, Lint Finh. Eiseex Co. \& Mass, Bay, 1879, p. 6.

Platessa rostratn, H. R. Stomen, Boston Journ. Nat. Hist. v, 185i, p. 26id, pl. viii, fig. 2.
Myzopsetta rostrala, Gill, 11. c.
Numerous specimens were taken in 1874,1875 , and 1850 south of Cape Corl, in deep, cold water. The most souther'n locality is the Pecten Ground off Watch Mill.

## 12. Limanda Beanii, new species.

Two specimens, No. 26102, were obtained-one from station 875, at a depth of 126 fathoms; one from station 876,120 fathoms-which are provisionally referred to the genus Limanda, Gottsche, as understood by American ichthyologists. The species surely belongs to Pleuroneotes, as limited by Giinther, the weight of whose opinion regarding the difficulties of making generic divisions in this group is fully appreciated. The extreme brevity of the snout and the elongate-elliptical form of the body render its shape very unlike that of Limanda ferruginea of our own coast and Limanda platessoides of the Eastern Atlantic. In its general appearance, except that the ventrals are not both lateral, it resembles cousiderably the species mentioned above.

Description.-The body is elliptical in form, with angular ontlines. Its height is three-eighths (38) of its total length, and slightly more than twice the length of the head, and about three times the greatest height of the anal fin. Its height at the ventrals (25) is one-fourth of its length and less than distance from snout to origin of anal. Its least height, at base of tail (12), is half its height at ventrals. It is thin, its greatest width (7) not excceding the diameter of the orbit.

The scales are subcircular, small, strongly pectinate on the colored side, cycloid on the blind side, where they are also larger, there being about fifty (as nearly as can be counted in the specimens before inc) in the lateral line, behind the curve, while on the colored side thore are probably sixty. The lateral line on the colored side makes a very abrupt, conspicuous, angnlar, high curve over the pectoral fin. The chord of this are is nearly as long as the head of the tish, its height half as great. The scales in the lateral line are highly specialized, particularly along the curve, which appears to contain about twenty-seven of them, while posterior to this, in the straight portion, there are abont sixty. The specialized scales of the lateral line extend far out upon the caudal fin. On the blind side the lateral line is little conspicuons, the scales very slightly specialized, and it becomes obsolete in the regiou where, upon the colored side, the curve is located. The scales extend far out upon the caudal tin, but are not present upon the other fins.

The head is very short, its length (18) contained about five times and one-half in the total. The snout is very short ( 2 ), one-fiftieth of the total, and the mouth is small, its cleft subvertical, and the maxillary extending very slightly behind the anterior margin of the orbit. The teeth are inconspicnous, apparently in two rows, stronger and more numerons on the blind side, barely discernable in upper jaw, absent elsewhere in the month.

The eyes are large, prominent; their diameters (7) greater than tho length of the maxillary ( 6 ) and equal to that of the mandible (6). They are very closely set, the interorbital space marked by a knife-like edge of bone. The upper eye, in its outline trenching upon the dorsal outline of the head, is almost directly above its mate. Together they occupy
nearly three-fourths of the width of the head at the perpendicular passing through their centers.

The dorsal fin begins over the posterior part of the pupil of the upper eye. Its rays are long, widely separated, and with their tips protruding beyond the membrane, giving to this, as also to the anal, a ragged, irregular appearance. Its greatest height (8) is equal to half the length of the head. The anal is inserted under the axil of the pectoral, and its height is about the same as that of the dorsal.

The length of the caudal (20) is equal to one-fifth of that of the body, without including caudal. It is broad, fan-shaped, acutely convex in outline. The distance of the ventral from the snout (28) is about onethird the length of the base of the dorsal. The arrangement of these fins upon the ventral keel is much as in Limanda ferruginea, the right fiu being almost upon the median line. The pectorals are normal.

The color is grayish brown, mottled with darker patches. There is a conspicuous black blotch upon the outer rays of the caudal on either side.

Radial formula: D. 64 ; A. 63; C. 18; P. 7; V.6; lateral line about 85.
This species is dedicated to my associate Dr. Tarleton II. Bean, of the United States National Museum.

Mcasurements.

proceedings of united states national museum.475
13. Glyptocephalus cynoglossus (Linn.) Gill.
Pleuronectes cynoglossus, Linnseus, Syst. Nat. ed. x, i, 1758, p. 269.
Glyptocephalue cynoglossus, Gill, Proc. Acad. Nat. Sci. Phila. 1473, p. 161.- Goode \& Bean, Proc. U. S. Nat. Mus. i, 1878, p. 21 (with extensive synonymy).

Numerous specimens of varions sizes, from the young of two centi
meters to the adult of fifty centimeters, were taken in the following
localities:
14. Thyris pellucidus, Goode.
Thyris pellacidus, Goode, Proc. U. S. Nat. Mus. iii, 1880, p. 344.
Specimens were obtained from the following localities:
No. 26005, station 871 ..... 115
No. 26006, station 872 ..... 8

## MACRURIDAE.

15. Macrurus Fabricii, Sundeval.

Macrurus Fabricii, Scndeval, "Vet. Akad. Hundl. 1840, p. 6".-Goode \& Bean, Cat. Fish. Essex Cuo \& Mass. Bay, 1879, p. 7.
Macrurus rupestrin, Glesteele, Cat. Fish. Brit. Mns. iv, 1862, p. 390,
There can be little doubt that this species occurs south of Cape Cod, though no living specimens have yet been obtained. The first specimen found on the coast of the United States was picked up at sea, floating, somewhere off Gravesend, N. Y.
16. Macrurus Bairdii, Goode \& Bean.
Macrurua Bairdii, Goode \& Bean, Amer. Jouri. Sci. \& Arts, xir, 1877, pp.
471-473 (Massachnsetts Bay); Cat. Fish. Essex Co. \& Mase. Bay, 1769, p. J.

Specimens were obtained from the following localities:
Fathome.
No. 26062, stations \&79-880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22゙̄-252
Nos. $26163,26166,26187,26194$, station $893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$.
Nos. 26163, 26194, 26217, 26218, station 894 ............................................. 365
Nos. 26191, 26195, 26210, station 895................................................ 238

Nos. 26212, 26217, 26218, station 891.............................................. . . . 487
17. Macrurus carminatus, Goode.

Macrurus carminatus, Goode, Proc. U. S. Nat. Mus. iii, 1880, p. 346.
Specimens were obtained from the following localities:
Fathome
No. 26001, station 81 .............................................................. . .... 115

> GADID E.
18. Gadus morrhua, Linnæus.

The cod occurs in deep water on this portion of the coast.

## 19. Phycis chuss.

Several specimens apparently of this species were obtained outside of the handred-fathom curve.
20. Phycis Chesteri, Goode \& Bean.

Phycis Chesteri, Goode \& Bean, Proc. U. S. Nat. Mus. i, 1878, p. 256; Cat. Fish. Easex Co. \& Mass. Bay, 1o79, p. б.
Numerous specimens, old and young, were found at stations 8i8, 142 fathoms; 879, 225 fathoms; 880,252 fathoms; 881 , 325 fathoms; 892, 487 fathoms ; 895,238 fathoms.

This species and Macrurus Bairdii appear to be the most abundaut fishes of this district, occurring in immense numbers and breeding copiously.
21. Phycis regius (Walbaum) Jordan \& Gilbert.

Blennius regius, Walbaum, Artedi, 1792, p. 186.
Urophycis regins, Gill, Proc. Acaul. Nat. Sci. Phila. 186:3, p. 240.
Phycis regius, Jordas \& Gilbert, Proc. Li. S. Nat. Mus i, 187e, p. 371.Goode \& Bean, Cat. Fish. Essex Co. \& Mass. Bay, 1899, p. 8.-Bean, Proc. U. S. Nut. Mus iii, $1 \times 20$, p. 70.
Euchelyopus regalis, Scineider, Bloch. Syst. Ichth. i (cloth), 1801, p. 33.
Phycis regalis, Kalp, Archiv fur Naturg. 1858, p. 89.-Gild., Cat. Fish. E. Coast N. A. 1861, p. 49.-Giestith, Cat. Fish. Brit. Mus. iv, 1802, p. 354.
"Gadus bennioides, Mitchill, Medical Register, 1814."
Giulus punctatus, Mitchill, ibid.
I'hycis punctatum, Dekay, Zool. N. Y. Fish. 1842, p. 292, pl. xlvi, fig. 149.
A specimen was obtained at station 870 , in 155 fathoms of water. The distribution of this species is very puzzling. It has been found at Halifax, Nova Scotia, and south to the Cape Fear River, but seems nowhere abundant except about Long Island.
22. Haloporphyrus viola Goote \& Beau.

Haloporphyrus riola, Goode \& Beas, Proc. U. 8. Nat. Mus. i, 1878, p. $25 \%$; Cat. Fish. Essex Co. \& Mass. Bay, 1879, p. 世.
Specimens were taken October 2, at station 893, in 372 fathoms of water. The species has never before been found except on the outer edges of the Nova Scotia banks.
23. Enchelyopus cimbrius (Linn.) Jordan.

Gadus cimbrius, Linnevs, Syst. Nat. ed. x, i.
Onos cimbrius, Goode \& Bean, Proc. U. S. Nat. Mus i, 1878, p. 349 (with full synonymy) ; Cat. Fish. Essex Co. \& Mass. Bay, 1879, p. 8.
Enchelyojus cimbrius, Jórdax, MSS.
Several specimens were obtained outside the hundred-fathom curve.
24. Merlucius bilinearis (Mitchill) Gill.

Numerous specimens of old and young were taken September 4, September 13, and October ${ }^{2}$, in almost every haul of the trawl-nets, at whatever depth. The alults appeared to be in the middle of the spawning season, the eggs being separated in the ovaries and flowing easily in specimens taken at the depth of 250 and 487 fathoms. This phenomenon is of the greatest interest and importance, since it may serve to illustrate how other species, common near the shores, such as the menhaden (Brevoortia tyrannus) and the bluefish (Pomatomus saltatrix), retreat to deep water to spawn.
25. Hypsicometes gobioides, Goode.

Hypsicometes gobioides, Goods, Proc. U. S. Nat. Mus. iii, 1\$80, p. 348.
A single specimen of this puzzling little stranger was obtained at station 871 , in 115 fathoms of water.

## STICHAID 狌。

26. Eumesogrammus nubbifurcatus (Storer) Gill.

A single specimen of this arctic species was obtained off the mouths of Newport Harbor.

## LYCODIDE.

27. Lycodes Verrilli, Goode \& Bean.

Lycodes Verrillii, Goode \& Bean, Amer. Journ. Sci. \& Arts, xvi, 187\%, p. 474 ; Cat. Fish. Essex Co. \& Mass. Bay, 1879, p. 9.
Specimens were obtained at the following localities: Statious 870, 155 fathoms; 879,205 fathoms ; 880, 2521 fathoms; 881,325 fathoms; 893 , 372 fathoms; 895, 238 fathoms; often in considerable abundance.
28. Lycpdes paxillus, Goode \& Bean.

Lycodes paxillus, Goode \& Bran, Proc. U. S. Nat. Mus. ii, 1879, p. 44; Cat. Físh. Essex Co. \& Mass. Bay, 1879, p. 9.
Two specimens, No. 26181, came from stations 891 and 894,487 and 365 fathoms. The unique specimen previously known was obtained by Captain Collius in the gully between La Have and Sable Island Banks. The enormous development of the buccal muscles appears to be a character acquired in old age, as also the special peculiarities of dentition mentioned in the description.

> ANARRHICADIDA.
29. Anarrhichas lupus, Linneus.

A single small specimen, about $30^{\text {man }}$ in length, was obtained at station 866 , in 65 fathoms. At the time of writing the present notice this is not available for examination, but it is believed to be the young of Anarrhichas lupus, never before recorded sonth of Cape Cod.

> LIPARIDIDA.
30. Liparis sp.

Specitnens of a Liparis closely resembling L. ranula, Goode \& Bean, were obtained at station 879, and are preserved for future discussion.

COTTID.

## 31. Amitra liparina, new genus and new species (Coltidu).

Two specimens of the fish here described were obtained, October $\mathfrak{2}$, it station 891 , in 487 fathoms; one, No. $26184,164^{\mathrm{mun}}$ long; also a smaller one, $55^{m}$. Their structure was so peculiar that I have long hesitated to describe them. They are evidently Liparoid fishes, without ventral fins or ventral disk. Professor Jordau and Dr. Bean have examined
them with me, and the decision has been reached that they should be placed in a new genus of the family Cottide. Professor Jordan considers this genns as forming one of the most abnormal types of Cottide, approached through Cottunculus and Psychrolutes, and also closely allied to Liparide.

## AMITRA, new genus.

Cottoid fishes, with small head, elongate, attenuate, body covered with thick, lax, slimy skin. Ventral fins absent. Operenlar stray present. Pseudobranchia present. Gills $3 \frac{1}{2}$, without slit behind last (?). Gillopenings closed below, restricted to small slits under the very small operculun. Operculum very small, strap-shaped. Lower jaw included within the upper. Teeth weak, paved. First five rays of the dorsal non-articulate, the others grading gradually into the llexible rings.
32. Amitra liparina, new species.

Description.-Body elongate, compressed posteriorly, very thin at the tail, covered with a gelatinous, lax, transparent skin, which is separated from the body and the flus by a filmy, mucons intertissue. . Greatest height of body (18) contained five and one-half times in its length, withont caudal.

Head thick, convex between eyes, its greatest width (11) nearly threefourths its length (15), which is contaned six and two-third times in the length of the body. Snont convex, protruding. Month under the snout and far back from its tip. Eyes lateral, in diameter (3) about half the width of the interorbital area (5). Nostril in front of eye. Pores along the upper lip. When the head is riewed from directly in front the openiug of the mouth seems to be conrex upward.

The dorsal fin begins over the end of the pectoral, and the rays and outline of this, as well as of the anal, are hardly visible through the thick, lax skin. The rays are thick, but very flexible. The anal begins under the eighth to tenth dorsal ray. The dorsal and aual rays lie closely connected with those of the caudal, which are somewhat larger, and extend in a pencil like point.

The pectoral is broad, its lower base almost under the posterior margin of the orbit. It is composed of twenty-three rays, the six lowest of which are prolonged beyond the lower rays contignons. The jugular disk cannot be found.

Radial formula: 1). 67 ; A. 54 ; C. (i; P. 23.3.
Color: Yellowish white, dasky toward the tail and blackish upon the anterior part of the head. Abdominal cavity showing black through the skin.

Two other specimens of this or a related species were obtained (No. 26179) from station 894, in 365 fathoms of water, but they are in poor condition and cannot at present be made out.

## Measurements.

| Current number of apecimen Locality | 26184. <br> Station 487. |  |
| :---: | :---: | :---: |
|  | Millio metera. | $\begin{array}{\|c} \text { 100ths } \\ \text { of } \\ \text { lengh. } \end{array}$ |
| Extreme length | 164 |  |
| length to dase of midule caudal rayn | 150 | 100 |
| Boily: |  |  |
| Greatest height |  | 18 |
| Hear: |  |  |
| $G$ Greatest length |  | 13 |
| Greatest width .o. . . . |  | 11 |
| Width of interorbital area |  |  |
| Length of mnout. |  | 4 |
| Dorasl: |  |  |
| Distance from anout |  | 30 |
| Greatest height. |  | 6 |
| Anal: |  |  |
| Distance from snont . |  | 37 |
| (c) licight at longeat ray |  | 5 |
| Cmal: <br> Lenath of middle raya |  |  |
| Pectoral: |  |  |
| Diatance from anout (below) |  | 8 |
| Length.... |  | 10 |
| Dorsal. |  | 07 |
| Anal |  | ${ }_{6} 8$ |
| Pectoral |  | -3 |

33. Cottusculus microps, Collett.

Cottunculus microps, Collett, Tillhægsh. til. Vidensk.-Sclsk. Forh. Christiania, 1804, p. 20, pl. i, figs. 1-i3; Norges Fiske, 1875, p. 20, pl. i, figs. 1-3; Fiske Nordhans-Expeditionens, 1878, p. 20; Meddelelser om Norges-Fiske Aarena, 1575-78, 1879, p. 11.
Specimens from the following localities have been obtained:

## Fathoms.

No. 26081 (1), station 880 ...................................................................... 24.24
No. 26167 (3), station 892 ................................................................. 372
station 894 ............................................................... .... . . . 365
station 895 ............................................... ....................... . . . 238
No. 25176 (3), station 895 .................... . . ........................................... 238
No. 26140 (1), station 880 ................................................................... $2-2 \frac{1}{2}$
The largest measures $20 \tilde{\Xi}^{m m}$, the smallest $25^{\mathrm{mmm}}$. This species, never before found except on the Norwegian coast, was described from a specimen measuring $15^{\mathrm{mm}}$, Iredged by Prof. G. O. Sars at Hasvig, near Hammerfest, in 200 fathoms, August, 1874; another, $50{ }^{\mathrm{mm}}$ long, near Trondhjemsfjord, in 1878, by Mr. Storm, at a depth of 180 fathoms; arain, at a depth of 191 fathoms, 18 miles northwest from Hammerfest ( $720 \geq \mathbf{J}^{\prime}$ $\mathbf{N}$., $20^{\circ} 51^{\prime \prime}\left(\mathrm{V}\right.$.), in temperature $30 \pi^{\prime} \mathrm{C}$., and at a depth of 459 fathoms; 15 miles westward of Northwestern Spitzbergen ( $790^{\circ} 59^{\prime}$ N., $\left.5040^{\prime} \mathrm{W}.\right)$, with temperature of 10 C .
34. Cottunculus torvas, new species, undescrilwil.

A smooth-skinned speeies of Cottunculus was also obtained. This is reserved for future discusion.

## AGONIDE.

35. Peristedium miniatum, Goode.

Peristcdium miniatum, Goode, Proc. U. S. Nat. Mus. iii, 1880, p. 349.
Specimens were obtained from the following localities:
Fathomas.


No. 26OEX, station 876
120
As has already been stated, adults and young were found, the former full of nearly ripe eggs.
36. Asphidophoroides monopterygius (Bloch) Valencienues.

In 1874 a head of an individual of this species was dredged up on the "Pecten Ground" off Watch Mill, R. 1. This is the sole instance of its capture south of Cape Cod, though there can be little doubt that it is of frequent oceurrence in the districts recently explored by the Commis. sion.
37. Sebastes marinus, Li॥ni»!н.

Numerous small individuats of this speeies were taken in nearly every haul of the trawl-net down to the depth of 155 fathoms.
38. Setarches parmatus, new rpecies.

A single specimen, No. 28084, was obtained at locality 876, in $1: 0$ 120 fathoms. The young fish, $52^{\mathrm{mm}}$ long, was taken in company with numerous young specimens of Schastex marinus, from which it differs in many very striking respects.

It appears to belong to the type described by Johnson under the name Setarches.*

It is, however, much stonter and higher than the other known speries of this genus, Setarches Giintheri, from which, too, it differs in having 10 instead of 11 spines in the first dorsal, and 6 instead of a rays in the ventrals. The height of the body $(38)$ is three-eighths of its standard length. The length of the head (45) is nine-twentieths of the same. The diameter of the eye (12) is contained less than four times in the length of the head (45). The scales are small, cycloid, each with seteral concentric furrows.

The specimen is so young, and mutilated withal, that it seems scarrely desirable to prepare all elaborate specitic diagnosis. I append, however, a table of measurements, from which the other proportions of the borly may readily be deduced, hoping soon to secure materials for a better lescription. Setarches parmatus may readily be distinguished from Sebastes marinus by its more generous proportions, as well as by the generic characters already mentioned. The height of the body is three eighths of

[^82]its length instead of one-fourth; its width is one-fourth instead of threetwentieths; the length of the head nine-twentieths instead of threeeighths. The width of the interorbital area is half the length of the upper jaw instead of one-fourth, and is nearly equal to instead of one-half of the diameter of the orbit. The vertical fins are inserted farther back, the paired fins farther forward, and the fins are, without exception, longer. The tail appears to be truncate instead of emarginate, as in S . marinus. The preopercular spines are very prominent. The spinous dorsal contains teu spines.

## Measurements.

Species: Setarches parmatus.


## XIPHIID E 。

39. Xiphias gladius, Linn.

A fishing smack from Noank, Conn., was engaged by Professor Baird to set a trawl on the edge of the oceanic slope, in the hope of obtaining more specimens of Lopholatilus. Their only capture was a sword-fish thirteen feet long and weighing over b00 pounds. This was bronght up from the bottom on the trawl-line. There is room for much question whether it was taken at the bottom or fastened itself to the

Proc. Nat. Mus. $80-31$ Feb. 16, 1881.
hooks as the line was being lowered, and was carried by its weight to the bottom. This curious freak of the sword fish, so often observed of late, deserves careful study.

## LATILID $A$.

## 40. Lopholatilus chamæleonticeps, Goome \& Bean.

Lopholatilus chameleonticeps, Goode \& Brax. Proc. U. S. Nat. Miw. ii, 187\%, p. 203.

In July, 1879, numerons specimens of this remarkahle fish were taken by Gloncester fishing vessels, at a depth of 84 fathoms, 80 miles sonth by east from Noman's Land. The first trip of the "Fish Hawk" to deep water from Nowport was September 4, and the nets were hauled as nearly as possible on the same grounds where Lopholatilus had previously been taken.

The second trip, ten days later, was to a region about forty miles farther west, and ou this occasion six or more large individnals of this species were brought up on a hand line ("ladder-line") set from an open boat sent out from the steamer. None were at any time taken in the trawl-nets, though there is every reason to believe from the success of the fishing vessels previously, and from the number taken on the handline by the men in the small boat, that thes are exceedingly aboudant in this locality and probably for hundreds of miles in either direction, or at any rate to the south.
The Lopholutilus may yet prove to be a fish of economic importance. Its suitability for fool was tested at the ward-room table of the "Fish Hawk", and it was pronounced equal to cod-fish, though somewhat finer grained in tlesh.

The following notes upon color and internal structure were taken from a fresh specimen. The colors are very beantiful, and ingeneral appearance when taken from the water it is one of the loveliest fishes I have ever seen, no exception being made in favor of the brilliant parot-fishes or angel-fishes of the West Indian coral groves.

Color.-Black bluish, with a green tinge, iridescent, changing through purplish blue and bluish gray to rosy white below, and milky white toward the medium line of the belly. Hearl rosy, iridescont, with red tints most abundant on the forehead, blue under the eves cheeks fawncolored. Throat and under side of the head pearly white; with an occasional tint of lemon-yellow ; this is most prononnced in front of the ventrals and on the anterior portion of sentral fins. Back with numerous maculations of bright lemon or golden. Anal purplish, with blue and rose tints, iridescent. Margin of anal rich purplish blue, iridescent like the most beantiful mother of pearl. This color prevading more or less the whole fin, which has large sellow maculations. The lower border is rosecolored like the belly, and the base of the fin also partakes of this general hue. Dashes of milk-white on the base of the anal between the rays.

Dorsal gray. In front of the seventh dorsal the upper third posterior to the upper twothirds dark brown. Spots of yellow, large, elongate, on or near the rays. Adipose fin whitish brown or yellow; a large group of bright yellow, contluent spots at the base.

Pectorals sepia colored with rosy and purplish iridescence.
Fiscera.-Stomach small, siphonal, barely more than a loop in the very large intestine. Alimentary canal short, stomach and intestine when stretched out at full length extending from the diaphragm to the caudal. A loop in the intestine immediately posterior to the stomach. Liver with two lobes, nearly equal in length, light chestnut-brown. Gallbladder large, pendant, pear-shaped, with long duct. Swim-bladder simple, with thick muscular walls, strongly attached to roof of abdominal cavity ly numerous root-like appendages, resembling somewhat those of Pogonias. Spleen two thirds as long as gall-hadder.

## CHAULIODONTIDE.

41. Chauliodus Eloanif, Schueider.
 ( $\therefore$ setinotus).

A single individual, No. $26165,10.5^{2 m n}$ long, was taken from station $890^{\prime}$, in 487 fathoms. The only other specimen recoried is that from the stomach of a codtish from (ieorge's Banks, preserved in the museum of the Essex Institute.

Radial formula of No. 26165: D. 6; A. 12.

## SCOPELID.E.

## 42. Myctophum, sp.

A species, apparently undescribed, was obtained in several of the deep hauls. It is reserved for comparison with numerous other speeimens of the group, as yet unelaborated, obtained by the Commission from the deep waters of the Atlantic.

## MICLOSTOMIDI:。

Hyphalonedrus chalybeius, new gotus and new мресін.
Numerons specimens (No. 26092) of a form closely related to Argentina were taken, September 13, at stations 876 and 875,120 and 142 fathoms. They are considered to represent a new goneric type."

HYPHALONFIDRIS, H.w gemus.
A genus of Microstomatid fishes. Body rounderl, terete. Cleft of month extending under the anterior thit (at least) of the orbit. Eye large. Tecth in the jaws small, sharp, on the erlges of the bony lips. Tongue entirely smooth. Tip of lower jaw projecting. Dorsal tin short, inserted midway in space between insertions of pectorals and ventrals.

[^83]Gill-arches 4. Pseudobranchiæ present. Scales moderate, pronouncedly pectinate.

The genus Silus Gill * was founded upon a misconception. The scales of Argentina silus (Cuv.) Nilss., are "dentigerous," it is true, but not ctenoid. They are true cycloid scales, with dentigerous sarfaces. The diagnosis of Silys Gill would include the form above described, but, as has been remarked, it was founded upon a misunderstanding, and there can be no question as to what lris intention may have been.

## 43. Hyphalonedrus chalybeius, new species.

Description.-Body plump, terete, its height (16) contained six times and one-fourth in its length, its width (13) seven and three-fourths. The height at ventrals (16) is equal to that of the origin of dorsal, the dorsal being inserted at the highest portion of the body, its middle over the origin of tbe ventrals. The least height of the tail is half that of the body. The seales are moderately strong, and sharply pectinated at the edge, and arranged in regular transverse rows, overlapping in such a manner as to resemble oblique plates upon the sides. The lateral line is prominent, straight, containing about 52 seales. Between the lateral line and the origin of the dorsal are 6.2 scales, the origin of the rentral 6 . The greatest length of the head to the end of the flexible flap of the operculum ( 27 ) slightly exceeds one-fourth of the bolly-length, and is itself slightly more than four times the length of the suont (6). The longitudinal diameter of the orbit $(8)$ is four times that of the interorbital space (2). The maxillary, broad and flattened posteriorly, is in length (10) one-tenth of the body, and extends back to a perpendicnlar from the anterior margin of the pupil. The articulation of the mandible is in advance of the posterior tip of the maxillary, its length (11) slightly greater, and it protrudes beyond the snout, when the month is open, a distance greater than the width of the interorbital area. When the mouth is closed its tip still projects noticeably.

The dorsal fin is located almost midway between the snout and the adipose dorsal. Its height is almost equal (19) to that of the ventral (18). The adipose dorsal is over the middle of the anal, its length half the diameter of the orbit.

The distance of the anal from the snont (76) is about three-fourths of the body-length. Its length of base (6) is equal to the length of the snont ; its height (10) to that of the middle candal rays. The caudal is furcate. The pectoral is long, subfalcate, inserted close to the branchial cleft, its tip extending to the fourteenth or fifteenth scale of the lateral line, its length (22) twice that of the mandible.

The ventral is located two-fifths of the way from the suout to the base of the caudal, and directly under the middle of the dorsal.

Radial formula: D. $11+1$ (adipose) ; A. $8 ;$ C. $16 ;$ P. 17 or $18 ;$ V. 9 or 10 ; L. lat. about 52.

Color grayish mottled with brown, scales metallic silvery.

[^84]Measurements.

| Current number of specimen Locality | $\begin{gathered} \text { 2ehys } \\ \text { Station } \\ \text { xito-s } \end{gathered}$ |  |
| :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { loothe } \\ & \text { of } \\ & \text { length. } \end{aligned}$ |
| Extreme length | 112 |  |
| Length to base of middlo caudal rays Bual: |  | 100 |
| Greatest hreieht |  | 16 |
| Greateat wilth.... |  | 13 |
| Height at ventrala |  | 13 |
| Head: |  |  |
| Greatest length |  | 27 |
| Width of interurbital area. |  | 2 |
| Length of smoxt. |  | 1 |
| Length of maxilhury |  | 10 |
| Length of mandible |  | 11 |
| Diameter of orbit . |  |  |
| Dorsal: |  |  |
| Distanee from anout |  | 34 |
| Crealest height. |  | 19 |
| Lewegth of alipuee tion |  | 4 |
| Anal: |  |  |
| Distance from snont. |  | $i 8$ |
| Lewieth of base.. |  | 6 |
| Height at longent ray |  | 10 |
| Candal: |  |  |
| Length of mildin mys |  | 10 |
| Length of external rays |  | 17 |
| Pectoral: |  |  |
| Distance from anout. . |  | 16 |
| Fentral: |  |  |
|  |  |  |
| 1)istaver from snout |  | 40 |
| Length... |  | 18 |
| Trorsal ...... |  |  |
| Anal. |  | , |
| Cundal ........................................................................................... 7 |  |  |
| Ventral ......................................................................................... 9 g of 10 |  |  |
| Number of scales in lateral line (ca,) ....ilue |  |  |
|  |  |  |
| Nuenter of trausverse rows below late |  | 0 |

## NEMICHTHYID $\underset{\text { E }}{ }$

44. Nemichthys scolopaceus, Richarlson.

A single specimen, No. 26106, was taken in 252 fathoms of water at station 880 . It came up clinging with its long jaws to the outside of the trawl-net.

## SYNAPHOBRANCHIDE.

## 45. Synaphobranchus pinnatus (Gronow) Guinther.

Specimens were obtained from the following localities: Station 880 , 252 fathoms; 881, 325 fathoms; 891,487 fathoms; 894,365 fathoms. In the last-mentioned locality a specimen was taken carrying nearly mature eggs.

## SIMENCHELYIDA.

## 46. Simenchelys parasiticus, Gill.

Simenchelys parasiticus, Gill, in Goode \& Bean, Fish. Essex Co. \& Mass. Bay, 1879, p. 27.
A single specimen, No. 26172, was taken at a depth of 487 fathoms at station 892.

## RAIDE.

47. Raia, unknown species.

The young of a species of skate, with body covered closely with minute sharp spines, was taken in many localities. Mr. Garman has the specimens for identification.
48. Rala, unknown species.

The young of another species, with an extremely long tail, was taken from large, square, short-tendriled eggs at various depths. Mr. Garman has also these.
49. Raia levis, Mitchill.

Two large skates apparently of this species were taken October 2 in deep water. A cast of one of them was made.

## SPJNACIDA.

50. Centrophorus? nuknown species.

Mr. Garman has for identitication two specimens taken at station 893, at a depth of 372 fathoms.

## MYXINIDE.

51. Myxine glutinosa, Linnmus.

Specimens were obtained from the following localities: Stations SG9, 192 fathoms; 870,155 fathoms; 878, 142 fathoms.

## DEHCHEPTION OP A VEW HPECIENOF CALANX (CAMANX REANE, FROM BEAUPORT, NORTH CAROLINA. <br> By DAVID S. JOLEDAN.

Caranx beani, sp. nov.
Allied to Caranx cibi Poey, but much less elongate.
Color bluish above, silvery, with golden luster below; upper edge of caudal peduncle a little dusky; spinous dorsal blackish; axil dasky; no dusky spot on opercle, pectorai fin, or elsewhere.

Form rather broadly elliptic-ovate, the dorsal and rentral outlines about equally and nearly regularly curved, the depth greatest at the origin of the anal and soft dorsal, the axis of the body not far tran the middle of its depth. Profile from the snout to the base of the dorsal forming a very regular curve. The greatest depth $2 \frac{2}{3}$ in total length, $2 \frac{1}{3}$ in length to the base of the caudal. Head little compressed, scarcely carinate above, the interorbital space more than half broader than the eye, which is small, shorter than snout, scarcely broader than the preorbital, 4 in head. Length of head $3 \frac{1}{s}$ to base of caudal, 4 in total length. Mouth comparatively small, oblique, the lower jaw very slightly projecting when the mouth is closed. Maxillary small, scarcely extending to the anterior border of the orbit. Premaxillaries anteriorly on the
level of the lower edge of the pupil. Teeth small, villiform, in a narrow band in each jaw ; those in the outer series slightly enlarged; the band in the upper jaw considerably broader than that in the lower; no canine teeth; bands of villiform teeth on vomer, palatine, and tongue. Adipose eyelid little developed. Cheeks and opercles scaly. Gill-rakers long, longer than the pupil. Breast closely scaled, its scales a little smaller than those on the sides. Upward curve of lateral line not very strong. Armature of tail feeble, only those plates on the caudal peduncle itself having distinct spines; about 26 plates may be counted before they merge into the ordinary scales.

Spinous dorsal low and feeble, the highest spine scarcely as long as the snout, the last spine nearly free, short and thickish; a small procumbent spine before the dorsal ; soft parts of dorsal, anal, and caudal densely covered with small scales; soft dorsal and anal low, their highest rass scarcely longer than the snout; free anal spines, separate from the fin but connected with each other, scarcely longer than the pupil ; candal fin short, not widely forked, the lobes equal, the upper lobe 3 length of head, the distance vertically between their tips slightly less than the length of the head; ventral fins very short, scarcely longer than snout, reaching about half way to anal; pectoral fins falcate, reaching about to the fourth soft ray of anal, their insertion on the level of the maxillars, their outer surface largely sealy; length of pectorals $\frac{2}{3}$ the greatest depth, about equal to length of head.

Fin rays: D. V1II-I, 26; A. II-I, 23.
Two specimens of this species were obtained by Mr. Charles H. Gilbert and myself at Beaufort, N. C., in the summer of 1877 . They were taken with a small seine in the harbor, close to the shore.

It agrees in dentition and many other respects with Caranx cibi Poey, but the latter species is much slenderer, the depth of the body being about equal to the length of the pectorals or the length of the head. I place it provisionally in the genus Garanx, the value of the various proposed subdivisions of the latter group not being evident.

The example from which the preceding alescription was taken has been presented to the United States National Musenm, where it is numbered 27372 .

I present a table of comparative measurements of the type Caranx beani and of one of Poey's types of C. cibi.

Table of moasurements.

| Species <br> Locality | Caranx beani. <br> Beaufurt, N.C. |  | Caranx cibi. Cuba. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Iuchen and 100thn. |  |  | $\begin{aligned} & \text { j00the } \\ & \text { of } \\ & \text { length. } \end{aligned}$ |
| Fxtreme length | 6. 85 |  | 11.00 |  |
| Lebgth to end of caudal urmuture | 5.48 | 100 | 9. 00 | 100 |
| Buly: |  |  |  |  |
| lirentest height |  | 43 |  | 債 |
| fireateat width. |  | 15 | ...... | 14 |
| Helght at ventrala |  | 38 |  | 20 |
| Leant liefiplit of tail |  | 7 |  | 4 |
| Lougth of caudal pedunclo |  | 8 |  | 10 |
| Heal: |  |  |  |  |
| (imateat lengell |  | 30 |  | 8 |
| Dintance from snout to nape |  | 27 |  |  |
| Grvatest wilth............ |  | 15 |  |  |
| Width of interorbital area |  | 11 |  | 10 |
| Length of nnout |  | 10 |  | 10 |
| Length of the operculum. |  | 8 |  | 6 |
| bougth of maxillary ..... |  | 14 |  | 11 |
| Langth of mandible. |  | 16 |  | 15 |
| Diameter of orbit |  | 9 |  | 7 |
| Dorsal (apinotus): |  |  |  |  |
| Distance from snout |  | 43 |  | 40 |
| longtls of base |  | 17 |  |  |
| Cireateat height... |  | 9 |  | 10 |
| (suft) length of base |  | 38 |  | 34 |
| Hefight at longest ray |  | 13 |  | 12 i |
| Anal: |  |  |  |  |
| Diatance from anout |  | 63 |  |  |
| Length of bowe |  | 38 |  | 31 |
| Height at firat froe apine |  | 4 |  | 21 |
| Hoight at longeat ray. |  | 11 |  |  |
| Caudua: |  | 8 |  |  |
| Length of external rays |  | 27 |  | 36 |
| Pectoral: |  |  |  |  |
| length |  | 30 |  | 34 |
| Ventrul: Lengets |  | 13 |  |  |
| Dorwal..... |  | VIII-1, 26 | .... | VIII-I. ${ }^{3}$ |
|  |  | 11-I, 22 |  | $\text { II-I. } 22$ |
| Number of platex in laternl line |  | 25 |  | $29$ |

## Indiana State University, Bloomington, Ind., November 10, 1880.

## ON A COLEECTION OF PIGMES FROM RASTERN MIANIEBIPPI*

## By O. P. HAY.

The collection of fishes which it is the object of the present paper to describe was made almost wholly by the author, while on a trip along the eastern side of the State of Mississippi, during the latter part of March and the early part of April of the present year, 1880. The ronte taken was along the Mobile and Ohio Railroad, and exteuded from Corinth, near the northern line of the State, to Shubuta, a town about one hundred miles north of Mobile. Stops were made along this line of travel of from a few hours to four or five days. The conditions for col-

[^85]lecting were usually very unfavorable, on account of high water and the superabundance of logs and snags. Nevertheless, I succeeded in collecting altogether 53 species. Three additional species, and alditional specimens of several species that I had alrealy secured, have since been sent me by Mr. William A. Warner, of Enterprise.

Of the 56 species named in the succeeding pages, I describe 15 as new- 7 of them in the family of Etheostomatide, and 8 in Cyprinida. Little has yet been done in the way of determining the fish fauna of this and some of the other Southern States, where so rich a field is offered to the naturalist.

At Corinth a few draws were made with the seine in a little strean that runs near the railway depot. This stream is a branch of the Tuscumbia, which eventually empties into the Mississippi through the Big Hatchee.

At Artesia, in Lowndes County, my collecting was done in Catawba Creek and its branches and ponds. This creek flows into the Tibbyhah, itself an affluent of the Tombigbee. South of this point, I next fished at Macon, in Noxubee County, on the Noxubee River. The river itself was too high to enter, and I had to content myself with working the ponds and Horsehunter Creek, which at this point flows into the Noxubee.

At Narkeeta, in Kemper County, I saw a few "Sunfishes" taken from the Sucarnochee River, a tributary of the Tombigbee.

At Enterprise, in Clarke County, my collecting was done in the Chickasawha River and its branches, near the town. I have in my collection from that place 33 species. One species was caught with a hook from the same strean at Shubuta, in the south part of the same county. Further south this river joins the Leaf, to form the Pascagoula, which flows into the Gulf.

I have not in this paper attempted to discuss the geographical distribution of the species obtained, as this I consider useless until a much more complete survey of the State has been made. This I hope to be able to do at some future time. At the end of this paper I subjoin a list of the species obtained at each of the localities that I have named.

Types of the new species described have been furnished the National Museum, as well as duplicates of most of the others. Duplicates of some of the new species have also been placed in Professor Jordan's collection. The remainder of the collection is the property of Butler University, at Indianapolis, Indiana.

I take pleasure in acknowledging my indebtedness to Prof. D. S. Jordan for various suggestions made in reference to the species hercin named, as well as for general aid obtained from his numerous papers on the fresh-water fishes of our country.

## Family ETHEOSTOMATIDE.

## Genus Ammocrypta, Jordan.

1. Ammocrypta gelida, Hay, sp. nov. (No. 27,425, U. S. Nat. Mus.)

General form of the body that of P.pellucidus (Bd.) Ag.; terete, slender, and in life slmost transparent. Heal pointed. Mouth terminal, larger than in P. pellucilus, the maxillary bone extending back to a vertical from the anterior of the orbit.

Jaws armed with large, curved teeth. Eyes high up, 4 in the head, less than the length of the snout.

Cheeks and opercles naked. Opercular spine absent, the bone terminating behind in a thin and obtuse process.

Body almost naked; about three rows of pectinated scales along the lateral line, 65 scales in each row.

The rays of the median fins as follows: 1). X, 11 ; A. I, 10 or 9. Dorsals separated. Length of spinous dorsal eight-ninths that of the head, and four-fifths as high as long. Soft dorsal three-fourths the length of the head, and two-thirds as high as long. Anal, in length, slightly less than soft dorsal, and a little less in height than in length.

Head in the length to base of caudal 4 ; depth in length $7 \frac{1}{2}$.
Color of the body in spirits white; in life translucent, with a golden yellow band along each side. Head above dusky, from being thickly sprinkled with black points. A few such points are seattered over the whole dorsal surface. Spinous dorsal with a black spot about half way up in front. Soft dorsal, anal, and caudal slightly dusky. No spots along the sides or clorsal region.

Length to base of caudal $1 \frac{4}{5}$ inches.
Found in the Chickasawha River at Enterprise. It seems to prefer a sandy bottom.

The description of this species seems to agree pretty well with that of Ammocrypta beanii, published by Professor Jordan in Bulletin No. 10 of the United States National Museum. Judging from his description, however, my species is slenderer and has a head comparatively shorter. A. beanii has depth in length 6 , head 3 . The fin formula is also different, being in his species D. X, 10; A.I,9. The coloration of the spinous dorsal is different. Nor do I observe that the soft dorsal and anal fins of my species are notably higher than they are in specimens of $P$. pellucidus.

To the generic characters given by Professor Jordan in his description of A. beanii I will add that of the complete absence of an opercular spine. This spine is wanting in no other Etheostomoid fishes known to me, although it is feebly developed in Microperca punctulata.

# Genus percina, Hald. 

2. Percina caprodes (Raf.) Gri. (No. 27,424, U. S. Nat. Mик.)

Percina caprodes, Jondan, Anuals N. Y. Lyc. Nat. Hist. 1eft, 312 (Synonomy)
A single specimen of the "Hog-fish", taken from the Chickasawha, Las been sent me by Mr. W. A. Warner.

## Genus HADROPTERUS, Agassiz.

3. Hadropterus spillmani, Hay, sp. nov. (No. 27,432.)

Body elongatel, compressed. Heal in the length about 4 times. Depth in the length, exclusive of the caulal inn, 5 times. Eye equal to snout, and one-fourth the length of the head.

Lateral line with from 56 to 60 scales, 6 rows above and 9 below. A row of enlarged, non-deciluons, ctenoid plates along the middle of the belly. Cheeks and opercles sealed. The whole chest covered with small plates or scales.
The fill-rays as follows: D. XII, 12 ; A. II, 9. Spinons dorsal about nine-tuths as long as the head, and one-half as high as long; soft dorsal three-fifths as long as the heall, and five-sixths as high as long ; anal equal in length to the soft dorsal, and about as high as long. Ventrals and pectorals reaching back about to the same point, two-thirds the distance from the base of the ventrals to the vent. Caudal tin truncated. Spinous and soft dorsals well separated.
The snout is rather pointed; upper jaw not protractile; mouth moderate, the maxillary reaching back to a vertical from the anterior of the orbit. Teeth on jaws, vomer, and palatines. Month slightly oblique.
The general color is dark above, reddish yellow below. The sides are crossed by about a dozen brown bands, which are broadest along the lateral line, where coalescing they form a dark horizontal band. This band becomes narrower and better defined on the head, and is continnel along the upper edge of the opercle and cheek, throngh the eye, to the tip of the shout. A narrow dark line runs downward and forward from the lower edge of the orbit. There are three well-defined spots at the base of the caudal fin.
The vertical fins are blotched more or less with dusky colors; the ventrals are bluish black, while the pectorals are lighter.
The checks and the occipital region are pale in color; the snout and interorbital space are bluish black.

Length, exclasive of candal fin, 3 inches.
This species is allied to II. nigrofesciatus, a description of which is given by Professor Jordan in the Am. N. Y. Lye. Nat. Hist. 1877, 310. Judging from a comprarison of my specimens with his description, I think that they evidently belong to a distinct species.

Several specimens of this handsome fish were caught with small hooks in a branch tlowing into the Chickasawha at Enterprise. I dedicate it to my friend Rev. William Spillman, M. D., of Enterprise, who
has spent a long life in scientific labors in the South, and who has thereby done much to increase our knowledge of the geology and natural history of his own and neighboring States.

## Genus boLeosoma, DeKay.

4. Boleosoma maculatum, Agassiz. (No. 27, 443.)
B. breripinne, COPE, Proc. Amer. Phil. Soc. 1880, 268.

A single specimen of a Boleosoma was obtained in Horsehunter Creek at Macon. An examination indicates that it is B. maculatum, although it does not agree wholly with descriptions of that species. It is much paler than specimens of that species obtained in the streams about Indianapolis. There are no dark bars on the back, and the spots nasually found along the lateral line are not as conspicuous as common. The tin formula is D. VIII, 12 ; A. I, 8. Lateral line 50.

I do not believe that the separation of B. olmstedi and B. maculatum as distinct species can be maintained. The characters most relied ou in distinguishing them are the difference in length of the soft dorsal, the difference in the number of scales along the lateral line, and the smoothness or scaliness of the cheeks. I have examined specimeus in the State collection at Normal, Ill., labeled B. maculatum, that appear to combine these characters in all sorts of ways. Some have scaled cheeks, 55 vertical rows of scales, and dorsal fin-rays X, 12. Another specimen noted has scaled cheeks, 48 rows of scales, and dorsal rays VIII, 11. Another has bare cheeks, 53 scales, dorsal IX, 12. Another, bare cheeks, 46 scales, dorsal rays IX, 13. Specimens there labeled B. olmstedi seem to be in no way different.*

As to color, I have specimens from Western Illinois that are almost black, especially the head, the vertical and the ventral fins. These are males in their breeding dress, but they appear to be unusually dark.

## Genus Nanostoma, Putnam.

5. Nanostoma zonale (Cope) Jordan. (No. 27,417.)

Iwcilichthys zonalis, Cope, Journ. Acad. Nat. Sci. Phila. 1869, 212. Nanostoma zomale, Jordan, Bull. U. S. Nat. Mus. No. 10, 6, 1877.
Two specimens of this beautiful species were seined in a shallow and sandy creek flowing into the Chickasawha River at Enterprise. They differ in no way from described specimens, except that none of the transverse bands auterior to the anal fin pass around the lower part of the body. Even in this respect they are like a specimen mentioned by Cope from the Miami River, in Indiana. The belly, throat, and spaces between the bars below the lateral line are, in spirits, pure white.

[^86]6. Nanostoma elegans, Hay, sp. nov. (No. 27,445 .)

Body stont and somewhat compressed. Head short and deep, with swollen cheeks. The snout is turned abruptly downward. The mouth is subterminal, horizontal, and small, the maxillary not reaching back to the vertical from the anterior of the orbit. Upper jaw not protractile. Eye in the head 4 times.

Head in the length to caudal (as in all measurements in this paper) 4 times; depth in length 5. Depth of caudal peduncle twice in its length; this equal to three tenthes of the length of the body.

Rows of seales 5-42-6. Lateral line complete, nearly straight.
The formula of the vertical fins is $1 \mathbf{1} . \mathrm{X}, 12$; A. II, 8 . The spinous dorsal slightly longer than the head, and half as high as long. Soft dorsal tive-sixths as long as the head, and two-thirds as high as long. Anal three-fourths the length of the head, and as high as long, the posterior rays being the longest.

The pectoral fins are very wide and long, reaching beyond the tips of the ventrals and to the vent. Candal fin emarginate.

Cbeeks, opercles, and back of the neck scaly; the chest and the region just behind the ventrals naked. Gill-membrane broadly connected across the breast.
The general color of the body, after lying in spirits, is purple. Along the back are six large square blotches of black, and along the sides about eight broul transverse bars of the same color, but fainter; these least distinct formard. Along the lateral line, alternating with the transverse bars, are a number of spots, which, in the case of my largest specimen, are of a more intense color than the bars. These spots conneet the bars, and with them form a dark lateral band.

Besides these markings, many of the scales, both withiu and outside the dark bars, principally above the lateral line, but also below, have at their base a jet-black dot. These dots are so arranged as to form somewhat regular longitudinal lines. At the extremity of the caudal peduncle there is a small black spot just above the last transverse bar, and another below it. There are a few black spots behind the eye; a dark bar running from the eye downward, and another from the eye forward to the snont.

Ventral and anal fins indigo-bhe. Some of the same color on the pectorals. In life there is a bar of deep orange or red rumning along the base of both dorsals. The tips of the ventral rays in some specimens, males perhaps, are swollen.

Length of longest specimen $21 / 8$ inches.
Taken in a shallow, rocky, and sandy branch of the Chickasawha Liver at Enterprise.

The small, subinferior month, little compressed body, and widely connected gill-membrane ally this species to Nanostoma. The dorsal fins are separated as in Nothonotus.

## Genus PCECILICHTIIYS, Agassiz.

## 7. Pcecilichthys artesize, Hay, sp. nov. (No. 2\%,434.)

In this species the body is more elongated than usual, and considerably compressed. The head is large and contained in the length to caudal fin 33 times; depth in leugth 5 times. Caudal peduncle contained in the length of the body $4 \frac{1}{2}$; its depth one-half its length.

Mouth large, the maxillary reaching to a vertical from the pupil, terminal, nearly horizontal; the lower jaw slightly shorter than the up. per. Gill-membrane rather broally connected across the breast.

The eye equal to the snont, and contained in the head 4! times. The cheeks are wholly covered with small scales, resembling in this respect P. asprigenis, Forbes, from Central Illinois. The opercles are covered with large scales. The scales on the region between the occiput and the dorsal fin are very small.

There are along the sides about 56 vertical rows of scales, $s$ horizontal rows above the lateral line and 11 below. The lateral line extends slightly behind the posterior end of the soft dorsal, being absent out about 10 or 12 scales. Just above the base of the pectoral tin, on each side, there is an enlarged black scale.

The two dorsals are contignous, the membrane of the first reaching the second. The fin-rays are, 1). XI. 1:3; ג. 1I, i. The longth of the first dorsal, measured from the first to the last spine, equal to the length of the head ; its height less than half its length. The sott clorsal secrenninths the longth of the head; its height about four-fifths its length. The anal is in length a litfle more than one-half the length of the head; its height also one-half the lwat.

The pectoral and rentral tins reach backward to ihe same point. The pectorals are much smaller than in $P$. carulcus (Stor.) Ag., reaching back ouly three-fifths the distance from their origin to the vent, while in that species they extend backward four-fifthe this distance.

Color.-Sides vellowish olive, with indications of transrerse and oblique bars of dark, and sprinkled with many small blotches of carmine. Pectorals and rentrals dull blue. Dorsals with a broad band of farmine ruming along the middle, bordered on each side with orange. The tips of the dorsals dull blue, as is also the base of the soft dorsal. Base of the spinous dorsal with several blotehes of carmine. Anal mostly crimson, tipped with bhe. Candal first blue, then orange, then carmine, followed by orange, and tipped with blue. The iris is yellow.

Length of the only sperimen obtained $\frac{2}{8}$ inches.
From a small branch tlowing into the Catarba, itself tributary to the Tombinger.

A brilliant little fish, attracting by its bright colors the eye at a distance of many feet.

The palatine teeth of this species form a broad band, whereas in $P$. carulcus they are few in number and in a single row.

## 8. Pcecilichthys sazatilis, IIay, sp. nov. (No. 27,433.)

In my collection there is a single specimen of another Pacilichthys that appears to be undescribed. It measures but 13 inches in length. The lateral line is incomplete, but exteuds as far back as the posterior rays of the soft dorsal, being found on 3i5 scales and not arched over the pectorals. There are about 50 vertical rows of scales and 11 horizontal rows, 5 above the lateral line and 6 below.

The opercula have a few large scales, but the cheeks are naked. The breast and throat are bare.

The dorsal and anal fin-rays are as follows: D. XI, 10; A. II, 7. The spinous dorsal equals the head in its length, and is one-half as high as long.

The soft dorsal is two-thirds as long as the head, and as high as long. The dorsals are separated by a space equal to one hallf the head. The anal, in height and length, is equal to nearly one-half the length of the head.

The head is contained 4 times in the length of the body, the depth $\bar{j}$ times, and the caudal peduncle $3 \frac{1}{2}$ times. The head is narrow and pointed; the profile descends in a gradual curve. The mouth is horizontal, terminal, and large, the maxillary extending back to a vertical from the anterior edge of the pupil. The eye is equal to the snont, and is contained in the head 4 times. Upper jaw non-protractile.

In color the specimen in my possession rather resembles a lioleosoma or a Boleichthys than a typical Pocilichthys. Above, the ground color is yellowish olive, below pale. On the dorsal region are about six square brown spots. Along the sides there are about eight somewhat $W$-shaped spots of the same color, between which and the dorsal blotches are many specks of brown arranged in zigzag lines. A black streak before the eye and another below it. Opercle mostly black. An enlarged black humeral scale on each side. All the fins, except the anal, more or less barred with dusky.

Found at linterprise in a rocky and sandy stream flowing into the Chickasawha.

## Geives Vaillantia, Jordan.

9. Vaillantia chlorosoma, Hay, spo nov. (No. 27,42\%.)

Body slender, compressed, and the dorsal region much arched. It the vent the body is suddenly contracted into the long and slender candal peduncle, which (measured from the posterior ant ray to base of (candal fin) is contained in the whole length of the body id to 31 times, and has a depth one-third its length. The head is small, pointed, and contained in the length from $4 \frac{1}{2}$ to $4 \frac{3}{4}$ times. Eye in the head 4 . Upper jaw protractile. Month horizontal, moderate, subinferior, the upper jaw overlapping the lower. The depth of the body in its length from 5 to $\overline{5}_{2}^{\frac{1}{2}}$ times

There are from 50 to 60 vertical rows of scales, and about 12 horizontal rows between the soft dorsal and anal. The lateral line is found on
from 4 to 20 or more of the scales. Cheeks and opercles scaled. Region in front of pectoral and ventral fins sometimes scaled and sometimes naked.

The fin-rays are, D. IX, 11 (10); A. I, 7 or 8 . The dorsals are separated by a distance equal to one-half the length of the head, or more. The spinous dorsal is five-sevenths as long as the head, and four-fifths as high as long. The soft dorsal has about the same dimensions. The anal is equal to one-half the head in length and height.

In color this species is of a pale greenish yellow, with many blotches and zigzag markings of brown. There is a row of about ten of these blotches on each side, most distinct on the caudal pelduncles. Also there are about eight square brown spots along the dorsal region. Top of the head, a spot on the operculum, and another below the eye, dark; a line of the same color, but more distinct, from the eye to the snout.

Length of the largest specimen $1 \frac{7}{8}$ inches.
This species appears to be widely distribųted, as I obtained it at Corinth in asmall stream that flows into the Tuscumbia, at Artesia in Sandy Creek, and at Macon in Horsehunter Creek.

The characters of this species appear to agree in many respects with those of Boleosoma gracile, Girard, described in the Proc. Acad. Nat. Sci. Phila. 1859, 103. Girard's specimens were from Sonthwest Texas. In B. gracile, however, the spinous dorsal is described as being longer and lower than the soft dorsal, and the anal as being much deeper than long, which statements do not well apply to Boleichthys. chlorosoma. I am also informed by Professor Jorian that the jaw of $D$. gracile is nouprotractile.

The species that I have above described belongs to Professor Jordan's genus Vaillantia (Bull. U. S. Nat. Mus. No. 12, 89), the type of which is Boleosoma camurum, Forbes. From that species it differs, among other things, in having the two dorsals widely separated. In $B$. camurum they are contiguous.

## Genus MICROPERCA, Putuam.

10. Microperca proeliaris, Hay, sp. nov. (No, 27,418.)

The species about to be described may possibly belong to the genns Bolcichthys. I have but a single specimen, which has a total length of $1 \frac{1}{2}$ inches. It was obtained at Corinth, and was at first supposed to be a specimen of V. chlorosoma.

The body is rather short and stout, the depth being contained in the length a little more than 4 times. Behind the vent the boly becomes contracted into the caudal peduncle, which is compressed and contained in the length of the body 3 times. Its median depth is one-third its length.

The head is contained in the length 4 times. The snout conical and pointed. The jaws are equal, the upper not protractile; the mouth
terminal, slightly oblique, and rather small. The maxillary reaches back to a vertical from the anterior of the orbit. The eye is small, 4 in head, and greater than the snout. Cheeks and opercles covered with large scales. Opercular spine well developed.

The scales of the body are large, there being only 36 vertical and 11 horizontal rows, the latter counted between the dorsal and anterior of anal. The lateral line is found on but two scales anteriolly. Fin-rays, D. VIII, 11; A. I, 6. Anal II, 6, in a specimen of the same species from Alabama in the U. S. Nat. Mus. (fide Jordan). The two dorsals are well separated. Spinous dorsal two-thirds the length of the head, its height a little more than one-half the head. Soft dorsal with about the same dimensions. Anal spine slender and of moderate length. Length of anal 3 times in the head; its height twice its leugth. Peetorals and ventrals reaching nearly to the vent.

Color greenish olive, with many specks of brown. These brown specks somewhat in rows above the place for the lateral line. About ten oblong spots of brown along the sides, most distinct above the anal fin. Below, white. The usual black streaks below and in front of the eye. Dorsal fins nomewhat barred.

The general appearance of this little fish is that of a Boleichthys, but the very short laterai line, large scales, equal jaws, \&ec., seem to ally it most closely to Microperca. From the latter it differs in having but a single anal spine and the beginnings of a lateral line. Since, however, this "lateral line" is found on the opercle of M. punctulutu, it would not be surprising if it should be sometimes, even in that species, found on one or two of the anterior scales.

## Family CENTRARCHIDE.

## Genus MiCropterds, Lacépède.

11. Micropterus palldus (Raf.) Gill \& Jor. (No. 27, 430.)

> Huro nigriaan, DeKay, Fanna N. Y. Fishes, 1842, 15.
> Micropterus nigricans, Cope, Proc. Acad. Nat. Sci. Phila. $1845,83$.
> Dioplites nuecensis, Girarb, U. S. Pac. R. R. Surv. vol. x, 4.
> Micropterus pallidus, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 314.

This species is abundant everywhere, and is esteemed as one of the best fond-fishes. It is called "Trout", instead of "Bass", as at the North.

The young are conspicuously marked by a dark, sometimes interrupted, lateral band. This is sometimes found also in the adults. There is often a small patch of feeble teeth on the tongue of both this species and M. salmoides.

Specimens were obtained in the Catawba at Artesia, and in the Chickasawha at Enterprise.

Proc. Nat. Mus. $30 \longrightarrow 32$ Feb. 16, 1881.

## Genus Ambloplites, Raf.

12. Ambloplites rupestris (Raf.) Gill. (No. 27,4i1.)

Centrarchus pectacanthus, Dekix, Fanna N. Y. Fishes, 1842, 30.
Ambloplites quene, Gimard, Pac. R. IR. Surv. vol. x, 8, pl. i.
A fine specimen of this species was taken in the Chickasawhat En terprise. Another has since been sent me by Mr. Warner.

Genve CIENOBRYTTUS, Gill.
13. Chænobryttus gulosus (C. \& V.) Gill. (No. $27,459$.

Calliurus melanops, Greand, Pac. R. R. Surv. vol. x, 11, pl. iii.
Chanobryftus guloaus, Cope, Proc. Acad. Nat. Sci. Phila. 18tī́, 84.-Jomdax, Annals N. Y. Lyc. Nat. Hist. 1877, 361.
A single specimen of this was obtained at Enterprise. It has many of the characteristics assigned by Professor Jordan to Ch. viridis. This latter species is attributed by him to the region from Virginia to Florida.

In the specimen which I caught the coloration is quite dark, being a reddish brown. Most of the scales have a dark spot in the center. This spot, on a few of the scales along the sides, is quite conspicuous. The fins are dark in color, the soft dorsal, especially behind, being marked with spot.s. The base of the anal is also obsoletely spotted. Tips of soft dorsal and anal in life bright red. Lower jaw and snout lisid blue. The specimen agrees well with Girard's Calliurus melanops. I think it not uulikely that Ch. gulosus and viridis will turn ont to be varieties of the same species.

## Genus APOMOTIS, Rafinesque.

14. Apomotis cyanollus (Raf.) Jordan. (No. 27,449.)

Calliurus formosus, Gibard, Pac. R. R. Surv. vol. x, 14, pl. v, ligs. 1-4.
Apomotis cyancllus, Jondan, Bull. U. S. Geol. Surv. vol. iv, No. 2, 398.
I obtained specimens of this widely distributed species from Catawba Creek at Artesia, and from the Noxubee at Macon.

## Genus LEPOMIS, Rafinesque.

15. Lepomis pallidus (Mitchill) Gill \& Jordan. (No. 27,457.)

Pomotis incisor, DeKay, Fauna N. Y. Fishes, 1842, 33.
Pomotis speciosus, Girard, Pac. R. R. Surv. vol. x, 23, pl. viii, figs. 5-8.
Lapiopomus pallidus, Jordan, Bull. U. S. Geol. Surv, vol. iv, No. 2, 397.
Lepiopomia incisor, Goode \& Bean, Proc. U. S. Nat. Mus. 1879, 139.
Numerous specimens of the above species were obtained in Catarba Creek at Artesia, Noxubee River at Macon, and in the Chickasawha at Enterprise.
16. Lepomis obscurus (Ag.) Jorlan. (No. 27,4i8.)

Pomolis obscurus, Agassiz, Amer. Journ. Sci. and Arty, 18:4, 302.
Lepiopomis obscurus, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 317.
A fine example of this species, 6 inches long, was obtained with the hook from Sucarnochee Creek at Narkeeta, a station on the Mobile and Ohio Railroad.

This species is distinct from L. pallidus, although closely related to it. The color is much darker. Each scale has in its center a dark spot, longest up and down. The opercular flap is longer and more abruptly formed than in L. pallidus. The opercular flap, measuring from where the seales cease, is equal to the diameter of the eye, while in $L$. pallidus it is equal to only two-thirds the eye's diameter. The pectoral and ventral fins reach fully to the first anal spine.
17. Lepomis fallax (B. \& G.) Hay. (No. 27,456.)

Pomotis fallax and conrexifrons, B. \& G. Proc. Acad. Nat. Sci. Phila. 1854, 24.
Pomotis fallax, Girard, Pac. R. R. Surv. vol. x, 27, pl. ix, fig. 5.
While at Enterprise I obtained some small specimens of a Sunfish which belongs to Professor Jordan's genus Tenotis. I saw several adult specimens, but could procure none from their captors, who took professional pride in their long "strings". My attention was especially attracted to this fish by its immense opercular flap. Since returning home, Mr. William A. Warner, of Enterprise, has kindly sent me additional material, and, among other things, a specimen of this fish, having a total length of 6 inches. After a careful study of this species my conclusion is that it is the Pomotis fallax of Baird and Girard, described from Northern Texas. The agreement witl the description and figures given in the Pacific Railroad Survey Report is very close indeed. Fig. 5 , pl. ix, gives a very good althongh somewhat reduced representation of my largest specimen.
Xenotis solis, Gill \& Jor. (Bull. U. S. Nat. Mus. No. 10, 22), not Pomotis ${ }^{8} 0$ is, C. \& V. (see Proc. U. S. Nat. Mus. 1879, 295), is a more elongate species, the greatest depth being contained $2 \&$ times in the length instead of 2 , as in my specimens. The eye of that species is contained in the flap $1 \frac{1}{2}$ times instead of 2 , as in this. The flap of that is contained 22 times in the rest of the head instead of 2 times, as in this. In that there are "about 5 rows [of scales] above and 11 below" the lateral line; in this there is one more both above and below.
From P. breviceps, B. \& G., it appears to differ in having a larger ese, a more anterior dorsal fin, and longer ventral fins; from $X$. megalotis, in that the body is not so heary anteriorly.
I cannot give a description of the colors in life, except that they are brilliant. In spirits the body above is yellowish brown, the seales being dark-edged; fins dusky, narrow blue stripes on the cheeks; flap jetblack, with a pale edge.
Professor Jordan informs me that he now regards L. fallux as simply a variety of L. megalotis. I have not had the opportunity to examine enough material to enable me to satisfy myself of the correctuess of this conclusion. He also discards the genus Tenotes.

## Genus Centrarchus, Cuvier.

18, Centrarchus irideus (Lac.) C. \& V.
C. irideus, Jordas, Bull. U. S. Nat. Mus. No. 10, 31.

At Narkeeta, on the Mobile and Ohio Railroad, I saw a specimen of Centrarchus taken from the Sucarnochee River, but was not able to procure it. From an examination made at the time I regard it as being C. irideus. It appeared, however, to have some of the characters of C. macropterus; there being, for instance, 8 anal spines instead of 7, the usual number.*

## Genus POMOXYS, Rafinesque.

19. Pomoxys nigromaculatus (Le S.) Girard. (No. 27,461.)

Centrarchus hexacanthus, Dekiey, Fanna N. Y. Fishes, vol. iv, 1842, 31.
Pomoxis nigromaculatus, Girard, Pac. R. R. Surv. vol. x, 6.
Numerous specimens of this were taken from Horsehunter Creek at Macon. Both this and the next are much sought after as food and to stock fish-ponds.
20. Pomoxys annularis, Rafinesque. (No. 27,460.)

Pomoxis annularis and nitidus, Girard, Pac. R. R. Surv. vol. x, 6.
Same locality as above.

## Family ELASSOMATID压.

> Genes ELASSOMA, Jordan.
21. Elaseoma zonatum, Jordan. (No. 27,452.)

Elassoma zonatum, Jordan, Bull. U. S. Nat. Mus. No. 10, 50; Bull. IIl. Lab. Nat. Hist. No. 2, 47.
Two specimens of this interesting species were secured in a pond along the Noxubee River at Macon. The largest was $1 \frac{5}{8}$ inches in length, somewhat larger than the specimens hitherto found. After careful search I have been unable to find any evidences of the existence of vomerine teeth in this species. The fin-formula is, D. I; V, 10; A.III, 5 or 6. The scales are very small and difficult to count. As nearly as I could make out, there are 42 vertical rows and 18 or 20 horizontal rows between anal and dorsal. The pseudobranchiz are obsolete.

[^87]
## Family APHREDODERIDA.

## Genus APHREDODERUS, Le Sueur.

22. Aphredoderus sayanus (Gilliams) DeKay.

Aphredoderus sayanus, Dekay, Fanna N. Y. Fishes, 35.
Aphododerns isolepsis (Nels.) Jobdan, Bull. IIL. Lab. Nat. Hist. No. 2, 48.
Aphrodedirus cookianus, Jordan, Proc. Acad. Nat. Sci. Phila. 1877, 60.
A single small specimen was obtained at Macon. All the names cited above belong to varieties of the same species. DeKay mentions that this species occurs at New Orleans.

Family CYPRINODONTID在.
Gends ZYGONECTES, Agassiz.
23. Zygonectes notatus (Raf.) Jordan. (No. 27,444.)

Zygonectes notatur, Jordan, Bull. U. S. Nat. Mus. No. 9, 47.
Many fine specimens of this species were taken. I have them from Corinth, Artesia, Macon, and Enterprise. This and the succeeding species are seen almost everywhere, especially in quiet waters, swimming near the surface. One of my specimens from Enterprise is 3 inches long to the caudal, or a total of $3 \frac{1}{2}$ inches.

The color is translucent yellowish green above, silvery white below, with a broad, dentate, lateral band of black. There sre four or five longitudinal rows of black dots above the lateral band, especially conspicuons in specimens from Enterprise. The fins are golden, the dorsal and caudal dotted with black.
24. Zygonectes melanops (Cope) Jordan. (No. 27,427.)

Haplochilus melanops, Cope, Proc. Amer. Phil. Soc. 1870, 457.
Zygonectes melanops, Jordan, Bull. Ill. Lal. Nat. Hist. No. 2, 52.
Many of these little fishes were seined in the pouds and rivulets along Catawba Creek in the vicinity of Artesia, and in Horsehunter Creek near Macon. They correspond closely with Professor Cope's description cited above. This species appears to have a very wide distribution. It was originally described by Professor Cope from the Neuse River, in North Carolina. It was next discovered in Southern Illinois by Prof. S. A. Forbes, the accomplished superintendent of the Illinois State Laboratory of Nataral History. I have now the pleasure of announcing its occurrence at points much farther south.

# Family HYODONTIDA. 

> Genus HYODON, Le Sueur.
25. Hyodon selenops, Jordan \& Bean. (No. $27,455$.

Hyodon selenops, Jondan, Bull. U. S. Nat. Mus. No. 10, 6\% .
This beantiful species appears to be abundant in the Chickasawha River. At Enterprise, where I saw a number taken from the water
with hooks, they are called "Hickory Shad". They are not esteemed very highly as a means for gratifying the palate. This species is reported from the Tennessee and Cumberland Rivers.

## Family CLUPEide.

Genus CLUPEA, Artedi.

26. Clupea chryaochlorts (Raf.) Jor. (No. 27,453.)

Pomolobus chrysochloris, Rafinesque.
A single specimen of this species has been sent me by Mr. William A. Warner, of Enterprise.

Genus DOROSOMA, Rafinesque.
27. Dorosoma cepedianum (Le S.) Gill. (No. 27,454.)

Dorosoma cepediana, Jordan, Proc. Acad. Nat. Sci. Phila. 1877, 69; subap. heterurum, Bull. U. S. Nat. Mus. No. 10, $\mathbf{6 5}$.
Several specimens of this species were caught while seining a deep pond along the Noxubee River near Macon. I do not find that the characters assigned by Professor Jordan to the variety heterurum exist in my specimens, unless it be that of the long filamentous ray of the dorsal filu. Even this distinction does not always hold good. I find no particular differences between my largest specimen, $8 \frac{1}{2}$ inches long, and a specimen of the same size from the Potomac.

## Famiy CYPRINIDE.

## Genus HYBORHYNCHUS, Agassiz.

28. Hyborhynchus notatus (Raf.) Ag. (No. 27,441.)

Hyborhynchus notatus, Cope, Trans. Amer. Phil. Soc. 1869, 392.
A single specimen obtained at Corinth; many in the waters about Artesia and Macon. In their coloration some of the specimens that I obtained are different from any that I have seen from other localities and from any deseriptions that have fallen under my eye. These peculiarities of color are observed only in the largest individuals, those $2 \frac{1}{2}$ inches in length. Soine of these are quite brown, this color being produced by each scale having a black border. The head is blue-black, of varying degrees of intensity, being in some cases almost jet-black. There is a deep black band occupying the whole upper half of the dorsal fin. The greater part of the caudal fin is also black, the base and tip only being light. There is sometimes a black spot near the tip of the posterior rays of the anal fin. In many of these dark colored specimens the dark lateral band usually seen in this species is either obsolete or indistinct. These highly colored individuals are, no doubt, males in their wedding suits of black. The other party does not dress so gorgeously.

## Gevus HYbOGNATHUS, Agassiz.

29. Hybognathus argyritis, Girard. (No. 27,431.)

Hybognathus argyritis, Gmard, Pac. R. R. Surv. vol. x, 235 ; Proc. Acad. Nat. Sci. Phila. 1856, 182.
Specimens of this species were seined in Horsehunter Creek at Macon, and in the Chickasawha River at Enterprise. Some of these have a total length of 41 inches.

## Genus Alburnops, Girard.

30. Alburnops taurocephalus, Hay, sp. nov. (No. 27,439.)

This very interesting species resembles much Hyborhynchus notatus, and therefore recalls strongly Professor Cope's description of Mybopsi* tuditanus, from Northern Indiana. (See Trans. Amer. Phil. Soc. 1860,381.) It is a true Hybopsis, or Alburnops, as indicated by the short alimentary canal and the close union of the spinons dorsal ray to the first soft dorsal. The teeth are 4-4, hooked, compressed, and provided with a masticatory surface.

The body is stont, somewhat compressed, broad and flat above, with a deep and angulated caudal peduncle. The latter is contained in the body about $3 \frac{2}{3}$ times. Its depth is one-half its length. The head is broad and flat above, and at the temporal region forms an angle with the cheeks. The breadth of the head behind the eyes is equal to the distance from the muzale to the back of the orbit, and nearly two-thirds the length of the head. The muzzle is broad and obtuse; but not so truncate as that of Hyborhynchus notatus, since the protile rounds gradnally into the snout.

The mouth is rather small, horizontal, and terminal ; the jaws about equal, the upper heavy. The maxillary hardly reaches a perpendicular from the anterior margin of the orbit. Eye large, 3.2 in the head. Head in the length, exclusive of the caudal, 4. times. Depth about equal to the length of the head.

Dorsal I, 8; A. I, 7. The dorsal begins above the ventrals, is longer than high, and has on the anterior rass, rather below the middle, a black spot. This tin commences nearer the snout than the caudal. The anal is small.

The scales along the lateral line are rather large and silvery; the formula is $8-43-4$. The scales in front of the dorsal fin are small, especially on the nape.

In color this species is pale yellow, with a dusky tinge given it by numerous black punctulatious on each scale. The sides are silvery, as are also the cheeks and opercles. There is an obsolete dusky band along the lateral line, terminating at the base of the caudal in a small but distinct black spot. The top of the head and snout brown.

Length of the largest specimen 3 inches, exclusive of caudal.

From the Chickasawha at Enterprise. Caught for bait for larger fishes, and called "Bull Heads".

While this species must resemble H. tuditanus, it evidently is distinct from it. The dorsal fin of that species is said to be markedly nearer to the caudal than to the end of the mazzle, while the contrary is true in iny species. If the horizontal rows of scales have been counted correctly, and in the same way in both species, there is one more row above the lateral line in mine than in Professor Cope's species. The mouth in H. tuditanus is said to be very small and inferior, as in Hyborhynchus notatus. The latter feature certainly does not belong to the present species.
31. Alburnops longirostris, Hay, sp. nov. (No. 27,440.)

The gencral appearance of this species is much like that of small specimens of Lricymba buccata.

Head rather small, contained in the body 42 times. Eye small, being contained in the head 4 times; not equaling the snont, which is onethird the length of the head. The upper jaw is rounded and much overlaps the lower jaw. The mouth, therefore, inferior, rather large, horizontal. The maxillary attains a vertical from the anterior of the orbit. Teeth 4-4, hooked, and having a triturating surface.

Lateral line somewhat decurved. Scales large, there being 36 along the lateral line, 4 horizontal rows above, and only 3 below. About 12 large scales in front of the dorsal. Depth in length 43 to 5 .

Origin of the dorsal fin midway between the tip of the suont and the base of the caudal and directly over the insertion of the ventrals. Rass of dorsal I, s; anal I, 7. Dorsal nearly twice as high anteriorly as long; anal short and low. Caudal deeply forked, nearly one-fourth the length of the body. Pectorals far from reaching the ventrals; these extending fully to the vent.

Caudal peduncle in body 33 times; its greatest width nearly one-half its length.

This tish is of a pale straw color, slightly dusky from the brown edges of the scales. There is a very narrow, dark dorsal line; also an obsolete lateral band just below the lateral line. Top of the head brown; the vertical fins dusky.

Length of the largest specimen 2 inches. Seined in considerable numbers at Enterprise. The females teem with egrs.
32. Alburnops xзenocep'halus, Jor. (No. 27,435.)

Hybopais xanocophalus, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 335. Alburnope xanocephalux, Jordax, Bull. U. S. Geol. Surv., vol. iv, No. 2, 420
Several specimens of a darkecolored minnow were seined at Enterprise the resemblance of which to $H$. xanocephalus is so close that I have referred them to that species, so well described by Professor Jordan in his "Fishes of Upper Georgia". There are some differences, however, that I have thought worthy of mention.

The body in my specimens is deeper, the depth being contained in the length but 4. times or less. The back does not seem to be so broal nor the caudal peduncle so deep. The dark band that occurs on the caudal peduncle of typical specimens from Georgia is, in these from Mississippi, continued forward along the side to the snout; being, however, slightly broader and less perfectly defined anteriorly.

I do not, however, think that the differences form sufficient grounds for establishing a new species. My largest specimens have a total length of 3 inches.

Professor Jordan's specimens were obtained in the upper tributaries of the Alabama River.

## Genus Hemitremia, Cope.

33. Hemitremia maculata, Hay, sp. nov. (No. 27,438.)

Body long and slender, slightly clevated at the dorsal, somewhat compressed. Depth in the length 5 times. Head flattened above; snout, looked at from above, obtuse. Mouth small, the maxillary falling considerably short of the anterior border of the orbit, terminal, slightly oblique. Teeth 4-4, with grinding surface.

Head in the length 42 times. Eye in head 312, about equal to the snout.

The fin-rays are, D. I, 8; A. I, 8. The dorsal begins slightly behind the ventrals. Its length three-fifths, its height four-fifths, of the head. Anal, in length, one-half, in height two-thirds, the head. Caudal peduncle one-fourth the length of the body. Dorsal situated nearer to the snout than to base of caudal.

The pores of the lateral lise are found on but 8 or 10 scales, anteriorly. Scales 5-38-3.

This fish is of a straw-color above, with the scales brown edged. There is a faint, narrow dorsal band, and another narrow, dark line running from the vent on each side of the anal fin to the base of the caudal. A leaden band runs along the sides, which is rendered dusky by numerous black punctulations on the scales within this band. Besides these minute punctulations there is ou each scale along the center of the band a pair of larger black points. Posteriorly the lateral band ends in a black spot nearly as large as the eye. Snout and top of the head dusky.

A single specimen, $2 \frac{1}{2}$ inches long, and a few young, were obtained at Enterprise.

Three other species of Hemitrmia are recorded. H. vittata, Cope, has teeth 4-5, with a blick lateral band, and other paler ones above this. $H$. heterodon and II. bifrenata, described by the same author, both have teeth 4-1. They both appear to be less elongated species than the one described above, and neither are mentioned as having the conspicuous candal spot of $\boldsymbol{H}$. maculata, which is exhibited in all the specimens that I secured. In $\Pi$. heterodon the "lateral line is posteriorly imperfect". In $H$. bifrenata there are 12-13 rows of seales in frout of dorsal, and
there are 7 rays in the anal fin. In $H$. maculata there are about 16 scales in front of the dorsal, and the anal rays are $I, 8$.

This species will come under Professor Jordan's genus Chriope. (Bull. U. S. Geol. Surv. vol. iv, No. 4, 787.)

## Genus LUXILUS, Rafinesque.

34. Luxilus cornutus (Mitch.) Raf.<br>Hypsilepis cornutus, Cope, Trans. Amer. Phil. Soc. 18i9, 372.

Three specimens of the young of this widely diffused species were obtained at Corinth, and mauy others at Enterprise.
35. Luxilus chickasavensis, Hay, sp. nov. (No. 27,419.)

This species closely resembles Codoma stigmatura, Jordan, from the Alabama River, originally described as Photogenis stigmaturus. (Annals N. Y. Lyc. Nat. Hist. 1877, 337.) If Codoma is to be regarded a valid genus, and if Ph.stigmaturus belongs to that genus, then the present species will be Codoma chickasavensis. I do not, however, believe that there is sufficient grounds for putting Photogenis stigmaturus and Luxilus analostanus into different genera. So far as I can determiue with the aid of a good microscope, the masticatory surface as truly exists on the teeth of Ph. stegmaturus as on those of Lux. analostanus. Sometimes in the former species one edge is serrated; and in some species of Codoma, as this genus is limited by Professor Jordan, occasionally both boundaries of the concave surface are serrated. I hope, at no distant period, to be able to discuss this subject still further. For the present I adopt the name Luxilus for both this species and Luxilus analostanus (Grd.) Jor.

In a close comparison of the present species with Codoma stigmatura, I find the following differences to exist: There are fewer scales along the lateral line, 33 to 40 instead of 45 . The eye is also considerably larger, being contained in the head $3 \frac{1}{2}$ times instead of $4 \frac{1}{2}$, and about equal to the snont. The caudal spot is as intensely black as in C. stigmatura, but considerably smaller. It is about as large as the eye, sometimes smaller; whereas in that species it is nearly always larger, being in length "usually abont one-third of the head". In this species it is about one-fourth of the head. Neither does it extend so far on the rays of the caudal fin. The form of the head and body, and the position and size of the fins, are apparently the same as in C. stigmatura, unless it be that the body is a little deeper, the depth being contained in the length from 4 to $4 \frac{4}{4}$ times.

The black spot on the posterior rays of the dorsal fin is obsolete or wanting, while there is a narrow dark line running up on one or two of the anterior lorsal rays.

There are, on the heads of a few of my specimens, some evidences of the existence of tubercles.

This species appears to be quite abundant in the Chickasawha at Enterprise. The largest individuals obtained have a total length of 4 inches.

## Gents ERICYMBA, Cope.

36. Ericymba buccata, Cope. (No. 27,421.)

Ericymba buccata, Cope, Proc. Acad. Nat. Sci. Phila. 1865, 87 ; Trans. Amer. Phil. Soc. 1869, 361.
Several individuals of this species were seined in the Chickasawha River at Enterprise. Its geographical distribution is stated by Professor Jordan, in his "Catalogue of the Fresh Water Fishes of North America" (Bull. U. S. Geol. Surv. vol. iv, No. 2), to be from Pennsylvania to Illinois. Judging from the numbers taken at Enterprise, the species is quite as common in the South as farther north. Some of the specimens taken were 3 inches long, exclusive of the caudal.

## Genus OPSOPGEODUS, Hay, gen. nov.

('Oqo

Body fusiform, moderately elongated, slightly compressed. Mouth very small, very oblique, peculiar. Teeth raptorial, with a well-develloped masticatory surface, both bounding edges of which are conspicuously serrated, standing in a single row of $5-5$ on a prominent process of the pharyugeals. Dorsal somewhat behind the anterior line of the ventrals. Barbels none. Lateral line complete. Intestine short. Anal fin short.

This genus is apparently related to Myloleucus, Cope, and it is possible that the species that I describe below will have to be put under that genus. For the present, however, I think that the peculiar form of the mouth and the teeth, as well as the general organization of the animal, will serve to separate it from Myloleucus. The name is given in allusion to the thoronghness with which the food is prepared by the numerous serrated pharyngeal teeth.
37. Opsopcoodus emilix, Hay, sp. nov. (No. 27,429.)

Form of the body as given above. Depth in the length 48 times. Head in the length 412. Muzzle blunt and rounded. Mouth very small, very oblique, the lower jaw in the closed mouth fitting within the upper. In this case the cleft is nearly vertical. The length of the mandible equal to the distance from the tip of the snout to the anterior margin of the orbit; while in Notemigonus chrysoleucus, which has a small mouth, the mandible reaches to the middle of the pupil. Eye greater than the snout, 3 in the head.

Dorsal and anal fin-rays as follows: D. I, 9; A. I, 8. Dorsal beginning over the posterior rays of the ventrals, nearer the snout than to the base of the caudal; length two-thirds the head; its height equal to the length of the head. The anal fin in its length one-half the head; its height a little less than the length of the head.

Pectorals not reaching the ventrals; the latter attaining the anal. The caudal is furcated for more than one-half its length. Caudal peduncle slender, $3 \frac{1}{2}$ times in the length of the body.

Scales in very regular rows, anteriorly somewhat higher than long; the rows 5 or $6-40-3$.

Color in spirits pale yellow above, sides silvers, and golden yellow below. Above and on the caudal peduncle the scales with a narrow dusky edge, giving these parts of the body a regularly checkered appearance. A dusky band runs along the lateral line, back on the rays of the caudal, and forward over the opercle, through the eye, to the snout. Sometimes this band is almost black. Just above this band are two or three longitudinal rows of black dots, one of which dots is located at the tip of each scale. Below the lateral line is another similar row of dots. There is also a row of black points along the lateral line. The anterior rays of the dorsal fin are largely black, and there is also a black spot on the posterior rays.

This is an elegant and very interesting species. Its oblique mouth and rounded muzzle give it a peculiar appearance. It appears to be widely distributed through the State. I have one specimen from Artesia, sereral from Macon, and one from Enterprise.

## Genus MINNILUS, Rafinesque.

38. Minnilus dilectus (Girard) C. \& J.

Minnilus dilectus, Jordan, Proc. Acad. Nat. Sci. Phila. 1877, 80.
Alburnus dilectus, Girard, Proc. Acad. Nat. Sci. Phila. 1856, 193.
Allurnellus dilectus, Girard, Pac. R. R. Surv. vol. x, 259.
Notropis athernoides, Jordan, Bull. III. Lab. Nat. Hist. No. 2, 60 ; Bull. U. \&. Geol. Surv. vol. iv, No. 2, 422.
A single specimen of a Minnilus, or Alburnellus, answering well enough to Girard's description cited above, was obtained at Enterprise.

## Subgenus Lythrurus, Jordan.

39. Minnilus punctulatus, Hay, sp. nov. (No. 27,430.)

Body short, deep, and compressed. The back elevated in front of the dorsal. Depth in the length $4 \frac{1}{4}$. The head is short and deep, $4 \frac{2}{3}$ in the length. The profile is straight, or even a little concave; the snont pointed. Mouth large and quite oblique; the lower jaw longer than the upper. The maxillary reaches back to a perpendicular from the anterior rim of the orbit.

The eye is of medium size, being contained in the length of the side of the head $3 \frac{1}{2}$ times.

The scales are very small. There are 10 to 12 horizontal rows above the lateral line, and 3 below it; 48 to 50 scales along the lateral line, and 25 or more in front of the dorsal. The lateral line is much decurred above the ventrals.

Teeth, 2, 4-4, 2, usually with an evident triturating surface.

Fin-rays as follows: D. I, 8; A. I, 10-11. Dorsal beginning midway between the muzzle and the base of the candal; its length one-half, its height two thirds, the head. Anal in length three-fifths, in height fourfifths, the head. Caudal peduncle compressed, and contained in the length of the body $4 \frac{1}{2}$ times.

The body is of a straw-color above, silvery along the sides and below. The scales above the lateral line are dark-edged from a succession of black dots, which are large enough to be seen by the unaided eye. A dark dorsal line of similar, but a little larger, black points. Along the sides anteriorly are a few such dots; posteriorly they increase so much that on the caudal peduncle they form a dark band. The head, and especially the snout, are sprinkled with similar dots. There is a black spot at the base of the dorsal fin anteriorly. Opercles silvery. Size of largest specimens 2 inches. Corinth.

This minnow resembles somewhat Notropis lirus, Jord., but is a less slender species, has a smaller eye, and has not the conspicuous band of nuetallic blue of that species. Notropis matutinus (Cope) Jord., also appears to be a much slenderer species, the depth being contained in the length 6 times. Also there are said to be but 7 rows of scales above the lateral line.

I do not think that there are sufficient differences in the teeth of the species of Notropis, or Minnilus, and those of Lythrurus to justify the separation of these species into two genera. If there is such difference, Notropis lirus ought to be written Lythrurus lirus, for the masticatory surfaces of its teeth are as plain, to me at least, as in L. diplamius.
40. Minnilus rubripinnis, Hay, sp. nov. (No. 27,4:0.)

Body long and slender, somewhat compressed, the depth in the length 42 times. Head arched transversely above; muzzle very pointed. Mouth oblique, large; the lower jaw slightly longer than the upper; the maxillary reaching to a vertical from the front of the eye. The eye is large, being contained in the length of the side of the head 3 times, and its diameter slightlyegreater than the snout. Head contained in the length $4 \frac{1}{2}$ times.

Scales small, especially in front of the dorsal fin, somewhat higher than long, but not so densely imbricated as in the next species. Rows of scales represented by the formula it to $9-4 \mathrm{j} \pm-3$. Lateral line much decurved anteriorly.

The dorsal is situated far back, midway between the pupil of the eye and the base of the caudal, and considerably posterior to the ventrals; its rays, $I, 8$; its length one-half the head, its height three-fourths. The anal is loug, being three-fourths the length of the head, height onehalf the head; its rays, I, 12.

The pectorals do not reach the ventrals; the latter attain the vent.
The coloration of this species is dark in spirits, all the scales above the lateral line being covered with black points. Along the sides is a
broad leaden band, which narrows behind on the candal peduncle and becomes a dusky band, ending in an ill-defined caudal spot. There is a narrow dorsal band. The top of the head and snout, as well as the lower jaw, are dusky. The belly is pale.

The dorsal and caudal are red, with more or less dusky. There is no dark spot at the base of the dorsal, as in some species of Lythrurus; bnt there is a distinct black spot on the upper part of the anterior rays of the dorsal. There is a similar black spot at the distal ends of the anterior anal rays. The anterior rays of the pectorals are dusky.

Large numbers of this species were collected at Enterprise. The largest specimens have a total length of 21 inches.
41. Minnilus bellus, Hay, sp. nov. (No. 27,426.)

Adults of this species resemble much the young individuals of Notemigonus chrysoleucus.

The body is short, deep, and considerably compressed. The dorsal region is elevated. Depth contained in the length about 33 times. Head short, in length of body from 4 to $4 \frac{f}{5}$ times. Muzzle short, rather pointed; the profile in adults concave; mouth quite oblique, large, the maxillary reaching back to the anterior rim of the orbit; the lower jan rather longer than the upper. The eye moderate, $3 \frac{1}{2}$ in the head.

The lateral line is much decurved anteriorly. Scales 7 or 8-40 to 42-3, crowded forward, higher than long, about 25 in front of the dorsal. Teeth 2, 4-4, 2, "sharp-edged", but with a "masticatory surface".

Fin-rays, D. I, 8; A. I, 10-11. Dorsal situated midway between the tip of the snout and the origin of the caudal, wholly posterior to the ventrals, nearly twice as high as long, its length being contained in the head 12 times. Anal contained in the head $1 \frac{1}{2}$ times, a little higher than long, ventrals reaching the vent, the pectorals not extending to the rentrals. Caudal peduncle very little longer than the head, and rather slender.

Color (in spirits) somewhat dusky above, with a narrow, dark dorsal line; sides silvery, with a dull, leaden line along the caudal peduncle. Occasionally, in some of the most highly colored specimens, a few scales on the side are widely margined with black, so that the sides appear splotched. The lower part of the body is in life almost flame-color. All the fins orange, at least at their bases. At least the tips of the dorsal, ventral, and caudal jet-black. No spot at the base of dorsal. In some adults the whole dorsal has black pigment mingled with the orange, besides having the rays tipped with black, and the distal half of the ventrals and anal black. Very few specimens are withont the black tips to the fins, so that this becomes a distinctive character. Evidences of the existence of tabercles were observed on the heads of a few specimens.

Thirty-six individuals were captured at Artesia and four at Macon.
Length from 2 to 23 inches.
This species must be closely allied to Lythrurus atripes, Jordan, found by Prof. S. A. Forbes in Southern Illinois. The differences are, however, sufficiently evident. The larger eye, shorter head, fewer scales along the lateral line, and the fewer soft rays in the dorsal tin will distinguish my species from that. The peculiar coloration of the fins and the lack of the dorsal spot will furnish the most obvious differences.

This species illustrates well the little value of the character most relied on for separating the Lythruri as a genus from the species of Minnilus. While the external characters are all, or nearly all, those of a typical Lythrurus, the teeth are decidedly "sharp-edged", as that term must be defined in order to be applicable to other species with "sharpedged" teeth.

Under the subgenus Lythrurus I would arrange the following species. There may be others that ought to be included:
Minnilus diplamius (Raf.) Hay.-Cope, Proc. Acad. Nat. Sci. Phila. 1867, 162. Pennsylvania to Illinois.
M. cyanocephalus (Copeland) Hay.—Jordan, Proc. Acad. Nat. Sci. Phila. 1877, 70. Michigan to Minnesota.
M. atripes (Jord.) Hay.-Jordan, Bull. Ill. Lab. Nat. Hist. No. 2, 59. Southern Illinois.
M. rubripinnis, Hay.-Mississippi.
M. ardens (Cope) Hay.-Cope, Proc. Acad. Nat. Sci. Phila. 1867, 163.

Virginia and North Carolina to Kentucky.
M. bellus, May.-Mississippi.
M. lirus, Jordan.-Jordan, Annals N. Y. Lsc. Nat. Hist. 1877, 342. M. punctulatus, Hay.-Mississippi.

As an aid to the identification of the species given above, $I$ insert the following aualytical table:
I. Elongated species; depth in length $4 \frac{1}{4}$ or more times.

1. Color pale, with a lateral metallic blue band
M. Lirus.
2. Colors conspicuous-steel-blue, red, and purplish.
a. A black spot at the base of the dorsal ; first ray of donsal opposite the ventrale; A. I, 11
M. Ardeens.
b. A black spot at the tips of the anterior dorsal rays; first donal my behind the ventrals: A.I, 12
M. Rubupinnis.
II. Deep and compressed species; depth if times or leas in the length.
3. Species with a distiuct black spot at the base of dorsal.
a. Species with conspicuons hues; the dorsal surface dusky; sides and fins with more or less crimson.

* Eye small, 4 iu heal; depth $3 t$ in length; D. I, 7 ; A. I, 11..... M. Atripes.
** Eve in head 3 A ; depth in leugth 34; D. I, 9 ; A. I, 11........ M. diplemite.
*** Eyo in head in; depth in length 4; D. I, A; A. I, 11 or 12. M. cyanocerbaice.
b. Colur pale; scales coarsely punctulated, small, 10 to $12-18$ to $50-3$; spot suall.
M. penctilates.

2. No diatinct apot at the base of the dorsal; fius tipped with black..... M. Bellus.

## Genus notemigonds, Rafinesque.

42. Notemigonus chrysoleuous (Mitch.) Jor. (No. 27,423.)

Stilbe americana, Cope, Trans. Amer. Phil. Soc. 1869, 389.
Notemigonus chrysolencus, Jordan, Bull. U. S. Nat. Mus. No. 2, 404 (Synonomy).
Specimens of this fish were obtained at Corinth, Artesia, and Macon.

## Genus SEMOTILUS, Bafiuesque.

43 Semotllus corporalis (Mitch.) Put.
Semotilus corporalis, Cope, Trans. Amer. Phil. Soc. 1869, 363.
A single young specimen was seined from the ponds along Catawba Creek at Artesia.

Genus CERATICHTHYS, Baird.
44. Seratiohthys blguttatus (Kirt.) Bd. (No. 27,422.)

Ceratichthys biguttatus, Cope, Trans. Amer. Phil. Soc. 1869, 366.
A few immature individuals from the Chickasawha River at Enterprise.
45. Ceratichthys amblops (Raf.) C. \& J. (No. 27,436.)

Ceratichthys amblops, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 328.
An individual of this species, having a total length of five inches, and differing in no important respect from a specimen of the same size canght in Indiana, has beeu sent to me by Mr. Warner.
46. Ceratichthys winchelli (Grd.) Jor.

Hybopsis winchelli, Grrard, Proc. Acad. Nat. Sci. Phila. 1856, 211.
Ceralichthys hyalinus, Cope, Journ. Acad. Nat. Sci. Phila. 1869, 226.
Nocomis teinchelli, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 330.
A single specimen of a fish answering well enough to the descriptions of this species was obtained at Enterprise. It is probably but a variety of $C$. amblops.

The dark lateral band is very decided the whole length of the body. It is continued from the front of the eye around the snout, and is here quite black.

## Family CATOSTOMID压.

## Genus MOXOSTOMA, Rafinesque.

47. Moxostoma macrolepldotum (Le Suenr) Jordan, var. duquesnii.

Catostomus duqueanii, DeKay, Fanna N. Y. Fishes, 203.
Teretulus duquesnii, Copre, Journ. Acad. Nat. Sci. Phila. 1869, 236.
Ptychostomus duqueenii, Cope, Proc. Amer. Phil. Soc. 1870, 476.
Mysostoma macrolepidotum, subsp. duquesnii, Jordan, Bull. U. S. Nat. Mus. No. $12,12 n$.
Several individuals of the widely spread "Red Horse" were obtained at Enterprise.
48. Moxostoma poecilurum, Jordan. (No. 27,463.)

One specimen from Enterprise.

Genus ERIMYZON, Jordan.
49. Erimyzon sucetta (Lac.) Jordan. (No. 27,448.)

Catostomus sucetta, Dekay, Fauna N. Y. Fishes, 203.
Moxostoma clariformis, Girard, Pac. R. R. Surv. vol. x, 219.
Erimyzon sucetta, Jordan, Bull. U. S. Nat. Mus. No. 12, 144.
A specimen of this species, a female, was obtained at Corinth. Another female was caught in a shallow branch of Catawba Creek whilst depositing her spawn, in company with the male. Another very young specimen was seined at Macon.

## Genus Catostomids, Le Sueur.

50. Catostomus nigricans, Le Sueur. (No. 27,447.)

Hypentelium nigricans, Jordan, Bull. U. S. Nat. Mus. No. 9, 34.
Catostomus nigricans, Jordan, Bull. U. S. Nat. Mus. No. 10, 162.
One specimen from Enterprise.

## Family SILURIDE.

## Genus ICtalurus, Rafinesque.

51. Ictalurus punctatue (Raf.) Jordan. (No. 27,448.)

Ictalurus carulescens, Cope, Proc. Amer. Phil. Soc. 1870, 489.
Pinolodus olitaceus, Girand, Pac. R. R. Surv. vol. x, 211. Ichtkalurus punotatus, Jordan, Bull. U. S. Nat. Mus. No. 10, 76.
I obtained specimens of this Catfish from the Noxubee River at Macon; others have since been sent me from Enterprise, on the Chickasawha, by Mr. Warner.

Gends AMIURUS, Rafinesque.
52. Amiurus vulgaris (Thomp.) Nelson. (No. 27,437.)

Pimolodus ailurus, Girard, Pac. R. R. Surv. vol x, 210.
Amiur us vulgaris subsp. alurus, Jordan, Bull. U. S. Nat. Mus. No. 10, 88.
Two Catfishes were purchased from a young negro, who had caught them in Sand Creek near Artesia. One of these, having a total length of 10 inches, I identify as above. It is, I have no doubt, Girard's $P$. ailurus, and if this is, as Professor Jordan in his "Synopsis of the Fresh Water Siluride of the United States" affirms, identical with Thompson's $P$. vulgaris, the latter name will be the proper one to employ.

The discovery of this specimen reveals a much greater range southwarrl in this species than was previously suspected. Hitherto it has not been known to occur further south than Saint Louis, and has been supposed to be peculiar to our northern lakes and rivers.

The other Cat fish purchased was-
53. Amiurus melas (Raf.) Jord. \& Copeland. (No. 27,462.)

Amiurus melas, Jordan, Bull. U. S. Nat. Mus. No. 10, 89.
One specimen from Sand Creek, Artesia, and two from Noxubce River at Macon.

Proc. Nat. Mus. $80-33$
Feb. 16, 1881.

## Genus PILODICTIS, Rafinesque.

54. Pilodictis olivaris (Raf.) Gill. \& Jor.

Hopladelus oliraris, Gile, Proc. Bost. Soc Nat. Hist. 1862, 45.-Cope, Journ. Acad. Nat. Sci. Phila. $1 \times 69,237$.
Pclodichthys olivaris, Jondan, Bull. U. 8. Nat. Mns. No. 10, 95.
The skin of a fine specimen of this species was obtained at Shubuta, the fish having been hooked from a branch of the Chickasawha.

## Genus NOTURUS, Rafinesque.

## 55. Noturus leptacanthus? Jordan. (No. 27,442.)

Noturus leptacanthus, Jordan, Annals N. Y. Lyc. Nat. Hist. 1877, 352 ; Bull. U.S. Nat. Mus. No. 10, 102.

I have in my collection a specimen of a Noturus which agrees pretty well with the descriptions given by Professor Jordan of his N. leptacanthus, as above cited. There are, however, some important differences which I am not able to account for satisfactorily. My specimen is not quite 2 inches long to the base of the caudal, and is, therefore, most probably a young one. Hence, the differences noted below may be due either to its being immature or to its being a different species. It seems that Professor Jordan kuew of but a single specimen, and therefore his description may not be applicable to every individual belonging to the species.*

The head is small and narrow, widening gradually from the narrow snout to the shoulders; the lateral outlines of the head, therefore, straight ; its length 48 times in the body. Upper jaw projecting, spines rather long and slender, instead of being short as in the type, the peetoral spine being one-half the length of the head. The color is quite dark.

In other respects the characters assigned by Professor Jordan to his species apply reasonably well to my specimen. I think, therefore, that until more material is collected it will be better to assign the specimen as above.

Collected at Enterprise.
56. Noturas gyrinus (Mitchill) Raf.

Noturus g!rinня, Cope, Journ. Acad. Nat. Sci. Phila. 1869, 237.-Jordas, Bull. U. S. Nat. Mus. No. 10, 102.

Another Noturus, 2 inches long, collected at Macon, belongs to the above species.

I append the following list of species collected at each of the localities visited:

1. Comsth. Water flowing toward the Mississippi.
2. Vaillantia chlorosoma.
3. Mieroperca proliaris.
4. Luxilus coruutus.
5. Zygonectes notatus.
6. Minuilue punctulatus.
7. Hyborhynchus notatus.
8. Notemigouus chrysolencas.
9. Erimyzon sucetta.

[^88]2. Artesla. Catawba Creek, into Tombigbee.

1. Pacilicbthys artesix.
2. Vaillantia chlorosoma.
3. Micropterus pallidus.
4. Apomotis cyanellus.
5. Lepomis pallidus.
6. Zygonectes melanops.
7. Zygonectes notatus.
8. Hyborhynchus notatus.
9. Opsoprodus emiliæ.
10. Minnilus bellus.
11. Semotilus corporalis.
12. Notemigonus chrysoleucus.
13. Erimyzon sucetta.
14. Amiurus vulgaris.
15. Amiurus melas.
16. Macon. Noxubee River, into Tombigbee.
17. Bolcosoma maculatum.
18. Faillantia chlorosoma.
19. Apomotis cyanellus.
20. Lepomis pallidus.
21. Pomoxys nigromaculatus,
22. Pomoxys anuularis.
23. Elassoma zonatum.
24. Aphredoderus sayanus.
25. Z.g.gonectes melanops.
26. Zygonectes notatus.
27. Dorosoma cepedianum.
28. Hyborhynchus notatus.
29. Hybognathus argyritis.
30. Opsopюcodus emilize.
31. Minnilus bellus.
32. Notemigonus chrysoleucus.
33. Erimyzon sucetta.
34. Ictalurus punctatus.
35. Amiurus melas.
36. Noturus gyrinus.
37. Narkeeta. Sucharnochce River, into Tombigbee.
38. Lepomis obscurus.
| 2. Centrarchus macropterus.
39. Enterprise. Chickasawha River.
40. Ammocrypta gelida.
41. Percina caprodes.
42. Hadropterus spillmani.
43. Nanostoma elegans.
44. Nanostoma zonale.
45. Poscilichthys saxatilis.
46. Micropterus pallidus.
47. Ambloplites rupestris.
48. Chsenobryttns gulosus.
49. Lepomis pallidus.
50. Lepomis fallax.
51. Zygonectes notatus.
52. Hyodon selenops.

14 Clupea chrysochloris.
15. Hybognathus argyritis.
16. Albnrnops tanrocephalus.
17. Alburnops longirostris.
18. Alburnops xanocephalus.
19. Hemitremia maculata.
20. Luxilus cornutus.
21. Luxilus chickasavensis.
22. Ericymba buccata.
23. Opsopøodus emilis.
24. Minnilus dilectus.
25. Minnilus rubripinnis.
26. Ceratichthys biguttatus,
27. Ceratichthys amblops.
28. Ceratichthys winchelli.
29. Moxostoma macrolepidotum.
30. Moxostoma pecilurum.
31. Catostomus nigricans.
32. Ictalurus punctatus.
33. Noturns leptacanthus 1
6. Shublta. Chickasamha River.

1. Pilodictis olivaris.

Rutler University, Irrington, Ind., October, 1880.

#  

## By Samuel garman.

RHINOBATIDA.
Trunk broad, flat; tail long, strong, continuous with the body; dorsals and caudal well developed; pectorals not reaching the end of the snout (except species of Discobatidae); covered with shagreen; with spines in a vertebral row and on the shoulders; generally viviparous.

## Rhinobatus.



## Syrrhina.

Nasal valres extended on the internarial space; a fold on the hinder margin of the spiracle; rostral ridges meeting brerirostris
no fold on the spiracle;
rostral ridges not meeting exasperata
Platyrhinoidis.
Labial fold distinct; no fold on the spiracle;
posterior lobe of nasal valve rudimentary ..... triseriata

## Rhinobatus.

Rostral cartilage rather slender, pointed, ridges meeting or close together in front; dorsal fins far behind the ventrals; nasal valves not extending between the nostrils; disk, without the ventrals, subtriangular; claspers slender, pointed.

## Rhinobatus lencorhynchus.

Gủnther, 1866, Proc. Zool. Soc. Lond. 604.
Length of disk, including ventrals, $11 \frac{1}{2}$, width 73, snout from mouth to tip 33 , and total length 23 inches. Anterior margins very slightly undulating, posterior broadly curved. Posterior margin of ventral nearly straight. Head moderately broal, slightly concave; width between the eyes three and one-half times in the length of the snout. Rostral cartilage strong, moderately long; ridges spparate in their entire length, approaching each other regularly toward the end of the snont, which they do not reach. Tip of the snout more pointed than in other species. Eyes moderate, larger than the spiracle. Spiracle with two folds on its posterior border. Auterior nasal valve simall, not dilated, extending over little more than half the length of the nostril. Mouth slightly arched in the middle.

Body covered with shagreen above and below. A row of small spines along the vertebre, a pair on each shoulder, one above each eye, and a row of smaller ones along the orbital ridges. Tail depressed, with a fold on each side. Dorsals equal, second distant from the caudal the length of its base, and from the first by the length of its anterior border.

Light reddish or olivaceous brown. Translucent spaces in front of the head white. White beneath.

Panama.

## Rhinobatus productus.

Girard, 1854, Proc. Acad. Nat. Sci. Phila. 196.
Disk having the form of that of planiceps. Snout shorter than that of undulatus, rounded at the end. Rostral ridges confluent half or more of their length. Head slightly concave between the orbital ridges. Spiracles with two folds on the posterior border. Fins as in planiceps. Young with a dorsal row of compressed hooked spines commencing immediately behind the head, a pair on each shoulder, a series of smaller ones in front and above each eye, and a row of small ones on each of the ridges of the rostrum.

Color a clonded brown, white on the translucent spaces in front of the head, a black spot beneath the end of the snout. The brown is grayish and somewhat dull, rather than rich and dark, as in the flat-headed species. Large specimens have small, indistinct spines in dorsal and orbital series, rostral ridges confluent for a greater portion of their length, aud uniform coloration. Distinguished from R. planiceps by the folds on the spiracle, confluence of the ridges, and color; from $R$. undu-
latus by the stoutness of body, shortness of snout, and color. Thirtyeight specimens were collected at San Diego, Cal., by the Hassler expedition.

## Rhinobatus spinosus.

Guinther, 1870, Cat. Fish. Brit. Mus. viii, 518.
Anterior nasal valve not dilated laterally. Snout much produced, the distance between the outer angles of the nostrils being one-half of that between the mouth and the end of the snout. The rostral ridges are confluent, very narrow, with a very small and short groove at the base, and in their entire length provided with spines. Mouth nearly straight. Compressed spines with dilated base along the median line of the back, on the shoulder, and above the eye and spiracle; the entire upper surface rough. Snout white. (Giinther.)

Mexico.

## Rhinobatus horkelii.

Müller \& Henle, 1841, Syst. Beschr. Plagiost. 122.
Rhombic. Disk, including ventrals, 19 , width 11.62 , tip of snout to mouth, 6.87 , and total length 35.5 inches. Head broader than that of R. undulatus; crown flat. Anterior margins slightly sinuous. Angles and posterior margins of pectorals broadly rounded. Margins of ventrals nearly straight. Snout long, rather less than four times the width of the head between the eyes. Rostral cartilage strong; ridges distant at base, close together somewhat less than half their length, expanded near the extremity. Eye smaller than the spiracle. Spiracle with two folds on the posterior border. Anterior nasal valve not dilated, not extending half the length of the nostril. Mouth nearly straight; a pair of concave curves meet to form a low arch on the symphysis. Covered -with shagreen above and below. A row of hooked spines along the vertebre, a row of several near the middle of each half of the shouldergirdle, and a few smaller ones on the orbital ridge and in a group opon the end of the snout. Tail depressed, with a fold on each side. Second dorsal distant from the caudal less than the length of its base, and from the first less than the length of its anterior border.

Uniform light grayish or olivaceous brown, without cloudings or spots. Whitish below. Translucent spaces on the snout white in young, darker in old. Sometimes a small patch of brown under the tip of the snout.

Bahia; Rio Grande ; Rio Janciro and northward.
Rhinobatus undulatus.
v. Olfers, 1831, Die Gattring Torpedo, 22.

Rhombic. Disk, including ventrals, 18, width 10.75, from tip of snout to mouth 5.75 , and total length 33 inches. Anterior margins nearly straight, slightly concave. Angles and posterior margins of peetorals broadly rouuded. Posterior margin of ventral straight a portion of its length; posterior angle blunt. Head moderate; crown concare.

Snout long, about four and one-half times the width of the head between the eyes. Rostral cartilages narrow, ridges close together more than half their length, expanded near the extremity. Eye moderate, larger than the spiracle. Spiracle with two tubercles on the hinder margin. Anterior nasal valve not dilated, extending over little more than half of the length of the nostril. Mouth straight or slightly arched forward. Covered with slagreen above and below. A row of small spines in a vertebral series to the caudal, a row of several near the middle of each half of the shoukler-girdle, and several above each eye and spiracle. No spines on the snout. Tail depressed, with a fold on each side. Second dorsal distant from the caudal more than the length of its base, and from the first by the length of its anterior border.

Claspers long, slender, but little swollen at the end.
Olivaceous brown, transversely clouded with darker. A few small round spots of white above the gills and behind the shoulder-girdle. Trauslucent spaces of suout white; below there is a lozenge-shaped spot of dark, from each side of which a dark line passes to the anterior rays of the pectorals. Old specimens more uniform in color ; dark marks of snout sometimes faded.

Rio Janeiro and southward.

## Rhinobatus lentiginosus.

 Garman, loo0, Bull. Mus, Comp. Zool. 163.Outlines of body and fins similar to those of horkelii and undulatus. Rostral cartilage long and narrow, a small groove near the head; ridges close together from base to extremity. Eyes large. Spiracles half as large as the eyes, with two folds. Head narmow, concave between the eyes. The width of the interocular space equals that of the nostrils or their distance apart. Half the length of the snout is less than the distance between the onter angles of the nostrils. Mouth nearly straight; a little less than trice the width of the head between the eyes. Scales small, smooth. Spines of the dorsal series and the three in front of each eye very small; those above the eve and spiracle not noticeable. The largest spines ou the body are a group of five on the top of the end of the snout, a pair of which resemble small horns. Shoulders smooth or with a single small spine.

Color a light grayish brown, densely freckled with small spots of lighter; uniform brownish below. On the lower side of the snout there are faint indications of markings similar to those of undulatus.

Distinguished from horkelii and undulatus by the colors, the hornlike spines on the end of the snont, the absence of spines on the shoul ders, the narrowness of the head as compared with the width of the mouth, the shorter distance from snout to mouth, and the greater dis. tance from mouth to vent. Total length 22.9 , snout to mouth 4.1 , snout to vent 9.9 , and width of pectorals 7.4 inches.

Florida; Sonth Carolina.

## Rhinobatus planiceps

Garman, 1880, Bull. Mus. Comp. Zool. No. 11, 168.
Disk, including ventrals, rhombic, about one and a half times as long as wide. Auterior borders of pectorals straight, more than twice as long as the convex posterior margins. Angles of pectorals rounded, the hiuder not extending farther than to the vent. Outer angle of ventrals rounded, posterior acute. Head broad, flat. Rostral cartilage medium, dilated at the extremity, with the ridges close together in the anterior third of their length. Snout rather broad, with rounded ex. tremity. Eyes moderate. Spiracle immediately behind the eye, smaller than the orbit, with a single fold on the posterior side. Anterior nasal valve not dilated, posterior two lobed. Mouth nearly straight. Body covered with shagreen above and below. Tail appearing as if continned on the posterior portion of the abdomen, much depressed, with a fold on each side, bearing two elevated dorsals behind the ventrals and a candal with convex border at its extremity. Second dorsal distant from the candal the length of its base. Bases of the dorsals distant from each other the length of the anterior borders. Scales larger over the central portions of the disk. Compressed hooked spines in a median row on back and tail, in two patches on each shoulder, and a series above each eye. On the young these spines are inuch more prominent and regular in size than in the adult. Color brown; light between and on each side of the rostral ridges; white below. Young specimens with a number of small, round, white spots on each side of the dorsum.

The following measurements are taken from a young male:
Inches

Snont to end of ventrals...............................................................................................

Wielth of pectorals.............................................................................................. 6.9
Payta, Callao, and Galapagos Islands.

## Syrriina.

Characters in general those of Rhinolatus. Disk somewhat shorter and broader. Nasal valves dilated and extending upon the internarial space.

## Syrrhina brevirostris.

Mither \& Heule, 1841, Syst. Beachr. Plagiost. 114.
Disk, including the ventrals, rhombic, longer than wide; width about seven-eighths of the length. Anterior margins nearly straight, slightls indented opposite the gill-openings, at the end of the snout forming an angle of less than ninety degrees. Angles and posterior margins of pectorals ronnded. Ventrals rounded. Posterior angle rather blunt. Head moderate; crown concave. Snout short, slightly rounded at the tip; length about twice the width of the head between the eyes. Ros. tral ridges distant at the head, meeting at the end of the rostrum. Eye
moderate, rather larger than the spiracle. Spiracle with one tubercle on the hinder margin. Anterior uasal valves dilated, extending across about oue-third of the space between the nostrils. Mouth arching forward slightly. Body rough with shagreen above and below. Small hooked spines scattered over back and tail. A row of tubercular spines along the vertebre to the secgud dorsal. Two or three similar tubercles over each extremity of the shoulder-girdle and a pair a short distance from these toward the vertebral row. A couple of spines above each spiracle and one or two in front of each eye. Tail depressed, with a fold on each side. 'Dorsals equal, second distant from the caudal the length of its base and from the first the length of its anterior border.

Light grayish or olivaceous brown; margius lighter; whitish below. Sometimes clouded with brown.

The claspers, as far as may be judged from young specimens, are similar to those of $R$. undulatus.

Total length $18 \frac{1}{2}$, length of disk, including rentrals, 10 , and width of disk 83 inches.

Rio Janeiro.

## Syrrhina ezasperata.

Jord. \& Gillo. 1880, Proc. U. S. Nat. Mus. 32.
Disk, including the ventrals, rhombic, longer than wide. Anterior borders of pectorals nearly straight; posterior convex. Snout truncated, as wide on the end as the space between the eyes. Rostral cartilage wide and strong, deeply grooved on its upper surface. Rostral ridges prominent, widely separated, nearly or quite parallel from base to extremity. Spiracles large, equal in diameter to the orbit, withont a fold on the side. Fin-angles rounded, except the obtuse posterior angles of the dorsals. Dorsals elerated, behind the rentrals, the length of the base of the first less than the length of its posterior border, base of the second equal to its posterior margin. • The base of the first is equal to its distance from ventral or from second dorsal. Anterior uasal valves dilated, continued a little beyond the inner angles of the nostrils; posterior two-lobed. Auterior extremities of the pectorals widely separated from the rostral cartilage, extending very little in alvance of the eyes. Mouth wide, forming a low arch, regularly curved from the corners. Labial fold distinct for a short distance at the symphysis. Teeth small, blunt, in a hundred and ten series in the upper jaw. Claspers long, sleuder, knobbed at the ends. Tail with a thick fold on each side; caudal fin rounded, without indentation. Back thickly covered with small scales, among which are scattered larger ones. A median row of large, blunt tubercles on the back and tail, and two short rows parallel to this on each shoulder. The bases of the tubercles are so covered by the skin and small scales that they appear as rounded prominences with a small spine on the summit.

Color grayish brown. Near the ends of the rostral ridges there is a
band of dark brown; between this and another dark band which crosses the bases of the ridges there is a light band. A dark band across the head between the eyes is somewhat confluent with the band in front of it, which makes the fore part of the head dark, but leaves the prominences in front of the eyes light colored. The remainder of the upper surface is more or less clonded by faint indications of transverse bands. These are more distinct in the young. With the exception of a dark spot on the posterior angle of each pectoral, the lower surface is white.

Total length 33.4 , suout to end of veutrals 18 , snout to mouth 4.1 , and width of disk 15.5 inches. Specimen described an adult male. The kindness of the officers of the National Museum has enabled me to satisfy myself of the identity of Trigonorhina alceata, described from old, and Platyrhina exasperata, from very young specimens.

Southern California.

## Platyriinoldis, gen. nov.

Disk broad, flat, rounded. Tail moderate, depressed, caudal fin broad. Dorsals posterior. Tubercular spines in vertebral series and on anterior margins of pectorals. Labial fold well developed. Nasal valves not reaching the mouth, posterior lobe rudimentary. Viriparous.

Distinguished from Syrrhina and Trigonorhina by the labial fold, nasal valves, and marginal series of spines, and from Platyrhina by the fold, valves, separation of pectorals, and viviparity.

## Platyrhinoldis triseriata.

Jord. \& Gilb., 18×0, Proc. U. S. Nat. Mus. 3i.
Disk, including ventrals, subrhomboid, a little longer than broad, anterior borders convex, anterior and lateral extremities forming broad curres. Suout broad, rounded in front, length from upper jaw equal to distance between outer borlers of nostrils. Rostral cartilage stout, ridges approaching rapidly and meeting near the end to form an acute point. Spiracles moderate, larger than the eyes and close behind them, withont folds on the sides. Eyes small, distant from the end of the suout one and one-fourth times the distance between the spiracles. Crown broal, concave. Nostrils broad, narrower than the distance between, which is nearly four times the space between them and the month. Nasal valves medium, hardly reaching upon the space betweeu the nostrils, onter lobe narrow, posterior rudimentary. Month not large, moderately curved, distant from the end of the snout about one and one-third times its width. Teeth small ( 82 series in the upper jaw of the adult female described), subhexangular on the base, smooth or with a low, blunt cusp. Pectorals separated from the rostral cartilage by a translucent space. Dorsals similar, longer than high, separated by one and one-half times the length of their bases, insertion of anterior a little in advance of the middle of the tail, posterior reaching a little behind the insertion of the caudal. Tail strong, more distinct from body than
in species of Syrrhina, length from vent little more than that from snout to extremity of ventrals, with a broad cutaneous fold on each side below, which extends to the ventrals and is continuous with the lower lobe of the caudal. Candal rather large, somewhat more than twice as long as wide, margins entire. Covered with shagreen above and below. Several (three to four) series of sharp, erect, immovable spines along the anterior margin of the pectoral, a group of several above the extremity of the rostral cartilage, and several on the orbital ridge. A vertebral series of larger spines on back and tail extending to the second dorsal, a pair near the middle and on each end of each branch of the shoulder girdle, and a series on each side of the upper surface of the tail parallel with the median.

In fortal specimens the lateral series on the tail are not developed, and the inner pairs on the shoulder-girdle are represented by single spines. The upper portion of each spine is long, narrow, subfusiform, depressed, and, resting upon a low, narrow support, appears as if merely applied to the skin by a portion of its lower side.

Disk to end of ventrals 12 , width of disk 11.2 , vent to end of tail 12.6 , and total length 22 inches.

Unituru olivaceous brown, whitish beneath.
Specimens described from U. S. Nat. Museum. Hab. Southern California.

> DISCOBATIDAE, fam. nov.

Form intermediate between that of the Rajidee and Rhinobatida; nearer the latter. Tail less distinct from the body than in the former, to which there is also less similarity in dorsals, ventrals, caudal, and nasal valves. Oviparous. Provisionally placed as a subfamily of the Rhinobatide.

## Discobatus.

Platyrhina, preoccupied.
Disk broad, flat, subcircular. Pectorals approximating in front of the head. Ventrals separate, entire. Dursals and caudal as in Syrrhina. Nasal valves resembling those of the Rhinobatida; anterior lobes united across the internarial space. Egg-cases similar to those of certain Scylliida.
D. schönkcinii, sp. Mïller \& Menle, India.
D. sinensis, sp. Lacépède, China.

The species recently described as Platyrhine having been withdrawn, the genus contains no American representatives at present.

## LIST OF THE NORTEAMERECAN APECEESOEMYREAEODNEELONGING TO THE FAMMEX OF TBE LYMEOPETALIDAE, WITEI A DESCRIPTIONGFABLIND FORMPROMDCRAYCAVE, VIRGEVIA.

## By JoIIN A. REYDER.

Without specimens of each of the species identified by the authors who have described them, the writer finds himself quite unable to make a greatly needed revision of this group. The sexual appendages hare not been described in Spirostrephon casioannulatus Wood, s. copei Packard, or ${ }^{9} S$. vudii and $S$. cavernarum Cope. In the cases of the two last, Professor Cope, who described them in 1869, at first thought that they were provided with two pairs of lateral pores to each segment, and in the belief that Spirostrephon had no lateral pores be proposed the genns Pseudotremia. He afterwards seemed to agree with Packard that the last-named genus was not valid, and appears to have considered the P. cavernarum a Spirostrephon, as he allopts the last name as its genus in his paper on the Wyaudotte Care fauna, which he published in the American Naturalist in July, 1872. Wis principal reasous for this step seem to have been the foregoing, and that the species was not hairy and was furnished with well-developed triangular eye-patches. "The allied form found by Mr. Cooke in the Mammoth Cave has been described by Dr. Packard as Spirostrephon copei." Aud, Professor Cope continues, "It is eyeless, and is, on this account alone, worthy of being distiuguished generically from spirostrephon, though the absence of pores, asserted by Dr. Packard, would also constitute another character. Spirostrephon possesses a series of lateral pores, as I hare pointed out in accordance with Wood's view." At this point Professor Cope refers io a paper by himself in the Proceedings of the American Entomological Society for 1870, where, in a foot-note, he says: "I must correct my character 'no lateral pores' for Spirostrcphon (Proc. Am. Phil. Soc., 1860, p. 179) to one series of pores'." He then proposes the genus Scoterpes for Packard's Spirostrephon copei. We are accordingly led to believe that he has abandoned the genus Pseudotremia. But when we come to learn the character of the external generative organs of the forms described by both Cope and Packard, I would be greatly disippointed if it was not found necessary to separate $S$. cavernarum, IS. vudii, and S. ccssioannulatus Wood from Spirostrephon and refer them to another genus. For it is a very singular fact that, out of eight species of Lysiopetalide which have been described since the S. lactarius of Say, none are known to have more than 32 or less than 28 segments, while the type species has no less than 59 , according to Wood. I am therefore inclined to believe with Cope that the $S$. casioannulatus is congeneric with S. cavernarum and S. vudii, for which the name Pseudotremia would perhaps become available in case they should be found to be dis-
tinct. Not only do the segments of S. lactarius greatly exceed in number those of the curious little Lysiopetalids now under discussion, but the secretion from the foramina repugnatoria of the former must be copious, for Say remarks that "when irritated it discharges a lacteous globule from the lateral portion of each segment, diffising a strong and disagreeable odor". And Cope remarks (Proc. Am. Ent. Soc., 1870, p. 67) that "Spirostrephon lactarius exudes from a series of lateral pores a fluid which has in its odor a strong resemblance to creosote". Whether the genus Scoterpes is well enough characterized by the absence of eyes may be a matter of opinion; otherwise the form agrees too closely with Trichopetalum to warrant us in being certain that it is not closely related. Both S. (Scoterpes) copei and the three known species of Trichopetalum have no lateral pores, according to their describers, and are therefore probably a pretty closely related gronp, especially since they closely agree in the number of segments and the arrangement of the hairs or bristles on the back. The figure given by Packard (Am. Naturalist, $\mathrm{v}, \mathbf{1 8 7 1}$, p. 749) does not enable one to decide if it is male or female, on account of the carelessness of the artist with the first five pairs of legs, though it appears as if it were a female. Moreover, in the figure of the head from the front he contradicts his description on page 748 , where he says: "No ocular depression behind the antenne, the surface of the epicranium being well rounded to the antennal sockets." The figure $130 a$, on page 749, would fairly represent the front of the head of the species which I shall describe farther on, only that the autenne are relatively longer in Dr. Packard's species.

Taking a retrospective glance at the genera of American Lysiopeta. lide, we find that a single species has furnished the basis for the genus Spirostrephon, defined by J. F. Brandt, in 1841, in his Recueil. His description is only comparative with other groups of Julide of equal rank; the family character of the Lysiopetalids (sterna rudimentary, not conjoined with scuta) was used by him to define the genus Lyssiopetalum. In this way Spirostrephon was characterized, mainly with respect to the characters presented by the maxillo-lahial elements. Can it be considered sate, in view of the facts before us, to indiscriminately assign species to a genus which has been quietly embraced amongst the ill-defined forms which have been discovered since the family has been founded? To the writer the answer seems to be in the negative. No reference to the characters assigned to the genus or the description of the typical species of Spirostrephon has been made by some of the authors of American species of Lysiopctalida. The present systematic condition of the group is not good, and we are reluctantly forced to admit that it is very little better than a mere list of names. While the intention is not to belittle any one, there has been a very manifest lack of definiteness as well as accuracy and completeness of the descriptions. From the description of S.cavernarum, $\mathcal{F}$. vudii, and $S$. copci, we would be led to iufer that the antennæ were 8 -jointed, but when we observe Dr. Pack-
ard's figure of the last species (Am. Nat., v, p. 749 ) we find that there are but seven joints represented, which is in agreement with what we find in Trichopetalum, Zygonopus, Craspedosoma, and Lysiopetalum ; and in the case of the two first, Professor Cope's virtual assignment of them to Spirostrephon makes the number of joints in their antenne doubtful. Trichopetalum Harger, might probably have been more closely defined as to its generic characters, since those given by its author would not define it from Zygonopus, and it differs only from $S$. (S.) copei in having eyes, from Craspedosoma in having free sterna, thongh the latter may have free sterna too. Mr. Harger, however, admits the diffiuclties which beset him, at page 119, in a foot-note (Am. Jour. Sci., iv, 1872).

While examining some living specimens of Trichopetalum lunatum under the microscope, about a year since, I observed that the respiration of the animal appeared to be conducted in a most singular manner. The air seemed to be drawn in under the labrim and in some गay to enter the dorsal cardiac sinus as bubbles, which could be traced for some distance, more than half the length of the animal, as they trar. eled slowly backwards, until they disappeared over the opaque mass of ingested food contained in the intestine. These bubbles of air alwars passed loackwards. It may have been that they passed backwards insile of the intestine, but the impression I got was that they were trareling throngh the cardiac sinus or dorsal heart of the animal. This circumstance may explain why it is that there are no pores on the side of the body, though it is true that the lateral pores of millipeds are usually foramina repuguatoria, and have nothing to do with the trachea or respiratory apparatus. This raises the question whether our Lysiopetalide are not distinguished from other forms in some more important way than has been hitherto supposed.

The species which have been described are the following, though it is to be understood that they are only given as a list for reference; no arrangement is yet possible and none is attempted:

1. Spirostrephon lactaries Say, Wood (Trans. Am. Phil. Soc., n. \&, xiii), Art. Myriap. of N. Am., p. 192, with synonomy; Cope, Proc. Am. Phil. Soc., xi, p. 179.
Habitat.-Eastern United States.
2. S. cesioannulatus Wood, op. cit., p. 194.

Habitat.-Allegheny County, Pennsylvania.
Length 1 inch.
3. Pseudotremia cavernarum Cope, Proc. Am. Phil. Soc., xi, p. 179, 1869; Cope, Proc. Am. Ent. Soc., iii, p. 67, 1870; Packard, Am. Nat., v, p. 749, 1871.-Spirostrephon cavernarum Cope, Am. Nat., vi, p. 414, 1872.-P. cavernarum Harger, Am. Jour. Sci., iv, pp. 118, 119. 1872.

Mabitat.-Caverns in Virginia and Indiana.
Length 11 lines.
4. Ps. vedir Cope, loc. cit., p. 1S0; Packard, Am. Nat., v, pp. 748, 749, 1871; Harger, loc. cit., pp. 118, 119.
Habitat.- Montgomery County, Virginia.
Length 11 lines.
5. Spirostrephon (Pseudotremia) copei Packard, Ain. Nat., r, pp. 748, 749, 1571.—Scoterpes copei Cope, Am. Nat., vi, p. 409, genus Scoterpes proposed and defined p. 414; Harger, loc. cit., pp. 118, 119; Packard, Zoology, pp. 356, 357.
Habitat.-Mammoth Cave, Kentucky.
Length . 35 inch.
Trichopetalum Harger, Am. Jour. Sci., jv, p. 118, pl. ii, 1872.
6. T. lenatum Harger, loc. cit., p. 119; Ryder, Am. Nat., xiv, p. 37 i 6 , 1880.

Habitat.-New Haven, Conn., and Philadelphia, Pa.
Length $6^{\mathrm{mm}}$.
7. T. glomeratum Harger, loc. cit., p. 120.

Habitat.-John Day River, Oregon.
Leugth $10{ }^{\mathrm{mm}}$.
8. T. Juloides Harger, loc. cit., p. 120.

Habitat.-Simmons' Harbor, north shore Lake Superior. (Smith.)
Length 8 mm .
The ninth American species, described below, is the third form of Lysiopetalid which is known to inhabit caves, and the only one beside the species which stands fifth in the above list which is totally blind. I name the species for Dr. C. A. White, United States paleontologist. It is a hairy form, like the four preceding, and will, no doubt, with those constitute a pretty homogeneous group.
ZYGONOPUS,* nov. gen.

Char. gen.-Sixth pair of legs very robust and with the third joint greatly swollen (a unique feature amongst Myriapods, and one which, like the claspers and intromittent organ of Branchipods, is to be regarded as a secondary sexual character, and of value in the characterization of a genus).
9. Zygonopus whitei, n. sp.

Char. specif.-Head with short, dense hairs. No eves, but there is a well-marked depression, or rather rertical excavation, extending from the end of the labrum to behind and abore the insertion of the antenne. Behind the antennæ the head is much swollen, owing to the outwardly bulging basal pieces of the jaws; labrum emarginate inferiorly; epicranium emargin-


Fig. 1. Front riew of hend and antenne. Fig. 2. Swollen 6th leg or clapper. ate behind to receive the antericr semicircular margin of the first
-From scyòs, a yoke, pair; yove, that which generates; and moir, foot (leg).
scutum. Antennæ pilose, rather robust, 7 -jointed, 5 th longest; next longest in the 3 d joint, then the 4 th, $2 \mathrm{~d}, 6 \mathrm{th}, 1$ st, and 7 th, which last is provided with two or three blunt, tactile processes at the tip. Segments 32 , including the head; an impressed dorsal line as in Spirostrephon casioannulatus. Delicate and numerous impressed lines on the hind margins of the dorsal scutes. Six bristles surmount each scute; two are placed obliquely on each side, and another is closer to the median line on each side; the upper ones on the four penultimate segments are at or near the posterior margin, and are shorter, blunter, and stouter; two of them project backwards from the margin of the preanal scute. Apparently no pores. Forts-seven pairs of legs in 8 , of which 45 are of the normal shape; 1st, 2d, 3l, 4th, and 5th gradually longer; a wide interval between the 5 th and 6 th pairs, the latter very robust, the $3 d$ joint being much swollen and somewhat flattened inside, with the terminal and basal joints stouter than in the remaining legs; 7th pair weak, but normal ; place of copulatory apparatus in the position of the 8th; 9th pair 2.jointed, with basal joint very short, while the $2 d$ is four or five times as long and greatly swollen, looking in shape like a minate melon, and is extended horizontally outwards the same as the similar pair of organs in Trichopetalum. Forty-eight pairs of legs in $\&$; appendages of $3 d$ segment aborted as usual ; sexual openings bounded laterally by rounded elevations. Normal posterior legs slender and pilose. The bristles on the back of the animal are received into basal sockets, and when removed give the appearance of a pore with an elevated rim. A yellowish substance adheres to the hairs in drops or beads in alcoholic specimens, which may be the offensive secretion of the animal which has exuded at the base of the bristles, though there is none of the characteristic odor apparent to the smell. Length of the animal 8.5m. Color nearly white.

Of the above singular form I have received four specimens, three males and one female, which were sent me by Dr. C. A. White, who obtained them from the owner of Luray Cave, in Virginia, who had collected them in the cavern himself. Some time last summer he sent me specimens which, upon being subjected to a test with acetic acid, proved to be only a calcareous crust which had been deposited over dead specimens lying in the cave. These were collected by himself, and were interesting as showing how pseudomorphs of organic forms might be developed in caverns. The acid, however, dissolved them completely, and no vestige of the organic basis upon which they were molded remained. I at first supposed them to be some form of $J$ ulus, but could not be certain.

Out of nine related species known to inhabit this country but tro are blind, the other being the Spirostrephon (Scoterpes) copei Packard, which iuhabits Mammoth Cave, Kentucky. Another, which, according to Professor Cope, inhabits Wyandotte Cave, Crawford County, Indiana; Erhart's Cave, Montgomery County ; and Spruce Run and Big Stony Creek

Caves, in Giles County, Virginia, curiously enough, is not blind. This is paralleled in the case of two species of spiders, however, which were collected for me in a cave in Oregon, over a year ago, by Professor Cope. In one of them there is not a vestige of the eses remaining, while in the other they are well developed. A Myriapod, which appears to be a Julus, from the same cavern also has eyes. The Polydcsmus cavicola Packard, from a cave in Utab, seems to have well-developed eyes. The Orchesella cccca, which still remains to be fully described, has very undeveloped eyes, but differs in no other essential from its congeners. It was also collected in an Oregon cavern by Professor Cope. Multitudes of facts might beodded, but the subject is too large a one for hasty generalizations, and must be approached with the same thoroughness of purpose which has characterized the work of Messrs. Darwin and Wallace in their essass upon kindred subjects relating to the origination of species. We may be allowed, however, to add that, in the absence of proof to the contrary, with the increase in the number of known blind forms which are often congeneric with light-loving species, there is the strongest lind of ground for supposing that they have descended from forms which had eyes, and which wandered into these recesses, where, after many generations had lived and died, a blind form appeared, which resulted from the gradual abortion of the visual organs of its ancestors. In proof of this we have the partially blind Orchesella, which now seems to be rerging towards such a condition. In the absence of a greater number of facts we are not justified in inferring more. True, we have a few instances amongst the mollusks, some of which in their larval states have useful eyes, but which afterwards become useless and abort as the shell develops and gets thicker. Some terrestrial Myriapods are blind, such as Eurypauropus; so is Lumbricus, the earth-worm, and some of the dirt-abiding Thysanura, which also live among fallen leaves, such as Campodea, while in the burrowing Sympliyla (scolopendrella) the eyes are reduced to a single pair, with little or no red or dark coloring in the tapetum, differing widely in this respect from the com-pound-eyed, terrestrial Myriapods.

## DEGCEIPTEOX OF A NEW MPECEES OF PRIONOTEY (PRIONOTUH HTEPEANOPERY\#, FIOM THE COAST OR CALIEORNIA.

## By W. N. LOCHINGTON.

Prionstus stephanophrys, sp. nov.
L. lat. 53; D. 10-12; A. 11; P. 12; V. 1-5; C. 3-1-8-1-3.

Body less elongate than in $P$. carolinus, head not quite three and a half; greatest depth five and a third times in total length. Greatest depth nnder third dorsal ray.

Snout concave in profile; forehead conrex immediately in front of eye, from which to the origin of the dorsal fiu the profile rises in almost a Proc. Nat. Mus. 80- -34

April18, 1881.
straight line. Dorsal outline from origin of dorsal fin to caudal slightly sigmoid, the portion uuder base of second dorsal nearly straight, while the eaudal peduncle widens at its extremity, is two and a half times as long as its least depth, and at its narrowest place one-third as deep as the greatest depth of the fish. Abdominal outline slightly curred.

Snout twice as long as longitudinal diameter of eye, which is contained about four and a half times in the side of the head; interorbital width slightly less than longitudinal diameter of eye.

Bones of head less conspicuously striated than usual in the genus. Preorbital, suborbital ring and stay, and operculum distinctly striated, the strite radiating; upper surface of head punctate, with short strise on the upper margins of the orbit and on the occiput. Top of head and interocular space almost flat, a serrated, crest-like ridge over each eyo (hence the specific name). The interorbital space unusumlly broad, not at all concive, as broad as eye; a slight trace of a cross furrow behind the eye. Central ridge of operculum distinct, and continued backwards considerably beyond its memoranous edge as a strong, sharp spine. A similar sharp spine on the angle of the preoperculum. A strong spine, smaller than those on the gill-covers, on the scapular bone, and a similar one on the suprascapular region. A backward-directed preocular spine.

Month rather large, somewhat oblique, the maxillary extending to opposite front of eye; jaws nearly equal; entire upper edge of mandible hiddeu by the preorbital when the mouth is closed; lower edge of preorbital set with small spines terminating the stria. Upper jaw two and one-sixth times in length of side of head.

A band of several rows of villiform teeth along both jaws; tip of the upper jaw emarginate and toothless; villiform teeth on palatines and vomer. Tongue thick and fleshy. Eye lateral, almost circalar; interorbital area flat transversely.

Gill-openings continuous, the membrane not joined to the isthmis; branchiostegals seven. Gill-rakers long and slender, about threefourths as long as the diameter of the orbit.

First dorsal arising a little auterior to the tip of the operculum; the third and longest spine nearly equal to half the length of the head, the ninth and tenth spines very short, nearly hidden in the shim. First and second dorsal spines serrated anteriorly. Second dorsal with a nearly straight upper margin, but slightly highest in front ; rays all once bifurcate. Anal commencing and ending slightly posterior to the origin and termination of the second dorsal ; rays all once bifurcate. Posterior margin of caudal slightly concave when expanded; all the long rays except the two outer ones branched, the four central ones three times bifurcate.

Pectoral pear-shaped when expanded; the membrane between the rays very wide; all the rays bifurcate except the uppermost and lower. most; the tip of the fin reaching to the eighth or ninth anal ray when
turned straight backwards. The three pectoral filaments very slender, the uppermost about half as long as the pectoral fin, which is contained two and two-thirds times in the total length.

Ventrals four and three-fourths times in total length, their tips nearly reaching the vent; all the rays once bifurcate, the last united by membrane at its base to the abdomen.

Bases of pectoral and rentral fins oblique, the pectoral filaments in advance of the ventrals, which are inserted vertically below the anterior margin of the pectorals.

Scales of moderate size, finely ciliate. Lower jaw, gill-membrane, and sides and upper surface of head scaleless. Scales of breast rather smaller than those of back. A row of scales along the basal part of the outer candal rays, other fins scaleless. Lateral line simple.

General color of body slaty gray or leaden upon the upper two-thirds, the lowest third white. A back spot on the dorsal between the fourth and fifth spines, traces of it between the fifth and sixth. Three rows of black spots on the second dorsal, the spots set saddlewise across the rays. Three rows of black spots on candal, the terminal row between the rays. Anal white. Pectoral black, with whitish cloudings. Upper part of head rather darker than the body, a silvery tint abont the posterior portion of maxillary, lower part of gill-cover, and base of pectoral.

A single specimen of this species was procured in the market of San Francisco, October, 1880, and was taken off Point Reyes. It is now in the United States National Musemm, numbered 27048 .

A large proportion of the fish brought to the San Francisco markets is procured in the tolerably deep water of the region between the rocky islets known as the Farallones, the entrance of san Francisco Bay, and Point lefres, a rocky promontors some forty miles north of San Francisco. This locality yielded the first specimens of Artedius quadriserirtus Locktn., Odontopyxis trixpinosus Locktn., Agonus vulsus J. \& G., Brachyopsis verrucosus Jocktn., Brachyistius rosaceus J. \& G., Hippoglossoides exilis J. \& (ir., Atareresthes stomius J. \& G., Cynicoglossus puciticus Locktn., and Glyptocephalus zachirus Locktn. Brachyopsis xyosternus J. \& G. and Artedins pugettensis Steind. oceur there in tolerable abundance, and it has now furnished the first example of a genus hitherto not kuown to ocenr north of the Gulf of Fonseca.

Giinther (Cat. Fish. Brit. Mus. ii, 195, 196) gives a short diagnosis of three species of Prionotus from the Pacific, P. horrens Rich., P. birostratus Rich., both from the Gulf of Fonseca, and P. miles Jenyns, from the Galapagos. P.stephanophrys most resembles the latter species, but has much longer pectorals and a different coloration, the latter being "above mottled brilliant tile-red; beneath silvery white".

Table of proportionate measurements.

| Locality | Point Resencal |  |
| :---: | :---: | :---: |
|  | $\begin{gathered} \text { Inches } \\ \text { and } \\ 100 \mathrm{tha} \end{gathered}$ | $\begin{aligned} & \text { loothe } \\ & \text { of } \\ & \text { leagit. } \end{aligned}$ |
| Extreme length. | 7.00 |  |
| length to lease of midde caudal raye | 6.35 | 100 |
| Bodireatest height |  | \% |
| Least height of tail |  | $\frac{7}{1}$ |
| Lenith of caudal pedune lo |  | 15 |
| l'reopercular spinc....... |  | 4 |
| Heal: |  |  |
| Greateat fugth to it of opercular sp |  | 8 |
| Greatest dipituat occiput... |  | $\because$ |
| Width of interoriotal area |  |  |
| Lenyth of anout |  | 14 |
| Leneth of onerculum to end of spino |  | ${ }^{1+1}$ |
| Length of manditle |  | ${ }_{20}$ |
| Oecipital process. . |  | it |
| Diameter of orbit |  | 9 |
| Doranl: |  |  |
| Distance from saout |  | \% |
| Helicht at thimel gpine |  |  |
| (Sylt) lenuth of base |  | 29 |
| Height at lonseat ray |  | 15 |
| Height at last ray . . |  |  |
| Aual: ${ }^{\text {a }}$ |  |  |
| Distance from snout <br> Leneth of base |  | 8 |
| 1lejuht at longest ray |  | 114 |
| Caudal: |  |  |
| Length of midde rays |  | 21 |
| Pectoral: |  |  |
| Uppre appeniage |  |  |
| Sreand appendaje |  |  |
| Third appendage |  |  |
| Ventral: ${ }^{\text {co....... }}$ |  |  |
| Distance frour anout |  |  |
| Lensth. |  | 25 |
| Brancliostogals |  | TII |
| Dorsal ...... |  | S-12 |
| Anal.... |  | $1-10$ |
| Puctoral |  | 13-111 |
| Number of acales in lateral line |  | 3 |

San Francisco, Cal., Norember 15, 1880.

THE PRIGATE NACKEEEEI, AUXEQEOCEIEE, ON THIE NEW EXGIAND COAst.

## By G. BROWN GOODE.

The United States Fish Commission has obtained numerons specimens of a fish before entirely unknown in the Western Atlantic. This is the frigate mackerel, Auxis Rochei, twenty-eight barrels of which were taken in a mackerel seine ten miles east of Block Island, on the 3d of August, by the sehooner "American Eagle", Capt. Josiah Chase, of Provincetown, Mass.

The frigate mackerel resembles, in some particulars, the common mackerel ; in others, the bonito-the genus Auxis being intermediate in
its character between the Scomber and the related genera Pelamys and Orcynus. It has the two dorsal fins remote from each other, as in Scomber, and the general form of the body is slender, like that of the mackerel. The borly is, however, somewhat stouter, and, instead of being covered with small scales of uniform size, has a corselet of larger scales under and behind the pectoral fins. Instead of the two small keels nopon each side of the tail, which are so noticeable in the mackerel, it has the single, more prominent keel of the bonito and the trany. Its color is gravish blue, something like that of the pollack, the belly being lighter than the back. Under the posterior part of the body, above the lateral line, are a few cloudings or maculations resembling those of the mackerel. The occurrence of a large school of this beautifal species in our waters is very noteworthy, for the fish now for the first time observed are very possibly the precursors of numerous schools yet to follow. It is not many years since the bonito became an inhabitant of our waters, and the distribution and habits of the frigate mackerel are supposed to be very similar to those of the bonito, Sarda pelamys, and the little tunny, Orcynus thynnus, which also first came on the coast in 1871, and bave since been found in considerable numbers.

The frigate mackerel has been observed in the West Indies and other parts of the tropical Atlantic, as well as on the coast of Europe. In Great Britain it is called the "plain bonito". It is not unusual in the Bermudas, where it is called the "frigate mackerel", a name not inappropriate for adoption in this conntry, since its general appearance is more like that of the mackerel than the bonito, while in swiftness and strength it is more like the larger members of this family.

Since the first appearance of this fish many new observations of its abundance have been received. These fish seem to have come in immeuse schools into the waters between Montank Point and George's Bauk; and from Mr. Clarke's statements it appears that they have been observed in small numbers by fishermen in previous years. Several ressels have come into Newport recently reporting their presence in immeuse numbers in the vicinity of Block Island. It will interest the "ichtbyophagists" to know that several persons in Newport have tested. the fish, and pronounce it inferior to the bonito. Part of the flesh, that on the posterior part of the body, is white, but behind the gills it is black and rank, while the meat near the backbone is said to be of disagrecable, sonr flavor.

It is hard to predict what its influence will be upon other fishes already occupying our waters. Its mouth is small and its teeth feeble, so that it is hardly likely to become a ravager, like the bonito and the bluefish. There is little probability, on the other hand, that its advent will be of any special importance from an economical point of riew, for its oil does not seem to be very abindant, and it would hardly pay at present to capture it solely for the purpose of using its flesh in the mannfacture of fertilizers.

Mr. A. Howard Clarke, in charge of the Fish Commission station at Gloucester, has communicated to Professor Baird some interesting facts regarding its abundance. From these statements it would also appear that the species has been observed occasionally in past years. He writes under date of August 10: "I have receiced this morning from the schooner 'Fitz J. Babson', just arrived from Block Island, a fish answering to your description of the Auxis, having a corselet of scales around the pectoral fin, as in the tunny. The captain of the ressel, Joshua Riggs, reports that about a week ago he had a hundred barrels in the seine at one time, and saw over twenty schools of them. He saw them as far east as Sow-and-Pig Light Ship. They are very easy to catch, flip like menhaden, do not rush, and are not frightened at the seine. They go in immense numbers; he thinks as many as one thousaud barrels to a school. The day after the appearance of these fish the mackerel disappeared, but he does not know whether the mackerel were driven away by them or not. They feed on mackerel food. Mr. Daniel Hiltz, of the same vessel, says that he caught one of just the same kind, in February, 1879, on a haddock-trawl on the eastern part of tLe Middle Bank, in forty fathoms of water. He took it to Boston, where it was called a young bonito.
"Mr. John Henderson, of the schooner 'Sarah C. Wharf', says that tro vessels caught such fish recently eastward of here. The schoner 'American Eagle', of Provincetown, took a number of barrels of them into Newport, and sold them for a dollar a barrel. Another Cape Cod vessel"-he does not know her name-"took about fifty barrels of them and threw them away. All the mackerel-seiners from Block Island report seeing quantities of this new fish within the past formight. The captain of the schooner 'Sarah C. Wharf' says he first saw them a fortnight ago, some fifteen miles off Block Island. The captain and several of the crew of the 'Ella M. Johnson', of Newburyport, just arrived from Block Island, state they saw abundance of the Auxis, bat did not know what it was until reports came from you at Newport. They opened one and found in its stomach the ordinary red-macherel food. This crew differ with the crew of the schooner 'Fitz J. Babson', with regard to the ease of capturing them; think them rather difficult to take; say they flip like porgies, and do not rush like mackerel. Thes saw ten large schools of them on Saturday last, when some fifteen miles south of Block Island."

I hope that any reader of the American Naturalist who has seen this fish will mention it. Some may, perhaps, have an opportunity of studying its habits. The length of those I have seen ranges from 12 to 16 inches, and their weight from three-quarters of a pound to a pound and a half or more. Those sent to New York market were I art of the lot taken by the schnooer "American Eagle" and brought ninto Newport, whence they were shipped by Mr. Thompson, a fish-dealer of that place. It would require from eighty to one hundred of them to fill a barrel; so
the estimate of Captain Riggs, that there are a thonsand barrels in one of the schools, shows how exceedingly abundant they mast be. The name "frigate mackerel", used in Bermuda, would seem to be the best name for use in this country, since the fish resemble the mackerel more than they do the bonito or tunny.

Capt. N. E. Atwood, of Provincetown, Mass., the veteran fishermanichthyologist, has examined the specimens, and is satisfied that they belong to the same species with a fish which he found abundant in the Azores in 1840, when, led by the reports of Cape Cod whalers, he went to these islands in search of mackerel, the mackerel-fishing being poor at home. No mackerel were found except the frigate mackerel referred to in this note.

## NOTACANTEICS PIASGANORES, A NED APRCIEA OP NOTACAN- 

## IE G. IRTEN GOODE.

The United States Fish Commission has received from the schooner "Gatherer," of Gloucester, Captain Briggs Gilpatrick, a remarkable fish taken from the stomach of a ground-shark, Somniosus brevipinnis, on the Grand Bank of Newfoundland.

Notacanthus, Bloch.
Dotacanthus, Bloce.
dcanthonotus, Bloch, Ichthyologia, xii, 1797, p.113, pl. cccexxxi. (No description separate from that of species A. wasus.)-Scunerben, Bloch, Syst. Ichth. 1801, p. 390, pl. xlvii.
Dotacanthus, Lacepide, Hist. Nat. Poiss. $1 \times 04$.
Head and body much compressed, the body elongate, produced in a long pointed tail, shaped like that of Macrurus or Fierasfer. Snout produced, obtuse, rounded at its tip. The cleft of the mouth inferior. (The specimen is mutilated, but the maxillaries do not appear to be protractile. Dorsal fin almost rudimentary, consisting of very short, llexible spines, remote from each other and not connected by a membrane. Anal fin very long; its origin close beind the vent, which is situated nearly midway of the length of the body; its anterior portion is composed of separate flexible spines, without membrane, resembling those of the dorsal ; these gradually lengthen, grading into the articulated branched rays. No caudal. Ventrals broad, with broad, peduncle-like bases, closely contiguons, separated only by a slight groove at the base, situated near the vent. Teeth acicular, in single rows upon maxillaries, in a double row upon mandibulars, villiform and in a double row upon the palatines. Vomerine teeth not apparent (1). Scales very numerous, of moderate size, round, thin, flexible. Branchiostegals about 8; gills 4.

Notacanthus phasganorus, new specios.
The body is much compressed, its greatest width slightly more than one-third the height of the body at the rent, its width at the tail from
one-fourth to one-fifth of its height, and abont one-thirteenth of the lensth of the bead. Its length is about one-eighth its height at the veut.

The scales are round, thin, flexible, very small upon the head, not wider than the diameter of one of the dorsal spines, but upon the anterior half of the body they are about three times as large, decreasing in size upon the posterior half, until upon the tail they are smaller thau upon the bead. The number of scales in the lateral line is not far from 400 , but in the partially digested specimen before me it is impossible to make an exact enumeration. The number between the lateral line and the dorsal fin is about 20 , between the lateral line and the anal fin about 36 . The head is covered in every part, even the lips, with small scales. There are about 40 between the eye and the end of the opercular flap. The scales are deeply imbedded, and in life are probably hidden beneath a slimy epidermis.

The length of the head is contained about seven and one-third times in that of the body. Its bones are all flexible, and their outlines are invisible without dissection, the whole being covered with a leathery skin protected by scales. The width of the interorbital space appeas to be (in the mutilated head) somewhat greater than the length of snout, and about one-fourth the length of the head. The diameter of the orbit appears to be about one-half the width of the interorbital space. The length of the postorbital portion of the head is nearly three times that of the snout. The length of the mandibular bone slightly exceeds twice the diameter of the eye; that of the upper jaw is considerably greater. The teeth in the upper jaw are blunt, acicular, set side by side like the teeth of a comb, about 32 on each side. In the lower jaw they are shorter, slenderer, and in double rows. Villiform teeth upon the palatines.

The dorsal fin begins at a distance from the snout not far from two and three-fourth times the length of the head, and nearly over the one hundred and tenth scale of the lateral line. It consists of ten luw, widely separated spines, unconnected by any membrane. The distance between the first and tenth spine is nearly double the length of the head.

The spines from the fourth to the ninth are about equidistant, while the other interspaces are shorter.

The distance from the snout to the anal fin is equal to about four times the length of the heal. The anterior spinous portion of the anal resembles the dorsal and is devoid of connecting membrane. The membrane is also absent from the posterior half of the fin, but may possibly have been destroyed. The anal rays extend to the tip of the elongate tail and number abont 130, the number of spines being 19. The anal begins immediately behind the rent, and its length of base is slightly less than half that of the body-less by a length about equal to the distance from the angle of the mouth to the gill-opening.

The pectoral fin is placed at a distance behind the gill-opening about equal to the width of its own base. Its length is at least double this
distance-how much more cannot be determined, but the fin is evidently short and rounded in contour, the upper rays longest. . Its base is stout-peduncular, and thickly covered with scales.

The distance of the ventrals from the snout is equal to that of the dorsal, though its insertion is slightly in advance of that of the dorsal. The two ventrals are closely adjacent, separated by a narrow groove, broad, with peduncle-like bases, thickly covered with scales. They are provided with two spines and eight or nine (as nearly as the specimen will permit determination) rays.

> D. X; A. XIX (130); C. 0; P. (1i) ; V. II, 8-9.

## Measurements.

Millimetera
Extreme length ...................................................................................... 963
Budy:
Height at vent .......................................................................... 110
Greatest width ..................................................................... (40)
Head:
Greatest length ...................................................................... 132
Width of interorbital area......................................................... (34)
Length of snout........................................................................ 30
Length of postorbital portion (measured diagonally). ........................ 87
Length of upper jaw ....................................................................... 40
Length of mandible................................................................... 36
Diameter of orbit ......................................................................... 17
Dorsal:
Distance from snont.................................................................. . 350
Length of base...................................................................... 215
Length of first spine .............................. ............................... 2
Length of last spine........................................................................ 7
Distance between first and second spines............................................... 7
Distance between second and third spiues ........................................ 19
Distance between third and fourth spines ................................... 28 $_{2}$
Distance between fourth and fifth, fifth and sixth, sixth and seventh, sev-
enth and eighth, and eighth and ninth spines ............................. 25
Distance between uinth and tenth spines........................................ 21
Anal:
Distance from snout................................................................ . . 438
Length of base......................................................................... 5 .
Height at first spine..................................................................... 2
Pectoral:
Distance from snout.................................................................. 150
Length ............................................................................ (40)
Ventral:
Distance from snont............................................................... 350
Length ............................................................................. $20+$

## INDEX.





Ammacretes plumbeus ......................... 458 Ammocrypta..................................... 400
beauli. ........................... 400
gelida, new species...........400, 515
caudncatu8 ...................... 178
nelsonf ......... 178.217
.................... 2,17
2,178, 217
Ammodstes americanus........................ 102
(tobianus) personatus........... 456
Ammodytidx ................................... 102
Ampelidre.......................................... 230
Atrpelis................................................ 242
cedrorum ................................ 175
carrulus .................................. 175
Amphibolite ..................................... 333
Amphipota ...................... 120, 414, 447, 451, 452
Amphipods of Provincetown ................. 117
Amphipolis elegans .............................. 132
Amphisphyra .................................... 381
globosh ....................382, 404, 400
byalina .............................. 383
.......................................225, 242
,..................... 180,217
bilineata.......................... 180
Amphistichus argenteus .........................28, 450
Amphithor longimana.............................17, 12.
Amphira aquama 199
Avachis avara................................. 120
costulata ................................ 400
A
Anarrhichadidæ................................... 82, 477
Anarthichas latifrons .......................... 82
lupus .......................... .82, 337, 477
minor
8
Anarrhichthys ocellatus....................... 454
Anas
2
canagieus .................................... 227
clangula....................................... 227
cygnus...................................... 227
dominica ................................ $15,16,227$
falvigula .............................. 11, 203, 222
hyperborea................................. 221
leacocephala............................... 16
moвchata.................................... 237
obscura ........................................ 11,203
var. fulvigula................... 222

ala
Andalusite ............................................ 333
Anderann, Dr. C. L............................... 153, 455
Trachypterus |altivelis
.......................... 410
Nemichthys avocotta
presented by .........
Anglesit0.......................................... 233

Anguilla bostonlensis ......................21, 112, 281 rostrata.................................21, 112
vulgaris ................................ 21
Angaille pimperneau........................... 281
Anguillidx. .........................................21, 112
Angulus tencr..................................... 129
Anhinga, Awerican ............................. 206
Anhydrite........................................... 33 .
Annelida........................................... 122
of northeastern coast of America. 330
Anomia aculeata ................................ sor
electricn................................ 130
ephippium............................. 130
glabra .................................. . 124, 130
squamula............................... 130
Anomara ................................. . 418, 451, 452
Anoplarchus alectrolophus. .................. 454
atropurpureus ................... 265
crista-gnlll........................ 45
Anoplopoma flmbria ........................... 455
Anorthite ......................................... 233
Anorthura ....................................... 294, 243
alascensia .................. .... 170, 215
communis .......................... 224
troglodstes byemalis ............ 170
pacificua............ 170, 215
Anons............................................... 243
stolidus. . . . . . . . . . . . . . . .............. . 208, 237
Anser .............................................. 243
albifrons............................. 203, 222, 230
gambeli........................ 203
frontalis ................................... 214
rossil ........................................... 223
segetum ................................... 237
Antalis striolata.................................. 304
Antedon Sarsii .................................. . 350
Antennaridid ..................................... . 75,470
Antenor. ............................................ 226, 243
unicinctus harrisi ...................103, 233
Anthostoma fragile........... ................ 123
robustum ........................ 117, 123
Anthozon .......................................... 132
Anthrophyllite....................................... 333
Anthus .............................................. 243
ludovicianus ........................... 170
cervinus................................ 230
pratensia . ........................170. 215, 231
Antimony ......................................... 833
Antrostomi.......................................... §
Antrontomus ....................................... 5,243
carolinensis .................... 5, 188
vociferus .........................
Anurida maritima .............................. 376
Apatite ............................................ 233
Apeltes quadracus ............................... is
aphantochroa cirrochloris:.................... 310
Aphelocoma. .................................... 225, 243
californica ........................ 185
floridana.......................... 184
gordida arizonw ................ 185, 233
ultramarina couchil . .......... 185, 2:9
woodhousei ...................... 184
Aphoristia atricauda, new species...........23, 453
ornata............................... 24
plaglusa............................. 22


Page.
Alherina......................................... . 29

Athernidx ........................................ 20,103
Atherinops......................................... 29
affinis . ............................... . 20, 4in
Atherinopsis californiensis................... 456
Atthin
225, 243
ellioti..................................... 314
heloisт .........................187, 219, 233, 314
Atwood, Capt. N. E............................. 535
Aucbenopterus monophthalmus............. 147
Audubon ............................ $2,5,7,144,224,234$
Auk, Cassin:s.................................... 211
crested..................................... 211
great....................................... 211
least ....................................... 211
parrot......................................... 211
razor-billed................................. 211
whiskered.................................. 211
Aulorhsnchus flavidus ........................ 4is $^{23}$
Aurichalcite ...................................... 833
Auriculina insculpta ! ....................381, 404, 406
Аагірагиє........................................224, 243
faviceps............................ 160, 232
Autolytus comatum ............................. 123
Autonoí grandimana............................ 121
Auxis.
532, 534
Rochel ................................... 892
on New England coast ........ 532
Arenturine ........................................ 334
oligoclase .......................... 334
Avicula .................................................. 359
hirundo................................. 402
hirmndol var. nitida..........402, 40 J, 407
lingniformis............................ 157
Arocet, American............................... 201
Arncettula recurvirostrip ...................... 310
Axinus fertaginosus ............................ 400
Saraii ..................................... 390
Axins armatus, new species................ 433, 4:1
serratus .................................... 433
dredged by the "Fish Hawk" $\$ 35$
stirynchas ............................... 435
Asres, Dr ...................297, 325, 320, 227, 373, 465
note on a forgotten paper of, on the nomenclature of San Fran. clsco Csprinoid fishes. .......... 825
Astbya .................................................... 243
americava............................... 204
rallisneria ............................ 204
Azurite ................................................. 333
B.

Bagre
146
Bairliella argyroleuca ............................... 20, 03
punctata .............................. 93
Buinl and Girarl ................................ 329
Baird, I'rof. .........1, 3, 6, 10, 13, 48, 163, 164, 256, 481
Ralanoglonsus aurantiacus .................. 124
Dalantium recurvum ................... 393, 404, 407
Ralanus balanoides.............................. 122
Balipate. .......................................... 203
Balistes capriscus ............................... it
vetula .................................... 77
Balistida. ........................................... 76
Banak................................................... 260

Barite............................................ 333
Raritocalcite ........................................ 333
Barn Owl, $\mathbf{\Delta}$ merican............................... 7
Owls......................................... $\boldsymbol{\gamma}$
Bartram.............................................
Bartramia. ........................................ .227, 243
laticanda ............................. 227
longicauda........................... 201
Basanitt .......................................... 34
Basilenterus...................................... 224, 243
bellii ................... 174, 210, 229, 232
culicivorus ............ 174, 216, 220, 232
Basilinna.............................................225, 243
lencotis ............................. 319
xantusi ................6, 188, 210, 229, 319
Basking shark .................................... 52
"Bnss" ....... ..................................... 497
Bathymanter aignatus ........................... 155
Bathynectes longispina .......................418, 451
"Bat-ma". ........................................ 250
Batrnchidx......................................... 25, 25 83
Batrachus tnu ..................................... . 83
Bellostoma polytroma ......................... 458
Stouti .............................. 458
Bielloura candida .............................. 125
Bean, Dr ..............................17, $69,75,474,477$
Beaufort, North Carolina, now species of
Caranx from .................................. 486
"Bécаяs" ........................................... 250,237
Bela ......................................... 363, 364, 866
angulosa .................................... 305
cnncellata. . . . . . . . . . . . . . . . . . . . . . 363, 364, 403
declivis ...................................... 365
decussata ................................... 365
elegans......................................... 365
exarnta ..................... $364,300,367,403,406$
harpularia ............................... 363, 367
hebes, new species .................. $367,403,406$
impremal ................ ............ $365,403,406$
lwrignta .................................... 367
mitrula ........... ........................ 866
Pingelii. .......... ........................... 364,403
pyramidalis............................... 408
rugulata ....... ........................... . 366, 403
Saraii, new species......................... 34,403
simplex.................. ........... . 367, 403, 406
tenuicostata.......................... 365, 403, 406
Trevelyana................................. 363,403
turricuia................................... 363, 366
violacea..................................... 406
Bellona cristata.................................. 316
exilis.................................... 317
ornata................................. 316
Belone ................................................ 450
cantraini........... ...................... 459
exihis..................................... 30,450
generic relations of............. 450
hiaas..................................... 103, 450
latimana .................................. 459
latimnnos ................................ 103
longirostris ............................. . 103, 459
melanochira............................. 450
notata...................................... 459
vulgariw. .................................. 459
Belonidı........................................... 103

Page
Belonopsis leuchtenbergi. ..................... 410
Benedict, Mr....................................... 132
Bermudan Fishea, Goode's Catalogue of .... 18
Bernicla
barnston:
brenta.
canadensis
hutchinal................ 203
lencoparia............. 203
lencoparia............... 203
lencolæma................................ 235
leucopsis ..............................203, 230
nigricans............................... 203
Bertheirite......................................... 333
Berycidw.................................................. 2
Beryl................................................... 333
Bewick's Swan................................... 222
Biotito............................................. $2 \Omega 3$
Biri, red-billed Tropic........ ................. 206
yellow-billed Tropic ..................... 206
Birds, North American, revisions of nomen.
Cones's Check List
of.................
Smithoonian Cata-
logue of
1
Binls of North America, Catalogue of...... 163
Bismath
Bittern. American .................................... 197
lenst ...................................... 197
Bittium nigram...................................... 127

Blackbird, Brewer's .............................. 183
red-and-buff-shoaldered........... 182
red-and-black-shouldered ........ 183
red-nnd-white-shouldered ........ 183
rusty........................................................... 183
Savannah............................ 100
yellow-headed....................... 182
Blackhead, littlo................................ 204
ring-billed............................ 204
Blake, J. H. ..................................... 123, 129, 132
Blennicottns .......................................... 460
Bl nnnide 1......................................................... 63
Blenniidab ..........................................................25, 82
Blennioidu................................................... 347
Bleunius crinitus............................................ 82
regius ..................................... 58.6
Blenny ........................................................... 147
Blepharichthys crinitus ......................... 80

cisthosus................................... 455
Bluebird ........................................ 167
Calfornian .................................. 167
Rocky Mountain ..................... 167

Bobolink ............................................................ 182
Bobwhite ................................................ 106
Bodianus pallidus ..................................... 20

Boleichthyt ...................................... 495, 406, 497
chloговопл......................... 496
Bolcoaoma ............................................. 492, 495
brevipinne........................... 492
camurum
406

Boleosoma gracile......... Page
Boleosoma gracile.............................. 58
maculatum ........................ . 4se 515
olmatedi.............................

Bonaparte ....... ................................... 4.2 . 2
Bonasa ................................................. . . 20
jobail...................................... 25
umbellus ...................................
sabinet ...................... 1x
umbelloidea ................ Ise
Booby, red footed ................................ 2x
Boracite.....................................................
Lorax ........................................................
Boreomysis arctica.............................. . 45 , 45
Botaurus ....... .................................... 213
lentiginosns ............................ 10, , 28.
Bothragonus Swani.............................. it
Botryllna Gouldih. .................................. 130
Bourcieria cueligena ............................... 313
columbiana ........................... 313
fulgidigula........................... 3:
prunelli ............................. 31 .
tompata.............................. 21 .
Wilsoni................................ หน
Bowerbank .............................................
Drachiopoda . ..................................... 20.
Brach yistius .................................... . 300, 34
frenatus . . . . . . . . . . . . . . . . 300, 304. 48
rosacens ....... ........... 304, tSG, 331
Brachyopsis..................................... . 6,151
vertucosus $60,152,153,154,332,454,501$
xyosternus, new species. . 152, 1:3.3. 154.
332 454, 501
Brachyrhamphns................................ 26
brachypterus............... 218
craveri ...................... 213
hypoleucus ................. 21
kittlitzi...................... 211
marmoratus ................ st
wrangelii................... 21
Brachyurn .................................414, 451, t5
Branchiostoma lanceolatum .................. \$5
Branit, J. F....................................... 5s
Erant ................................................ S
black .......................................
Brevoortia menhaden .......................... 168
patronus............................. 10 .
tyrnnaus. ....................2n 108 , ti6
Brewer, T. M ..................................... 164
Brisson .............................................. 7, 7, 10
Bromytite .........................................
Brookite .......................................... 30.
Brook trout ........................................ 40.
Brosmophycis marginatus.................... 454
Brown ............................................ 21

Brucite ............................................. 20.
Bryozoa............................................ 120
Brytus fasciatus.................................... s
obesus..................................... *
Bubo ................................................ 20.
arcticas .................................... 219
subarcticus....................................
virginianus ................................. 1月

Proc. Nat. Mus 80 ..... $-35$

Buzzard, turkey ....................................................
sp. nov................................ 451

## C.

Cabanis ........................................... 4
Cacoxenite ....................................... 333
Cadulus ............. .......................... 305,426
Jeffreyaii ........................ 395, 404, 407
Pandionis ...................... 395, 404, 407
propinquus...................... 395 , 404, 407
snlfusiformis 1 ....................... 395
hemileaca........................... 310
henrici ............................... 310
viridipalleus ........................ 310
Corebidm ........................................ 239
Cairina mowchata .............................. 277
Calamine........................................ 3 . 3 .
Cadamospiza..................................... 243
bicolor ............................ 162

Calaverite....................................... 333
Cacite............................................. 333
Calidria ....................................... 243
arenaria................................... 200
somatichthys from. .
my (R. rhina) from ...... 251
Scorpanoid fish from .. 322327
Sebastichthys from........ $\quad 70,73$
npecien of denp-water fish
description of anew Agonid from 60, 330 Embiotocold fish from .. 320
thounder from 40, 154
new ray from..... 3 meven new Scbas-
toid fishes from
a new apecies of Hemirhamphua from............ 335
路
Chiroid fish from-........... 248
genus and species of fishes
from ......................... 03
ray from ...................... 133
Scopeloid fishes from ...... 273
species of Prionotus from. .

Xiphiater and
Apodiohthys
from............ 135
notes on a species of $\Delta$ beona from. 290
flounders from.......... 42
sharks of ................ 51
laticeps in.... 40


|  | Page. |
| :---: | :---: |
| Caprimulgi |  |
| Caprimulgidae | 238 |
| Caprimulgus. | 225,243 |
| albicollis | 15 |
| americanus. | - 15 |
| carolineusis |  |
| сигориия | 5,2\% |
| nuttalli | 5206 |
| vociferus | 5, 188 |
| Caracara, Gundalupe | 19 |
| Carangide | 188 |
| Carangus chrysus | 18 |
| hippos | 0 |
| pisquetus |  |

Caranx beani, new species. ..... 486, 48it 488
caballus ..... 4
cibl ..... 486, 487, 438
new spucies of, from North Carolina$489+5$
Carassius auratus ..... 111
Carboniferons brachipoda ..... 46
Carcharinus glaucus ..... 5345
Carcharodon carcharias ..... Lis
Rondeletí ..... 53.45
Carcidus granulatus. ..... 119
menas. ..... 119
Cardellina ..... 
amicta ..... 28
rubrifrons 154, 216, 22
Cardinalis ..... $2+3$
igneus ..... 218
virginianus ..... 181
Cardinal, Saint Lucas ..... 181
Texan ..... 16
Cardium Islandicum ..... 407
pinnulatum ..... 408
${ }^{8 p}$ ..... 造 ..... 404
sp ind
sp ind
sp. in (cancellated) ..... 40
Carduelis elegans ..... 238
stanleyi ..... 2x
yarrelli ..... 220
Carinaria atlantica ..... 391, 404, 400
mediterranea ..... 391
Carine noctua ..... 2
Carnallite ..... 323
Carnelian ..... 24
Carna ..... 32
Carpholite ..... se
Cappolacus
176, 216, 258
caunini ..... 1.0
frontalis ..... 176
rhodocolpus ..... 176216
213,36
hamorthous ..... 176
purpureus californicus ..... 106
Carroll, Captain ..... 4
Carter ..... 20
Cassin, Mr ..... 15
Cansiterite ..... 2
Catarractes californicun ..... 2
Catbird$2 i$
INDEX.547
Carharista ....................................9, 226, 243atrata. .............................. 195, 233(atrata, Bartr.)..................... 9
nrubn.
99
Cathartea ..... 24
anra ..... 105
burrovianus ..... 218, 237
gryphua ..... 237
рара. ..... 237
Cathartida ..... 202
Catherpes ..... 243
mexicanus 160, 220, 292
соларетвия .....  160, 215
tar. conspersus ..... 215
Catontomilda ..... 21, 110, 512
Catostomus ..... 462, 513
464, 465
ariens new species
110
110
commersonil
commersonil
512
dluquemili .....
463 .....
463
fecundus.
fecundus.
464
guzmanicuais ..... 46
longirontrum. ..... 110
macrochilus. ..... 464
nigricans $110,513,515$
occidentalie ..... 326, 327
ancetta ..... 513
Cattie. S. TH ..... 280
Catulus rentriosus ..... 458
Caulolatilus anomalus ..... 455
priucepa. ..... 7
Cavolina ..... 300
inflexa. ..... $302,404,40^{\circ}$
longirontra ..... 302
longirostrie 102, 404, 407
tridentata ..... 392, 40K
uncinata. ..... 302, 104, 407
Cobedichthyidee ..... 138
Cebedichthys ..... 138
45
Celestite ..... 333
Cenozoic invertebrate fowsils from Arkansas,
Coloralo, Utah, and W yoming ..... 157
Centrarchida ..... $19,20,06,407$
Centrarchus.600
hexacanthus ..... 500
iridous ..... 98, 500
mscropterus ..... 500.513
pectacanthus. ..... 408
Centridermichthys ..... 450
faschatus ..... 450
uncinatus ..... 85,459
Centrocercus. ..... 243
urophasianus ..... 150
Centronyx. ..... 243
bairdii. ..... 178
ochrocephalus. ..... 214. 235
Centrophance ..... 225, 243
lapponicus. ..... 177
ornatus ..... 177
pictus ..... 177
Centrophorus ..... $4 \times 10$
Centropriatia atrarius ..... 09
Centroacymnna cololepis ..... 116
Centroncyllium Fabricil ..... 116
Centurus ..... 248
Page.
Prage

Centurua aurifrons

Centurua aurifrons ..... 189. 237 ..... 189. 237
carolinue ..... 1 nol
uropygialis ..... 189, 237
Cephatolepis delalandi ..... 317
loddigent ..... 317
Cephalopoda 125, 360, 405, 40K
Cephaloacyllium ..... 41
laticeps ..... 32. 4jx
occurrence of in Californla ..... 40
Cephus arm ..... 211
Ceraminm rubrum ..... $3 \times 4$
Cerapun rubricornis ..... 448
Corarayrite ..... 30
Ceratacanthus anrantiacun ..... $\%$
Ceratias urnnoscopus. ..... 404
Ceratichthys ..... 51!
amblope .....  512,515
biguthatus ..... $110,512,51 \%$
byalisue ..... 51:-
winchell ..... 512, 51:
Ceratoptera vampyrus ..... 457
Ceratorhina ..... 228. 24:
monocerata ..... 211
Cerebratulus ingens ..... 125
rosens ..... 125
Cerite ..... 333
Cerithiopsis costulatu* ..... 375
Ceronia arctata. ..... 128. 108
Cerorhina suckleyi ..... 214
Cerorhinca ..... 228
Certhia. ..... 243
albifrons. ..... 220
familiaris mexicans ..... 
rnfa ..... 160
paluatria. ..... 294
Corthiliale ..... 239
Certbioia ..... 243
amensia ..... 176, 231
Ceruasite ..... は
Cerrantite ..... 373
Cerslo ..... 243
alcyon ..... 110
atnericana cabanist ..... 190, "12]
Cetorhisus maximus ..... $.59,458$
Chabusite ..... 3013
Chachultaca ..... 105
Chanoluryttu. ..... 445
gulosus ..... 97, 49K, 513
vinidis ..... 20, $9 \%$, 498
Chenopecta dentata ..... 70
oblonga. ..... 78 .472
ocellaris ..... 70
Chatorlontidas. ..... 88
Chatura ..... 243
pelagica ..... 188
vauxii. ..... 188
Chalcanthis ..... 303
Chalcodony ..... 34
Chalcocite. ..... (1)
Chalcodite ..... 353
Chalcopyrite ..... 333
Challenger, H. M. S ..... 400
Chalybura buffonf ..... 311
crerulereatrí ..... 311




INDEX
Page
arbigny ..... 48
Doricha bryante ..... 315
ellas ..... 219, 316
evelynde ..... 315
Iyrura ..... 315
Dorippe spinifrous ..... 420
Dorie complanata ..... 886, 404, 400
Johnstoni ..... 386
planata ..... 286
Dormitator ..... 83
Doroauma ..... 502
cepediam ..... 302
subsp. heterurum ..... 502
cepedianum ..... 100, 502, 515
Dorosomida ..... 109
Dave, blue-headea ..... 10
ground ..... 195
Key Weat ..... 105
mourning ..... 105
scaled ..... 108
sea ..... 211
socorro ..... 105
white-fronted ..... 195
white-winged ..... 195
renalda ..... 195
Dorekie. ..... 211
Drepano(p)setta platessoides ..... 471
Dryobatea homoras ..... 235
hylosctopas ..... 235
Duck, black ..... 203
black-bellied tree ..... 203
black masked ..... 05
Florida black ..... 03
finlrous treo ..... 203
harlequin ..... 204
Labrador ..... 204
long-tailed ..... 204
rudds ..... 205
acaup ..... 204
summer ..... 204
surt. ..... 205
Steller'a ..... 204
wool ..... 204
Dnfrenite ..... 23
Dumeril ..... 53, 353
Duncan, Rev. Mr ..... 258
Dunlib, European ..... 200
Dusaumierila ..... 107
Dytes ..... 228, 24
auritun ..... 210, 230
califonficus. ..... 210
comntus ..... 210
E.
Eagle, bald ..... 104
caracarn. ..... 103
golden. ..... 104
gray ..... 104
푸로 sea. ..... 105
harpy ..... 104
Earll, Mr. R. E ..... 60
Echenctdids ..... 18, 102
Echeneis naucraten ..... 102553
Echinode .mata.: ..... I
of northeatern conat of Amer.ica.350
Ectopiaten ..... 244
migratoria ..... 195
Edwarda, V. N ..... 302, 303
Edwardsia pallida ..... 117, 132
sulcata. ..... 117,132
Eela, male, genitalin of, and their sesan characters ..... 280
Egret, American ..... 197
Pento's ..... 197
Eider, American ..... 205
common ..... 204
Fiacher's. ..... 204
king ..... 905
Pacifle ..... 205
Elaninea martinice ..... 250
Elanoides ..... 226, 244
forficatua ..... 108
Elanua. ..... 244
glancue ..... 193, 239
Elassoma ..... 800
zonatum. ..... 800,315
Elassomatida ..... 800
Electra pilosa ..... 131
Eleotrin ..... 83
"Ella M. Johnson'" seeing Awxis ..... 534
Elliot, Daniel Giraud ..... 308, 309
Elopida ..... 107
Elopm saurus ..... 107
Elvim chionam ..... 318
cupreicupa ..... 318
Emberias amoricana ..... 3. 4, ఇ2.
bilineata ..... 2-3
cuccinea ..... 225
lapponica ..... 225
melanocephaia ..... 4
echeniclus ..... 236
unalaschcensis ..... d
Embernagra. ..... 24
rafivirgata ..... 181, 232
Embiotoca ..... 4,6
argyrosoma ..... 321, 430
Jacksoni ..... 28, 88
Embiotocidas ..... 28. 88, 4 i3
Embiotocoid, deacription of a new ..... 290
notes on aspecies of, related to Abeona aurora ..... 200
Embiotocold Ash, a new Californian specten ..... of ..... 303, 3:0
Embiotocold ..... 304
Embletumia funcata ..... 117. 127
Embolite ..... 233
Emerald ..... 333
Emerton, Mr.J. II $379,385,391$
Empilonax ..... 244
aendicus. ..... 180
difficilis ..... 186
flaviventris ..... 186
fulvifronn ..... 187, 218, 근
pallencens ..... 7, 218
hammontli ..... 186
minimus ..... Je0
vbacurus ..... $18 \%$




| Page． | Page． |
| :---: | :---: |
| Gannet，blue－faced．．．．．．．．．．．．．．．．．．．．．．．．． 200 | Gilbert，Mr．G．K．．．．．．．．．．．．．．．．．．．．．．．．．．． 47 |
| booby．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 206 | Gill，Dr．Theodore． $50,63,138,140,247,287,297,302$ ， |
| Gardner，Mr．Frederick，jr．．．．．．．．．．．．．．．．．． 338 | 325，332 运 |
| Garman，Samuel ．．．．．．．．．．．．．．．．．．．．．．．．．． 486 ， 510 | on Leurynnis and Lyco－ |
| Garnet ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 333 | dopsis．．．．．．．．．．．．．．．．． 247 |
| Almandite．．．．．．．．．．．．．．．．．．．．．．．．．． 33. | Gillichthys mirabilis ．．．．．．．．．．．．．．．．．．．．．．．． 25， $450^{45}$ |
| Grossularite．．．．．．．．．．．．．．．．．．．．．．．． 3 通 | Gulpatrick，Capt．Brigga ．．．．．．．．．．．．．．．．．．． |
| inclusions ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 334 | Girard ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．08，297，32， 490 |
| Melanite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 333 | Giraud，Jacob P．．．．．．．．．．．．．．．．．．．．．．．．．．．．．10． 10. |
| Ouvarovite．．．．．．．．．．．．．．．．．．．．．．．．．．．學 | Girclla nigricans ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 21.4 |
| Prropite．．．．．．．．．．．．．．．．．．．．．．．．．．．． 333 | Glauberite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 33 ． 3 3 |
| －Spessartite ．．．．．．．．．．．．．．．．．．．．．．．．． 323 | Glaucidium ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 244 |
| Garrulus bullockii ．．．．．．．．．．．．．．．．．．．．．．．．． 230 | ferrugineam ．．．．．．．．．．．．．．．．．．．． 220 |
| californicus ．．．．．．．．．．．．．．．．．．．．．． 22. 29 | gnonia．．．．．．．．．．．．．．．．．．．．．．．．． 102 |
| Garrupa．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．140，201 | phalænoidea ．．．．．．．．．．．．．．192， 220， $233^{23}$ |
| red．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 140 | Glaucis ænen ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 308 |
| spotted ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 140 | cervinicauda．．．．．．．．．．．．．．．．．．．．．． 308 |
| （vera）．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 140 | hirsuta．．．．．．．．．．．．．．．．．．．．．．．．．．．． 318 |
| Garzetta ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 24 | ruckeri ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 308 |
| candidissima．．．．．．．．．．．．．．．．．．．．． 107 | Glauconome leucopis ．．．．．．．．．．．．．．．．．．．．．． 488 |
| Gasteropod，fossil，from Pucblo，Mexico．．．． 140 | Glockerite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3i．3 |
| Gasterupoda ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 12. ， 159 | Glyphidodon saxatilis ．．．．．．．．．．．．．．．．．．．．．．．87 |
| Gasterontcidm．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 77 | Glyptocephalus．．．．．．．．．．．．．．．．．．．．．．．．．．． 34 |
| Gasterostens aculeatus．．．．．．．．．．．．．．．．．．．．． 77 | cṣnoglossus ．．．．．．．．．78， 337 ，175 |
| （aculeatus）serratua ．．．．．．．．．． 453 | zachirus．．．．．．．．．．．．．．．．． 453 ， 51 |
| microcephalus ．．．．．．．．．．．．．．．． 6 S | Gmelin．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． |
| pungitius ．．．．．．．．．．．．．．．．．．．． 37 | Gnatcatcher，black－capped ．．．．．．．．．．．．．．．． 168 |
| subsp．brachypoda．．． 77 | blue－gray．．．．．．．．．．．．．．．．．．．． 168 |
| Gastropoda．．．．．．．．．．．．．．．．．．．．．．．．．．．363，406，408 | plumbeons ．．．．．．．．．．．．．．．．．．． 168 |
| Gebia affinin ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 117 ， 120 | Gnathia cerina ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 450,451 |
| Gehlenite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 333 | Goatsucker，parauque．．．．．．．．．．．．．．．．．．．．．． 188 |
| Gelasimus pagilator．．．．．．．．．．．．．．．．．．．．．．．． 118 | Gobiesox reticulatus ．．．．．．．．．．．．．．．．．．205，454 |
| pugnax．．．．．．．．．．．．．．．．．．．．．．．．．． 118 | Gobiids ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．25，23 |
| Genthite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $3^{3}$ | Gobionoma alepidotum ．．．．．．．．．．．．．．．．．．．．． 22 |
| Genyonemus lineatus．．．．．．．．．．．．．．．．．．．．．．． 450 | Gobius ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 318 |
| Geососсух ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 24. | glaucofrwnum ．．．．．．．．．．．．．．．．．．．．．．． 455 |
| californlanus ．．．．．．．．．．．．．．．．．． 100 | soporator ．．．．．．．．．．．．．．．．．．．．．．．．． 8 ． |
| Georgia，occurrence of Stricklandinia salteri and davidsoni in $\qquad$ |  |
| Geothlypis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 244 | marbled ．．．．．．．．．．．．．．．．．．．．．．．．．．． 200 |
| wquinoctialis ．．．．．．．．．．．．．．．．．．． 236 | Pactio ．．．．．．．．．．．．．．．．．．．．．．． 200 |
| macgilliviayi．．．．．．．．．．．．．．．．．． 173 | Goethite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 33 ． |
| philadelphia．．．．．．．．．．．．．．．．．．．． 173 | Gold ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 333 |
| trichas ．．．．．．．．．．．．．．．．．．．．．．．．． 173 | Golden－eye， 4 merican．．．．．．．．．．．．．．．．．．．．．． 204 |
| velatus ．．．．．．．．．．．．．．．．．．． 213 ， 230 | Barrow＇s ．．．．．．．．．．．．．．．．．．．．．． 204 |
| Geotrygon ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2 ．20，244 | Golden Plover，American ．．．．．．．．．．．．．．．．．．． |
| martinica ．．．．．．．．．．．．．．．．．105， 231 | Goldduch，$\Delta$ merican ．．．．．．．．．．．．．．．．．．．．．．．． 177 |
| sylvatica．．．．．．．．．．．．．．．．．．．．．．． 220 | Arizona ．．．．．．．．．．．．．．．．．．．．．．．．． 177 |
| Gephyrea．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 124 | black－headed ．．．．．．．．．．．．．．．．．．．． 177 |
| Gerren plamieri ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 17.19 | green－backed．．．．．．．．．．．．．．．．．．．． 177 |
| Gerridiv ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19，19，${ }^{\text {1 }}$ | Lawrence＇s．．．．．．．．．．．．．．．．．．．．． 177 |
| Geryon quiaquedens ．．．．．．．．．．．．．．．．．．．．．．417，451 | Mexican ．．．．．．．．．．．．．．．．．．．．．．． 177 |
| Getchell，Capt．John Q．．．．．．．．．．．．．．．．．．．．． 435 | pine．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 177 |
| Geyserite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 333 | Gonatus amœ⿺us ．．．．．．．．．．．．．．．．．．．．． 362 ， 403 |
| Gillbons，Dr．W．P ．．．．．．．．．．．．．．．．．．325 320 | Goniala gracilia．．．．．．．．．．．．．．．．．．．．．．．．．．．． 123 |
| Gibbonsia elegans．．．．．．．．．．．．．．．．．．．．．． 25.2 ，147， 454 | Goode，G．Brown ．．．．．．．．．．．．．．．17，20，337，467， 532 |
| Gibbsite．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 339 | deacribes Notacanthus |
| Giglioli．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 12 | phasganorus ．．．．．．．．．．．\＄35 |
| Gila ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 401 | Goose，American white－frorted ．．．．．．．．．．．． 203 |
| grandis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 327 | barnacle ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 213 |
| microlepidota ．．．．．．．．．．．．．．．．．．．．．．．．． 329 | blue－winged ．．．．．．．．．．．．．．．．．．．．．．．．． 202 |
| Gilbert，Charles II．．．．23， $34,36, \underline{38}$ ，40，42，40，51， 53, | Canada．．．．．．．．．．．．．．．．．．．．．．．．．．．． 203 |
| $70,73,133,135,142,152,154,251,273,276$, | emperor ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 209 |
| 287， $299,301,303,305,320,322,327,330$, | European white．fronted ．．．．．．．．．．．．203 |
| 335，352， $353,400,411,452,459,465,487$ | Hutchins＇s．．．．．．．．．．．．．．．．．．．．．．．．． 203 |

Page
Goose, larger white-cheeked. ..... 203
lesser anow ..... 202
Ross's snow ..... 203
snow ..... 202
white-cheeked ..... 203
Goohawk, American ..... 193
Mexican ..... 194
weatern. ..... 103
Grackle, boat-tailed ..... 183
bronzed ..... 14
Florida ..... 18
great-tailed ..... 183
Mexican boat-tailed ..... 183
purpla ..... 183
Gracula pyrrbocorax ..... 11
Gracnlas ..... 11
bairilii ..... 292
bicristatus ..... 223
Grond Banks, new species of Notacanthus from ..... 535
Graphite ..... 833
Gray ..... 10
Grebe, American eared ..... 210
American red-necked ..... 210
Clark' ..... 210
cared ..... 210
horned ..... 210
St. Domingo ..... 210
thick.billed ..... 210
western ..... 210
Greenebaum, Captain ..... 59
Greenockite ..... 839
Green-shank ..... 200
Groabeak, black-headed ..... 182
blue. ..... 182
cardinal ..... 181
ovening ..... 170
pine ..... 170
rose-breasted ..... 182
Groasularite ..... 833
Ground ahark ..... 52
Grouper ..... 201
Grouse, Canada ..... 196
common aharp-tailed ..... 106
dusky ..... 196
Franklin' ..... 190
gray ruffed ..... 100
northern sharp-tailed ..... 100
Oregon ruffed ..... 100
Richardson's ..... 196
ruffed ..... 106
sooty ..... 100
Gruidse ..... 239
Grus ..... 24
americana ..... 202
canadensin ..... 202
fraterculus. ..... 202
Guan, Texan ..... 105
Guillemot, black. ..... 212
black-throated ..... 211
Branoich'e. ..... 212
California ..... 212
common. ..... 212
Craver's. ..... 212
Kittlìta'a ..... 211




Hyperproвopon argenteus....................... 321
Hypersthenite ..................................... 884
Hyphalonedrus, new genus .................. 483
chalybeins, new species. . 483, 484
Hypleurochilus gentilis ....................25, 147, 454
Hypolia arcton ......................................... 236
Hypomenия olictus...................................... 68
Hypaicometes, new genns ....................338,347
gobioides, new species.... 337,338 ,
48,477
Hypsilepis cornutus....................................... 606
Hypaurив Caryi ......................................... 456
Hyрвуроря rubicundue............................ 455
Hysterocarpus traskii................................. 327

## I.

Iache. ...................................................... . 225,244

Tbacus
Ibididre ..................................................... 239
Ibla, gloasy ................................................ 108
acarlet ............................................ 198
white........................................... 198
white-faced gloasy .........................- 198
wood................................................ 197
thalasinus ....................................214,835
Icelus.................................................. 400
chthsinrus punctatus..............................111,518
Icichthss, new genus.............................. 305,308
lockingtoni, new apecion........ 305,455
a new Californian
deep-water fish.... 305
Icosteidx .............................................. 307
Icosteus, new genus ........... 63, 305, 300, 307, 308 senigmatious, new specics. 63, 306, 307, 453
cartulencens............................. 518
punctatus................................ 812,815
Virrng............................................. 173
virens longicauda ........................... 173
Icterids.................................................... 239
Icterus .................................................... . . 244, 261
audubonil ................................. 183, 238
bullockt ........................................ 183
cucullatua ............................... 183, 233
deacription of a new Weat Indian spe-
cies of .......................................... 351
galbula .......................................... 188
melanocephalus .......................... 236
oberi, new species ....................... 351
parinorum .................................. 183, 233
purius..........................................183, 214

wagleri....................................... 183,229
Ictinis ................................................. 244
subcseralea ................................. 193
Idocrane.................................................... 334
Idotea irrorata ......................................... 121
phosphores....................................... 122
tricuspidata..................................... 121

| Page． | Page |
| :---: | :---: |
| 1dus melanotue．．．．．．．．．．．．．．．．．．．．．．．．．．． 111 | Jordan，David S．－Continued． |
| Itmenite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 334 | 327，330，335，352，409，411，452，450 465 |
| nyanassa obevleta．．．．．．．．．．．．．．．．．．．．．．．．．． 125 | 477，478，486，489，490，491，492，406，497， |
| Indian River，Florida，flahes from．．．．．．．．．． 18 | 408，499，502，504，505，606，507，513，514 |
| Indians，Chinook ．．．．．．．．．．．．．．．．．．．．．．．．．．． 41 | Jordanella floridx ．．．．．．．．．．．．．．．．．．．．． 17.21 |
| Quillehute ．．．．．．．．．．．．．．．．．．．．．．．． 43， $45^{45}$ | ＂Joshua Riggs＂taking Auxis ．．．．．．．．．．．．．．\＄3 |
| Invertebrata，marine，of northeantern coant | Juliamy ia feliciana ．．．6．．．．．．．．．．．．．．．．．．．．． 319 |
| of America．．．．．．．． 350 | typica．．．．．．．．．．．．．．．．．．．．．．．．．．． ale $^{\text {a }}$ |
| notice of recent addi－ | Jolidw ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． |
| tions to．．．．．．．．．．．． 256 | Julun．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 52. ， 519 |
| descriptions of new | Junco ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．165， 244 |
| genera and specice | aikeni ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1100.217 |
| of．．．．．．．．．．．．．．．．．． 356 | annectens ．．．．．．．．．．．．．．．．．．．．．．．．．．． 179,217 |
| critical remarks on ．． 356 | caniceps ．．．．．．．．．．．．．．．．．．．． 120 |
| Iodyrite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{381}$ | cinereus．．．．．．．．．．．．．．．．．．．．． 180.235 |
| Iolxma frontalis．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 312 | dornalis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 16. |
| Iolite．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 334 | hyemalis ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 179 |
| Ionornis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $11,227,244$ | hyemalis var．aikeni．．．．．．．．．．．．．．．．． 215 |
| martinica．．．．．．．．．．．．．．．．．．．．． $11,202,231$ | insularis ．．．．．．．．．．．．．．．．．．．．．．． $180,217,288$ |
| Iridormine ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 33 | orgonus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 ． |
| Iron（meteoric）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 334 |  |
| Isopoda ．．．．．．．．．．．．．．．．．．．．．．．．．121，450，451，452 | K， |
| Isopods of Provincetown．．．．．．．．．．．．．．．．．．．． 117 | Kanp，Dr．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14 |
| Inигив ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51 | Keating，Mr．A．C．．．．．．．．．．．．．．．．．．．．．．．．．．． |
| glaucus ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51 | Kennerlis glacialis ．．．．．．．．．．．．．．．．．．397， 404 ， 0 析 |
| oxyrbynchus ．．．．．．．．．．．．．．．．．．．．．．．． 01,458 | Kermesite．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3i $^{\text {a }}$ |
|  | KestriL，Exropean：．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {Is }}$ |
| J． | Kilddeer．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 188 |
| Jabira ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 19.1 | Kingbird ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 18. |
| Jacana，Mexican ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 201 | Cassin＇s ．．．．．．．．．．．．．．．．．．．．．．．．．．185 |
| Jank－fish ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 145 | Couch＇m．．．．．．．．．．．．．．．．．．．．．．．．．．．迤 |
| Jacoby，Dr．L．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 282 | gray ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．18． |
| Jrger，long－talled．．．．．．．．．．．．．．．．．．．．．．．．．． 208 | western．．．．．．．．．．．．．．．．．．．．．．．．．．． 18. |
| pormarine ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 208 | Kingfisher，belted．．．．．．．．．．．．．．．．．．．．．．．．．．． 10.10 |
| Richardson＇s ．．．．．．．．．．．．．．．．．．．．．．．． 208 | Texan ．．．．．．．．．．．．．．．．．．．．．．．．．． 10. |
| Jxera albifrons ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 121 | Kinglet，Cuvier＇s．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 ．${ }_{\text {\％}}$ |
| соріова．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 121 | dusky．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 168 |
| Jamesonite．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 334 | golden－crowned ．．．．．．．．．．．．．．．．．．． 168 |
| Janira alta ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．450，451 | ruby－crowned．．．．．．．．．．．．．．．．．．．．造 |
| Јаярет ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 334 | western golden－crowned ．．．．．．．．．． 168 |
| Jay，Arizona ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．189 | Kite，everglade．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 ．${ }^{\text {s }}$ |
| black－headed．．．．．．．．．．．．．．．．．．．．．．．．．．． 184 | Mississippi．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {发 }}$ |
| blue．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 184 | swallow－tailed．．．．．．．．．．．．．．．．．．．．．．． $1{ }^{6}$ |
| blue－fronted．．．．．．．．．．．．．．．．．．．．．．．．．． 184 | white－talled ．．．．．．．．．．．．．．．．．．．．．．．．．． 120. |
| brown ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．14． | Kittiwake，Pacific ．．．．．．．．．．．．．．．．．．．．．．．．．． |
| California ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 18. | red－logged．．．．．．．．．．．．．．．．．．．．．．．300． |
| Canada．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．185 | Klain guimeti ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 317 |
| Couch＇s．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 18. | Klakistokar ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． ． ¢ $_{\text {s }}$ |
| Florida．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 184 |  |
| green．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 18. | Kröyer．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． |
| long－crested．．．．．．．．．．．．．．．．．．．．．．．．．．． 184 |  |
| Oregon ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 18.5 |  |
| piñon ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 18 ． | L． |
| mmoks－fronted．．．．．．．．．．．．．．．．．．．．．．．．． 185 | Labidesthes ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {a }}$ |
| Steller＇s．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 184 | Labracidab ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10.10 |
| white－headed．．．．．．．．．．．．．．．．．．．．．．．．．． 185 | Labradorite．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 24 |
| Woodhouse＇в．．．．．．．．．．．．．．．．．．．．．．．．．． 184 | Labride．．．．．．．．．．．．．．．．．．．．．．．．．．．．．39，86 |
| Jeffersite．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 334 | Labrosomus muchipinnis．．．．．．．．．．．．．．．．．．．． e $^{\text {e }}$ |
| Jeffersonite ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 334 | Labrus pallidus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． |
| Jeffreys，Mr．．．．．．．．．．．．．．．．．．．．．．． $381,383,398$ ， 304 | Lacuna vincta．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．is |
| Johnson，Capt．G．A．．．．．．．．．．．．．．．．．．．．．．．． 417 | Levicardium mortonl ．．．．．．．．．．．．．．．． 12. |
| Johnson．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 480 | Lafresmaya flavicaudata．．．．．．．．．．．．．．．．．．．．$\frac{11}{\text { n！}}$ |
| Jordan，David S．．． $17.22,23,34,36,38,40,42,40,51$ ， | gayi ．．．．．．．．．．．．．．．．．．．．．．．．．．． 피 |
| 63， $70,73,133,135,142,152,154,264,273$, | Lagodon rhomboides ．．．．．．．．．．．．．．．． 19 ，21．88 |
| 276，287，200，301， $303,305,320,322,325$, | Lagopus．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 24 |


| INDEX. |  |  | $563$ <br> Page. |
| :---: | :---: | :---: | :---: |
|  | Page. |  |  |
| Lagopus albns | 100 | Laru 3chalcopterus | 214 |
| american as | 214 | delawarensin | 11, 207 |
| lencuras | 196 | franklini | 207 |
| rupestrio. | . 196 | fuecus. | 297 |
| Lake troul. | 460 | glaucescens | 206 |
| Lambrus hyponeve | 417 | glancua | 206 |
| Pourtalesaii ........... verrillii (new specien) | .415,417 | heermanni | 207 |
|  | ..415,451 | lencopteru* | 206 |
| Lamellaria | .. 373 | marinus. | 207 |
| latens | 372 | minutus | 238 |
| pellacida | .372, 404, 406 | occidentalis | 11, 207 |
| perapiuna | .372, 373 | philadelphie | 207 |
| Lamellibranchiatd. | 128, 396, 407, 408 | emithsonianas | 223 |
| Lamellidoris muricats | 389 | nuckleyi. | 214 |
|  | 389 | Latilide | 27, 22,482 |
| $\begin{aligned} & \text { Latoinaria.......... } \\ & \text { L_ma'cornubica. } \end{aligned}$ | . 335,458 | Latriellia elegans |  |
| spullanzani | 51 | Lanmontite. | 334 |
| Lampornis dominicua | 311 | Lavinia gíobosa. | 326 |
|  | . 311 | Lawrence, Mr. George N . . . . 13, | 5, 16, 220, 351, 354 |
| mango. | .213, 230, 311 | Loxia carvirostra americana | 176 |
| prevosti | 311 | Laxulite. | 334 |
| violicauda | 213, 236, 310 | Leather-aide minnow | 400 |
| viridis | 311 | Leda acuminata. | 4 t |
| Lamproisema rhami | . 310 | acuta | 401 |
| Lampronetta....... | . 244 | measanensis | 401 |
|  | 204 | pernula | 401,405 |
| Lanarkite ...... | 334 | tenuisulcata | 4 Cl |
| Langley \& Co., Mesarn | .258, 262 | unca | .401, 405, 407 |
| Lanlida . | .. 239 | Leodice | 358 |
| Lanius. | .225, 244 | Norvegica | 358 |
| borealis | . 175 | polybranchia, new specie | 358 |
| elegana | 230 | vivida | 158 |
| exenbitor | . 225 | Leonardo, Vicente | 40 |
| lahtorn | .213,230 | Leonhardite. | 334 |
| ludovicianos.... | 175 | Lepas fascicularis | 122 |
|  | 175 | Lepeta. | 375 |
|  | . 175,216 | Lepetella.. | 375 |
| Lanivireo | .224, 244 | tubicola | 375, 404, 406 |
| flavifrong | 174 | Lepidogobius gracilis | 455 |
| nolitarion | 174 | newberryi | 455 |
| casaini | . 174 | Lepidolarynx mesoleucus | 313 |
| plambeu. | .174, 216 | Lepldolite........... | 334 |
| Lapis lazull ........... | 334 | Leplidonotus squamatus | 122 |
| Lapwing... | 188 | Lepidopeetta. | 325 |
| Larco, Mr. A | . 38,41 | biliseata. | 276, 278, 325,453 |
| Larida ... | . 240 | isolepis, new apecies | .278, 325 |
| Lark, meadow | 183 | umbrosa | 325 |
| Mexican mealow | 183 | Lepidoateidm. | 113 |
| shore........... | 185 | Lepidorteun orsens | .22, 113 |
|  | 185 | platystomus. | . 114 |
| sky | 185 | Lepiopomus incisor .. | 488 |
| western meaciow | 183 | obecurua | 498 |
| White-throated shore | . 185 | pallidus.... | 498 |
| Laras | .. 244 | Lepomis ...... | 408 |
| aftnis | .11, 207, 223, 230 | apiatus. | 20 |
| argentatus. | ...11, 207 | auritus | 97 |
| ex itheonianue | ........ 207, 223 | fallar | .490, 515 |
| atricilla | -. 207 | megalotis | 490 |
| brachyrbyucl as | ...11,207 | оbscurus | . 408,515 |
| borealis | .- 223 | pallidua. | 0, $97,498,409,515$ |
| cachinnans. | .11, 207, 223 | punotatas | ... 20,98 |
| callfornic | ..11, 207 | Lopralis americana. | 181 |
| caun | ..07, 223 | Pallasiana. | 131 |
| capintratus | -. 238 | Leptocholia algicola | .117, 122 |
| catartactes. | . 227 | сsec | 117 |


Page
Lyniopetalida ..... 525
Lyaiopetalum ..... 525, 526
Lyeionquilla armata ..... $44,431,452$
spinona ..... 446
Lythrur ..... 511
Lythrurus ..... 508, 509, 310, 511
atripee ..... 511
diphemíus ..... 500
lirus. ..... 500
M.
Macheroplax bella ..... 378,434
obacura ..... 408
varicoan ..... 378
Machetes. ..... 227, 245
pagnax ..... 200, 230
Mackerel, frigate, in Weat Indie ..... 533
Great Britain ..... 533
Bermudas ..... 533
on New England coant ..... 502
Macoma a abulosa ..... 408
Macrocyatio ..... 139
Macrorhamphua ..... 245
grisens ..... 199
coolopacena ..... 100
Macrura ..... 420, 451. 452
Macruride ..... 80, 473
Macrurus ..... 535
nthanticus ..... 346
Bairdil. $80,337,346,475,476$
carminatus 337, $378,346,475$
celorhynchus ..... 346
Fabrich ..... 80, 475
rupentris. ..... 475
401heron
126heroa var. trineriats
heros var. (wide umb.) ..... 108
levicula, new species .871, 404, 406
nama. 371, 404, 406
Lunda ..... 228, 245
cirrhata ..... 12, 211
Luray Cave, Virginia, blind myriapod from. ..... 524
Luscinidse ..... 239
Lutjanus Blackfordii ..... 96
caxia. ..... 12, 96
Laxilas. ..... 500
analostanua ..... 506
chickasavenaia, new epecien ..... 506, 515
cornutus 110, 500, 514, 515
Lycodes ..... 247
pacificus ..... 247, 248, 454
pancidens ..... 454
paxillas ..... 477
Vahlif. ..... 82
Verrillit ..... 337, 477
Lycodide ..... 82,477
Lycodopain ..... $24^{\circ}$
identical with Leurynnis ..... 247
pacificun ..... 248
pancidens
pancidens ..... 248 ..... 248
Lyonsia hyalina ..... 128
Iyonaiclla abyseicola ...............800, 397, 404, 407
gemma, new speciee. ..... SDG, 404, 407
Lyreddue Rairdii ..... 420, 451, 452
Lysiopetalida 524, 525, 320


Monteryy Bay, new Agonold flsh from ..... 152
new apecies of Sebas- ..... 142
from ..... 209new specica of Ras from139
Apodichthys from ..... 135Morone americana101
Mer ..... Ha224
,224
Motacillida ..... 230
Mountain b ..... 460
Moxostoma ..... 212315
peciluram ..... 512,514
Magi20. 102
brasilienais102
Mugllide20,102
mexicanua20
Mület428 429
caribsea 1428,429
Munnopsis typica157
Murenidas30,113
Muranoldes gannellus
185, 154
mucronatus机
Mutray, Mr. ..... 469
brasiert ..... 6, 22
derhami ..... 229
guttata ..... 1olivacea24
rubrifrons218, 220
Mascovite ..... 3
canis. ..... 34, 52,115
hinnulus62
Mycteria ..... 226, 245

New foundland, new apxics of Sotacanthus
635
635
Irom Grand Banks of
Irom Grand Banks of ..... 535
Newton, Protessor ..... 2, 7
Nicolea simplex ..... 12
Nicholls, Dr. H. A. Alford ..... 255,56
Mighthawk ..... 188
Caban ..... 188
Texan ..... 188
weatern ..... 188
Nitre ..... 534
Nocomis wincbell ..... 512
Nomonyx, bew genus ..... 15. 227, 246
dominicus ..... 205, 231
Nonpareil ..... 182
Noraculite ..... 84
North America, birds of ..... 164
North Carulina, occurrence of Phycia re gius in ..... 09
Notacanthus ..... 535
phasganorus, new apecies. ..... B3
Notemigonue ..... 612
americanne ..... 111
chryaoleucna......507, 510, 512, 514, 515
Nothonotus. ..... 409
Nothria ..... 858
conchylega ..... 858
Notomantun filiformis ..... 124
luritus ..... 129
Notorhynchus borealis ..... 353
maculatus ..... 353, 458
Notropis ..... 809
atherinoides ..... 808
lirns. ..... 509
matutinus ..... 509
Noturus ..... 514
exilis ..... 112
gyrinus 112, 514, 515
insignis ..... 112
leptacanthus I ..... 614, 515
marginatus ..... 112
Nucula delphinodonta ..... 407
prosima ..... 408
Nudibranchs of Provincetown ..... 117
Numenius ..... 245
borealis ..... 201
femoralis ..... 10,202
hadsonicus. ..... 201
longirostria ..... 201
phesopua ..... 201, 222, 230
tahitienais 10, 201, 222, 230
Nutcracker, Clark's ..... 184
Maximilian's. ..... 184
Nuthatch, brown-headed ..... 169
pigmy ..... 169
red-bellied ..... 100
alender-billed ..... 100
white-bellied ..... 169
Nyctale ..... 245
acadica ..... 101
albifrons ..... 213
tengmalmi richardaoni ..... 191
Nyctea. ..... 245
candiaca ..... 192
Siscthenodius ..... 245
Page Poge
Nyctherodius violscens ..... 157
Nyctiardea. ..... 246
griaen navia
violacea. ..... 197 ..... 257
Nyctidromne ..... 8,245
albicollis ..... 5, 15, 188, 233
0.
Obelia ..... 289, 301
ditchotoma ..... 132
geniculata. ..... 13230
Ober, Mr 16, 17, 255, 25
Obaidian ..... 324
Oceanitos ..... 227, 245
oceanica ..... 210
Ooeanodroma. ..... 238,245
furcata ..... 210
hornhyl. ..... 210
Ochthoiromus ..... 227, 245
wilsonian ..... 199
Octopus Bairdis ..... 302, 405
Odontanpididse ..... 115
Odontopyxis trispinosus ..... 531
Odostomia ..... 377
bisuturalia ..... 127
dealbata. ..... 127
(Meneetho) sulcata, new speotes .280, 404
modenta. ..... 380
striatula. ..... 380
nulcata ..... 406
trifida ..... 127
unidentata ..... $350,404,406$
Odemia ..... 245
americana ..... 205
nigra ..... 237
Osatrelata ..... 227. 245
bulweri ..... 209, 2330
besitata. ..... 200, 230
Oidemia bimaculata ..... 214
Oll-shark. ..... 42
of southern California ..... 42
"Olsean marine" ..... 256
Old Squaw ..... 204
Oligocottus ..... 244, 265, 400
analis ..... $25,147,435$
globioepa. ..... $.263,435$
maculonus $199,265,455$
Oligoclase ..... 334
Oligoplites ..... 18
occidentalis ..... 18
Olivenite ..... 84
Olor. ..... 227, 245
americanus. ..... 202
buccinator ..... 202
oygaue 202, 222, 230
minor. ..... 202, 222, 230
Ommastrephes illecebroan ..... 125, 408
agittatus ..... 125
Onchidoris ap. ..... 127
Oncocottus. ..... 460
Oncorhynchas gorbuncha ..... 457
Kennerlyi. ..... 457
keta ..... 457
Kiantch ..... 457
nerka ..... 457

Oystercatcher, black Page.
European ..... 108 ..... 198
Ozocerite ..... 334
P.
Pachyrhamphas ..... 225, 245
major ..... 187
Pachyrhynchus cavieri ..... 225
Pacific coast of United States, a new Noti
danold shark from ..... 352
fishes of ... ..... 452
Packard, Dr. A. 8 281, 358, 34, 396, 524, 525
Pagellus calamos. ..... 289
Pagophila ..... 245
brachytaral. ..... 214
eburnea ..... 206
Pagrus argentens ..... 05
Pagurida ..... 258
Paguroids ..... 423
Palemonetes vulgaris. ..... 120
Palinarichthys perciformis ..... 91
Palinurus interruptus. ..... 62
Pallene empuaa ..... 117, 118
Pandalus ..... 438, 443
annulicornis ..... 441
borealis ..... 437, 440, 443
leptocerus, new speclea . . 437, 440, 441, 451Montagui .......437, 438, 440, 441, 442, 443(annulicornis) ......... 437
propínquus ................437, 438, 440, 451tenuipes, new species.........441, 433, 45 t
Pandion ..... 245
halieëtus carolinensis ..... 193
Pandoru glacialis. ..... 397
trilineata ..... 397
Panopeus depressus. ..... 116
Sayl ..... 119
Panoplitos flaveweens ..... 312
Jardini ..... 311
Mattbewni ..... 312
Panterpe inaignia ..... 317
Panychlora poortmani. ..... 320 ..... 320
Panyptila
Panyptila ..... 6
cayennenala
1
Paralabrax clathrata ..... 101
clathratus ..... 27
maculofasciatua ..... 27
Parakeet, Carolina ..... 190
acorto ..... 190
Paralepis ..... 411
borealia ..... 411
coruncana, now apeciea ..... 411, 457
new species of from Straita of
Fuce ..... 411
presented by Mr. Brown ..... 412
Paralichthy: ..... 34
maculonve ..... 23, 35, 51, 454
oblongun ..... 472
Parapagurua piloaimanus ..... 428, 451
Parasira catenulata ..... 409
Paratanais algicola ..... 122
Parntractus pisquetos. ..... 89
Parephippus faber ..... 456
Parephippus quadratusPaga
Paride ..... 239
Parophrys. ..... $2 \pi 7,278$
ischy urus, tew species. . $276,278,280,453$inolepls.453
vetulus $276,277,278,453$
Parta ..... 297,243
gymnostoma ..... 201, 222
jacana ..... 227
Partidas. ..... 230
Parrot, Carolina ..... 256
green ..... 250
new speoies of, from Dominica ..... 234
of the genue Chry. sotis. ..... 254
Partridge, nprace ..... 196
Parula ..... 245
americana ..... 171
inaularia ..... 215
nigrilora ..... 232
nigrilora ..... 216
pitiayumi insularia ..... 228
nigrilora ..... 171
Parus ..... 24
albesoens ..... 213
atricapillus ..... 168
occidontalis ..... 168
eptentrionalis. ..... 16
carollnenais ..... : 68
cinctus ..... 13, 168, 215, 230
hudeonicus ..... 100
leucotia ..... 29
meridionalis ..... 168, 228
montanas ..... 108
rufeacena ..... 169
negleotus ..... 109, 215
B neglectus ..... 215
aibiricua ..... 13, 215
Passer domenticus ..... 214, 238
montanus ..... 238
Passerculua ..... 245
anthinus. ..... 2,178
caboti ..... 235
guttatus ..... 2178, 217, 228
princepa ..... 78, 217
rostratua ..... 2,178
eandwichensia ..... 2,178
alaudinus ..... 178
navanna ..... 178
Passerella ..... 3,245
Haca ..... 3,181
megarhyncha ..... 8, 181
achistacea ..... 3, 181
unlanchcenaia ..... 3
unalashkensis ..... 181
obacura ..... 235
townsend! ..... 3
Passerina ..... 225, 245
momna ..... 182
ciris. ..... 182
cyanea ..... 182
parellina ..... 182
versicolor ..... 182, 232
Patagona gicaa ..... 312
Patella ..... 265


Pinna legeriennis
Paga.
stevonsoni, new apecies. ..... 48
47
Pinuixa chotopterana ..... 117, 119
Pintail ..... 203
Pipilo ..... 245
aberti. ..... 181, 232
albigala ..... 218
alleni ..... 217
carmani ..... 217
chlorurus ..... 181
erythrophthalmus ..... 181, 217
allent ..... 188
fuacns
181,218,278
albigula.crimalla.181
mesolencus ..... 4, 181
maculatus arcticus ..... 181
carmani 181, 217, 228
consobrinus ..... 181, 217, 228
megalonyz ..... 181
oregonus. ..... 181
mesolencus ..... 4
Pipra galericulata. ..... 22
Pitangus ..... 225,245
derbianus ..... 185, 218
Mexican ..... 185
Pitcbblenile ..... 334
Pitcher, Mx ..... 34
Pitticite. ..... 834
Plain bonito of Great Britain ..... 539
Planeaticus ..... 224
Planocera elliptica ..... 117, 125
Planorbie ..... 150
sequalis, new muecies ..... 150
cirratus. ..... 100
(Gyraulus) militarls, new speciee ..... 150
Platalea ajaja ..... 226
говеа. ..... 226
Plataleida. ..... 230
Platea mexicana ..... 10
Platesa bilinenta ..... 825
dentata. ..... 471
ferruginea ..... 472
oblongs ..... 472
quadrocellata ..... 472
quadrocularis ..... 472
roatrata ..... 472
Platichthys stellatus ..... 51, 276, 277
umbrosus ..... 325
Platygloseus semicinctus ..... 455
Platygobio ..... 461
Platyonichus ocellatus ..... 119
Platsthina 33, 63, 622, 523
exasperata, new apecies ....82, 38, 522
generic relations of . 83
nchaenleint ..... 53
aiensís ..... 38, 53
tris ar ata, new apeciee ..... 36,53
a new Californion ray. ..... 36
Platyrhinse
510, 522
Platyrhinolde ..... 516, 522
Platysomatichthys ..... 302
hippoglonnoides $.81,302$
Page
Platyeomntichthys stomias, new species 51,301,302 Plectrophanes ..... 245
maccowni ..... 25
melanotaus ..... 213
nivalis. ..... 177
Plegadia ..... 226, 245
falcinellus. ..... 108. 231
guarauna ..... 108
Pieuracromylon levis ..... 52, 35
Pleurobranchea Nove-Zealandis ..... 885
tarda 384, 404, 406
Pleurolepis pellucidus. ..... 490
Pleuronecten ..... 47
cynoglossus. ..... 475
dentatue ..... 411
ferrugmeus ..... 472
glaber ..... 78
hippoglosaus ..... 47
oblonga ..... 472
perarcuatus. ..... 453
platensoides ..... 471
quadrituberculatun ..... 80, 453
stellatur ..... 43
Pleuronectidm ..... $23,78,338,471$
Pleuronichthya ..... 50
coenosus ..... $.50,453$
decurrens ..... 453
quadrituberculatus ..... 49, 450
verticalis, new epeciew ..... 9, 50, 4:3
Pleurotoma ..... 149, 305
agasaixfif ..... 403, 406
carpenterí ..... 368, 403, 406
Imprema. ..... 305
pagoda, new species ..... 149
Pandionia ..... 403, 406
platyaoma, new species ..... 150
(Pleurotomella) agaesizh ..... 867
Pandionis, new apecies ..... 308
venusta, now species ..... 150
Plotide ..... 240
Plotus. ..... 245
anhinga ..... 206
Plover, American golden. ..... 108
belted piping ..... 190
black-bellied ..... 108
field ..... 201
golden ..... 108, 257
lenaer-ringed ..... 10
little-ringed. ..... 198
mountain ..... 190
Pacifle golden ..... 108
piping ..... 108
ringed ..... 198
semipalmated ..... 198
anowy ..... 190
Wumon's ..... 199
Podanooy* ..... 227, 245
montana ..... 199
Podicepe ..... 245
coopert ..... 214
cristalna ..... 214, 228
holbali. ..... 210
minar ..... 238


## Page.

 ..... 5
annularia ..... , 515
Pontophilus brevirontria, new apecies ..... 435, 451?435, 436
Pocceten. .....
confinis ..... 178, 217217
Poór-will ..... 188
Pooplza belli, war. novadenalo315
langedorff ..... 315
tricolopha ..... 315Poromga grannlata396, 404, 407
rotundata01
Porphyrio ..... 11
Portlock ..... 363
carolina ..... 202
Jamaicentis ..... 202
cotaralula222
marnetta ..... 20
Potamocottue ..... 460Powell, Prof. J. W157, 158392
Prane117, 124
Preciona opal ..... 334Prentina, Dr. D. W298
Priest fisb ..... 145
tenuirostris12, 297, 245
melanurus629, 531
barnitis.4, 529
evolans831
milen ..... 531
Davidson ..... 456
Pristipomatida ..... 19, 96cinerea227
furcata ..... 28
glncialoidee ..... 227
leucorrhoa ..... 238
obncurs ..... 12
pelagice ..... 210, 227


Page
Quiscalus major .................................... 183, 218
palustris......................183, 218, 233
purpareus
183
жасиз.................... 184
aglxas..................... 183
veratcolor axneus...................... 218
R.

Rafinesque
160
Rala
36, 53, 486
binoculata. .................. 134, 135, 252, 253, 457
birostris.......................................... 452
cwoperi ...................... . 134, 135, 252 253, 457
eglanteria ...................................... 115
erinacea........................................ 115
inornata ............................................. 157 var. inermis. ........................ 457
lxvis............................................... 486
ocellata.......................................... 115
radiata ............................................ 115
radula .......................................... 129
rhina.............................. 251, 252, 253, 457
stellulata, now species. $133,134,135,252,253$,
unkaowa epecies ............................. 237
Raids........................................................... 1818
Railda ...................................................... 115
Rail, Californian clapper ....................... 201
clapper ................ ....................... 201
Farallone ........................................... 202
little black....................................... 202
little yellow ...................................... 202
Louisiana clapper.......................... 201
red-brested .................................... 201
nora.................................................. 202
Virginiaa ......................................... 201
Rajidı ............................................................. 89 .
Rallids ..................................................... 229
Hallus............................................................ 246
"crepitans"..................................... 11
elegans . ......................................... 11,201
var.obeoletun. ...................
longirvatris .............................. 11
crepitan .................. 201
sataratus ................. 201, 222
obeolotus. .............................. 11, 201, 222
virginianus ................................... 201
Rasher...................................................... 146
Rathbuv, Richard.................. 118 355 , 379 , 114
Raven, American.................................. 1 . 4
white-necked ............................... 184
Ray, description of a zew Californian opecies of.
$.30,133,251$
Healgarite ............................................... 224
Recurvirostra......................................................... 246 americana .......................... 201
Recurvirostridax ....................................... 229
Redbird, summer........................................ 178
Redhead ..................................................... 204
"ILed horse" (a specien of Moxostoma) .... \$12
Redpolt common ................................... 177
greater ....................................... 177
mealy ........................................ 172
white-rumped ............................. 177
Dedstart, Amorican ................................... 174
Proc. Nat. Mus. $80-37$

Redstart, painted .............................. 174
red-bellied ................................ 171
Red-tall, Saint Lucas................................ 104
Bocorro..................................... 104
weatern ................................. 194
Redwood, Prof. Theophilus ............. 258, 262, 269
Hegulus.................................................. 246
calepdula.................................... 168
obscurus.................... 215
criatatus ................................ 230
cuvieri .............................. 164, 168, 224
obscaras ............................ 168, 215, 238
satrapa.................................. . 168, 2:0
olivnceus . .................... 168,215
var. olivaceus ................. 215
Reichenbach ......................................... 10. 11
Reinhardtiun .......................................... 102
Remora jacobses . . . . . . . . ...........................
Reh̆a......................................................... 146
Retinite .................................................. 334
Rbabdammina ...................................... 358
Rhabdoccela............................................ 1 . 1 .
Bhacochilus toxeten....................................
Rhamphodon nevins............................... 108
Rhamphomicron berrani ....................... 116
heteropogon ................. 316
microrhynchum ........... 316
olivaceus ..................... 316
stanleyi ...................... $\mathbf{3 1 6}$
Rhiaichthys cataractas ............................. 111
nasutas.............................. 111
Rhinebatids .............................34, 38, 516, 527
American, synopsis and de-
scriptions of.................. 516
Ehimobatus .........................33, $34,53,516,517,520$
horkelii. ....................... $519,518,519$
lentigibosus ........................ 516,519
leucorhynchus..................... 516 . 517
planiceps................... $516,517,619$
productus .......... 34, 37, 458, 516, 517
oplaosus .............................. 516,518
triseriatus ......................... 458
undulatus ........ 516, 517, 518, 510, 591
Rhinoptera veepertilio ............................ 11
Rhinotriacis henlel.................................. . 355,458
Rhizopods............................................... 358
Rhodonite. ................................................ 334
Rhodostethis........................................... 246
ronea ................................. 297
Rhomboplites aarorubens........................ 组
Rhyacophilus ............................................ 246
ochropus .................. $200,222,220$
colitarina ......................... 200
Rhyneebolas dibranchiatis ................... 123
Rhynchofalco ........................................ 226,246
fusco-carul cacens. ............ 193,233
Rhywobophanem .......................................225, 240
maccowni ...................... 178
Rhyachops................................................... 246
nigra ..................................... 206
Rhynchopsidio ...................................... 240
Rhyachopaitta ........................................ 240
pachyrhyncha................ 190, 239

Ikchardson, Sir Joha.............................. 258



Page.
Sobastichthys mystinus .......................... 453
nebulonus. 73, 74, 75, 144, 146, 288, 280. $294,297,298,322,323,324,453,405$
nigrocinctu. .... 38, 40, 287, 288, 289,
297, 455
oculatus .............................74, 296
ovalis.......142, 143, 144, 145, 146, 327. 828, 320, 455
pancispinis....................... 145
pinniger.... $38,39,70,71,72,144,146$, $288,289,200,328,320,455$
proriger................72, 146, 320, 455
raatrelliger, new apecies... 146, 288 , $289,290,296,297,323,465$
shodochloris, new specics.. 144, 145,
146, 455
rовасепи....74, 144, 145, 146, 288, 289 , $293,294,205,296,320,455$
ruber.........38, 144, 140, 288, 289, 455
rubrivinctus, new species.. 143, 140
288, 280, 291, 455
serriceps ... 146, 288, 289, 294, 298, 455
a new Californian " Rock Cod"..... 38
simalans......................... 144, 145
two new Callfornla npecies of. 142
vexillarls...74, 146, 288, 289, 202, 294,
322, 323, 324, 460
Bebastodea
287
melanop8................................. 435
paucispinis .....................287, 289, 455
Sobastoid fishea, deacriptions of 7 new Call.
fornian mpecies of
287
Sebastomun
.39. 287, 297
anricnlatu ............................. 29,287
elongatun............................. 287
flavidus ................................... 39
melanops .................................... 88
nebulosиะ.............................. 287
pinniger .................................. 39
ronscetus ................................. 287
ruber........................................... 287
Sobastosomus..................................... $39,287,297$
flavidua ................... 287, 288, 289
melanops ............... 39, 287, 288, 289
ovalis..........................287, 238, 289
pluniger.......................... 287
Bimulans ...........287, 288, 289, 455
Seedeater, black-faced .................................... 182
Morelet's...................................... 182
Selasphorus...................................................... 246
alleni .......................... 187, 218, 314
ardens.................................. 314
henshมพ1.................................. 314
platycercus...........................187, 314
rufus ................................... 187, 314
scintilla ..................................... 314
Selene argentea .......................................................... 18

Bema, note on ........................................................ 327

Semi-opal .................................................. 32
Semotilus ............................................................ 512
argentoun..................................... 110
bullaris.................................... 110
Semotilua corporalia

Page.
rhotheus........................................ 110
Sennett, Mr ............................................... 7 13, 15
Sergentee arcticus....................................45, 451
*p. nov......................................45, 451
Serinus mertilionalis .................................. 238
Seriola Lalandi ................................................ 456
mazatlana. ........................................ 450
wonnts.......................................... 91
Seriphus politus............................................. 456
Serpentine, precious..................................... 334
var................................... $5 \boldsymbol{1}$
Serpula ...................................................... 124

Serranue clathratus ...................................... 456
maculofascistus ........................... 456
nebulifer ................................... 4:0
Sertularia pumila.......................................... 138

Gůntheri .............................. 480
parmatus.............................. 480, 481
Setophaga............................................................. 246
miniata........................... 174, 229, 232


raticilla ................................ $17 \boldsymbol{4}$
Shark, a new Pacifle Notidanoid epecien of. 252
bakking......................................... 58


man-eater ............................................. 82
Sharka, Californian, notew on.................. 51
Sharpe, Mr ................................. 4, 8, 9, 11, 141
Shearwater, black-talled .......................... 109
black-vented....................... 209
cinereous .-........................... 200
dark-bodied ........................ 200
dukky......................................... 200
greater.................................. 209
manx ................................. 200
pink-footed........................... 209
alender-billed ..................... 209
sooty...................................... 200
Sheldrake, American................................ 205
hooded ................................ 205
red-brensted............................ 205
Shoveller ..................................................... 204
Shrike, grent northern.............................. 175
large-billed........................................ 175

white-rumped............................. 175
Sialia ....................................................... 246
arotica ......................................... 107
mexícana........................................ 167
s.alis .......................................... 107

Siboma. ......................................................... 326 , 460
crassicauda ................................. 326

Siderite ............................................................ 334
"Sifflem montagne" ................................. 256
Sigalion arenicola .....................................117, 12t
Siliccous sinter............................................... 334
Silicifled wood ................................................ 334
Sillimanite ............................................... 334


Solarium boreale
Paga
Solea ..... 376, 404, 406
vulgaria ..... 77
Soleidse ..... 23.77
Solemya ..... 158
bilix, new species ..... 158
subplicata ..... 178
velum. ..... 129, 158, 408
Solen americanus ..... 128
Solenoconcha ..... $.394,407,408$
Solenomsa velum ..... 129
Solitaire, Townaend's. ..... 167
Somateria ..... 246
dreaseri ..... 222
mollissima ..... 204, 222, 230
dreaseri. ..... 203, 202
spectabilis ..... 205
r. nigra ..... 205
Somniosus brevipianis ..... 335
microcephalun ..... $.355,458$
Souldia ..... 315
South Carolina, description of now hake
from ..... 69
" Spanish Flag' ..... 146, 298
Sparida ..... $10,27,95$
Sparoid fleh, deacription of a new, from Cal- Iformia ..... 284
Sparrow, aleutian song ..... 380
Arizona ..... 180
Bell'a ..... 180
blickehinned ..... 279
black-throated ..... 140
Boucard's. ..... 180
Brewer's ..... 179
californian song ..... 180
Casein' ..... 180
chipping. ..... 179
clay-colored. ..... 170
fleld ..... 179
fox-colored ..... 181
Gambel's white-crowned ..... 179
golilen crowned ..... 170
Harris's ..... 179
Heermann's aong ..... 180
Henslow's ..... 178
Intermediate white-crowned ..... 179
fpawich ..... 178
large-billed ..... 178
Leconte's ..... 178
monntain song ..... 180
oak.woods ..... 180
rufous-crowned ..... 180
rufous-winged ..... 180
rusty ang ..... 180
angebrush. ..... 180
Saint Lucan. ..... 178
Sandwich Sound ..... 178
Saramnah ..... 178
slate-colored ..... 181
song ..... 180
nooty mong ..... 180
swamp ..... 180
Texas ..... 181
thick-billed ..... 181
titlark ..... 178
Page.
Sparrow, Townsend's ..... 181
tree ..... 179
western chipping ..... 179
western savannah. ..... 178
western yellow-winged ..... 1.8
white-crowned ..... 129
white-throated ..... 179
yellow-winged ..... 178
Sparus ..... 286
a new Californian species of ..... 28
brachysomus, new species. ..... 28
Spatula ..... 240
clspeata ..... 204
Speotyto ..... 226,246
cunicularia ..... 237
floridana ..... 192,220
hypogea ..... 102
var. floridana ..... 220
Spermophila ..... 216
moreletil ..... 182, 232
Spessarite. ..... 333
Spheroma quadridentatum ..... 122
Sphaterito ..... 234
Sphenoproctua curvipennis ..... 309
pampa ..... 309
Sphyrrena ..... 411
argentea ..... 29,450
borealis
102
Sphyraenida ..... 29, 102
Splyyrapicus. ..... 246
thyroldeus ..... 189
varius ..... 189
nuchalis ..... 189
ruber ..... 189
Sphyrna zygana ..... 115,458
Sphyrnida ..... 115
Sphyropicus thrroidens ..... 6 ..... 213
Spillman, Rev. Willlam, M. D
Spillman, Rev. Willlam, M. D ..... 491
Spinacida ..... 116, 480
Spinel ..... 334
Spiralis balea ..... 392
gouldil ..... 392
MacAndrei ..... 303, 404, 40i
retroversus ..... 392
Yar. 1 MacAndreí ..... 393
Spirigera ..... 46
Spiropagurus ..... 422, 429
spiriger ..... 426
Spirorbis ..... 161
borealia ..... 124
dickhauti, new specics ..... 157, 161
rotulus ..... 161
Spirostrephon ..... 524. 525, 526
casioannulatus. ..... 324, 526, 528
cavernarum ..... 524, 325,326
cope ..... 524, 525
lactarius 524, 525,520
(Psoudotremia) copel …… 52
(Scoterpes) copei 525, 520, 528
vudil. ..... 524,525
Spisula solidiseima ..... 128,408
Spiza. ..... 3, 4, 225, 246
americana ..... 3, 182
townsendl. ..... 182
Spizella ..... 244
atrogularis ..... 179, 233
breweri ..... 3. 129
domestica ..... 112
arizona ..... 15
evura. ..... 205
montana. ..... 3.179
monticola ..... 3
pallida ..... 3.15
puailla ..... 129
socialis arizons ..... 217
var. arizons ..... 217
"Split-tail" ..... 326
Spodumen. ..... 34
Sponge, a new type of ..... 39
Spongia ..... 269
Spoonbill, American ..... 10
roseate ..... 198
Sporadinus elegans. ..... 230
mangsi ..... 320
ricordi ..... 292
Squalius ..... 460
ardesiacus. ..... 400, 461
atrarius ..... 461
copel, new species ..... 461
cruoreus, new species ..... 460
montanus ..... 460
niger. ..... 401
rhomaleus. new species ..... 491
squatoatus ..... 461
tania ..... 400
Squalus acanthias ..... 116, 418
americanus ..... 116
Squatarola ..... 246
belvetica ..... 108
Squatina angelus ..... 458
Squillida ..... 446
Stannite. ..... 334
Starling, European ..... 184
Starncenas. ..... 246
cyanocephala. ..... 195, 231
Stanrolite ..... 334
Steganopus ..... 227.246
tricolor ..... 27
wilsoni ..... 201
Steganura melananthera ..... 315
underwoodi ..... 315
Stegocephalus ampulla ..... 447, 451
Steindachner ..... $.29,14237$
Stelgidopteryx ..... 225, 246
Stellula ..... 225, 246
calliope ..... $187,219,314$
Stenelais picta ..... 122
Stenotomus argyrops ..... 25
Stephanite ..... 334
Stephanolepis setifer ..... 76
Stercorariidae ..... 240
Stercorarius ..... 246
buffoni ..... 208
parasiticns ..... 208
pomatorhinus ..... 248
Stercorite ..... 334
Stereolepis g'gaa ..... 27.45
Sterna. ..... 246

Page.


Strix otus........................................ $\begin{array}{r}\text { Page } \\ 228\end{array}$
passerina................................ $2 \pi 7$
pratincola................................. 1
stridula ............................... 7, 230, 237
ulula .......................................
flammeata......................... 8
uralensis .................................. 226
Stromateidx .................................... 12.
Stromateus simillimns.......................... 4. 46
Strontianite .................................... 384
Struvito............................................ 3 . 3 .
Sturnella......................................... 216
magna................................... 188
mexicana ............... 183, 218, 238
neglecta................................... 189
Sturnidæ.................................... ..... 229
Sturnus . . . . . . . . . ...................... ...... . .225, 246
cinclus ................................ 234
vulgaris .....................184, 218, 225, 229
Styliola acicula................................. 404
recta.................................. $3 \Omega$.
virgula ................................. ${ }^{993}$
Sucker, Utah.................................... S6. S
Sudis hyalina .................................. . 273.274
ringens, new species.................. 273, 457

## Sula.............................................. 246

bassana ........ ............................ 20 .
cyanops ................................. 200, 229
lencogastra..................................11, 200
piscator ..............................200, 223, 229
Snlaridst .......................................... 240
Sulphur........................................... 33
Sumichrast, Prof F ................................. 14
Sunfishes ..... .............. ....................... 488
Sunstone ................................................... . . 334
Surf bird ................................................. 108
Surf-gmelt...................... .................... 43
method of taking, by Quillehute Indians.............................. 1 显
of northwest coast, Washicgton
Territory .............................. 42
Surnin .................................................. 246
funerea ..................................... 192
ulula...................... . 192, 220, 230
passerina .................................. 271
ulula funerea............................... 8
Sussexite ....... .......................................... 234
Swallow, bank ....................................... 17 .
barn ......................................... 175
diff .......................................... 175
rough-winged ........................... 175
violet-green ............................. 175
white-bellied ........................... . 175
Swan, Bewick's .................................... . . 20 , 222
European....................................... 202
trumpeter ..................................... 202
whistling .................................. 20 .
Swan, James G . . . . . . . . . . . . . 43, 46, $257,258,353,45$
Trachspterus! altivelis, taken by

45
Swift, black...................................... 188
chimney ................................ 188
Vaux'b......................................... 188
white-throated.......................... 188
Sylvanite ................................................. 3 .





| Vultur atrata ...... | Page. 226 |
| :---: | :---: |
|  |  |
|  | 226 |
|  | 228 |
| Vulture, black. | 195 |
| W. |  |
| Wrd | 335 |
| Wagtail, whito . | 170 |
| yellow | 170 |
| Wallace. | 529 |
| Wralker, Col S. T | 8 |
| Warbler, Audubon's ........... | 172 |
|  | 171 |
|  | 172 |
|  | 174 |
|  | 172 |
|  | 172 |
|  | 173 |
|  | 172 |
|  | 172 |
|  | 172 |
|  | 172 |
| Blne Monntain ...... | 173 |
| blue-throated | 107 |
| blue-winged yellow | 171 |
| blue yellow-backed. | 171 |
| Braier's. | 174 |
| Canalian ify-catching | 174 |
| Cape May. | 172 |
| carbonated | 172 |
| cerulenn. | 172 |
| cheatnul-sided | 172 |
| Cunnecticut. | 173 |
| golden-cheeked | 172 |
| gohlen-winged. | 171 |
| Grace's.... | 172 |
| hermit. | 173 |
| hooted. | 173 |
| Kennicott'm | 168 |
| Kentucky . | 173 |
| Kirtland'm. | 173 |
| Lawrence's. | 171 |
| Lucy's.. | 171 |
| Juteous... | 171 |
| Macgillivray's. | 173 |
| mourning . | 173 |
| Nashville | 171 |
| olive-headed. | 172 |
| orange-orowned | 171 |
| pileolated... | 174 |
| pine-oreeping. | 173 |
| prairie ... | 173 |
| prothonatory | 172 |
| red....... | 174 |
| red-faced | 174 |
| red-poll. | 173 |
| Sennett'm. | 171 |
| Socorro... | 171 |
| Swainton's | 171 |
| Tenneasce. | 171 |
| Townsend's | 172 |
| Virginia's. | 171 |
| white-browed yellow- | 172 |
| white-throated | 171 |
| worm-eating....... | 171 |

Page
Warblor, yellow red-poll ..... 173
yellow-rump ..... :T7
yellow-throated ..... 173
Warwickite ..... 35
Warner, William A....480, 401, 408, 490, 502, 512, 313
Washington Territory, new ishee from ..... 264
Wavellite ..... 305
Wax opal ..... 334
Wax-wing, cedar ..... 175
northern ..... 175
Webster, Prof. 1. E...117, 119, 120, 128, 132, 35Q, 371Weinmiller, J202
Went Indies, a new species of Icterus from. . 351
Wharton ..... 9.11
Wheeler, Captain ..... 157
Lientenant ..... 100
Wheelerite ..... 335
Whimbrel ..... 201
Whip-poor-will ..... 188
White, Dr. C. A......46, 47, 48, 140, 149, 157, 527, 528
Whiteaves, Mr. J. F ........371, 376, 381, 397, 401, 448
Whitner ..... 46
Whitneyite ..... 335
Widgeon ..... 203
Willemite ..... 235
Willet ..... 200
Wilioughby, Charlea ..... 10, 43
Wilson ..... 0, 234
Wileon, K. B. ..... 350
Wilsonia ..... 224, 246
canadenais ..... 124
minata ..... 164, 174, 234
miltrata ..... 173
puailla. ..... 178
pileolata ..... 174, 216
Winckler ..... 267
Witherite ..... 835
Wolfenite ..... 335
Wolframite ..... $3: 5$
Wollaatonite ..... 335
Woodcock, American. ..... 190
Enropean ..... 109
Wood-manon ..... 432, 433
Wood opal ..... 304
Woodpecker, banded-backed, 3-toed ..... 189
black-backed, 3 -toed ..... 180
black-breated. ..... $1 \times 9$
Callfornian ..... 189
downy ..... 188
Gnírdner's ..... 188
Glla ..... 180
golden-fronted. ..... 16
hairy ..... 188
Harris'a ..... 188
ivory-billed ..... 188
Lewis's. ..... $1 \times 3$
narrow.fronted ..... 190
Nuttall's ..... 189
pileated ..... 169
red-bellied ..... 189
red-breasted ..... 160
red-cockadod ..... 189
red-headed ..... 160
red-naped ..... 180
Strickland'a ..... 180


Department of the $\mathfrak{S n t e r i o x}$ :
d. s. national museum.
$-27$
7 -

## PROCEEDINGS

## OF THE

## UNITED STATES NATIONAL MUSEUM.

Vol. IV.<br>1881.

PUBLISHED UNDER THE DIRBCTION OF THE SMTTHSOKIAN INSTITUTION.
$\qquad$

WASHINGTON:
GOFERNMENT PRINTING OFEICX.
1882.

This and the previous volumes of the Proceedings of the United States National Museum have been published onder the editorial supervision of Tarleton H. Bean, M. D., Curator, Department of Fishes. 2

## TABLE OF CONTENTS.

Paga
Anonymens. The Comparative action of Dry Heat and Salphurous Acid upon Putrefiotive Bacteria ..... 206
18ird, N. F. Notes on certuin Aboriginal Sbell Mounds on the Ceant of New Brunswick and of New England. ..... 292-207
Bena, Tarleten H. Doscriptions of New Specios of Fibhes (Urasidea marginata, Potamo- cottue Bendirei), and of Myetophum erenviare, J. and G ..... 28-20
Sites on some Fishes from Hudaon's Bay. ..... 127-129
Descriptions of New Fiehes from Alaska and Siberia ..... 144-150
Directions for Collecting and Preserving Fiah ..... 235-238
A Preliminary Catalogne of the Fishee of Alaakan and Adjacent Waters ..... 230-272
A Partial Bibliography of the Fisbes of the Pacific Coast of the United States and ofAlaska, for the year 1830312-317

- Netes on a Collection of Fishes made by Capt. Heary E. Nichole, U. S. N., in British Columbia and Southern Alaska with Descriptions of New Species and a Now Genue (De- lolepis) ..... 463-474
(See also nuder Goode and Beaz.)
Sendire, Capt. Charlea, U. B. A. Notes on Selmonidat of the Upper Colambia ..... 81-88
Beyd, C. H. Remains of the Wairus (i) in Maine ..... 234, 298
Cerlim, Willine E. Obeorvations of Siredon lichenoidee ..... 130, 121
Dall, W. H. On the Genera of Ohitone ..... 279-201
——On certain Limpets and Ohitons from the Deep Watere of the Eantera Coust of theUnited statee400-414
Pndlich, F. M. An Analyais of Water deatructive to Fish in the Gulf of Mexico. ..... 124
Farlow, Dr. W. G. Report on the Contente of two bettles of Water frem the Gulf of Mexico, forwarded by the Suitheonian Insititation ..... 234
Cilbert, Cmarlea RI. (See under Jerdas and Gilbert.)
Cill, Theedore. Note on the Latiloid Genert162-164
Glasier, W. C. W., Ansistant Surgeon, M. H. 8. On the Dentruction of Fish by Pollated Waters in the Gulf of Mexico ..... 128, 127
Geede, G. Brown. The Taxonomic Relations and Geographical Distribution of the Mewbers of the Swordith Family (Xiphiida) ..... 418-433
Ceede, C. Brown, end Tarleton H. Beam. Deacription of a New Species of Fish (Apogon pandionis), from the Deep Water off the Mouth of Chesapeake Bay. ..... 100, 161
-Benthodesmus, a Now Genus of Deep-sea Fishes, allied to Lepidopus ..... 370-383 ..... 370-383
Hawea, ©ieerge W., Ph. D. On the Mineralogical Composition of the Normal Mesozoje Diabaee upon the A tlantic Border ..... 129-134
- On the Determination of Feldspar in Thin Sections of Becke ..... 134-136
Ingersell, Erneet. On the Fish Mortality in the Gulf of Mexice ..... 74-80
Japanese Legntion. Catalogue of is Collection of Japanese Cotton Fiber prenented to the United Statea National Museun by the Government of Japan, together with the Amount of the Annaal Crop of Japan, sad the Price of Cotton ..... 449-453
Johneen, n. I. Noten on the Mortality among Finhes of the Gulf of Mexice ..... 205
Jordan, David 5., and Plerre L. Denf. Cheok-list of Duplicates of Fishen from the Paciffc Coast of North America, distributed by the Smithaonian Institution is behalf of the United States National Maseum, 1881 ..... 1-18
Jordan, David s., and Charles H. Gitbert. Notes on the Fiabes of the Pacific Coast of the United States ..... 29-90
- Deacription of Sebastichichys myatinus ..... 7a-72
Fage
Jerden, Devid s., med Cherlee II. Gilbert. Deacription of a New Species of Pty- chookilus (Ptychochisus Harfordi), from Sacramento River ..... 72,73- Notes on Raia inornata28,74
Notes on a Collection of Fishes, made by Lient. Heary R Nichols, U. S. N., on the WeetComst of Mexico, with Deseriptions of Now Species$205-33$
- List of Fishes collected by Lieut, Henry E. Nichols, U. S. N., in the Gulf of Californiaand on the Weat Coast of Lower California, with Descriptions of Four New Species273-775
- Deacriptions of Thirty.Three New Specien of Fishen from Mazatlan, Mexico ..... 238-305
Description of a New Species of Pomadasys from Mazatlan, with a Key to the Speciesknown to Inhabit the Pacific Coasta of Tropical Amerioa.383-388
——Description of a New Species of Xenichthys (Xenichthys xenurus), from the West Coast ofCentral America45
- Deacription of Fire New Speoies of Fishee from Mazatlan, Mexion ..... 488-463
Jeay, Plerre L. Description of a New Species of Squaliue (Squaliue alicics), from Utah Lake. ..... 10
Lawrence, Ceerge N. Dencription of a New anb-Species of Locigilla, from the Ialand of St. Christopher, Weat Indiee ..... 304,205
LeekIngtom, W. N. Description of a New Genas and Species of Cottides. ..... 141-144
Laneser, Otte. The Occurrence of the Canada Porcupine in Maryland ..... 161,162
McEEy, Charlee L. A Review of the Genera and Species of the Family Oentrarchide, with a description of One New Species ..... 67-98
Deere, M. A. Fish Mortality in the Gulf of Mexico ..... 125,128
Pirm, Antheny. Methods of Making and Preserving Plaster Caste ..... 272273
Pintean, M. Fellix. The Flapid Preparation of Large Myological Specimens ..... 380-30
Perter, Jeseph Ya, Assistant Surgeon, U. S. A. On the Destruction of Fish by Poisonous Water in the Gulf of Mexico ..... 121-123
Rathbun, $\mathbf{H z i c h a r d . ~ L i a t ~ o f ~ M a r i n e ~ I n v e r t e b r n t e s , ~ m a i n l y ~ f r o m ~ t h e ~ N e w ~ E n g l a n d ~ C o a s t , ~}$ diatributed by the United Staten National Museum. (Series II.) ..... $296-303$
List of Marine Invertebratea from the Now England Coant, Distributed by the UnitedState National Muaeum. (Series III.)
$304-301$Raw, Charles. Liat of Anthropological Publications (of Charlea Rau)45-458
Aidgway, Rebert. On a Duck new to the North American Fauna ..... 22-34
- On Amazilia yucataneneis (Cabot), and A. cerviniventris, Gould. ..... 25, 25
A Review of the Genus Centurue, Swaineon ..... 25-11
List of Species of Middle and South American Birds not Contained in the United States
165-300 National Museum ..... 165-300
_ List of special Desiderata among North American Birds
$317-394$
Catalogue of Old Worid Birda in the United Staten National Museum
253-301
253-301
- Notes on Some Costa Rican Birds
- Notes on Some Costa Rican Birds
257, 253
257, 253
- Deacription of a New Flycatcher and a Sup ..... 306-371
- Deacriptions of Two New Thrushen from the United Staten ..... 374-30
On Two Recent Additions to the North American Bird Fauns, by L. Belding. ..... 414,415
Ryder, Iehn A. On Semper's Method of Making Dry Preparations ..... 224,5
Shafelde, H. W., U.S.A. Remark upon the Oateology of Opheosaurus eentralie ..... 200-400
Bmith, Rean. Deacription of a Now Gobioid Fish (Othonops eos), from San Diego, Cal ..... 12-91
-Desoription of a New Species of Gobiesos (Gobiesox rheasodow), from San Diego, Cal. ..... 140, 141
Amith, Bilas E. On the Chinnool Names of the Salmon in the Columbin River ..... 301, 303
scejneger, Leonhard. Deecription of Two Now Races of Myadeste obsourue, Lafr. ..... 571-574
Tranelasion. Metallic Castinge of Dellcate Natural Objeots ..... 161
Trime, Frederick W. On the North American Land Tortoinen of the Genue Xerobater. ..... 431-46
On the Rare Rodent, Oricetodipus parvus (Baird), Cones ..... 474,473
Ward, L. F. Catalogue of a Collection of Japanese Woods, prenented to the United Statee National Museum by the University of Tokio, Japan ..... 308-311
White, C. A. On cortain Crotaceous Fosaila from Arkansas and Colorado ..... 126-18
Appindix Page. ..... 477
Llat of circulara:
No. 1. Plan of organization and regulations ..... 479
No. 3. Circular addreased to friends of the museum ..... 537
No. 3. Circular in reference to petroleam collections. ..... 639
No. 4. Ciroular concerning the department of insecta ..... 641
No. 5. Katablishment and officers ..... 543
No. 6. Classification and arrangement of the materia medica collection. By James M. Fint, surgeon, United 8tates Nary ..... 84
Na. 7. A clamification of the forme to which druga and modioinee appear and are adminiatered. By James M. Flint, aurgeon, United States Navy Pago. ..... 647
No. 8. Memoranda of cellectors of druge for the materia medica meotion of the National Museum. By James M. Flink, aurgeon, United States Navy ..... 555
No. 2. Circular in reforence to the building stone collection Page ..... 557
No. 10. Two lettere on the work of the National Muneum. By Barnet Phillipe. ..... 563
No. 11. A provisional clansification of the food collection. By G. Brown Goode Page ..... 573
No. 12. Clasaification of the collection to illuatrate the art of taxidermy Page ..... 595
No. 13. Outline of a sobeme of museum clanaifcation. By G. Brown Goode ..... 507
No. 14. Circular requesting material for the library ..... 001
No. 15. The organization and objecte of the National Museum ..... 605
No. 10. Plans for the instaliation of collections ..... 609
No. 17. Contributions and their acknowledgment ..... 611
No. 18. Lint of publications of the United States National Muneum ..... 613
General modex ..... 025


## LIST OF CORRECTIONS.

[Vol. IV, Proc. Nat. Mus 1881.]
Page v, line 11, for memoranda of, \&c., read memoranda for, \&c.
Page 327, line 45, for Phenicophaininfe read Phenicopifaininf.。
Page 455 , line 1 , for List of Anthropological. Publications read List of Anthropological Publications of Charleg Rav.

Page 472, line 29, for Sebastichthys ruber read Sebastichthys proriger Jor. \& Gillo。
Page 472, line 36, for Sebastodes paucispinis real Sebastichthys proriger Jor. \&

## PROCEEDINGS OF THE <br> UNITED STATES NATIONAL MUSEUM. <br> 1881.

CEECK-LIET OF DUPLIOATKA OF FIMEES FROM TEE PACIEIO
 GONIAN INATITUTION IN IBEHALE OE THE UNLTED BTATEA NATIONAL DUSEUB, 1881.

Prepared by DAFID S. JORDAN and PIERRE L. JOUY.
HIPPOCAMPIDA.

1. Eippocampus ingens Grd. 7404. Callfornia.

SYNGNATHIDE.
2. Siphostoma leptorhynchus* (Grd.) J. \& G. 26808. San Diego, California.
3. Siphostoma californiense (Storer) J. \& G.

| 2693. Santa Barbara, Callfornla. | 27190. San Franciaco, California |
| :--- | :--- | :--- |
| 27050. Monterey, California. | 27380. Santa Barbara, Callfornia |

## AULORHYNCHIDE.

4. Aulorhynchus flavidus Gill.
5. Monteroy, Callfornia.
GASTEROSTEIDE.
6. Gasterosteus (aculeatus var.) cataphractust (Pallas) J. \& G. 27284. Puget Sound.
7. Gasterosteus microcephalus Grd.
8. San Franciaco, California.

## PLEURONECTIDE.

7. Aphoristia atricauda Jor. \& Gilb.
(Турев.)
8. San Diego, Callforpla.
9. Pleuronichthys verticalis Jor. \& Gilb.
(Types.)
10. Monterey, Callfornia.
| 27230. San Francieco, Callfornia.

[^89]9. Pleuronichtbys decurrens Jor. \& Gilb.

20078 Monterey, Callfornia. 1 27148. San Francisco, Callfornia
10. Pleuronichthys cceñosus Grd.

| 25025. Santa Catalina Island, California. | 27123. | San Francisco, Califoraia |  |
| :--- | :--- | :--- | :--- |
| 25040. Wilmington, California. | 27231. | ". | " |
| 20709. | San Diego, Callfornia. | 27274. | Puget Sound. |
| 27050. Monterey, California. | 27208. | "4 |  |

11. Hypsopsetta guttulata (Grd.) Gill.

| 24871. | San Diego, Colifornia. | 26841. San Pedro, Californla |
| :---: | :---: | :---: |
| 24910. | " ${ }^{\text {a }}$ | 20002. Santa Barbara, California |
| 20768. | "* " | 26088. |

12. Cynicoglossus pacificus Lockington.

| 27058. Monterey; Californin | 27302. Puget Sound. |
| :--- | :--- | :--- |
| 27228. San Franciso, California |  |

13. Glyptocephalus zachirus Lockington.
14. Monterey, Callfurnia.
15. San Franciaco, California.
16. Point Reyea, Califurnia

## 14. Pleuronectes stellatus Pallas.

| 2268. | California. | 27059. | Monterey, California |
| :--- | :--- | :--- | :--- |
| 24103. | San Francisco, California. | 2722. | San Franciaco, California |
| 24164. | u | 27278. | Puget Sound. |
| 20915. | San Luis Obispo, California. |  |  |

15. Lepidopsetta bilineata (Ayres) Gill.

| 27003. Monterey, California. | 27290. Puget Sound. |
| :--- | :--- | :--- |
| 27117. San Francisco, California. |  |

27117. San Francisco, Califurnia.
27118. Parophrys ischyrus Jor. \& Gilb.
27119. Puget Sound. (Type8.)
27120. Parophrys isolepis (Lock.) J. \& G.

|  |  | (Types.) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 20082. | Monterey, California. | $\bullet$ | 27301. | Puget Sound |
| 27116. | San Francisco, California. |  | 27347. | - |
| 27220. | 4 " |  |  |  |

18. Parophry vetulus Grd.

| 27057. Monterey, Californin. | 27300. Puget Sound. |
| :--- | :--- | :--- |
| 27232. San Francisco, Californis. |  | 27232. San Francisco, Californin.

27233. San Fruncinco, Callfornia
27234. Puget Sound.

## 20. Psettichthys melanostictus Grd.

27000. Monterey, Callfornia.
27001. San Francinco, California
27002. San Francinco, Callfornia 27348. Puget Sonnd.
27003. Hippoglossoides exilis Jor. \& Gilb
27004. Hippoglossoides elassodon Jor. \& Gilb.

## (Typer.)

27002 Puget Sound.
| 27263. Puget Sound.
23. Eippoglossoides jordant Lockington.
20981. Monterey, Callfornia.
| 27118. Son Franoisco, Califorals
24. Paralichthys maculosus Grd.
17063. Santa Barbara, Californis. 24813. San Diego, California. 24874. "4 25070. Santa Barbara, Calufornia. 20767. San Diego, Culifornia.

28847. San Pedro, California.<br>20030. Sunta Barbarn, California.<br>27007. Monterey, Callfornia.<br>27125. San Francisco, California

25. Xystreurys Liolepis Jor. \& Gilb.
(Types.)
26. Sapka Barbara, California
27. Hippoglossus vulgaris Flem.
28. Straits of Fuca, (Skulle.)
29. Atheresthes stomias Jor. \& Gilb.
(Types.)
27122 Point Reyes, Callfornis.
| 27180. Point Reyes, Callfornia
GADIDE.
30. Merlucius productus (Ayres) Gill.
31. Monterey, California.
32. San Francinco, California
33. San Franciaco, California
34. Paget Sound.
35. Pollachins chalcogrammus (Pallas) J. \& G.
36. Puget Sound.
37. Gadus morrhua L.
38. Puget Soand.
39. Miorogadus proximus (Grd.) Gill.

| 24656. San Francisco, Callformia. | " |
| :--- | :--- |
| 27183. | 27817. Paget Soand. |

BROTULIDE.
32. Brosmophycis marginatus (Ayres) Gill. 27045. Point Royes, Californta.

OPHIDIIDE.
33. Ophidium taylori Grd.

| 7863. Callfornia. |  |
| :--- | :--- |
| 27130. San Franciaco, Callfornla. | 27393. Monterey, Callfornia | CONGROGADIDE.

34. Scytalina cerdale Jor. \& Gilb.
(Types.)
35. Cape Flattery, Washington Territory.

## ZOARCIDEE.

35. Lycodopsis pacificus Collett.
36. Point Reyes, Callfornia. | 27334. Cape Flattery, Washington Territory.
37. Lycodopsis paucidens* (Lock.) Gill.
38. Point Royes, California.

## BLENNIIDE.

37. Anarkiohthys ocellatus Ayres.

23390, Neah Bay, Washington Territory. 27054. Monterey, California.
27149. San Franciso0, California.
27194. San Franciaco, California 27272. Puget Sound.
38. Lumpenus anguillaris (Pallas) Gill. 27154. Puget Sound. | 27258. Puget Sound.
39. Xiphister rupestris Jor. \& Gilb.

|  | (Types.) |
| ---: | ---: |
| 27001. Monterey, California | $\mid$ 27327. Cape Mattery, Waahiagton Teirivory. |

40. Xiphister mucosus (Grd.) Jor.
41. Monterey, Californla.
| 27328. Cape Flattery, Washington Territory.
42. Xiphister chirus J. \& G.
(Tyрев.)
43. Monterey, Callfornia | 27338. Puget Sound.
44. Cebedichthys violaceus Grd, 26998. Monterey, California | 27392. San Francisco, Californin.
45. Anoplarchns alectrolophus (Pallae) J. \& G.
46. Cape Flattery, Washington Tertitory.
47. Apodichthys fucorum Jor. \& Gilb.
48. Monterey, California.
49. Apodichthys flavidus Grd.
50. Californin.
51. San Franciaco, California.
52. Califormia.
53. Neah Bay, Washington Territory.
54. San Franoisco, California.
55. 
56. Cape Flattery, Wabington Territory.
57. Murænoides ornatust (Grd.) Gill.
58. Puget Sound.
59. Cape Flattery, Washington Tentitory. 27102. $\dagger$
60. Cremnobates integripinnis \$ Rosa Smith.
61. San Diego, California. | 27404. San Diego, Callfornla (types)
62. Gibbonsia elegans Cooper.

| 27037. Monterey, Culifornia. | 27304. Monterey, California. <br> 2i383. Sun Dego, Calitorzua. |
| :--- | :--- |
| 2646. San Diego, California. |  |

[^90]49. Eeterostichus rostratus Grd.
20570. California.
24906. Wilmington, Callfornia.
25019. Santa Catalina Island, California
25048. Wilmington, California
26763. San Diego, California.
20890. Santa Barbara, Callfornia
27201. Montarey, California
50. Neoclinus blanchardi Grd.
26883. Santa Barbara, California $\quad$ 27179. Monterey, Callfornia 26012
51. Neoclinus satiricus Grd. 2233. Monterey, Callfornia | 27040. Monterey, Callfornia
52. Eypleurochilus gentilis (Grd.) Gill.
20017. Santa Barbara, Cahfornia.

## BATRACHIDEE.

53. Porichthys porosissimns (Cuv. \&\& F . ) Gthr.
54. Santa Barbarm, California.
55. Monterey, California.
56. "
57. Gobiesox reticulatus Grd.
58. Monterey, Callfornia.
| 27329. Cape Flattery, Washington Territory.

## LIPARIDID画。

55. Liparis pulchellus Ayres.
56. Monterey, California.

## AGONID.E.

56. Brachyopsis verrucosug Lockington.
(Types.)
57. Point Reyen, California.
58. Brachyopsis xyosternus J. \& G.
59. Point Reyes, Callfornia. (Types.)
60. Podothecus acipenserinus (Pallas) Gill.
61. Cape Flattery, Wankugton Territory.

COTTIDA.
59. Ascelichthys rhodorus J. \& G.
(Types.)
27331. Cape Flattery, Waohington Territory.
60. Cottopsis gulosus Grd.
7817. San Francinco, Callfornia. | 27300. MoCloud River, Callforala.
61. Cottopsis semiscaber Cope.
2714. Utah Lake, Utah.
62. Cottopais asper (Rich.) Grd.

| 3306. | Puget Sound. | 27145. | Sacramento River, Califorala |
| ---: | :--- | :--- | :--- |
| 6052 | " | 27268. | Puget Sound. |
| 12903. | Mare Inland, California. | " | 27281. | Columbia River.

63. Cottus polyacanthocephalus Pallas.
64. Puget Sound.
65. Artedius lateralis Grd. 23407. Neah Bay, Waehington Territory. | 2;237. Cape Flattery, Washington Territory.
66. Artedius notospilotus Grd. .
67. Santa Barbara, California 25082. "
68. Santa Barbara, California.
69. Paget Sound.
70. Artedius quadriseriatus Lookington. 20848. San Fruncisoo, California. | 27133. San Franciaco, Callfornia.
71. Artedius pugetensis Steind, 27185. Point Royes, California | 27298. Straite of Fuca.

## 68. Eemilepidotus spinosus Ayres.

27011. Monterey, California $\mid$ 27236. San Francisco, Callfornia 27052 " " 27381. Monterey, California.
27012. Hemilepidotus trachurus* (Pallas) Gthr.
27013. Neah Bay, Waabington Territory.
27014. Aspicottus bison Grd.
27015. Pagot Sound.
27016. Bcorpaniohthys marmoratus Grd.

24142 San Franciaco, California. 25038. Santa Barbara, California. 25071 . 4 26888 - 4
27053. Monterey, Callfornia. 27110. San Francisco, California 27350. Puget Sound.
72. Leptocottus armatus Grd.

| 2482. | San Diego, California. | 27055. | Monterey, Callornia. |  |
| :--- | :---: | :---: | :--- | :--- |
| 24862. | " | "t | 27147. | San Francisco, Callfornia. |
| 24906. | " | s | 27267. | Puget Sound. |

73. Liocottus hirundo Grd.
74. Santa Barbara, California.
75. Blennicottus globicepa (Grd.) Gill. 27336. Cape Flattery, Waehington Territory.
76. Oligocottus maculosus Grd.
77. Monterey, California. I 27333. Cape Flattary, Washington Territory.
78. Oligocottun analis Grd.
79. San Dlego, California
80. Monterey, California.
81. San Diego, Callfornia.
82. Blepsias cirrhosus (Pallas) Gthr. 27240. Straita of Fuca.
83. Nautichthyn oculofasciatus Grd.
84. Straite of Fuca.

SCORPENIDE.
79. Scorpæna guttata Grd.
24982. Wilmington, California.
24908. " "
25026. Santa Catalina Island, California.
20801. San Pedro, California. 20870. Santa Barbara, Callforula.

[^91]80. Sebastichthys nigrocinctus (Ayres) Gill.
20591. Monterey, California. | 27285. Paget Sound.
81. Sebastichthys serriceps Jor, \& Gilb. (Турев.)
25005. San Pedro, Callfornia. 20018. Santa Barbara, California.
27041. Monterey, California.
27090. San Franciaco, Callfornia
82. Sebastichthys nebulosus (Ayres) Gill.
23397. Neah Bay, Washington Territory. $\mid$ 27003. San Francinco, Callfornia. 24674.10 27343. Puget Sound. 2t9s0. Monteroy, California.
83. Sebastichthys ohrysomelas Jor. \& Gilb.

> (Турев.)

| 25076. Sonta Barbara, California. | $"$ | 26034. Santa Barbarn, California. |
| :--- | :--- | :--- | :--- |
| 26880. | " | 26088. Monterey, California. |

84. Bebastichthys carnatus Jor. \& Gilb.
(Турев.)
85. San Franciaco, California. 20993. Monterey, California.
86. San Franolsco, Calliornia
87. Sebastichthys maliger Jor. \&. Gilb.

|  |  | (Typees) |  |
| ---: | :--- | ---: | :--- |
| 2002. | Puget Sound. |  |  |
| 20070. | Monterey, California. | $\|$27308. San Franciaco, Callfornia <br> 27001. San Francisco, California | 27300. |

86. Bebastichthys caurinus (Rich.) J. \& G.
87. Puget Sound.
| 27204. Puget Sound
88. Bebastiohthys vexillaris Jor. \& Gilb.
(Types.)
89. Monterey, Californin
| 27087. San Francisco, Callfornla
90. Bebastichthys rastrelliger Jor. \& Gilb.
(Types.)
91. Santa Catalina Island, California. 25033. San Podro, Californis.
92. Monteroy, Californin.
93. San Francisco, California.
94. Sebastichthys auriculatus (Grd.) Gill.

95. Sebastichthys rubrivinctus Jor. \& Gilb.
(Турев.)
96. Monterey, California.
97. Sebastichthys chlorostictus Jor. \& Gilb.
(Types.)
98. Monterey, California. | 27092. San Francinco, California
99. Sebastichthys rhodochloris Jor. \& Gilb.
(Types.)
100. Monterey, California. 1 27100. San Franciaco, Callforvia.
101. Bebastichthys rosaceus (Grd.) Lock.

| 24148. San Franclaco, Calliornia. | " | 27089. San Franciaco, California. |
| :--- | :--- | :--- |
| 24057. | " | 27211. |

94. Sebastichthys constellatus Jor. \& Gilb.
(Types.)
95. San Franciaco, California. 28063. Monterey, California.
96. San Francisco, California.
97. Sebastichthya raber (Ayres) Lock.
98. Monterey, California.
99. San Francisco, California.
100. Paget Sound.
101. Sebastichthys miniatus Jor. \& Gilb. (Types.)
102. Monterey, Callfornia.
| 27218. San Franciaco, Cllifornia.
103. Bebastichthys pinaiger (Gill) Lock.
104. Neah Bay, Waahington Territory. 20006. Monteroy, California.
105. Sebantichthys atrovirens Jor. \& Gilb.

|  | (Types, |  |  |
| :---: | :---: | :---: | :---: |
| 24004. | San Pedro, Colifornia. | 26870. | Santa Barbura, California. |
| 25010. |  | 20908. | $" 4$ |
| 25052. | $4{ }^{4}$ | 27032. | Monterey, California |
| 25054. | ${ }^{\circ}$ | 27096. | San Frauciaco, California. |

99. Bebastichthys elongatus (Ayres) Gill.
100. Monterey, California. | 27005. San Franoleco, Callforvia
101. Bebastichthys pronger Jor. \& Gilb.
(Types.)
102. San Francieco, Califordin.
103. Monterey, Californis.
104. San Franciaco, California.
105. Sebastichthys ovalis (Ayres) Lock.
106. Monterey. California.
107. Sebastichthys entomelas Jor. \& Gilb.
(Types.)
108. Monterey, Callfornia.
109. San Francisco, Californis
110. Sebantiohthy atrovirens Jor. \&ilb.

## CHIRIDE.

108. Hexagrammus asper Steller.
109. Puget Sound.
110. Hexagrammus superdliosus (Pallas) J. \& G.
111. San Francisco, California.
112. Hexagrammus decagrammus (Pallas) J. \& G.

23400, 8.* Neah Bay, Waahington Territory. 27005 , \&. Monterey, Califorala. 27004, ob " " " 27109, 8. San Franciaco, California. 27160, 8 .
${ }^{\prime \prime}$

27214, \&. San Franciaco, Californin 27215, ठ"。
27278, \& . Puget Sonnd.
27279, 8.
27388, \%. San Francisco, Callfornia.
111. Ophiodon elongatus Grd.

| 065. | California. | 26800. | Santa Barbara, California. |
| ---: | :--- | :--- | :--- |
| 6053. | " | 27047. | Monterey, California. |
| 24169. San Francisco, California. | 27241. | San Franciaco, California |  |
| 24670. | Neah Bay, Washington Territory. |  |  |

## 112: Zaniolepis latpinnis Grd.

27027. Point Reyes, near San Francisco, Callfornia

## 113. Oxylebius pictus Gill. <br> 27174. Monterey, Califormia.

114. Anoplopoma fimbria (Pallas) Gill.
24e5s. San Francisco, California.
115. 

GOBIIDAE.
115. Lepidogobius gracilis (Grd.) Gill.
27135. San Francisco, Callfornia.
116. Gillohthys mirabilis Cooper.
26794. San Diego, California.

## LATILIDE.

117. Caulolatilus anomalus\$ (Cooper) Gill.

| 24992. | Wilmington, California. | 26845. | San Pedro, Californla |
| :---: | :---: | :---: | :---: |
| 25002. | $4{ }^{*}$ | 26863. | Santa Barbara, Califorala |
| 25040 . | $\cdots$ | 27009. | Montorey, California. |

118. Bathymaster algatus Cope.
119. Puget Sound.

## POMACENTRIDE*.

## 119. Chromis punctipinnis Cooper.

| 24981. Santa Catalina Iuland, California. | 25016. | Santa Catalina Island, California |
| :--- | :--- | :--- | :--- |
| 24986. Wilmington, California | 20871. | Santa Barbara, California. |



| 17764. San Franciaco, California | 25047. Wilmington, Callfornia. |
| :--- | :--- |
| 24995. Wilmington, California. | 26945. Santa Barbara, California |

[^92]
## LABRIDE.

121. Pseudajulis modestus (Grd.) Gthr.
122. Santa Catalina Island, California. |26937. Santa Barbara, California 25041. Santa Barbara, California. $\quad$ 20977. Monterey, Calfornia. 26882 " 27376. Santa Barbara, Californis.
123. Platyglossus semicinctus (Ayres) Gthr.
124. Wilmington, California.
125. Pimelometopon pulcher (Ayres) Gill.
126. Whimington, Califormia.
127. Santa Barbara, California.
128. Santa Barbara, Californis

## EMBIOTOCIDE.

124. Eysterocarpus traski Gibbons.
125. Sacramento River, Callformia.
126. Abeona minima (Gibbons) Gill.

| 25085. Santa Barbara, California. | 27029. Monter8y, California, |  |
| :--- | :--- | :--- | :--- |
| 26774. San Dlego, California. | 27078. | " |
| 26913. Santa Barbara, California. |  |  |

126. Abeona aurora Jor. \& Gilb.
127. Monterey, California.
128. Cymatogaster aggregatus* Gibbons.
129. Santa Barbara, California.
130. Monterey, California.
131. San Franciaco, California.
132. San Francieco, California. 28298. Puget Sound.
133. Brachyistius frenatus Gill.
134. Santa Barbara, California | 20900. Monterey, California.
135. Brachyistius rosaceus Jor. \& Gilb. (Types.)
136. Point Rejea, California.
137. Holconotus analis (A. Agassiz) J. \& G.

27u75. Monterey, California.
131. Holconotus argenteus (Gibbons) J. \& G.

| 24836. | Ssn Diego, California. | 20895. | Santa Barbara, Californla |
| :---: | :---: | :---: | :---: |
| 24914. | " ${ }^{\text {a }}$ | 26912. | * ${ }^{\text {at }}$ |
| 25065. | Santa Barbara, California. | 27073. | Monterey, California. |
| 25060. | $4{ }^{4}$ | 27158. | San Francisco, Califormia |

132. Holconotus agassizif (Gill) J. \& G.
133. Monterey, California. | 27157. San Francieco, California

## 133. Eolconotus rhodoterust Ag.

2601. Santa Barbara, California.
2602. 

## 134. Amphistiohus argenteus Ag.

| 24140. San Francisco, California. | 26885. Santa Barbara, California |  |
| :--- | :--- | :--- | :--- |
| 25064. Santa Barbara, Califormia. | ". | 27083. Monterey, California. |

[^93]
## 135. Hypsurns caryi (L. Agass.) A. Agass.

26806. Santa Barbara, California
26807. 
26808. Monterey, California.
26809. Ditrema jacksoni (Agass.) Gthr.
26810. San Francisco, California.
26811. San Diogo, California.
26812. 
26813. Wilmington, California.
26814. 
26815. Ditrema laterale (Agass.) Gthr.
26816. San Franciaco, Callfornia. 24152. " 27153. 4 26875. Senta Barbarn, California.
26817. Monterey, California.
26818. San Francieco, California
26819. Santa Catalina Island, California 25021.

25u's. Santa Barbara California.
27014. Monterey, California.
27242. San Francisco, Callfornia
27028. Monteroy, Callfornia
27310. Puget Sound.
27386.
138. Ditrema atripes Jor. \& Gilb.
26987. Monterey, California.
139. Ditrema furcatum (Grd.) Gthr.
24831. San Diego, California.
26777.
${ }^{\circ}$
20877. Santa Barbnra, California.
20988. Munturey, California.
140. Damalichthys argyrosomus (Grd.) J. \& G.
0104. Puget Sonnd.
25007. Santa Barbara, Callfornia. 20894.
20054. Santa Barbara, California. 27018. Monterey, California. 27313. Puget Sound.
141. Rhacochilus toxotes Ag. 24154. San Franciaco, Callfornia. 25012. Wilmington, California. 20048. Santa Barbarn, California.

26049 (foetal). Santa Barbara, California. 25015. Monterey, California.

## SCLENIDE.

142. Genyonemus lineatus (Ayres) Gill.
143. Santa Barbara, California. $\quad$ 27152. San Francieco, California.

20972 Monterey, California.
27152. San Franciaco, California.
143. Corvina saturna (Grd.) Gthr.
24818. San Diego, California.
25075. Banta Barbara, Califormia.
20750. San Diego, California.
26868. Santa Barbara, Californla.
144. Roncador stearnsil (Steind.) J. \& G.
25044. Wilmington, California
26757. San Dlego, California
26864. Santa Barbara, California
145. Umbrina xanti Gill.
20758. San Dlego, California.
26810. San Pedro, Callfornia.
26872. Santa Barbara, Callfornia
146. Menticirrus undulatus (Grd.) Gill.

| 25073. Santa Barbara, California. | $26 R 54$. |
| :--- | :--- |

20797. San Diego, California. $\mid$ 20878. Santa Barbara, California.
20798. Cynoscion nobile (Ayres) J. \& G.
20799. San Pedro, California.
20800. Monterey, Callfornia.
20801. Santa Barbara, California.
20802. Cynoscion parvipinnls Ayres.
20803. San Diego, Callfornia.
| 20753. Sion Diego, Califoraia
20804. Beriphus politus Ayres.
20805. Callfornia.
20806. San Diego, Callfornia.
20807. San Franciaco, California

$$
27105 .
$$

## PIMELEPTERID天.

150. Girella nigricans (Ayres) Gill.
151. Wilmington, California.
152. 
153. Santa Barbara, California.
154. Santa Barbara, Callfornia, 26956. " " 27384. San Diego, California.

## 151. Scorpis callforniensis Steind.

24979. Santa Catalina Ialnad, California.
24980. Wilmington, California.
24981. Wilmington, California. 26850. Sun Pedro, California.

## PRIETIPOMATIDA

152. Pristipoma davidsoni Steind.
153. San Pedro, California.

## SERRANIDEE.

153. Berranus clathratus (Grd.) Steind.

| 2n571. California. | 26790. | San Diego, California. |  |
| :--- | :--- | :--- | :--- |
| 24985. | San Pedro, California. | 2685. | San Pedro, California. |
| 25018. | " | " | 26880. |
| 25042. Santa Barbara, California |  |  |  |
| 25074. Santa Barbara, Callfornia. | 27046. | Montarey, California. |  |

154. Serranus nebulifer (Grd.) Steind 26754. San Diego, California.
155. Serranus maculofasoiatus Steind.
156. San Diego, Callfornia. | 26765. San Diego, Californla.

## CENTRARCHIDEE.

156. Archoplites interruptus (Grd.) Gill.
157. Sacramento River, California | 27137. Sacramento River, Callformia.

## STROMATEIDE.

157. Stromateus simillimus (Ayres) Gill.
158. Sas Diego, Callfornia.
159. Santa Barbara, California.
160. 
161. Monterey, California,
162. San Francisco, California.

CARANGIDE.
158. Trachurus plumien (Lac.) J. \& G.
26838. San Pedro California. 2000. Santa Barbara, California,
27377. Santa Barbara, Callfornia
159. Seriola lalandi Cuv. \& Val.
26835. San Pedro, California.

## SCOMBRIDE.

160. Orcynus alalonga (Gmelin) Risso.
161. Santa Barbara, Cnlifornia.
162. Barda chilensis (C. \& V.) J. \& G.
163. San Diogo, California. | 26874. Santa Barbara, California
164. Scomberomorus concolor (Lock.) J. \& G. 27205. Soquel, California.

## AMMODYTIDE.

163. Ammodytes personatus Gril.

27025. Monterey, California.<br>| 27084. Monterey, California.

SPHYRENIDE.
164. Sphyrana argentea Grd.
25003. San Pedro, Callfornia.
26900. Santa Barbara, Californla.

```
20039. Santa Barbars, Callfornia 27379.
```


## ATHERINIDE.

165. Atherinopsis callforniensis Grd.

24132 Sun Francisco, Callfornia.
24869. San Diego, Cqlifornia.
26764. San Diego, California.
20923. Santa Barbara, Califorula.
166. Atherinops affinis (Ayres) Steind.
25006. Wilmington, Callfornia.
25035. Santa Barbara, California.

2508s. Banta Barbara, Colifornia 27202. San Vrandisco, Californla
166. Leuresthes tenuis (Ayres) J. \& G.
26768. San Diego, California.

## MUGILIDE.

168. Mugll mexdcanus Steind.


## SCOMBRESOCIDE.

169. Tylosurus exdle (Grd.) J. \& G.
170. San Diego, California.
171. Scombresox brevirostris Peters.
172. Monterey Bay, California.
173. Hemirhamphus rosze Jor. \& Gilb.
174. San Diego, Callfornia.
| 20790. San Diego, California.
175. Exoccetus callfornicun Cooper.
176. San Pedro, California. | 2n007. Santa Barbara, Califorala

## CYPRINODONTIDE.

173. Cyprinodon californiensis Grd.
174. San Diego, California.
175. Fundulus parvipinnis Grd.
176. Santa Barbara, Callfornia.

SCOPELIDE.
175. Synodus lucioceps (Ayres) Gill.
26881. Santa Barbara, California.
27182. San Fmacinco, California.
27072. Monterey, California.

## 176. Osmerus thaleichthys Ayres.

27019. Monteres, California. | 27136. San Frascisco, Californis.
27020. Osmerus attenuatus Lockington.
27021. San Franciaco, California.
27022. Hypomesus olidus (Pallas) Gill 27150. San Francisco, California | 27276. Puget Sound.
27023. Thaleichthys pacificus (Rich.) Grd.
27024. Columbia River, Oregon.
| 27207. Frazer's River, Britiah Columbin
27025. Galvelinus malma (Walb.) J. \& G.
27026. Pugot Sound.
27027. Salmo purpuratus Pallas (Salmo elarki Rich.). 27250. Puget Sound. | 27300. Utah Iske, Utah.
27028. Salmo purpuratus, subsp. henshawi Gill \& Jordan. 24139. Lake Tahoe.
27029. Salmo irideng Ayres.
27030. San Lais River, Callfornia. |27350. Monterey, California 27207. Sacramento River, California
27031. Salmo gairdnen Rich.
27032. Columbia River.
27033. Oncorhynchus keta (Walbanm) Gill \& Jor.
27034. Neah Bay, Washington Territory. 27220. San Franciaco, California.
27035. Frazer's River, British Colambla
27036. Oncorhynchus kisutch (Walb.) Jor. \& Gilb.
27037. Puget Sound.
27038. Shommento River, California.
27039. Puget Sound.
27040. Fraser's River, Britiah Columbla 27315. Puget Sound.
27041. Onconhynchus chouicha (Walb.) Jor. \& Gilb. (Salmo quinnat Rich.).
27042. Monterey, California.
27043. " "
27044. " 4
27045. Sacrumento River.
27046. Puget Sound.
27047. Frazer's River, Britioh Colambla
27048. Columbia River.
27049. Puget Sound.
27050. Oncorhynchus nerka (Walb.) Gill \& Jor.
27051. Columbia River.

## ENGRAULIDIDA.

189. Stolephorus ringens (Jenyns) J \& G.
190. San Diego, Californla.
191. " "
192. 4 "
193. Santa Barbarn, Callfornia
194. San Franciaco, California.
195. Stolephorus delicatissimus (Grd.) J. \& G.
196. San Diego, California. | 26786. San Diego, Callfornia
197. Stolephorus compressus (Grd.) J. \& G.
198. San Dlego, Callfornia. | 20802. San Pedro, Callfornia
199. Clupea sagax Jenyns.
200. Clupea mirabilis Grd. 24865. San Diego, California
201. San Diego, California. $\begin{array}{lll}24857 . & " & " \\ 24880 . & "\end{array}$ 24890.0 "

## CLUPEIDE.

26057. Santa Barbara, Californie 27140. San Francieco, Califoraia
26058. Santa Barbara Callfornia
| 27351. Puget Sound

## ALBULIDE.

194. Albula vulpes (L.) Goode. 20780. San Diego, California

## CYPRINIDE.

195. Orthodon miorolepidotus (Ayres) Grd.
196. Puget Sound.
| 27139. Sacramanto River.
197. Alburnus balteatus (Rich.) Jor.
198. Puget Sound. | 2734. Frazer's River, British Columbla
199. Bqualius gabbosus (Ayres) J. \& G. (Siboma crassicauda Grd.). 27141. Sacramento River, Callfornia.
200. Squalius atrarius (Grd.) Jor.
201. Utah Lake, Utah.
202. Squalius rhomaleus Jor. \& Gilb.
(Typea.)
203. Utah Lake, Utah.
204. Squalius cruorens Jor. \& Gilb. (Types.)
205. Utah Lake, Utah.
206. Squalius copei Jor. \& Gilb.
207. Bear River, Eranston, Wyoming.
208. Bqualius alicise Jony.
(Types.
209. Utah Lake, Utah.
210. Squallun taenia (Cope) Jor.
211. Utah Lake, Utah.
212. Squalius montanus (Cope) Jor.
213. Utah Lake, Utah.
214. Ptyohochilus oregonensis (Rich.) Ag
215. Sacramento River, Callfornia. ${ }^{27352}$ Columbia River, Oregon. 2724. "4 27380. Paget Sound. 27201. Columbia River, Oregon.
216. Ptyohochilus harfordi Jor. \& Gilb.
217. Saonamento River, Callfornia.
218. Apocope vulnerata Cope.
219. Utah Lake, Utah.
220. Pogonichthys macrolepidotus (Ayres) J. \& G.
221. Sacramento River, California.
222. Mylochilus caurinus (Rich.) Ag.
223. Puget Sound.
224. Columbia River.
225. Frazer's River, Britigh Columblia
226. Mylopharodon conocephalus Ayres.
227. Sacramento River, California.

## Catostomide.

211. Chasmistes liorus Jor. \& Gilb.
212. Utah Lake, Utah.
213. Catostomus fecundus Cope \& Yarrow.

273n2. Utah Lake, Utah.
213. Catostomus ardens Jor. \& Gilb.
(Турев.)
27363. Utah Lake, Utah.
214. Catostomus sccidentalis Ayres.
27131. Sacramento River, California.
215. Catostomus macrochilus Grd.
27200. Columbia River.

## SILURIDE.

216. Amlurus catus (L.) Gill.
217. Sacramento River, California (introduced).

## MURENIDW.

217. Muræna mordax Ayres.
218. Wilmington, Califoraia. $\quad$ 25022. Santa Catalina Ialand, California. 25004 . 26901. San Diego, California.

ACIPENSERIDE.
218. Acipenser transmontanus Rich.
27065. Sacramento River, California.
| 27200. Frazer's River, British Columbia.
219. Acipenser medirostris Ayres.
27223. San Francisco, Callfornia.

## CHIMERIDE.

220. Chimara colliæi Bennett.
221. Monterey, California.
222. San Francisco, California.
223. Puget Sound

MYLIOBATIDE.
221. Myliobatis callfornicus Gill.
24815. San Diego, California.
26781. "
26840. San Pedro, Callfornia.

## TRYGONIDAE.

## 222. Pteroplatea marmorata Cooper.

267.0. Snn Diego, California. | 20020. Santa Barbara, California.
223. Dasybatus dipterurus Jor \& Gilb.

26782 San Diego, California.
224. Urolophus halleri Cooper.
24834. San Diego, Callfornia. |2683. San Pedro, California.
25024. Sun Pedro, California.
26788. San Diego, California.
20925. Santa Barbara, Califormia

RAIIDE.
225. Raia binoculata Girard (Raia cooperi Girard).
21583. Warhington Territory.
27150. San Frunciaco, California
27257. Puget Sound.
226. Raia rhina Jor. \& Gilb.
27007. Monterey, California

I 27292, Puget Sound.
227. Raia inornata Jor. \& Gilb.
24101. ©Sa Francisco, Californla. 26974. Monterey, California.
27216. San Frnncisco, Californda. 27252 (egg).
228. Rafa inornata subsp. inermis Jor. \& Gilb.
26020. Santa Barbarn, California.
229. Raia stellulata Jor. \& Gilb.
26075. Monterey, California.
(Typea.)

## RHINOBATIDE.

230. Zapteryx exasperatus Jor. \& Gilb.
(Typers)
231. San Diego, California.
232. Rhinobatus triseriatus Jor. \& Gilb.
(Types.)
233. San Dlego, California. 20836. San Pelro, Callifornin.
234. Santa Barbarn, California.
235. Rhinobatus productus Ayres. 24826. San Diego, California,
236. San Pedro, California. 26005. Savta Barbua, California.

## TORPEDINIDE.

233. Torpedo californica Ayres.

27212 Soquel, Californin (Monterey Bay).
SQUATINIDA.
234. Squatina angelus Duméril. 20020. Santa Barbarn, California. Proc. Nat. Mus. 81-2
235. Squalus acanthias L.
2638. Calfornia. 6675. "
27305. Pugot Sound.

## CESTRACIONTIDE.

236. Eeterodontus franciscl (Grd.) Gill.
237. San Diego. California.
238. Wilmington, Californin.
239. Sinta Cvtalina Islnnd, Calffornia. 20760. San Diego, California.

26803 (eggs). San Diego, Callornis. 2684. San Pedro, Culifornia. 20928. Sunta Barbara, California.

## NOTIDANIDE.

237. Notorhynchus maculatus Ayres.
238. Humboldt Bay.
239. Hexanchus corinus Jor. \& Gilb.
(Types.)
240. Soquel, California.

## SCYLLIIDE.

239. Catulus ventriosus (Garman) J. \& G.

| 25027. | Santa Catalina Island. Callfornia. | 20806. Santa Barbara, California. |
| :---: | :---: | :---: |
| 25053. | Sunta Barbara, California | 200 il (egg). " |
| $250 n 2$. | $\because$ " | 27231. Soquel, California |
| 25084. | $4{ }^{4}$ | 1 . |

## GALEORHINIDEE.

240. Mustelus hinnulus (Blainv.) J. \& G.

241. Rhinatriacis henlel Gill.
242. Monterey, California. | 27189. San Franciaco, California.
243. Triacis semifasciatus Grd.

250\%. Santa Harbara, California. |20021. Santa Barbara, California 25081.
243. Galeorhinus galeus (L.) Blainv.


## CETORIINID.E.

244. Cetorhinus maximus (L.) Blainv.
245. (Teeth and gill-rakers). Monteroy, California

## MYXINIDE.

245. Polistotrema dombeyi (Miller) Gill.
246. Monterey, Calfornia.

United States National Museum, January 14, 1881.

## DESCRIPTION OF A NEW MPECIES OF SQUALICN MQUALIUB ALICKIS, PROM UTABICAK. <br> By PIERKE LOUIS JOUY.

Squalius aliciex, sp. nov.
Allied to Tigoma intermedia Girard.
Body elongate, compressed posteriorly, the back gradually elevated from the snout to the dorsal. Dorsal and ventral outline similar. Greatest depth of body (at ventrals) equal to length of head. Lateral line complete, slightly decurved.

Head short, rather stout, its breadth equalling three fifths its length, which is 4 ! in the total without caudal. Snout rounded, jaws equal, maxillaries reaching to the vertical from the anterior margin of the orbit.

Leve moderate, its diameter contained four times in the length of the head. Scales minute, $18-80-15$, of about equal size. The pectoral fin does not reach to the rentral, and equals the length of the head.

Measurements.-Length to base of caudal, $.067^{\mathrm{mm}}$; head, $.016^{\mathrm{mm}}$; depth at ventrals, $.016^{\mathrm{mm}}$; diameter of orbit, $.004^{\mathrm{mm}}$; mandible, $.005^{\mathrm{mm}}$; interorbital space, $.0055^{\mathrm{mm}}$; breadth of head, $.009^{\mathrm{mm}}$; pectoral, $.016^{\mathrm{mm}}$; long. est dorsal ray, . $014^{\mathrm{mm}}$; longest ventral ray, $010^{\mathrm{mm}}$; longest anal ray, $.011^{\text {wim. }}$. Caudal broken.

Radial tormule: D. I, 8; A. I, 8; V. I, 7; P. 15.
Teeth, $\overbrace{2}^{2}, 4-\overline{5}, 1$; strongly hooked, apparently withont masticatory surface.

Color dark plumbeous above, with a median band of steel-blue extending along the sides of the body from the head to the caudal fin. Below the lateral liue pinkish; cheeks silvery.

Five specimens, collected in Utah Lake by Prof. D. S. Jordan, are numbered in the United States National Museum 27412.

United States National Museum, January 14, 1881.

## DESCEIPTION OF A NEW GOBIOID FIMR (OTHONOPAROS), EROS SAN DIEGO, CALIPORNIA.

## By RosA SMITH.

Othonops eos, gen. et sp. nov.
One specimen of this interesting fish was collected for me by Mr. G. W. Dunn at Point Loma, San Diego County, California. It is found under large stones, and is of a bright pink color in life, fading to a dull yellowish white in spirits. This species is most closely related to Crystallogobius nilssoni (Dibb. \& Kor.) Gill (Gobiosoma nilssoni Giunther, Cat. Fishes Brit. Mus. iii, 86), a species found on the coast of Norway,
from which it is distinguished generically by the obsolete eyes, and specifically by the characters given in the following description :

Body elongate, posteriorly much compressed, not mnch depressed anteriorly. Head depressed, with the cleft of the mouth nearly horizoutal and one-half the length of the head, the maxillary reaching a vertical line drown across the probable position of the eye. Eyes invis. ible, covered by the skin; snout rounded; the jaws equal, or very nearly so, the lower jaw in a preserred specimeal sueming to be very slightly produced. Both nostrils are provided with a flap.

A narrow band of villiform teeth in each jaw. The gill-membrane is united to the isthmus, and the branchial cleft is equal in length to the distance between the first and second dorsal fins, or one-tenth of the length (from snout to base of caudal).

A groove has its origin immediately in advance of first dorsal and extends medially nearly to tip of snout.

The first dorsal fin is composed of two flexible spines, and is equidistant between the snout and the base of the caudal fin; the insertion of the second dorsal is not much in advance of vent, while the insertion of the anal is opposite the fifth ray of the sott dorsal; the last rays of the posterior dorsal are slightly longer than its anterior one, and the fin terminates opposite the anal, which is similar to the soft dorsal. A very sunall anal papilla may be seen.

Vertical fins low; caudal small, pointed; ventrals forming a disk, which is not adherent to the belly; pectorals like the caudal in form, their free tips extending beyond the veutrals, though not approsimating the first dorsal, and very remote from the rent.

Body entirely smooth, wholly free from scales, tubercles, or asperities of any kind.

The type specimen has been presented to the National Museum, where it is numbered 27466 .

This species is doubtless the type of a distinct genus, which may be
 Crystallogolius by the concealed eyes, these organs being large and conspicuous in C.nilssoni, and possibly also by the absence of the sexual differences in dentition, so marked in Crystallogobius, the male of $C$. nilssoni being provided with strong canines. The remaining genera of Gobiint have five or more dorsal spines, except Benthophilus, which, with three dorsal spines, has the skin verrucose.

Since the above was in type three more specimens have been obtained at the same locality, the measurements of the largest of which are included in the table below.

On examination of this specimen, 29 inches in length, I find further characteristics.

In this example, the fins are better preserved and show their normal form, the caudal and pectoral being rounded the pointed appearance of those fins on the type specimen probably having been caused by
their becoming shrirelled and dry before immersion in alcohol, the pres. ent individual having been placed in spirits when alive.

On the under side of the head the skin (in a preserved specimen) lies in irregular folds, which conform generally to the outline of the lower jaw, the outer folds reaching the gill-opening. Between the lower lip and these folds there is a series of papilla, which has its origin a short distance behind the corner of the mouth, the series being slightly separated close behind the symphysis of lower jaw by two small, rounded flaps. The papillæ number about fourteen on either side of the flaps. On the superior surface of the suout, extending posteriorly half as far as the termination of the maxillary, the skip is finely wrinkled, and there is on either side a conspicuous flap, which seems to conceal a nostril.

The skin on the top of the head posterior to the wrinkled snout is smooth and adherent to the muscles. Cheeks tumid.

This species has the habit of burrowing into the sand on the remoral of the stone covering it, and in one instance a lively individual buried itself in the sand a second time. It is of a clear pink color, shading into yellow on the tail, and has a semi-transparent appearance in life.

Measurements.


San Diego, Cal., January 18, 1881.

## ON A DECE NEW TO THE NORTH AMERICAN FAENA.

## By ROBERT RIDGWAY.

About nine years since (February 2, 1872), Mr. George A. Boardman, of Calais, Maine, sent to the Smithsonian Institution a mounted specimen of a duck obtained in Fulton Market, New York Citv, and supposed to have been shot on Long Island Sound, which he was unable to determine satisfactorily, but which he supposed to be a hybrid between the Redhead ( Withyia americana) and some other species. The specimen was in immature plumage, with the feathers of the first livery much worn, while those of the new moult, which were generally interspersed, indicated a very different garb when the moult should have been completed. At the time the specimen was received at the Smithsonian, I (also supposing it to be a hybrid) made comparisons with nearly, if not quite, all the American species of ducks, but was unable to get the slightest clue to its parentage. It was then put back in the case and not again thought of until a few days ago, when in removing the specimens with a view to their rearrangement I happened to take the one in question in one band and an adult female of the European Rufous-crested Duck (Fuligula rufina) in the other; and having the two thus in a very favorable position for comparison, I at once perceived a striking similarity in general appearance and in the form of the bill, which induced me to extend the examination to an adult male, the result being that no question remained of the bird in question being an immature male of F. rufina, a species hitherto not detected in North America. I have written to Mr. Boardman requesting full particulars as to circumstances and date of capture, but have been unable to elicit any further particulars than those given above.

As the species has never been described in any work on North American birds, I give below a description of the three stages represented in the collection of the United States National Museum, as well as of the downy young, the latter quoted from Dresser's "Birds of Europe"; also, the principal synonyms and references, compiled from the leading European authorities.

## Genus FULIGULA, Stephens.*

"Branta," Bore, Isis, 1822, 564 (type Anas rufina, Pall.); not of SCOPOLI, 1769.
Fuligula, Stephens, Gen. Zoül. sii. 1824, 187 (type Anas rufina, Pall.).
Netta, Kaup, Nat. Syst. 1829, 102 (same type).
Callichen, Brehm, Vüg. Deutachl. 1831, 921 (same type).
Mergoides, Eyton, Cat. Brit. B. 1836, 57 (same type).
Char.-Similar to Fulix, but the bill decidedly broader at the base than at any other part, gradually narrowing toward the end, which has

[^94]a large and very broad nail; maxilla very much depressed terminally, its depth at the base of the nail being only about one-fourth that at the extreme base. Male with the head rufous, the pileum ornamented with a very full, soft tuft or bushy crest, occupying the whole top of the head.

## Fuligula rufina (Pall.) Stephens.

## The Rufous-crested Duck.

Anas rufina, Pall. It. ii. App. 1773, 731, No. 28.-Gmel. S. N. i. 1783, 541. Branta rufina, Boie, Isis, 1822, 564.-Gray, Cat. Brit. B. 186i3, 19w.<br>Fuligula rufina, Steph. Gen. Zoöl. xii. 1824, 188.-Dressern, B. Eur. pt. xxii. Oct. 1873.<br>Nelta rufina, Kaup, Nat. Syst. 1829, 102.<br>Platypus rufinus, Brefm, Vög. Deutschl. 1831, 922.<br>Callichen rufinus, Brehm, t. c. 924.<br>Mergoidea rufina, Eyt. Rar. Brit. B. 1836, 57.<br>Aythya rufina, Macgili. Man. Brit. B. 1846, 191.<br>Callichen ruficeps, Brewm, t. c. 922.<br>Callichen subrufinus, Brerm, t. c. 924.<br>Callichen micropus, Brems, t. c. 925.<br>Callichen rufercens, Brehm, Vogelfang, 1855, 379.<br>Red-crested Pochard, Seliby, Brit. Orn. ii. 350.-Dresser, l. C.<br>Red-crested Whistling Duck, Yarrell, Brit. B. ed. 2, iii. 327, fig.; ed. 3, iii. 329, fig.Gray, lo.

Hab.-Southern and eastern Europe, northern Africa, and India; occasional in northern and central Europe, and casual in the British Islands; accidental in eastern U. S. (New York market, Boardman; spec. in U. S. Nat. Mus.).

Adult \& (57207, U. S. Nat. Mus.; Hungary, W. Schliiter).-Mead and upper half of the neck delicate pinkish cinnamon, or vinaceous-rufous, the full, soft crest (occupying the entire pileum) paler and less reddish, the feathers light buff at tips; lower half of the neck (including a narrow stripe which extends up the nape to the occiput), jugulum, breast, abdomen, anal region, crissum, upper tail-coverts, and rump brownish black, deepest on the neck and jugulum, and with a decided dark-green gloss on the upper tail-coverts. Back and scapulars uniform light umber-drab or isabella-color; wing-coverts and tertials brownish gray; speculum white basally, changing gradually into pale grayish, then succeeded by a rather broad subterminal bar of dusky, the tip narrowly and abruptly white; four outer primaries with outer ends dusky; inner quills pale ashy, with broad dusky ends; tail dull dark grayish. A broad bar or transverse patch across anterior scapular region, anterior border of the wing, lining of the wing, axillars, and a very large patch

[^95]covering the flanks and posterior half of the sides, pure white. "Bill bright vermilion-red, the tip white; irides reddish brown; legs orangered. Total length 21 inches." (Dresser, B. Eur. pt. xxii.) Wing, 10.20 ; culmen, 2.00 ; tarsus, 1.50 ; middle toe, 2.25 .

Adult \& (57209, U. S. Nat. Mus.; Hungary, W. Schlüter).-Crest much less developed than in the male, light hair-brown, this color descending to the level of the lower border of the eye, and posteriorly continuing in a narrow stripe down the nape; rest of the head and neck very pale ashy, as are also the lower parts in general ; jugulum, sides, and flanks light raw-umber brown, the tips of the feathers lighter; anal region and crissum uniform light drab, the latter whitish terminally. Upper parts in general umber-drab (the wings being more brownish than in the 8 ), darker on the rump; white patch at base of scapular region wholly obsolete, and white border to the wing indistinct; speculum pale ashy, becoming gradually dull white basally, and brownish dusky subterminally, and with a narrow white terminal margin as in the 8. "Eyes hazel; beak blackish, with a pink tip, a portion of the lower mandible being yellowish pink; legs and feet pinkish, webs blackish." (Dresser, l. c.) Wing, 9.90 ; culmen, 1.90 ; tarsus, 1.50 ; middle toe, 2.20.

Immature \& ( 61957 , U. S. Nat. Mus. ; vicinity of New York City, Feb., 1872, G. A. Boardman).-Similar in general appearance to the adult \&, as described above, but crest mach less developed (the tips of the feathers much worn) and decidedly more reddish in color ; sides and under parts of head thickly interspersed with cinnamon-colored feathers (new moult); the jugulum, breast, and posterior under parts also mixed with black feathers, indicating the approaching adult livery ; white patch at base of scapular region plainly indicated, and broad white border to anterior portion of the wing very distinct; speculum much as in the $\&$, lacking the distinct subterminal dusky bar of the adult d. Wing, 9.80 ; culmen, 1.80; tarsus, 1.50 ; middle toe, 2.15.
"Young in down (fide Baldamus, Cab. Journ. 1870, 280),-Differs from every other duck in this plumage that I know in having a double olive gray stripe from the lores, dividing before the eye, and bordering the yellowish-gray eyebrow above and the cheeks and auriculars below; upper parts, crown from the base of the bill, nape, back, and wings dull olive-gray, excepting the spot on the shoulder, which, with the rest of the body, is pale jellowish gray ; iris dark brown; bill reddish brown, with the uail white; feet ash-gray, with a greenish tinge, webs and toes narrowly edged with yellowish white." (Dresser, l.c.)

## OT ATARIILA TUCATANENEIB (CABOT) AND A. OERVINIVENTEIS, ©®ULD.

## Ey ROBERT RIDGWAY.

In compiling the synonymy of Amazilia cerviniventris, in volume $i$ of these Proceedings (pp. 148, 149), I united this species with A. yucatanensis (Cabot), on the strength of Mr. D. G. Elliot's opinion (see note on p. 149) that they were the same. The editors of "The Ibis," however, in that journal for April, 1879, p. 208, dissent from this determination, and suggest that "a comparison of the Texan specimens with Mexican examples of A. cerviniventris and this type [Cabot's type of yucatancnsis] would be satisfactory, as Mr. Gould has always asserted that A. yucatanensis and A. cerriniventris are distinct species". Through Dr. Cabot's kindness I have been able to make a direct comparison of his type of yucatanensis and the Texan specimens, so called by me, and find that they are indeed quite distinct species, the latter being $A$. cervinicentris of Gould, and exactly like examples of that species from eastern Mexico.
A. yucatanensis is much darker colored throughout than A. cervinirentris, the green above inclining decidedly to coppery bronze, while the broad tips and margins to the rectrices are deep violet-dusky, insteal of greenish or bronzy, little, if any, tinged with violet. The most important difference, however, consists in the coloration of the lower parts, the green of the jugulum ending very abruptly or giving place immediately to the deep cinnamon-rufous of the entire under surface, excepting the femoral tufts, which are white, as in other species of the genns. In A. cerviniventris, on the other hand, the green of the jugulum invades both the breast and sides, in the form of a more or less distinct spotting (which, however, grows gradually fainter posteriorly), the feathers of the breast and sides being light green bordered with pale cinnamon. The cinnamon-color of the belly, etc., is also very much paler than in A. yucatanensis, in which the tint is even rather deeper than in

## A. cinnamomea.

The following comparative diagnoses express more saccinctly the differential characters of the two species:
A. yucatanensis.-Above greenish bronze, changing to coppery; ends and edges of rectrices dark violet-dusky; green of the jugulum giving way immediately and very abruptly to the deep cin-namon-rufous of the breast, sides, etc.
A. Cerviniventris.-Above metallic grass green, varying to bronze-green in certain lights; ends and edges of rectrices greenish bronze, or dull bronze, rarely tinged with violet; green of the jugulum invading the breast and sides, in the form of more or less distinct spots, growing gradually fainter posteriorly, the remainder of the under parts much paler cinnamon.

The measurements of the two species appear to vary but little, the four examples of $A$. cerviniventris now before me ranging in length of wing from 2.15 to 2.30 inches, while the type of A. yucatanensis measures 2.20 ; the length of tail in the latter is 1.60 , and in the former series varies from 1.50 to 1.70 . The culmen ranges from .70 to 80 in cerciniventris, but the bill of the type of yucatanensis is unfortunately broken, so that its length cannot be ascertained.
A. cerviniventris appears to be exclusively an eastern species (as are also $A$. yucatanensis and $\boldsymbol{A}$.fuscicaudata), its habitat extending from southeastern Texas to Vera Cruz, and perhaps also to Yucatan, since Mr. Elliot (Synopsis, p. 219) states that he "can perceive no difference between Mexican and Yucatan specimens". The A. cinnamomea appears to be wanting from eastern Mexico, but in the collection of the National Musenm are specimens from Mazatlan, Tehuantepec, and Yucatan, besides San Salvador and Nicaragua, though Mr. Elliot gives only "Guatemala and Costa Rica" as its habitat.

##  GEVATA, POTAMOCOTTUR EENDIEEI) AND OE MECTOPILELI CRENULARE J.AND G.

## By TARLETON H. BEAN.

The first two species here mentioned as undescribed formed part of a collection received from Capt. Charles Bendire, U.S. A. Several other species received at the same time are retained for study and comparison with fuller material promised from the same source.

The Myctophum was obtained by Mr. W. H. Dall, in the Pacific, off Puget Sound.

Uranidea marginata, $n=$. .
24197; 9 specimens; tributaries of Walla Walla River; Capt. Charles Bendire, U. S. A.
B. VI ; D. VII-VIII, 18-19; A. 15-14 $\frac{1}{1}$; V.I, 3; P. 13-14; C. 14-15.

This species is allied to Cottus cognatus Rich., but differs from that species in having the vent nearer to the insertion of the caudal than to the snout, while the origin of the anal falls in the vertical from the third dorsal ray instead of the sixth, as in Richardson's species. The rentral has 1 spine and 3 rays (C.cognatus has 1 spine and 4 rays). The longest pectoral rays are shorter than the head (equal to the head in cognatus).

Head broad, slightly depressed, its greatest length contained a little more than 3 times in length of body without candal (4 times in total length); distance from tip of snout to eye equals length of ere, which is 4 of length of head. Vomerine teeth; none on the palatines. Body stout anteriorly, moderately compressed posteriorly, its height at origin of first dorsal equal to its width at the same place, and contained $4 \frac{1}{2}$ times in length of body without caudal; the least width of the caudal peduncle
less than $\frac{1}{2}$ its height. The distance between the eyes equals $\frac{1}{2}$ of their long diameter. The maxilla extends to the vertical through the end of the anterior third of the orbit. The preoperculum has a short, broad, rather blunt spine at its angle and a much smaller one on its lower limb; between these two the margin in some specimens is crenulated, sometimes forming an additional blunt spine. The preopercular spines are all hidden under the skin.

The distance of the first dorsal from the snout is contained 22 times in length of body without caudal; its longest spine is $\frac{1}{3}$ as long as the head; the length of its base is contained 5 times in leugth of body without candal, 6 times in total length; the length of the second dorsal base is $\frac{5}{3}$ of total length. The length of the anal base is $\frac{f}{s}$ of length without caudal. The length of the ventral is contained from 6 to $6 \frac{1}{2}$ times in the total length. The length of the pectoral is 4 of length of body without caudal.

The colors have faded, but the ground color seems to be plumbeons, with occasional blotches of darker. The fins are more or less distinctly punctulated. The first dorsal is darker than the body and has a distinct white margin.

## Potamocottus Bendirel, n. s.

The type of this species, catalogue No. 24196, was collected by Capt. Charles Bendire, U. S. A., in Rattlesnake Creek, near Camp Harney, Oregon, May 2, 1878. I take pleasure in dedicating the species to this excellent collector and observer, who has contributed so much to the Museum.

Description.-The length of the type is 2.7 inches ( $69^{\mathrm{mm})}$ to base of caudal. The greatest height of the body at the origin of the dorsal equals its greatest width over the base of the pectorals, and is contained nearly 4 times in its length without candal. The least height of the tail is $\frac{1}{12}$ of the length without caudal. The length of the middle caudal rays is contained $4 \frac{1}{2}$ times in length of body.* Width of the mouth equals $\frac{1}{2}$ the length of the head.
The maxillary extends a little behind the front margin of the ere. The snout is as long as the eye. The distance between the eyes is less than their diameter, and is contained 5 times in the length of the head; the diameter of the eve 4 times. The length of the lower jaw equals $\frac{1}{2}$ the length of the head. Preoperculum armed with 4 spines; the largest is at the angle, and is about $\frac{1}{2}$ as long as the eye; the 3 anterior ones are very small and hidden by the skin. The distance ot the spinous dorsal from the snout is $\frac{s}{3}$ of the length of the body; the length of the longest spine of the first dorsal is about $\frac{f}{f}$ of that of the head and about $\frac{2}{3}$ of the longest dorsal ray. The longest dorsal and anal rays are equal. The length of the anal base almost equals the length of the head. The length of the second dorsal base is a little greater than the length of the head.

[^96]The pectorals reach to the origin of the anal; ventrals do not reach to the vent.

Vomerine and palatine teeth present. Skin smooth.
Radial formula: B. VI; D. VIII, 16; A. 12; V. I, 3; P. 15; C. 15.
Color: Uniform dark brown above, lighter on the throat and belly. Myctophum crenulare, J. \& G.

The museum has an additional specimen of this species, which was washed aboard a United States Coast Survey vessel commanded by Mr. William II. Dall, in N. lat. $49^{\circ}$, W. long. $151^{\circ}$. It was collected by Mr. W. G. Hall. The specimen is numbered 23945 in the National Museum Fish Catalogue.

Description.-D. I, 11; A. I, 16; P. 13; V. 7; scales 21 $\frac{1}{2}-45-6 \frac{1}{2}$.
The basis of comparison for the measurements of different parts of the body is the total length without caudal. The greatest height of the body is contained 4 times in this length, the length of the head 3 s times; the least depth of the tail equals $\frac{4}{4}$ of the height of the body at the ventrals, height of the head nearly equal to its length without snout. Eye large, its diameter being more than the interorbital distance, and contained 3 times in the length of the head. Posterior margin of the preoperculum oblique. Snout very short and obtuse, about $\frac{f}{f}$ as long as the eye. The maxillary is $\frac{3}{3}$ as long as the head, scarcely dilated posteriorly; it reaches almost to the posterior margin of the preoperculum. The origin of the dorsal fin is equally distant from the tip of the snout and the root of the caudal, and is about over the tips of the extended ventrals; it is about in the vertical through the sixteenth scale of the lateral line; its last ray is over the twenty-fifth scale of the lateral line and the eighth anal ray. The pectorals are imperfect, but they apparently do not extend much beyond the origin of the ventrals. Scales coarsely denticulated, some of them showing about 6 teeth on their free margin; those on the lateral line are conspicuously the largest. Lower parts with a double series of pearl-colored spots, besides a few isolated ones.

Measurements.

| Locality |  |  |
| :---: | :---: | :---: |
|  | Millimeterz. | $\begin{aligned} & \text { 100tbe } \\ & \text { of } \\ & \text { length. } \end{aligned}$ |
| Length to origin of middle candal rays | 59 | 100 |
| Lody:Greatest helebt. .....................Greatest width.................Height nt ventrals . . |  |  |
|  |  | 9 |
|  |  | 24 |
|  |  | 6 |
|  |  | 0 |

## Measurements-Continued.



## NOTES ON THE FINHES OF THR PACIPIC COAAT OF THE UNITED NTATES.

## By DAVID S. JORDAN and CHARLES H. GILBERT.

It is the purpose of this paper to present a list of the species of flshes known to occur along our Pacific coast, between the Mexican boundary and the boundary of British Columbia, together with notes on the distribution, habits, size, value, ete., of each species, in advance of the publication of a general descriptive work. The paper is to be considered mainly in the light of a contribution to our knowledge of the geographical distribution of fishes. The "common names" here given are, in all cases, those heard by the writers among the fishermen on different parts of the coast.

## Family BRANCHIOSTOMATIDE.

1. Branchiostoma lanceolatum (Pallas) Gray.

Obtained by Dr. J. G. Cooper in San Diego Bay. Not seen by us.
Family MYXINIDAE.
2. Polistotrema aombeyl (Muller) Gill.-Lamperina; Hag; Eel.

Santa Barbara (fide J. Weinmiller) to Eel River (Lockington). Very abundant in the Bay of Monterey, but not taken elsewhere by us. It
fastens itself usually on the gills or isthmus of large fishes．sometimes on the eyes，whence it works its way very rapidly into the inside of the body．It then devours all the flesh of the body without breaking the skin，so that the fish is left a mere hulk of head，skin，and bones．It is especially destructive to fishes taken in gill－nets．In every gill－net set at Monterey in summer，more or less of these empty shells are obtained． When these are taken from the water the hag－fish scrambles out with great alacrfty．It is thought by the fishermen that the hags enter the fish after the latter are caught in the gill－net，and that they will devour a fish of 10 or 15 pounds weight in a single night．At any rate，large fishes of even 30 pounds are often brought up without flesh and with－ out viscera，and we can hardly suppose that they swim about in the sea in this condition before coming into the gill－nets．The fish chiefly eaten are Scbastichthys pinniger，miniatus，mystinus，etc．，Ophiodon elongatus， Paralichthys maculosus，and Rhacochilus toxotes．
The hag－fish reaches a length of 14 inches，and is not used as food－
The geuus Polistotrema（Gill，MSS．）is distinguished from Heptatrema （Bdellostoma）by the presence of 11 or 12 gill－openings instead of 7.

## Family PETROMYZONTID压．

3．Ammoccotes plumbens（Ayres）J．\＆G．
San Francisco northward；seen by us at Seattle and San Francisco． Nothing especial known of its habits，but it doubtless ascends most of the coast streams in spring．It reaches a length of 8 inches，and is not brought into market except when accidentally mixed with other species．

4．Entosphenus tridentatus（Richardson）Gill．－Lamprey；Lamperina．
（Petromyzon lividus，ciliatus，tridentafus，and astori Girard．）
Monterey Bay to Puget Sound；seen by us at Santa Cruz and Asto－ ria．It ascends the fresh waters in the spring to spawn，running in the Columbia in June．It reaches a length of more than 2 feet，and becomes very fat．It is never used as food so far as we know．

## Family NOTIDANID压．

5．Notorhynchus maculatus Ayres．
From Monterey to Puget Sound．In Humboldt Bay it is extremely abundant，and it is much sought for the oil．

6．Hexanchus corinus Jordan \＆Gilbert．－Shocel－nosed Shark．
Monterey to Puget Sound；probably not uncommon．A fine exam－ ple obtained at Neah Bay（Cape Flattery）by James G．Swan．Another taken by us at Soquel．

Family HETERODONTID $⿻$ 平．
7．Hetercdontus francisci（Girard）Dumeril．－Leopard Shark；Bull－head Shark．
From Point Concepcion southward．Described by Girard from Mon－ terey，but not seen by us there，and probably very rarely or never reach－
ing San Francisco. Abundant at San Pedro and San Diego and not rare at Santa Barbara. It lays its eggs in January. They are enveloped in large cylindrical egg-cases, which are spirally twisted and without tentacles. This shark reaches a length of $2 \frac{1}{2}$ feet, and is used for no purpose.

## Family SCYLLIIDA.

8. Catulus ventriosus (Garman) J. \& G.-Ground Shark; Puffer Sharko

From Monterey Bay southward. Abundant at Santa Barbara in winter, where it lives in the kelp, and is taken in large numbers in lobsterpots set for the "crawfish"(Panulirus interruptus), it being very fond of the salt fish used as bait. It is rarely taken in the summer, and it perhaps visits shallow water in the spawning season only, retiring to decper water in summer. The egg-cases are extruded in February. They are flattish, oblong, quadrangular, with very long tentacles at the angles. This shark reaches a length of $2 \frac{2}{2}$ feet, and is valueless. It is remarkable for its habit of inflating its body by swallowing air, like a Tetrodon.

## Family GALEORHINID A.

9. Mustelus hinnulus (Blainville) J. \& G.-Dog Shark. (Mustelus californicus Gill.)
From San Francisco southward. Very abundant at San Pedro and San Diego, living chiefly in bays and lagoons and feeding upon crustacea and small fish. It has very little oil in its liver, and is used only for crawfish bait and similar purposes. The young are sometimes salted and dried by the Chinese, tied in bundles, and shipped inland to the Chinese laborers on the railroads. They are not much valued even by them.

Most of the specimens seen were 2 to 21 feet in length, but two adult females seeu at San Pedro were 5 feet long and weighed about 40 pounds each.

## 10. Rhinotriacis henlei Gill.-Dog Shark.

Humboldt Bay to Monterey. Two adults $2 \frac{1}{2}$ feet long, with the young inside and nearly ready for delivery, were taken at Monterey in April. The embryo is connected to the uterus by a placenta, as in Rhinotriacis (Pleuracromylon) lavis, with which the present species is doubtless congeneric. Many young examples about a foot long were obtained of the Chinese fishermen at Potrero, near San Francisco, in August, and numerous others were seen in Humboldt Bay. This species is chietly used for bait.

## 11. Triacis semifanclatus Girard,-Leopard Shark; Catfish; Cat Shark.

From Cape Mendocino southward; very abundant in all bays and along sandy shores. The adults enter the lugoons in summer to bring forth their young, and hundreds of them are sometimes taken at once
with the seine. It reaches a length of abont 3 feet and a weight of 25 pounds. It yields but very little oil, and is considered wholly worthless by all fishermen.

## 12. Galeorhinus galeus (Linnæns) Blainville.-Oil Shark; White Shark.

From Cape Mendocino southward; very abundant everywhere in bays and lagoons during the summer. It brings forth its young from May to August, entering shallow bays for this purpose. It is taken in large numbers for its fins and its oil at Soquel, Monteres, and especially at Westminster and Newport, in Los Angeles County. It is usually taken with hook and line, herring and other silvery fish being the best bait. It reaches a length of 5 or 6 feet and a weight of 50 pounds, although most of those taken range from 30 to 40 . A single liver makes threefourths to one gallon of oil. The pectoral, dorsal, and caudal fins are taken off and dried in the sun. The Chinese buy these at about 15 cents a pound when dried. They strip off the skin and remove the fleshy part, and the gelatinous rays of the fin are valued by them very highly for soup, selling when prepared at about $\$ 1.50$ per pound. The fins of no other American shark are considered valuable by the Chinese.

## 13. Galeocerdo tigrinus Müler \& Henle.-Man-eater Shark.

From San Diego southward. The jaws of a large example taken near San Diego were seen.
14. Carcharhinus glaucus (Linnæus) Jordan \& Gilbert.-Blue Shark.

A young specimen taken near San Francisco is in the Musenm of the California Academy of Sciences, and the jaws of an adult taken near Seattle are in the Museum of the University of Washington Territory.
15. Eulamia lamia (Risso) Gill.-Bay Shark.

A partially grown specimen and the jaws of an adult individual obtained at San Diego.

## Family SPHYRNID $E$.

16. Sphyrna zygæna (Linnæus) Rafinesque.-Hammer-head Shark.

A specimen of this species was obtained by Dr. J. G. Cooper at San Pedro, and sent to the United States National Museum.

Family ALOPIDAE.
17. Alopias vulpes (Gmelin) Bonaparte.-Thresher.

Occasionally taken at San Francisco and in Monterey Bay. Probably most abundant at Soquel, but seen by us only at Monterey.

Family LAMNID A.
18. Lamna cornubica (Linnæus) Muller \& Henle.

A single specimen obtained at San Francisco. Another was taken last year at Santa Cruz, and a drawing of it made by Dr. C. L. Anderson.
19. Isurus (? oxyrhynchus Ratilesplle).

Two juws of a species of Ixurus, supposed to be $I$. oxyrhynchus, were obtained it Sin Pedro.
20. Carcharodon carcharias (L.) J. \& G.-Man-euter Shark.

Occasionally taken about Monterey Bay. One of 24 feet in length taken at Carmelo this year, and one of 20 feet at Soquel. One tiaken a few years ago at Soquel had a yomms sea-lion weighing 100 pounds in its stomach. It is valueal only for the oil in its liver.

## Family CETORHINIDA.

21. Cetorhinus maximus (Linmeus) Blainvillo'- (iround shark.

Occasionally taken about Monterey by the whalers, and sometimes contangled in gill-nets. About five raken during the present year at Soquel and Monterey, ranging from 26 to 31 feet in length. It is valued for the oil in its enormons liver.

## Family SCYMNIDE.

22. Somniosus microcephalus (Bloch) Gill.-Ground Shark:

From Puget Sound northward; not mare. Often taken on trawl. lines set for dog-tish. A specimen $S$ feet in length seen by us at Victuria. The livers are used with those of the dogrefish for makings "dog. tish oil". In habits this species is very sluggish, lying " on the water like a log ${ }^{7}$.

> Family SPINACIDE.
23. Squalus acanthias Liunsens.-Dog-fish; spinarolu.

From Santa Barbara to Alaska; occasional southward; excessively abundant from Puget Sound northward. It lives especially in deop or quiet bays or channels, coming into shallower water in pursuit of herring or salmon. It feeds chiefly on herring, but will take any bait, even its own young. It is caught in great numbers with trawl-lines for its oil, both by white men and Indians. It reaches a length of about 3 feet. The young are brought forth in June in Puget Sound.

## Family SQUATINIDE.

## 24. Squatina angelus Duméril.-Angel-fish; Angclo; Squat.

From San Francisco southward; not uncommon. Seen by us at Soquel, Monterey, Sauta Bárbara, San Pedro, and San Diego. It reaches a length of nearly 5 feet and a weight of 60 pounds. It is not used for any purpose.

Family TORPEDINLDA.

## 25. Torpedo californica Ayres.

Not conimon. Seen by us only at Soquel and San Francisco. It reaches a length of at least $2 \frac{1}{2}$ feet and a weight of nearly 50 pounds.

Proc. Nat. Mus, $81-3$ April 13, 1881.

## Family RHINOBATIDE.

## 26. Rhinobatus productus Ayres.--Ciuitar; Shorel-nosed Shark.

From Cape Mendocino southward; exceedingly abundant from Santa Barbara to San Diego, iuhabiting sandy shores. It brings forth its young in August. It reaches a length of 3 feet and a weight of 15 pounds. The tails of moderate-sized specimens are caten by the Chinese and Mexicans, although little valued by either. The body is sometimes used for lobster bait.

## 27. Platyrhinoidis triseriatus (Jordan \& Gilloert) Garman.

From San Francisco southward; generally abundant, with the preceding. It is viviparous, bringing forth its young in August, 4 to 6 in each ovarial sac. It reaches a length of 20 inches and a weight of 4 to $\overline{5}$ pounds. It is used for no purpose.

## 28. Syrrhina exasperata (Jordan \& Gillort) Garman.

Seen by us at San Dicgo only, where half-grown specimens are very abumlant. No adults have been seen by us, but it will probably be found to be a viviparous (and therefore Rhinobatoid) species. It is not used as food.

Family RAIIDE。

29. Raia stellulata Jorlan \& Gillert.

Seen by us only in the Bay of Monterey, where it is very abundant in the vinter and spring. Both adults and young are taken in great numbers in the gill-nets. It reaches a length of 30 juches. It is never sent to market, its dark color and very rough skin rendering it unsalable, the conventional ray being light brown and nearly smooth.

## 30. Raia rhina Jordau \& Gillert.

From Monterey to Vancouver's Island; less common than the others, but not rare. It reaches a length of 32 inches. In the neighborhood of San Francisco it is sent to the city markets with $h$. binoculata and Is. inornata; elsewhere it is rarely caten

## 31. Raia inornata J. \& G.-Ray ; Skate; Raic.

Very abundant about San Francisco and Monterey, where it is taken in gill-nets and seines. It reaches a length of 24 to 30 inches. It is brought into the San Francisco market in large numbers from the immediate vicinity, never being shipped from any considerable distance. The pectoral fins are alone eaten, and these chiefly by the French.

At Santa Barbara a variety or subspecies (Var. inermis) of this form occurs in some abundance. It is similar in size and appearance, but has the spines and armature of the body and tail very little developed.
32. Rafa binoculata Girarl.-Nkute; Ray.
(liaia sooperi (irll:)
limm Monterey to Alanka; evorywhere common; the largest and most abundant skate on the coast. It iremumts bays and sandy shores, and is taken with nets or hooks. It feyts on crustaceans and fishes. Two specimens of Cottus polyactuthocephatus, eath a foot long, were found in the stomach of one of these skates. The eggecases are latid in July. They are quadrate, with very short tentacles, and are nearly a foot in length. Rain binoculuta reaches a length of 5 to 6 feet and a weight of more than 60 pounds. It is generally the commonest species in the markets of Sith Francisco; elsewhere it is rarely used for fool, and its liver yields but very little oil.

## Family TRYGONIDJ.

## 33. Urolophus halleri ('sopert.-liound sling liay.

From Point Concepcionsonthward; excessively abmedant in the bays and lagoons. The bottom of portions of san Diego Bay is literally lineal with these rays, who lie on the bottom nearly buried in loose satnd or mud. This is the smallest, most abumdant, and most dangerons of the sting-rays, striking quickly and aceurately with its musentar tail. One taken in a net struck at another, the sting passing entirely through the looly of the latter. This species reaches a length of 18 inches, and is never caten.

## 34. Pteroplatea marmorata ('mon.r.-Rin!\%.

From Santa Barbatra southward; common in bays and along samdy shores. It reaches a length of $1 \frac{1}{2}$ feet, the breadth being about $2 d$. . It is not usually recognized ats a sting-ray, and is, therefore, frequently

- used as food, the larger ones taken at San Pedro being shipped to Los Angeles, where they are caten by the lrench as Ricie.


## 35. Dasybatus dipterurus Jotrlan of Gillurre.

Abuudant in San Diego bay; not seron elsewhere. It reaches a length of nearly 3 teet, exclusive of the tail. It is not nised as food.
Famity MYLIOH:ATHELK.
36. Mylobatis californicus (iill.-stingaret; sting líty. (hhinuptera reqpertilio (iml.)
From Cape Mendocino sonthwarl; very abundant, experially about San Diego. Like the other species of sting raty, it feeds on fishes and crustacea, and takes the hook readily. Its young are brought forth in July. It reaches a weight of 60 pounds or more, and is somethens brought into the market of san Franciseo.

## 37. Aëtobatis laticeps (iill.

California and sonthward; not obtained by us.

## Family CEPHALOPTERID X:

38. Manta birostris (W:illhaum) Jordau \& Gilbert.
(Ceratoptera vampyrus Auct.)
Wa are informed on good anthority that one or more individuals of this gigantic species have been talken by whalers near San Diego.
lommily CHIM ERIDA.
39. Chimzara colliæi Bemmett-Rut-fish.

From Monterey northward; extremely abundant everywhere along the coast in deep bays. It fechls on fish, etc., and takes the hook very readily. It lavs its eggs in July, the egg-cases being long and slender, without tentacles. It reaches a length of nearly 2 feet and a weight of 6 to 8 pounds. It is not used for any purpose. The liver is extremely large and fat, and it is said that the oil it yields is superior to atys sort of shark-oil, but the fish is too small for its pursuit to be profitable.

> Family ACIPENSERIDA:
40. Acipenser transmontanus Kichardson.-White Sturgeon; Common Sturyenn.
(Acipenser brachyrhynchus and acutirostris Ayres.)
Common in the bays and large rivers from San Fraucisco northward, great numbers being taken in the Sacramento, Columbia, and Frazer's Rivers. It feeds on crustacea, etc., and in Frazer's River gorges itself on the eulachon. It runs up the rivers with the salmon in the spring, and probably spawns in the summer. It reaches a length of 8 to 15 fect and a weight probably of 300 to 400 pounds. It is largely used as food, although very cheap. In the restaurants it is usually called "sea-bass". Many sturgeons are smoked and caviar is made from the roe.

## 41. Acipenser medirostris Ayres.- (ircen slurgeon.

(Acipenser acutirostris Githr. non Ayres.)
This species is found in the same waters as the preceding, but is much less abundant. It reaches probably a similar size. It is uot used ats food, being reputed "poisonons" by the fishermen. Seen by us at Sain Francisco and Astoria.

## Family MURENDDE.

## 42. Murzena mordax Ayrus. Conger lict; Congarre.

From Point Conceprion sonthward; abundant about all the Santa Barbara Islands. It lives among rocks near low-tido mark aud takes the hook readily. It may sometimes be found on land at low tide. It is extremely pugnacions, "striking from the shoulder" like a slake. It reaches a leogth of about $j$ fect and a weight of 15 to 20 pounds. It is used as food and the tlesh is very fat, resembling that of Auguilla. Its skin is said to be poisonous ("very pizen") by the tisherman.

Family ANGILLLIDAE.

## 43. Myrichthys tigrinus Girard.

Recorded from Adair Bay, Oregon; unknown to us.
44. Ophichthys triserialis (Kaup) Gthr.

Dr. Cooper informs me that he has taken this species on the coast. A specimen from Lower Califormia (the type of "Ophisurus califormiensis" Garrett) is in the Musenm of the California Academy of Sciences.

> Family NEMICHTH YIDA.

## 45. Nemichthys avocetta Jorlan \& Gilloert.

A single specimen, $2: 2$ inches in length, was taken at Port Gamble, in Puget Sound, and presented to the National Mnseum by Presilent Anderson, of the University of Washington.

Family ALBULIDA:
46. Albula vulpes (Linnaeus) Goode.

Rather common in San Diego Bay, ruming in schools. It spasns late in summer. It reaches a length of about a foot. It is sold with the mullet when taken, and from its bright silvery coloration meets with a ready sale. It is, however, dry and bony, and but inditferent foorl.

## Family CLUPEIDAE.

## 47. Clupea mirabilis Girard.-Herring.

Everywhere exceedingly abundant along the whole coast, especially northward; found south of Point Concepcion in winter only. At Nan Diego it spawns in January; further north much later. It is similar in size and value to the Atlantie herring, and, like it, is largely smoked or salted. The price in spring and summer is usually very low.
48. Clupea sagax Jenyns.-Sardine; Natlinn.

Whole coast; very abundant southward, especially in winter. It is most common at San Diego, where it is taken with hook and line from the wharves. It reaches a length of about 9 inches, and is considered a rather better food-fish than the herring. No attempts have set beeu made to put up this species in oil.

## Family ENGRAULIDA.

49. Stolephorus compressus (Girard) J. \& G.-Sprat.

San Pedro and San Diego Bays; very abundant, but less so than the other species. Not seen northward. It reaches a length of about 6 inches. It is not worth much as food, the tlesh being full of small, stiff bones.
50. Stolephorns delicatissimus ( (iirari) d. d. (i.

San Diego Bay; very abundant. Not seen elsewhere. A small species, reaching a length of less than :3 inches.
51. Stolephorus ringens (Jenyus) J. \& ri.-Anchory.

Abundant in clear bays for the entire length of the coast. It reaches a length of about 6 inches, and it often comes into the markets. Its chiof use is, however, as bait for flommers and rockeor. The Chinese salt them in barrels for that purpose. It is sometimes pickled with spices by the Germans, and sold as* "Norsk Anchovy".

## Family SALMONIDAE.

52. Salvelinus malma (Walb.) J. \& G.-Dolly Jinclen Trout; Rull Trout; Selmon Irout.
(Sulmo spectabilis (Grd.: Salmo campbelli Suckley: Sulmo lowli (iiinther; Nalmo tudes Cope ; Salmo callarius l'allas; salmo lmivni suckley.)
Abundant in lakes and streams of the Cascale lange from Mount Shasta northward to Alaska. Large numbers are found in the salt waters of l'uget somm, where they are taken in semes and with hook and line.

In the mountains it is usually quite small; in the lakes larger. At seattle and in Frazer's River it often reaches a weight of 12 pounds. It is an excellent food-fish. It feeds on sticklebacks (salmon-killers), l.errings, and other small fish.

## 53. Salmo indeus Gibbons.-('alifornia Brook Tront; Rainbore Tront.

From Mount Shasta to San Lais Rey River, in streams of the Coast Range and west slope of the Sierra Nevada. Less common north of California, and seldom seen in salt water. It is not often sent to the market of San Francisco. It seems to be much smaller in size than the other species of the coast, rarely hecoming more than is inches in length. The largest specimens seen are from MaClond River, and very deep bodied.
54. Salmo gairdneri Richardson.-Steel-head; Mart-head; Black Salmon. (Salmo truncatua Suckley.)
Found in the mouths of the large rivers from the Columbia northward, and occasionally in the Sacramento. It appears with the salmon and is usually thought to be migratory, but is probably not so, or migratory to a small degree. It spawns later than the salmon, and most of the individuals taken during the time of the salmon run in the spring are spent, and their flesh is of no value. In other rivers than the colmmbia, and at other seasons it is esteemed an exreflent food-fish. Its length is about that of an orlinary Quinnat salmon; the borly is less deep and the tail heavier. The usual weight is from 14 to 18 pounds. It is never canned, as the flesh is pale and grows paler when boiled, and the bones are firm and stiff.
55. Salmo purpuratus Pallas.-Or gon Brook Trout; Salmon Trout; Lake Troul. (Salmo clarki Rich.)
Very abundant in all waters north of Mount Shasta and through the Great Basin and Rocky Mountain region; occasional southward to Santa Cruz. Found in abundance in salt water in Puget Sound and abont the mouth of the Columbia. It is usually seen of but 2 to 8 or 10 pounds in weight, but occasional specimens weighing as much as 25 pounds are taken in the Columbia in summer (C.I.Smith). These latter are known usually as steel-heads, although the common steel-head is s. gairdneri; the young as brook-trout, and the partly grown as salmon-tront. This is the most widely distributed of our trout, and it is subject to many variations.
56. Oncorhynchus kisutch (Walb.) J. \& G.-Coho Sulnon of Fretzer's River; Silrer
Salmon; Nisutch; Bielaya Ryba. Skewitz.

Sacrameuto River to Puget Sound and northward; very abundant in summer and fall. It is rarely taken in the Columbia in the spring, but great numbers run up the river in the fall. It is one of the smallest of the salmon, reaching a length of about 30 inches and a weight of 4 to 8 pounds. As a food fish it ranks with the goung of $O$. chouiche, which it much resembles. It may be readily distinguished by the few (40-50) pyloric caecs. In G. chouicha there are about 180 pyloric coea. In fall the males become greatly distorted and hook-jawed, and specimens in every stage can be found in late summer.
57. Oncorhynchus chouicha(Walb.) J. \& G.-Quinuat Salmon; King Salmon; Chouicha; Chinnook Salmon; Spring Salmon; Columbia River Salmon; Sacramento Salmon; Winter Salmon; White Salmon. Sawkwey.
From Ventura River northward to Behring's Straits, ascending Sacramento, Rogue's, Klamath, Columbia, and Frazer's Rivers in spring, as well as the streams of Alaska, Kamtschatka, Japan, and Northern China; in fall ascending these and probably all other rivers in greater or less abundance; the young taken in Monterey Bay, Puget Sound, ete., in summer in considerable numbers. This salmon, by far the most important fish in onr Pacific waters, reaches a weight of about 70 pounds. The average in the Columbia River is about 22 pounds; in the Sacramento River about 18 ; in other rivers usually still smaller.
58. Oncorhynchus nerka (Walbanm) Gill \& Jordan.-Blue-back; Sukkeyc; Red-fish; Rascal; Firazer's River Salmon; Krasmaya Ryba.
From Columbia River to the Aleutian Islands; the principal salmon of Frazers River; unknown in Eel River, Rogne River, and in the Sacramento. In the Columbia River it is much less abundant than the Quinnat salmon, and its flesh is less firm and paler. It reaches a weight of 5 to 8 pounds, four "blue-backs" being counted at the canneries equal to one Chimnook salmon. It runs chiefly in the spring, few of them being seen on Frazer's River or the Columbia in the fall. Like the Quinnat it ascends streams to great distances. It is known in the
fall as red-fish. In the npper courses of the Columbia and Frazers River, th:s species and the preceding are the only salmon found. The blue-back, in all its protean forms, can readily be distinguished by the much longer and more numerous gill-rakers.
59. Oncorhynchus keta (Wall.) (\%. \& J.-Dog Sahmon; Guarlsch: Kaybo; Le Kni.

San Francisco to Behring's Straits; very abundant in the fall, when it runs in all streams, but not to a great distauce. Not seen by us anywhere in the spring. It reaches a weight of 12 to 20 pounds. As it is taken only in fall, after the development of the organs of generation has caused the deterioration of the flesh, it has little economic value. Considerable numbers are salted or dried by the Indians.
60. Oncorhynchus gorbuscha (Walbanm) (iill \& Jordan.-Humplark Salmon: Hnddo: Hone; Holia.
Sacramento River northward to the Arctic Sea; abundant in Puget Sound on alternate years, 1880 being a year of scarcity. Occasionally seen in the Columbia and Sacramento, but not sufliciently abundant to constitute a distinct rum. It reaches a weight of 3 to $\overline{7}$ pounds, being the smallest of the salmon. The females are canmed in summer and fall, the hook-jawed males being rejected.

The following table gives some of the specific characters of the species of Oncorhynchus. The figures gireu are the avemges of variation, so far as known:

| Sume |  |  | Number of pyloric coca. |  | $\begin{aligned} & \text { Number of branchioste- } \\ & \text { gala. } \end{aligned}$ | $\underset{\text { (ponnds). }}{\text { A vorage }}$ | Markinga. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kinutch | $\begin{aligned} & 10 \\ & 13 \end{aligned}$ | 13 | 70 | 128! | 12-14 | 6 | Back apotted: tail unspoted, except apper tay. |
| Chonicha | $\begin{aligned} & 10 \\ & 14 \end{aligned}$ | 16 | 160 | 142 | 10-10 | 20 | Back and tail apottent. |
| Keta | $\begin{aligned} & ! \\ & 14 \end{aligned}$ | 1.5 | 160 | 145 | 13-14 | 12 | Doraal region with fine spote which arr often obsolete. |
| Nirka | $\frac{16}{23}$ | 14 | \% 0 | 132 | 13-15 | 6 | Nospots ancwbere in apriag. voung with vagne apots on hack; tail sperkiled in fall. |
| Gorbuncha | $\begin{aligned} & 11 \\ & 17 \end{aligned}$ | 14 | 293 | $180^{\prime}$ | 12 | 4 | Rack anil tail spotted. |

61. Hypomesus pretiosus (Girarl) (iill.-surf Smell.

From Monterey to Alaska; very abundant north of San Francisco, and often seen in the San Francisco markets. It deposits its spawn in the surf in the spring. It reaches a length of nearly a foot and becomes
very fat. As a pan fish it ranks very high, being searcely inferior to the eulachon. The Hypomesus olidus of Kamtschatka has been shown hy Dr. Bean to be a difterent speries, spawning in fresh waters.
62. Thalelchthys pacificus (Richnrelson) (iril.-Eiulachon; Howlakin: Candle-fish: firease-fiill : smell.
From Oregon northward, ascending the rivers in spring in enormons numbers, but not for a great distance. It is especially mumerous in Frazer's River and Nass River, and very many ascend the Columbia. The run in Frazer's River takes place in May. They are exceedingly fat, and when dry are said to burn like a candle. On Nass River is a factory for the manufacture of eulachon oil, intended as a substitute for cod-liver oil. The fact that eulachon oil is semi-solid or lard-like at ordinary temperature is a serious himbrace to its salability for this pur pose. When fresh, the eulachon is one of the very finest of pan-fishes, and many of them are sent to the markets of Victoria. Pickled enlachons are sent to San Francisco. It reaches a length of a little less than a foot.
63. Osmerus thaleichthys Ayres.-Smelf.

From Monterey northward; rather common, bat not in such great numbers as the surf-smelt and the eulachon. It is smaller and less valuable than these. Little distinctive is known of its habits. Those brought into market are usually soft, and are less salable than the spurions "smelt," Atherinopsix, with which they are often mixed. It is varely more than 6 inches in length.
64. Osmerus attenuatus Lockington.-imell.

Everywhere found with the preceding and searcely less common. Nothing distinctive is known of its habits, and it may possibly turn ont to be the female of the same speries.
Family MIEPIDOSAIVRIDE。
65. Alepidosaurus borealis (iill.-IIawd-natic Finh.

Puget Sound and morthward, in deep water; cast on shore by storms. A head from Puget Sound in the Musemm of the Californiat Arademy of Sciences, and another from the Aleutian Islands in the Museum of the Alaska Commercial Company.

## Family PARALEPIDJ:

66. Sudis ringens Jorilan \& Gillert.

Known only from one specimen, about 8 inches in lengtl, from the stomach of a Merlucius, itself in the stomach of an Orcynus alalonga, in Santa Barbara Channel.
67. Paralepis coruscana J. \& C.

One specimen obtained at Port Townsend, Wash. It is very close to Paralepis borealis Reinh. from Greenland, if not identicol with it.

## Family SCOPELIDE.

68. Synodus lucioceps (Ayres) Gill,-Dingaree Dock.

From San lirancisco southward; rather common in summer and sometimes brought into the markets. It reaches a length of about a twot, and is not much valued as a food fish. This species differs from the Atlantic stmodus fotens in the much greater number of scales in a bertical series, and in the longer pectorals, as well as in lesser detaile. The distinctive characters given by Ayres are most'y fallacious.

## 69. Myotophum crenulare Jordan \& (iillert.

One specimen, $2 \frac{1}{2}$ inches in length, taken from the stomach of Oreynus alalonge, in Santa Barvara Channel, in July. Another obtained off Vincouvers Istand has been recorded ly 1)r. Bean.

## Family CYPRINODONTIDK.

70. Cyprinodon californiensis (iiranl.
Deseribed from San Diego. Only the original types known.
71. Fundulus parvipimis fiirartl.

From Point Concepcion sonthward; exceedingly abundant in muddy bays and lagoons, especially at the mouths of streams The males in summor have the scales rough with small corneous appendages much as in some Cyprinide. This speecies reaches a length of $2 \frac{1}{2}$ inches, and is used for no purpose.

## Family SCOMBERESOCIDA:

## 72. Exoccetus callfornícus Conper.-Flying-fish; lolador.

In great schools in summer, rangug north to Point Concepcion, and very abundant about all the Santa Barbara Islands. It flies for a dis. tance sometimes of nearly a quarter of a mile, usnally not rising more than 3 or 4 feet. Its motion in the water is extremely rapid, and its motive power is certainly chiefly due to the movement of its powerful tail in the water. On rising from the waier the movements of the tail are continued for some seconds until the whole body is out of the water. While the tail is in motion the pectorals are in a state of very rapid vibration and the ventrals are folded. When the action of the tail ceases, the pectorals ant ventrals are spread, and, so far as we can see, held at rest. When the fish begins to fall, the tail touches the water and the motion of the pectorals recommences. When on the wing it resembles a huge dragon-fly. Its motion is very swift. At first it is in a straight line, but this becomes deflected to a curve, the pectoral on the inner side of the are being bent downwarl. It is able to some extent to turn its course io shy off from a vessel. The motion seems to have no refer-
ence to the direction of the wind, and we observed it best from the how of a steamer off santa Catalina Island in early morning, when both air and water were five from motion.

The flying-fish reaches a length of 15 inches and a weight of about $1 \frac{1}{2}$ pounds. It is considered an excellent food dish, and is taken in laree numbers off Santa Catalina for the market of Los Augeles. It appears only alout the middle of summer, which is its seatson of spatwing. Xiusenths of those seen by as in July were males.

## 73. Hemirhamphus rosæ Jordan d Gillert.

Rather abundant in San Pedro and San Dieqo bays, swimming slowho about near the surface. It reaches a length of probably not over a foot, and is used for no purpose.
74. Scomberesox brevirostris Praters.

One specimentaken in Montarey Bay. Recorded ly Dr. Ayres from Tomates Bay.

## 75. Tylosurus exilis (Grel.) J. \& G.-. Tietle -fish ; Fill--fith.

From Santal lanhara sonthwat; rather common in summer, especially in San Diego lay. It lives in sheltered bays, swimming near the surfince. It spawns in Angust. It reaches a longth of about $2 \underline{t}$ feet, and is esteemed a good food-fish.

## Family MUGILIDE.

76. Mugil albula L. (Nugil mesiranu* Steindarlaner)- Mullet; (hubb.

From Monterey southward; very abundant in San Diego Bay. It ascends all creeks and lagoons in winter, and many of them become landlowked and are destroyed by the pelicans. It is said to be sipreating northward along the coast, and to have first appeared at San Pedro about three years ago. It reaches a length of about 10 inches, and when taken in elear water is much esteemed. Many of those brought into the market are seined in muddy lagoons, and the flavor of the water is imparted to the flesh of the mullet. Like other mullets, this species feeds on mud. It is not obviously different from the common mullet of the Atlantic coast.

> Family ATHERINIDA.
77. Leuresthes tenuis (Arres) Jordan de (illorit.

Seen at San Diego only; in some parts of the bay occurring in immense schools, but not gencrally common. This is one of the smaller succies of the family, reaching a length of marely more than 4 inches.

Cape Mendocino sonthward; abondant, especially in hass and lagoons, gromerally prefering more sheltered places than the next species. It reaches a lengeth of about a foot, and is a pan-lish of good quality, havo ing firm, white llesh, which is rather dry. Many of them are dried by the Chinese.
79. Atherinopsis callforniensis Girard.-Common Smelt.

From Cape Mendocino southward; very abundant, being taken with the seine in great numbers in all open bays. It is also often taken by folling with a small hook. It reaches a length of about 18 inches, and is one of the most important food-fishes on the coast. Its flesh is firm, white, and delicate, but rather dry. The genus Atherinopsis is distinguished by its non-protractile premaxillaries.

## Family SPHYRENIDAE.

80. Sphyræna argentea Girard.-Barrucuda; Barruculn.

Abundant in summer from San Francisco nouthward, especially about Monterey (Soquel) and the Santa Barbara lslands. The chief run is in July. It spawns in Augnst, and then disappears, probably retiring into deeper water, or perhaps moving southward. It is taken chiefly by trolling at a distance of 3 or more miles from the mainland. About the islands it may be sometimes taken by still-fishing. The young are often taken in seines in winter. It reaches a length of about 3 feet and a weight of about 12 pounds. It is considered one of the best food-tish, and when salted and dried sells at a higher price than aus other, eren than the Alaska cod-fish.

## Family AMMODYTIIE.

## 81. Ammodytes personatus Girard.-Sand Lant; sand Lance.

Abundant along sandy shores from Monterey to Alaska. Found in immense schools in Puget Sound. It burrows in the sand between tidemarks. It reaches a length of 5 or 6 inches, aud is sometimes taken for bait.

## Family ECDENEID.A:

82. Remora jacobce (Lowe) Gill.

A single specimen seen in the market at San Francisco. It is probaby not uncommon.
83. Echeneis naucrates L.

Occasionally taken about San Francisco.

## Family XIPHIIDA.

## 84. Xiphias gladius Linné.-Surord-fikh; Espada.

Occasionally seen about Santa Catalina and the Coronados, but never taken, the fishermen having no suitable tackle. One seen by us off Santa Monica about 8 feet in length.

> Family SCOMBRIDA.
-
85. Scomber scombrus Linne. - Einstern Mackert.

Not seen by us. Capt. Charles Willughby, Indian agent at Neah Bay, formerly it mackerel-fisher in Massachmsetts, informs us that he
once netted a school of true eastern mackerel off Santa (hatalina Island. J. Weiumiller, of Santa Barbara, has also taken them occasioually off Anacapa Island. There is little doubt of the casual oceurence of this species on our Pacitic coast.
87. Scomber pneunatophorus Delaroche-EVaster Mackerel; Linker Mackerel; Little Markerel.
(Scomber diego Ayres: Seomber dekayi Storer.)
From Monterey southward; coming in irregular and often large schools in summer and fall. It reaches a length of a little more than a foot.
88. Orcynus alalonga (Gneliu) Kisso.-_Heicure.
(Orcynus pacificus Cooper; Thynnus pucificue C. © V.)
From San Francisco southward; abundant in summer south of Point Concepcion and taken by trolling. It is found in deeper water than the bonito, being rarely taken within 6 miles of the shore. It feeds on anchovy and squid, and occasionally rare deep-water fishes are found in its stomach. It is shorter and deeper than the bonito, weighing 1: to 15 pounds. It is little valued as a food- fish, selling at about 20 cents. It is caught chietly for sport, as it is a very gamy tish.

Another Orcynus, known as the "tuna", exists about Santa Cruz Island, but we failed to obtain it.
89. Sarda chilensis (Cuvier \& Valonciennes) J. \& (i.-Donito; Spanish Mackerel; skipjack: Tuna.
From Monterey sonthward; very abundant everywhere in summer, when it is taken in great numbers, by trolling, at a distance of 2 or : $\%$ miles from shore. It is extensively salted and dried, but the flesh is mather coarse, and it brings a lower price than the yellow-tatil and barracoda. It reaches a weight of about 12 pounds and sells at abont 2 rents. After the spawning season the young are very abundant in the kelp.

## 90. Scomberomorus concolor (Lockington) Jordan \& Gilbert.

Monterey Bay. It comes to the maplet at San Franciseo from Soquel (very year, but in small numbers. Rarely more than 18 or 20 come in in it single season. This year ( 1880 ) upwards of to were taken, nearly half of which were secured by us. Its usual price in the market of San Franciseo is about \$2.50. The female is marked by two rows of alternating, round, brouze spots about the size of the pupil.

Family CORYPHENIDE.

## 91. Coryphæna (species).

A dolphin came ashore in a storm at Cayncos a few years since. Its captor and eater informs us that he is well acquainted with the dolphin in Mexican waters, and that this was the same fish.

## F'amily STROMATEHEE

## 92. Stromateus simillimus Ayres.-I'ompano.

Futire coast; common, but most abundant from Santa Barbara to San Frameisco. Its movements on the coast are very irregular. It is usually searee in winter everywhere, and it is sald that it was formely much liss abundant than now. It is taken in seines, and also by hook and lne or grab-hook from the wharves. It is ustally esteemed as the best pandish on the coast, and alwats brings a high price-25 to 50 cents per ponud. It reaches a length of $s$ inches and a weight of little more than halt a pound.

> Family CARANGHDE.
93. Seriola lalandi C'uvier © Valencionuss- Yellmo Tuil; White Sulmon; Cavasina. (Seriola mazallana stcindachner.)
Only about the Santa Barbara and Coronados Istands, where it is abundant in summer, spawning in July and Angust; not seen in winter. It is taken by trolling only. As a fresh fish it rauks high. When salted it is graded as best, with Dekoya and sphyreena. It feeds on squid and various small fishes, and reaches a weight of 40 to 50 pounds and a length of 4 to 5 feet. The "horse mackerel, Halatractus dorsalis", referred to by Dr. Cooper in Cronise's Natmal Wealth of California, is undoubtedly the present species.
94. Caranx caballus (iint her.
(Trachurus boops (iml.)
Only the original type of Girard's description has been taken on our cobast.

(Trachurus fracharus (iiinther; Trachurns symmetricus Ayres.)
Very abundant in summer as far north as Monterey. It is taken in seines in large numbers and used chiedly for hait. Many of them are salted for this purpose. It reaches a length of about a foot amd a weight of less than a pound.
specimens of this species from Monterey and from Venice are not obvously different. The individual variations in the curvature of the lateral line are considerable.

## Fanily SERRANIDE.

96. Serranus maculofasciatus Stoimlachucr:-iubrille; lionk Cod; liock Lan*.

San Pedro to San Diego and southwarl; abundant in the bays, especially at Sin Diego, where many are taken in seines, and with hook and line from the wharves. Not seen northward and not fonnd in deep water or about the islands. It feeds chiefly on crustaceans and squid. It wache's a length of about 15 inches and at weight of 2 or 3 pounds, and is considered an excellent food-fish.
97. Serranus nebulifer ( (ird.) Stcind.-Juhnny Verde; Cabrilla; Rock Bass.

From Monterey Bay southward; common about San Pedro and in San Diego Bay with the preceding. It reaches a length of 15 inches and a weight of 's to 4 pounds, and is considered is good food-fish.

## 98. Serranus clathratus (Gril.) Strind.-Cabrilla; Pook Fíass; Lielp Sulmon.

From San Franciseo sonthward; rery abundant south of Point Concepcion. One of the most common fool-fishes about the islands. It feeds on crustaceat and squid, and is found in mot very deep water, chiefly about rocks. It reaches a length of 16 inches and a weight of about 5 pounds. It is considered one of the better class of food-fishes. It is not often split ard salted.
99. Stereolepls gigas Ayres.-Ifir-fish; Black Sict lisw.

From the Farallones southward, chiefly about the islathls; mot rare, but from its great size not very often taken. 'Taken ly still-fishing, not by trolling. It attains a weight of 400 to 500 pounds. Often taken by swallowing white fish, ete., when the latter are on the hook.

## Family PRISTIPOMATIDE.

100. Xenichthys californiensis Stoind.

Deseriberl from San Diego. No specimens obtained by us.
101. Pristipoma davidsoni Stuindachner.-Aarge.

San Pedro to San Diego; not common. Fons seen by゙us at San Pedro. Probably only taken in summer, and then in small numiners. Feeds on crustacea. lieaches a length of somewhat more than a foot.

## Family SIPARIDAL.

102. Scorpis californiensis steindachmer.-Mcalif-lunct Half-moon.

Santa Barbarab Islands amd southward. Esperially abundant about Catalina, where it is one of the principal food fishes, being taken in great numbers in gill-mets. Rare at samta Cru\% Island, and probably not found northward. One in the Musem of the Californiat Aademy said to come from Tomales Bay. Fineds chinfly on crustacea. It reaches a longth of about a foot and a weight of 3 pounds. It is not often dried, but rauks high as a pan-fish.
103. Girella nigricans (Ayrex) Gill.- Hitur-fixh.

From Monteres southward; abundant about the Samta Barbara Islands, where it is an important food fish. Taken chictly in gill-nets. It is entirely herbivorous. It is very temacious of life, but begins to soften soon after death. It reaches a length of about a foot and a weight of 4 pounds. It is considered a fair pram-fish.

# Family EPHIPPIDE. 

104. Chætodipterus faber (Bloch) Blewker.

Described from San Diego as E'phippus zonutus Gird. Not ohtained by us.

> Family S(CLENID.E.

From San Francisco southwarl ; ahondant in summer. Found along sandy shores and taken with seines, sometimes in great numbers, notably at Santa Barbara and Soquel. It is considered the best of the small Scienoids, but is too small to be of very great importance. It reaches a length of 8 inches, but is usually still smaller.
106. Cynoscion parvipinne Ayres.-Rlue-fish; Corrina; Cararima; Nevt ILas.
(Otolithue magrlalena Steind.)
From San Pedro southward; very abondant at sam Diego. It frequents the bays, and is taken in seines and gill-nets. It feeds chiefly on crustacea. Its flesh is extremely grool when fresh, but it soon softens, being similar to that of the weak-fish ( $C$. regale) in that respect. It reaches a length of about 2 feet and a weight of 8 pounds.
107. Atractoscion nobile (Ayres) Gill.—White seal Bass; sien Bass; Hita Troul (ygo): Corrina.
(Otolithus californiensis sitciud.)
Froin San Francisco southward; very abundant in spring and summer; not often seen in winter; only adults usually taken in spring. Caught hy trolling and in gill-nets, the young in summer by seines. It reaches a length of 4 feet and a weight of 50 pounds or more. Its thesh is highly esteemed, and is much firmer than that of the castern weak-fish. The food consists of crustacea, anchovies, etc.

The young ("sea trout") is often considered by fishermen as a dis. tinct species.

## 108. Menticirrus undulatus (Gid.) (iill-Bugre; Sucker; Sucker Bax*.

From Santa Barbara southward; abundant; taken in seines and gillnets along sandy shores. It reaches a length of 18 inches and a weight of '2. pounds. It is held in moderate esteem as a food-fish. It feeds largely on crustacea. Girard's type of Umbrina undulata is a very young specimen of this species.
109. Umbrina xant! Gill.- Fellor-finneyl Loncador; Fellow-fail Ronearlor.

From Santa Barbara southward; generally abundant. Found along sumly shores, and taken in seines and gill-nets. It iceds on crustacea, suuts, etc., and spawns in Juls. It reaches a length of about a foot and a weight of nearly 2 pounds. It is considered a food-fish of good quality, and many are split and salted at San Pedro.
110. Roncador stearnsi (Steiull.) J. \& G.-Roncador; ('roaker.

From Santa Barbara southward; qenerally abundant on sably shores, in rather deeper water than the U'mbrina. Taken chiefly in the gill. nets. It feeds mostly on crustacea, and spawns in July. It reaches a length of about 2 feet and a weight of 5 or 6 pounds. It is considered a good fool-fish.

## 111. Corvina saturna (Gril.) (ithr.-Red Roncador; Black Ronculor.

From Santa Barbara southward; in similar situations with the preceding, but less abundant. It reaches a length of 16 to 18 inches and it weight of 3 pounds. Like the Menticirrus it is less attractive in color than Combrina and Roncador, bat is probaby similar in flesh.

## 112. Genyonemus lineatus (Ayros) (iill.-Lillle Buss; Litlle Ronsuhor.

From San Francisco sonthward; not common in winter, but exces. sively abundant in summer, especially from Santa Barbara northward. It lives between the shore and the kelp, and is taken with hook and line at the border of the kelp, and also in great numbers in seines. Its fool is chiefly crustacea. It reaches a length of less than a foot and a weight of nearly a pound. It is rather soft, and not much valued as food, althongh excellent when fresh. Many are dried by the Chinese.

## Fanily LMBIOTOCIDE.

> (ICreh; suriffish.)

The fishes of this fimily are exceedingly abundant along our entire Pacitic coast, the centre of distribution being from Santa Barbara to San Francisco. They all go by the general name of perch, and the fishermen rarely make any distinction of the species. All are ovoviviparous, bringing forth their young, 15 to 20 at a time, in spring or early summer. The yomg are then 18 to $2 \frac{2}{2}$ inches in length, and perfectly able to take care of themselves. At birth they closely resemble the adult fish, but are redder, more compressed, and with higher fins. The flesh of the Embiotocoids is very similar in all the species, being Havorless and poor.
113. Rhacochilus toxotes Agaswi\%-Ilfione: sprut; Perch.

San Pedro to San Francisco; rather common, especially about Soquel. Like the other species of the family, it feeds on crustacea and small fish. This species is the largest of the fimily, reaching a weight of 4 pounds, and is considered the best of this very inferior group.
114. Damalichthys argyrosomus (iirard) J. d (i.- White Perch.

From san Pedro to Puget sound; generally common and exceedingly abundaut in Puget Sound; next to Ditremel laterale and Micrometrus aggregatus, the species most numerons in individuals on the coast. It is considered as, next to the preceding, the best of the Em. biotocidre, and reaches a weight of 2 pounds.

Proc. Niat. Nus. 81-4
April :39, 1581.

The genus Damalichthys is distinguished from Ditrema by the extraordinary development of the phargugeal bones.
115. Ditrema furoatum (Girl.) Githr.

San Diego to San Franciseo; exeedingly abundant everywhere. Not noticed northward. It lives in sheltered bays and is taken with seines. It rarely reaches a pound weight, and is little esteemed.

## 116. Ditrema atripes J \& G.

Monterey Bay; abundant at Monterey, where large numbers are taken in seines. It reaches the weight of 14 pounds.
117. Ditrema laterale (Agassiz) Githr.-Perch; Surf-fish; Blue Perch

Santa Barbara to Puget Sound; very abundant. Northward the most common of the larger species. It reaches a weight of 2 pounds, and is an important market fish, although poor and watery.
118. Ditrema jacksoni (Agassiz) Gthr--Verch; Croaker; Surf-fish.

San Diego to Puget Sound; scarce north of San Francisco, but extremely abundant south of Point Concepcion, and brought in large num. bers to the markets. It reaches a weight of $1 \frac{1}{2}$ pounds, and is about as poor as the rest of the tribe.
119. Hypsurus caryi (L. Agassiz) A. Agassi\%.-Bugara.

Tomales to Santa Barbara; generally very abundant in the edge of the kelp, especially at Monterey. It is often taken with hook and line or baited dip-nets, and sometimes in great numbers in seines. It is used chiefly for bait for rock col, the larger ones being sent to the markets. It rarely weighs more than half a pound. In color it is oue of the most brilliant and attractive.
120. Amphistichus argenteus Agassiz. - Surf-fish; Whice Perch.

Tomales to San Diego; locally very common on sandy shores, especially in the surf; more abundant at Soquel and Santa Barbara than elsewhere. It reaches a weight of $1 \frac{1}{2}$ pounds.

## 121. Holconotus rhodoterus Ag.

Tomales to Santa Barbara; not so common as most of the other species, but often locally abundant; most numerous at Soquel. It reaches a weight of nearly $1 \frac{1}{2}$ pounds.

## 122. Holconotus agassizi (Gill) J. \& G.

Tomales to Santa Barbara; in abunclance and distribution similar to the preceding species. It rarely weighs over $\frac{1}{2}$ pound.
123. Holconotus argenteus (Gibbons) J. \& G.- Wall-eye; White Perch.

San Diego to Tomales; everywhere abundant. Taken with soines in great numbers in sandy shores, and often with hook and line from the wharves. It wetghs about $\frac{1}{2}$ pound, and is little esteemed.
124. Holconotus analis (A. Agassiz) J. \& (i.

San Francisco to San Lais Obispo; only locally abundant. Common only at Soquel and Santa Cruz, where it is largely taken, with Micromutirs, as bait for rock-fish, etc. It weighs less than 1 pound, and seldom comes into the markets.

## 125. Brachyistius rosaceus J. \& G.

About San Francisco; oceasionally brought in with sweep-nets; not seen elsewhere. Its weight is usually less thau $\frac{1}{2}$ pound. It is the most bughtly colored of the Embiotocide.

## 126. Brachyistius frenatus Gill.

From Catalina Island to Puget Sound; widely distributed and often locally very abundant, as at Monterey, Point lieyes, etc. It is used chiely for bait, never coming into the markets except by accident when mixed with other fish. Weight $\ddagger$ pound.

## 127. Micrometrus aggregatus (iibbons.-shiner; sparada; Minnie; Littlo l'erch.

Entire coast from San Diego to Puget Sound; everywhere the most abundant species of the group. Found especially in sheltered bays. It weighs less than + pound, and is used only for bait.
123. Abcona aurora J. \& G.

Known only from Monterey Bay, where it is very abundant about rocks. Many of them inhabit the larger rock-pools at Point Pinos. It reaches a weight of about $\frac{1}{f}$ pound, and is occasionally sent to the San Francisco market.
129. Abeona minima (Gibbons) Gill.-Shincr.

Tomales to San Diego; rather common, but less abundant than most of the other species. It is the smallest of the tribe, rarely weighing $\downarrow$ pound. The genus Abeona is distinguished from Cymatogaster by its trilobate incisor like teeth.
130. Hysterocarpus traski Gibbous.- Frenh-rater Perch.

Sacramento and San Joaquin Livers, and streams southward as far as San Luis Obispo; probably abundant. Many are brought into the market of San Francisco, where they are eaten chiefly by the Chinese. It reaches a weight of less than $\frac{1}{2}$ pound.

## Family LABRIDA.

131. Pimelometopon pulcher (Ayres) Gill.-Red-fish; Fat head.

Point Concepcion southward; very abundant in the kelp, and taken in immense numbers by the Chinamen, who salt and dry them. It feeds on crustacea and shells. The flesh is rather coarse, but the fat forehead is esteemed for chowder. It reaches a weight of 12 to 15 pounds. Rare iustances of its occurrence at Monterey are on record.
132. Platyglossus semicinctus Aves) (iinther- Nitp finh.

S゙anta Catalina and southward; not rare in the kelp; oceasionally laken in the gill-nets at San I'erlmo, and sometimes with a hook. It reaches a weight of ibout a pound.
133. Ozyjulis mociestus (Cird.) (iill.-s'murilas; Pexas liey.

From Monterey sonthward; common in the lely, and often taken with book or line or baited dip-net. It reaches a weight of little more than I pound, and is used chietly for bait, althourh sad to hare tlesh of fine quality.

## Family POMACENTRIDE.

## 134. Chromis punctipinnis ('oopur.- Blachamith.

Santa Barbara Islands and southward; abundant; taken with gill-nets or hook and line. It feeds, like the other species, on shells and crabs. It is not much valued as food, and reaches a weight of about 2 pounds.

The record by Yarrow and Henshaw of Chromis atrilobata Gill from Sinta Barbara refers to this fish. (Wheeler's Surv., Appendix NN, Aun. Rept. Chief Engin., 18:8, $20: 3$.

## 135. Hypsypops rubicundus (ird.) Gill.- Ciaribaldi: Red Perch; Gold-fish.

Abundant about the Santa Barbata Islands and southward; taken chiefly with gill-nets. It reaches a weight of ' 3 to 4 pounds, and is not held in very high esteem as a food-fish, although gorgeously colored.

Family TRACHYPTERIDS.
136. Trachypterus ? altivelis kurl. -King of the sulmom.

Comes ashore occasionally when mursmed by other fishes or after storms. The Makah Indians consider them the kings of the salmon, and will not let any one cat them.

Three specimens are certionly known-one from Santa Cruz (Dr. C. I. Anderson), and two from Neall lay (oudge J. (i. Swan). Thespecimen from Santat Cruz, about a foot lonir, examined by us, is evidently close to $T$. altirclis, the diflerences noticed being perhaps due to age.

> Fanily ICOSTl:IH)J:
137. Icosteus menigmaticus lockington.

San Francisco and northwird, in deep water; two fonnd in San Francisco market; one in University of California from the coast of Northeru Cilifornia. It reaches a leugth of about 10 inches.

## 138. Icichthys lockingtoni J. oL G.

Sau Francisco and northward, in deep water. The only specimen known, foum in the market at San Francisco, is about 8 inches long.
139. Bathymaster Eignatue Copr.--limehil.
l'uget Sound and monthwarl, in deep water; taken with hook and
line about Seattle, in some abondance on a reef of ballast pocks, in deep water, tolerably abmelant. It reaches a length of $i f$ to 8 inches, and is used chiefly for bait.

## Family Latilided.

140. Dekaya" princeps (Jonyın) J. \& (i.- While-finh; Villor-lail.

From Monterey southward; abundant ab ut all the islands, but only occasional at Monterey. It feeds largely on crustacea. It is taken chinfly with hook and line from reefs. Many of them are salted and dried both by Americans and Chinese. As a salted fish it ranks high; as a fresh fish of fair grade. It reaches a length of over "f feret and a weight of 10 to 14 pounds.

## Family TraCHINIDA

141. Trichodon stelleri C. \& V.

Alaska; occasionally southward to Sall Francisco; not seen br us from this coast. A specimen in Alaska Commercial Company's collection from Aleutian Islands.

$$
\text { F'mily ( } \mathrm{OOBLID} \text { E. }
$$

142. Gillichthys mirabllis Cooper:-Mul-fisho.

From San Francisco southward, abounding in the muddy bottom of creeks and slimy lagoons into which the tide flows; very abondant about Oakland and at San Pedro and san Diego. It burrows into the mud, the bottoms being honeycombed with its holes. Two small specimens of a species of this genus were taken in the stomach of a Hexagrammes. stelleri, in Saanich Arm, Vanconver's Island. It reaches a length of is or 6 inches. It may readily be taken with a small hook. Mr. Charless R. Orcutt obtaned them for us in a creek near San Diego at the rate of al per hour.

## 143. Eucyclogobius newberryi (linl.) (iill.

Not obtained by us. Described from 'Tomales Bay.

## 144. Lepidogobius gracilis (irrl). (fill.

From San Francisco northwand; oceasionally taken in the sweep-nets with the tom cod, and thus brought into the markets; seen by us at San Francisco and Victoria. It reaches a lougth of 4 inches. Nothing special is known of its habits.
145. Gobius glaucofrenum (Giil) J. A (i.

Not seen by us. Described from Puget sound.

## 146. Othonops eos Rona Smith.

The specimens known found burrowing in sand among rocks about Point Loma, near San Diego. Locally very abmudant.

[^97]
## Family CHIRIDE.

## 147. Anoplopoma fimbria (Pallas) Gill.-Horse Mackerel; (cındle fith; Jeshorre.

From Monterey uorthward; generally common, especially in luget Suund, where many are taken from the wharves, especially at Seattle. Taken by the Chinese at Monterey with set-lines, in rather deep water, and about San Francisco in winter with sweep-nets. It feeds on crustacea, worms, and small fish, and reaches a length of 40 inches and a weight of 15 pounds; those usually seen rarely exceed 2 or 3 pounds. As a food-fish it is generally held in low esteem, althongh sometimes fraudulently sold as "Spatish mackerel". The large specimens taken in deep water about Vancouver's Island, known to the Makah Indians as Beshowe, are highly valued as food fish, according to Mr. Swan.
148. Myriolepis zonifer Lackington.

The only specimen known came from Mouterey Bay. It is about 10 inches in length.

## 149. Oxylebius pictus Gill.

From Monterey northward, living among rocks near shore, in elear waters; not very rare, but from its small mouth and peculiar habits very rarely taken except for bait in dip-nets baited with crnshed crabs. Seen by us at San Francisco, Monterey, and Saanich. It reaches a length of 6 to 8 inches, and is used only for bait.

## 150. Zaniolepis latipinnis Grol.

From San Francisco northward, in rather deep water. It is taken in large numbers in the sweep-nets of the paramzelle, and is occasionally lorought into the markets of San Francisco. It feeds on crustarea, reaches a length of about a foot, and is not often caten.
151. Ophiodon elongatus (ird.-Cullue Cod; C'alifornia Ciod; Blue Cod; Ruffululiont: Ling.
From Santa Cruz Island northward; excessively abundant from Montures to Victoria and beyond. It lives about rocky places, and is taken with hook and line or gill-net. Many are dried by the Chinese and Indians. It feeds on rerustacea, squid, and various fishes. It reathes a larger size northward than about San Franciseo, the greatest length being nearly 5 feet and the weight 50 or 60 pounds; most seen in market are considerably smaller. It is one of the better food-fishes, and in amount is one of the most important on the coast. Its flesh is usually of a pale livid blue.
152. Hexagrammus decagrammus (Pallas) J. \& G. -Borrgat; Nea Trout; Bodieron; Rock Trout.
From San Lais Obispo northward; perywhere moderately common, most so in the Bay of Monterey and off San Francisco. A common tish
of the San Francisco markets. It feeds chiefly on crustacea and worms. It dies soon after being taken from the water, and does not keep very long before softening. The fish spawns in July. The males (Chiropsis constellatus Grd.) and the females (C. guttatus Grd.) differ so much in color that they have bees usually taken for distinct species. The form lately described by Mr. Lockington as Chirus maculoscriatus is, so far as we have noticed, always female, and it seems to vary by inseusible degrees into the ordinary guttatus. It reaches a length of 15 inches and a weight of $2-3$ pounds. It is a food-fish of fair quality, but inferior to the Ophidon and Scbastichthys.
153. Hexagrammus superciliosus (Pallas) J. \& G.-Sea Trout.

From Monterey northward; not very common south of Puget Sound, and not very abundant there. In food, size, and qualities identical with the preceding. The color is quite variable and the flesh is often blue.
154. Hexagrammus asper Steller.-Starling.
(Chirus hexagrammuß Gthr. ; Chirus trigrammu* Cope.)
From Puget Sound northward; abundant everywhere in Puget Sound. Taken in rocks places with seines and gill-nets. Intestines usually with long tænioid worms. Size and value same as that of other species. The type of Chirus nebulosus Girard belongs to this species. The tips of the first three soft rays have been broken off, and they were taken by Girard for spines.

## Family SCORPANIDA.

155. Sebastodes paucispinis (Ayres) Gill.-Boecacrio; Meron ; Jack; Tom Cod.

Coast from San Francisco to the Santa Barbara Islands, inhabiting chiefly reefs in deep water, the young coming near shore. Taken mostly with hook and line. It feeds on various small fish. It reaches a weight of 12 to 14 pounds, and is one of the best food-fishes. Many are taken in the winter at Monterey, and in the summer the young from the wharres.

## Genus Sebastichtrys Gill.

The members of this extensive geums are extremely abundant on our Pacific coast, and form one of the most striking features of its fauna. All are fool-fish of good quality, and are sold in the markets under the general name of rock-fish or rock-cod. All the species are ovoviviparous. The young are produced in enormous numbers, and are brought forth in early summer or spring. They are then very slender, with large eyes and imperfectly developed fins, and are from $\frac{1}{3}$ to $\frac{1}{4}$ inch in total length.
156. Sebastichthys flavidus (Arres) Lockiugton. - Fellor-tail.

From San Diego to Cape Mendocino; very abundant in Monterey Bay and about San Francisco. It is found in both deep and shallow
water, and is taken in lage numbers with gill-nets and set-lines. Like all the species of the genus, it feeds on crustacea and small fish. This species is one of the larger ones of the genus, reaching a weight of 6 or 7 pounds. It is considered as one of the best of the group.

## 157. Sebastichthys melanops (Grid.) (Gill.—Bhack Bass.

From Monterey northward; most common in Puget Sound; not very abundant abont San Franciseo, but frequently seen in the markets. In size, habits, and value not essentially different from N. flaridux, with which species its affinities are closer than with Somystinus.
158. Sebastichthys mystinus J. \& (G.-Dhluck liothofixh; Preche l'sétre; 13lack Basso

From San Diego northward; more common about Monterey aml San Francisco than either northward or southward. It is found in rather shallow waters, and is mostly taken in gill-nets. It reaches a weight of 5 pounds, and trom its color is less salable than the others of the group, althongh the flesh is probably similar. It is probably sent to San Fraucisco in greater mombers than any other species. .
159. Sebastichthys entomelas J. ©. (i.

Known only from Monterey, where it is taken with book and line un deep water. Thus far the least abondant of the species. Similar in size and value to tharidus.
160. Sebastichthys ovalis (Ayrex) lockingtom.- limra.

From Santa Barbara to Monterey; takeu wita kook and line in very deep water; one of the least abundant species. Similar in size and value to $\mathbb{N}^{\text {g. Alaridux. }}$
161. Sebabtichthys proriger J. if (i.

Abont Monterey and the Farallones; taken with the next species in very deep water; not rare in its haunts. One of the smallest species, not weighing more than $1 \underline{2}$ pounds. In quality similar to other small red species.
162. Sebastichthys elongatus (Ayrev Gill.-lieina.

About Monterey and San Francisco; abundant in very deep water with the preceding. It is a small species, reaching it weight of 2 pounds, and being handsomely colored is one of the most silable species. It is not very common in the inarkets except in spring.

## 163: Sebastichthys atrovirens J. \& G.-Garrupa; (ireen Liocli-fiuh.

From San Francisen to San Diego: abundant about rocky places in rather shallow water.' Taken in considerable numbers in gill-nets, especially south of Point Concepcion. Many of them are taken in the winter about the Santa Barbara Islands, and a good many are dried and salted by the Chinamen. It reaches a weight of 3 pounds, aul is graded with flaridus and nebulosus.
164. Sebastichthys pinniger (Giill) Lockington. - V'liaume: Reri lionk Cond.

From Monterey northward; abumlant averywhere in decp water and taken in groit mumbres, chietly with set-lines, not often with gill-nets. This is probably the most abondant red species in the San Francisco markets, and many are split and salted in the deep waters of Puget somb. It is a large species, reaching in weight of \& or $\mathbf{1 0}$ pounds. It sells as well as the other red or erreen species, unless too large, when the thesh is rather coarse.

## 165. Sebastichthys miniatus J. \& (i.-Rianher: Rusiera.

From Santa Barbara to San Francisco; found with the preceding, but often in water less deep. It is taken with hook and line and gill-nets, and is sent into the market of San Francisco in large numbers. It reaches the same size as the preceding, and is equally valuable.

## 166. Sebastichthys ruber (Ayris) fillo.—lied Rock ('ond; liock fish; Tumbor.

From Santa Batbara northwarl; most abundant in Puget Sound and about San lizanciseo; taken with hook and line indeep water. Large specimens seen about Vieforia with the skull above infested by an encested parasitic worm. One of the most abmadant species in the San Francisco markets, and probably reaches the largest size of any-10 to 12 pounds. The large ones are very rohost in form. It grades with pinniger and miniatux, from which it is not distingoishet hy the trade.
167. Sebastichthys rubrivinctus I. \& 1. --suruminh flu!

Froms santa Parbara to Monterey, about the reefs in very deep water; oceasionally takoll with hook ann line in spring. It reaches a weight of (; poumds. In heanty of coloration it surpasses all other fish on the coast.
168. Sebasticlathys constellatus d. Al (i.-- Fingre.

From santa Barbara to sian lranciseo, in deep water; taken with hooks onls; mather abmulan and frequently seen in the market. It reaches a weight of "O or : pounds, and ranks with posaceus and other small species, amb, like them, spawn at Monterey in carly spring.
169. Sebastichthys rosaceus ( (irvl.) (iill.--l'marrir.

From San Franciseo to Santa Barmara (Nen Diego, (ird.), on reefs in deep water; where fomb the most abmond of the red species. It is one of the smallest spreies, rarely weighing orer $1 \frac{1}{2}$ pounds, and is taken to the San Franciseo market in great mumbers.
170. Sebastichthys shodochloris J. d (i.- Fly-fish.

Monterey and the liatallones, where it ocems in deep water with the preceding in considerable abmolance, and with it is occasionally sent in large numbers to the san lianciseo market in the spring.

## 171. Sebastichthys chlorostictus J. A (i.-Dexel lermiglie.

Kinown from Monterey and the larallones, where it ocems in eonsiderable aboulance with the three preceding species. It is a larger lish, reaching a weight of 4 pounds.
172. Sebastichthys caurinus (Rich.) J. \& G.
l'uget Sound northward; in babits and value similar to its Southern representative S. vexillaris.

## 173. Sebastichthys vexillaris J. \& G.-Red Garrupa.

San Diego to Puget Sound; generally abundant along the coast in water of moderate depth. Taken chiefly with nets. Many are sent to the San Francisco market, it ranking with abundance only behind ruber, pinniger, rosaceus, flaridus, mystinus, auriculatus, and carnatus. It is one of the larger specios, reaching a weight of 5 or 6 pounds.
174. Sebastichthys aunioulatus (irrl.) Gill.-Rork-fiwh.

Santa Barbara to Puget Sound ; everywhere one of the most abundant species, and always the one most frequently taken near shore. It is the only one frequenting, habitually, shallow bays and taking the book around wharves. It is common in the San Francisco markets and reaches a weight of 3 pounds, althongh usually taken in San Francisco Bay at half a pound weight. It is less valued than the deep-water species as food.
175. Sebastichthys rastrelliger J. \& G.-Giarrupa; Gruzs Rock-jinh.

From Humboldt Bay sonthward; abundant about the Santa Bar. bara Islands, where it is taken with hooks and gill-nets, but rarely with seines. It occurs in considerable numbers in the San Francisco markets. It reaches a weight of $2 \frac{1}{2}$ pounds, and is esteemed as the best of the family as food.
176. Sobastichthya maliger J\&G.

From Monterey northward, in rather deep wat ${ }^{2}$; commonest in the Straits of Fuca, where it is taken with hook and line. It is occasionally scen in the San Francisco markets, but is one of the less common species. It is one of the largest species, reaching a weight of 6 pounds.

## 177. Sebastichthys carnatus J. \& G.-Garrupa.

From Santa Barbara to San Francisco; abundant at Monterey, where it is taken in great numbers in rather shallow water with gill-nets. At Santa Barbara it is rare, and it das not been noticed northward. It reaches a weight of 2 g pounds, and grales with atrocirens, flavidus, nebulosus, etc., as fairly good.

## 178. Sebastichthys chrysomelan J. \& (i.- liarrupes.

From Santa Barbara to San Francisco; rather less abundant than the preceding and found in rather deeper water. Otherwise very similar in size and habits.
179. Sebastichthys nebulosus (Ayres) Gill.-Garrupa; lock Cod.

From Monterey to Puget Sound; rather common, and becoming abundant northward. It occurs in water of moderate depth and is taken by means of hooks and gill-nets. It is rather commou in the markets n." San Francisco, and reaches a weight of $3 \frac{1}{2}$ pounds.
180. Sebastichthys semiceps J. \& (i-Trci-finh.

From Sau Diego to San Francisco; abundant about Catalina Island in rather deep water among rocks; less common northward, but ocensionally seen in the San Francisco markets. It reaches a weight of about 3 pounds.
181. Sebastichthys nigrocinctus (Ayrus) Gill.

Monterey to I'uget Sound; rather abundant in the Straits of Fica in very deep water; rare about San Francisco, aml only occasionally takeu with a hook and line in deep water. It is one of the most striking species in color, and hence preferred by buyers. It reaches a weight of 4 pounds.
182. Scorpana guttata Grel.-Scorpene; Sunlpin; Scorpion.

Santa Barbara southward; very abundant in rocky places, and often in bays aud shallow water. It feeds on crustacea and spawns in spring. It is esteemed as one of the best of food-fishes. It reaches a weight of rarely more than $1 \pm$ to : pounds. A wound from its dorsal spiues is ex. tremely painful for a time, like a poisomed stimg.

## loimily COTTID.E.

## 183. Nautichthys oculofasciatus Givl.

From San Francisco northward, rare; oceasionally taken in Puget Sound in rather deep water. It reaches a length of 6 to 8 inches.
184. Blepsias cirrhosus (Pallas) (ithr.

From San Francisco northward, scaree; not rare in Puget Sound, where it is sometimes taken in seines. It reaches a length of about 6 inches. Like the preceding it is occasionally preserved as a curiosity

## 185. Oligocottus analis Gryl.-Lillle Scorpion.

From Monterey to Lower Calitornia; common in rock-pools, and ex. tremely active. It reaches a length of about 4 or $\overline{5}$ inches.

## 186. Oligocottus maculosus (ird.-Johnny.

From San Luis Obispo to Alaska; exceedingly abundant northward, in rock-pools and among stones close to shore in sheltered bays. One of the most abmindant species on the coast so far as the number of individuals is concerned. It reaches a length of $2 \frac{1}{2}$ inches, being the sinallest of our marine Cottille. It is subject to great variations in color, dependent on the character of its surroundings.

## 187. Blennicottus globiceps (Gri.) (iill.

From Monterey to Puget Sound and northward. in rock-pools, with the preceding. Its motions are, howeser, much less active. It is no. where abundant. It reaches a length of $\overline{5}$ inches.

## 188. Liocottus hirundo (iirarl.

About Santa Barbara and the jslands; taken with hook and line; rare. It reaches a length of about 7 inches.

## 189. Leptocottus armatus (ivil-Sculpin: Drummer.

Entire coast; everwwere abundant in lagoons, sheltered bays, and muddy bottoms. It feeds on crustaceans, and takes the hook readily. It reaches a length of a foot, and is held in no extcen. Some are dried by the Chinese, who consider it one of the least valuable fishes. Its movements are in general more active than those of most sculpins.

## 190. Scorpanichthys marmoratus (iril.-sculpin; Capisone; Salpa; Bigyyhead.

Entire coast; very abundant about San Francisco, becoming less common worth and sonth, but seen by us at Victoria and San Diego. It lives in the kelp, at moderate depths, and is taken with the hook or gill-net. It is a coarse, dry fish, held in very low esteem, and not sent to the market from any great distance. It reaches a length of about 2 feet and a weight of 8 to 10 pounds, being much the largest of the Cottoids on this coast.

## 191. Aspicottus bison Gril--Stone Senlpin; salpu.

San Francisco northward; exceerlingly abundant in Puget Sound in rocky places, and among weeds at small dopths in sheltered bays. At. Seattle the most abundant of the family. Less common at San Francisco. It feeds chiefly on UVHe and other green plants, of which its long intestines are always full. It takes the hook readily with any sort of bait, and therefore probably does not disdain animal food. It reaches a length of about a foot, and is seldom used for fool. The European Cottux mbalis Luphrasen with which this species is considered identical by Dr. Giinther, is a true Cottur, and has no intimate relation to A spicottus bison.

## 192. Hemilepidotus trachurus (Pallas) (ithr.

From San Francisco northward, in similar situations with the preceding, but much less abundant. It feeds chiefly on crustacea. It reachen a length of about 15 inches, being, next to Scorpoenichthys, the largest Cottoid of our west coast. It is ramely used as foom.
193. Hemilepidotus spinosus Ayres.-Capisone; Cabeson.

About San Francisco and Monteres, where it is rather common. Taken chiefly by the Chinese on set-lines in rather deep water. It reaches a length of 9 inches, feeds on erustacen, and is held in no esteem as food.

## 194. Artedius pugetensis Steind.

Puget Sound; not abundant. It feeds on erustacea, ete. It reaches a length of about 9 inches, and is seldom used as food.
195. Artedius megacephalus Lochington.-Chitonotus meyucrphalus Lowhington. Mining and Scientitic Press, Sam Francisco, 1809.)
Deep water off San Francisco. Distinguished from the preceding hy the greatly-elevated anterior portion of the spinous dorsal, the first spine reaching past the front of the soft dorsal. Specimens numbered 27,15 , from Point Reyes, lately distributed by the National Museum as Artedius pugetensis, belong to this species.
196. Artedius quadriseriatus Lockiugton.

Only seen about San Francisco, where it is very common in deep water off Point Reyes, being brought in by the sweep-nets, mixed with tom-cod and prawns. It reaches a length of less than 3 inches.
197. Artedius notospilotus Grd.-Sculpin; Drummer; Salpm.

Santa Barbara to Paget Sound, most abundant at Santa Barbara. It 'ives in the kelp, in water of moderate depth, ann is mostly taken with the hook. It reaches a length of 4 to 5 inches, ano is little esteemed.

## 198. Artedius lateralis Grv.

Monterey to Puget Sound, inhabitiug the rock-pools with the species of Oligocottus; n.t common anywhere. It reaches a length of about I inches. It is reanily distinguished from the precedng by the larger mouth and the naked, smooth head.
199. Cottus polyacanthocephalus Pallas.-Sculpin; Bull-head.

Puget Sound and northward; generally abundant; not seeu southward. Carnivorons. It reaches a lengtb of 15 inches or more, and although of considerable size is not often used as food. There is much waste in a sculpiu, the removal of the head and skin leaving very little meat, and that little comparatively is coarse and dry.
200. Ascelichthys rhodorus J. \& G.

At Waada Island and other points at the entrance of the Straits of Fuca; exceedingly abundant among the rocks at low tide. Specimens in Mr. Lockington's collection from Gualala, Mendocino County, California. Carnivorous, reachiug a length of $3 \frac{1}{2}$ inches.
201. Psychrolutes paradoxus Gthr.

Puget Sound and northward; a specimen from the Aleatian Islands is in the Museum of the Alaska Commercial Company. It reaches a length of 2 inches.

> Family AGONIDE。
202. Bothragonus swani (Steiul.) Gill.

Not seen by us; the original specimen from Port Townsend.
203. Padothecus trispinosus (Lockington) J. \& (i.

San Francisco to Santa Barbara; occasionally brought in among prawns to the markets of Satn Franciseo; one specimen dredged at Santa Barbara. It reaches a leugth of 3 inches.

## 6. PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

## 204. Podothecus vulsus d. \& G.

About Sall Francisco in the open sea. Bronght into matket occasion. ally with prawns, and sometimes taken in sweep-nets by the paranzelle, whica are large fishing-boats, sailing in pairs betore the wind, drawing a large net behind and between them on the bottom. It reaches a length of $4!$ inches.
205. Podothecus acipenserinus (Pallas) Githr.

Puget Sound aud northward; abundant; taken frequently in seines in water of moderate depth. It reaches a length of about a foot.
206. Brachyopsis xyosternus J. A G.

Bay of Monterey; abundant in June along the shore about Soquel; not seen elsewhere; taken in sejnes. It reaches a length of ã or 6 inches.

## 207. Brachyopsis verrucosus Lorkington.

Point Reyes to San liaucisco; occasionally brought into the markets with tom-cod or prawns, many being taken in the sweep-nets. It reaches a length of 6 to 8 inches.
208. Aspidophoroides inermis Günther.

Described from the Gulf of Georgia; not seen by us.

> Family TRIGLD) A.

## 209. Prionotus stephanophrys Lock.

One specimen known, from off Point Rejes.

> Family LIPARIDID E.

## 210. Liparis pulchellus Ayrea.

About San Francisco and Monterey, and probably northward, but not seen by us elsewhere. Taken occasionally with seines at Soquel, and sometimes brought into the San Francisco market. It reaches a length of $\overline{0}$ or 6 inches.

## 211. Liparis, cyclopus Giinther.

A single young specimen obtained by us at Monteres.

## 212. Liparis mucosus Ayres

About San Francisco, and probably nortuward. It reaches a length of 5 or 6 inches.

Family CYCLOPTERID $\mathbb{E}$.

## 213. Eumicrotremus orbis (Gthr.) Gill.

Described from Esquimault Harbor; not spen by us on the coast. A specimen is in the Museum of the Alaska Commercial Company from the Aleatian Islands.

## Family GOBIESOCID E.

## 214. Gobiesox reticulatun (Gri.) J. \& G.-Sucting-fixh.

From Monterey northward to Puget Soum ; not noticed southward; very abundant at Point Pinos, and about Cape Flattery, where it lives among the rocks between tide-marks. Its motions in the water are active, but it is usually found clinging to stones. It feeds on small shells and crustacea, and reaches a length of 5 to $i f$ inches.

## 215. Gobiesox rhessodon liosa smith Mss.

Under rocks at Point Loma, near San Diego; locally rather abundant.
Family BLENNIIDA.

## 216. Hypleurochilus gentilis (Grd.) Gill.

From Santa Barbara southward; not rare in rock-pools between tidemarks, among alga. It reaches a length of 5 inches.

## 217. Neoclinus blanchardi Grd.

Frean Monterey southward, in the kelp; taken occasionally with hook and line Feeds chietly on crustacea. It reaches a leugth of 7 to 8 inches. Scen by us at Monterey, San Luis Obispo, and Santa Barbara.

## 218. Neoclinus satiricus Girard.

Monterey sonthward; rare. Seen by usat Monterey, only. 'It reaches a length of a foot, and lives in the kelp.

## 219. Heterostichus rostratus Grl.-Kelp-fish.

From Monterey sonthward; not rare in the kelp south of Point Concepcion. Taken with hook and occasionally with seines. It feeds on crustacea, ete. It reaches a length of about 15 inches. It is sometimes brought to market with other fish, but no special notice is taken of it.

## 220. Gibbonsia elegans Cooper.

From Montereysouthward; abundant everywhere in kelp and rock. pools. It reaches a length of 8 inches, and is not noticed by the fishermen.

## 221. Cremnobates integripinnis Rosa Smith.

San Diego to Mazatlan; the specimens from our coast found in rock. pools near La Jolla, 12 miles north of San Diego, among algre between tide-marks. Length $2 \frac{1}{2}$ inches.

## 222. Murænoides ornatus (Gril.) Gill.-Eel.

San Francisco northward; abundant in Puget Sound. Found in rockpools in sheltered places and sometimes taken in seines. It reaches a length of a foot. It is not considered a food fish. The form called M. latus is considerably more abundant than the typical ornatus. They two differ only in the form of the dorsal blotches and are, probably, not distinct species.
223. Apodicithys fucorum J. \& G.

Monterey to Puget Sound; very abundant at Point Pinos; less common abont Cape Flattery. It is very abmudant in the Fiucus belwern tide-marks, especially where thick bunches of the slender Fucus hathg from rocks into a little pool of water. At Monterey lage mumbers may often be shaken from a tuft of Fuens, at considerable distamer from the water. Its movements are excedingly active, more so than those ui other eel-shaped blemnies. It reaches a length of on or 18 inches.
224. Apodichthys flavidus (ivel.

San Lais Obispo to Puget Somul, in rock-pools and in the kelp. Fine quently taken with seines. It reaches a length of over a foot, and in remarkable for its brilliant colors, which vary from bright ireen tooranse and violet with its surroundings. It feeds, like the three preceding species, on crustacea and small shells.
225. Anoplarchus alectrolophus ( ('allias) J. il (i.

From Monterey northward; most abundant in lupet somml. It inhabits the region between tide-marks, where it is sheltered from the smid. It is nsually found among weeds and stones where the bothon is very muddy. It reaches a length of about s inches. Pyloric cotat are pres. ent in this species, as in the species of liphister and Cebedichthys. They are wanting in Apodichthys and Murenoides.
226. Xiphister chirus.I. © (:

From Monterey northward; more abmatant about Puget somml. It imhabits the region about low-tide mark, among rocks or massel shedls which are exposed to the action of the wares. Like the others of the genus it is strictly herbivoroms, feeding on red or areen algab. It reaches a leugth of 6 to 8 inches.

## 227. Xiphister mucosus (lird.) Jor.

From Monterey nothwarl; everywhere very abmand amon; lowso rocksbetween tide-matis. It feedson alga, and reactes a lengthof atmont 20 inches. Occasionally brought into the San Francisco manket, where it sells at 30 cents per pound.

## 228. Xiphister rupestris J. \& (i.

From Monterey northward; everywhere very abmadant whill the preceding. It reaches a length of about a foot.
229. Lumpenus anguillaris (Pallas) Gill, - Liel.

From Northern Calitornia northwarl; exceedingly abundant in Puget Sound, where it inhabits sandy shores in water of moderate depth. It feeds chiefly on algæ. It reaches a length of 20 inches. It is occasionally brought into the markets, but is not valued as food, and apparently seldom eaten, its looks being agrainst it.
230. Anarrhichthys ocellatus Ayrus-Eit; Morina; Asia; Wolf Eel.

From Monterey northward; not rare, but not very abundant. It feeds on crustacea and fishes. It reaches a length of 8 leet and a weight of at least 25 pounds. It is sent to the markets and brings a fair price.

Family BATRACHIDE.
231. Porichthys porosissimus ( $\therefore$ \& V.) (ircl.-Mut-fixh; Cint-fixh; Irunmer; singing fish.
Dxceerlingly abundant the eutire length of the coast in shallow, muddy, or weedy bays, often under stones. It reaches a length of somewhat more than a foot, and is never used as food.

Family ZOARCID.E.
232. Lycodopsis paucidens (Lackington) riill.

San Francisco and northward; not very connmon; brought in with the tom-cod taken in sweep-nets off Point Reyes. It reaches a length of about 10 inches. No notice is taken of it ats if foot-fish.
233. Lycodopsis pacifleus Cullort.

San Francisco northward, with the preeding; abundant in Puget Sound. Distinguished only by the siaaller head and mouth.

> Family CONGROGADIDE.
234. Scytalina cerdale J. \& (i.

In loose stones near low tide mark, on Wiadat Island, near Cape Flattery. It reaches a length of abont 6 iuches. It is exceedingry active in life.

> Family OPHIDIIDE.

## 235. Ophidium taylori Gid.

San Francisco to Santa Barbara; not vely ronmon; talicu in wweep. nets with tom-cod, ete., about Sin Farncisco, and someimes brought into the markets. It reaches a length of about 14 inches, and no special notice is taken of it.

> Family BROTULII E.
236. Brosmophycis marginatus (Ayr:4) (iill.- Cunti Mastela.

San Francisco and northward; rare; occasionally brought into the San Irancisco market, and from its bright colors radily salable. It reaches a length of nearly 18 inches.

> Family GADIDA:
237. Microgadus proximus (Grd.) Gill.-Tom Cod; Whitimy.

Monterey to Puget Sound; very abundant from San Fraucisco northward, and taken in immense numbers in seines and sweep-nets. Its Hesh is somewhat watery and tasteless, jet it meets with a ready sale. It reaches a length of about a foot and a weight of about $\underset{\downarrow}{t}$ pound.

Proc. Nat. Mus. $81-\overline{\mathrm{L}}$ April 30, 1881.
238. Gadus morrhua L.-Alaska Cod.

Straits of Fuca and northward; abundant on certain banks; probably occurring off the coast of Oregon.
239. Pollachius chaloogrammus (Pallas) J. \& G. . (Gadus periscopus Cope.)
Monterey and northward; occasionally taken with hook in deep water about Seattle with Bathymaster signatus; very rare about San Francisco. It reaches a length of abont 2 feet.
240. Merluoius productus (Ayres) Gill.-Merluccin: Horse Mackerel.

Santa Cruz Island northward; very abundant at certain seasons, especially at its spawning time in the spring, when it is taken in great numbers in the gill-nets at Monterey, Soquel, and elsewhere. Its distribution is irregular, being very abundant some years but at other times extremely scarce. It is extremely voracions, feeding on all sorts of small fishes and squids, its stomach being always full. It ranks low as a market fish, as its flesh is extremely soft, and it is always raggedlooking when shipped. It reaches a length of rather more than 2 feet and a weight of 10 pounds.

## Family PLEURONECTIDE.

241. Atheresthes stomias J. \& G.

San Francisco and northward; the only specimens taken by us were from between Point Reyes and the Farallones. It reaches a length of 30 inches and a weight of 5 or 6 pounds, being probably the slenderest flounder known.

## 242. Hippoglossus vulgaris Fleming.-Halibut.

From San Francisco northward; not abundant south of the sitraits of Fuca. There is a large halibut bank near Cape Flattery, and considerable numbers are taken in the deeper channels of the sound by means of hook and line. It reaches a length of 5 or 6 feet and a weight of 200 pounds or more. It feeds on codfish and any other large fish which it can take. Its flesh is much esteemed.

## 243. Xystreurys liolepis J. \& G.

Santa Barbara and southward; not very rare, in moderately deep water and about the kelp. It reaches a length of about 14 inches and a weight of a little over 2 pounds.
244. Paralichthys maculosus Grd.-Monterey Halibut; Bastard Halibut; Flounder.
(Cropsetta californica Gill.)

Tomales Bay southward; abundant from Monterey to San Diego, being the most abundant flounder south of Point Concepcion, the young swarming in all the bays, the adult comparatively rare. It reaches a length of nearly 3 feet and a weight of 60 pounds, the largest seen by
us weighing 55 pounds. The large ones are taken chiefly in gill-nets. As a food-fish it is considered rather inferior to the others, the large ones being tough and coarse.
245. Hippoglossoides jordani Lockington.-Sole; Soglia.

Monterey to Puget Sound; rare northward, but very abundant about San Francisco. At Monterey it is the most abuudant species. It is considered one of the best of its family. Great numbers are salted, hung up by the tails, suspended above the roofs, and dried, by the Chinese. It reaches a length of 18 inches and a weight of 3 to 5 pounds.
246. Hippoglossoides elassodon J. \& G.

Puget Sound and northward; not uncommon about the wharves of Seattle and Tacoma, where it is taken with hook and line. It reaches the length of about a foot and a weight of at least 2 pounds.
247. Hippoglossoides exilis J. \& G.

San Francisco to Puget Sound, in dcep water. Taken about Point Lieyes with sweep-nets, at certain times, in enormous numbers. Less common abont Seattle. A small species; none seen over 9 inches in length, weighing about $\frac{3}{4}$ pound. It is not valued, the flesh being soft. Most of those taken by the paranzelle are thrown away.
248. Psettichthys melanostictus Grd.-Sole.

From Monterey to Puget Sound; everywhere common, but not so abundant as some other species. It is considered the best of the flounders for the table. It reaches a length of nearly 20 inches and a weight of 4 to 5 pounds.
249. Citharichthys sordidus (Grd.) Gthr.-Plaice.

Entire coast; most abundant northward; rather rare south of Point Concepcion. It frequents rather deep water, and is best taken with hook or sweep-uet. It is one of the smaller species, rarely weighing more than $1 \frac{1}{2}$ pounds, and its flesh is comparatively soft. Many are dried by the Chinese, who do not find it necessary to hang them up as in the case of the larger "sole", but dry them upon tables.
250. Parophrys isolepis (Lockington) J. \& G.-Solc.

From Monterey to Puget Sound, in rather dcep water; not rare; large numbers are brought into the San Francisco market, being taken in the sweep-nets about Point Reyes. It reaches a length of 15 inches and a weight of 3 pounds, although usually much smaller.

## 251. Parophrys ischyrus J. \& G.

Puget Sound; not common; the four specimens seen taken near Seattle with a seine. It reaches a length of 18 inches and a weight of about 4 pnunds.
252. Parophrys vetulus Grd.-Sole.

Santa Barbara to Alaska; very abundant from Monterey northward to Puget Sound. It is usually one of the smallest species, reaching a length of about 14 inches and a weight of 2 or 3 pounds. Most of those scen in the markets weigh about half a pound. It is one of the principal market species, and usually sells well.
253. Lepidopsetta bilineata (Ayres) Lock.-Rock Solc:

Monterey to Alaska; rather common about rocky places, and abundant in Puget Sound; considerable numbers are taken with set-lines by the Chinese at Monterey. It reaches a length of 18 inches and a weight of 3 to 5 pounds.

## 254. Pleuronectes stellatus Pallus.-Flounder.

From San Luis Obispo northward; everywhere very abundaut, especially northward and about the mouths of rivers; the commonest flounder ou the coast. It is reckoned a good food-fish when not too large. It reaches a length of 2 feet and a weight of at least 10 pounds.
255. Glyptocephalus zachirus Lockington.--Nole.

About San Francisco and Monterey, in rather deep water; taken chiefly with the sweep-nets, its mouth being too small for the hook and its habitat too deep for the gill-nets. It reaches a length of 18 inches and a weight of about 2 pounds, and is considered excellent food.
256. Cynicoglossus pacificus (Lock.) J \& G -Sole.

Mouterey to Puget Sound, in rather deep water; generally abundant; taken chiefly is the sweep nets. Rather common at Seattle, and often brought in immense numbers from the sweep-nets to the San Francisco markets. It spawns in May and June. It reaches a length of a little more than a foot and a weight of 2 pounds. This species is excessively slimy when taken ont of the water. It is considered as a good food-fish when large. The small ones, taken so abundantly, are little valued.
257. Hypsopsetta guttulata (Grl.) (iill.-Turbot; Diamond Flonnder.

Tomales to San Diego; widely distributed, but not so abundant anywhere as most of the other species. Considerable numbers are brought to the San Francisco market, but none have been noticed by us in Monterey Bay. It reaches a length of nearly a foot and a weight of about 3 pounds.

## 258. Pieuronichthys ccenosus (ird.

San Diego to Alaska, in deep water; not very abundant anywhere south of Puget Sound, where it is quite common. It is chiefly herbivorous, like the other species of the genus, and with them spawns in May to July. It reaches a leugth of about a foot and a weight of 2 to 3 pounds. It is rarely seen in the San Francisco markets.
259. Pleuronichthys decurrens J. \& S .

Monterey and San Franeisco (and northward ?), in deep water. Large numbers taken in sweep-nets about the Farallones aml brought into the San Irancisco markets. In size, food, und lubits similar to the preceding, but more abundant.

## 260. Pleuronichthys verticalis J. if G.

Monterey and San Francisco, in deep water; taken at Monterey in considerable numbers in the spawaing season by means of gill-nets. It is similar in size, feed, aud habits to the others, but most specimens seen in the markets are of smaller size.
261. Aphoristia atricauda J. \& G.

Numerous specimens, 3 to 5 inches long, taken at San Diego.

## Family $\mathbf{~ U L O R H I N C H I D A . ~}$

## 262. Aulorhynchus flavidus Gill.

Monterey to Puget Sound, in large schools in sheltered bays near the shore; not common southward. It reaches a length of 5 to 6 inches.
263. Gasterosteus microcephalus Grd.-Stichleback.
(Gasterosteus plebcius and pugetli Gril.)
In rivers and brachish waters from Los Angeles River to Puget Sound; commonest southward. Iength 2 inches.
264. Gasterosteus aculeatus var. cataphractus (Pallas) J. \& G.-Stickleback; Salmon hiller. (Gasterostews serratus Ayres; Giasterosteus insculptus Rich.)
In salt water, entering rivers from San Francisco to Alaska; very common northward. Length $2 \frac{1}{2}$ inches.

## lamily SYNGNATHIDE.

265. Siphostoma californiense (Storer) J. \& G.-Pipe-fish.

Santa Barbara to Puget Sound; the form called S. griscolineatus from San Francisco northward, the other southward and generally common ; most common at Soquel. It reaches a length of 15 to 18 inches.
266. Siphostoma leptorhynchus (Grd.) J. \& G.

Santa Barbara to San Diego; not very common except in San Diego Bay. It reaches a length of less than a foot.
267. Siphostoma punctipinne (Gill) J. \& G.

Ouly the original types, from San Diego, are yet known.
Family HIPPOCAMPIDA.
268. Rippocampus ingens Grd.-Sca Horse.

San Diego; rare. Reaches a leogth of about a foot.

## Family TETRODONTID䙵.

269. Cirrhisomus politus (Ayres) J. \& G.

Not obtained by us. A specimen in cóllection of California Academy, from San Diego.

> Family DIODONTIDE.
270. Diodon maculatus Lac.

One specimen, from uear San Diego.

## Family ORTHAGORISCID A.

271. Mola rotunda Cuvier.-Sunfish; Mola.

Abundant in Santa Barbara Chaunel in summer; often seen playing near the surface, and even leaping from the water; not often taken, as they are not easily caught and not used for food. Reaches a weight of 200 pounds or more.

United States National Museum, December 1, 1880.

## DEGCRIPTION OF MEBAGTICHTEIY MYATINUE.

## By DAVID S. JORDAN and CHARLES H. GILBERT.

## Sebastiohthya mystinua.

Sebastes rariabilis Ayres, Proc. Cal. Acad. Nat. Sci. i, 7, 1854 (not of Pallas, $=$ Epinephelus ciliatus Tilesius).
Sebantoder melanopa Ayres, Proc. Cul. Acad. Nat. Sci. ii, 216 (in part; probably not the figure 66, which more resembles S.melanops; not Sebastes melanop* Girarl, = Sebastosomus simulans Gill).
Sebastichthys melanops Jordan \& Gilbert, Proc. U. S. Nat. Mns. iii, 18<0, 220, and elsewhere.
Sebastichthys mystinus Jordan \& Gilbert, Proc. U. S. Nat. Mus. iii, 1880, 445 ; 1881, 8.

Two species have been confounded by previous writers under the name of Sebastes or Sebastosomus melanops. The one, darker in color, with smaller mouth and black peritoneum, is found from Puget Sound to San Diego, being most common southward, and is perhaps the most abundant species of the genus on the coast. The other, paler and more spotted, with larger mouth and white peritoneum, ranges from Monterey to Sitka, being most common northward. The first is the "Pêche Prêtre" of the Monterey fishermen, the second the "Black Bass" of the anglers of Puget Sound. The first is referred to by us as Sebastichthys melanops on page 289 and elsewhere in these Proceedings (Vol. III); the sccond as Sebastichthys simulans. The original description by Girard of his Sebastes melanops, however, can refer only to the second fish, as is shown by the following statements (U. S. Pac. IR. R. Expl. Fishes, 81):
" Upper surface of head spineless;" "the posterior extremity of the maxillary, very much dilated, extends to a vertical line drawn inwardly to the posterior rim of the orbit.". "The pectorals are broad; * * the tip of these fins extends almost as far as the tip of the ventrals." "The upper surface of the head and of the dorsal region above the lateral line are almost black, or else of a purplish black. The side of the body is yellowish, with an irregular purplish black spot upon nearly all the scales. The side of the head is of a lighter purplish black. The inferior region is of a soiled yellow, though of a metallic hue. The fius are unicolor, of dark purple tint." The "Péche Pietre" has a preorbital protuberance, which usually ends in a spine; the "Black Bass" has neither protuberance nor spine. The mouth is smaller in the "Pêche Prêtre", the maxillary barely extending to the posterior margin of the pupil. The pectoral tins are longer in the "Pêche Prêtre", extending past the tips of the ventrals; in the other not so tar. And, finally, omitting the expression "purplish", which scarcely applies to any rock-fish, the account of the color describes the "Black Bass", but not the "Pêche Prêtre".

Furthermore, the original type of Girard's description, the large specimen from Astoria, is still preserved in the National Museum, and its identity with the species formerly called by us S . simulans is undoubted. The original type of the name Sebastosomus simulans is also preserved. It belongs to the same species, liffering only in having the lower opercular spine somewhat less conspicuous than usual. The northern fish, the "Black Bass" of Puget Sound, must, therefore, retain the name of Sebastichthys melanops, of which name simulans is a synonym, while the "Péche Prêtre" may receive the new name of Sebastichthys mystinus. Sebastichthys ciliatus (Epineqhelus ciliatus Tilesius $=$ Perca variabilis Pallas) is related to both species, but distinct from both, having the black peritoneum of mystinus, but lacking the bulge of the preorbital region. The mouth is larger than in mystinus, but smaller than in melanops, while the coloration is different from both.

## DESCRIPTION OF SEBASTICHTHYS MYSTINUS.

Body oval-oblong, compressed, both dorsal and ventral outline evenly curved. Head conic, compressed, the profile almost straight. Mouth comparatively small, oblique, the lower jaw protruding; mouth entirely below the axis of the body; premaxillaries on the line of the lower rim of the orbit; maxillary thickly scaled, reaching to opposite posterior margin of pupil; mandible scaly.

Top of head without spines, with the exception of the very small nasal pair, and sometimes a preocular pair; the interorbital space perfectly arched, and the entire top of the head covered with very small, crowded scales; the preocular ridge forming a projection over the upper anterior angle of the orbit. The forehead between the preocular ridges is notably full and convex. The occipital ridge forms two slightly di-
verging ridges under the scales. Preorbital with a small spine, which is sometimes obsotete.

Preopercle with rather strong spines, the two at the angle longest. Opercle with two strong spines. Suprascapular spines present.

Gill-rakers numerous, long and vers strong, their length half the diameter of the eye, their number about $\frac{9}{3}$.

Scales smaller than in most of the species, in abont 66 transverse series.

Spinous dorsal low, the fourth to seventh spines highest, all lower than the soft dorsal, the fin not deeply emarginate. Third anal spine slightly longer than the secoud, but not so strong. Caudal fin emarginate. Pectoral fins long, reaching beyond the tips of the ventrals to the base of the tenth dorsal spine. Ventrals not reaching to the vent.

Fin rays: D. XII, I, 15 ; A. III, 9 .
Color slaty black, becoming lighter below the lateral line. Belly scarcely pale. Sides often somewhat mottled. Tip of lower jaw black. Top of head with three indistinct cross-bars: one in front of eyes, continued around anterior rim of orbit, and extending backwards across the cheeks; one between the orbits, reappearing below in a second oblique cheek-band; the third across occiput, extending obliquely backwards to the upper angle of the opercle. Fins plain dusky.

Peritoneum black, as in S. ovalis, S. entomelas, and S. ciliatus. In S. melanops and its near relative S. flavidus the peritoneum is always white.

United States National Museua, January 5, 1881.

## DENCREPTION OE ARW MPECIEA OF PTYCHOCIILUS (PTYCHO-

 CHILUS HARFORDI, PROM WACRAMENTOREVER.
## By DAVID S. JORDAN and CHARLES H. GILBERT.

Ptychochilus harfordi, sp. nov.
Allied to Pt . oregonensis (Rich.), but with much smaller scales.
Body long and slender, little compressed, the back not elevated, the caudal peduncle large and stout. Greatest depth of body contained $\tilde{y}^{3}$ times in its length from snout to base of caudal. Head long, pike-like, subconic, rather slender, broad and depressed above. Length of head contained 4 times in length to base of caudal Mouth terminal, oblique, the lower jaw somewhat projecting. Premaxillary anteriorly on the level of the eye. Maxillary, as in other species, closely adherent to the preorbital, except near its end, where it slips under the preorbital, its tip extending just beyond the vertical from the front of the eye. Length of cleft of month contained 23 times in length of head. Interorbital width 3 times in the length of head. Eye small, placed high, its diameter contained 3 times in the length of the suout, 10 times in that of the head. Cheeks very broad. Lips normal, as in other species of the
genus. Gill-rakers very short. Pseudohranchiæ large. Gill-membranes in one specimen united and wholly free from the isthmns; in the others joined as usual in Cyprinide. The condition in the first specimen is donbtless abnormal. Pharyngeal bones and teeth as in the other species of the genus; the teeth $2,4-5,2$, slender, hooked, without grinding surface.

Scales $17-90-9$, those on the back and belly rather smaller than the others, those on the breast imbedded. Lateral line very strougly decurved, its lowest point scarcely above the line of insertion of the pectoral fins.

Dorsal fin inserted at a point midway between eye and base of candal, a little behind the insertion of the ventrals. Caudal short and deep, not strongly forked, the lobes equal, the accessory rays not nu. merous. Pectorals not large, extending three-fifths the distance to the ventrals, which reach two-thirds the distance to the vent. Anal fiusmall. Dorsal rays I, 8; anal I, 7.

This species reaches a length of nearly 3 feet. It is brought into the markets of San Francisco in considerable numbers in the winter, in company with the closely related and still larger species Ptychochilus oregonensis (Pt. grandis Ayres), with which species it has been hitherto confounded. The latter species is, however at once distinguished by its larger scales, the usual number being 12-75-0. Ptychochilus rapax Grd. has the larger scales of Ptychochilus oregonensis, and the lateral line is represented as little decurved, the scales more loosely imbricated; and Pt. lucius Grd., from the Colorado liver, is represented as having the scales still smaller than in Pt. harfordi, while "Ptychochilus vorax Grd." is not a member of this genus at all, but belongs to the group called Gila.

We have named this species for Mr. W. G. W. Harford, curator of the California Academy of Sciences, who has taken much interest in the development of the ichthyology of California, and to whom the National Museum lias been indebted for many favors.

The typical specimens, four in number, are entered as No. 27246 on the Museum Register. The largest one is about 18 inches in length, the others a little smaller. They were obtained by the writers in the San Francisco market, and were taken in the Sacramento River.

United States National Museum, Jamuary 5, 1881.

## NOTE ON EAAE INORNATA.

## BY DAVID S. SORDAN and CHARLES II. GILEERT.

Four species of the genus Raia are known from the Pacific coast of the United States. One of these was described by Girard, under the name of Raia binoculata, in the Proc. Acad. Nat. Sci. Phila., 1854, p. 196, and later under the name of Uraptera binoculata. The description con-
tains little that is characteristic, and the typical example seems to be lost. We have, however, no doubt that it was based on a young individual of the large skate called by us, on page 252 and elsewhere in these Proceedings (Vol. III), Raia cooperi. The presence of the single spine on the median line of the back anteriorly, as described by Girard, is one of the most constant diagnostic characters of the young of this species, and we have never found less than three or four such species in the corresponding position in the species called by us hitherto Raia linoculata.

The Raia cooperi of Girard is based on a drawing by Dr. Cooper, and the great size is the only diagnostic character assigned to it. As three of the species reach a length of but 30 inches and the other a length of 6 feet, we have no difficulty in making an identification with the species described by us as Raia cooperi on page 252. Raia binoculata of Girard is thus probably the young of Raia cooperi of Girard. The large skate should therefore be called Raia binoculata, while the species described by us on page 134 of the Proceedings as Raia binoculata may receive the new name of Raia inornata.

Specimens of this species obtained at Santa Barbara represent a marked variety, distinguished by the small number and feebleness of the spines and prickles, and in the presence (in the females) of a band of small prickles on the posterior part of the pectorals, parallel with the edge. Suprocular spines almost obsolete. Two or three minute prickles often present on the merlian line at the shoulders. A series of minute stellate prickles beginning near the middle of the back, becoming hooked spines on the tail. Lateral caudal spines scarcely developed, even in the female. A band of small prickles on the posterior part of the back. Males almost smooth. Size and color as in R.inornata. This form may be known as var. inermis.

United States National Museum, January 13, 1881.

## ON THEE PISHEMORTALITE IN THEESUET OE MRXICO.

## By ERNEST INGERSOLI.

SIR: Pursuant to your verbal suggestion, I made it an object, during my recent cruise down the western coast of Florida in the service of the Superintendent of the Census, to inquire into the so called "poisoned water" which was supposed to have caused the remarkable mortality among the sea-fishes that occurred in the autumn of 1880 . I am sorry to be able to give so meagre an account of the matter as follows; but must beg excuses on the plea that I was too late to see any actual destruction, since the cause had wholly disappeared previous to my arrival there, and also from the fact that I was unable to carry out iny intention of going to Key West, where most of the fishermen live who sutfered in. jury, and who could perhaps have furnished additional information.

It appears that this misfortune is not a new experience in the eastern part of the Gulf of Mexico. One of the oldest residents on the Floridan coast, Mr. Benjamin Curry, of Manatee, told me, what others confirmed, that as far back as 1844 a wide-spread destruction of all sorts of saltwater animal life occurred, apparently due to causes precisely similar to those which produced the lately noticed desolation. Again, in 1854 the fishes snffered all along the southern shore, and have done so at intervals since to a less degree, until in 1878 an excessive fatality spread among them, which was wider in the extent of its damaging effects and prob. ably more destructive in point of number of victims than the later visitation of 1880. Even the cooler half of 1879 was not exeupt from some appearance of the plague.

In regard to some of the manifestations of this deadly influence in the sea daring 1878, Mr. John Brady, jr., an intelligent captain, told me that the time of year was January, and that the "poisoned water", to which universal belief credits the death of the fishes, could easily be distingnished from the clear blue of the pure surrounding element. This discolored water appeared in long patches or "streaks", sometimes 100 yards wide, drifting lengthways with the flow of the tide. The earliest indication of it was the floating up of vast quantities of dead spongeschiefly "loggerheads". All those seen by Mr Brady were less than 40 miles north of Key West, in what is known as "The Bay", nor has auything of the sort been seen at any time ontside (i. e., southward or eastward) of the Florida Reefs; but it was soon discovered that all the hitherto profitable sponging grounds lying off the coast as far north nearly as Cedar Keys, and particularly off the Anclotes, had been ruined. These grounds are only now beginning to show signs of reproductiveness in sponges. At the same time, many portions of this area-for example, Sarasota Bay-seem not to have been affeeted, sufficiently at least to cause the death of swimming fishes to any great extent. In the case of the sponges, only a few of other species than the loggerhead would be seen floating; but when they were hooked into, all were found dead, though still clinging to the bottom. When a sponge dies naturally it gradually becomes white at its base, through the loss of its sarcodal matter, but all these were observed to have turned black. The abandonment of these sponging grounds from the Reefs to Cedar Kers, during the three or four years following this attack, entails a loss which it is hard to estimate, because partially compensated in the increased price of the article in the market due to its consequent scarcity, and because at all times the product there is an uncertain quantity; but I hazard the opinion that $\$ 100,000$ would not repair the damage to this business interest alone. Had it not been for the fortunate discovery just at that time of the sponge-tracts off Rock Island, northward of the Suwanee River, almost a famine in this article would have ensued.

Concerning the attack of 1880 I am able to say more. It began suddenly, and immediately followed the terrible hurricane which is known
as the "August gale", the fish and all other ocean life suddenly dying in hordes all along the southern (eastern) shore of Tampa Bay, on Egmont Key, at its mouth, which was the wost northern poiat, and thence southward as far as Shark River, in Whitewater Bay, on the coast. Thence fatal localities were to be found in the currents that set southward through Bahia Honda Passage, through the Northwest Passage beyond Key West, and even out in the neighborhood of the farisolated Tortugas.

Everywhere throughout this whole extent of coast, except in the mouths of the rivers and in the shallow bayous, all the forms of sealife died as though stricken with a plague fatal alike to all, and were drifted upon the beaches in long windrows so dense that near human habitations men were obliged to unite in burying them to present a pestilential stench, or to haul them away by wagon-loads to be prepared for manure, as was done in some cases. Not only were swimming fishes destroyed, but sponges, crabs (I saw upon the beaches thousands of horseshoe-crabs laden with their chains of undischarged eggs), and great numbers of mollusks. The oysters at the mouth of Manatee River and in Tampa were spoiled (in imagination if not in fact!), and the excellent clams of Sarasota Bay became weak, tasteless, and of a repulsive green hue at their edges. A graphic account has been given me in a letter received from Mr. Charles Moore, jr., keeper of the lighthouse on Egmont Key, at the entrance of Tampa Bay, the original of which I transmit herewith. This point witnessed the height of the calamity, and as Mr. Moore was present during the whole season, his account of facts is valuable. Mr. Moore writes:

Egmont Key, Fla., February 20, 1881.
SIR: As I promised to give you all the information abont the fish dying at this station, I will do so to the best of my ability. The tirst dead fish we saw was on Sunday, October 17 , as the tide came in. There were thousands of small fish floating on the water, most of them quite dead. I saw only one kind the first day; they were small fish, four or five iuches long; the Key West smackmen called them "brim". Tbey were a new fish to me. The next day other kinds were dying all along the shore; the pompano was about the next to give in, and by the 25th October nearly all kinds of flsh that inhabit these waters were dying, except the ray family. I don't remember of ever seeing any stiuger or whipper ray, or the devil-fish, as we call the largest ones of the ray family. From the 25 th of October to the 10 th of November was the worst time; during that time the stench was so bad that it was impossible to go on the beach. I sent my family to Manatee, and the assistant keeper and myself shat ourselves up in our rooms and kept burning tar, coffee, sulphur, rags, etc., night and day in order to stand it. It was warm, damp, and calm weather. They continued to die for about six weeks; they kept getting less every day. I counted seventy sharks
within 80 yards, all small; I never saw a shark over four feet long dead. The cow-fish and cels were about the last to die. In regard to the canse of their dying, I have made up my mind it was caused by the fresh water, as there was immense quantities of fresh water coming down the bay, and the water here was nearly fresh on the surface, while the water underneath was perfectly salt. Now, if the fresh water could have passed off into the Gulf without being distarbed by winds, and it would have naturally spread out thinner and thinner as it would have rolled on towards the Gulf Stream, and once it got there, then there would have been no trouble. But on the ith of October we had a heavy gale from the southwest, and it continued to blow from the south and west until the 11th of October, and a very heavy sea running at the mouth of the bay, and it churned the fresh and salt water all up together, and the strong southerly winds set this mixed water back and kept it here for several days. I noticed, a few days before the fish commenced to die, a peculiar smell on the water, something like the smell of bilgewater, and the color of the water was a dirty green, mixed with small sediment. I noticed the fish while they were dying, when they first come in shoal water; they would act crazy, dart around in every direc. tion, but in a short time would give up and float ashore. On examining them I found their gills all glued together with a slimy substance and of a whitish color,* and in a short time the gills would turn green and the fish bloat very large. I cannot make any correct statement as to the number that died, but thousands of barrela floated up on this island. There are no fish dying now ; all we catch are fat and nice. I should have written to you before, but I have been very busy. I've had a new duty to perform, taking the tide every half hour. Any information I can give you at any time I will be happy to do so.

My address is: Braidentown, Manatee Countr, Florida.
Very respectfully,

> CHARLES MOORE, JR., Keeper of Egmont Light-House.

## Ernest Ingersoll,

- U. S. Fish Commission, Washington, D. C.

Along this region of the Florida coast are several establishments or "factories" devoted to the catching and salting of fish, chiefly the mullet and its roe, and to the making of superphosphates. All of these were obliged to suspend operations, and their winter's work has been ruined, or at least all the profits are gone. One gentleman told me of a single definite loss he had thus suffered of $\$ 800$.

To this part of the coast, also, comes a large fleet of smacks and "smackees" every winter to catch fish for the Key West and Havana

[^98]markets, principally the latter. These smacks found that, as before, the brownish, discolored water, "thick and glutinous" (as one described it), which seemed the cause of the mischief, lay in streaks drifting with the tide. The small fishes that swam into one of these patches (which had a vertical thickness apparently coextensive with the depth of the sea at that place) seemed unable to get out before they were stupefied, and died as though by suffocation. Even the large carnicorons swimmers, like the sharks and porpoises, often suffered the same fate, though frequently they would have strength to turn back and flounder out. In the pure element, between the deadly streaks, fish were as abundant as ever at the distance from the coast where the smacks operated, and their wells were often filled with promptness; but it was fonnd that it was impossible, even by going straight out to the Tortugas, to run the gauntlet of the poisoned water floating between there and Cape Sable, since if once it was encountered, and entered the well, a very few minutes sufficed to bring about the death of every fin of the cargo. I have a few notes, culled from the Key West journals, which show that a loss of nearly $\$ 10,000$ resulted from only four or five such misfortunes. The consequence was that for some weeks the fishing throughout all that part of the Gulf had to be wholly abandoned, involving the idleness of a large number of vessels and their crews.

Seeking an explanation of the phenomenon, I everywhere asked what was the local theory to account for the matter, and was almost always told with confidence that it was due to an overflow of swamps and the pouring into the Gulf of bodies of fresh water poisoned ly a decoction of noxious "acids", etc., leeched from the roots which had been soaking for years in the pent-up floods-a theory which I fail to find supported by such facts as I have been able to learn.

Those who do put faith in the sufficiency of this explanation, point out that the winter of $1877-78$ was unusually wet, and that this last fall saw more rain falling in South Florida than ever before in the recollection of the people there. This is probably true; and it may be, as asserted, that the years heretofore when fish have died have been those noted for their excessive rainfall, but I have not compared meteorological records. It is no doubt true also that if a sea-fish should be plunged into water saturated with the tannin derised from decomposing roots and stems of palmetto, oak, sumach, ete., which do abound in the Everglades, he would find it eminently unhealthy. But lurther than this the hypothesis will not hold. It requires us to believe that the overflow of a small surface of swamp-land shall so tincture the wide area of the Gulf as to destroy its healthfulness through several weeks, while the tides are ceaselessly swinging back and forth, and rapid currents continuously replace the water of every part with new and send the old elsewhere. This is preposterous. Moreover, provided it was true of the Manatee River (as is claimed), or of the Caloosahatchie farther south, why should it not equally be true of the Atlantic coast,
where there is the same or greater drainage, yet no such trouble known; or of the Withlacoochee, Suwanee, and a dozen other streams draining swamps like the Ofeekinofee, iu whose tangled recesses grow plants as noxious as those farther south, yet whose discharging currents do no harm to the fishes! Moreover, in the Manatee River itself no fish were killed above the free range of the tides, thongh daily breasting the -swamp overflow.

Some, discarding any theory of the decoction of poison from plants as an explauation, will tell you that the excess of rainwater discharged by the rivers so freshened the surf as to cause the death of ail shore-swimming fishes. This, as near as I can make it out, is Mr. Moore's explanation of the mortality at Egmont Key.

In a few confined spots, where fishes conld not escape at will, this might now and then cause a death; bnt it is notorious that the fishes of the Gulf coast make little or no distinction between salt and fresh water. Alligators swim to the outermost keys, and the best sheepshead canght are those far up the Caloosahatchie, where the stream is always sweet, while the porpoise and shark chase the mullet away in toward the head of the bayous, or until the river:channel gets too shallow for them to swim farther. A little fresh water, or a good deal, more or less, would receive no attention whatever from a Floridan fish. The Mississippi has been deluging the Gulf with a well-nigh Amazonian volume of water, fresh not only, but thick and nasty, yet no one supposes the fishes off the delta are obliged to stay in its murky flood unless they choose, or, if they do, that they suffer by it, except to the palate of the epicure.

But a more cogent argument, from facts perhaps overlooked heretofore, exists against any theory which seeks to explain the destruction of marine life inside the Florida reefs by any landward agency. This is that it was in all cases the dwellers on the bottom that perished first, while the surface-feeders were the last to be affected, and as a rule escaped altogether. (Until 1880, I was told, no mullets were ever known to be killed.) It was the death of sponges, conchs, sea-anemones, crawling horseshoe-crabs, of toad-fish, cow-fish, skates, and the like, which keep close down on the bottom, that first apprised the fishermen of the presence of their dreaded and mssterious enemy. Next came the bodies of red-fish, groupers, pompanos, and other deep swimmers, and last of all a few mullets and sharks. Fresh water, tinctured with tannin or untinctured, would not effect this. It would float on the surface, having a lesser density. If it exerted a noxious influence it would be the surface-life that would first succumb, the bottom-life longest escape. But quite the reverse has been the case, and this, with other appearances, leads to the conclusion that the "poison" springs from the bottom of the sea, or is formed in its waters.

The only way to account for this is by supposing that eruptions of volcanic gases may have taken place through the bottom of the sea
along a line stretching from Tampa Bay to the Tortugas, and through the western half of the Florida Keys. Inquiring as well as I could whether there had been any evidences of plutonic action in that region within a few years, I heard a tradition that about the holidays of $187 i-78$ an earthquake shock had been felt on the west coast. I have had no opportunity, as yet, to verify this, but it is a well-known fact that just previous to the hurricane of last August, so well remembered by all the people of Florida West as a time of almost unparalleled destruction of shipping and beight of tidal waves, a sbock of earthquake was felt throughout the whole southwestern end of the peninsula. It did considerable damage in the city of Key West, and was so alarming at Tampa that several persons ran in a fright from their houses. Imme. diately after it, began the sudden destruction of fish I have described.

Whether the physical shock of such an occurrence, touching the fish and creepers on the bottom, would do them harm, or whether the subsequent patches of "poisoned water" owed their discoloration and undoubted deleterious properties to being saturated with sulphurous or carbonic-acid gases derived from subterranean vents, I cannot presume to decide. But if the last supposition had been proved true, or shall be at some future time, would it not be a rational and sufficient explanation of the death of the fishes, sponges, and their kin, wheneser they came in contact with the discolored water alluded to?

Analysis of the suspected water would have done more to solve the question, probably, than anything else can do, and it is a matter of continned regret that I could not obtain specimens of it for that purpose. After the end of September, however, the evil diminished, and by Christmas all of the harmful water had disappeared from the Gulf.

Regretting that I could not have done more to get at the truth of the matter, in essaying which I was offered every aid by the citizens of Florida, but continually impeded by bad weather and other untoward circumstances, I beg to submit this little that I have learned; and I have the honor to be,

Very respectfully yours,
ERNEST INGERSOLL.

[^99]
## NOTES ON SAEMONIDAE OF THE TPPER COLONBIA.

## By CAPT, CHARLES BENDIRE, U. S. A.

[Note.-The United States National Museum has lately received from Captain Bendire a very fine series of fishes from the neighborhood of Fort Walla Walla, by far the most valuable collection of fishes ever made in the waters of the Upper Colnmbia. The series is especially valuable, as it throws much light on the life history of the Blue-back Salmon or "Red-fish" (Oncorhynchus nerka), and shows, apparently beyond a doubt, what no one had before suspected, so far as I know, that the supposed land-locked little red salmon (Oncorhynchus kennerlyi) is nothing but the young breeding male or grilse of the Oncorhynchus nerka. Accompanying the collection are many valuable field notes on the different species. Those relating to the Salmon and Trout are here extracted, each paragraph being preceded by my identification of the species to which the remarks refer.-D. S. Jordan.]
a. Oncorhynchun nerka (Walb.) Gill \& Jor.
(Adults in spring dress; the ordinary "Blue-back" of the Lower Columbia.)
Species of Salmon, $\mp$ and $\delta$, canght in the Colnmbia River near Wallula, Wash., July 7, 1880. Local name, Silver Salmon. Some 250 miles farther up the Snake River the same fish (at least I have every reason to believe it to be the same fish) are called Blue-backs or Steel-backs. This is undoubtedly the same species which during the spawning stage is known as the Red-fish found in the Wallowa Lake, Oregon, and Payette and Salmon Lakes, Idaho Territory.

## b. Oncorhynchus nerka.

(Young suale, exactly like the types of Salmo kennerlyi Suckley.)
A very interesting specimen. I take this to be a two-year old Redfish, the only one of this size seen or caught. It was very deep for its size, and resembles, as nearly as I can recollect, the type of Sulmo kennerlyi very much. It was caught on a hook by one of Mr. Messenger's men September 1, 1880, and is the only one of the size ever observed by any of them. Color bluish black above, silvery white on lower parts.
c. Oncorhynchus nerka.
(Young, not yet showing hooked jaws.)
Young Red-fish. In some back steel-blue, in others back bluish and greenish bronze; sides lilac-colored, showing almost all the colors of a rainbow ; bellies silvery white; iris silvery with black centre. In life one of the handsomest little fish I have ever seen. Some specimens show spots of a bluish-black color like trout on the head and near the tail and caudal fin, a few only along the whole back. Most of these spots disappear shortly after death, but in some I noticed them some

Proc. Nat. Mus. 81-6
June 2, 1881.
hours after capture. These fish are all about the same size, and, strange to say, they seem to be all males,* and the milt often flows from them while being taken from the hook, through squeezing them.

## d. Oncorhynchus nerka.

(Adult in September; "Red-fish.")
Description ind color notes taken of several specimens, just as they came out of the water, showing the differences in individuals. All were from Wallowa Lake, Oregon, caught with a seine near the head of the lake August 31 and September 1, 1880.

No. 1, d. Upper half of sides and back bright scarlet red, posterior parts shadiug off to a bright crimson; the two upper fins same color as the back, lower fins bluish on lower parts, the upper ends greenish olive; belly bluish; whole upper part of head light greenish yellow, showing in strong contrast to the body ; base of upper jaw steel-blue, lower jaw bluish white.

No. 2, 1. U'pper parts claret-color, slightly brighter about the caudal region, otherwise marked like No. 1. Top of head light yellowish green, the yellow predominating, this color extending to and below the eye, and back wards to end of gills, a deep olive green darker than the upper parts of head, giving this specimen a very peculiar appearance; belly bluish white.

No. 3. Upper parts a very deep purple; lower parts of belly a deep bluish lead-color, otherwise marked like No. 2.

No. 4, ס. Small. Presumably just arrived at the lake. In this specimen the hooked nose is not as fully developed as in the preceding ones, and the characteristic red of this species is obscured and partly hidden by a bluish tint. The hump is not yet developed on the back, and if it was not for the slightly hooked nose this specimen might readily be taken for a female. Belly silvery white beneath, slightly tinged with blue on the sides. Iris silvery.

The females are much more uniformly colored. The head is considerably tinged with steel-blue and the red tint on the sides is more or less clouded with blue and bronze. Females after spawning show consider. able amount of red, only after spawning I noticed that the red coloring matter deposited in the skin appears to be drawn from the flesh, and I find that in proportion to the bright coloring of the skin of the fish the flesh loses this tint. In some instances it is barely pink-colored or almost white. After the spawning of these fish they are brightest outside and palest iuside (as far as the flesh is concerned). The average size of a number of males by actual weight is only 5 pounds, and of
 these fish rapidly changes about the head and becomes a dark olive green with bluish reflections, in some instances almost bluish black.

[^100]Among any number of fish there is an almost endless variation in color, caused, perhaps, by some remaining a longer time in the lake than others. Wallowa Lake is about 4.4 miles in length by $1 \frac{1}{2}$ to 2 miles wide. It decpens very rapidly out a few feet from the shore, and is said to be 400 freet deep, and more than that in places. Two small streams flow into the lake, and these form the spawning ground proper for these fish; and as there are falls about two miles above the mouth of these streams over which the fish cannot leap, they are restricted to rather limited quarters for spawning. The only place I saw auy of these fish was on the bar near the head of the lake, and there most of them are caught. They can be seen in schools of 100 or more at almost any time during the month of August and later. This year the run has been very light, and fishing had to a great extent stopped when I arrived at the lake on the last day of August. Four fisheries had been in operation, and these had put up about 20,000 pounds of fish. I believe two or three years ago it had been the practice to obstruct the entrances to the small stieams at the head of the lake to prevent the fish from running up these streams. This year this was not done, and a number of the settlers about the lake seem to be anxious to have the fish properly protected, and it is not at all too soon to do it, either. The placing of obstructions in the above mentioned streams, and perhaps this year of gill nets on the bar, has no doubt something to do with the scarcity of these fish. But the most abominable things of all which I saw per. sonally in use are several clusters of hooks tied together, so that they form a circle with a radius of about 3 inches. Just above these hooks a lump of Red fish eggs is laid. These are covered with mosquitonetting, and by this contrivance thousands of young Red-fish (the settlers call them "shiners," others call them "tront," but I am satisfied that it will be found that they are yearling Red-fish*) are caught and salted as well as the full-grown ones. Now, these fish are only about 4 inches long, and for every one canght two are crippled and die. So it can readily be seen that an immense number are destroyed yearly, as some parties make it a business to salt these down as well as mature fish.

I examined all these modes of fishing, and when I hooked with a single hook about one out of three in some other part of the body than the head, it can readily be understood how murderous such a contrivance as the above must be, and how many young fish can be destroyed by a single person in a day. They bait them first, and when they become plenty use their grappling hooks.

The fishermen at the lake complain that the Indians destroy the fish, but from personal observation I can't at all agree with them. It is true that numbers of Indiaus come from various parts of the country to Wallowa Lake gearly to fish, aud they catch a good many. While I was camped at the lake I examined the catch of every Indian that passed

[^101]my camp, and I looked at as many as fifty Indians a day; each one had from six to twelve fish usually tied on his horse, and I found that there was about one female to ten males, and most of these were spent fish which had already spawned. They are not at all particular about this, and a fish which may be all bruised up and skinned is apparently just as well relished by them as a perfectly sound one, and even these Indians appreciated the fact that it would not do to catch too many females; at any rate they told me that as a rule they let the females go, and this is a good deal more than most of our white fishermen are willing to do. Mostly every one out here now concedes that the Red-fish is not a resident of the lakes wherein it is found, and I am perfectly satisfled that they are anadromous and not land-locked. The only thing as yet which I can't understand is, how do they get rid of the hooked nose and the hump after going back to salt water? They surely can't all die after sparning, and sometimes one that weighs as much as ten pounds is caught, and this fish is certainly older than a five-pounder; and it would not be presuming too much to assert that a Salmon of that size must have made more than one trip to sea. While in the lake ther do not appear to eat auything, and the stomachs of several which I examined were entirely empty. I cannot understand how they get rid of their long hooked nose and hump.
e. Oncorhynchus chouicha (Wall.) Jor. \& Gilb.
(Quınnat or Chinnook Salmon; a young male corresponding to the "kenverlin" stage of the Red-fish.)
Salmo quinnat d. A very small specimen. If not a true Chinnook Salmon, it was at least in company with several of this species. The back of this one was olive green, spotted like a trout, with round and also irregularly-shaped black spots; sides greenish white. It was shot with several others in Bear Creek, Oregon, September 4, 1880.

I was very sorry that I had not the means to preserve a pair of large Salmon*which I had, but I had no room in the large tank, and these fish were too large to go in if I had the room. A male specimen measured $46 \frac{1}{2}$ inches. Back brownish black, merging into a deep olive green on the sides, spotted with well-defined black spots on back, upper part of the sides, and candal fins; a large bright purple patch, some 8-9 inches long, $2 \frac{1}{2}$ to 3 wide, on the lower anal region from the ventral fin back to tail. Belly very pale olive green and whitish. The female measured $37 \frac{1}{2}$ inches ; colored like the male, but without any trace of ied whatever. These tish had not spawned as yet, September 4. The ied about the anal region is much more perceptible in large specimens than in small ones. None of the females (three) showed any red on them; all the larger males did, excepting the specimen I put op. The fish were all in good condition, none bruised and skinned up, the way I have seen them on the headwaters of the Salmon River. The Indians catch but few of these Salmon, preferring the Red-fish, which, from its small size,
is easier cured ; partly smoked and dried. Now and then, I am told, these Salmon run up the Wallowa River to the entrance of the lake, but invariably turn back again as soon as they strike the deep water. I cannot vouch for the truth of this, but every one of the fishermen claims that the principal spawning grounds of the Chinnook Salmon, in the vicinity of Lake Wallowa, are near the head of the South Fork of the Wallowa River, and in Bear Creek, Oregon. But these fish arrive in smaller numbers every year, and are diminishing even more rapidly than the Red-fish.
f. Salmo purpuratus Pallas.
Trout called SalmonTrout at Fort Cœur d'Alene. Belly silver white, a red stripe along the side, head and back steel-blue, with small black spots scattered over head and back. Small specimens have also a few black spots under the red stripe; these are found mostly towards the head.
g. Salmo purpuratus Pallas.

Called a Mountain Trout; © weight 7 pounds:onnces,length $24 \frac{1}{2}$ inches. I opened this tish yesterday, Sep-

tember 18 , to show him, and see that it has greatly changed. No red
was visible whatever on the sides when caught. The back was bluish horn color with black crescent-shaped spots, sides aud belly silvery white. Three larger specimens than this were caught in Wallowa Lake this season by Mr. Messenger; one weighing over 10 pounds. I had another one which weighed $4 \pm$ pounds, but had no room for it in the collecting tank, and therefore had it cooked.

## h. Balmo purpuratus Pallas. Far. Buavipri Bendire.

(A variety singularly colored, but not evidently different otherwise.)
Trout from Waha Lake, 14 miles from Fort Lapwai, Idaho Territory. This lake has $n o$ visible outlet, is about 3 miles long by $1 \frac{1}{d}$ miles wide, and is sittuated on the northern slope of Craig's Mountain. I frequently fished in this lake in the years 1869 and 1870, when stationed at Fort Lapwai, Idaho Territory, and never heard of any other kind of tish being found in said lake. All the fish caught there are about the same size, from 6 to 10 inches long. I believe it is a new species or variety, as no similar looking 'Tront are found in the streams or lakes in the neighborhood.

Back bluish green, olive color, sides silvery; in some instances the whole belly is red, in others the sides only; a few show a gellowish tiuge ; no red on the sides. There are round black spots near the tail, and fainter ones on the flanks. A few have an occasional spot on the head; 1 wo vermilion-colored stripes ou each side of the under jaw; fins edged with brick red, ranging from this color to an orange.

Caught August 21, 1880.
This lake is very deep, and the water clear and cold. A smaller lake situated only some 400 yards from Lake Waha, and of somewhat lower altitude, contains no fish whatever.
i. Salvelinus malma (Walb.) Jor. \& Gillb.

Bull Trout, Cour d'Alene Lake, August 5. The Bull Trout with one exception were caught by Drum Major Sattors, Second United States Infantry, and I am indebted to Capt. William Mills and First Lieut. John K. Waring, Second Infantry, for several fine specimeus of Tront and use of their boats.

According to the general testimony of all the officers, at the time I was at the lake, the fishing there was very poor, at least as far as size is concerned, the largest specimen not weighing over $2 \frac{1}{2}$ or 3 pounds, but it seemed to me that fish weighing one pound and upwards were very plenty. The lake, no doubt, contains some large tish, particularly among the Bull Trout, of which specimens have been canght weighing 10 pounds and over. These were, at the time of my visit, very scarce, and were supposed to have gone up some of the numerons streams to spawn.

The Bull Trout seems to bear his name all over this section of country, while for the others there are numerons names, no two parties agreeing.

The more I see of these Tront, the less hopeful I become of adding
new species among this family, and I do not believe that over four* different kinds are to be found in this upper conntry.

## j. Salvelinus maima.

Bull Trout, Cœur d'Alene Lake, August 5. Belly silver white; back and upper parts grayish, spotted with round pink markings ; head darker than the back, which seems to be bluish black.

##  

## By CHARLES L. McKAY.

The object of this paper is to give a catalogne of the genera and species of Centrarchide recognized by me, in anticipation of a monographic review of the family which I hope to publish at some future time. The results here obtained are based on a study of all the specimens of Centrarchide in the United States National Museum and in the collection of Professor Jordan. Types of nearly all the nominal species thus far described have been examined and compared, and I believe that very few of those here mentioned will prove invalid. The species not examined by me are designated by a star (*).

1. Genus Centrarchus C. \& V.
2. Centrarchus macropterus (Lac.) Jor. = C'.irideus C. \& V.

The characters assumed to distingush C. macropterus and C. irideus disappear on examination of a large series.
2. Genus Pomoxys Ratinesque.
2. Pomoxym aparoides (Lac.) Girard. =Centrarchus hexacanthus Cuv. \& Val.
3. Pomoxys annularis Raf.
3. Genus Archoplites Gill.
4. Arehoplites interruptun (Grd.) Gill.
4. Genus Ambloplites Rafinesque.
5. Ambloplites rupestris (Raf.) Gill. $=$ A. avifrons Cope.
5. Genus Acantharchus Gill.
6. Acantharchus pometis (Baird) Gill.

[^102]
## 6. Genus Chenobryttus Gill.

7. Chznobryttun gulosus (C.\& V.) Jor. = Centrarchus viridis C. \& V. ; Chanobryttue viridis Jor.; Lepomis gilli Cope; Calliurus foridensis Holbr.
8. Chaenobryttus antistius McKay, nom. sp. nov. = Glossoplites melanops Jor. Man Vert. ed. i, p. 317, and Chanobryttus gulosus Jor., Ann. Lyc. Nat. Hist. 1876.

This species is best distinguished from the preceding by the position of the dorsal, the first spine being situated over the posterior margin of the opercular lobe, while in C.gulosus the first spine is situated directly over the posterior portion of the base of the pectorals. The only specimens of this species known to me are in the collection of Professor Jordan. The types are from Lake Michigan. There are smaller specimens in the collection from the Upper Wabash and the Illinois Rivers. I have examined specimens of C.gulosus, which is a southern form, in the National Museum, from each of the Southern States, from Texas to Vir. ginia.

## 7. Genus Lepomis Rafinesque.

This genus, as understood by me, includes Apomotix, Xenotis, Bryttus, Helioperca, Xystroplites, and Eupomotis of authors. Apomotis has been separated from Lepomis on account of the large size of the supplemental maxillary. On careful comparison this is found to be scarcely larger than in one or two other species of Lepomis. It disappears by degrees, but seems to exist in all the species, though sometimes so small as to be inappreciable. I have even found it present in large specimens of $L$. pallidus. Its presence in the species is only a chatacter of degree, therefore not generic. Till the group had been more fully studied, Xenotis was supposed to contain a large number of species, and was separated from Lepomis principally for convenience' sake, and on the slight character of the feeble gill-rakers. By the comparison of a very large series of the alleged species from Professor Jordan's collection I have come to the conclusion that they are all forms of a single species. The gillrakers are usually rather more feeble than in the rest of the species of Lepomis, but this again is a question of degree. Bryttus has been distinguished from Lepomis by the presence of palatine teeth. This is also a character of degree, and is subject to the most perfect gradation. I have found it impossible to retain Xystroplites and Eupomotis also, as there is complete gradation in the character of the pharyngeals between Lepomis proper and Xystroplites, and again between Xystroplites and Eupomotis both as to the width and form of the bones themselves and the form of the teeth.

## 9. Lepomis cyanellus Raf.

10. Lepomis symmetricus "Forbes, MSs. (inJordan \& Gilbert's Synopsis Fishes N. A. ined.).
11. Lepomis phenax (Cope \& Jor.) McKay.
12. Lepomis murinus (Grd.) McKay.
some of the types of Calliurus murinus Grd. belong to L. cyanellus, but the specimen figured by him in the U. S. P. R. R. Exp., x, pl. vii, Fig.

1, belongs to a different species, apparently distinct from all others known. Type B. \& G. No. 415, U. S. Nat. Mus.
13. Lepomis lirus " McKay, nom. sp. nov. = Pomotis pallidus Ag. Not Labrus pallidus Mitch. Not Eiupomotis pallidus Jor, which is Lepomus notatus. According to Professor Blins (in letter to Professor Jordan), the pharyngeal teeth of this species are paved.
14. Lepomis ischyrus Jordan \& Nelson.
15. Lepomis macrochirus Raf.
16. Lepomis punctatus (C. \& V.) Jor. = L. apiatus Cope.
17. Lepomis miniatus Jordan.
18. Lepomis humilis (Grd.) Cope. = L. anagallinus Cope. Type No. 430, U. 8. Nat. Mus. From Brazos R., Tex.
19. Lepomis auritus (L.) Raf.
19. a Lepomis auritus var. solis (C. \& V.) MoKay = Lepomis ruhricauda Holbr.

The variety is the southern form, and is distinguished from the northern by having larger scales on the cheeks (usually 7 rows instead of 8 ) and in front of the pectorals, and usually a dark blotch on posterior margin of dorsal.
20. Lepomis megalotis (Raf.) Cope。 = Pomotis inscripfus Ag.; Lepomis peltantes Cope ; Xenolis aureolus Jor. ; Xenotis solis Gill \& Jor. ; Xenotis lythrochloris Jor.; Ichthelis aurilus Raf.; Pomolis nanguinolentus Ag. ; Pomotis nitidus Kirtland; Pomotis popeii Grd. ; F'omotis fallax B. \& G. ; I'omotis breviceps B. \& G.
21. Lepomis marginatus * (Holbr.) McKay.
22. Lepomis elongatus * (Holbr.) Gill \& Jor.
23. Lepomis pallidus (Mitch.) Gill \& Jor. = Lepomis obncurus (Ag.) Jor.
24. Lepomis bombifrons * (Ag.) Jor.
25. Lepomis heros (B. \& G.) McKay $=$ Kyntroplites heros, Jor.
26. Lepomis albulus (Grd.) McKay.

The types of this species have been recently found and are dentical with Xystroplites gilli Jor. Type No. 421, U. S. Nat. Mus. Rio Blanco, Tex.
27. Lepomis euryorus McKay. Sp. nov.

Body very robnst, compressed. Form nearly oval; dorsal ontline more convex than ventral. Antedorsal outline rather steep, slightly convex. Profile slightly depressed above eye. Mouth quite oblique, rather small ; maxillary reaching to front margin of eye. Onter row of teeth ou both jaws much stronger than the others. Teeth on vomer and front portion of palatines. Lower pharyngeals with the rather long posterior spur turned up; stoutish, the inner angle rounded, somewhat obtuse. Teeth stout, very much blunted, not close set ; the inner considerably stronger and less blunt than the rest. The characters of the pharyngeals are those ascribed by Professor Jordan to the genus Xystroplites. Gill-rakers short, stout, nearly terete, abont eight in number,
the inner surface ronghened, scarcely dentate. Branchiostegals six. Maxillary with a small but perfectly distinct supplemental bone. Eye very small, considerably less than length of snout (perhaps an itdividual character). Nostrils in line with pupil. Preorbital quadrate, mostly below line of pupil ; preoperculum moderately large, lower angle rounded, very slightly obtuse. Scales on cheeks moderate, in six to seven rows. Opercle rather large, triangular, with the posterior angle produced into a rounded bony flap, nearly equaling the snout in length. The flap is of a shiny black color as in L. cyanellus, surrounded by a very broad membranous margin, which is white in the alcoholic specimen. Scales on the opercle large, in five rows. Suboperculum of nearly the same width throughout, with a single row of scales. Interoperculum wider than suboperculum, with about a row and a half of scales. Scales continued upwards a short distance between opercle and preopercle. Spine of the premaxillary stont and broad ; width at base equal to one-third of interorbital space, moderately long, reaching to posterior nostril. Mucous channel from eye to suprascapular bone extremely narrow, scarcely separating the scales. Scales moderately large, ctenoid. Dorsal beginning over base of pectorals. Dorsal and anal somewhat obliquely opposed. Spinous portion of dorsal fin low, the longest spine reaching very little past margin of eye. Spines not very stont, nearly straight; all but the first two of nearly the same height. Soft portion of dorsal much higher than spinous, reaching greatest height at seventh and eighth rays, behind which it descends abruptly. Both caudal peduncle and fiu short and stout. Soft portion of anal rounded. Insertion of ventrals behind base of pectorals, not reaching beyond vent. Pectorals short, only reaching vent. Sales in front of pectorals not much reduced, considerably larger than those on cheeks. The description of the species is taken from a single specimen, No. 4109, in the United States National Museum, from Fort Gratiot, Michigan, at the foot of Lake Huson.

Table of Measurements.
Species: Lepomie euryorus.

| Jurreat aumber of spectmon | 4109. |  |
| :---: | :---: | :---: |
| Cocality | Fort Gratlot, Micligan. |  |
| Ditnensions. | Inchem and luention. | 1-butho iff Wusth. |
| Extreme leagth | 6 ch |  |
| Benly: |  |  |
| infontent holpht Greatest wiath |  | ${ }^{43} 16$ |
| Lenat height of tail |  | 3 |
| Legith of caudul peduncle. |  | 131 |
| Head: ${ }^{\text {a }}$ ( |  | 明 |
| Wistatiev fromi nnout to nape.... |  | is |
|  |  |  |
| Wiuth of interorbital area. |  |  |
| Leogth of muant... |  | ${ }_{4}^{2}$ |
| Length of masiluary |  | $\stackrel{\sim}{2}$ |

Table of measuremento-Continued.

| Dimensions | Inchen and 100thes. | 100the of longth. |
| :---: | :---: | :---: |
|  |  |  |
| Jength of mandithe |  | 138 |
| Dorsal (spinous): |  |  |
|  |  |  |
| lesugth of base .... |  | 3 |
| (ireatest height at fifth spine |  | 91 |
| Dorsal (soft): |  |  |
|  |  |  |
| Length of bawe |  | 17 |
| Height at notecedent spime |  | C |
| Height at lougest ray (the seventh) |  | 17 |
| Anal: |  |  |
| Distance from smont. |  | 8 |
| Length of base .. |  |  |
| Height at first spine |  | 4 |
| Height at thind spine |  |  |
| f. lieight at longeat ray (the lifth) |  | 14 |
| Caudal |  |  |
| Pecteral: |  |  |
| Distance from snout |  | 31 |
| Length ......... |  | 204 |
| Ventral: |  |  |
| Distance frotn smout. |  | 34 |
| Leagth . |  | 17 |
| Branchiontogaln |  |  |
| Dorsal. | X 11 |  |
| Anal .............. ...................... ................................ $\mathbf{.}$. 1110 |  |  |
|  |  |  |
| - Nuubuer of tramsverso rows above lateral line | 16-15 |  |

28. Lepomis gibbosus (L.) McKay.

In the little-known eleventh or Halle edition of the Systema Nature of Linnæus, occur the following descriptions:
"Labrus auritus. L. canda bifida, operculis branchiarum pinniformibus. $\quad$ D. $\frac{1}{1}$ ? P. 15. V.6. A. 13. C. 17. Habitat in Philadelphia. Mus. De Geer." (p. 283.)
"Perca gibbosa. P. pinnis dorsalibus unitis, cauda bitida, abdomine luteo, operculio striatis, apice nigro fulvoque.
Catesb. car. 2. p. 8. t. 8. f. 3. Perca tluviatilis gibbosa, ventre luteo. Habitat in America." (p.293.)

The description of Perca gibbosa refers of course to Eupomotis aureu, of authors, and the specific name of gibbosus must supersede aureus Walbaum 179\%. In his twelfth edition Linnæus suppresed his Perca gibbosa, and referred Catesby's figure of P'erca fluviatilis gibbosa with doubt, to the Labrus auritus. The description in the twelfth edition, as Professor Gill has shown, can refer owly to $L$. auritus. The specific
name, gibbosus, therefore, should be applied to Eupomotis aureus of authers, and auritus to the northern form of the other species.
29. Lepomis holbrooki (C. \& V.) Mckay = Pomotis speciosus Holbr.
30. Lepomis notatus ( $\mathrm{A}_{\mathrm{f}}$ ) McKay = Eupomotis pallidus Gill \& Jordan.

Professor Jordan has received from the Museum of Comparative Zoölogy some of Agassiz's types of Pomotis notatus, which species proves on examination to be identical with Eupomotis pallidies, Gill \& Jordan.
8. Geuns Mesogonistius Gill.
31. Mesogonistius chatodon (Baird) Gill.

## 9. Genus Enneacanthus Gill.

This genus, as understood by me, includes Hemioplites and Copelandia. The genus Hemioplites was based by Cope on the presence of eight spines in the dorsal fin and four in the anal. I learn from Professor Jordan's notes that Cope's original type of Hemioplites simulans has really nine spines in the dorsal. Dr. Edward J. Nolan, who has recently examined the specimen, also informs me that there are nine spines in the dorsal. In a collection of young specimens of Enneacanthus margarotis from Virginia, which I have examined in the National Musenm, there were several specimens with the fin formula D. 9, A. 4, severaP with the formula D. 10, A. 4, and the remainder with the formula D. 9, A. 3. That is, some of these specimens, all collected at the same time, and evidently of the same species, were Enneacanthus margarotis, others were Hemioplites simulans, and the remainder would represent a second species of Copelandia.

In 120 specimens of Enneacanthus margarotis examined by me, the results were as follows:

13 specimens with D. 8, A. 3.
89 specimens with D. 9, A. 3.
9 specimens with D. 10, A. 3.
5 specimens with D. 10, A. 4.
4 specimens with D. 9, A. 4.
In the examination of 53 specimens of Enneacanthus obesus the following results were obtained :

4 specimens with D. 8, A. 3.
46 specimens with D. 9, A. 3.
2 specimens with D. 10, A. 3.
1 specimen with D. 10, A. 4.
In view of these facts, I iuclude Hemioplites and Copelandia under Enneacanthus.
32. Enneacanthers aimulans (Cope) McKay $=$ Enneacanthus margarotis Gill \& Jor,; Hemioplites simulans Cope; E'nneacanthus pinniger Gill \& Jor.
Having examined the types of Enneacanthus pinniger, and compared them with large-finned males of Enneacanthus margarotis, I an unable
to find specific differences. They are probably specimens which have developed under more favorable circumstances than are usually accorded to the species.
33. Enneacanthus obesus (Grd.) Gill.
34. Enneacanthus gloriosus * (Holbr.) Jor.
35. Enneacanthus eriarchus (Jor.) McKay,

## 10. Genus Micropterus Lacépède.

36. Micropterus salmoides (Lac.) Henshall in "Book of the Black Bass" (advance sheets) $=$ Micropterus pallidus Gill \& Jor.
37. Micropterus dolomieu Laḉpède $=$ Micropterus salmoides Gill.

Indiana University,
Bloomington, Ind., March 10, 1881.

## A REVIEW DF THE GENUA CENTERUS, SWAINBON.

## By ROBERT RIDGWAY.

## INTRODUCTION.

The collection of the United States National Museum contains examples of all the known species of the genus Centurus, excepting U. hypopolius (Wagl.), C. rubriventris Swains., and C. terricolor Berlepsch, the two latter being of some what doubtful status. More or less confiusion has hitherto existed regarding the nomenclature of several of the Middle American forms, and it was the desire to clear away as much of this confusion as possible that prompted the investigations non which this review is based, and which have led to the discovery of relationships which were before quite unsuspected, at least by the writer.

Of the fourteen forms treated of in this paper as sufficiently distinct for definition, not more than six, or less than one-half, can be said to be perfectly isolated, or to possess the requirements of perfectly distinct species; at least the abundant material which has been examined in this connection proves beyond question the intergradation of four so-called species, while it suggests more or less strongly the probability or possibility of such relationship with regard to five of the remaining ten. Those which appear to be anquestionably distinct are the three West Indian species, C. radiolatus (Wagl.), C. superciliaris (Temm.), and C. striatus (Mill.), and three continental species, C. uropygialis, Baird, C. hypopolius (Wagl.), and C. elegans (Swains.). Those which certainly intergrade, and are therefore to be united under one specific designation, are C. curifrons (Wagl.), C. santacruzi Bp., C. dubius (Cabot), and C. hoffmanni, Cabau, all of which are, however, strongly characterized geographical races or sub-species. The five forms of doubtful relationship are (1) C. carolinus (Linn.), which may possibly grade into C. rubriventris, but which is probably distinct; (2) C. rubricentris (Sw.), with which I
am not autoptically acquainted, but which appears to be a northern form of C. tricolor, or, possibly, a local race of C. aurifrons dubius; (3) C. tricolor (Wagl.), which in some specimens so closely approaches C. aurifrons hoffmanni that it is often difficult to decide to which a given specimen should be referred; and (4) C. terricolor, Berlepseh, which is possibly a local race of C. tricolor. In the following synopsis, I have subordinated as sub-species only those forms which are known with certainty to intergrade, all of which belong to C. aurifrons. Those of doubtful relationship are treated as species, since it seems best to accord them that rank until it can be proven they are not entitled to it. Two more or less apocryphal species referred by Malherbe (Monographie des Picidées, ii, 1862) to this genus, Picus gerini, Temm. and P. aurocapillus, Vig., are not included in the synoptical table, but a transcription of Malherbe's account of these supposed species is given at the end of this paper.

## LITFRATURE.

The genus Centurus has received special attention, so far as I have been able to discover, from but three authorities, viz, Malherbe, Cabanis, and Sundevall, whose arrangements of the species, with the equiralent names of the present synopsis, are given below in chronological order. Also, as showing the latest arrangement, the names adopted in Sclater and Salvin's Nomenclator Avium Neotropicalium.

| (1.) Malherbe (1862). |  |  |  |
| :---: | :---: | :---: | :---: |
|  | ograph [The ge and vol | des Picidées, etc., etc., par Alf. Malherbe. "Zebrapicus" ( = Centurus) is treated (plates), pll. -.] | 4 vols. folio. Metz: 1861-2. <br> vol. ii (text), pp. 2223-250, |
|  | Zebrap | superciliaris, p. 223, pl. 102, figs. 1,2, and | = C. superciliaris. |
| 2. | ${ }^{6}$ | elegans, p. 225, pl. 102, figs. 5, 6. | $=$ C. elegans. |
| 3. | ${ }^{6}$ | pucherani, p. 227, pl. 103, figs. 1, 2. | (= Melanerpes pucherani.) |
| 4. | * | hypopolius, p. 228, pl. 103, figs. 4, 5. | = C. hypopolius. |
| 5. | " | gerinii, p. 231. | (= Melanerpes pucheranif) |
| 5. | " | striatus, p. 231, pl. 107, figs. 2, 3. | $=C$. striatus. |
| 6. | 6 | carolinus, p. 234, pl. 103, figs. 7, 8. | $=$ C. carolimus. |
| 7. | 6 | radiolatus, p. 237, pl. 104, figs. 5, 6. | $=C$. radiolatus. |
| 8. | " | aurifrons, p. 240, pl. 104, figs. 1, 2, 3. | $=$ C. aurifroms. |
| 9. | " | santa-cruzi, p. 241, pl. 105, fige. 4, 5. | =C. aurifrons santa-cruzi. |
| 10. | ${ }^{6}$ | erythrophthalmus, p. 243, pl. 105, figs $1, \%$. | $=$ C. aurifrons dubius. |
| 11. | " | kaupii, p. 245, pl. 106, figs. 4, 5. | = C. uropygialis. |
| 12. | " | tricolor, p. 247, pl. 106, figs. 1, 2. | = C. tricolor. |
| 13. | / | rubriventris, p. 248, pl. 107, fig. 1. | = C. rubriventris. |
| 14. | " | aurocapillus, p. 250. | (Unidentified.) |

(2.) CABANI8 (1862).

Ulersicht der inı Berliner Musenm befindlichen Vögel von Costa Rica. <Jour. für Orn. Heft v, x. Jahrgang, September, 1862, pp. 321-336. [A synopsis of the species of Centurus, with synonymy and critical remarks, is given on pp. 32-330.1

1. C. awrifrons, p. 323.
2. C. carolinus, p. 324.
3. C. albifrons, p. 324.
$=C$. aurifrons, as restricted.
=C. carolinus.
$=$ C. aurifrons antacrusi and C. aurifrons dubius.
4. C. polygrammus, n. 8p. p. 326.
5. C. Hofmannii, и. sp. pp. 322, 327.
6. C. clegans, p. 327.
7. C. tricolor, p. 327.
8. C. Pucherani, p. 328.
9. C. hypopolius, p. 329.
10. C. uropygialis, p. 330.
$=$ C. aurifrons santacruzi (the south Mexican form tending toward hoffmanni).
$=$ C. aurifrons hoffmanni.
=C. elegans.
$=C$. trioolor and C. rubriventris
( $=$ Melanerpes pucherani.)
=C. hypopolius.
$=$ C. uropygialis.
(3.) sundevall (1866).

Conspectus Avium Picinurum, edidit Carolus J. Sundevall, Custos Musei Zool. Stockholmiensis. Stockholmise: 1*66. 1 vol. 8vo. pp. i-xiv. 1-116. [The species ot Centurus are referred to the genus Picus, under which they are ranged as a "Tribus 15. Pici albofasciali," on pages 52-56.]
150. Picus striatus Gm. (p. 52).
151. " radiolatu* Wagl. (p.52).
152. "t albifrous Swains. (p. 52).
153. "aurifrons Licht. (p. 53).
154. " polygrammus Cabanis (p. 53).

1in. "s carolinus L. (p. 53).
156. "t uropygialis Baird (p. 54).
157. " hoffmanni Cabanis (p. 54).
158. "tricolor Wagl. (p. 54).
159. "6 hypopolius Wagl. (p. 55).
160. " elegans Swains. (p. 55).
161. "superciliaris Temm. (p. 55).
162. " gerini Temm. (p. 55).
$=C$.striatus.
= C. radiolatu*.
$=C$. aurifrons dubius.
$=$ C. aurifrons (as restricted).
$=C$. asrifrons santacruzi.
$=$ C. carolinus.
$=$ C. uropygialis.
$=$ C. aurifrons hoffmanni.
=C. tricolor.
=C. hypopolius.
$=C$. elegans.
$=C$. superciliaris.
( = Melanerpes pucherani.)
(4.) sClater a salvin (1873).

Nomenclator Avinm Neotropicalium, etc., etc. anctoribus Philippo Lntley Solater, A. M., Phil. Doct., eto., etc. et Osberto Salvin, A. M., etc. Londoni: Sumptibus Anctorum. 1873.

1. strialus (Bodd.) ex ins. Hayti. =C. striatus.
2. radiolatus (Wagl.) ex ing. Jamaica. =C. radiolatus.
3. albifrons (Sw.) ex Mex. et Guatemala. = C. aurifrons santacruzi and C. aurifrons dubius.
4. aurifrons (Wagl.) ex Mex. bor. $=$ C. aurifrons (as restricted).
5. tricolor (Wagl.) ex Columb. Venezuela

$$
\text { et Veragua. } \quad=C \text {. tricolor }
$$

6. hoffmanni, Cab, ex Costarica. =C. aurifrons hoffmanni.
7. hypopolius (Wagl.) ex Mexico. = C. hypopolius.
8. elegans (Sw.) ex Mexico. $\quad=$ C.elegans.
9. superciliaris (Temm.) ex ins. Cuba. =C.superciliaris.
10. pucherani (Malb.) ex Mex. Arw. centr.
et Equat. occ. (= Melanerpes pucherani.)

## Genus Centurus, Swainson.

Centurus, Swains. Classif, B. ii, 1837, 310 (type, Picus carolinus, Linu.).-Baird, B. N. Am., 1858, 108.-B. B. \& R., Hist. N. Am. B. ii, 1874, i53.-Coves, Key, 1872, 196.

Zebrapicus, Malherbr, Mem. Ac. Metz, 1849, 360; Noiv. Clasm. 1io., 1850,_; Mon. Pic. ii, 1862, 223 (type, Picus carolinus Linn.).
Cr.-Bill about as long as the head, or a little longer, the length from the tip to the nostril about equal to the tarsus, or a little greater; decidedly compressed anteriorly, but depressed at the extreme base; the
lateral groove distinet for half the length of the bill; culmen decidedly but gently curved from the base; gonys uearly straight, and about half as long as the culmen. Nostrils broad, elliptical, situated about midway between the culmen and tomium, and only partly concealed by the frontal tufts. Anterior outer toe a little longer than the posterior, the inner anterior toe decidedly shorter, and the inner hind toe only about half its length. Wings long and broad, third to fifth primaries longest, the first equal to the sixth to the ninth. Tail about two-thirds as long as the wing, graduated, the feathers (except the outer) rather abruptly attenuated at ends. Colors, banded with black and white, or yellow, above, with more or less of the pileum scarlet in the male; below plain, the abdomen tinged with red, orange, or yellow in most species.

The so-called geuns Centurus is scarcely more than an artificial division of Melanerpes, distinguished from the typical section of that genus chietly, if not only, by a different system of coloration, which characterizes most of the species. Even in this respect, however, the intergradation of the two sections is so complete that certain species (notably Zebrapicus pucherani of Malberbe) may, with almost equal propriety, be referred to either group. The species referred to has usually been included in C'enturus; but after careful consideration of the question, I have concluded to place it in Melanerpes, as being more closely related to certain species of that group than to any of the species of Centurus as here restricted. Its nearest allies are undoubtedly the Melanerpes chrysauchen of Salvin, which it resembles very closely, and "Picus" (=Melanerpes) flarifrons of Vieillot, and it may well be placed with them, while if allowed to re. main in C'enturus its position would be that of an isolated or aberrant species.

Following is a list of the forms recognized in this review, with the number of specimens of each which have been examined in connection with the preparation of this paper:


## SYNOPRIS OF THE SPECCES OF CENTURE'.

A. -No red on the rump.
a. V'ithout black about the head.
(Rump and upper tail-coverts white, immaculate, or only slightly raried with black.)

1. C. Cabolintes. 6 : Entire pileum and nape scarlet, paler on the forehead; abdomen tinged with pinkish red; inner nebs of middle tail-feathors varied with white. $8:$ Similar, but crown ash-gray, the red of the head confined to the forehead, occiput, and nape. Wing, $5.00-5.50$; culmen, 1.00-1.20. Mab.-Easteru United States.
2. C. tricolor. ठ: Crown, occiput, aud nape, deep scarlet, sometimes inter rnpted across the occiput; foreheal dingy yellowish white, abdomen deep scarlet; both webs of middle tail-feathers broally barred or transversely spotted with white; upper tail-coverts immaculate white, or scantily barred, lower with dusky V-shaped markings. f: Pileum ligatdrab, growing whitish anteriorly; otherwise like the $\delta$. Wing, 4.05-4.25; culmen, 0.75-1.10. Hab.-Trinidad and Venezuela to Veragua.
[3.9 C. nubriventmis. \%: Similar to tricolor, but frontlet, cheeks, and chin bright yellow, separated from the scarlet of the crown by a white frontal band; white bars of back, etc., very much narrower than in tricolor; middle tailfeathers without white markings, except toward base of outer webs. Wing, 4.75 ; culmen, 0.80. Hab.-Yucatan.
[4. C. termicolon. Similar to tricolor, butl arger, the bill longer and broader; the lower parts darker olive-brown, the abdomen darker red, and the upper and lower tail-coverts regularly barred with black. Hab.- "Orinoco district or Trinidad."]
3. C. aurifrons. ј: Crown deep scarlet ; napescarlet, orange, or yellow, coalesced with the scarlet of the crown or separated from it by an occipital band of gravish or olivaceous; frontlet yellow, orange, or red, separated from the red of the crown by a whitish frontal band; abdomen tinged with yellow, orange, or red; markings of the tail-feathers and coverts exceedingly variable. \&: Differing in the color of the crown, which is entirely grayioh, instead of red. Size exceedingly variable. Hab.-Middle America.
a aurifrons. Red crown-patch usually isolated; frontlet and ablomen usually yolk-yellow; breast, etc., pale dingy ash, or dull grayish white; tibia and crissum with broad $\mathbf{V}$-shaped marks of black ; inner webs of middle tail-feathers usually solid black; white bars of upper parts broad, nearly or quite as wide as the black ones. Wing, 5.20-5.65; culmen, 1.20-1.40. Hab.-Table-lands of Mexico, north to Sonthern Texas
$\beta$. santacruzi. Red crown-patch usually confluent with the orange-red of the nape; frontlet and abdomen safiron-orange; breast, etc., olive-drab, or deep smoky gray ; tilise and crissum thickly barred with blackish on a dingy yellowish ground ; inner webs of middle tail-feathers usually marked, more or less, with white; white bars of upper parts much narrower than the black ones. Wing, 5.00-5.75; culmen, .95-1.25. Mab.-Southern Mexico, Honduras, and Guatemala.
$y$. dubius. Crown, occipnt, and nape intense scarlet, without any shade of orange; frontlet scarlet, separated from the red of the crown by a band of nearly pure white; abdomen, intensescarlet or almost carmine-red; inner wehs of middle tail-feathers usually solid black; whito bars of upper parts very much narrower than the black ones; tibix and crissum densely barred with blackish. Wing, 4.95-5.40; culmen, 1.00-1.30. Hab.-Yucatan.
ס. hoffmanni. Red of crown usually isolated, as in aurifrows; frontlet, pale dull yellowish; lower parts dark colored, with the abdomen saffion jellow as in santacruzi ; flanks, etc., coarsely barred, as in aurifrons, and white bars of upper parts broal, as in that race ; inner webs of midille tail-feathers edged with Proc. Nat. Mus. 81-7

June $2,1881$.
white and decply indented with broad spots of the same, the outer webe rith a longitudinal stripe of white. Wing, 4.60-4.75; culmen, . ©0-1.05. Hab.Costs Rica.
(Rump and upper tail-corerts black, narrouly barred with white.)
6. C. madiolatu8. of : Pileum and nape bright scarlet-crimson; remainder of the heal, iucluding a frontal band, soiled white (sometimes pure white on the forchead), changing quite abruptly on the jngnlum, breast, etc. ; abdomen, deeply tinged with saffron-red, upper parts black with narrow thread-like bars of white; crissum, etc., black, narrowly barred with white. \&: Similar. but crown nnd occiput smoky gray, lighter anteriorly. Wing, 5.00-5.40; culmen, 1.30-1.45. Hab.-Jamaica.
(Rump and upper tail-coverts white, regularly barred with black.)
7. ©. unopygialis. Head, neck, and lower parts rather light smoky drab, nsually deepest on the nape; paler on the forehead, and tinged with yellow on the abdomen; upper parts, including rump and upper tail-coverts, liroally barred with black and white; inner webs of middle tail-feathers white, broadly barred with black. $\delta:$ Crown with a central patch of scarlet-crimson. $8:$ Without any red on the crown. Wing, 5.00-5.30; culmen, .95-1.25. Hab.Northwestern Mexico and contiguous portions of Southwestern United States.
b. With black markings about the head.
8. C. Hypopolius. J: Head, neck, and lower parts deep smoky gray, or purplish drab, darkest on head above and nape, lightest on forchead, chin, and throat ; orbits surrounded by a blue-black circlet, interrupted posteriorly by white on the upper eyelid; centre of crown with a patch of crimson, and lower part of anriculars tonched with the same; upper parts broadly barred with glossy black and brownish white; inner webs of middle tail-feathers varied with white. \&: Similar, but lacking the red of the crown. Wing, 4.90-5.00; culmen, .85-.90. Hab.-Table-lands of Sonthern Mexico.
9. C. mlegans. © : Crown and occiput rich crimson-scarlet, nape bright orange or yellow; orbits surronnded by black, broader above and behind the eye; rest of head smoky grayish, tinged more or less anteriorly with golden yellow; abdomen tinged with golden yellow; upper parts broadly barred with Black and white; both webs of middle tail-feathers broadly barred with white. ¢: Similar, but crown and occiput ash-gray, the latter sometimes suffused with black. Wing, 4.50-4.90; culmen, .95-1.10. Hab.-Western Mexico.
10. C. superciliaris. of : Pileum and nape bright crimson-scarlet, with a large longitudinal patch of black on each side of the crown, extending from the anterior angle of the oye to the occiput; rest of head, including band across forebead, dull whitish, changing gradually to buffy drab on breast, etc.; middle of abdonen bright red; npper parts broadly barred with black nnd white, the back tinged with buff-yellow; inner'webs of middle tail-feathers white, with broad bars of black, the outer webs with a longitudinal stripe of white. \&: Similar, but wholo forchead and anterior part of crown white, the posterior portion of the crown, and the occiput, black, this confleent with the black superciliary patches. Wing, 5.40-6.00; culmen, 1.30-1.65. Hab.Cuba.
B. Rump bright blood-red, or crimson-scarlet. 1
11. C. stmatus. $\delta$ : Pileum, nape, lower rump, and upper tail-coverts bright scarlet-crimson; lower posterior side of neck with longitudinal stripes of black and dingy white; remaiuder of head and neck smoky-gray, gradually changing to deep smoke-brown on breast, etc.; abdomen, crissum, ete., light yellowish olive-green, without markings; upper parts (back, etc.), broadly barred with black and bright yellowish olive-green; middle tail-feathers solid black. Wing, 4.30-5. 00 ; culmen, 1.00-1.30. Hab. - Hayti aud St. Domingo.

## 1. CENTURCS CAROLINUS.

Epeiche on Pic raye de la Louisiane, Buff. Ois, vii, 73.
Pic rayé, de la Louisiane, Buff. Pl. Enl. 192 ( 9 ad.)-Vikili. N. D. xxvi, 90.
Picus rentre rubro, Catesby, Car. i, 19, pl. 19, f. 2.
Picus carolinus, Lixx. S. N. ed. 10, i, 175世, 113 (based on Caterby, l. c.) ; ed. 12, ¿, 1776, 174.-Wils. Am. Orw. i, 1808, 115, pl. 7, tig. 2.-Nett. Man. i, 1832,522.-Aud. Orn. Bing. v, 1839, 169, pl. 415; Synop. 1859, 183; B. Am. iv, 1842, 270, pl. 270. Sindev. Consp. Pic. 1866, 53.
Centurus carolinensis, Swains. Clossif. B. ii, 1837.
Centurus carolinus, Bosaf. Comp. List, 183\%, 40; Consp. i, 1850, 119.-Barrd, B. N. Am. 1858, 109; Cat. N. Am. B. 1859, no. 91.-Dresser, Ibis, 1865, 469 (S. Texas; common resident).-Allev, Pr. Essex Inst. iv, 1864, 53 (Massac)u. set1s; accidental); Bull. M. C. Z. ii, 18\%1, 306 (Florida); iii, 1872, 180 (Kin-sas).-Cotes, Key, 1872,196 ; Check List, 1873, no. 306; B. N.-W. 1874, 299.Ridgw. Bull. Essex Inst. Nov. 1873, 185 (Colorado); Field \& Forest, June. 1877, 209 (Boulder Co. Colorado); Cat. N. A. B. 1880, no. 372 ; Nom. N. A. B, 1891, no. 372.-B. B. \& R. Hist. N. Am. B. ii, 1874, 〔54, pl. 52, figs. 1, 4.Nels. Bull. Essex Inst. vini, 1876, 116, 153 ( п. e. Illinois: rare sum. res. leaving last of Oct. : comm. in migr.).-Merbiam, Trans. Conn. Acad. iv, 1877, 65 (accid. in Connecticut).-Brewst. Bull. Nutt. Oru. Club, ii, Oct. 187\%, 108 (clo. ).-Mearns, ib. July, 1878,146 (Cornwall, N. Y. Sept. 1870).
Zebra picus carolinus, Mali. Mém. Ac. Metz, 1849, 361 ; Mon. Pic. ii, 1862, 234; iv, $1862, \mathrm{pl}$. ciii, figs. 7 ( $\% \mathrm{ad})$.8 ( 8 ad.$)$.
Melanerpes (C'enturus) carolinus, RıdgW. Auv. Lyc. N. Y. Jan. 1874, 378 (Illinois).
Picus zebar, Bodd. Tabl. P. E. 1783 (ex Pl. Enl. 602).
Picus griseus, Vifili. O. A. S. ii, 1807, pl. 116 ( 8 ad.).
Picus erythrauchen, Wagl. Syst. Av. 1827, no. 38 ; Isis, 1899, 513.
Le Pic Carolín, Valenc. Dict. Sc. Nàt. xi, -, 181.
Le Pic gris, Vieill. 1. c.
Pic gris sayé, Vieillo N. D. xxvi, 77.
Pic rayé gais, Vieillo "Dict. pitt. hist. nat. p. 627,"
Red-bellied Hoodpecker, Catrasny, Car. i, 1731, 19, et auct.
Carolina Woodpecker, Lath. Synop. i, 1781, 570.
Le Piczè lre de la Caroline,
l'iczibre Carolin,
Hab.-Eastern United States, west to the eastern slope of Rocky Mountains, south to Florida and Texas. Rare in northern States, and apparently wanting in the valley of the Rio Grande. Most numerous in the Mississippi Valley and Gulf States.

Adult 8: Entire pileum and nape bright scarlet, deepest on the crown, the forehead lighter, or more pinkish (sometimes approaching reddish white); rest of the head and neck, with lower parts, pale buff-grayish, lighter on the chin and throat; middle of the abdomen pinkish red, the remainder of the lower parts sometimes tinged with the same, especially: on the breast and cheeks; tibia and crissum white, relieved by rather sparse hastate marks of black. Back scapulars and upper part of rump broadly and distinctly barred with black and white, the two colors in about equal proportion, or the black bars rather the wider; wings black, the coverts and secondaries barred with pure white; primaries tipped with white, narrowly margined with the same beyond their emargina-
tions, and blotched with white near the base; upper tail-coverts and lower part of fump white, relieved by rather sparse irregularly hastate spots or bars of black, the coverts sometimes nearls immaculate. Tail black; the inner webs of the intermedia chiefly white, crossed with a greater or less number of broad black bars, or transverse spots, the outer webs with a longitudinal stripe of white on the basal half; oater rectrices broally barred at the ends with dull white, and with spots of the same indenting the outer web; next pair of feathers tipped with Jellowish white. Adult \&: Similar to the st, but red of the crown replaced by deep ash-gray, lighter anteriorly; lower parts tinged with red only on the abdomen, and cheeks with little if any red tinge. Young \&: Whole pileum dull brownish gray, transversely mottled with darker; nape dull light fulsous-red; back and scapulars barred with grayish white and gravish dusky, much less sharply than in the adult; abdomen tinged with dull buff, but without red. Adult: Total length (fresh specimens), $0-10 \frac{1}{8}$ inches ; extent, $15{ }_{5}^{5}-172$; wing (skins), 4.85-5.40; tail, $3.50-3.00$; culmen, $1.00-1.20$; tarsus, $.80-.00$. Bill (in life), slate-black, the basal portion of gonys sometimes mixed with light ashy; iris varying from ferrnginous to bright scarlet; naked orbital spaces olivaceous. ashy; legs and feet olivaceous. In the young, iris brown.

Among adult males of this species, the principal variation is in the amount of red tinge on the lower parts. In most examples from the Atlantic States and in many from the Mississippi Valley, the reddish is entirely confined to the middle of the abdomen, while on the head there is a mere tinge of it on the lores and cheeks. Many western specimens, however, have the breast more or less strongly tinged with purplish pink, while two now before me (No. 34317, Kansas City, Mo., May 14, 1864, E. Conses, and one, in my own collection, from Mount Carmel, Ill. May 28, 1878), have not only the lores and checks, but the whole chin and upper throat also, bright salmon color, or saffron-pink. In these highly colored specimens the forehead is a bright saffron-red, While the Kansas City specimen above alluded to has the red on the abdomen very intense, approaching a saffron-scarlet. Floridan specimens are slightly smaller than northern ones, have the white bars of the dorsal region narroter, but are on the average less richly colored than examples from the Mississippi Valles, only one of five adult males approaching those described above in the depth and extent of the red tinge to the lower parts, throat, etc. The under surface is usually more dingy than in nothern examples, while the forehead appears to be lighter red, more abruptly contrasted with the intense crimson scarlet of the crown. Of six adult females from South Florida, two (Nos. 39, coll. II. W. Uenshaw, Cedar Keys, December 6, 1871, and 4924, Amelia Island, G. Wiardemann), have the occiput slightly mottled with black. Two txamples from Southern Illinois, in my orn collection (obtained October 15, 1873, and October 7, 1879), agree in this respect, however, with these Florida examples. They likewise have the black bars of the
dorsal region equally wide, but they are decidedly larger birds. A male from Waller County, Texas (No. 70963, Kumlien aud Earll), agrees in every respect with Illinois examples. An adult female from Southern Illinois (Mount Carmel, October 18, 1879), has the oceiput red, like the nape, while there are several red feathers in the middle of the crown.

## 2. CENTURUS TRICOLOR.

Picus tricolor, Wagler, Isis, 1829, 512 ( $\%$ ad. ;"Mexico").
Centurus trioolor, Licht. Nomencl. 1854, 76.-sicl. Cat. 1892, 343, no. 2049 (Bogota; Venezucla)-Taylor, Ibis, 1864,93 (Venezuela).-Scl. \& Salv. P. Z. S. 1864, 367 (Isth. Panama); Nom. Neotr. $18 \% 3,100$ (Venezuela, Colombia, Veragua)-Salvin, P. Z. S. 1867, 157 (Veragua); 1863, 169 (Veaczuela).Wyatt, Ibis, 1871, 381 (Sta. Marta, Colombia).
Zebrapicue tricolor, Malh. Mon. Pic. ii, 186?, 247 ; iv, pl. cri, figs. 1, 2 ( f and 9 ad.).
C'cnlurus carolinus var. tricolor, B. B. \& R. Hist. N. Am. B. ii, 1874, 554.
"Centurws subelegans" Rricu. Handb. 1851, 411, pl. delxv, figs. 4415-16 (nec Bonap. 18:7).-Scl. P. Z. S. 18000,$162 ; 18 i 6,143$.
"Centurus rubriventris", Lawr. Aun. Lyc. N. Y. vii, 1861, 299 (Panama; nec Swains. 1834).

Le Picsibre tricolore,
Piczèbre tricolor, МаLI. l. c.
Adult 8: Forehead dull smoky whitish, more or less tinged with yellow anteriorly (on the frontal feathers) ; crown, occiput, and nape, bright crimson scarlet, lighter posteriorly, occasionally interrupted bs a band of smoky gray or light drab across the occiput; remainder of head and neck, with lower parts, smoky drab, the head lighter anteriorly; middles of the abdomen bright scarlet; tibis and crissum marked with broad V-shaped bars of black. Back and seapulars broadly barred with black and white, the bars of the latter narrower than the black oues; wings black, the coverts and secondaries broadly barred with white; primaries bordered terminally with white, and blotched with the same near the base. Upper tail-coverts and most of the rump white, often im. maculate, sometimes irregularly and scantily barred with dusky. Tail black, both webs of the intermedice broadly barred or transversely spotted with white; lateral rectrices hoary smoky drab on the under surface, the terminal portion with several more or less complete whitish bars. Adult o: Similar to the 8 , but red of the pileum replaced by light drab, growing gradually paler anteriorly. Bill blackish; feet dusky (olivaceous in life?). Young $\$:$ Similar to the adult, bat all the markings less sharply defined, and the colors duller. Young 8: More dully colored than the adult, the nape dull orange-fulvous, instead of scarlet, the bars of the back, ete., more indistinct, and tinged with light brownish. Wing, 4.05-4.55; tail, 2.50-2.70; culmen, .75-1.10; tarsus, . $75-80$.

In general appearance this species is quite a miniature of C. carolinus, but it is probably distinct specifically. Close inspection reveals many points of difference besides the very much smaller size. The frontlet is
yellow instead of pinkish red, and the deep red of the crown is very abruptly defined anteriorly against the whitish of the forehead, instead of blending into the color of the frontlet, there being no trace of a whitish froutal band in C.carolinus; the abdomen in C. tricolor is bright scarlet, instead of light piukish red. In $C$. carolinus the tibis and lower tailcoverts have a few longitudinal, irregularly sagittate marks of dusky, whereas these parts in tricolor are heavily banded with transverse, somewhat $V$-shaped bars. In carolinus only the inner webs of the middle tail-feathers are barred or spotted with white, while in tricolor both webs are so marked. C. tricolor is also very much darker colored underneath than C.carolinus. The females of the two species do not resemble one another so closely as do the males. In that of C.tricolor the red of the nape is both more restricted and duller than in that of C. carolinus, the pileum is of a light smoky drab, instead of pure ashgray, and the forehead is dull whitish, tinged with gellow anteriorly, instead of pinkish red.

These comparisons apply to the most southern examples of $C$. carolinus I have been able to examine, viz, a considerable number from Texas and South Florida.

In this species, as in most others, there is much individual variation. In a majority of the adult males the red of the nape is continuous with that of the crown, but in some (as in an example from New Granada, in the collection of Salvin and Godman), the occiput is completely crossed by a wide band of light smoky drab, widely separating the orange red of the nape from the bright crimson vertical patch. Other examples show a more or less complete coalescence of the two red areas, in variable degree, accordiug to the individual. Such examples appear to include adults as well as young birds, so that age has appareutly nothing to do with the variation in question. In specimens having the crimsen of the crown widely separated from the more flame-colored red of the nape there is a rather close resemblance to some specimens of $C$. hoffmanni, in which, however, the abdomen is yellow instead of bright red, the outer webs of the middle tail-feathers streaked, instead of barred or spotted, and the nape decidedly red, instead of orange-jellow.

## 3 (?). CENTURUS RUBRIVENTRIS.

Centurus rubrirentria, Swains, Ann. in Menag. 1838, 354 (hab, ignot.).-Gray, Gen. B. ii, 1849, 44\%.-Lawn. Ann. Lyc. N. Y. ix, 1869, 205 (Yucatan).
Zebrapicus rubriventrix, Malh. Mon. Pic. ii, $1 \& 62,248$; iv, 1862 , pl. cvii, fig. 1 ( $\mathrm{d}^{\prime}$ ad.). (Mexico 1)
"Zebrapicus swainsonii, Malh. 1845, in mns Britan." (Malherbe.)
"Picus aurifrons", Bonap. P. Z. S. 1837, 116 (nec Consp. i, 1450, 119). (Fide Malaerbe.) Piczèbre d̀ ventre sanguin, Mali. 1.c.

Hab.-Yucatan.
This bird, which appears to be a well-defined form, I have not seen, and therefore copy Swainson's original description, and Mr. Lawrence's remarke in Ann. Lye. N. Y., ix, 1869, pp. 206-7, which, with Malherbe's
acconnt, is all that is known regarding it. The specimen in the Smithsonian collection alluded to by Mr. Lawrence has unfortunately been mislaid, so that I am unable to make a direct comparison.

Swainson's description is as follows:-
"Front of the head, cheeks, and chin golden yellow; ears, and connected stripes over the eyes, cinereous white; nape, middle of the crown, and the belly, crimson; rump, pure white.
"Inhabits -l Mus. Nost.
"This most elegant species is the tmallest Centurus I have yet seen. Total length, $7_{10}^{R}$ inches; bill, gape 1 ; front, ${ }_{10}^{8}$; wings, $4_{1_{0}}^{3}$, nearly as long as the tail, which from the base is 3 ; tarsus, $\frac{n}{\text { fo }}$. Upper plumage, as in the last, banded with black and white; the latter being narrower than the former; the broad ghayish-white band over each eye unites in front, and there becomes white, so as to separate the golden yellow round the bill from the crimson of the crown; the yellow covers all the face before the eye, and passes round the chin; the under plumage is light cinereons gray, the middle of the body and belly being tinged with crimson; the tail-feathers are black and unspotted, except the base of the middle pair and a few spots and obsolete bands on the outermost ; bill deep black."

With regard to a specimen from Yucatan, supposed to be the same as Swainson's bird, Mr. Lawrence (l. e.) writes as follows:-
"A single male specimen agrees closely with Swainson's description; its validity, as a species, has been donbted by many writers, and generally referred to $C$. tricolor, though admitted to be distinct by Malherbe, and accurately figured and described in his splendid Mon. of the Picide. It seems to be very rare, as Mallerbe states that besides Swainson's example he only knows of the male in his own collection. With specimens before me of C. tricolor from Bogota, St. Martha and Panama, the distinctness of the two species does not admit of a question. As stated by Malherbe, the bands on the upper plumage of tricolor are twice the width of those of rubricentris; in the last species the transverse white lines on the back are similar to those of C. albifrons, while in tricolor they are much as in C. aurifrons; another marked difference is in the central tail feathers; those of tricolor are deeply and broadly indented with white on both webs, whereas in the example of rubriventris these feathers are black, except for a small space at the base on the outer web, where it is white, this color extending higher up next the shaft. In size and general coloring the two species are much alike.
"The acquisition of this specimen is of much interest, as it helps to set at rest auy doubt of its claim as a distinct species, and determines its locality heretofore anknown, though supposed to be some part of Mesico."

## 4 （？）．CENTURUS TERRICOLOR．

Centwrua terricolor，Berlepsch，Jbis，Jan．1P30， 113 （＂Orinoco district or Trinidad＂）．
＂Affinis C．Iriculori（ex Bogotio），sed major，et rostrolongiore，latiore；capitis lateribus， ghat et ablomise toto obscurè brunneo－olivaceis；ventre medio obscurè rubro （nec tlaro－ribro）；tretricibus canda superioribus inferioribusque vigro regu－ laritur fasciatis，primo viso distinguendus．Long．alae 108，cande 60，rostri ：24，tarsi 19．＂
Judging from the above description，this bird closely resembles $C$ ． tricolor，but is much darker colored，and with the upper tail－coverts much more distinetly and regularly barred than in that form．It is pos－ sibly a local race of $C$ ．tricolor．

## 5．CENTURUS AU IFRONS．

Picus aurifrom，Wagi．．Isis， $1 \times 29$ ，129， 512 （ $\delta$ ad．；Mexico）．－Licht．Nomencl．1854， 76．－Susdev．Consp．Pic．1866，53．
Centurus aurijrons，Gbay，Gen．B．ii，1849，442．－Bonap．Consp．i， $1 \times 50,119 .-C a b a n$. J．f．O．1 222,323 －Coopler Orn．Cal．i，18．0， 392 （Toxas）．－Coces，Key， 1872，196，Check List，18\％3，no．307．－B．B．\＆R．，Ilist．N．Am．B．ii，1874，
 no．1，1eis， 39 （Hidalgo and Brownwille，Texas；abt．）。－Merbidu，Pr．U．S． Nat．Mns．i，1eis， 151 （Ft．Brown，Trxad，abt．）－Ridaw．Cat．N．Am．B． 1N－0），no． 373 ：Nom．N．A．13． $1 \alpha+1$ ，ио． 373 ．
＇Zebrapicus aurifrons，Mali．Mon．1＇ic．ii，1862， 240 ；iv，pl．104，figs．1－3（ $\%$ and \＆ ad．，ठ juv．）．
Centurus subrleyana，Bosap．P．Z．S．Nov．14，1837． 109 （ $\delta$ ad．；Mexico）；Consp．i， 1א．0，119；Notes Delatr．1854，\＆
 Z．S． 1527 ，火．－Baird，B．N．Am． $14 ⿹ 勹 巳 寸, 110$ ；ed． 1860 ，pl．42；Cat．N．Am．B． 10i99，no．92；M＇x．Bound．Surv．ii，1859，5，pl．4．－Heemman，Ppeific R．R．Rep． X．c．18：9，18．－Dhesser，Ibis， 1865,469 （R．Graude，n．e．to Guadalupe R．； resid．）．
Picus ornatus，Less．Mag．Zool．1839，102（ $\begin{gathered}\text { ad．）－Weigm．Arch．flir Naturg．1841，99．}\end{gathered}$ C＇enturus ornatux，Reich．Handb．1sï4，410，pl．664，figs．4409－＇ 10.
＂Centurus clogans＂，Lawr．（nec Swaiss．）Ann．I．ye．N．Y．v．Apr．29，1851，116（Texas）．
＂Cenfurun Santa－Cruzi，＂Lawr．（uee Bonap．）Anu．Lye．N．Y．v，1851，123（W．Texas）． Yellow－bellial Hoodpecker，Baird，I．c．et Acct．
Ciolden．fronted Hoodpreker，Couses，I．c．
$\left.\begin{array}{l}\text { Lo Pirzibue a front d＇or } \\ \text { Pic－Zibre d front d＇or }\end{array}\right\}$ Mali．．ll．c．
Mab．－Table－lands of Mexico，north to the Guadalupe River in South－ ern Texas．

Adult s：Frontlet yolk－yellow；nape，bright orange．jellow，varying to orangered in some specimens；occiput（usually）and sides of the crown ash．gray；middle of the crown covered by a patch（usually iso－ lated）of bright erimson－scarlet；rest of the head，including a band across the forehead，dingy ashy white，or pale dingy ash，as are also the lower parts back to the flanks and abdomen ；middle of the abdomen more or less deeply tinged with yolk－yellow；tibia and crissum grayish white， marked with irregular broad V－shapel bars of black．Back，scapulars，
wing-coverts, and upper part of rump barred, in abont equal proportions, with black and white, the former predominating on the wings; secondaries black, broadly barred with white; primaries black, tipped with white, and with a somewhat broken but conspicuons patch of the same near the base, on the outer surface; upper tail-coverts and lower part of rump white, usually nearly or quite immaculate. Tail black, the inuer webs of the intermedia usually wholly black, but very rarely (in only one among twenty-five specimens) with a slight blotching of white toward the base, and partially concealed by the coverts; outer rectrices inclining to hoary drab on the under surface, the outer webs notched with white toward the eud, and the terminal portion of the inner web with one or two bars of white; next feather sometimes tipped with brownish white or light brown. Adult $\%$ : Sirwilar to the male, but red crown-patch wanting, the whole pileum being ash gray, lighter anteriorly. Young o (not full grown): Colors much more dingy than in the adult, and all the markings less clearly defined. Pileum dull light grayish brown, the feathers somewhat mottled with dusky, passing gradually into light yellowish fulvous on the nape, the midalle of the crown dull red; back washed with fulvous; breast streaked with black. (No. 45044, Laredo, Tex., July 28. 1866; II. B. Butcher.) Bill slate-black; feet dusky (olivaceous in life ?). Wing, $5.20-5.65$; tail, $3.40-3.75$; culmen, $120-1.411$; tarsus, $\mathbf{1 . 0 0}$.

Decidedly the largest specimen among the twenty-five before me is an adult male from Silao, Mexico (Mme. Verdey), in the collection of Messrs. Salvin and Godnan. In this the red crown-patch is very large, cosering the entire vertex, and anteriorly touching the orange-yellow frontlet, thus almost obliterating the usual grayish white frontal band; the nape is a deep reddish orange, more yellow helow. No. 46815 , from Laredo, Texas (Jaunary 16, 1867; H. B. Butcher), also has the red crownpatch very large, and the nape still more intense flame color than the preceding; the white frontal band is well defined and complete, however, though posteriorly the red crown very nearly joins the orange-red of the nape along the midlle line. No. 74677, Medina County, Texas, (April 19, 1578; G. I. Ragsdale), has the whitish froutal band broader, and the red crown much more restricted, though posteriorly it apparently does join the bright orange nape in the middle portion. In most examples, however, the red on the crown forms a thoroughly isolated patch of variable form (oval, shield-shaped, or squarish, according to the "make" of the skin), the nape bright orange-yellow, and the frontal band, of grayish white, broad and complete. In the female the yellow of the nape is usually much less intense than in the male, in one example belonging to Messrs. Salvin and Godman's collection (vicinity of Mexico City, Boucard) being of a dull oily-yellow hue.

An adult male from Texas, in Mr. Lawrence's collection, has the red of the crown completely confluent with that of the nape, exactly as in typical santacruzi, except that the gray of the superciliary region eu-
croaches a very little on the sides of the occiput; the deep golden sellow of the forehead is unusually extended posteriorly, leaving only a narrow bar of white between it and the red ; the nape is decidedly more flame-colored than the crown, and changes quite abruptly below and along each side into olivaceous golden jellow. The lower parts are as light as in the most extreme examples of aurifrons, while the flanks and crissum are entirely destitute of bars, baving, instead, longitudinal sag ittate marks of black. The inner webs of the intermedia are solid black.

## 5a. CENTURUS AURIFRONS SANTA-CRUZI.

Ceuturus Santa Cruzi, Boxap. P. Z. S. Nov. 14, 1837,116 ( 子 ad. ; Mexico); Consp. í, 1850, 119 ; Consp. Zygod. 1854, no. 221.—SCl. P. Z. S. 1856, 343; 1858, 359 ; $18.99,367$ (Jalapa) ; 1860, 286, 2977; 1864, 177 (city of Mexico); Catal. 1302, 343, no. 248 (S. Mexico; Salama, Guatemala).-Scl. \& Salv. Ibis, 1059, 136 (Guatemala).-Owhes, Ibis, 1861, 67 (San Geronimo, Guat.; descr. eggs). Zebraptous santa-cruzi, Malit. Mou. Picid. ii, 1812, 241; iv. pl. cv, figs. 4 ( \& ad.) 5 ( 8 ad.) .

- Picus Grateloupensis, Less. Mag. Zool. 1839, 41 ( © ad.; Mexico).

Centurus grateloupensis, Boxap. Consp. Zygod. 1854, no. 223 (excl. 日yn.).
"Picus subelıgans", Less. Descr. d’Ois. réc. déc. 1847, 206 (nec Bonap. 1®37).
Picus chrysogenys, Vig. Zool. Becchoy's vos. 1840, 24.-Ẅeigm. Archiv. 1841, 99.
"Centurus aurifrons", Lawr. Bull. U. S. Nat. Mus. no. 4, 1876, 35 (Chihuitan, Juchitan, aud Sta. Efigenia, Isth. Tehuautepec; Nov., Jans ).
"Centurus albifrons", Caban. J. f. O. 1862, 324.-SCl. \& Salv. P. Z. S. 1869, 364; Nom. Neot. 1873, 100. (Probably not Picusalbifrons, Swains., which apparently $=C$. radiolatus.)
Centurus polygrammus, Cabax. J. f. O. Sept. 1862, 326 (St. Bartolo, S. Mexico).
Le Pic de Grateloup, Less. Rev. Zool, 1839, 41.
Le l'ic subelégant, Less. Descr. d'Ois. réc. déc. 1837, 206.
Le Piczíbre de Santa-Cruz, Mali. l. c.
Mab.-Southern Mexico, Ho'ıduras, and Guatemala.
Adult \& : Frontlet yellowish, varying from pale yolk-yellow to bright orange, with a red tinge centrally; entire crown and nape bright red, darker (deep scarlet-crimson) anteriorly, lighter and brighter on the nape, the lower part of which is more or less tinged with orange; the occiput sometimes ash-gray laterally, thus partly separating the deep red of the crown from the more orange hue of the nape; forehead and anterior part of superciliary region ashy white, forming a distinct and sharply-defined band across the former; remainder of the head light dingy ash (sometimes tinged with dingy yellow anteriorly), deepening gradually into olive drab on the jugulum, breast, and sides; abdomen rather dull orauge yellow, in some specimens inclining to orange-red; tibix, anal region, and crissum pale fulvous, or dingy yellowish white, thickly barred with blackish, the bars inclining to $V$-shape, especially ton the crissum. Back, scapulars, wings, andail black, narrowly barred, except on the primaries and tail, with white; upper tail-coverts and rump immaculate pure white, the shafts of the former brownish or dushy; primaries narrowly skirted with white bejond their emarginations, more
broadly tipped with the same, and (usually) with more or less of white spotting near the base on the outer webs; inner webs of middle pair of tailfeathers usually more or less marked with white (very rarely solid black); onter rectrices hoary drab on the under surface, the outer edge indented with small white spots, or indications of bars, the end portion of the inner webs usually with one or more white bars (sometimes with none). Adult $\circ$ : Similar to the $\delta$, but entire pileum light ash-gray, becoming lighter anteriorly; nape varying from bright safiron-yellow to scarlet, with scarcely a tinge of orange. Young \&: Similar to the adult, but all the markings much less distinct, and the colors duller. Bill black; iris bright red; feet olive-greenish. (MS. notes on labels.) Wing, 5.00-5.75; tail, 3.10-4.00; culmen, .95-1.25 ; tarsus, .90-1.00.

Whether the present form is to be regarded as a distinct species or not, there can be no question that it grades directly into three other forms, viz, C.aurifrons, C. dubius, and C.hoffimanni. Initstypical condition, however, it is a very strongly characterized race. Among the large series of specimens now before me, many striking variations from the normal type are observable; some of them tending to one or the other of the above-named races, others quite unique in their characteristic features. In most of the adult males, the red of the nape is entirely continuous with that of the crown; but in some (as in No. 57834 , Sta. Efigenia, Isth. Tehuantepec, Jan. 10, 1869, F. Sumichrast, and 27955, Mirador, C. Sartorius), the occiput is crossed by a band of ash gray, almost completely separating the two bright-colored areas. In the former of the above specimens, the head is colored throughout exactly as in some examples of pure C. aurifrons, the nape being bright orange, markedly different from the deep red of the crown, and barely conpected with it along the median line; but the lower parts are of a deep olivaceous drab, the abdomen tleep saffron, and the posterior parts densely barred, as in typical santacruzi. The upper parts are more broadly banded with white than in true santacruzi, but less widely than in either aurifrons or hoffimanni. A near approach to the latter form is seen in the broad and distinct White bars (about 7 in number) on the inner webs of the middle rectrices, the outer webs of which are marked with a long narrow white stripe; bnt the size is much greater, the dimensions fully equalling the maximum of aurifrons (wing 5.60, tail 4.10, culmen 1.25). The Mirador specimen is evidently a young bird, and has the iuner webs of the middle rectrices chietly occupied by a large longitudinal blotch of white. Another adult male from the Isthmus of Tehmantepec (No. 57836, Chihuitan, Nov. 20, 1868, F. Sumichrast) is in all respects like the one described, except that the nape is deep orange-red, and this color more completely coalesced with the crimson of the crown. It is also equally large (wing 5.70 tail, 4.00 , culmen 1.12). C. polygrammus, of Cabanis, appears to have been based upon specimens representing this style. Adult females from the Isthmus of Tehuantepec agree with the males in the broadness of the white bars of the dorsal surface, and the white markings of the middle
rectrices; one of them (No. 57835) has the nape bright golden yellow, the other (No. 51197, Juchitan, Sept. S, 1868) saffron orange. Both have the outer webs of the primaries largely blotehed with white toward the base. As to the females, there appears to be no correlation between the color of the nape and the locality; those with deep red napes coming, respectively, from Baoul, Coban, and Dueñas, Guatemala, and the city of Mexico, those with orange napes from Eastern Mexico (Jalapa and Mirador), Guatemala (Retaluleu), and Western Mexico. Two examples from Honduras, in the collection of Messrs. Salvin and Godman, are remarkable chielty for their small size. The male (San Pedro, G. M. Whitely) is very intensely colored, the white bars of the dorsal region narrower than in any skins from Guatemala or Mexico, and very strongly tinged with fulcons, the lateral and lower portions of the head deep olivedrab, in marked contrast with the white frontal crescent, the white of the rump stained with fulsous-yellow, and the lower parts much deeper olivaceous than other specimens; the inner webs of the middle rectrices are solid black. The measurements of this specimen are as follows: Wing, 5.00 ; tail, 3.30 ; culmen, 1.15 ; and tarsus, 88 . The female (Julian, G. M. Whitely) is of abnormally small dimensions, measuring, wing, 4.60; tail, 2.90; culmen, .9ั; tarsus, .80. It appears, however, to be an immature bird, and may not have attained its full size. In colors, it is very dark, like the male from San Pedro.

It is not uncommon for very highly colored examples to have the white of the rump and upper tail-coverts more or less tinged with sellow.

## 5b. CENTURUS AURIFRONS DUBIUS.

```
" Picus carolinus", Cabot (nge Livx.), App. Stephens' Trav. ii., -, 475. (Uxmal, Fu- catan.)
Picus dubius, Cabot, Jour. Bost. Soc. N. H. v, 1845, 91. (Uxmal, Yucatan.)
Picne crythrophthalmus, Liciet. "Cast. MSS. Mus. Berol. 1844"; Nomeucl. 182t, \%6.Reicit. Handb. Oct. 1854, 403, tab. 664, figs, 4396-97 (\(己, ~ \& ~ a d.) . ~\)
"Zebrapicus erythrophthalmus (Licht.)" Mali. Mon. Picid. ii, 186.2, 243; iv, pher, figs. 1-3.
"Centurus albifrons (Sw.)", Lawn. Anu. Lyc. N. Y. ix, 1869, 205. (Yucatan.)
"Picus capistralus, Licht. Mus. Berol. 1811, hec Natter." (Malherbe.)
Piesibre aux yeux rouges, Malm. l. c.
```

Adult 子: Entire pileum and nape bright crimson-scarlet (much as in C. carolinus), without a trace of orange tinge; frontlet scarlet, separated from the deeper red of the crown by a narrow band of dull, smoky white, or grayish white (sometimes nearly pure white), across the forchead; rest of head and neck light ashy drab, approaching smoky grayish white, deepening on the jugulum, breast, sides, thanks, and upper part of abdomen into light olive-drab, or smoky gray ; middle of abdomen bright scarlet, usually without trace of orange tinge; tibia, anal region, and crissum, grayish white, thickly marked with $V$-shaped bars of black. Back, scapulars, wing-coverts, and upper part of rump black, with sharply-defined narrow bars of white, much narrower than
the black bars (averaging about half as wide); secondaries narrowly barred with white; primaries black, margined terminally with white, and with a few irregular spots of the same near base of outer webs; upper tail coverts and rump immaculate pure white. Tail deep black, the under surface hoary drab, and the lateral pair of feathers sometimes showing indications of narrow white bars near the end. Adult i: Similar, but the whole crown light drab.gray, becoming lighter anteriorly (nearly white on the forehead). Bill slate-black; feet dusky (olivaceous in life?. Wing, 4.9 - -j .40 ; tail, $3.40-3.80$; culmen, $1.00-1.30$; tarsiss, .90-.05.

This form is evidently most closely related to C. santacruzi, but it may be immediately distinguished, in its typical condition, by the eutire absence of even the slightest trace of orange in the red of the nape, while the frontlet and abdomen are a pure deep scarlet, instead of orange-yellow. In other respects, however, there is a very close correspondence in all the colors and markings, even to a minute degree, almost the only difference consisting in the white bars of the dorsal surface being still narrower. In the red abdomen, and pure red pilenm, nape, and frontlet, there is a closer resemblance to $C$. carolinus than to $C$. santaeruzi, but the red of all the parts named is more intense, while the forehead is invariably crossed by a sharply-defined band of nearly pure white. In other respects the two are very different, $C$. carolinus having the white bars on the back, etc., abont three times as wide, the upper tail-coverts varied with black, the middle tail-feathers largely varied with white, etc. Comparing the females of the two species, the present one has the crown an altogether lighter gray, and the red of the nape and frontlet much more intense-the latter also more abruptly defined.

It is not to be supposed, however, that the characters of this form, as given above, are absolutely constant, for this is not the case; on the contrary, specimens now before me plaibly indicate, if they do not actually prove, intergradation with C.santacruzi. Specimens from northern Yucatan are, so far as I have seen, purely typical; but an adult mate in Mr. Lawreuce's collection, said to be from Guatemala, has the red of the belly decidedly lighter ind more flame-colored than in Yucatan examples, whilo an adult female from Orizaba agrees with it in this respect. The former, moreover, has the inner webs of the middle pair of rectrices deeply notched with white, while the latter has a considerable quantity of white blotching on the inner wobs of the same feathers, the outer webs of which are marked, on their basal half, with a conspicnous longitudinal stripe of white, mostly concealed, however, by the upper coverts. In this example, the white bars above are broader (about as in average specimens of santacruzi), while the dark bars of the flanks and crissum, as well as the white ones of the terminal portion of lateral rectrices, are much broader than usual.

The tepe of Picus dubius, Cabot, which has been kindly loaned me hy its describer, is a fully adult male agreeing in all respects with other specimens from northern Yucatan.

# 5c. CENTURUS AURIFRONS HOFFMANNI. 

Centurus hofmannii, Caban. J. f. O. x, 1862, 322 (Costa Rica).-Lawr. Ann. Lyc. N. Y. ix 1863, 131 (San Joso and Grecia, Costa Rica).-Scl. \& Salv. Nom. Neotr. 1873, 100 (Costa Rica).
Picus holfmanni. Su'soev. Consp. Pic. 1856,54.
Centurua aurifrons var. hofmanni, B. B. \& R. Hist. N. Am. B. ii, 1874,554.
Mab.-Costa Rica.
Adult s: Frontlet, pale dull yellow; forehead and anterior part of superciliary region, dull whitish; crown crimson-scarlet; nape saffionyellow, varying to orange, sometimes tinged with orange-red; remainder of the head deep smoky gray (lighter anteriorly and underneath), the lower parts similar, but darker; abdomen deep saffron-yellow; tibie, anal region, and crissum heavily barred with black, the bars on the latter more V-shaped. Back, scapulars, and wing-coverts broadly barred with black and white, the two colors in about equal proportion on the dorsal region, the black in excess on the wings, the white bars on the secondaries being ouly about half as wide as the interspaces; primaries black, the onter webs tipped with white and usually spotted with the same near the base; npper tail-coverts and lower rump immaculate white, usually faintly tinged with yellow; tail black, the inner webs of the intermedia edged with white and deeply indented with broad bars of the same, the outer webs with a nartow longitudinal stripe of white; lateral rectrices hoary drab on the under surface, margined terminally with dull white, the outer web notched along the edge, near the end, with the same, and the terminal portion of the inner web sometimes with one or more indications of white bars. Adult \&: Similar to the 8, but crown withont any red, and yellow of the nape duller and (usually at least) without orange tinge. Bill black; iris hazel (MS. note ou label of $\%$ ad.) ; feet dusky (olivaceous in life ?). Wing, 4.60-4.75; tail, 2.40-2.90; culmen, .90-1.05; tarsus, .75-.80.

This form presents a curious combination of the features of C. aurifrons and C.santacruzi with characteristics which are its own. The plumage of the upper parts is exactly that of the former, except that the occiput and sides of the crown are of a decidedly more smoky bue, while the inner webs of the middle tail-feathers are invariably largely marked with white, as described above. The plumage of the lower parts, however, is even darker than in santacruzi, though the posterior portions are more coarsely barred, as in aurifrons. The peculiar features consist in the small size, and constancy of the white markings on the middle tailfeathers, which is only an occasional feature in santacruzi and apparently never occurs in true aurifrons.

## 6. CENTURUS RADIOLATUS.

Picus varius medius jamaicensis, Ray, Syn. av. 181, no. 11.
Picus jamaicensis, Edw. Glcanings, pl. 244 ( 8 ad.$)$.
Pic varié Femelle, de la Jamaique, Burf. PI. Enl. 597 ( ${ }^{\text {s ad. ad. }}$ ).
Picus carolinus, part, LiNs. S. N. i ed. 12, 1763, 175 (qnotes, "Picus varius medius, Sloan jam. 2, p. 299, t. 255. Picus rarius jamaicensis, Briss. av. 4, p. 59. Picus jamaicensis, Edw. av. 5, p. 71, t. 244."-Not of ed. 10, 1758, 113, which is based entirely on Catesby).
Picue radiolatus, Wagler, Syst. Av. 1897, Picus, no. 39 ( ${ }^{\prime}$ ad. ; Jamaica) ; Isis, 1829, 572.

Centurus radiolatus, Bosap. Consp. i, 1850, 118; Consp. Zygod. 1854, no. 215.-Gosse, B. Jain. 1847, 271.-Reich. Handb. 18j4, 409, no. 961, pl. delxiii, fig. 4406 ( $\%$ ad.).-Scl. P. Z. S. 1861, 79 ; Catal. 1862, 343, no. 2046.-March, Proc. Philad. Acad. 1863, 284.—Scl. \& Salv. Nom. Neotr. 1873, 100 (Jamaica).
Zebrapicus radiolatus, MaliI. Mon. Pic. ii, 1862, 237 ; iv, pl. civ, figs. 5 ( $\delta$ ad.) 6 ( 8 ad.)
1 Picus albifrons, Swanss. Philos. Mag. i, 1827, 439 ( $\%$ ad. ; "Table-lands of Mexico"-error*).-Whal. Isis, 1829, 514.-Less. Compl. Buff. ix, 1837, 318.
Picus larvatua, Temm. Pl. Col. lirr. 730, 1838, in text, sub P. superciliaris.
Le Pizèbre de la Jamaique, Mali. 1. c.
The Woolpecker of Jamaica, Edwards, 1. c.
Radiolated Troodpecker, Gosse, 1. c.
Le front blane, Less. l. c.
Mab.—Jawaica only.
Adult 子: Pileum and nape bright scarlet-crimson, darkest on the crown; remainder of the head, including forehead, lores, and superciliary stripe, soiled white, changing quite abruptly to smoky drab next to the red of occiput and nape, and on the jugulum, the breast, sides, and abdomen uniform deep oliraceous (slaty plumbeous beneath the surface), and with a deep golden-ochraceous wash in some examples; middle of the abdomen deeply tinged with saffron-red, the tibia tinged with the same, and indistinctly barred with grayish dusky and dull whitish ; crissum black, narrowly and rather distantly barred with dingy white. Upper parts black, relieved by very narrow thread-like bars of white, these widest apart on wings ; upper tail-coverts and lower part of rump also black, crossed by broader and more distinct bars of white; tail deep black, the inner webs of middle pair of feathers (sometimes outer webs also) marked with narrow white bars. Adnlt $\%$ : Similar, but crown and upper part of occiput smoky gray, and the white of the anterior portion of the head more obscured, or dingy. Bill black; feet

[^103]dusky. Joung $9:$ Similar to the adult, but with red feathers on the middle of the crown. Wing, $5.00-5.40$; tail, $3.70-4.30$; culmen, $1.30-$ 1.45.

The only species bearing any resemblance to the present one is 0 . santacruzi, which, however, besides being very much swaller, has the upper tail-coverts and lower rump immaculate white, the frontlet goldenyellow or orange, the lower parts much paler, and the white bars of the upper surface much broader. With the exception of C.superciliaris (of Cuba), it is the largest member of the genus, and in the decided predominance of black on the rump and lower tail-coverts is entirely peculiar.

## 7. CENTURUS UROPYGIALIS.

Centurus uroaygialis, Baird, Proc. Philad. Acad. vii, June, 1854, 120 (Bill Williams' River, Arizona) ; B. N. Am. $18: 8,111$; ed. 18tio, pl. 26 ; Cat. N. Am. B. 1039, no. 93.-Retch. Handb. 18.4, 310.-Caban., J. f. O. 183:2, 3:30 (northern Mes-
 17.-Sundfyall, Consp. Pic. 18ib6, 54.-Cours, Proc. Phulad. Acad. 1etio, 57 (S. Arizona); Key, 18j2, 196; Check List, 18\%3, no. 308.-Cooper, Orn. Cal. i, 1770,399 (F't. Mojave)-BB. B. \& R. Hist. N. Am. B. ii, 1874. 508, plo lii, figs. 2 and 3. -Ridgw. Cat. N. Am. B. 1850, no. 374 ; Nomencl. N. Am. B. 1841, no. 374.
Centurus sulfurcirenter, Reicin. Handb. Oct. 1854, 410, pl. delxiv, figs. 4111-12 (\% \& \& ad.).
Zebrapicus kaupii, Malu. Mon. Pic. ii, 1862, 245; iv, 1862, pl. cvi, figs, 4, 3 (\% and \& ad. ). *
"Centurus h!ponolius", Pucit. Rev. et Mag. Zool. 1853, 163 (nec Licitt., ex Wagl.)。 Le Picièbre de hiaup, Madi. l.c.
Gila Woodjecker, Banmd, l. c.
Mab. - Western Mexico, extending into Arizona (as far as the Gila (Valler:), southeastern California, and western New Mexico; Lorer Califtrnia.

Adult z: Head, neek, and lower parts soft, rather light smoky drab, usually deepest on the nape and paler on the forehead; middle of the abdomen pale yolk-yellow, in some specimens inclining to buff; a patch of scarlet-crimson on the middle of the crown; tibix and crissum white, broadly barred with black. Back and scapulars broadly and regularly barred with black and white, in about equal proportion; wings black, the coverts and secondaries broadly and sharply barred with pure white; primaries tipped with white, largely blotched with the same near the base, the longer quills narrowly edged with white beyond their emarginations; rump and upper tail-coverts white, regularly barred with black; tail black, the inner webs of the intermedix white, broadly barred with black, the outer webs with a stripe of white extending the

[^104]greater length of the feathers ; onter pair of rectrices broadly barred with white for at least the terminal half (sometimes the whole length), and next pair with several broad bars across the terminal portion. Adult $8:$ Similar to the 8 , but without the red crown patch. Wing, $5.00-5.30$; tail, $3.50-3.90$; culmen, . $95-1.25$; tarsus, $.90-.95$.

This is the only species of the genus in which the female has neither red nor yellow anywhere about the head or neck, and in which the lateral tail-feathers are banded for the greater part of their length, and the upper tail-coverts transversely barred.

Among thirteen adult males now before me I find considerable variation, which, however, affects chicfly the color of the nape, the exact shade of color pervading the heal and lower parts, and the size and shape of the red crown-spot. In two specimens (76735, Fort Yuma, Dr. A. L. Heermann, and 4968', Camp Grant, Arizona, March 20, 1867, Dr. E. Palmer), the nape inclines vers strongly to a light ful-vous-buff, strikingly different in color from the occiput, sides of the crown, etc. Usually the nape is similar in tint to the breast, but of a decidedly darker shade, this being particularly the rule in fall specimens, in which the colors are darker and the texture of the feathers softer than in spring and summer. The exact tint varies greatly, however, the darkest example (No. 67153, Pucblo Viejo, New Mexico, September 19, 1873, C.J. Nowberry), having the nape a deep sepia-drab, while in the lightest (No. 6129, Camp Yuma, California, A. Schott), it is a light ochraceous-buff, the lower parts being also much paler than usual. Summer specimens, having the plumage more woru and bleached than those killed in the fall or winter, are of course paler colored. The exact shape and extent of the red crown-patch vary greatly in differe:.t examples, but this may be owing in a great measure to the "make" of the skin.

## 8. CENTURUS HYPOPOLIUS.

Picus hypopolius, Ẅal. Isis, 1 $2 \mathbf{2 9}, 514$.
Zȩrapicus hypopolius, Mali. Mém. Ac. Metz, 1848-9, 361 ; Mon. Pic. ii, 1862, 228; iv, pl. 103, figs. 4,5 ( 5 and 8 ad.).
Centurus hypopolius, Licht. Nomencl. 1834, 76.-Reich. Handb. 1854, 410, pl. 665, figs. 4413-14 ( $\delta$ \& $\&$ ad. ).-Lawr. Bull. U. S. Nat. Mus. no. 4, 1876, 35 (Chapulco, Pueblo).
Piczèbre alezan cendré, Malh. 11. c.
Mab.-Southern Mexico.
Adult s: Head, neck, and lower parts. back to flonks and anal region, deep smoky gray, or purplish drab, darkest on the head above, and nape ; forehead, chin, and throat lighter, the first inclining to soiled white; evelids surrounded by a blue-black circle, separated posteriorly by white on the upper eyelid; crown with a quadrate patch of crimson, and lower part of auriculars tinged with the same. Back and scapulars barred with glossy black and brownish white, wing-coverts and secondaries barred with purer white, the white bars broader on Proc. Nat. Mus. 81-8

June 2, 1881 .
the secondaries and outer greater coverts; primaries black (withont white on outer webs, except at extreme base of the inner quills, and a very narrow edging to the outer quills), but each bordered terminally with white. Rump and upper tail-coverts white, marked longitudinally with black. Tail black, the inner webs of the intermedia partly white, this crossed by oblique bars of black; lateral tail-feathers barred at ends and on outer webs with white, the next pair with incomplete bars, at eud only. Lower part of abdomen, anal region, flanks, and crissum, soiled white, the flanks transsersely spotted, or irregularly barred with black, the crissum with irregular V-shaped marks of the same; ana: region with smaller, nearly obsolete spots. Adult 8: Similar to the \%, but lacking the crimson crown-pateh. Wing, 4.90-5.00; tail, 3.70; culmen, .85-. 00 ; tarsus, . 80 . "Iris brown; bill blackish; feet ashy-blue." (Sumichrast, MS.)

This species is very peculiar in its coloration, and needs no comparison with any other. Its nearest ally is perhaps C. elegans, with which it agrees in the dark color of the breast and the black surrounding the eyes, although $C$. uropygialis is about equally related, in the uniform brown color of the nape, and the squarish crimson spot ornamenting the pileum of the male alone. It is a much smaller and decidedly more delicate species than either of those named, however, and differs widely in other characters of plumage. The absence of any red or yellow tinge on the abdomen, and the longitudinal markings of the rump and upper tail-coverts, which characterize this species, are unigue features in this genus.

Of the single pair of specimens which I have been able to examine, the female (E. Mus. Salv.-Godm. "Mexico; ex Darmstadt Mus.") differs from the male (Mus. Salv.-Godm. "Valley of Mexico; II. S. Le Strange"), besides in the absence of the red coronal patch, in having much narrower and sparser streaks of black on the rump and upper tail-coverts, and in having the white spots on the outer greater wing coverts larger, or even so nearly coalesced as to form a broken longitudinal patch.

## 9. CENTURUS ELEGANS.

[^105]Mab.-Western Mexico.
Adult z': Crown and occiput scarlet-crimson; nape bright orangeyellow, sometimes abruptly defined against the red, often grading in-
sensibly into it; bare orbital space surrounded by black, this much broadest above the eye, where forming a large longitudinal patch, widest posteriorly, on each side of the red crown; remainder of the head smoky olive-gray, lighter on the forehead, the frontlet, cheeks, and chin more or less strongly washed with golden yellow; throat, jugulam, breast, sides, and upper part of abdomen, uniform smoky gray; middle of the abdomen stained, more or less deeply, with golden ycllow; tibix, anal region, and crissum thickly marked with V -shaped bars of black. Upper parts sharply, and rather broally, barred with black and white, the bars of the two colors nearly equal in width; primaries black, bordered terminally with white, and marked at the base (of outer webs) with large blotches of the same; primary coverts uniform black; lower rump and upper tail-coverts white, with rather distant broad bars of black. Tail black, the intermedia broadly barred, on both webs, with white; lateral pair of rectrices distinctly barred on both webs, to the base, with white, the bars not touching the shaft, however, except near the end of the feather; next tail-feather usnally barred on the inner web only, the next two wholly black or with mere indications of bars. Adult i: No red on the crown or occiput, which are uniform ash-gray, the occiput sometimes (but rarely) blackish, in consequence of the coalescence of the black supraocular patches. Foung 8: Similar to the adult, but colors of the head less brilliant, and all the markings of the plumage less sharply defined; light bars of the dorsal region obscured by an olivaceous wash. Wing, 4.50-4.90; tail, 3.10-3.60; culmen, .95-1.10; tarsus, .85-. 00 .

In this handsome species there is rather an unusual amount of individaal rariation. In the adult males, the bright Indian yellow of the nape is usually quite distinctly defined against the red of the occiput and crown; but in one (No. 26991, Mazatlan), only the lower margin of the nape is yellow, the rest being bright red, like the occiput. In this example the frontlet, chin, cheeks, and auriculars are a bright golden yellow, while the jugulum and breast are darker and more olivaceous than in others. In the adult females the red of the crown and occiput is usually wholly replaced by uniform rather light brownish gray; but sometimes (as in No. 23817, Mazatlan, J. Xantus), the whole occiput is black, while it is not unfrequently spotted with this color. Furthermore, in this example, also in two others (Nos. 23752 and 39977, Mazatlan), the nape is intense orange red with merely a lower border of sellow.

## 10. CENTURUS SUPERCILIARIS.

Picus superoiliaris, Tıмм. Pl. Col. iv, 1838, 433 ( 3 ad. ).-Cuv. Règ. An. ed. 1829, 451.Wagl. Isis, 1829, 515.-Less. Trait6, 1831, 227 ; Compl. Buff. ix, 1837, 324.Drap. Dict. Class. xiii, -_, 506.-Theinem. J. f. O. 1857, 153.
Colaptes superciliaris, Vig. Zool. Jour. iii, 1827, 445.-D'Orb. La Nagra's Cuba, Ois. 1839, 146, pl. 23 (albinotic of ad.).
Colaptes superciliosus, Gray, Gen. B. ii, 1849, 446.

Centurnes superciliaris, Bowap. Consp. 1, 18.0, 118; Consp. Zygod. 1854, no. 214.-
 Grivil. J. f. O. 1854.103 : Repert. i, 1865, 294.-Scl. Catal. 1869, 342, no. 2042 (Cuba)-SCl. \& Salv. Noun. Neotr. 18i3, 101 (Caba).
Zebrapicu* superciliuris, MıLh. Mem. Ac. Metz, 1848-9,301; Mon. Pic. ii, 1852, 223;

"Picus suboculnria, Lf:ss, Discr. d'Ois. rée. découv. 1817, p. 203, no. 33, le male". (Malherbe.)
Pic sourcil noir, Temm. 1.c.
fic ì sourcild noirs, Less. l. C.
Colapte i sourcila woirs, D'Osis. l. e.
Le Pic à plaque noire, Lfess. Descr, d'Ois, réc. déc.
$\left.\begin{array}{l}\text { Carpintero jabado } \\ \text { Carpintero commun }\end{array}\right\}$ V'cin.
$\left.\begin{array}{l}\text { Le l'iczèbre aourcil noir ou superciliare } \\ \text { Pic-ä̀uc anperciliare }\end{array}\right\}$ Maln. Il.c.
Hab.-Cuba.
Adult s: Crown, occiput, and nape bright scarlet-crimson, darker anteriorls; frontal feathers, on each side of the base of the culmen, reddish (usually deeply red, occasionally merely stained with this color); a large longitudinal patch of black on each side of the crimson crown, the lower elge borlering the bare orbital space, and extending from the auterior angle of the eve back as far as the occiput ; remainder of the head dull whitish, including a distinct and usually broad band across the forehead; white purest on auriculars and forehead, more tinged with light buffy gray on the throat, this changing gradually to a deeper shade of the same on jugulam, the breast, sides, and abdomen deeply buffy drab, tiuged with golden buff posteriorly; middle of the abdomen bright red; tlanks, tibie, anal region, and crissum varied with $V$-shaped marks of black. Back, scapulars, and wings broadly barred with black and white, the dorsal region strongly washed with buff yellow; rump and upper tail-coverts white, often tinged with pink and buff yellow, the former with transverse bars, the latter with $V$-shaped marks of black; tail black, the inner webs of the intermedice white, with broad, rather oblique, bars of black, the outer webs with a longitudinal stripe of white, narrow and pointed posteriorly, often barred with black anteriorly; latcral pair of reetrices marked with broad bars, or transverse spots, of white, not tonching the shaft except the terminal and (rarely) the subterminal spo s; inner webs with one or two broad bars of white near the end. Primaries black, the onter webs blotched with white near the base. Adult o: Similar to the z, but anterior part of the crown white, like the forchead, the occiput and posterior part of the crown black, this confluent with the black superciliary patches; bill blackish; feet olivaceons dusky. Wing, j.40-6.00; tail, 4.j0-4.80; culmen, 1.30-1.65; tarsus, 1.00-1.10.

The unique characters of this rery distinct species consist in the large size (large $t$ in the genus), superciliary black patches combined with
scarlet nape and red frontlet; equal width of the light and dark bars of the upper surface (in this respect most resembling C. carolinus), and the distinct buff yellow wash whish pervales the dorsal region.

## 11. CENTURUS STRIATUS.

Picus dominicensis striatus, Bress. Orn. iv, 1760, 65, pl. iv, tig. 1 ( \% ad.).
I'icus dominicensis striatus minor, Briss. f. c. (67, pl. iii, fig. 2 ( 8 ad.).
Picus striatue Mtllo S. N. Suppl. 17̈6.-Bodd. Tabl. P. E. 178: (ex Pl. Enl. 281, 614)。Gmel. S. N. i, 178. 427 -Lath. Ind. Orno i, 1790, 288. Valenc. Dict. Sc. Nat.
 xxvi, 1818,90 ; Enc. Méth. 1823, 1316. (Cvv. Kíg. An. i, 1ega, 451.-Drap.

 180is, 9.3 (St. Doningo).
Centurus strialus, Gray, Gen. B. ii, 1849, 442.-13p. Cousp. i, 1850, 119 (8); Consp.
 Scl. \& Salv. Nom. Neotr. 18:3, 100 (Hayti).
 8 ad.).
Le Pic rayé de St. Domingue, Briss. Orn. iv, 1760, 6ī, pl. 4, fig. 1 (\% ad.).
Le petit Pic rayé de St. Dominigue, Briss. t. ce. 6t, pl. 3, fig. 2 (\% ad.).
Pic rayé, de St. Domingue, BeFr. P1. Enl. 281 ( $\mathrm{\delta}^{\text {ad. }) \text { ). }}$
Pic raye de téle noir de St. Domingue, Buff. Pl. Einl. (i14 (\& ad.).
Le Pic rayé, Vieill. ll. c.-Valenc. l, c.-Less.l.c.
l'icièbre rayé ou de Saint-Domingue, Malit. l. c.
IIab.-Island of St. Domingo or Hayti, only.
Adult 8: Crown, occiput, nape, lower part of rump, and upper tailcoverts deep blood-red or scarlet-crimson, the red of the nape extending over the sides of the neck to a point immediately behind the auriculars; sides of the neck below this with two longitudinal stripes of dingy white, separated by a black one of about equal width; the posterior white stripes of opposite sides separated by a black space on the extreme lower part of the nape. Remainder of the head, smoky gray, gradually becoming smoky drab or brown on the jugulum and breast, this in turn passing gradually into light yellowish olive-green on the abdomen, anal region, crissum, sides, and flanks, all of which are immaculate.* Back, scapulars, and upper part of rump sharply banded with deep black and bright yellowish olive-green, the black bars broadest, except on the rump. Wings black, the coverts banded with greenish buff, the secondaries with golden buff; outer webs of primaries spotted with pale buff. Tail uniform black, the lower surface dull hoary olivaceous. Bill plumbeous dusky, the mandible paler (probably bluish white in life); feet olivaceous or plumbeous. \%: Similar, but crown derp black, the red of the head and neck being confined to lower part of occiput and upper half of nape. Wing, 4.30-5.20; tail, 3.3J-4.10; culment, $1.00-1.30$; tarsus, $.90-1.00$.

This is the only Centurus having red on the rump or upper tail-coverts,

[^106]and the only one, excepting C. hypopolius, without a decided red or yellow wash on the middle of the abrlomen. In the bright yellow-green color of the lighter bars of tho mantle, and in the longitudinal black and white stripes of the lower hind-neck, it is entirely peculiar in the genus; but in all the essentials of form, as well as the general style of coloration, it is a true Centurus.

## APPENDIX.

In addition to the species given in the abore synopsis, Malherbe, in his Monographie des Picidées (ii, 1862), gives, besides Mclanerpes pucherani, which he includes in this genus, two additional species of "Zebrapicus," viz: "Z. gerinii (Temm.)" and "Z. aurocapillus (Vig.)." They may or may not belong to the genus Centurus, in the restricted sense; and since I know nothing of either from autoptical acquaintance, I trauscribe below Malherbe's account of each in full, as embodying all that is known regarding these doubtful species.

## ZEBRAPICUS GERINII (Temm.).

Picus rarius indicus; Germin, Ornith., ii, p. 4ß. pl. 171.
Picus carolinus, Var. D; Lath., Ind orn., i, p. 231, spec. 18.
Picus gcrinia ; Temm., pl. color., $73^{\circ}$ livf., articlo du $P$. superciliaris.
Mas ADul -Albo nigroquo supra variolosus; pileo, nucha abdomineque coccineis; fronte colloque subtiss flavo-griseis, lined nigria a naribus peroculos all humeros ntrinque ducta; tergo et uropygio feré tolis alhis; remigibus rectricibusque nigris

## LE PICZEBRE DE GERIN.

"Cette espèce, que nous ne connaissons que par la description qu'en donne Gérin et que reproduit Latham, tout en faisant une varicté du Zebrapicus carolinus, m'aurait paru être le Piczèbre capistrate de M. Lichtenstein, si Gérin n’annonçait pas qu'une bande noire descend des narines jusqu'aux épaules, en passant sur les yeux. Ce caractèro rapproche done ce Piczèbre de lelegans de Swainson, du superciliaris, de rhypopolius et de mon pucherani, qui, tous, ont les yeux entourés de noir.
"M. Temminck nomme seulement ce grimpeur dans son article sur le superciliaris ([1l. col. 433); mais il parait ne l'avoir jamais obsersé et ne le connaître que par la description de Gérin.
"Nous n'avons aucun renseignement sur lhabitat précis de cet oiseau américain.
"Coloration.-Le male, d'après Gérin et Latham, a les paties supéricures rayées transversalement de noir et de blanc; le dessus de la tête, la nuque et le milieu de l', bdomen, sont rouges; le froute et le dessous du cou sont d'un gris jaunâtre, une bande noire s'étend de chaque côte du con, a partir des narines jusqu’aux épaules et en courrant les yenx ; les rémiges et les rectrices sont noires; le milieu du dos et lo cropion sont presqu'eutièrement blancs.
"La femelle n'a pas été décrite par les anteurs.
"Tavite l'Amérique, sans pouvoir indiquer dans quelle contrée, probablement le Mexique on l'Amérique centrale.
" Dimensions.-Gérin et Latham n'ont indiqué les dimensions même approximatives de cette espèce, qui semble se rapprocher pour la taille du Zebrapicus carolinus, puisque Latham en fait une variété.
"Ou ignore ce qu'est devenu l'exemplaire décrit par Gérin et Latham."

## ZEBRAPICCS AUROCAPILLUS (Vig.).


#### Abstract

Picus auronapillus; Vig. Proceef. Zool. Soc. Lond., 1832, p. 4.-Less., Compl. Buff, ix, p. :315. Picus aureocapillus; Gay ex Vig., Mist. fis. de Chile, 1847; Zool. p. 373. Fixmina $\dagger$ Supra ater, albo fasciatus maculatusque; striga lata supra nculos ad humerns extendente, alteraque sulboculare interrupta, gratique albis ; pectore abdomineque sordide albescentibus, strigis parvis fuscis notatis; capite atro; fronte aureo strigatim notato, vertice aureo.


## LE PICZEbRE A TETE DOREE.

Pic a têto dorfe; Less., Compl. Buff, ix, p. 315.
"Cette espèce, du Mexique, ne uous est connue que par la description qu'en donne M. Vigors dans les Proceedings of the Zoological Society of London, et je ne l'ai observée dans aucune collection d'Europe. Je dois ajouter que je ne suis pas méme certain, quoique cela soit probable, que cette espece appartienne an groupe dans lequel j'ai cru devoir la faire flgurer, en égard à sa coloration, la description de l'anteuranglais étant très sommaire. Ce grimpeur est plus petit que notre Z. pucherani, dont il diffëre surtout par l'absence de rouge sur la tête et sur l'abdomen.
"Je suis très-porté al croire que le sujet décrit par M. Vigors etait une femelle, et que l'espèce ne se trouve point an Chili, comme en doute aussi M. Gay, tout en la décrivant d'après Vigors.
"La femelle Corps noir au-dessus, tacheté et rayé transversalement de blanc; audessus des yeux, une large bandelette blanche qui s'éfend jusqu'aux épaules, et une seconde interrompue, de méme couleur, sous les yeux; la gorge est aussi de cette derniere couleur; le thorax et le ventre sont d'un blanchâtre sale avec quelques stries brunes; la tête est noire arec des rayures jaunes sur le fronte, et le sommet de la tête jaune d'or.
" Ilabitc le Mexique.
"Dimensions.-Longueur totale, 165 millimétres (les autresdimensions ne sont pas indiquées).
"Cette espèce flgurait dans la collection de M. Cuming, que je n'ai malheureusement pu examiner, et ce dernier l'avait reçue du Mexique."

Smithsonian Institute, January, 1881.

## ORSERVATIONS ON AIREDON LICHENOIDEN.

## By WM. E. CARLIN.

Como Lake is a body of water about two miles and a half in circumference. It has no known ontlet, but is fed by a stream of pure spring water abont 2 feet wide and a foot deep, which, continually running, prevents the lake's absorption by evaporation. The lake is quite shallow and can be easily waded at ahost any part, being not more than 10 feet deep in the decpest place that I have been able to find. The bottom of the lake is soft and is covered in most places with grass and weeds. The water is strongly impregnated with alkali, and a large number of cattlo are said to have died a number of years ago from driuking it. It is very disagreeable to the taste. The amount of water varies about 14 inches duriug the year, being highest in the spring from the melting snows, and lowest in the autumn. This is the home of the Siredon lichenoides (Bairl). They never enter the stream of fresh water, preferring the alkali water of the lake. They seem to suffer no incouvenience, however, if placed in fresh water. I have caught as many as a hundred and fifty and placed them in a cauf, and have never haul one die from the change. The change to fresh water undoubtedly hastens the metamorphosis into the Amblystoma form, as I have noticed quite a change in the coarse of twent $y$-four hours in individuals placell in the cauf, while an equal number kept in the alkali water in the boat have shown no change in any of them in several days. I have kept six at different times in jars of fresh water until they have completed their metamorphosis. I made no systematic note of appearance from day to day, but my observation was careful and regular. In two cases the change in external appearance was so abrupt that I would have been almost certain that another salamander had been substituted $f_{\text {or }}$ the one in the jar had I not had him so completely under observa. tion that it was impossible. The gills had assumed a stubby form about half the length that they were the night before, and the gill on the back of the body was nearly half gone; it took air quite often, and I removed it from the jar and placed it in a box with some lake grass around it to keep it moist. It completed the metamorphosis in a few days. I did not feed it any during this time. While it was in the jar it was well fed with flies. The jar was placed upon a table in the telegraph oflice. The flies at first had to be pushed in front of it with a pencil. It finally got to know that tapping the jar with a pencil meant a fly, and would rise to the surface immediately and snap at whichever it saw first, pencil or fly. It furnished train-men continual amusement while here, and they kept it constantly gorged. Those that 1 kept well fed in jars and seldom changed the water, say once in three days, usually began to show a slight change in from two to three weeks,
and all of then completed the change into the Amblystoma inside of six weeks, while I have had but three changes of those kept in the cauf (sixty of them) in three months. During that time they have not been fed at all. The Siredon mexicanus is said to never undergo the transformation in its home, and Professor Marsh doubts that it ever makes it here. This doubt I can put at rest. They do make the change here, and in large numbers. During the latter part of the month of July and the cntire month of August, if the day is rains or misty, they come from the lake in to the shore in large numbers, and secrete themselves under some piece of wood or rock where they can keep moist. Sometimes they venture out in a shower, and the sun catches them before they can obtain shelter either in the lake or under cover, and in a few minutes kills them. They can be found dried hard anywhere about the lake, on the shore or in the grass. While catching Siredon I have seen and caught a number of Amslystoma in the lake, with the metamorphosis, as fur as I could see, as complete as those we find half a mile from the lake. They cover the ground by thonsands during a warm summer rain, coming from every conceivable place where they could have found shelter, from under rocks, boards, old ties, and out of gopher holes. I have a cat that eats them greedily. She has fished several ont of jars on the table and devoured them during the night when there was no one to watch her ; and I am told by a resident that the numerous skunks that live around the lake live principally on them. They are of two colors, a blackish greeu and a yellowish green color. I have had two of the blackish green complete the change in sequence, while one of the yellowish green was completing it under the same circumstances of change of water and food. I think this will be found to be the result in all similar cases. I have caught them in all stages of growth and in all stages of their changes into the Amblystoma state. Juring the months of July and August they lie close to the shore of the lake, where it is shallow; but after the first frost they disappear completely, or at least I have never been able to find them. I think they must bury themselves in the mud at the bottom of the lake, as I have stirred up the grass often and have not seen them issue from it.

## ON THE DEESTBUUTHON Ow FUSEI IBE POTAONOES WATER IN THE 

By Josepil y. PORETER, Assistant Surgeon, U. S. A.
United States Army Hospital, Office of Post Surgeon, Key West Barraces, Fla., January 21, 1879.
Professor: I forward you to-day by express a small box containing a quart of Gulf water, procured 20 miles from this port. I enclose you a slip of paper taken from the "Key of the Gulf," a local of this place, which in its turn clipped it from the "Forestand Stream." It seems to be
the general opinion in this section among non-scientific men that the destruction of fish has been due to the saturated condition of the water with dogwood (Cornus Florida). I am informed that the shores of Lake Okheechobee abound in this vegetation, as well as the country around it; and as the land was completely overflowed last year-summer-some couple of hundred miles in that vicinity, water 4 and 5 feet deep, it is thought, as it remained some little while before running off, that some of the properties of the Cornus may have been imparted to the water, and this in its turn contaminated the Gulf water. However, this is a mere conjecture, and may not be any nearer the truth than a theory ad vanced by a "Partington" of this place, viz, that the fatality of the fish was due to a vulgar corruption (rolcanic eruption) of the Everglades. The fishermen have suffered terribly in consequence of this calamity, returning to port trip after trip with their "wells" full of dead fish. Ther say that they meet with good success in catching the fish above line Island, Charlotte Harbor, and are able to keep them alive until returning, preparatory to going to the Havana market. They meet with this belt of poisoned water between this port and Punta Russa, and immediately on entering or attempting to cross it their fish come to the surface, gasp, and die.

I trust that as soon as the water I sent you shall be analyzed you may be pleased to inform me; for which favor I shall be deeply grateful.

I am, Professor, very respectfully, your obedient servant,
JOSEPH Y. PORTER, Assistant Surgeon U. S. A., Post Surgeon.

Prof. Spencer F. Baird, Washington, D. C.

## THE FISI MORTALITY IN TIIE GCLF.

Jacksonville, Fla., December 26, 1878.

## Editor Forest and Stream:

In reply to your communication soliciting information regarding the mortality among the fish on the coast and ocean near the Keys, I can only say that from personal observation I have none to communicate. Throngh the public press I have noticed that fish have been dying in immense quantities for some time.

By some the mortality is attributed to the freshness of the water as a consequence of the heavy rains of the past summer and autumn. But in my opinion this explanation will not suffice, as the main outlets of the Okheechobee empty into the ocean north of Pavillion Key, aud that sheephead, tarpum, channel bass, and mullet visit and live in brackish and even fresh water. By some it has been attributed to volcanic action, and by others to the breaking forth of a subterrauean stream, the waters of which are poisonous. One fact is positively known, and that is that fish in enormous quantities are dying over a large extent of the

Gulf from the effects of something contained in the water-be that something deleterious gases, mineral substances held in solution, or fungi.

The fishiug interest of Key West is an important one, for it supplies thousands with the means of subsistence, and if the fish mortality should continue it will bring privation and suffering to many a family.

It appears to me that the existing mortality among the fish is a matter of scientific importance, and should be thoroughly investigated. I would suggest the advisability of the Revenue Department or the Smithsonian Institution sending a commissioner to investigate the cause of the mortality. The government has a dispatch boat at Key West which could be spired for the purpose, and the expense would be trifling. As a matter of scientific interest, independent of its commercial importance, this subject demands̉ investigation.

I remain yours, truly,

## C. J. KENWURTHY.

We warmly second Dr. Kenworthy's suggestion, and hope the government will permit the use of facilities for investigation which it appears to have in readiness at Key West. We have already hinted that the use of fluorescine in those waters of Florida which empty into the Gulf might serve to indicate the origin of the boiling spring, whose discovery somewhere off the Gulf coast was announced two months ago. If such a volcanic spring exists, the poisoning of the water can easily be accounted for; though the remedy to prevent continued mortality of the fish is not so readily found. The locality of this boiling spring was given by the Key West Key of the Gulf, of November 6 , or thereabouts, as "along our bay coast from two to ten fathouns ont." This is not very definite, but it is the most positive designation that we have seen. No authentic information seems to have been derived from any other source. The fishermen whose occupation has been cut short so suddenly should devote their leisure time to efforts to determine the locality of the obnoxious canse, wherever or whatever it is, and report at once to the reveune station at Key West, thereby seconding the efforts of the government to remedy the evil. It will be a direct way of putting bread in the mouths of their now starving fanilies. The polluting substance, whatever it may be, is evidently most subtle, for its influence is seen for a distance of 200 miles, dead fish covering the surface of the ocean wherever the eye rests. One proof of its volcanic origin is that the water so polluted is of a "red brick color," at a distance of less than a mile from the shore, while the interval of water along the land is natural in color und taste. Of its subaqueous origin there can be no doubt, but whether it has connection with waters in the interior of Florida by subterranean passages, or has a deeper and independent source and seat, is what we wish to know. The phenomenon in itself is not wonderful or incomprehensible, being only a reproduction of boiling springs in all parts of the globe, both in land and ocean. Off Matanzas there is an immense spring, not hot, but of clear, cold, pure water.-Forest and Stream.

## AN ANALEGIG OF WATER DESTRECTIVE TO FISII IN TBE GELE OF MEXCO.

By F. M. ENDLICH.

Shithsonian Institction, Washington, D. C., April 5, $15 \%$.
Sir: Haring completed the examination of sea-waters from the Gulf of Mexico, so far as the scant supply would permit, I have the honor to offer the following report therenpon, the water in which the fish die being designated as $A$, the good water as $B$ :

|  | A. | B. |
| :---: | :---: | :---: |
| Specific gravity | 1.024 | 1.022 |
| Solid constituents (total), per cent. | 4.0780 | 4.100\% |
| Ferric compounds, per cent | 0.1106 | 0.0i-4 |
| Injurious organic matter | atio $=3$ | atio $=3$ |

I find that the water A contains a large quantity of Alga and infusoria. It is eminently probable that the former may hare had an injurions effect upon the fish. Specimens of the alge have been submitted to Professor Goode, who will send them to some expert, in order that their specific character may be determined.

The "dead fish" in possession of the United States National Museum are sich that ang examination of the organs of respiration will be of no avail.

I cannot find, even by spectroscopic analysis, any mineral constituents in the water $\Lambda$ which could noxiously affect the fish.

In my estimation the death of fish was caused by the more or less parasitic alge, which are found in large quantities in water $\mathbf{A}$, but do not occur at all in water B.

In case the same phenomenon should recur, the presence of an expert in the questions involved, more particularly chemistry and botany, would most likely lead to definite results.

Respectfully,

F. M. ENDLICH.

Prof. S. F. Baind, Secretary Smithsonian Institution, Washington, D. O.

# FISH MORTAEITYIN THE GELE OF MEXICO. 

Ey M. A. MOORE.

Bradentown P. O., Manatel Cousty, Florida, Norember 30, 188J.

Sin: I hope you will excuse the liberty I take in writing you this letter, but on yesterday Maj. W. I. Turner gave me a blank circular of yours aud asked me to fill out the queries for him, which I did, and thought no more of it at the time. But on thinking the matter over I have come to the conclusion that there is a matter here that might bo of some interest to your commission, as it is one of most vital importance to many here.

You are doubtless aware that we have employed here a number of vessels as fishing-smacks, ranging from 30 to 50 tons, whose vocation it is to carry live fish to the Cuban markets. This industry provides ocenpation and subsistence for a large portion of our population in South Florida.

About two years ago certain portions of our Gulf waters became poisoned in some way that cansed the death of all the fish that came ir contact with it. Whenever a smack with a full fare, i. e., a full cargo of fine healthy fish in her well, sailed into this poisoned water every fish would die, and they would have to be thrown away. This compelled the vessel to retum to fishing, at the loss of a month's hard work.
This state of affairs has occurred again; the waters of some jortions of the Gulf lecoming so noxious as to kill the fish. The poison seems to be confined to certain localities and currents for the time being, as sometimes this state of affairs is observed more marked at one place and sometimes at another. However, there seems to be more of it about the mouth of Charlotte LIarbor and off Puuta Rassa than elsewhere.

When this condition of water prevails, the surface of the water is covered with dead fish, and the beach is covered with them in such numbers that sometimes the stench is intolerable. During its prevalence two years ago the military commander at Fort Jefferson on the Tortugas had to make daily details to carry off the dead fish thrown up on the beach for fear it would breed a pestilence.

I live immediately on the beach of Palma Sola Bay, and some tro weeks ago the beach was covered with deal fish. The only thing that seems to be inexplicable is that this water seems to affect what are termed here bottom fish more than any others. The principal game of the fishing smack are the gronper (Serranus nigritis), and the snapper (Serranas erythrogaster). These, with the perch, king-fish, tront, and all those fish which take the hooks seem to be much more affected than the mullet (Mugil lincatus), or the pompano (Bothrolamus pampanus). In our parlance here fish that take the hook are called bottom-fish in contra-
distinction from those that go in schools and are taken with the net, and the bottom-fish seem to be more affected by this water than the others. Numbers of sharks and rays, eels and catfish are thrown up dead on the beach.

I am not aware that there has been any report of this matter made to your commission, or any attempt made at the analysis of the water, and would not have taken the liberty of writing, save for the fact that the greater part of our fishermen are comparatively illiterate. My own opinion is that the state and condition of the water are caused by some volcauic action at the bottom. I may be wroug in my technical names of the fish, but our fish have never been properly classified, and I give you the best I can do.

With a renewed apology for the liberty I have taken, I remain, most respectfulls,

Professor Baird,
Commissioner of Fish and Fisheries, Washington, D. C.

## ON THE DEGTRECTION OF PIMII RY POIIECTED WATERE IN TME GELE OE MEXECO.

By W. C. W. GLAZIER, Assistant Surgeon, M. IH. S.<br>Treasury Department, Office Supervising Surgeon-General United States Marine Mospital Service, Washington, D. C., December 7, 1880.

SIR: I have the honor to transmit herewith copy of a letter received on the 3d instant from Assistant Surgeon W. C. W. Glazier, of this service, now on duty at Key West, which it was thought might be of interest to you.

Very respectfully,
JOHN B. HAMILTON,
Surgeon-General U. S. Marine Hospital Service.

Prof. S. F. Baird,<br>Commissioner of Fish and Fisheries, Washington, D. C.

United States Marine Mospital Service, District of the Gulf, Port of Key West, Fla., Surgeon's Office, November 25, $1 \mathbf{1 8 0} 0$.
SIR: I have the honor to report, as a matter of scientific interest, that it has occurred several times that fishermen returning from the coast of Florida with fish, in an apartment of their boats communicating freely with the surrounding water, have had them die suddenly on reaching a certain kind of water distinguishable by its color. This has
occurred several times, notably about 1865 and in 1878 , when large numbers were thrown on the shore at Key West, many of them of very large size, so that perhaps all that came within the influence of the poisoned 'water perished sooner or later.

There is nothing known as to the origin of the poisonons qualities of the waters that affect the fish in this way, but the prevalent opinion seems to be that there is something emptied into the beds of the freshwater courses from volcanic or gerser-like springs, and that as soon as the water thus impregnated reaches the sea it kills every living thing that comes under its influence.

It has been reported that several smacks have lost their cargoes within the last two weeks, and that the waters of Tampa, Sarasota, and Charlotte Harbor were covered with thousands of dead fish, and that the stench was so great that the vessels were obliged to keep free from them. Very respectfully,

> W. C. W. GLazier, Assistant Surgeon, M. II. S.
> The Surgeon-General U. S. Marine Hospipal Service, Washington, D. C.

## 

## By TAHLETON H. BEAN.

Two small collections of fishes collected in the Mndson's Bay region, and received by the United States National Musenm in 1850, are worthy of note, because fishes from that quarter are rarely added to museums in the United States, and consequently our knowledge of the fauna is limited.

One of these lots embraces the following four species, presented by Waltou Hayden, esq., from Moose Factory. The numbers at the left of the name of the species refer to the Museum Fish Catalogue.
2758. Percopsis guttatus Ag.

The dorsal has 9 to 11 developed rays; the anal $i$, 7 ; ventral 8; scales in lateral line 47 to 48 . Seven specimens were obtained.
27783. Stizostethium Vitreum (Mitch.) Jord. \& Copeland.

Two young examples about $3 \frac{1}{2}$ inches long.
2i784. Acipenset maculosus Les.
A young individual $4 \frac{4}{5}$ inches long.
27785 . Uranidea spilota Cope.
One specimen measuring 4 inches without the tail, which is wanting. Vomerine teeth only. D. ix, 18 ; A. 12; V. i, 4.

From Robert Bell, M. D., Assistaut Director of the Geological Surve, of Canada, have just come the following six species, all of them collected at the mouth of Nelson River except Cottus labradoricus, which is from
near York Factory. As the last species has figured among the doubtful ones in our lists of East Coast fishes, I gire a somewhat detailed description of it.
2756. Pellcopsis gettates $\Lambda$ g.
2777. Stizostethium vitreum $=$ (Lucioperca americana Cuv.)

The example is very young and entirely without scales, but the species is most probably ritreum.
27778. Gasterosteus púvgitics L. $=$ (Pygosteus occidentalis [C. \& V.] Brev.).
This is the form described as $G$. nebulosus by Agassi\%. It does not differ from marine pungitius except in its fresh-water habits.
g7万7. Gasterosteus aclleatus var. Gymnerus Cuv.
The few scaly plates ou the auterior part of the body are present, but rudimentars.
27580. Cottis labradoricus (Girard).

Taken near York Factory, IIndson's Bay, by Robert Bell, M. D., Assistant Director of the Geological Survey of Canada, 1880.

Br. vi ; D. X. 14; A. 14; V. i, 3; P. 17; C. 11 (dereloped).
Two small spines above the snout; a rough irregular prominence above each orbit and two similar ones on the occiput. The slight depression on the crown becomes parrower posteriorly where its width is about one half the length of the space included between the sapraorbital and occipital prominences. Four preopercular spines, two of which are at the angle; the uppermost and longest is two-thirds as long as the eve, but the spine is slightly imperfect; the two lower spines are short and extend downward and slightly forward. The leugth of the longest preopercular spine equals the distance between the eyes measured on the bone. The long diameter of the eye is one-fifth of the length of the side of the head, and nearly equal to the length of the snout. The maxilla is twice as long as the eve, about half as long as the head to the end of the opercular spine, and extends to about the rertical throngh the hind margin of the eye. Teeth on the vomer, none on the palatines. The dorsal spines are slender; the first is twice as long as the distance between the eyes; the third and longest is five-sixths as long as the maxilla and one-half as long as the distance from the tip of the snout to the end of the occipital prominences. The length of the spinons dorsal base is one-fourth of the total length withont candal. The interval between the spinous and soft dorsals is one-half as long as the eye. The longest ray of the solt dorsal (9th) is about as long as the middle caudal rays, or one-sixth of the total length with caudal. The pectorals reach a little beyond the origin of the anal (to the second ray of the anal); the ventrals are as long as the postorbital part of the head and do not reach near the vent. Skin above the lateral line
with a few spiny tubercles, none of them more than one-fourth as long as the eje. The specimen sent is a dried individual and its colors cannot be made out. There is a small slit behind the fourth gill. The local name at Fork Factory is "Miller's Thumb," according to Dr. Bell.

## 27781. Coregonus Artedi LeS. var.

The species agrees in all respects with typical Artedi from the Great Lakes with the exception of its smaller eye. Two larger examples collected at Moose Factory many years ago also have the eye notably smaller than in C. Artedi. The local name at York Factory, says Dr. Bell, is "tulibi." It must not be inferred, however, that the species is at all like Coregonus tullibee, for it is not closely related to this form. Specimens in alcohol are much desired.
U. S. National Museum, Washington, D. C., March 28, 1881.

## ON TEE MINERALOGICAT, COMPOSITHON OF THE NORMAL MESO.

 ZOIC DLARASE UPON THEATHANTIC RORDER.By GEORGE W. HAWES, Ph. D.

In my opinion the Mesozoic "trap rocks" have excited more interest and received more lithological attention than any other defined rock species upon the Atlantic border. There is, therefore, no rock concerning the geological features and chemical composition of which we are so well informed; but much as it has been discussed, the mineralogical composition has, in part, remained a matter of speculation rather than of definite knowledge. As our methods for determining such points are now much more satisfactors, I think that the final determination of the mineral composition of the normal variety of this rock may be accomplished, and this will be of much interest on account of the wide distribation and the uniform character of these diabases.

I will give a few references to show the development of our knowledge of these rocks and the essential uniformity in their composition.

When Perceval wrote, no attempt was made to determine their composition, and their geological features and distribution were chiefly considered. ${ }^{1}$

Prof. J. D. Dana has at different times pointed out the wonderful uniformity of these rocks wherever they occur, intersecting the Mesozoic sandstones on the Atlantic border. ${ }^{2}$ He quotes specific gravity determinations by Professor Brush of New Haven, Professor Cooke of New Jersey, Professor Kerr of Raleigh, N. C., and Professor Howe of Nova Scotia, made upon specimens from their respertive localities, and

[^107]which are essentially alike. Professor Dana considered these roclis as composed of pyroxene, magnetite, and labradorite.

Professor Howe ${ }^{1}$ soon afterward made further determinations of specifle gravity with the riew of illustrating more fully the uniformity of this composition.

Chemical analyses of these rocks have been made by Prof. G. H. Cooke, ${ }^{\text {b }}$ Prof. W. G. Mixter, ${ }^{3}$ S. T. Tyson, ${ }^{3}$ and Dr. F. A. Genth, ${ }^{4}$ which are all nearly concordant, and show the altimate composition to be always nearly the same.

The most extensive series of analyses has been made by myself ${ }^{3}$ ppon specimens taken from various points in the Connecticut Valley, and a specimen from Jersey City, which was intended to represent the Budson palisades. These analyses demonstrated the essential uniformity of the composition, all variations being referable to the degree of hydration which represents the extent of the decomposition of the rocks, and the degree of alteration of its pyroxene to chlorite. I concluded that the feldspar was labradorite, but demonstrated that the large kernels in one variets were of anorthite.

Prof. E. S. Dana ${ }^{6}$ began the microscopic examination of these rocks. IIe conflimed the determination that these rocks are composed of angite, triclinic feldspar, and an iron oxide, and assumed from my analysis that this feldspar was labradorite. Notwithstanding this, these rocks are stated to this day by Credner ${ }^{7}$ to be diorites, that is, hornblendic rocks.

Mr. P. Frazer has discussed my analysis of West Rock together with the analysis by Rrofessor Geuth. He assumed the feldspar to be a labralorite of normal composition, and calculated that labradorite and augite were present in equal proportion.

From these works it is then evident that the nnaltered Mesozoic diabases are all very much alike, and are composed of augite, iron oxide, in the form of magnetite and titanic iron, and a feldspar that has been reasoned to be labradorite. ${ }^{9}$ This latter determination is in need of verification.

The method employed by me for this determination was that proposed

[^108]by Dr. Thoulet, which, though not invented by him, was brought into general notice by his more successful development of the method. ${ }^{1}$

In a solution of iodide of potassium, iodide of mercury was dissolved, and the sp. gr. of the resultant fluid was 3.18. ${ }^{2}$ Some of the diabase from Jersey City, which is particularly fresh, was pulverized till all the graius would pass through coarse muslin. From this powder the dust was separated by washing in water, and the mass of uniformly fine grains was put into the fluid, when the iron oxide and augite sank to the bottom and only feldspar remained on the top. I diluted till the sp . gr. decreased to 3 , when some grains of a compound character setthed out, and the microscope indicated that the floating mineral was entirely of feldspar. I diluted and made the gravity 2.90 , and nothing of consequence fell down, neither did any cousiderable portion settle from the mass till the sp. gr. had reached 2.69 , when at this point the mass of feldspar, on being mixed with the fluid as before, separated into two parts with such facility as to plainly show that two minerals were present. Further experiments on the parts did not result in any further separations, and it was therefore decided to analyze these parts. These analyses were performed by Dr. A. B. Howe, of the Scientific School at New Haven, aud were found to be composed as follows:

FELDSPAR IN JERSEY CITY DIABASE.

| Sp. Gr. over 2.69. |  |  | Sp. Gr. under 2.69. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 52. 84 | . 88 | $\mathrm{SiO}_{2}$ |  | 60.54 | 1.01 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | -8.62 | . 278 | $\mathrm{Al}_{2} \mathrm{O}_{3}$ |  | 24.11 | . $\because 34$ |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 1.52 | . 009 | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ |  | 1.14 | . 007 |
| CaO | 11.81 | . 21 | CaO |  | 9.15 | .16:3 |
| MgO | . 46 | . 01 | MgO |  | . 27 | . 107 |
| $\mathrm{Xa}_{2} \mathrm{O}$ | 2.38 | . 038 | $\mathrm{Na}_{2} \mathrm{O}$ |  | 4.11 | . 066 |
| $\mathrm{K}_{2} \mathrm{O}$ 。 | . 86 | . 009 | $\mathrm{K}_{2} \mathrm{O}$ |  | 1.06 | . 011 |
| $\mathrm{H}_{2} \mathrm{O}$. | 1.06 |  | $\mathrm{H}_{2} \mathrm{O}$ |  | . 59 |  |
|  | 99.55 |  |  |  | 100.97 |  |
| $\mathrm{RO}: \mathrm{R}_{2} \mathrm{O}_{3}: \mathrm{SiO}_{2}$ |  |  | 1 O | $: \mathrm{R}_{2} \mathrm{O}_{3}: \mathrm{SiO}_{2}$ |  |  |
| ${ }^{1} \mathrm{R}_{2} \mathrm{O}: \mathrm{RO}^{1}{ }^{3.3}$ |  |  |  | ${ }^{96} \quad 4.09$ |  |  |
| $\mathrm{R}_{2} \mathrm{O}: \mathrm{RO}$ |  |  |  | $\mathrm{R}_{2} \mathrm{O}: \mathrm{R} 0$. |  |  |
| 1. 4.7 |  |  |  | 1. 2.2 |  | . |

It is therefore plain that the feldspathic element in this rock is not any single feldspar. One of the feldspars is very plainly labradorite, and the other has the ratio of andesite. The two feldspars were dis-
have becu foum in small amount in some specimens. $\Lambda_{i}$ ratite is uniformly present as a suisutely microscopic constitment, and the whole sequence of zeolites and chloriteswith 'partz, calcite, and of ber mincrats, are present as decomposition products, but as a rule it is a monotonously uniform mixture of the above three minerals.
${ }^{1}$ Thesés présentéce à la faculié des scicnces de Puris, pour obtenir le grad de docteur. Contributions à l'étude des propriétés phåsiques et chimiques des mineraux micros:opiques. Par M. J. Thonlet.
${ }^{8}$ This result was obtained by uniting the proportions recommended by Victor Gold, schmilt, L'eber Verwendbarkeit einer Kialiumquecksilberjodillösung, \& c. Inangural Desertation zu Heidulberg, Stuttgart, 1880.
tinguishable under the microscope, and the optical properties of the graius offered no peculiarities to conflict with the above determination.

The analysis of the anorthite add augite that I picked from West Rock may be alded, and our knowledge of this diabase may be said to be quite complete as regards the composition of the fresh rock. I will place together the analyses of the rock and its other components. Professor Genth's analyses, to which I have referred, is more complete than any that I have made, since he determined the traces of lithia, copper, and sulphur. But his analysis was made on more hydrous material; therefore I will use my old analysis of West Rock, New Haven, because the analyzed material was very fresh, bright, and clear, and also illustrates the commonest variety of the rock.

This rock and the following minerals from it have been analyzed:

|  | $\begin{aligned} & \text { West IRock, New } \\ & \text { Maren.* } \end{aligned}$ |  | ■ <br>  |
| :---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{3}$ | 81.78 | 80.71 | 4. 05 |
| $\mathrm{AlO}_{3}$ | 12. 79 | 3. 35 | 34. 70 |
| Ferds. | 3. 80 |  | . 64 |
| F(0) | 8.25 | 15. 30 |  |
| MnO | . 44 | . 81 | 15. 82 |
| Cal) | 10.70 | 12.35 | Tr. |
| MgO | 7. 63 | 13.63 | 1.80 |
| Naju | 2. 14 | \} 1.48 | . 45 |
| $\mathrm{KrO}_{\mathrm{TiO}}$ | . 810 | ) 1.48 |  |
| $\mathrm{PrO}_{3}$ | 1.11 .14 |  |  |
| Igaton. | . 63 | 1.17 | 06 |
|  | 09.80 | 100. 00 | 100.32 |

$*$ My annlymis with the titanio acid determinations by Dr. A. B. Howe, American Journal of Science, vol. ix, $16{ }^{2} 5$, page 185.

Knowing that the feldspathic element is complex we can now calculate approximately the percentage composition upon the basis of the elements which are peculiar to the species involved. If in this manuer neglecting the water we determine the percentage of the mineral constituents, we obtain

Anorthite, 15.52; albite, 22.16; potash feldspar, 2.32; augite, 54.47; titanic iton, 2.68; magnetite, 1.76 ; apatite, 32 ; total, 99.23.

The composition of this mixture, on adding again the water, would be as follows:

| $\mathrm{SiO}_{2}$. | 51. 78 | $\mathrm{Na}_{2} \mathrm{O}$ | 2. 62 |
| :---: | :---: | :---: | :---: |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 12.46 | $\mathrm{K}_{2} \mathrm{O}$. | . 39 |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | . 93 | $\mathrm{TiO}_{2}$ | 1.41 |
| FeO | 10.67 | $\mathrm{P}_{2} \mathrm{O}_{5}$ | . 14 |
| MnO | . 44 | $\mathrm{H}_{2} \mathrm{O}$. | 63 |
| CaO | 10. 77 |  |  |
| MgO | 7.63 |  | 99.86 |

This analysis differs from the one actually performed only in fractions of percentages in the alumina and soda, and I think may be assumed as being nearly correct. The amount of iron in the two analyses is intentical, but there is some lifference in the state of oxidation, which can readily be supposed to be the result of secondary actions that have taken place in the rock analszed.

It becomes very casy now to see how extremely diversified the feldspathic element may be in rocks of this nature. The molecules may arrauge themselves in very diversified ways, while the rocks remain identical in composition. Circumstances of cooling might cause anorthite to separate in a nearly pure condition, when there would be a compensating acidity in the remainder of the feldspathic element. This is a much more satisfactory explanation than that which I offered at the time I demonstrated the presence of anorthite in the West Rock diabase, ${ }^{1}$ for as my analysis showed, the presence of the anorthite did not modify the ultimate composition of the rock. On the other hand pure anorthite might be entirely absent and its molecules might enter into combination with the molecules of the potassium and sodium feldspars, to form one or more intermediate species, as in the Jersey City diabase, and much diversity might exist in this feldspa'hic element in different localities without the slightest change taking place in the ultimate composition of the rock.

I regard this work as of some importance, since it completes our knowledge of the normal composition of a rock which has a great distribation and very uniform characters, and shows that this rock is inore complex in composition than had been supposed. Besides it has been common to consider what feldspar enters into the composition of basic rocks like this, rather than what feldspars. An exquisite balance of composition and circumstance would be necessary to crystallize such a rock with a single feldspar, and we have reason to be convinced that massive rocks are rarely simple as regards their feldspathic constituent. ${ }^{2}$

It has also an important bearing upon the microscopic determination of feldspars by means of optical properties. The method proposed by Pumpelly, and further developed by Fouqué and Lers, is used tor the determination of the species of feldspar by seeking for the greatest angles which elasticity planes make with twiuning planes, in the zone with axis perpendicular to the twinning plane. There is of course a pos-

[^109]
## 134 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

sible chance in a section that no crystals should be intersected in a plane possessing the approximate maximum angle between the traces of the twinning plane and elasticity plane, and there is also a possibility that one might examine many sections with approximately equal angles of extinction to the right and the left of the twinning plane, as the method requires, without meeting such as possess an angle characteristic of the species, even were such present; hence the currect determination of the species by this method must remain to a certain degree a matter of chance. But when the feldspathic element is complex, a determination based apon this metbod would lead one to determine the whole of the feldspar as belonging to the species with the maximum angle of extinction. This method has been applied to a very considerable extent, but the considerations here advanced show that the method, although entirely correct in principle, and certainly of some value in lithological research, is not adapted to the final determination of the exact nature of the feldspathic constituent, and is likely to lead to erroneous concld. sions.

All are familiar with the grand diversity of the secondary products that occur in these rocks, and which have enriched the mineral cabinets of the whole world. The contact, moditications, and structural features are none the less interesting; but it is not the intention to consider these questious here. It will be well to record the observation that they are sometimes so modified by quick cooling upon the exterior walls of the dikes in contact with the sandstones that they become cryptocrystalline, and contain long acicular feldspar crystals in a glassy gronad mass, and in other microstructures resemble augite andesites. The of currence of glass has not been heretofore noticed in these rocks. Excepting such local modifications the rocks are always like the ordinary old diabases, and even in microscopic features monotonously alike wherever fresh stones occur.

These rocks so characteristic of our Triassic are additionally interesting on account of the comparative absence of eruptive material intruded in the similar Triassic sandstones of Europe.

National Museum, Washington, D. C., April 5, 1881.

## ONTHEDETERMYNATION OF FELDAPARIN THIN AECTIONS OFROCKG.

## By GEORGE W. HAWES, Ph. D.

In my recent article upon the composition of the diabases * which intersect the Mesozoic red sandstones upon the Atlantic border, I sug. gested that the complexity of the feldspathic element in basic rocks is probably much greater than is commonly supposed, and That this complexity is liable to cause a serious error if the method of determination

[^110]by means of the measurement of the maximun angle between the twinning plane and the elasticity planes in thin sections cut in the zone with its axis perpendicular to the twinning is followed.

I wish also by means of an analysis to draw attention to the circum. stance, that the absence of a twinning plane parallel to the brachypinacoid is by no means rare, and this is a circumstance bearing upon the same point and demanding recognition in lithological work.

At the St. Paul Island, Labrador, from whence the beautiful striated labradorite specimens are obtainell, there are also found large pieces of feldspar with beautiful broad basal cleavage planes, which show no trace of striation, and basal sections of which in polarized light under the microscope show no trace of twinned structure.

A piece of this feldspar in the cabinet of Professor Brush, at New Haven, is of a bluish gray color, its basal cleavage is much more perfect than is usually the case with labradorite, and its cleavage parallel to the clinopinacoid is very much poorer than usual. It only shows in the latter direction a conchoidal vitreous fracture, with mere traces of cleavage. Its dark color is imparted to it by a multitude of minute black needles, the larger of which are inlaid parallel to the vertical axis of the crystal. The intersection of an elasticity plane and the base is inclined $5^{\circ}$ to the edge between the basal and brachypinacoidal cleavages, while the intersection of the plane of the optic axes and the brachypinacoid is inclined $17^{\circ}$ to the same edge, and both inclinatious are in the directions characteristic of labradorite.

An analysis of this feldspar by Mr. F. W. Taylor, of the National Museum, yielded him the following result:

| $\mathrm{SiO}_{2}$ | $53.56 \div 60$. | . 8903. |
| :---: | :---: | :---: |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | $27.78 \div 103$. | . 269 ) |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | $1.15 \div 160$. | . 007 \} . 93 |
| CaO | $12.01 \div 56$. | . 214 |
| MgO | tr. |  |
| $\mathrm{K}_{2} \mathrm{O}$ | $4.10 \div 62$. | . 066 |
| $\mathrm{Na}_{2} \mathrm{O}$ | $1.68 \div 94.2$ | . 0181 |
|  | 100.28 |  |
| $\mathrm{SiO}_{2}$ : | $\mathrm{R}_{2} \mathrm{O}_{3}$ : RO. | $\mathrm{R}_{2} \mathrm{O}: \mathrm{RO}$ |
| 3 | 11 | 12.5 |

The angles and analysis therefore show that this is a typical labradorite, and as it forms at the St. Paul Island a component of a coarsegrained rock, it may be considered as a type of a triclinic feldspar, which could not be determined in a thin section by means of any method based upon the existence of twinning planes.

I would also call attention to some other cases.
The diorite from Dixville Notch in the White Mountains, described on page 96 of my report on the Lithology of Now Mampshire,* contains

[^111]large, clear, glassy crystals (microtine of Tschermak) of a feldspar simple in structure, my analysis of which proved it to be andesite. Some of the anorthosites described by Dr. T. Sterry Hunt in the Geology of Canada, 1863 , were proven by his analysis to be composed of pure labradorite, and some sections of the same which he submitted to me for examination were found to be composed of a multitude of small grains, none of which were twinned. Some of the fine crystals of oligoclase from Bodenmais are simple crystals so far as the ordinary mode of twinning is coucerned.

If feldspar habitually showed their cleavages in their sections? the optical method might still be followed with some certainty, but as they do not, when the grains are too small to allow cleavage fragments to be obtained for optical examination, the method followed by me* in the examination of the feldspathic constituent of the Triassic diabase is the most reliable.

In consideration both of the complexity of the feldspathic element in most rocks, and of the possibility of the simplicity of structure in triclinic feldspars, the very carefully developed methods founded upou the relation of twinning planes and elasticity planes in chance sections are liable to lead to wrong results.

National Museum, April 20, 1881.

## ON CERTAIN CRETACEOUS TONSIIS PBOM ARKANAAS AND COLORADO.

## By C. A. Winitr.

In volume III of the Proceedings of the Cnited States National Musenm, pp. 157-1:2, five species of Cretaceous fossils (together with some Tertiary species) were described, but not then illustrated. Illus. trations of those Cretaceous species are now given on the accompanying plate of this volume, together with those of two other Cretaceous forms which are for the first time described in this article.

The Arkansan species were collected by Mr. E. O. Ulrich in the vieinity of Littlo Rock, and by him presented to the Museum, together with a parcel of other fossils, mainly mollusca, which he found associated with them. The greater part of these Arkansan specimens are in the condition of mere casts of the interior of the shells, and therefore the determination of their specific and generic relations is not entirely satisfactory in all cases.

[^112]The following is a list of them so far as their specific and geueric identity could be determined :

Callianassa ulrichi White.
Tubulostium dickhauti White.
Nautilus texanus Shumard.
Turritella $\uparrow$ _ apparently two species.
Anchura - ?
Lunatia -?
Corbula ! -
Cytherea - 1
Crassatella? - 1
Axinca -l?
Cuculláa ——
Idonearca
Modiola $\qquad$
Ostrea $\qquad$
Gryphaa pitcheri Morton 9
Spines of an Echinoid.
The two species described in this article as new were collected by Mr. Clebarn in the valley of South Platte River, a few miles from Julesburg, Colo. He found associated with these two species several other mollusean forms, all of which are charracteristic of the later Cretaceous strata, equivalent with those of the Upper Missouri River region, which are generally known as the Fox Hills and Fort Pierre Groups. The following is a list of the species collected by Mr. Cleburn, so far as they are determinable:

Nautilus dekayi Morton.
Placenticeras placenta Dekay.
Scaphites conradi Morton.
Turris (Serculd) contortus Meek \& Hayden.
Cantharus? julesburgensis (sp. nov.).
Pyropsis bairdi Meek \& Hayden.
Fasciolaria (Piestocheilus) culbertsoni Meek \& Hayden.
Pyrifusus subturritus Meek \& Пayden.
Anchura americana Meek \& Hayden.
Lucina cleburni (sp. nov.).
Solemyabilix White.
Inoceramus barabini Morton.
Following are descriptions of the two new species before referred to, and also references to the other five Cretaccous species which were described in volume III, all of which are illustrated on the accompanying plate in this solume.

Callianassa ulricim White.
(Plate I, Figs. 10 and 11.)
Callianasa ulrichi, White 1883, Proc. U. S. National Museum, vol. iii, p. 161.

# Tubllostium dickinacti White. 

(Plate I, Figs. 12 and 13.)

Spirorbis dickliauti White, 1880, Proc. U. S. National Museum, vol. iii, p. 161.
Since the description of this species was published (loc. cit.), certain fragments have been brought to light which indicate that this shell really belongs to a group for which Dr. Stoliczka in Pal. Indica, vol. ii, p. 237, proposed the generic name Tubulostium. Our species is indeed very closely related to his T. discoidcum (op). cit., pl. xviii, figs. ©0-2J). The tubular prolongation of the mouth is one of the distinguishing features of this group of shells. Our specimens do not show this feature clearly, but it is probable that that portion of the shell has been broken off, as is suggested by the added outline in figure 12.

# Cantharus 1 julesblrgensis (sp. nor.): 

## (Plate I, Figs. 1 and 9.)

Shell short fusiform; spire moderately clevated; volutions conrex, apparently five or six in number, obscurely flattened upon the outer side and obliquely flattened or slightly concave upon the distal side; the outer side of the volutions marked by four strongly-raised revolving ribs (including the two prominent ones which border the flattened portion of the outer side) which are narrower than the spaces between them; the distal side marked by two or three similar, but less distinct revolving ribs, the convex proximal side of the last volution marked by uumerous ribs similar to those of the outer side, but which decrease in prominence anteriorly after the first two; longitudinal varices irregular, somewhat mumerous, giving the shell, in connection with the revolving ribs, a rugose aspect.

Length about 50 millimeters; diameter of the last volution 22 millimeters. (Museum No. 11468.)

Only a single example of this species has been discovered, and that is imperfect, as shown in the figure. Its characteristics are, however, so well marked that it may be readily recognized as distinct from any hitherto-deseribed form.

Position and locality.-Later Cretaceous strata (equivalent with the Fox Hills and Fort Pierre Groups of the Upper Missourj River region) in the vicinity of Julesburg, Colo., where it was obtained by Mr. W. Cleburn.

Lucina profurda White.

$$
\text { (Plate I, Figs. } 5 \text { and 6.) }
$$

Lucinc: profunda White, 1880, Proc. U. S. National Museum, vol. iii, p. 158.
-
-

## EXPLANATION OF PLATE I.

```
Fig. 1. Cantharns julesburgensis; lateral view.
 " 2. " " apertural view.
" 3. Luciua cleburni; right-side view.
 " 4. " " dorsal view.
 " 5. Lucina profunda; right valve.
 " 6. " " left valve.
" 7. Pteria (Oxytoma) erecta; right valve.
" 8. " " " left valve.
" 9. Solemya bilix; right valve.
 " 10. Callianassa ulrichi; left manus; exterior view.
" 11. " " " interior view.
" 12. Tubulostium dickhauti; lateral view.
" 13. " " peripheral view.
 All of natural size.
```

Proc. U. S. N. M., Vol. IV.
Plate I.

-

Lucina cleburni (sp. nor.).
(Plate 1, Figs. 3 and 4.)
Shell moderately large, indistinctly pentahedral in marginal outline; valves moderately convex; posterior side truncate, basal border rather short, nearly straight or slightly convex, abruptly rounded up to the posterior border and broally romuded up to the antero-basal border; front prominent, somewhat abruntly rounded above; anterodorsal border slightly concave, nearly horizontal; posterodorsal border slightly convex, sloping downward and backward, it whole length occupied by a large prominent external ligament; lunule very narrow, hardly so wide as the ligament, and extending the whole length of the anterodorsal border; beaks small, situated subcentrally; umbonal ridge not well defined, passing near the posterior and postero-dorsal borders. Surface marked by the usual distinct lines of growth, and also by somewhat numerous strongly and sharply raised concentric lines, especially upon its upper and umbonal portions.

Length 37 millimeters; height 30 millimeters; thickness, both valves together, 14 millimeters. (Muscum No. 11469.)

This fine shell bears some resemblance to the preceding, but it is a more robust form, its transverse diameter is proportionally greater, the front more prominent, the basal border less abruptly rounded, and the external ligament larger and more prominent. In its large size it resembles $L$. occidentalis Morton, as identified by Meek and figured in vol. ix, U. S. Geol. Sur. Terr., but in its abrupt posterior truncation and greater prominence of the upper poition of the front it differs conspicnously from that species.

The ligament of this shell is unusually large and prominent for that of a Lucina, but it has the outward characteristics of a species of that genus. Besides this, an imperfect separate valve, too fragile for preservation, which was found associated with the other specimens, and which apparently belongs to the same species, shows the hinge, pallial line, and muscular markings which characterize Lucina.

Position and locality.-Later Cretaceous strata (equivalent with the Fox Hills and Fort Pierre Groups of the Upper Missouri River region) in the vicinity of Julesburg, Colo., where it was obtained by Mr. W. W. Cleburn, and in whose honor the specific name is given.

# Solemya bilix White. 

> (Plate I, Fig. 9.)

Solemya bilix White, 1880, Proc. U. S. National Musenm, vol. iii, p. 158.
This species was also found by Mr. Celeburn, near Julesburg, Colorado.

> Pteria (Oxytoma) erecta White.

(Plate I, Figs. 7 and 8.)
Pteria (Oxytoma) erecta Whito, 1880, Proc. U. S. National Musenm, rol. iii, p. $15 \%$.

## DEBCRIPTION OEA NEW MPECGESOF GORIEBOX (GOHEESOX EEERE GODON FROTI GAN DIEGO, CALIPORNIA.

## By ROSA SMITH.

Allied to Gobiesox reticulatus Girard.
Form essentially like that of G. reticulatus, and, as in that species, the snout bluntly and evenld curved. The greatest leight of the body is across the pectoral fins, and the width is also greatest between those fins. Head broader than body but less deep. Clett of the month extending to the anterior rim of the orbit. Lips thickish as in G. reticulatus. The anterior incisors of the lower jaw are less declined than those of $G$. reticulatus, nearer vertical than horizontal, each of them tricuspid at tip, the central cusp largest; about eight incisors on the mandible. Teeth of the upper jaw conical, in an irregular series of seven to nine, the alternate four or five being larger than the other three. Gill-membranes free from the isthmus. Opercular spine sharp.

Sucking disk entirely similar in form and structure to the other species, its tips extending nearly as far as do the free tips of the pectorals.

The distance from vent to base of the caudal fin is contained in the distance from vent to tip of snout slightly more than one and a hall times ( 21 in $G$. reticulatus).

Length of head contained two and three-fourth times in total length to base of caudal as in $G$. reticulatus; the tail proportionally longer than in $G$. reticulatus, although the vertical fins have fewer rays; in both the dorsal fin is a little longer than the anal, having its origin in advance of the anal and terminating opposite it. The caudal tin is rounded aud of a yellowish-white color, generally with few punctulations and these at its base. Dorsal rays 11 ; anal 10.

Slate color rarely nearly plain, usually with rather broad, distinct, slightly mottled with paler yellowish bands across the dorsal region; the first a distinct band through the eses, the secoud much broader and situated at the posterior margin of pectorals; a roundish spot of same color may be seen on each side at the base of the dorsal fin; these spots, when viewed from above, form a third light band, its distance from the second band equalling that between the orbital band and the second or central one. A dark bar at base of caudal. Underneath yellowish, with dark punctulations on the lower jaw and the belly, fine punctulations on the light bands, on dorsal and pectoral fins and base of caudal.

This species is known to me by about fifty examples collected by Mr. Mr. Charles R. Orcutt, and found adhering to stones in company with Typhlogobius californiensis * at Point Loma. It differs from G. recticula-

[^113]tus in the fewer rays in dorsal and anal and in the tricuspid teeth. The usual color is also different.

The type specimens have been presented to the National Musuum, and they are numbered 28,396 on the Museum Register. The largest measured $1 \frac{3}{4}$ inches.

Table of Measurements.

| Locality.. |  |  | . San | iego. Cal. | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Dimensions. | G. rhessodon. |  | G. reticulatus. |  |
|  | $\begin{aligned} & \text { Inchea } \\ & \text { and } \\ & \text { 100tha. } \end{aligned}$ | $\begin{aligned} & \text { 100ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$ | $\begin{aligned} & \text { Inches } \\ & \text { nnil } \\ & \text { 100the. } \end{aligned}$ | $\begin{gathered} \text { 100ths } \\ \text { of } \\ \text { length. } \end{gathered}$ |
|  | 1.40 | 202789 | $\text { 2. } 50$ | .......... |
|  |  |  | 2.05 | ......... |
|  |  |  |  |  |
|  |  |  |  | 25 |
|  |  |  |  | 9 |
|  |  |  | Head: |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Grratest lencth.... |  | 87 |  | ${ }_{32} 3$ |
| Wryatent winth .ioli...... |  | 13 |  | 38 |
| Length of stont .......... |  | 11 |  | 12 |
| Diameter of orbit |  | 3 |  |  |
| Dorgal: |  |  |  |  |
| Length of base .... |  | 93 |  | ${ }_{35}$ |
| Anal: ${ }^{\text {a }}$ |  |  |  |  |
| Distance from anout |  | CA |  | 70 |
| Caudal: |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |
| Distance from nnout |  | 38 |  | 39 |
| Lencth |  | 14 |  | 13 |
| Anterior margiz of ventral disk: |  |  |  |  |
| Distance from snout |  | 20 |  |  |
|  |  |  |  |  |
|  | ${ }_{10}^{11}$ |  | 13 | ........... |
| Anal... |  |  |  |  |

Sax Digoo, Cal., January 15, 1881.

## DESCRIPTION OF A NEW GENUS AND BPECYES OR COTTIDRE

## By W. N. LOCKINGTON.

Chitonotus gen. nov.
Allied to Artedius Girard.
Anal papilla of males excessively developed, and terminating in a narrower crescentic portion, from which springs a long tubular filament. First dorsal incompletely divided into two portions, the anterior the shorter. Lateral line armed with a series of keeled scales, toothed on keel and on hinder margin. Entire upper portion of body, sare a narrow area along the base of the dorsal fin, covered with small strongly ctenoid scales. Other charactersas in Artedius. Type Chitonotus megacephalus Lockington.

This genus is instituted for the reception of Artedius pugettensis Steindachuer (Ichthyol. Beitraige V. 133) and of the species here described.

## 142 proceedings of united states national museum.

## Chitonotus megacephalus.

D. III, VII | 15-16. A. 15-16. C. $9|11| 9 . \quad$ P. 18. V. I | 3.

Body deepest under origiu of first dorsal, thence decreasing regalarly to the caudal peduncle, which at its narrowest part is about two-sevenths of the greatest depth. Hinder part of heal almost quadrangular in section, compressed, the compression increasing from the eyes forward.

Head $33_{3}^{3}-3 \frac{1}{2}$; greatest depth $6 \frac{1}{8}$ times in total length. Greatest width at gill-covers slightly less than greatest depth.

Eyes large, oval, about $3 \ddagger$ times in length of side of head, their longitudinal dianeter exceeding the length of the snont by about fivetwelfths; the hinder margin of the orbit rather nearer the tip of the operculum than that of the snout, and the interorbital space very narrow, so that the eyes are directed obliquely upwards.

Upper jaw slightly longer than the lower, which is received within it ; posterior extremity of maxillary slightly in front of or beneath the posterior orbital margin. Teeth in both jaws villiform, sharp, uniform, in a long but not wide band. Intermaxillaries protractile downwards. Snout convex longitudiually and transversely.

Nostrils with membranous tubes; the anterior lateral, in a line between the centre of the eye and the tip of the upper jaw; the posterior in a concarity between the extremities of the ascending processes of the premaxillaries and the raised anterior upper orbital margin. Nasal tentacles long but narrow, situated above the anterior nostril and just in front of the sharp, backward-directed nasal spine. Eye tentacles similar to nasal tentacle.

Four preopercular spines; the upper longest, with 2-4 prongs on its upper side besides the tip; second horizontal; third directed downwards; lowest directed dowuwards and forwards.

Operculum unarmed, its membranous tip vertical with the first ray of the second half of the first dorsal. An inner and outer pair of spines behind each eye on top of head, outer spines the larger. Posterior to these spines a short ridge, ending in a back ward-directed spine on back of head. Area between these spines somewhat concave transversely. Suborbital ring aud stay narrow.

Origin of first dorsal over the commenctment of the free horizontal upper border of the operculum. First ray nearly equal in height to the length of the head, second about two-thirds as long, third shorter than fourth, and separated from it by an interspace twice as long as the others, the membrane between these rays also deeply notehed. Fifth and sixth rays longer than the fourth or than the following rays, which gradually diminish, giving the upper margin of the second part of the spinous dorsal a rounded outline. Central rays of second dorsal about half as long as the head. Anal similar to second dorsal.

Pectoral fanlike, its base very oblique, parallel with the hinder margin of the operculum, its longest rays about equal to four-fifths of the
head and reaching backwards to the second anal ray. Lower rays very short.

Middle ray of ventral rather longer than the first, considerably longer than the third, and reaching to the base of the anal papilla. All the rays of the preceding fins simple.

Caudal nearly straight on its posterior border, the $t$ wo outer principal rays simple, the remaining nine once bifurcate. Accessory rays numerous.

Upper part of head and body covered with strongly ctenoid scales, except a narrow line along each side of dorsal. The seales of lateral line (about 39) more than twice as long and deep as those above them, ctenoid on hinder inargin, and with a toothed keel near their upper margin. Lower portion of body scaleless.

Gill-openings continuous; the membrane emarginate, not attached to the isthmus. Branchiostegals six.

Males with a long anal papilla, ending in a crescentic stiff, tapering portion, from the upper sile of which, near its tip, springs a loug tubular filament.

Color of upper part of body reddish brown or gray, with obscure darker transverse bands. Fins dark olivaceous in recent examples, darkest toward the margins, the pectorals near base and the sides of the head greenish, thickly dotted with black. In some the dorsal and anal are lighter.

I have only seen adult males.
This species was first found in the markets of San Francisco in the summer of 1879 , and was noticed by me in a paper published in the Mining and Scientific Press of that city, 1879, in the following terms: "Some months ago I wrote for publication a description of a small sculpin which I named Chitonotus megacephalus, the large-headed mailedback. * * I find that Dr. Steiudachner has got ahead of me, and has described the same fish from specimeus obtained in Puget Sound. He also gives a figure. From this figure I judge that the form and proportions of the dorsal fin vary considerably. In my specimens the first spine is exceedingly long, the third quite short, shorter than the fourth, and as these spines are twice as distant from each other as are any of the others, and the membrane between them dips down almost to its base, the fin is practically divided in two. Dr. Steindachmer's figure shows only a slight emargination of the fin, the first spine only slightly longer than the others, and the spines equidistant."

Professor Jordan, who has handled ntmerous examples from Puget Sound, informs me that they agree in every respect with the figure given by Steindachner, and that he has no doubt of the distinetuess of the Californian type. In his description Dr. Steindachner mentions the division of the dorsal in terms that lead me to suspect that he possessed both types.

## 1 41 PROCEEDINGS OF UNITED states NATIONAL MUSELY.

The name megacephalus, since it has been published along with a diag. nosis of its leading points of difference from C. pugettensis, must, I presume, be retained, instead of a more expressive term which might be drawn from the form of the dorsal fins.
C. megacephalus is tolerably abundant in moderately deep water ontside the Bay of San Fraucisco. Specimens numbered 27185 are in the National Museum.

## 

BY TARLETON H. BEAN.
Most of the species here described were obtained for the United States National Museum during the summer of 1880, through the assistance of the United States Coast Survey schooner Yukon, whose party the writer was permitted to accompany for the purpose of making collections, more particularly of fishes and fishery statisties, in Alaska. It would have been difficult, if not impossible, to secure so valuable a collection of the fishes in any other way, the Yukon having called at numerons ports along the major portion of the Alaskan coast as well as at Plover Bay, Siberia, where several species not elsewhere found were taken. The whole number of species taken is ubove 80, and it is due to the Snperintendent of the United States Coast Survey and to Mr. W. II Dall to say that their generous help has made this result possible.

In this article, which is simply preliminary to a detailed account, short notices only are given of fishes which are to be more fully described hereafter.

## Lycodes coccineus n. s.

Museum Catalogue number 27748; collector's number (1712).
Big Diomede Island, September 10, 1880.
Br. VI ; D. including half of caudal 87 ; A. including half of caudal 69 ; P. 18; V. 3. Posterior two-thirds of tail covered with scales which are not in contact. Fins and all parts of the body and head scaleless.

The total length of the typical specimen in its fresh state was 19.7 inches ( 484 millimeters). In its present state of preservation it has shrunk to 475 millimeters.

The species resembles $L$. mucosus Rich., but may be readily distinguished by its more extensive squamation, shorter and deeper head, stouter tail, more alvanced position of ventrals and vent, and by its coloration; L. mucosus, too, has a lateral line consisting of rounded open pores, while $L$. coccineus has simply a few faint, short linear scratches which are almost imperceptible to the eye. These traces are seen only on that portion of the skin which has scales.

The greatest height of the body is a little less than half the length of the head, which constitutes nearly one-fourth of the total leugth. The pectoral is twice as long as the intermaxillary and terminates at a dis-
tance from the vent equal to its own length. The distance of the rentrals from the tip of the snout equals one-fifth of the total length. The dorsal begins over the auterior half of the pectoral; the anal, under the twenty first dorsal ray. The length of the palatine series of teeth equals half that of the maxilla. The tail is much stonter than in $L$. mucosus, resembling that of the species known in this Museum as L. Vahlii.

Colors (taken from the fresh fish): The colors are somewhat faded. Ground-color brown, with red on the lower parts. Pectorals reddishbrown on the upper half, the lower part carmine; mottlings of whitish at base. Nine bluish-white bands on the dorsal. A few irregular blotches of the same color on the sides. Anal brown mingled with carmine; lips similar. The brown of the body is more or less tinged with carmine everywhere. Under side of heal white. The top of the head and the gill-covers have a few small blotches of whitish. A whitish blotch about as long as the eye at the upper angle of the gill-opening.

Measurements.
(Taken from the fremh mpecimen.)


Stichæus? Rothrocki, n. s.
Serenteen small individuals of the family Stichaida were obtained in Plover Bay and at Cape Lisburne, the largest of them being only 36 millimeters long. The lateral lines are undeveloped, so that I cannot with certainty decide whether my species is a Stichaus or a Eumesogrammus, but the resemblance to Stichceus punctatus appears to me sufficiently great to warrant me in referring it to the same genus.

Catalogue numbers of the types: 27565, Head of Plover Bay, Siberia; 27580 , Port Providence, Plover Bay ; 27573, Cape Lisburne, Alaska, Arctic Ocean.

Br. VI ; D. 48-49; A. I, 34-35; V. I, 4; P. 15; C. 21.
The height of the body equals the length of the head without the snout, and is contained 6 times in the total length without candal. The length of the head is contained $4 \frac{1}{2}$ times in total without caudal. Snont subconical, equal to eye, which is $\frac{1}{4}$ as long as the head. Distance between the eyes equals length of snout. The maxilla reaches the vertical throngh the anterior margin of the pupil. The nostrils are midway between the eye and the end of the snout. The dorsal begins in the vertical through the upper axil of the pectoral, and is connected by a low membrane with the caudal. The anal begins under the 14th dorsal spine, and, like the dorsal, is subcontinuous with the caudal. The pectoral is comparatively short and broad, its length being equal to the height of the body, and to that of the bead without the snout. Ventrals short, only f as long as the head and less than half as long as the pectorals; they are placed very close together. The distance of the vent from the snout is contained nearly 3 times in the total length with the caudal. The longest dorsal spines are equal to half the height of the body. The longest anal rays are about $\frac{2}{8}$ as long as the longest spines of the dorsal. The expanded caudal is slightly emarginate, in which the species differs from S. punctatus and Eumesogrammus subbifurcatus. Teeth in the jaws and apparently on the vomer and palatine bones. Branchiostegal membrane deeply cleft, free from the isthmus.

Colors.-Body very light brown, intermingled with numerons light spots in three series (supra-lateral, median, and infra-lateral), those of the median series in some individuals being longer and narrower tlian those of the other two series. The largest light spots of the supra-laveral series are about $\frac{2}{3}$ as large as the eye. On the top of the back, traversed by the basis of the dorsal fin, is a series of 10 or 11 whitish spots, the anterior ones being about as large as the eye. A dark stripe around the nose, and continued behind the eye to the end of the operculum. A very narrow dark stripe running along the base of the dorsal, its lower margin seeming to mark the course of the superior lateral line. In some individuals the origin of each anal ray is marked by a minute dark point. Body covered with minute scales.

If, as I suspect, the developed form of the species shows but one lateral line running aloug the whole length of the dorsal and not far re-
moved from it, this character, combined with the emarginate caudal, will entitle the species to rank as the representative of a distinct genus for which the name Notogrammus is here proposed.

The species is dedicated to my preceptor in zoology and medicine, Dr. J. T. Rothrock, of West Chester, Pennsylvania.

Murenoides maxillaris, $n$. ( $\boldsymbol{1}$ ) s.
1 Murenoides fasciatus, (Bl. Schn.)
Catalogue number of the single type specimen 23999, collected in 1872 by Mr. Henry W. Elliott, at Saint Paul Island, Bering Sea.

Br. vi-v; D. 88; A. ii, 43; V. \&, 1.
This species, as well as M. ornatus Girard, may be at once separated from M. nebulosus Schleg. by its scaleless head.

When the mouth is closed the cleft is very little oblique and the tip of the lower jaw is in a horizontal throngh the middle of the eye; the width of the mouth across the tips of the maxillæ equals the length of the pectoral and almost one-half the length of the head. The length of the maxilla equals one-half the distance from the end of the snout to the beginning of the dorsal. The mandible is as long as the pectoral.

The greatest height of the body slightly exceeds the length of the head and equals one-seventh of the total length without the caudal; it equals, also, one-fourth of the distance from the end of the snout to the beginning of the anal. The length of the head is contained $8 \frac{1}{2}$ times in the total length. The width of the interorbital space is a little less than the diameter of the eye, which equals the length of the snout. The length of the pectoral equals one-half the height of the body at the origin of the anal; the greatest width of the fully expanded fin is nearly equal to the length. The ventral spine is two thirds as long as the eye.

The greatest height of the dorsal is not far from the origin of the fin, and equals one half the length of the mandible. The length of the candal equals one-half the length of the head. The vent is not far behind the middle of the total length, and is directly under the 43d dorsal spine.

Colors from the alcoholic specimen: A brown band occupies the whole interocular space, and is preceded and followed by a whitish band only one-half as wide. Immediately below the eye a brown band, whose width equals one half the length of the eye, extends down to the throat; a whitish band a little wider than the brown one is immediately behind it. It seems as if the fresh fish may have on this part of the head two whitish bands with a brown one between them. Back with a series of 11 rounded or oblong light spots, the longest of which is one-half as long as the head; all of these spots include at the top a rather large brown spot and below numerous little brown spots. Between the first and second large light blotches are two very dark spots on the dorsal membrane, and between the dark spots there is a light one of similar size. On the sides are about 26 light bands, most of them very distinctly
defined, especially between the gill opening and the vent. Behind the vent the bands are not so well marked, and a few small light spots are in the intervals between them. The ground color of the fish is brown. The longest light bands are about as long as the head.

I have not scen M. fasciatus, and know it only from the descriptions and figures. These seem to indicate a species with the maxilla ouly onethird as long as the space between the tip of the snout and the beginning of the dorsal, with the ventrals little developed and with the head less than one-tenth of the total length. M. maxillaris has a much longer maxilla, a wider mouth (measured over the tips of the maxillae with the mouth closed), well developed and separate ventrals, and the head nearly one-eighth of the total length.

Liparis gibbus, n.s.
This is a species resembling L. fabricii Kröser and L. tunicata Rhdt. in its dorsal and anal ray-formula; but it shows important differences from both.

From L. fabricii it may be at once distinguished by its smaller ere (one-fourth as long as the head) and its depressed snout (the distance from the angle of the mouth to the base of the anterior nostril being less than one-half the greatest depth of the head). It differs from $L$. tunicata in having (1) a larger eye, (2) a much smaller number of pec. toral rays, (3) a much smaller number of unarticulated dorsal and anal rays.

In preparing the description, I have made ase of the following specimens:

24010 (1203), Unalashka, W. H. Dall (1 specimen).
24047, Saint Paul Island, 1872, H. W. Elliott (1 specimen).
26625 (1654), off Cape Tchaplin, Siberia, 1880, Dall \& Bean (1 speci• men).

27535 (1722), Plover Bay, Siberia, 1880, Dall \& Bean (1 specimen).
27045 (1638) Plover Bay, 1880, Dall \& Bean (2 specimens).
Of these number, 24047 is in the best state of preservation, the lax integument being. largely or partly separated from the body in most of the other individuals. I have examined number 27535 most closely to learn the structure of the fins, and find that it has 44 dorsal rays, of which only the first 12 are not articulated; the anal has 36 rays, only the first one being unarticulated; the pectoral has 35 rays, and the caudal 12. The radial formula of the other examples are as follows:

> 24010, D. $38+$; A. $29+$.
> 24047, D. 42 ; A. ca. 32.
> 26625, D. 41 ; A. ca. 33.
> $27545 a$, D. 42 ; A. 35.
> $27545 b$, D. 42 ; A. ca. 34.

The dormal and anal are connate with the caudal, the free portion of the candal being only about one-third as long as the head. The great-
est width of the head is nearly equal to its greatest length and exceeds its greatest depth. The interocular region is shallow concave, and the vertex and nape are somewhat elevated. The snout is obtuse and moderately depressed. The body is rather abrubtly compressed at the vent, where its thickness equals only one-third of the length of the head. The anterior dorsal rays are regularly graduated, and much shorter than the rays in the middle of the fin. The longest dorsal ray is onehalf as long as the head. The length of the eve is contained 4 times in that of the head, which equals one-fourth of the total length with caudal. The length of the snout equals one-third of that of the head. The nostrils are tubular, the anterior pair having much the longer tubes, their distance from each other equaling the length of the eye. The maxilla extends to below the anterior margin of the pupil. Dentition as in L. fabricii. The ventral disk is nearly circular, its length contained 8 to $8 \frac{1}{2}$ times in the total length. The distance of the dorsal from the snont equals nearly one-third of the total length without the caudal. The length of the caudal equals abont one-seventh of the total length. The greatest height of the body equals the length of the head. Tbe pectoral extends to the origin of the anal.

Colors of specimen 26625 taken from the living fish.
(Dredged off Indian Point (Cape Tchaplin), E. Siberia, Behring Strait, Augnst 15, 1880.)

Upper parts gray, punctulated with brown; on the top of the snont and on head and back, as far as beginning of dorsal, two concertric stripes or elongated rings of brown inclosing gray areas; similar stipes along side of head, and extending back to near middle of bods; also on posterior part of body; between these long stripes are two irregular rings of brown inclosing gray; a brown stripe along lower part of head and body, blending into a wider area of brown of the lower parts; belly yellow on the sides, and punctulated with brown; iris brown, mingled with a little vermilion; pupil has a yellow margin; fins brown and panctulated; a dark band at candal base; snout whitish on top.

A more common pattern of coloration is the following:
Head and body very light brown or gray intermingled with brown; belly and under surface of head lighter; dorsal and anal with some irregular dark markings simulating bands; caudal with three dark bands; sometimes the posterior half of the body is mottled with dark blotches.

## Cottus humilis, n. e.

Museum number 27972; collector's number (1700). Chamisso Island, Eschscholtz Bay, August 31, 1880.
D. X, 16; A. 13, V. I, 3; P. 18; Br. VI.

Head broad, subtriangular, much depressed, contained 2 客 times in total length, candal included. Greatest depth of head contained 23 times in its greatest length. Eye equal to interocular space, contained twice in length of snout and 4 times in postorbital portion of head to

## 15J PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

end of opercular flap. Whole upper surface of head covered with small skinny tubercles. Vomerine patch of teeth very large.

Two strong spines above the snout, an obtuse prominence above each orbit and a pair on the occiput. In large individuals there is a tendency towards division and enlargement of the prominences and their extension, so as to form imperfect keels on the vertex. Behind the supraorbital prominences are several radiating sharp ridges similar to those of C. polyacanthocephalus. Interocular space concave. There is also a depression on the vertex, becoming narrower posteriorly. Three preopercular spines, the uppermost being longest and equal to the eye in length. The longest dorsal spine (fourth) is half as long as postorbital part of head, or slightly more. The length of the maxillary bone is contained $2 \frac{1}{3}$ times in the length of the head. End of maxilla reaches slightly past hind margin of eye. The ventrals when extended straight backwards are equal to their distance from the beginning of the anal. The pectorals reach the vertical from the beginning of the soft dorsal. Skin above the lateral line with a single series of rough bouy tubercles which are finely toothed and sometimes depressed in the centre. A few similar but smaller sping tubercles below the lateral line.

The dorsals are separated by a short interspace. The spinous dorsal begins in a line with the upper axil of the pectoral. The longest ray of the second dorsal is contained 4 times in the distance from the tip of the snont to the beginning of the second dorsal. Tail little rounded, contained $5_{2}^{2}$ times in total length without caudal.

Colors of the alcoholic specimen: Purplish brown above, whitish below. First dorsal has two broad, oblique dark bands separated by a light area. Second dorsal has about 5 dark bands, anal about 6 . The pectorals have about 4 interrupted bands; the candal has 3 . Ventrals whitish, faintly tinged in two areas with dark color. Sides with a few white blotches; a larger individual has, also, some small white blotehes on the belly.

Length of type 240 millimeters ( $9 \frac{1}{2}$ inches).
Length of head ................................................................. 3.4
Length of snout ........................................................................ . 8
Greatest height of body .................................................... 1.5
Least height of tail ........................................................... . . 4
Greatest width of body ..................................................... 1.6
Width of interocular space . . . . . . . . . . . . . . . . . . ....................... . 5
Long diameter of eye .................. ................................. . . . 5
Length of fourth dorsal spine ............ . ............................ . . 9
Length of fifth dorsal ray................................................... 1.2
Length of sixth anal ray .................................................... . . 9
Length of pectoral .......................................................... 1.9
Length of ventral ......................................................... 1.3
Length of caudal............................................................... 1.4
Length of maxilla............................................................ 1.4

Cottus niger, n. 8.
Museum numbers 23929, 27952, and 27971. Collector's numbers (1621), (1622), (1623), (1624), (1625).

St. Paul Island, Bering Sea, 1872 (H. W. Elliott), and August 6, 1880 (Dall \& Bean, from Mr. Armstrong).

Br. VI ; D. IX, 15-17 ; A. 11-13; V. i, 3; P. 16-17.
Two very blunt prominences above the snout entirely enveloped in the skin in a specimen 10 inches long. No spines above the orbits or on the occiput. The spines at the upper angle of the preopercle are the only ones that are not covered up in the skin, and these are alnost hidden. The two uppermost preopercular spines are the only sharp ones present. Top of head covered with fine skinny granulations and the vertex with numerous slender tentacles. The place of the supraorbital spine is occupied by a soft tentacle of moderate length. The longest preopercular spine is as long as the eye, which is $\frac{f}{f}$ as long as the head to the end of the opercular spine, and equal to the width of the space between the eyes. Snout equals length of orbit. Jaws equal, the lower not at all received within the upper. Maxilla, longer than fourth dorsal spine, equals one-half length of head to end of opercular spine, and extends to hind margin of orbit. Head one-third, or slightly less than one-third of total length, caudal included. Longest dorsal spiue is contained 7 to 9 times in total with caudal. The longest anal ray is contained about 3 times in length of head. Caudal and ventral equal to one-half length of head. Pectoral as long as post-orbital part of head and does not reach the vent, which is in the middle of the total length with caudal. Caudal rounded. Height of body at origin of dorsal is a little less than its width at the base of the pectorals and is contained from 5 to 6 times in total length, caudal included. The spinous dorsal begins at a distance from the tip of the snout equal to one-third of the total length without caudal. Skin smooth.

Colors of the alcoholic specimens: Very dark brown (almost black) with a purplish tinge in some individuals; sides mottled with lighter brown and whitish and frequently bearing large, roundish white blotches similar to those of the male C. grönlandicus. These white blotches in some instances become confluent over the greater portion of the belly. Posterior surface of the pectoral with white blotches near the margin in some examples, and uniform dark brown in others. There is no individual that is entirely free from white blotehes. In some examples the belly is dark, very little mingled with whitish. Lips and lower surface of head in some examples have numerous neasly black spots, the largest of which are not more than one-third as long as the eye. The largest of the types is 10 inches long.

Cottus yiger has many points of resemblance to C. Brandti Steind., but there are too many important discrepancies to allow me to identify it with Steindachner's species. (1) the length of the head is not more than $\frac{1}{t}$ of total length with caudal in any of our 14 examples; (2) the vomer.
ine, intermaxillary, and mandibulary teeth are all of equal size and streugth; (3) the distance between the eyes measured on the bone is always equal to the length of the eye (封 of length of eye in Brandi); (4) there are no prominent occipital ridges such as are figured in $C$. Brandti, but the vertex has numerons slender filaments; (5) the length of the ventral is $\frac{1}{2}$ that of the head ( $\frac{2}{5}$ in C. Brandti); (6) the length of the caudal is nearly twice as great as the distance of the front margin of the eye from the tip of the jaws; (7) the bony plates of the lateral line are so thin and soft that they are inconspicuous under the skin; (8) the ventrals of $C$. niger are always either purplish dark-brown with whitish tips, or whitish with several dark bands. There are white blotches on all our examples notwithstanding the great variation insize.

## Cottus verrucosus, n. \&.

27547 (1638). Plover Bay, Siberia, August 13, 1880, T. H. Bean.
Br. VI; D. XI, 16; A. 15 ; V. I, 3; P. 17 ; C. 12 (developed rays).
Length of the typical specimen $3 \frac{1}{2}$ inches ( 88 millimeters).
Two sharp spines above the snout. A short tentacle above the posterior part of each orbit and one on each side of the vertex. Vertex and interorbital space deeply concave. Crown, nape, and interorbital region with small skinny warts. Three preopercular spines, the uppermost being as long as the short diameter of the eye. Eye equals suout which is $\frac{1}{4}$ as long as the head to the end of the opercular spine. Lower jaw barely included within the upper. The maxilla is longer than the fourth dorsal spine, which is only a little longer than the eye and less than $\frac{1}{2}$ as long as the head. The maxillat equals $\frac{1}{8}$ of the total length without the caudal, and nearly $\frac{1}{2}$ the length of the head; it extends to below the middle of the eye. The mandible extends to the hind margin of the eye; its length equals $\frac{1}{2}$ the distance from the tip of the snout to the beginning of the dorsal. The head is $\frac{1}{f}$ of the total length with caudal. Teeth in the jaws and on the vomer. The longest dorsal spine equals the longest anal ray and $\frac{1}{10}$ of the total length with caudal. The length of the ventral equals $\frac{1}{8}$ of the total length without the caudal. The vent is slightly in advance of the middle of the length with caudal. The pectoral reaches to the origin of the anal. The caudal is $\frac{1}{2}$ as long as the head. The height of the body at the beginning of the dorsal is contained $4 \frac{1}{2}$ times in the total length without the caudal, and is a little greater than its greatest width. The distance of the first dorsal from the tip of the suout equals about $\frac{1}{3}$ of the total length without the caudal. Skin smooth. Lateral line with numerous short accessory branches extending upward and downward and placed exactly opposite each other.

Colors of the alcoholio specimen: Upper parts very dark brown; belly and under surface of head whitish; whitish on the sides along and behind the anal fin; spinous dorsal colored like the body but with a median and a posterior light bund; soft dorsal with about five dark-brown bands
alternating with whitish; caudal whitish on its anterior third, the rest of the fin having brown on the skin covering the fin-rays; the pectoral has five brown bands; the anal is all whitish except a dark stripe running through near its middle; the ventrals are whitish.

Gymnacanthus galeatus, n. s.
Museum catalogne number 28097; collector's number (1603). Five individuals were caught on a trawl-line at Iliuliuk, Unalashka, July 30, 1880, for Messrs. Dall \& Bean, by Sylvanus Bailey.

As these specimens differ in several important details from our examples of $G$. pistilliger from the Atlantic and from Siberia as well, I will briefly indicate the differences and call attention to them by giving the species a new name.

The smallest example is $7 \frac{3}{3}$ inches long; the largest, $10 \frac{1}{2}$ inches.
Br. VI ; D. XI, 16-17 ; A. 19; V. I, 3; P. 19-20.
No vomerine teeth. Two small spines above the snont; a small tubercle at the upper posterior margin of each orbit. Four preopercular spines, the upper as long as the short diameter of the eye, bearing two or three antler-like processes. The space between the eyes is deeply concave and completely covered by aggregated bony granulations, as are also the crown and the neck. Similar bony granulations are at the hind margin of the orbit, on the suborbital ridge, and on the opercles. The body is naked. The pectorals and, in males, the ventrals reach beyond the origin of the anal; in females the ventrals do not reach the vent. Dorsals and pectorals with interrupted black bands as in $G$. pistilliger; ventrals and anal uniform whitish; back with four distinct brown spots, the longest nearly twice as long as the eye, extending a little below the lateral line, and there blending into an interrupted wavy brown lateral stripe. The maxilla extends to below the middle of the eye. The greatest height of the body is contained twice in the length of the head, and $7 \frac{1}{2}$ times in the total length including the caudal. Pectoral as long as the head withont the snout, its upper axil immediately under the beginning of the spinous dorsal.

Gymnacanthus galeatus may be at once distingnished from $G$. pistilliger by its longer and more bony head and its elongate form. I have compared it with specimens of $G$. pistilliger from Norway; Cumberland Gulf, and Eastern Siberia.

Hemilepidotus Jordani, n. no
Museum number 2i598; collector's number (1602).
Leugth of larger type, 13 inches; smaller, $10 \frac{1}{3}$ inches.
Taken at Iliuliuk, Unalashka Island, on a trawl-line, by Sylvanus Bailey, July 30, 1880.

Larger, D. X, i, 21 ; A. 17 ; V. i, 4.
Smaller, D. X, i, 21; A. 16; V. i, 4 .
The dorsal band of scales contains 4 rows at the widest part ( 6 rows in spinosus).

Height of body 13 times in length of head, and $4 \frac{1}{2}$ times in total length without caudal. Length of head $2 \frac{2}{5}$ times in length of fish without caudal.

Eye equals snout and one-fourth of head. Interorbital space equals short diameter of eye (only half of short diameter in spinosus).

Distance of spinous dorsal from tip of snout equals length of pectoral (the pectoral is much shorter in spinosus).

First spine of dorsal equals maxilla in length (only half as long as maxilla iu spinosus). Longest dorsal spine (5th) is contained $2 \frac{1}{2}$ times in length of head ( 4 times in spinosus).

Pectoral reaches to origin of anal; ventral, nearly or quite to vent.
Maxilla extends slightly behind middle of eye; mandible, to posterior margin of eye.

Throat and belly pure white. No spots as in trachurus.
Hexagrammus scaber, n. (?) s.

## 7 Hexagammus superciliosus (Pall.)

In the collection of Alaskan fishes are two small individuals of the genus Hexagrammus, which I cannot refer definitely to any known species. They are nearest to H.superciliosus Pallas, but, as we have none of the young of this species, I must compare them with half-grown examples. From these and from the adult my species differs (1) in haring a rudimentary but quite distinct median lateral line, (2) in the absence of palatine teeth, (3) in having a forked candal, whereas superciliosus has a distinctly rounded candal. It may be found that a large series of specimens of different ages will show a gradation into superciliosus by the acquisition of palatine teeth, the obsolescence of the median lateral line, and a change in the form of the caudal; but there is nothing to base such a conclusion upon at present, and I desire to call attention to the form by describing it as probably new.

The types are numbered 23961, Amchitka, W. H. Dall, and 27920, Uualashka, T. H. Bean. The first measures 29 inches and the sccond $2 \frac{3}{10}$ inches to the base of the middle caudal rays.

23961-D. XX, 25; A. 23; V. i, 5; L. lat. about 100; 6 lateral lines.
27920-D. XXI, 25; A. 24; V.i,5; L. lat. about 107; L. transv. about 50; 6 lateral lines.

In this description number 27920 is taken for the principal type, since, being a more recent specimen, it shows the characters more clearly.

Body oblong, moderately compressed, its depth near the origin of the dorsal equals the length of the head (excluding the opercular flap) and is contained $4 \frac{1}{2}$ times in the total length to the base of the middle caudal rays; upper outline of head convex, but with a slight frontal depression. The least height of the tail equals one-half the length of the head, or one-ninth of the total length to base of caudal.

The distance between the eyes is contained three times in the length of the head. The suout is blunt and only two-thirds as long as the eye, which is one-third as long as the head and equals the interorbital dis.
tance. Jaws equal. The maxilla does not quite reach to below the anterior margin of the pnpil, and is one-third as long as the head. The mandible extends to below the middle of the eye and is contained 10 times in the total length to base of middle caudal rays. A tentacle above each orbit. Teeth in the jaws and in the vomer; none on the palatine bones.

The spinous dorsal originates immediately over the base of the pectoral; its longest spine is one-eleventh as long as the fish without the caudal. The longest ray of the second dorsal equals the length of the post-orbital part of the head. The dorsals are separated by a deep notch, immediately under which the anal originates.

The length of the anal base equals oue-third of total length without the caudal. The vent is equidistant from the tip of the snout and the base of the middle caudal rays.

The middle caudal rays are only $\frac{2}{3}$ as long as the longest rays, the caudal being decidedly forked.

The distance of the pectoral from tip of snout equals one-fourth of the total length to base of middle caudal rays; the pectoral does not quite reach to the vent; its length equals that of the head including the opercular flap.

The distsince of the ventral from the snout is slightly more than twice the length of the ventral, which is one seventh of the total length to base of middle caudal rays.

There are 6 lateral lines on each side, the uppermost of which meets its fellow of the opposite side in front of the dorsal, is continued forward on the nape by a single short line, runs backwards close to the dorsal, base and ends at about the beginning of the last third of the soft dorsal. The second begins on the nape, is one-half as far from the uppermost as it is from the third, and extends to the caudal. The third begins at the extreme upper limit of the gill-opening, curves very gradually to follow the dorsal outline until it reaches the end of the second dorsal, whence it runs straight out on the caudal. The fourth begins a little above the pectoral, curves very slightly downward and disappears about the middle of the body; it is not so well developed as the rest. The fifth originates close under the pectoral, near the gill-opening, passes above the ventral and on the lower part of the side of the body, ending at about the beginning of the last third of the anal. The sixth meets its fellow of the opposite side a little behind the ventral base (a single line exteuding forward from this junction on the median line of the belly as far as the throat) and runs back ward close to the base of the anal tin, ending on the caudal. The scales are everywhere very rough.

Colors: Each of the dorsals has 3 black blotches, smaller than the eye, resembling bands but not extending to the bases of the fins. The pectorals, ventrals, and anal are uniform yellowish white. The body is light brown above and silvery or golden on the sides and lower parts.

## 1 1.6 PROCEEDINGS OF UNITED STATES NATIONAL MUSECM.

Coregonus laurette, n. s.
Among the fishes brought down from nortbern Alaska daring the summer of 1880 are 4 white fish taken at Point Barrow by the U.S.S. Thomas Corwin, Capt. C. L. Hooper commanding, and one of the same species obtained at Port Clarence, by the U. S. Sch. Yukon. The museum catalogue numbers of these specimens are:
27695. Point Barrow, 1880, (4 examples).
27915. Port Clarence, 1880, ( 1 example).

The species is allied to C. Artedi Le Sueur and to (C.) lucidus Richardson. It differs from $C$. Artedi in the following particulars:
(1) The eye is $\frac{1}{5}$ as long as the head ( 1 in Artedi) ;
(2) The length of the dorsal base corresponds with that of $\mathbf{1 6}$ oblique sories of scales immediately under it ( 10 in Artedi);
(3) The length of the mandible is coutained $2 \frac{1}{3}$ times in that of the head (218 times in Artedi);
(4) The lateral line runs through 84 to 95 scales (not more than 77 in Artedi); there are 10 scales in a transverse series from the origin of the dorsal to the lateral line and as many from the origin of the ventral to the lateral line ( $9-9 \mathrm{in}$ Artedi);
(5) The ventral has 12 rays ( 11 in Artedi).

From C. lucidus it is separated by. the following characters:
(1) There are lingual teeth (none in lucidus);
(2) The ventral appendages are less than one-half as long as the ventral (more than one-half in lucilus);
(3) The transverse rows of scales between the origins of dorsal and ventral and the lateral line are $10-10$ (10-8 in lucidus);
(4) The lower jaw is contained $2 \frac{1}{2}$ times in length of head ( $2 \frac{1}{8}$ times in lucidus accorrding to Richardson's measuremeuts);
(5) Judging from the figure given by Richardson the number of rows of scales under the dorsal base of my species is 6 greater than in lucidus.

## DESCRIPTION.

Br. IX-X ; D. 11-12 divided rays; A. 10-11 divided rays; V. 12; P. 16 ; L. lat. $84-95$; length of types $12-16$ inches.

The height of the body is greater than the length of the head and equals one-fourth of the total length without the caudal ; the distance of the nape from the front margin of the jaw is contained $2 \frac{1}{2}$ times in its distance from the beginning of the dorsal. The diameter of the eye equals the length of the snout and about of that of the head. Maxillary reaches nearly to the middle of the eye, its length contained 32 times in that of the head; the supplemental bone is slightly more than half as long as the maxilla and its greatest width equals $\frac{t}{s}$ of its length. The length of the mandible equals $\frac{3}{7}$ of that of the head, reaching to the hind margin of the orbit. The appendage of the ventral fin is less than halfas long as the fin aud nearly equal in length to the 7 scales immediately over it.

This white fish is also represented in the National Museum by two well-preserved specimens (Nos. 24023 and 24024) collected by William H. Dall. March 12 and March 19, 1867 (collector's numbers 666 and 672), at Nulato on the Yukon River.

I dedicate the species to my wife, Lauretta H. Bean.
Ptilichthys, n. g. (Mastacembelida ?)
Body elongate, serpentiform, apparently covered with very thin scattered scales. Mandible little movable, projecting, with a skinny appendage at tip. Cleft of the month narrow. Minute teeth in a single series in the jaws, becoming larger and slightly curved posteriurly. Margin of upper jaw formed entirely by the intermaxillaries. Maxilla curved forward below. The gill-opening extends up to the middle of the base of the pectoral; the membrane is slightly emarginate behind and is free from the isthmus; 4 gills, a slit behind the fourth. Gillrakers stout and short, moderate in number. Spinous portion of the dorsal consisting of mans isolated spincs, a narrow membrane behind each. Soft dorsal and anal with many rays. End of the tail free. Ventrals none.

## Pulichthys Goodel, n. s.

Mnseum number 26619, collector's number (1590)-Dall and Bean.
Dredged in 10 fathoms at the entrauce to Port Levasheff, Unalashka, on the ridge, hard bottom, by Sylvanus Bailey, July 28, 1880.

I am indebted to the Alaska Commercial Company of San Francisco for the loan of the only other known specimen, an example 302 millimeters long taken at Unalashka. Length of type $\mathbf{1 6 0}$ millimeters. The species is dedicated to my colleagne, Mr. G. Brown Goode.

Br. V; D. XC, 145 ; A. ca. 185 ; P. ca. 12.
Greatest height of body equals the post-ocular part of the head. Eye, equal to snout, 5 in head. Head $15 \frac{1}{3}$ times in total length. . Maxilla extends to a little beyond the front margin of the orbit; mandible to middle of the eye. The mandibnlary appendage is one-half as long as the eye. The dorsal begins slightly in advance of the pectoral; the spinous portion equals $6 \frac{1}{2}$ times the length of the head. The distance from the tip of the lower jaw to the anus equals 4 学 times the length of the head. The anal begins under the fifty-third spine of the dorsal. The pectoral is half as long as the head. None of the dorsal spines are quite equal to half the length of the eye. The soft dorsal and the anal are highest near the mildle of their length; the height of each equals about $\frac{7}{4}$ of the body height at the same point. The free caudal tip is about $\frac{3}{3}$ as long as the eye.

## Raia parmifera, n. .

Collector's number (1753); Museum number 27651.
Taken at Iliuliuk, Unalashka, October 12, 1880, and preserved almost entire after measurements and color notes were made.

Disk broader than long; tip of snout slightly projecting. Anterior margin of pectorals convex in front, then shallow concave, posterior margin convex. Interorbital distance, measured on the bone, is contained $3 \frac{1}{2}$ times in distance from tip of snont to a line connecting the front margins of the orbits. Interocular space deeply concare in the preserved specimen.

Breadth of disk equals distance from tip of tail to shoulder-girdle. Length of tail equals distance from its root to middle of eye.

Tail nearly flat below with a well-marked lateral fold which is widest posteriorly, but nowhere equals the height of the caudal. Caudal small, its height ( $7^{\mathrm{mm}}$ ) contained 3 times in its length ( $21^{\mathrm{mm}}$ ).

Mouth slightly arched, its width equal to 3 times the length of first dorsal base. Nasal flaps with a few fringes posteriorly. Distance between nostrils contained $1 \frac{1}{2}$ times in their distance from tip of snout. Teeth in 26 or 27 rows, with a short, moderately sharp median cusp, which is occasionally much worn in the frout of the jaws.

The largest spiny bucklers on the back are 17 millimeters long at the base.

Snont above, supra-occipital region and the whole margin of pectorals and ventrals covered with small prickles, as is also an area along the tail, especially on its anterior half. Along the middle of the back and the top of the tail is a row of 29 large spines. Between the dorsals is a single large spine. Along the sides of the tail are spines a little larger than those around the margin of the disk. The greater portion of the disk is smooth. In a male, number 28098 , of which we have portions only, the bucklers are in about 22 rows, with 6 in a row at the widest part; the claspers are slender and more than one-half as long as the tail.

Under surface smooth, with the exception of an elliptical patch of small spines near the tip of the snout.

General color olive-brown above. There are numerous indistinct light blotches on the disk, two of them larger than the rest; the largest is twice as long as the eye, and surrounds an inner blotch of white nearly as long as the eye. There are two small light blotches, one on each side of the tail, between the 17 th and 18 th spines of the median series.

Mcasurements.

| Carrent number of epecimen <br> Locality $\qquad$ |  |
| :---: | :---: |
|  | Millimeters. |
| Extreme length | 023 |
| Iength of disk ................................................................................ 30. |  |
| Body: |  |
| Greateat width of tail at baso* | 4 |
| Wenyth of branchial area...... | 18 |
| Width of branohial area behind | 28 |

Measurementg-Continned.

|  | Millimeters. |
| :---: | :---: |
| Head: |  |
| Distance between onter edges of spiracles | 119 |
| Greatest width of month..... | 105 |
| Lengt of snout from ese. | 153 |
| Length of eye........... | 30 |
| Length of snont from mouth | 140 |
| Length of spiracles. | 32 |
| Distauce from mnout to first dorsal | 875 |
| Distance between outer humeral spines | 125 |
| Dorsal : |  |
| Leagth of baae of first dorsal | 32 |
| Hright of tinst doraal.. | ${ }_{10}$ |
| Interval between dorsals | 16 |
| Length of second dorsal. | 30 |
| Height of meconil dorsal | 26 |
| Length of base of ventrals ........... | 1314 |
| Distance between outer edgen of uoxtrils. | ${ }^{310}$ |
| Distance from anout to outer augle of disk | 463 |
| Canelal: |  |
| Lenyth of base. | 21 |
| Height ....... | 7 |
| Ventral: <br> Length | 68 |

*Taken where the ventral inention ends.
Ammoccetes aureus, n. s.
P Petromyzon Fluvialis Rich. Franklin's First Jonrney, 1823, p. 705; F. B. A., p. 294.
$\uparrow$ Petromyzon borcalis Gril. Pacific R. R. Report, Fishes, p. 377 (without description).

Maxillary tooth single, bicuspid ; mandibulary with seven cusps, those at the ends being larger than the other five. Head shorter than the space occupied by the branchial openings and contained $10 \frac{1}{3}$ times in the total length (5y times in the distance from the end of the lip to the beginning of the first dorsal). The distance from the eye to the first dorsal is 3 times as long as the first dorsal base. Second dorsal base is twice as long as the first, and the fin is twice as high as the first at its highest part. The interspace between the dorsals is about 2 as long as the head. The distance from the vent to the end of the tail is onefourth of the total length. Eye nearly twice as large as the largest branchial opening.

Colors of the alcoholic example: Back plumbeons, sides and belly golden yellow, under surface of head and neck silvery.

Length of type, 15 inches; catalogue number, 21524 ; collector's number, 1038, Anvik, Yukon River, Alaska, Lucien M. Ț̣urner (Lat. $63^{\circ}$ N., Lon. $160^{\circ} \mathrm{W}$. from Greenwich). Mr. Turner notes that it is extremely abundant and is used for food.
U. S. national Museum, May $5,1881$.

## DRECEEPTION OF A NEW MPECEEA OF FISIT, APOCON PANDIONTE, EROT THAR DEER WATER OPE THE MOUTH OF CEBEAPEAKE BAY.

## RY G. HEOWN GOODE AND TARLETON II. BEAN.

Among the fishes collected in October, 1880, by Capt. Z. L. Tanner, on the Fish Commission steamer Fish Hawk, off the entrance to Chesapeake Bay, is a single specimen of a species of Apogon, apparently new to science. The specimen being somewhat mutilated, this description is necessarily incomplete.

Apogon pandionis, new species. Goode and Bean.
Body oblong, rather robust, its greatest width (behind the gills) being equal to half the length of the head, and contained six times in the length of body without caudal; its greatest height contained about thrice and two-thirds in the body length. Least height of tail almost equal to half the greatest height of the body. Scales, small cycloid, forty-five in the lateral line; three longitudinal rows above and nine below the lateral line; lateral line complete.

Length of head one-third of standard length of body, its greatest width equal to greatest width of body. Length of snout four and onehalf times in length of head. Maxilla extends to a point a very little behind the anterior margin of the pupil, the mandible to the vertical from the middle of the eye. Length of maxilla equal to long diameter of the eve. Preoperculum apparently unarmed. Operculum with two flexible points near its upper posterior angle. Gill-rakers very long and slender.

Eye nearly circular, its longest diameter nearly equals half the length of the head and is contained seven times in the standard body length nearly horizontal. Width of interorbital space equals two-thirds the diameter of the eye. Mouth oblique, the lower jaw projecting. Dentition in jaws hardly perceptible. Feeble teeth on the head of the vomer and on the palatine bones.

Distance of dorsal from snout equal to twice the greatest width of the body; its longest spine (fourth) equal in length to three-fourths the diameter of the eye. Distance from origin of first dorsal to origin of second dorsal equal to twice the length of the base of the latter

Distance of anal from snout equal to twice the length of the head; the length of its base is equal to two thirds the length of the eye; of its longest ray to the length of the maxilla. First anal spine minute, its length equal to one-fourth of the least height of the tail ; the second anal spine at least twice as long as the first. Caudal deeply furcate, scaled upon the lower portions of the lobes.

Distance of pectoral from snout equal to length of head; its length equal to that of the maxilla.

Distance of ventral from suout slightly greater than one-third of the standard body length.

Radial formula.-D. VII, I, 9; A. II, 7ł; P. 16; V, I, 5.
Scales, in lateral line, 45 ; above lateral line, 3 ; below, 9.
Color nearly uniform light, reddish brown, with no blotches. Scales finely wiciviate withback.
Our description is based upon maseum specimen No. 26298.
Among the other interesting forms collected in the sane locality is a young specimen of Hoplostethus mediterraneus, and also a species of Scorpana, soon to be described.

## METALIIC CABTINGA OF DELICATE NATURAL OBJECTE.

[Translated.]
The following process is recommended by Abbass for producing metallic castings of flowers, leaves, insects, \&c. The object, a dead beetle for example, is first arranged in a natural position, and the feet are connected with an oval rim of wax. It is then fixed in the centre of a paper or wooden box by means of pieces of tiue wire, so that it is perfectly free, and thicker wires are rum from the sides of the box to the object, which subsequently serve to form airchannels in the mold by their removal. A wooden stick, tapering toward the bottom, is placed upon the back of the insect to produce a runuer for casting. The box is then filled up with a paste of three parts of plaster of Paris, and one of brick-dust, made up with a solution of alum and sal ammoniac. It is also well first to brush the object with this paste to prevent the formation of air bubbles. After the mold thus formed has set, the object is removed from the interior by first reducing it to ashes. It is therefore dried slowls, and fiually heated gradually to a red heat, and then allowed to cool slowly to prevent the formation of flaws or cracks. The ashes are removed by pouring mercury into the cold mold and shaking it thoroughly before pouring it out, and repeating this operation several times. The thicker wiges are then drawn gut, and the mold needs simply to be thoroughly heated before it is filled with metal in order that the latter may flow into all portions of it. After it bas become cold it is softened and carefully broken away from the casting.

THE OCCEREENCE OF THE CANADA PORCUPINE IN MARYEAND.

## By OTTO LUGGER.

Referring to the paper on the occurrence of the Canada Porcupine in West Virginia by Mr. Goode, in Vol. I, I'roceedings U. S. National Museum, page 264, I wish to mention that this Porcupine, Erethizon dorsatus, is still, though rarely, found in Maryland. In the museum of the Maryland Academy of Sciences is a specimen from Alleghany

Proc. Nat. Mus. $81-11$
Aug. 11, 1881 .

Connty, Maryland. Another specimen I saw living in confinement in the Blue Ridge Mountains, where it was caught two years ago. One was killed quite recently uear Ellicott City, Maryland.

Maryland Academy of Sciences, Baltimore, May 22, 1881.

## NOTE ON TEIE HATETAOID GENEEA.

## By THEODORE GHLL.

In a late number of the Proceedings of the U.S. National Museum (Vol. IV, p. 53), Messrs. Jordan and Gilbert have accepted the name Dekaya instead of Caulolatilus for a genus of the family Latilida, with a foot-note, "Caulolatilus, Gill : nomen nudum." In order that the adoption of this view may be at once arrested, it is advisable to give a history of those names.

In 1862, in the "Proceedings of the Academy of Natural Sciences of Philadelphia" (p. 240), the name Caulolatilus was proposed as the generic denomination of Latilus chrysops and its allies, in the following terms:
"The Malacanthini of Poey form a natural family. The Latilus chrysops, Val., does not, however, appear to be congeneric with the type of Latilus, but is distinguished by its form and the structure of the fins. It may be called Caulolatilus chrysops."

It will be thus seen (1) that the respects in which Caulolatilus differs from Latilus were indicated; ( $\because$ ) the relationships were exactly appreciated; (3) a specific type was mentioned. There could consequeutly be no doubt as to what was meant nor as to the characters by which it should be distinguished.

In 1864, in the "Proceedings of the California Academy of Natural Sciences" (Vol. 3, p. 70), Dr. Cooper proposed the name of Dekaya for a supposed new fish, concerning which he had not the slightest conception as to its proper relationships, considering it "to be a very aberrant form of the Percoid family, having many of the characters of other orders" [sic! ], but that on the whole it seemed to be most nearly related to "the genus Heterognathodon, of Bleeker." The remarks respecting the "other orders" and the affinities indicated the most complete misapprehension as to the type. The description was equally at fault. The "general shape" was said to be "elongated and fusiform," although a shape less "fusiform" could scarcely be associated with moderate elongation. In other respects the description was fanlty and erroneous or vague, but these lapses need not detain longer.

The question arises in such a case, What is the advantage of any description! According to the rules of the British and American associa-
-tions for the advancement of science, a description is necessary as the basis of permanent nomenclature, but like many of the other rules propounded in those codes, there is no proper logical basis therefor. If a description is necessary, it is necessary that the description should be apt, but, as every naturalist is well aware, the description is completely ignored in practice. We adopt, for example, the name Perca and many others from Linnæus and his successors, but inasmuch as those names were applied by older naturalists to forms that are now relegated to distinct families, it will be obvious that no regard whatever is paid to the definitions. This is recognized to such an extent that it is now admitted that a definition is only necessary to show that the writer had some idea as to what he was treating about. In the case in question, (1), on the one hand, it is evident from the words that the author of Caublatilus did have an adequate idea as to both what he was writing of and as to the true distinctions of the fish considered, and (2), on the other hand, that tho author of the name Dekaya had not the least conception of the nature of the form he deacribed, and that the name originated simply from an almost inexcusable blunder and ignorance of the subject he ventured to write upon. There would therefore seem to be no doubt that in any case the name Caulolatilus should be retained in preference to Dekaya. But it so happens that there is no complication in the consideration of the choice of names even from the extreme standpoint from which it is viewed by Messrs. Jordan and Gilbert. The name Dekaya is inadmissible as the denomination of the Latiloid fish, if for no other reason, because the same name under the form Dekayia had been applied previously by Messrs. H. Milue Edwards and Haime to a genus of Corals of the family Chatetide. (Dekayia, H. Milne Edzards et J. Haime, Monographie des Polypiers fossiles des Terfains Paleozoïques in Archives du Muséum d' Histoire Naturelle, t. 5, p. 154, 1851; H. Milne Edicards, Histoire Naturelle des Corallaires ou Polypes proprement dits, t. 3, p. 283, 1860.)

The history of the genus may therefore be epitomized as follows:

## Caulolatilus.

## Synonymy.

=Caulolatilus Gill, Proc. Acad. Nat. Sci. Phila., [v. 14,] p. 240, 1862. (Characters indicated.)
$=$ Dekaya Cooper, Proc. Cal. Acad. Nat. Sci., v. 3, p. 70, 1864. (Described, but erroneously, and name preoccupied by Edwards and Haime in 1851.)
$=$ Caulolatilus Gill, Proc. Acad. Nat. Sci. Pbila., [v. 17,] p. 66, 1865. (Fully de-acribed.-Adopted by Cooper (later), Poey, Bleeker, Goode and Bean, Jordan \& Gilbert (at first.)
$=$ Dekaya Jordan \&' Gilbert, Proc. U. S. Nat. Mus., v. 4, p. 53, 1880. (Name revived for Caulolatilus.)
latilus sp. Cuv. et Val., Giinther, etc.
Type Caulolatilus chrysops=Latilus chrysops C. \& V.

The following genus is very nearly allied, viz:

## Prolatilus.

Synonymy.
$=$ Prolatilm Gill, Proc. Acad. Nat. Sci. Phila., [v. 17,] p. 67, 1865.
latilus sp. Cuv. \& Val., Jenyns, Giinther, etc.
Type Prolatilus jugularis=Latilus jugularis C. \& V.
Apparently closely related to Prolatilus is Pinguipes, viz:

## Pinguipes.

Synonymy.
$=$ Pinguipes Cuv. \& Val., Hist. Nat. des Poiseons, t. 3, p. $277,1829$.
Type Pinguipes brasilianus C. \& V.
The following genus has been associated with the preceding by all who have treated of them, save Dr. P. von Bleeker. That ichthyologist has referred Latilus to the family of "Percoidei" and its tenth subfanily, "Spariformes" and "Phalanx Denticini," and remored Caulolatilus and Prolatilus from all close relationship therewith. "(Spec. plures familiæ Parapercioid. adnumer.)" What are the exact affinities must be dutermined by a study of the anatomy.

## Latilus.

## Synonymy.

<Latilus Cur. \& Val., Hist. Nat. des Poissons, t. б. p. 369, (t. 9, p. 495, ) 1830.
=Latilus Gill, Proc. Aç̧d. Nat. Sci. Phila., [v. 17,] p. 67, (by exclusion,) 1865.
$=$ Latilus Bleeker, Archives Nérland. Sc. exactes et nat., t. 11, p. 279, 1876.
Type Latilus simus = Coryphana sima B1. Schneid.=Latilus argentatus. C. \& V.

To Latilus the following genus seems to be most nearly related, but whether such is really the case cannot be considered settled till its oste. ology is examined.

## Lopholatilus.

## Synonymy.

$=$ Lopholatilus Goode \& Bean, Proc. U. 8. Nat. Mus., v. 2, p. 205, 1879.
Type Lopholatilus chameeleonticeps Goode \& Bean.

## UIST OF BPECDES OF MIDDEE AND SOUTH AMERICAN BIEDE NOT CONTAINED IN THE UNETED STATES NATIONAL HUSEUM.

## By ROBERT RHDGWAY.

[Corrected to July, 1881.]
[None of the species named in the following list are at present in the collection of the United States National Museum, and any of them that can be supplied by correspondents of the Museum, or of the Smithsonian Institution, will be very thankfully received.|

## Family Turdids.

Catharus aurantiirostris (Hartl.). Venezuela, mexicanus Bp. Mexico to Veragua. mentalis Scl. et Salv. Bolivia. phæopleurus Scl. et Salv. Colombia. alticola Godm. et Salv. Guatemala. Turdus luridus Bp. Colombia. fumigatus Licht. Venezuela to Brazil. fuscater Lafr. et COrb. Bolivia and Argentine Republic. olivater Lafr. Venezuela. nigriceps Jelski. Western Peru. brunneus Lawr. Upper Amazons. leucops Taczan. Northwestern Peru. maranonicus Taczan. Northern Peru. Margarops sanctæ-luciæ Scl. Sta Lucia, West Indies. Harporhynchas ocellatus Scl. Southwestern Mexico. Mimas dorsalis (Lafr. et d'Orb.). Bolivia. lividus Licht. Eastern Brazil. patachonicus (Lafr. et d'Orb.). Patagonia and Arg. Rep. trifasciatus Gould. Galapagos. parvulus Gould. Galapagos.

> Family Ptilogonatide.

Myiadestes ardesiaceus Less. Brazil. griseiventer Tschudi. Peru. montanas Cory. Haiti. Cichlopsis leucogonys Cab. Brazil.

Family Sylvidd.
Polioptila plumbeiceps Lawr. Venezuela.

## Family Troglodytide.

Campylorhynchus gularis Scl. Mexico.
nuchalis Cab. Venezuela and Trinidad.
variegatus (Gm.). Brazil.
hypostictus (Gould.) Upper Amazous and Colombia
bicolor Pelz. Guiana.
Cinnicerthia peruana (Caban.). Peru.
Cyphorinus modulator (WOrb.). Amazons.
dichrous Scl. et Salv. Colombia.
Microcerculus bambla (Bodd.). Guiana.
albigularis Scl. Eastern Eenador.
marginatus Scl. Peru and Colombia.
squamatulus Scl. et Salv. Venezuela.
tæniatus Salv. Western Ecuador.
Thryophilus rufiventris Scl. Interior of Brazil. minor (Pelz.). Interior of Brazil.
longirostris (Vieill.). Brazil.
nisorius Scl. Mexico.
fulvus Scl. High Peru.
Thryothorus coraya (Gm.). Guiana and Amazonia.
mystacalis Scl. Western Ecuador and Colombia.
euophrys Scl. Western Ecuador. cantator Jelski. Central Peru. sclateri Taczan. Northem Peru.
Troglodytes tessellatus Lafr. et dorb. Panama to Bolivia. Cistothorus graminicola Jelski. Central Peru. brunneiceps Salv. Western Ecuador. æquatorialis Lawr. Ecuador.

Family Motacillide.
Authus chii Vieill. Southern Brazil and Uruguay. nattereri Scl. Southern Brazil. peruvianus Nicholson. Peru. calcaratus Taczan. Central Peru. brevirostris Taczan. Central Peru.

## Family Mniotiltids.

Dendrœeca eoa Gosse. Jamaica.
Geothlypis speciosa Scl. Eastern Mexico. semiflava Scl. Ecuador. chiriquensis Salv. Chiriqui.
Basileuterus hypoleucus Bp. Eastern Brazil. bivittatus (Lafr. et d'Orb.). Costa Rica to Bolivia. griseiceps Scl. et Salv. Venezuela. cinereicollis Scl. Colombia.


Family Dulide.
Dulus nuchalis Sic. Antilles.
Family Hirundinide.
Petrochelidon pyrrhonota (Vieill.). Paraguay, Brazil, and Mexico.
Tachycineta andecola Lafr. et d'Orb. Peru.

Tachycineta leucopsgia Stolzm. Northern Peru.
Atticora melanoleuca (Max.). Eastern Brazil.
cinerea (Gm.). Ecuador.
tibialis (Cass.). Peru and Panama.
Cotile fucata (Temm.). Brazil and Argentine Republic.
Family Cgerebide.
Diglossa major Cab. Guiana.
carbonaria (Lafr. et dorb.). Bolivia.
gloriosa Scl. et Salv. Venezuela.
glanca Scl. et Salv. Bolivia.
pectoralis Caban. Central Peru.
mysta alis Lafr. Andes of Bolivia.
Diglossopis cærulescens Scl. Venezuela to Ecuador.
Oreomanes fraseri Scl. Ecuador.
Conirostrum ferrugineiventre Scl. Bolivia. atrocyanea Lafr. Bolivia. cyaneum Taczan. Central Peru.
Xenodacnis parina Caban. Peru.
Dacnis analis Lafr. et d'Orb. Upper Amazons and Guiana. -
xanthopthalma Jelski. Central Peru.
modesta Caban. Peru.
Dacnidea leucogastra Taczan. Central Peru.
Certhidea fusca Scl. et Salo. Galapagos.
Chlorophanes purpurascens Scl. et Salv. Venezuela.
Certhiola caboti Baird. Yucatan (Cozumel I.). magnirostris Taczan. Northern Peru.

Family Tanagride.
Chlorophonia frontalis Scl. Venezuela.
flavirostris Scl. Ecuador.
pretrei (Lafr.). Colombia.
Euphonia sclateri Sund. Porto Rico.
trinitatis Strickl. Trinidad and coast-region of Venezuela and Colombia.
minuta Cab. Guiana to Gutemala.
ruficeps Lafr, et d'Orb. Bolivia, Amazons, and Venezuela.
vittata Scl. Brazil.
gnatho Cab. Costa Rica.
chrysopasta Scl. et Salv. Upper Amazons and Venezuela.
chalcopasta Scl. et Salv. Colombia.
cayana (Linn.). Guiana and Amazons.
plumbea Du Bus. Amazons.
finschi Scl.et Salv. Gniana.
insignis Scl. et Salr. Eastern Ecuador.
Tanagrella calophrys Cab. Guiana and Upper Amazons.

Pipridea castaneiventris Scl. Bolivia. Calliste fastuosa (Less.). Brazil.
florida Scl. et Salv. Costa Rica.
graminea (Spix). Guiana.
cucullata (Sw.). Venezuela.
cyanoptera ( $S w$. .). Veneznela.
lavinia Cass. Panama to Nicaragua.
albiventris Gray. Guiana.
atrocærulea (Tsch.). Peru and Bolivia.
cabanisi Scl. Western Guatemala
argentea (Tsch.). Peru.
rafigenis Scl. Venezuela.
hartlaubi Scl. Colombia.
xanthocephala (Tsch.). Peru and Bolivia.
fulvicervix Scl. et Salv. Bolivia.
argyrofenges Scl. et Salv. Bolivia.
punctulata Scl. et Salv. Bolivia.
melanotis Scl. et Salv. Eastern Ecuador.
albertinæ Pelz. Brazil.
Iridornis reinhardti Scl. Peru. jelskii Caban. Pera.
Pœcilothraupis igniventris (Lafr. et d'Orb). Bolivia. lacrymosa ( $D u$ Bus). Pera. melanogenys Salv. et Godm. Colombia. ignicrissa Caban. Central Peru.
Buthraupis montana (Lafr. et d'Orb.). Bolivia. edwardsi Elliot. (Hab. ignot.)
Compsocoma sumptuosa (Less.). Venezuela to Peru. flavinucha (Lafr. et d Orb.). Bolivia.
Dubusia selysia Bp. Ecuador.
Tanagra olivina Scl. Interior of Brazil, Peru, and Colombia.
Spindalis zena (Linn.). Bahamas.
liamphoccelus ephipialis Scl. Upper Amazons. uropygialis Bp. Guatemala. chrysonotus Lafr. Colombia.
Pyranga erythrocephala (Sw.). Mexico.
roseigularis Cabot. Yucatan.
Orthogonys cyanicterus (Vieill.). Guiana.
Lamprotes albocristatus Lafr. Colombia.
Phœnicothraupis gutturalis Scl. Colombia.
Lanio versicolor (Lafr. et d'Orb.). Bolivia and Peru.
Lucometis penicillata (Spix). Guiana and Amazons.
albicollis (Lafr. et d'Orb.). Interior of Brazil and Bolivia.
spodocephala (Bp.). Veragua to Guatemala.
Tachyphonus phœuiceus Sw. Upper Amazons. rufiventris (Spix). Upper Amazons.

Tachyphonus intercedens Berlepsch. Trinidad. Nemosia peruana (Bp.). Upper Amazons. ruficeps (Lafr. ct d'Orb.). Bolivia. fulvescens Strickl. Brazil and Amazons. sordida (Lafr. et dOrb.). Bolivia. ornata Scl. Western Ecuador. fulviceps (Cab.). Venezuela. inornata Taczan. Northern Peru. chrysopis Scl. et Salv. Ecuador. Pyrrhocoma ruficeps (Strickl.). Southern Brazil and Paraguay. Chlorospingus flavipectus (Lafr.). Colombia. atripilens (Lafr.). Colombia and Ecuador. melanotis Scl. Colombia. oleagineus Scl. Colombia. verticalis (Lafr.). Colombia. lichtensteini Scl. Colombia. castaneicollis Scl. Eastern Peru. goeringi Scl. et Salv. Venezuela. calophrys Scl. et Salr. Bolivia. cinereocephalus Jelski. Central Peru. chrysogaster Taczan. Central Peru. chrysophrys Scl. et Salv. Venezuela. olivaceus (Bonap.). Guatemala. berlepschi Taczan. Central Peru. nigrifrons Lawr. Ecuador. auricularis Caban. Peru. phæocephalus Scl. et Salv. Western Ecuador. Buarremon torquatus (Lafr. ct dorb.). Bolivia. phæopleurus Scl. Venezuela. rufinuchus (Lafr. et dorb.). Bolivia. leucopterus (Jard.). Ecuador. albifrenatus (Boiss.). Colombia. merida Scl. et Salv. Venezuela. schistaceus (Boiss.). Colombia and Ecuador. semirufus (Boiss.). Venezuela and Colombia. fulviceps (Lafr. et dOrb.). Bolivia. castaneiceps Scl. Ecuador. specularis Salv. Northern Peru. tricolor Taczan. Central Peru. melanops Scl. et Salv. Bolivia. taczanowskii Scl. et Salv. Peru. castaneifrons Scl. et Salv. Interior of Venezuela. elæoprorus Scl. et Salv. Colombia. melanolxmus Scl. et Salv. Southern Peru. spodionotus Sel. et Salv. Ecuador. comptus Scl. et Salv. Ecuador.

Buarremon inornatus Scl. et Salv. Ecuador. melanocephalus Salv. et Godm. Colombia.
leucopis Scl. et Salv. Ecuador. castaneiventris Scl. et Salv.
Phænicophilus dominicensis Cory. Haiti.
Arremon orbignyi Scl. Bolivia. devillei Bp. Interior of Brazil. wuchereri Scl. et Salv. Eastern Brazil. nigriceps Taczan. Northern Peru.
Oreothranpis arremonops Scl. Eastern Ecuador.
Lamprospiza melanoleuca (Vieill.). Guiana.
Psittospiza elegans (T8ch.). Peru.
Saltator superciliaris (Spix). Amazons, Peru, and Bolivia. cærulescens Vieill. Paraguay and Bolivia. maxillosus Cab. Southern Brazil and Uruguay. rufiventris Lafr. et d'Orb. Bolivia. orenocensis Lafr. Venezuela.
Conothraupis speculigera (Gould). Upper Amazons.
Malacothraupis dentata Scl. et Salv. Bolivia.
Microspingus trifasciatus Jelski. Central Peru.
Pitylus fuliginosus (Daud.). Southern and Eastern Brazil. celæno (Licht.). Mexico.
humeralis Lavor. Colombia and Ecuador.

## Family Fringillide.

Pheacticts uropygialis Scl. et Salv. Colombia and Ecuador. chrysogaster (Less.). Venezuela and Ecuador. crissalis Scl. et Salv. Ecuador.
Geospiza magnirostris Gould. Galapagos Islands.
nebulosa Gould. Galapagos Islands.
dentirostris Gould. Galapagos Islauds.
dubia Gould. Galapagos Islands.
Gnathospiza raimondi Taczan. Northern and Western Peru.
Oryzoborus maximiliani Cab. Southern and Eastern Brazil. occidentalis scl. Ecuador and Colombia. melas Scl. et Salv. Guiana, Amazons, Brazil. atrirostris Scl. et Sulv. Peru.
Amaurospiza concolor Cab. Costa Rica and Panama. unicolor (Burm.). Brazil.
Spermophila pileata Scl. South Brazil and Uruguay. nigro-rufa (Lafr. et dOrb.). Bolivia and interior of Brazil. lineata ( $G m$.). Guiana and Lower Amazons. ocellata Scl. et Sulv. Upper Amazons and Venezuela. bicolor Lafr. et NOrb. Bolivia. obscura Taczan. Central Peru. simplex Jelski. Western Peru.

Spermophila enleri Caban. Southeastern Brazil.
Neorhynchus nasesus Bp. Western Peru.
Camarhynchus crassirostris Gould. Galapagos Islands. psittaculus Gould. Galapagos Islands. variegatus Scl. et Salv. Galapagos Islands. habeli Scl. et Salv. Galapagos Islands. prosthemelas Scl. et Salv. Galapagos Islands. cinereus (Lafr.). Northern and Eastern Peru.
Cactornis assimilis Gould. Galapagos Islands.
abingdoni Scl. et Salv. Galapagos Islands.
pallida Scl. et Salv. Galapagos Islands.
Dolospingus nuchalis Elliot. Orinoco River.
Phonipara fumosa Lavor. Trinidad.
Haplospiza nniformis Scl. et Salv. Mexico.
Paroaria capitata (Lafr. et d'Orb.). Paragnay and Argentine Republic.
Coryphospingus griseocristatus (Lafr. et dOrb.). Bolivia.
Porphyrospiza cyanella (Sparm.). Interior of Brazil.
Tiaris ornata (Max.). Brazil.
Xenospingus concolor (Lafr. et d'Orb.). Pera.
Poospiza ornata (Landb.). Argentine Republic (Mendoza). torquata (Lafr. et d'Orb.). Bolivia and Argentine Republic (Mendoza).
bonapartei Scl. Western Peru. cinerea Bp. Brazil. melanoleuca Vicill. Argentine Republic and Paraguay. cæsar Scl. et Salv. Peru.
hypochondriaca (D'Orb. et Lafr.). Bolivia.
Spodiornis jardinei Scl. Eeuador.
Phrygilus atriceps (Lafr. et d'Orb.). Bolivia and Peru. ocularis Scl. Ecuador.
plebeius Cab. Peru and Argentine Republic.
melanoderus (Quoy et Gaim.). Falkland Islands and Patagonia.
erythronotus (Phil. et Landb.). Chili.
Dinca minor Bp. Patagouia.
speculifera (Lafr. et dOrb.). Bolivia and Peru.
Catamenia homochroa Sol. .Ecuador and Colombia. inornata (Lajr.). Bolivia.
"Zonotrichia" quinquistriata Scl. et Salv. Mexico. strigiceps Gould. Patagonia. canicapilla Gould. Patagonia.
Spizella pinetorum Salv. Guatemala.
Peucæa notosticta Scl. et Salv. Mexico.
Ammodromus petenicus Salv. Guatemala.
Coturniculus peruanus Bp. Bolivia and Upper Amazons to Colombia. Saltatricula multicolor Burm. Argentine Republic.

Embernagra olivascens (Lafr. et d'Orb.). Bolivia and Argentine Republic (Mendoza). superciliosa Salv. Costa Rica.
Emberizoides melanotis Temm. Southern and Eastern Brazil.
Hæmophila sumichrasti Lawr. Western Mexico. humeralis Cab. Mexico. stolzmanni Taczan. Northern and Western Peru.
Pipilo mystacalis Taczan. Central Pera.
Pyrgisoma kieueri Bp. Mexico.
Chrysomitris atrata (Lafr. et TOrb.). Bolivia and Peru.
spinescens Bp. Colombia.
atriceps Salc. Guatemala. capitalis Caban. Central Peru.
Sycalis flaveola (Linn.). Columbia to South Brazil.
columbiana Cab. Venezuela, Guiana, and Lower Amazons.
Inteola (Sparm.). Colombia to Chili and Argentine Republic.
chrysops Scl. Mexico and Guatemala.
lutea (Lafr. et dOrb.). Bolivia and Peru.
luteocephala (Lafr. et d'Orb.). Bolivia. nropygialis (Lafr. et COrbo). Bolivia. raimondi Jelski. Western Peru.

Family Icteride.
Clypeicterns oseryi Derille. Upper Amazons.
Ostinops bifasciatus (Spix). Lower Amazons. atrovirens (Lafr. et d'Orb.). Colombia and Amazons to Bolivia. atrocastaneus Caban. Peru.
Cassicus chrysonotus D'Orb. et Lafr. Bolivia.
Icterus cayanensis (Linn.). Guiana. maculi-alatus Cassin. Guatemala.
Molothrus purpurascens Haln. Westeru Peru.
discolor (Cassin). Venezuela and Colombia.
Agelæus cyanopus (Vieill.). South Brazil and Paraguay.
Lampropsar guianensis (Cab.). Guiana and Veneznela. warszewiezi Cab. Ecuador and Peru.
Quiscalus assimilis scl. Veragua to Colombia. lugubris Sic. Guiana and Trinidal. subalaris Boiss. Colombia and Venezuela.

## Family Corvides.

Xanthura yncas creruleocephala (Duboip). Venezuela and Trinidad.
Cyanolyca viridicganea (Lafr. et d'Orb.). Bolivia and Peru.
jolyæa (Bp.). Peru.
armillata (Gray). Colombia and Venezuela.
meridana (Scl. et Salvo). Venezuela.
bogotana (Scl, et Salv.). Bogota.

Aphelocoma ultramarina (Bp.). Mexico. Cyanocorax cayanus (Linn.). Guiana.
diesingi Pelz. Brazil.
sclateri Heine. Colombia.
intermedias Heine. Venezuela.
chilensis (Bonap.). Bolivia and Chili.
inexpectatus Elliot. Brazil.
heckeli Pelz. Brazil.
flavigastra (Lath.). Trinidal to Colombia; Guiana 9

- Cissolopha germaua (Scl.et Salv.). Belize, Peten, and Merida (Yucatan).

Psilorhinus cyanogenys Gray. Coast of Honduras.
Corvus minutus Gundl. Cuba.
solitarius Wiirt. St. Domingo.

## Family Oxyrhayphide.

Oxyrhamphus flammiceps (Temm.). Brazil.
Family Tyrannide.
Conopophaga aurita (Gm.). Guiana.
torrida Scl. Eastern Ecnador.
peraviana Des Murs. Eastern Ecuador and Amazons.
gutturalis Scl. Colombia.
eastaneiceps Scl. Peru and Colombia.
ardesiaca Lafr. et dorl. Bolivia and Upper Amazons.
melanogastra Ménétr. Interior of Brazil and Amazons.
maximiliani Cab. Southern Brazil (Rio).
Corythopis anthoides (Puch.). Guiana.
humivagans Jelski. Central Peru.
nigro-cincta ( I' Orl. $^{\prime}$ et Lafr.). Bolivia.
Agriornis pollens Scl. Ecuador.
solitaria Sel. Eenador.
insolens Scl. ct Salv. High Pern.
Myiotheretes erythropygia Sel. Ecuador.
Tænioptera velata Licht. Southern Brazil and Bolivia. murina (Lafr. et dorb.). Patagonia. rabetra Burm. Argentine Republic and Patagouia. australis Philippi. Patagonia.
Ochthodixta fumigata (Boiss.). High Colombia. signatus Taczan. Central Pern. fuscorufus Scl. et Salv. Bolivia and interior of Peru.
Ochtheeca fumicolor Scl. Colombia and Ecuador.
superciliosa Scl. et Salv. High Venezuela.
ænanthoides (Lafr. et dorb.). High Bolivia.
polionota Sel. et Salv. High Peru.
leucophrys (Lafr. et dOrb.). High Bolivia.

| Ochthœca albidiema (Lafr.). Colombia. rufipectoralis (Lafr. et d'Orb.). Bolivia. rufimarginata Lavor. Ecuador and Colombia. nigrita Scl. et Salc. Venezuela. ciunamomeiventris (Lafr.). Colombia. diadema (Hartl.). Colombia. gratiosa Scl. Ecuador. murina Scl. Guiana. pulchella Scl. et Salv. Bolivia. arenacea Scl. et Salv. Interior of Colombia. salvini Taczan. Pern. lencometopa Scl. et Salv. Western Pern. thoracica Jelski. Central Peru. poliogastra Sulv. et Godm. High Colombia. tænioptera (Caban.). Peru. |
| :---: |
| Sayornis latirostris Cab. Ecuador. <br> Fluvicola pica (Bodd.). Guiana. climacura (Vieill.). Brazil. atripennis Scl. Western Ecuador. |
| Cnipolegus nigerrimus (Vieill.). Brazil. <br> aterrimus Kaup. Bolivia. anthracinus Heine. Argentine Republic (Mendoza). unicolor Kaup. Upper Amazons. hudsoni Scl. Patagonia. pusillus Scl. et Sulv. Amazons. |
| Muscisaxicola albifrons Tsch. Peru. fluviatilis Scl. et Salv. Peru. rufipennis Jelski. Central Peru. |
| Platyrhynchus rostratus (Lath.). Brazil. flavigularis Scl. Colombia. senex Scl. et Salv. Ecuador. |
| Todirostrum chrysocrotaphum Strickl. Amazons. <br> guttatum Pelz. Interior of Guiana and Colombia. <br> calopterum Scl. Eastern Ecuador. <br> picatum Scl. Eastern Ecuador. <br> capitale Scl. Easteru Ecuador. <br> pulchellum Scl. High Peru. <br> rufigene Scl. et Salv. Ecuador. <br> signatum Scl. et Salv. Amazons. |
| Euscarthmus nidipendulus (Max.). Brazil. <br> fumifrons (Hartl.). Brazil. <br> gularis (Temm.). Brazil. <br> grenadensis (Hartl.). Colombia. <br> striaticollis (Lafr.). Brazil. <br> impiger Scl. et Salv. Colombia and Venezuela. <br> wuchereri Scl. et Salv. Brazil. |

Euscarthmus fulviceps Scl. Peru and Western Ecuador. spicifer (Lafr.). Upper Amazons. ocularis Salv. Western Ecuador. rufigularis Caban. Western Peru. pyrrhops Caban. Peru. pelzelni Scl. et Salv. Brazil (Cuyuba).
Orchilus auricularis (Vieill.). Brazil.
ecaudatus (Lafr. et dOrb.). Bolivia, Venezuela, and Costa Rica.
Colopterus galeatus (Bodd.). Gniana and Venezuela. Hapalocercus acutipennis Scl. et Salc. Colombia and Pera.
Habrara minima (Gould.). Uruguay.
Pogonotriccus eximius (Temm.). Brazil.
ophthalmicus Taczan. Central Pera.
Leptotriccus sylviola Cab. Brazil.
superciliaris Scl. et Salv. Veragua.
Ceratotricens furcatus (Lafr). Southeastern Brazil.
Stigmutura flavo-cinerea (Burm.). Argentine Republic.
Serpophaga subflava Scl. et Salv. Brazil (Para).
parvirostris Gould. Chili.
pœcilocerca Scl. et Salv. Ecuador and Colombia
albogrisea Scl. ct Salv. Ecuador.
Anæretes fernandezianus Philippi. Island of Juan Fernandez.
agilis Scl. Colombia.
flavirostris Scl. et Salo. Bolivia.
Leptopogon peruvianus Scl. et Sulv. Upper Amazons.
erythrops Scl. Colombia.
pœeilotis Scl. Colombia.
auritus Jelski. Central Peru.
tristis Scl. et Salv. Bolivia.
minor Taczan. Northern Peru.
Phyllomyias brevirostris Spix. Brazil.
burmeisteri Cab. et Hein. Brazil.
semifusca Scl. Guiana to Colombia; Brazil.
platyrhyncha Scl. et Salv. Interior of Brazil.
tumbezana Taczan. North Peru.
cinereicapilla Caban. Western Peru.
Ornithion inerme Hartl. Guiana.
obsoletum (Max.). Brazil.
Tyranniscus cinereiceps Scl. Colombia and Ecuador.
chrysops Scl. Colombia and Ecuador. improbus Scl. et Salv. Venezuela and Colombia. leucogonys Scl. et Salv. Colombia.
gracilipes Scl. Eastern Peru and Upper Amazons.
griseiceps Scl. et Salv. Ecuador.
viridissimus Scl. Central Peru.

Tyranneutes brachyurus Scl. et Salv. British Guiana.
Elainea gigas Scl. Eastern Ecuador.
pallatangæ Scl. Western Ecuador.
fallax Scl. Jamaica.
elegans Pelz. Amazons, Colombia, and Guiana.
caniceps Sio. Amazons, Colombia, and Panama.
ruficeps Pelz. Interior of Guiana and Amazons.
obscura (Lafr. et d'Orb.). Brazil and Bolivia.
mesoleuca Cab, et Mein. Brazil.
arenarum Salv. Costa Rica.
affinis Burm. Interior of Brazil.
leucospodia Taczan. Northern Peru.
Sublegatus glaber Scl. et Salv. Venezuela.
murinus (Spix). Lower Amazons.
Myiozetetes rufipennis Lavr. Venezuela. similis (Spix). Brazil, Peru, and Ecuador. luteiventris Scl. Eastern Ecuador, Upper Amazons, and Guiana.
Rhynchocyclus olivaceus (Temm.). Brazil.
fulvipectus Sel. Western Ecuador.
viridiceps Scl. et Salv. Upper Amazons. megacephalus Siv. Brazil and Amazons. peruvianus Taczan. Central Peru.
Conopias inornata (Lavr.). Venezuela and Trinidad.
cinchoneti (Tech.). Peru and Colombia.
Pitangus gabbi Laver. St. Domingo.
Sirystes sibilator ( Vieill.). Brazil.
albogriseus Lavr. Panama, Colombia, and Amazons.
albocinereus Scl. et Salv. Upper Amazons and Colombia.
Myiodynastes hemichrysus (Cab.). Veragua and Costa Rica.
Muscivora swainsoni Pelz. Eastern Brazil.
castelnaudi (Dev.). Upper Amazons.
Hirundinea sclateri Reinh. Eastern Peru and Colombia.
Myiobius vieillotides (Lafr.). Venezuela.
pulcher Scl. Ecuador.
rufescens Salv. Western Peru.
capitalis Salv. Costa Rica.
aureiventris Scl. High Peru.
superciliosus Taczan. Central Peru.
stellatus Caban. Ecuador.
Empidochanes fringillaris Pelz. South Brazil. pecilurus Scl. Colombia and Peru.
Mitrephorus ochraceiventris Caban. Western Peru.
Empidonax griseigularis Laur. Panama and Western Ecuador. atriceps Salvin. Veragua. andinus Taczan. Central Pern.
Proc. Nat. Mus. 81-12 Aug. 11, 1881.

Empidonax pectoralis Lavr. Central Mexico.
Contopus ardesiacus (Lafr.). Venezuela to Ecuador. ochraceus Scl. et Salv. Costa Rica.
brachytarsus Scl. Mexico to Colombia; Amazons.
schotti Lawr. Yucatan.
Blacicus blancoi Gundl. Porto Rico.
Myiochanes cinereus (Spix). Brazil, Amazons, and Ecuador. nigrescens Scl. et Salv. Ecuador.
Myiarchus magnirostris (Gray). Galapagos Island.
semirufus Scl. et Salv. Peru.
cephalotes Stolzm. Peru.
apicalis Scl. et Salv. Interior of Colombia.
Tyrannus niveigularis Scl. Western Ecuador.
albigularis Burm. Eastern Brazil.
aurantio-atro-cristatus Lafr. et d'Orb. Argentine Republic, Bolivia, and Eastern Peru.
apolites (Cab. \& Hein.). (Hab. ignot).

## Family Piprids.

Piprites pileatus (Temm.). Brazil. chloris (Temm.). Brazil.
chlorion (Cab.). Guiana, Amazons, and Colombia.
griseiceps Salv. Costa Rica.
tschudii Caban. Peru.
Xenopipo atronitens Cab. Guiana and Colombia.
Pipra heterocerca Scl. Amazons.
fla vicollis Scl. Amazons.
fasciata Lafr. Amazons, interior of Brazil, Peru, and Bolivia.
cornuta Spix. Upper Amazons.
nattereri Scl. Amazons.
ceruleocapilla Tsch. Peru.
virescens Pelz. Amazons.
Neopipo cinnamomea Laver. Upper Amazons.
Machæropterus pyrocephalus Scl. Amazons and interior of Brazil.
Chiroxiphia regina Scl. Upper Amazons.
Metopothrix aurantiaca Scl. et Salv. Upper Amazons.
Chiromachæris coronata Bouc. Colombia.
Heteropelma turdinum (Max.). Brazil.
wallacei Scl. et Salv. Lower Amazons.
amazonum Scl. Upper Amazons and Colore'jia.
stenorhynchum Scl. et Salv. Venezuela.
virescens (Max.). Brazil. flavicapillum Scl. Brazil. chrysocephalum Pelz. Interior of Brazil and Amazons, aurifrons (Max.). Brazil.

Heterocercas linteatus Strickl. Upper Amazons. flavivertex Pelz. Interior of Guiana anrantiivertex Scl. et Salv. Ecuador.
Schiffornis major Bp. Upper Amazons. rufa Pelz. Interior of Brazil.

Family Cotingide.
Tityra inquisitor (Olf.). Brazil and Guiana. inquisitrix Scl. et Salv. Bolivia.
Hadrostomus homochrous Scl. Western Ecuador and Panama.

* andax Caban. Western Peru.

Pachyrhamphus surinamus (Linn.). Guiana. spodiurus Scl. Western Ecuador. niger Spix. Guiana, Amazons, Trinidad, and Colombia. intermedius Berlepsch. Venezuela.
Lathria plumbea (Licht.). Brazil.
subalaris Scl. Upper Amazons.
cryptolopha Scl. et Salv. Western Ecuador.
Chirocylla uropygialis Sel. et Salv. Bolivia.
Aulia hypopyrrha (Vieill.). Brazil.
lateralis Gray et Mitch. Upper Amazons.
Lipangas immundus Scl. et Salv. Interior of Guiana.
Ptilochloris squamata (Max.). Brazil.
buckleyi Scl. et Salv. Ecuador.
Attila brasiliensis Less. Brazil.
spadiceus (Gm.). Gaiana.
citriniventris Scl. Upper Amazons.
validus Pelz. Interior of Brazil.
thamnophiloides (Spix.). Guiana and Upper Amazons.
Casiornis fusca Sel. et Salv. Brazil (Bahia).
Tijuca nigra Less. Brazil.
Pipreola melanolæma Boiss. Venezuela, Ecuador, and Peru. aureipectus Lafr. Venezuela and Colombia. chlorolepidota Sic. Western Ecuador. sclateri Corn. Ecuador. formosa Hartl. Venezuela. viridis (d'Orb. et Lafr.). Bolivia and Peru. lubomirskii Taczan. Northern Peru. elegans Scl. Middle Peru. frontalis Sel. Bolivia.
Ampelio melanocephalus Sw. Brazil.
Heliochera rufaxilla (Tsch.). Eastern Peru and Colombia.
Cotinga cincta (Bodd.). Eastern Brazil.
Xipholena lamellipennis (Lafr.). Lower Amazons.
Iodopleura laplacei Eyd. et Gerv. Guiana.

Doliornis sclateri Taczan. Central Peru.
Pyroderus orenocensis (Lafr.). Venezuela.
Cephalopterus penduliger Scl. Western Ecuador. Phytotoma angustirostris Lafr. et dOrb. Bolivia.

Family Dendrocolaptide.

Geobates pocilopterus (Max.). Southern Brazil.
Geositta crassirostris Scl. Western Pern.
fasciata (Phil, et Landb.). Chili. peruviana Lafr. Western Peru. saxicolina Taczan. Central Peru.
Furnarius agnatus Scl. et Salv. Colombia.
assimilis Cab. et Hein. Southern and Eastern Brazil. minor Pelz. Amazons. commersoni Pelz. Southern Brazil and Bolivia. pileatus Scl. et Salv. Lower Amazons.
Clibanornis dendrocolaptoides (Pelz.). South Brazil.
Upucerthia ruficauda (Meyen). Chili and Argentine Republic.
luscinia (Burm.). Argentine Republic.
serrana Taczan. Central Peru. jelskii (Cab.). Central Pera.
Cinclodes antarcticus (Garn). Falkland Islands. bifasciatus Scl. Bolivia and Argentine Republic. rivularis Caban. Central Peru.
Lochmias sororia Scl. et Salv. Venezuela. obscurata Cab. Bolivia.
Sclerurus umbretta (Licht.). Brazil. albigularis So. Venezuela. olivascens Caban. Western Peru.
Oxyurus masafuerx (Ph. et Landb.). Masafuera Island.
Sylviorthorhynchus desmursi Gay. Chili.
Phlœocryptes schœnobænus Cab. Peru.
Leptasthenura setaria (Temm.) Southern Brazil. striolata (Pelz.). Interior of Brazil. andicola Scl. High Ecuador. fuliginiceps (Lafr. et d'Orb.). Argentine Republic.
Synallaxis mæsta Scl. Ecnador and Colombia. hypospodia Scl. Brazil. subpudica Scl. Colombia. gnianensis (Gm.). Guiana, Colombia, and Lower Amazons. albilora Pelz. Interior of Brazil and Bolivia. cinerascens Temm. Brazil. propinqua Pelz. Amazons. stictothorax Scl. Ecaador. semicinerea Reich. Brazil.

Synallaxis scutata Scl. Brazil.
vulpina Pelz. Interior of Brazil and Amazons.
unirufa Lafr. Colombia.
castanea Scl. Venezuela.
kollari Pelz. Interior of Guiana.
læmosticta Scl. Colombia.
terrestris Jard. Tobago and Trinidad.
gularis Lafr. Colombia and Ecuador.
fuliginosa Lafr. Colombia.
palpebralis Cab. Peru.
torquata (Max.). Southern Brazil.
maximiliani d'Orb. Bolivia.
rutilans Temm. Amazons.
brunneicaudalis Sct. Western Ecuador and Western Peru. mustelina Natt. Eastern Peru and River Madeira.
fructicicola Taczan. Peru.
rufipennis Scl. et Salv. Bolivia.
maranonica Tacz. North Peru.
tithys Taczan. Peru.
pallida Max. Brazil.
antisiensis Scl. Ecuador.
curtata Scl. Colombia.
rufigenis Lavr. Costa Rica.
byposticta Pelz. Interior of Guiana.
subcristata Scl. Venezuela.
ruticilla Cab. et Hein. Southern Brazil.
albiceps (Lafr. et dOrb.). Bolivia.
albicapilla Cab. Peru.
humicola Kittl. Chili and Argentine Republic.
orbignyi Reichenb. Bolivia and Argentine Republic.
arequipæ Scl. et Salv. Western Peru.
humilis Cab. Western Peru.
patagonica (Lafr. et dOrb.). Patagonia.
wyatti Scl. Colombia.
flammulata Jard. High Ecuador and Colombia.
pudibunda Scl. Central Peru.
graminicola Jelski. Central Peru.
virgata Jelski. Central Peru.
Placellodomus striaticeps (Lafr. et d'Orb.). Bolivia and Peru. sibilator Doring. Argentine Republic (Cordova) and Bolivia.
Thripophaga guttuligera Scl. Colombia.
Homorus unirufus (Lafr. et d'Orb.). Bolivia.
gutturalis (Lafr. et d'Orb.). Bolivia and Argentine Republic.
Thripadectes flammulatus (Eyt.). Colombia. scrutator Jelski. Central Peru.

Automolus ferruginolentus (Max.). Brazil. melanopezus Scl. Eastern Ecuador. sclateri Pelz. Amazons. subulatus (Spix). Amazons. holostictus Scl. et Salv. Colombia. striaticeps Scl. et Salv. Interior of Colombia and Peru. ignobilis Scl. et Salv. Colombia. dorsalis Sel. et Salv. Ecuador. stictoptilus Caban. Western Peru.
Philsdor panerythrus Scl. Colombia. columbianus Cab. Venezuela and Colombia. erythropterus Scl. Colombia. fuscipennis Salv. Veragua. erythronotus Scl. et Salv. Colombia. consobrinus Scl. Colombia. ruficaudatus (Lafr. et d'Orb.) Colombia to Bolivia. subfulvas (Scl.). Ecuador. erythrocercus (Pelz.). Guiana and Amazons. striaticollis Scl. Colombia. amaurotis (Temm.). Brazil. subflavescens Caban. Western Peru.
Heliobletus superciliosus (Licht.). Brazil.
Anabazenops temporalis Scl. Colombia and Western Ecuador. subalaris Scl. Veragua to Western Ecuador. guttulatus Scl. Venezuela. cabanisi Taczan. Central Peru.
Xenops heterurus Cab. et Hein. Colombia and Eastern Peru.
Sittasomus stictolæmus Pelz. Upper Amazons.
Margarornis stellata Scl. et Salv. Ecuador.
Dendrocincla ruificeps Scl. et Salv. Panama. meruloides (Lafr.). Venezuela. fumigata (Licht.). Brazil. longicauda Pelz. Amazons. tyrannina (Lafr.). Colombia.
Dendrocolaptes puncticollis Scl. et Salv. Guatemala and Costa Rica. validus (Tsch.). Guiana, Peru, and Colombia. radiolatus Scl. et Salv. Peru. concolor Pelz. Amazons.
Nasica longirostris (Licht.). Guiana.
Drymornis bridgesi Eyton. Argentine Repablic.
Xiphocolaptes promeropirhynchus (Less.). Colombia to Peru and Bolivia.
procerus Cab. et Hein. Venezuela.
Dendrexetastes temmincki (Lafr.). Gniana. perrotti (Lafr.). Guiaua.
Dendrornis gattata (Licht.). Brazil.

Dendrornis rostripallens Des Murs. Amazons and Colombia. eytoni Sol. Lower Amazons. elegans Pelz. Amazons and Colombia. spixi Less. Lower Amazons. multiguttata (Lafr.). Guiana and Amazons.
Picolaptes squamatus (Licht.). Brazil.
falcinellus (Cab.). Interior of Brazil. albolineatus (Lafr.). Colombia and Venezuela. puncticeps Scl. et Salv. Guiana. souleyeti (Des Murs). Western Ecuador. fuscicapillus Pelz. Interior of Brazil. layardi Scl. Brazil (Para).
Xiphorhynchus pusillus Scl. Colombia and Veragua. pucherani Lafr. Colombia. lafresnayanus ( $d^{\prime}$ Orb.). Bolivia.

## Family Formicarides.

Thamnophilus undulatus Pelz. Amazons. fuliginosus Gould. Guiana. gattatus Vieill. South Brazil. borbæ Pelz. Madeira River. melanurus Gould. Upper Amazons and Colombia. leuconotus Spix. Upper Amazons. plumbeus Scl. Upper Amazons. cinereo-niger Pelz. Amazons. stellaris Spix. Guiana and Amazons. tristis Scl. et Salv. Guiana. simplex Sol. Brazil (Para). immaculatus Lafr. Amazons; Colombia to Costa Rica. tschudii Pelz. Amazons. mthiops Scl. Upper Amazons. nigriceps Scl. Colombia. nigrocinereus Scl. Lower Amazons. cinereinucha Pelz. Amazons. cinereiceps Pelz. Guiana and Amazons. capitalis Scl. Upper Amazons. murinus Pelz. Guiana and Amazons. cristatus Max. Brazil. capistratus Less. South and East Brazil. albicans Lafr. Colombia. multistriatus Lafr. Colombia. tenuipunctatus Lafr. Colombia and Ecaador. melanochrous Scl. et Salv. High Peru. subfasciatus Scl. et Salv. Bolivia.
Thamnistes æquatorialis Scl. Ecuador.
rufescens Caban. Western Pera,

Neoctantes niger (Pelz.). Amazons. Clytoctantes alixii Elliot. Eastern Ecuador.
Dysithamnus guttulatus (Licht.). Brazil and Bolivia. olivaceus (Tsch.). Peru and Bolivia. xanthopterus Burm. Brazil. schistaceus d'Orb. Bolivia and Eastern Peru. ardesiacus Scl. et Salv. Eastern Ecuador. nnicolor Scl. Eeuador and Colombia. plumbeus Max. Brazil and Lower Amazons. semiplumbeus Scl. et Salc. Ecuador.
Herpsilochmus pectoralis Scl. Bahia.
atricapillus Pelz. Interior of Brazil. motacilloides Jelski. Central Peru. frater Scl. et Salv. Ecuador.
Myrmotherula multo-striata Scl. Amazons.
guttata (Vieill.). Guiana.
hrmatonota Scl. Upper Amazons.
pyrrhonota Scl. et Salv. Guiana.
erythrura Scl. Colombia.
erythronota Martl. Brazil.
hauxwelli Scl. Upper Amazons.
axillaris (Vieill.). Guiana and Colombia.
urosticta Scl. Brazil.
brevicauda (Šc.). Brazil.
unicolor Ménétr. Colombia and Brazil.
cinereiventris Scl. Guiana, Amazons, and Colombia.
atrogularis Taczan. Central Peru.
spodionota Scl. et Salv. Ecuador.
gutturalis Sel. et Salv. British Guiana.
Formicivora strigilata (Spix). Brazil. erythrocerca Scl. Brazil.
malura Temm. Brazil.
consobrina Scl. Western Ecuador. bicolor Pelz. Upper Amazons. speciosa Salv. Western Ecuador (Puna Island).
Terenura callinota Scl. Colombia and Veragua. caloptera Scl. Western Ecuador. humeralis Scl. et Salv. Eastern Ecuador. spodioptila Scl. et Salv. British Guiana. Psilorhamphus guttatus (Max.). Interior of Brazil. Microbates torquatus Scl. et Salv. Guiana.
Ramphocænus melanurus Vieill. Brazil, Guiana, and Venezuela. cinereiventris Scl. Interior of Colombia.
Cercomacra cærulescens Vieill. Eastern Brazil. cinerascens Scl. Guiana and Amazons. napensis Scl. Guiana and Eastern Ecuador.

Cercomacra approximans Pelz. Interior of Brazil.
carbonaria Scl. et Salv. Amazons.
nigricans Scl. Panama to Western Ecuador.
melanaria (Ménétr.). South Brazil.
Pyriglena atra Sio. Brazil.
picea Cab. Peru and Ecuador.
serva Scl. Ecuador and Amazons.
Gymnocichla chirolenca Scl. et Salv. Honduras and Costa Rica.
Percnostola funebris (Licht.). Guiana.
minor Pelz. Interior of Guiana.
fortis Scl. et Salv. Upper Amazons.
Heterocnemis nævia (Gm.). Guiana. simplex Scl. Guiana. argentata (Des Murs). Upper Amazons.
Myrmeciza ruflcauda (Max.). Brazil.
squamosa Pelz. Brazil.
atrothorax (Bodd.). Guiana, Amazons, interior of Brazil, and Bolivia.
ruficauda (Pelz.). Interior of Guiana.
hemimelæna Scl. et Salv. Amazons aud Bolivia.
læmosticta Salv. Costa Rica and Veragua.
Hypocnemis flavescens Scl. Interior of Guiana. bypoxantha Scl. Amazons. poecilonota Puch. Upper Amazons and Colombia. lugubris Pelz. Amazons. melanura Scl. et Salv. Upper Amazons. melanopogon Scl. Guiana and Amazons. maculicauda Pelz. Interior of Brazil. hemilenca Scl. et Salv. Upper Amazons. nævia (Gm.). Guiana and Upper Amazons. therese (Des Murs.). Upper Amazons. lepidonota Scl. et Salv. Eastern Ecuador. stellata Scl. et Salv. Eastern Ecuador. subflava Cuban. Western Peru.
Pithys lunulata Scl. et Salv. Upper Amazons. melanosticta Scl. et Salv. Eastern Ecuador.
Phlogopsis nigromaculata (Lafr. et d'Orb.). Bolivia, Ecuador, and Upper Amazons.
erythroptera Gould. Interior of Guiana.
trivittata Scl. Upper Amazons.
Formicarius analis (Lafr. et. d'Orb.). Bolivia, Ecuador, Pannma, Costa Rica.
rufipectus Salv. Veragua.
Chamæza nobilis Gould. Upper Amazons. mollissima Scl. Colombia.
Grallaria varia (Bodd.). Guiana and Venezuela.

Grallaria imperator (Lafr.). Brazil.
regulus Scl. Western Ecuador.
princeps Scl. et Salv. Veragua.
mexicaua Scl. Southern Mexico.
griseonucha Scl. et Salv. Venezuela.
hypoleuca Scl. Colombia.
molesta Scl. Colombia.
brevicauda (Bodd.). Guiana, Amazons, and Eastern Ecuador.
macularia Temm. Guiana.
ochroleuca (Max.). Brazil.
fulviventris Scl. Eastern Ecuador.
haplonota Scl. Venezuela.
ruficeps Scl. Colombia.
flavotincta Scl. Colombia.
erythroleuca Scl. High Peru.
erythrotis Scl. et Salv. Bolivia.
andicola Cab. Central Peru.
rufocinerea Scl. et Salv. Colombia.
albiloris Taczan. Northern Peru.
dignissima Scl. et Salv. Eastern Ecuador.
Grallaricula loricata Scl. Venezuela.
ferrugineipectus Scl. Venezuela.
nana (Lafr.). Colombia.
cucullata (Scl.). Colombia.
Family Pteroptochidx.
Scytalopas fuscoides Lafr. Chili.
senilis Lafr. Colombia.
sylvestris Jclski. Central Pera.
speluncæ Ménétr. Southern Brazil.
Merulaxis rhinolophns (Max.). Interior of Brazil.
Rhinocrypta lanceolata (Gcoffr. et dorb.). Patagonia and Argentine Republic.
fusca Scl. et Salv. Argentine Republic.
Liosceles thoracius Scl. Interior of Brazil.
Family Trochilides.
Eutoxeres heterura Gould. Ecuador.
condaminei (Bourc.) Gould. Ecuador.
Androdon æquatorialis Gould. Ecuador.
Glaucis dorhni (Bourc.) Gould. Brazil.
antonis (Bourc. \& Muls.) Muls. Guiana.
leacurus (Linn.) Bon. Guiana.
Doleromya fallax (Bourc.) Bon. Venezuela.
Phaëthornis bourcieri (Less.) Gray. Peru.
philippii (Bourc.) Gray. Bolivia.
guyi (Less.) Gray. Trinidad, Venezuela, and Eastern Pera. idalixe (Bourc. et Muls.) Elliot. South Brazil.


Eustephanus fernandensis (King) Reich. Island of Juan Fernandez. leyboldi Gould. Island of Mas-a-fuera.
Topaza pyra (Gould) Gray. Rio Negro.
Hylonympha macrocera Gould. Northern Brazil.
Thalurania jelskii Taczan. Peru.
watertoni (Bourc.) Bon. Guiana.
refulgens Gould. Trinidad. hypochlora Gould. Ecuador.
Microchera albocoronata (Lavr.) Gould. Veragua.
Selasphorus floresii Gould. Mexico. torridus Salv. Veragua and Chiriqui.
Catharma orthura (Less.) Elliot. Gniana and Venezuela.
Rhodopis vesper (Less.) Gould. Peru.
atacamensis Leyb. Chili,
Calothorax pulchra Gould. Mexico.
Acestrura decorata Gould. Colombia?
micrura Gould. Bolivia.
Chætocercus jourdani (Bouro.) Gray. Trinidad. rosæ (Bourc. et Muls.) Cab. \& Hein. Venezuela. bombus Gould. Ecuador.
Thaumastura cora (Less. et Garn.) Bon. Peru.
Myrtis yarrelli Bourc. Bolivia.
Smaragdochrysis iridescens Gould. Brazil.
Ptochoptera iolema (Reich.) Elliot. Brazil.
Calliphlox mitchelli (Bourc.) Gould. Ecuador.
Lophornis regulus Gould. Bolivia.
gouldi (Less.) Gould. Lower Amazons.
adorabilis Sulv. Chiriqui.
Popelaria laetitix (Bourc.) Ridgw. Bolivia $!$
Discura longicauda (Gmel.) Reich. Guiana and Brazil.
Steganura solstitialis Gould. Ecuador.
peruana (Gould) Reich. Peru.
adda (Bourc.) Reich. Bolivia.
cissiura (Gould) Cab. et Heine. Peru.
Loddigesia mirabilis (Bourc.) Gould. Peru.
Lesbia nuna (Less.) Gould. Peru.
eucharis (Bourc.) Reich. Colombia.
Zodalia ortoni (Lawr.) Muls. Ecuador.
glyceria (Bon.) Elliot. Colombia.
Cynanthus mocoa (Delatt. et Bourc.) Bon. Ecuador, Peru, and Bolivia.
Sappho sparganura (Shaw) Reich. Bolivia and Argentine Republic.
phaon (Gould) Reich. Bolivia and Peru.
caroli (Bourc.) Elliot. Peru.
Oxypogon lindeni (Parz.) Gould. Venezuela.
cyanolæmus Salv. et Godm. Colombia (prov. Sta. Marta). Oreonympha nobilis Gould. Pera.

Ramphomicron ruficeps (Gould) Bon. Peru and Bolivia. dorsale Salv. et Godm. Colombia (prov. Sta. Marta). Avocettula recurvirostris (Scains.) Reich. Guiana. Metallura opaca (Tsch.) Cab. et Heine. Peru and Bolivia. jelski Cab. Peru. chloropogon (Cab. et Heine.) Elliot. (Hab. ignot.) enpogon Cab. Peru. æneicauda (Gould) Bon. Peru and Bolivia. primolina Bourc. Ecuador. williami (Bourc. et Delatt.) Bon. Colombia. smaragdinicollis (D'Orb. et Lafr.) Bon. Peru and Bolivia. Augastes lumachellus (Less.) Bon. Brazil. superbus (Vieill.) Bon. Brazil.
Phlogophilus hemileucurus Gould. Ecuador. Schistes personatus Gould. Ecuador.
Adelomyia inornata Gould. Peru and Bolivia.
chlorospila Gould. Peru.
Anthocephala floriceps (Gould) Cab. et Heine. Colombia.
Agleactis castelnaudi (Bourc. et Muls.) Gould. Pern.
pamela (DOrb. et Lafr.) Gould. Bolivia.
Eriocnemis assimilis Elliot. Bolivia.
squamata Gould. Ecuador.
mosquera (Bourc. et Delattr.) Reich. Colombia.
glaucopoides (D'Orb. et Lafr.) Elliot. Bolivia.
sapphiropygia Taczan. Peru.
chrysorama Elliot. Ecuador.
godini (Bourc.) Reich. Ecuador.
smaragdinipectus Gould. Ecuador.
nigrivestis (Bourc. et Muls.) Reich. Ecuador.
dyselius Elliot. Ecuador.
Uranomitra microrhyncha Elliot. Honduras ?
cyanicollis (Gould) Reich. Peru.
Agyrtria viridiceps Gould. Ecuador.
norrisi (Bourc.) Elliot. Mexico.
compsa Hein. Guiana.
neglecta Elliot. Bolivia.
bartletti Gould. Eastern Peru.
nitidifrons Gould. Venezuela
cæruliceps Gould. Colombia.
tobaci (Gmel.) Elliot. Tobago, Trinidad, Venezuela, Guiana, and Brazil.
apicalis (Gould) Hein. Colombia.
maculicauda (Gould) Heine. Guiana.
lucise Lawr. Honduras.
nigricauda Elliot. Trinidad, Gaiana, and Northeastern Brazil.

Agyrtria nitidicauda Elliot. Guiana.
taczanowskii Scl. Peru (prov. Cajamarca). pelzelni Taczan. Upper Amazons (Guajango).
Arinia boucardi Muls. Costa Rica.
Eupherasa poliocerca Elliot. Mexico.
Polytmus leucorrhous Sel. et Salv. Brazil and Peru.
Amazilia pristina Gould. Ecuador and Pera.
leucophæa Reich. Peru.
alticola Gould. Ecuador.
ocai Gould. Mexico.
iodura (Sauc.) Elliot. Colombia.
lucida Elliot. Colombia.
feliciæ (Less.) Elliot. Veneznela.
warszewiczi (Cab. \& Hein.) Elliot. Colombia. saucerottii (Bouro. et Delatt.) Elliot. Colombia.
elegans ( (Gould) Elliot. (Hab. ignot.)
Eucephala smaragdo-cærulea Gould. Brazil. cæruleo-lavata Gould. Brazil. scapulata Gould. Guiana! hypocyanea Gould. Brazil ! subcerulea Elliot. Brazil ${ }^{9}$ chlorocephala (Bourc.) Gould. Ecnadon. cyanogenys (Prinz.) Gould. Brazil.
Timolia lerchi (Muls, et Verr.) Muls. Colombia.
Iache magica (Muls. et Verr.) Elliot. Mexico.
Hylocharis lactea (Less.) Gray. Brazil. viridiventris Berlepsch. Trinidad and Venezuela. ${ }^{\text {. }}$
Chlorostilbon auriceps Gould. Northwestern Mexico.
Panychlora aliciæ (Bourc. et Muls.) Cab. et Hein. Venezuela. stenura Cab. et Heine. Venezuela.

## Family Cypselide.

Cypselus squamatus Cass. Guiana and Amazons.
andicola Lafr. et dorb. Bolivia and Peru.
Panyptila cayanensis (Gm.). Guiana.
Hemiprocne biscatata (Sel.). Southern and Eastern Brazil.
Chxtura cinereicauda Cass. Brazil.
cinereiventris Scl. Brazil.
sclateri Pelzeln. Upper Amazons.
spinicanda (Temm.). Guiana.
fumosa Salv. Veragua and Colombia.
Cypseloides senex (Temm.). Brazil. fumigatns (Streubel). Brazil and Peru.

Family Caprimulgide.
Nyctibius longicaudatus (Spix). Upper Amazons. leucopterus (Max.). Brazil.

Nyctibins bracteatus Gould. Gaiana.
Lurocalis semitorquatus (Gm.). Guiana and Amazons.
nattereri (Temm.). Brazil.
Chordeiles pusillus Gould. Brazil.
Nyctiprogne leucopygia (Spix). Amazons and Brazil.
Antrostomus sericeocaudatus Cass. South America.
nigrescens Cab. Gaiana, Amazons, and Colombia.
maculicandus (Lavr.). Bolivia and Peru.
Stenopsis cayennensis (Gm.). Guiana, Tobago, Martinique, and Colombia. ruficervix Scl. Colombia and Ecuador. æquicaudata (Peale). Western Peru.
Hydropsalis trifurcata Natt. Upper Amazons.
furcifera ( Fieill.). Interior of Brazil, Paraguay, Bolivia, and Argentine Repablic.
lyra $B p$. Colombia and Venezuela. segmentata Cassin. Colombia and Ecuador.
Heleothreptas anomalus (Gould). Interior of Brazil.
Steatornis caripensis Iumb. Colombia, Venezuela, and Trinidad.

## Family Picides.

Picumnus rufiventris Bp. Upper Amazons.
cinnamomens Wagl. Coasts of Venezuela and Colombia.
castelnandi Malh. Eastern Peru.
leucogaster Pelz. Interior of Guiana.
minutus (Linn.). Brazil.
aurifrons Pelz. Upper Amazons.
cirrhatus Temm. Brazil.
lepidotus Cab. et Hein. Guiana.
squamatulus Lafr. Colombia and Venezuela.
albo-squamatus Lafr. et dorb. Bolivia.
sclateri Taczan. Western and Northern Pern.
micromegas Sund. Brazil
lawrencei Cory. Haiti.
Campephilus imperialis Gould. Western Mexico. sclateri Malh. Western Ecuador. trachelopyrus (Malh.). Amazons.
Hylotomas galeatus (Temm.). South Brazil.
Chloronerpes sanguinolentus Scl. Honduras.
sedulus (Cab. et Heine.). Guiana
ruficeps (Spix). Lower Amazons and interior of Brazil.
hilaris (Cab. et Heine.). Upper Amazons.
tænionotus (Reich.). Brazil.
malherbei Scl. Bolivia and Ecuador.
simplex Salvin. Chiriqui.
capistratus (Malh.). Interior of Guiana and Upper Amazons.

Chloronerpes lencolæmus (Malh.). Interior of Brazil. dignus Scl. et Salv. Colombia. callopterus Laver. Panama. xanthochlorus Scl. et Salv. Venezuela.
Chrysoptilus speciosus Scl. Upper Amazons. icteromelas (Vieill.). Interior of Brazil. cristatus (Vieill.). Argentine Republic. atricollis (Malh.). Western Peru.
Melanerpes pulcher Scl. Colombia.
Centurus hypopolius ( Wagl.). Mexico.
terricolor Berlepsch. "Orinoco district, or Trinidad."
rubriventris Sicains. Yucatan!
Hypoxanthus atriceps Scl. et Salv. High regions of Peru and Bolivia. brevirostris Taczan. Central Poru.
Colaptes stolzmanni Taczan. North Peru.
leucofrenatus v. Martens. Argentine Republic (Mendoza).
Celeus torquatus (Bodd.). Guiana.
elegans (Müll.). Guiana.
reichenbachi (Malh.). Venezuela and Trinidad. flavus (Müll.). Guiana, Venezuela, and Amazons. citreopygius Scl. et Salv. Upper Amazons. grammicus (Malh.). Guiana and Upper Amazons. multi-fasciatus (Malh.). Amazons. subflavus Scl. et Salv. Brazil (Bahia). immaculatus Berlepsch. Panama (?). spectabilis Scl. et Salv. Eastern Ecuador.

Family Momotide.
Momotus nattereri Scl. Interior of Brazil and Bolivia. castaneiceps Gould. Guatemala.
Baryphthengus ruficapillus (Vieill.). Brazil and Paraguay.
Family Todide.
Todus pulcherrimus Sharpe. Jamaica (\%).
Family Alcedinide.
Ceryle stellata (Meyen.). Chili and Patagonia.
Family Trogonide.
Trogon chionurus Scl. et Salv. Panama. aurantius Spix. Brazil.
Euptllotis neoxenus (Gould). Mexico.
Pharomacrus fulgidus (Gould). Colombia and Venezuela. parouinus (spix). Upper Amazons. heliactin Cab. et Heine. Eastern Ecuador. xanthogaster Turati et Salvad. Colombia.

## Family Galbulide.

Galbula cyaneicollis Cassin. Lower Amazons.
lencogastra Vieill. Guiana.
chalcothorax Scl. Eastern Ecuador.
tombacea cyanescens (Ilev.). Amazons.
tombacea fuscicapilla (Scl.). Colombia.
albirostris chalcocephala (Dev.). Eastern Peru.
Urogalba amazonum Scl. Lower Amazons.
Brachygalba geringi Scl. et Salv. Veneznela.
albigularis (Spix). Upper Amazons.
melanosterna (Scl.). Interior of Brazil and Bolivia.
salmoni Scl. et Salv. Colombia.
Jacamaralcyon tridactyla (Pall.). Brazil.
Jacamerops isidorei Dev. Upper Amazons.
Galbalcyrhynchus leacotis Des Murs. Upper Amazons.

Family Bucconids:
Bucco pectoralis Gray. Panama.
ordi Cass. Interior of Guiana and Venezuela.
tectus (Bodd.). Guiana.
picatus Scl. Upper Amazons.
pulmentum Bp. Upper Amazons.
striolatus Pelz. Interior of Brazil.
lanceolatus Deville. Peru and Eastern Ecuador.
macrorhynchus napensis (Scl.) Eastern Ecuador.
Malacoptila fusca (Gm.). Guiana, Upper Amazons, and Colombia. rufa (Spix). Upper Amazons. castanea Verreaux. Ecuador. fulvogularis Scl. Bolivia and Pern. substriata Scl. Colombia. aspera Scl. Venezuela.
Nonnula rubecula (Spix). Lower Amazons. ruficapilla (Tsch.). Upper Amazons.
Monasa morpheus (Hahn.). Brazil:
Chelidoptera brasiliensis Scl. Brazil.

## Family Cuculida.

Neomorphus geoffroyi (Temm.). Brazil.
salvini Scl. Nicaragua to Colombia.
pucherani Dexille. Upper Amazons.
rufipennis Gray. Guiana. radiolosus Scl. et Salv. Ecuador.
Dromococcyx phasianellus mexicanus (Bp.). Mexico and Guatemala.
Diplopteras nevius (?) chochi (Vieill.). South Brazil and Paraguay.
(i) lessoni (Bp.). (Hab. ignot.)

Pruc. Nat. Mus. S1-13
Nov. 18, 1881.

Hyetornis plavialis rufigularis "Merz.v Wurtemb." St. Domingo. Piaya cayana nigricrissa (Scl.). Ecuador, Chiriqui. Coccygus ferruginens Gould. Cocos Island. lindeni Allen. Lower Amazons. euleri Caban. Southeastern Brazil.

## Family Rhamphastide.

Rhamphastos inca Gould. Bolivia and Peru. citreolæmus Gould. Colombia. osculans Gould. Interior of Guiana and Lower Amazons. culminatus Gould. Upper Amazons.
Pteroglossus wiedi Sturm. Brazil.
erythropygius Gould. Nicaragna.
inscriptus Wagler. Lower Amazons and interior of Brazil.
beauharnaisi Wagl. Upper Amazons.
starmi Nutt. Banks of Madeira River.
azaræ (Vieill.). Interior of Guiana.
Selenidera gouldi (Natt.). Lower Amazons.
nattereri (Gould). Interior of Guiana. reinwardti (Waglo). Eastern Ecuador.
Andigena laminirostris Gould. Western Ecuador. hypoglaucus (Gould). Ecuador and Peru. cucullatus (Gould). Bolivia.
Aulacorhamphus sulcatus Sio. Venezuela. derbianus (Gould). Ecuador and Bolivia. atrogularis (Sturm). Peru. cyanolæmus Gould. Ecuador.

Family Capitonida.
Capito quinticolor Elliot. Colombia.
versicolor (Miill.). Upper Amazons.
aurantiicollis Scl. Upper Amazons.
squamatus Salv. Western Ecuador.
Family Psittacidas.
Ara hyacinthina (Lath.). Interior of Brazil.
spixi (Wagl.). Brazil.
rubrigenis Lafr. Bolivia.
tricolor (Bechst.). Cuba.
caninde (Wagl.). Paraguas.
hahni (Souancé). Guiana, Veneznela, and Amazons.
leari (Bp.). Brazil?
couloni Scl. High Eastern Peru.
Rhynchopsitta pachyrhyncha (Sw.). Mexico.

Conarus icterotis (Mass. et Souancé). Colombia.
hæmorrhous (Spix). Brazil.
luteus (Bodd.). Lower Amazons.
wagleri Gray. Venezuela and Colombia.
solstitialis (Linn.). Guiana and Amazons.
jendaya (Gm.). Brazil.
æruginosus (Linn.). Veneznela and interior of Guiana.
cactorum (Max.). Brazil.
devillei Mass. et Souancé. Bolivia.
roseifrons G. R. Gray. Upper Amazons.
rhodocephalus Scl. et Salv. High Venezuela.
luciani Deville. Upper Amazons.
perlatus (Spix). Lower Amazons.
molinæ Mass. et Souancé. Interior of Brazil.
rhodogaster Scl. Banks of the Madeira.
hæmatotis (Souancé). Venezuela.
melanurus Spix. Interior of Guiana.
souancei Verr. Upper Amazons.
hilaris Burn. Paraguay.
egregius Scl. Guiana (Demerara i).
glaucifrons r. Martens. Argentine Republic (prov. S. Lais).
Bolborhynchus monachus (Bodd.). Interior of Brazil, Paraguay, and Argentine Republic.
luchsi Pelz. Bolivia.
aymara d'Orb. Bolivia and Western Argentine Republic.
rubrirostris Burm. Western Argentine Republic.
orbignianus (Bp.). Bolivia and Peru.
andicola (Finsch). Peru.
Brotogerys rirescens (Gm.). Lower Amazons.
subcærulea (Lavr.). Panama.
ferrugineifrons Lavor. Colombia.
jugularis Deville. Interior of Guiana and Upper Amazens. tuipara (Gm.). Guiana, Venezuela, and Lower Amazons.
chrysosema Scl. Banks of the River Madeira.
tui (Gm.). Brazil.
Chrysotis festiva (Linn.). Guiana, Venezuela, and Amazons.
bodini Finsch. (Hab. ignot.)
cyanopsis (Vieill.). Antilles.
pretrei (Temm.). South Brazil.
viridigenalis Cassin. Colombia and Ecuador.
dufresniana (Kuhl.). Brazil.
nattereri Finsch. Interior of Brazil.
ochroptera (Gm.). Venezuela.
xanthops (Spix). Interior of Brazil.
erythrura (Kuhl.). Brazil.
lactifrons Lavr. (Hab. ignot.)

Ohrysotis cæligena Lazr. Guiana.
canipalliata Caban. Colombia.
panamensis Caban. Panama.
Pionus corallinus Bp. Ecuador.
sordidus (Linn.). Venezuela.
violaceus (Bodd.). Guiana and Lower Amazons.
Pionopsitta melanotis (Lafr.). Bolivia.
pyrrhops Salv. Western Ecuador.
Caica pyrilia (Bp.). Colombia.
vulturina (Kuhl.). Lower Amazons.
leucogastra (Kuhl.). Lower Amazons.
Urochroma stictoptera Scl. Colombia.
surda (Kuhl.). Brazil. melanonota (Kuhl.). Brazil.
purpurata (Gm.). Guiana and Lower Amazons. dilectissima Scl. et Salv. Venezuela.
Psittacula sclateri Gray. Upper Amazons.

## Family Strigide.

Aluco punctatissima Gould. Galapagos Islands.
flammea glancops (Kaup.). St. Domingo.
Ciccaba huhula (Daud.). Guiana, Amazons, and Brazil melanonota (Tsch.). Brazil and Peru. suinda (Vieill.). Brazil and Paraguay. cayennensis (Gm.). Guiana. polygrammica Gray. Brazil. albigularis Cassin. Colombia and Ecuador. nigro-lineata spilonota (Gray). Colombia.
Strix rufipes (King). Patagonia.
hylophilum (Temm.). Brazil, Guiana, and Venezuela.
Nyctalitinus harrisi (Cassin). Colombia.
Lophostrix cristata (Daud.). Guiana and Lower Amazons.
Scops nudipes (Vieill.). Costa Rica to Colombia.
brasilianus atricapillus (Temm.) Northern Brazil.
brasilianus ustus Scl. Upper Amazons.
Speotyto cunicularia guadeloupensis Ridg. Island of Guadeloupe.
Glaucidium phalænoides (Daud.). Trinidad.
tephronotum Sharpe. South America.
cobanense Sharpe. Central Guatemala.

## Family Falconide.

Rnpornis magnirostris saturatus (Scl. et Salv.). Bolivia.
Buteo galapagensis (Gould). Galapagos Islands.
unicolor D'Orb, et Lafr. Bolivia.
hypospodius Gurney. Brazil, Amazons, Venezuela, and Colombia. pœcilochrous Gurncy. Ecuador.

Urubitinga gundlachi (Caban.). Cuba.
Leucopternis palliata (Pelz.). Brazil. scotoptera (Max.). Brazil.
albicollis (Leth.). Guiana, Amazons, Venezuela, and Trinidad.
melanops (Lath.) Guiana and Amazons.
superciliaris (Pelz.). Lower Amazons.
princeps Scl. Costa Rica.
plumbea Salv. Ecuador.
occidentalis Salv. Western Ecuador.
Plangus neogæus Sundev. Brazil.
Harpyhaliaetus coronatus (Vieill.). South Brazil to Patagonia.
Morphnus teniatus Gurney. Eastern Ecuador.
Spizaëtus isidorei (Des Murs). Colombia.
Accipiter guttatus (Vieill.). Bolivia and Paraguay.
pectoralis Bp. Brazil and Amazons.
fringilloides (Vig.). Cuba.
chionogaster Kaup. Guatemala and Venezuela.
collaris Scl. Colombia.
nigro-plumbeus Lawr. Western Ecuador.
salvini Ridgı. Venezuela.
poliogaster (Temm.). Brazil.
Micrastur zonothor: x (Cab.). Venezuela and Colombia. concentricus (Less.). Guiana, Amazons, and Bolivia. amaurus Gurney. Panama. pelzelni Ridgc. Eastern Peru.
Geranospizias hemidactylus (Temm.). Guiana and Amazons.
Tinnunculus [?] ferrugineus (De Sauss.) Ridgw. Haiti.
(9) Rostrhamus leucopygus (Spix). Brazil. tæniurus Cab. Amazons.
Regerhinus megarhynchus (Des Murs). Upper Amazons.
Spiziapteryx circumcinctus (Kaup). Argentine Republic.
(?) Ibycter formosus (Lath.). Brazil. ater (Vieill.). Colombia, Guiana, and Amazons.
Milvago carunculatus (Des Murs). Colombia and Ecuador. albigularis (Gould). Patagonia.

## Family Cathartide.

Cathartes pernigra Sharpe. Brazil.
Sarcorhamphus aquatorialis Sharpe. Ecnador, Peru, and Chili,

## Family Pelecanides.

Pelecanus molinæ Gray. Coasts of Chili and Peru.
Family Phalacrocoracides.
Phalacrocorax bougainvillei (Less.). Peru and Chili.

Family Ardeme.
Butorides plumbeus (Sund.). Galapagos Islands.
Tigrisoma fasciatum (Such). Brazil.
Nyctherodius pauper Scl. et Salv. Galapagos Islands.
Family Plataleide.
Cercibis oxycerca (Spix). Colombia, Amazons, Guiana, and Brazil.
Family Pheenicopteride.
Phonicopterus glyphorhynchus Gray. Galapagos Islands. andinus Philippi. Chilian Andes.

Family Palamedeide.
Palamedea cornuta Linn. Guiana and $A$ mazous. Chauna derbiana Gray. Coast-region of Colombia.

Family Anatide.
"Bernicla" dispar Ph. et Landb. Chili, Argentine Republic, and Pate gonla.
poliocephala (Gray). Chili, Pategonia, and Falkland Ist ands.
rubidiceps (Scl.). Falkland Islands. inornata (King). Patagonia.
Sarcidiornis melanonota (Gm.). Paraguay to Guiana.
"Anas" chalcoptera Kittl. Chili and Patagonia.
Querquedula torquata (Vieill.). Argentine Republic. oxyptera (Meyen). Peru. andium Scl. et Salc. Ecuador. versicolor (Vieill.) Argentine Republic, Chili, Patagonia, and Falkland 1slands.
puna (Tsch.). Peru and Bolivia.
"Fuligula" nationi Scl. Western Peru.
Merganetta turneri Scl. et Salv. High Peru. leucogenys Tsch. Colombia to Peru.
"Mergus" brasiliensis (Vieill.). South Brazil.

## Family Columbide.

Columba gymnophthalma Temm. Interior of Brazil.
plumbea Vieill. Brazil, Peru, and Colombia.
albipennis Scl. et Sulv. Pern, and high Bolivia.
Zenaida ruficauda Bp. Venezuela and Colombia.
Metriopelia aymara (Knip et Prévost). Bolivia and Peru.
Melopelia plumbescens Laver. Guiana.
Columbula campestris (Spix). Interior of Brazil.

Chamæpelia cruziana (Knip et Prév.). Peru and Western Ecuador. buckleyi Scl. et Salv. Ecuador.
Gymnopelia erythrothorax (Meyen). Bolivia and Western Pera.
Peristera geoffroyi (Temm.) Brazil.
cyanopis Pelzeln. Interior of Brazil.
Leptoptila ochroptera Pelz. Brazil. megalura Scl. et Salv. Bolivia.
Geotrygon caniceps Cab. Cuba. frenata (Tsch.). Peru.
Osculatia sapphirina Bp. Western Ecuador. purpurata Salv. Ecuador.

Family Cracide.
Crax globulosa Spix. Upper Amazons.
daubentoni Gray. Venezuela.
carunculata Temm. South Brazil.
alberti Fraser. Colombia.
mikani Pelz. (Hab. ignot.)
pinima Pelz. Brazil (Para).
erythrognatba Scl. et Salv. Interior of Colombia.
Nothocrax urumutum Spix. Gaiana and Upper Amazons.
Pauxi galeata (Lath.). Guiana and Venezuela.
Mitua tuberosa (Spix). Guiana, Upper Amazons, and Peru.
tomentosa (Spix). Guiana.
salvini Reinh. Brazil.
Stegnolæma montagnii (Bp.). Colombia and Ecuador.
Penelope greeyi Gray. Colombia.
jacucaca Spix. Eastern Brazil.
jacupeba Spix. South Brazil.
cristata (Linn.). Costa Rica to Colombia, Guiana.
boliviana Reich. Upper Amazons.
rufiventris Tsch. Bolivia and Peru.
pileata Wagl. Amazons.
ochrogaster Pelz. Interior of Brazil.
rufiventris Tschudi. Peru and Bolivia. sclateri Gray. Bolivia.
Pipile cujubi (Pelz.). Lower Amazons.
Aburria carunculata Reich. Colombia.
Chamæpetes goudoti (Lesson). Colombia to Peru.
Ortalida motmot (Linn.). Guiana.
araucuan (Spix). Lower Amazons. ruticeps Wagl. Brazil. ruficauda Jard. Tobago and Venezuela. canicollis Wagl. Paraguay. albiventris Wagl. Eastern Brazil. caracco Wagl. Colombia and Upper Amazons.

Ortalida superciliaris Gray. (Hab. igot.)
rufferissa Scl. et Salv. Colombia.
leucogastra Gould. Western Guatemala and Nicaragua. garrula (Humb.). Colombia.
ergthroptera Scl. et Salc. Western Ecuador.
Family Perdicide.
Cyrtonyx sallæi Verreaur. Mexico.
Eupsychortyx sonninii (Temm.). Guiana and Venezuela. parvicristatus Gould. Colombia. leucotis Gould. Colombia. hypoleucus Gould. Gautemala.
Dendrortyx macrurus (Jard. et Selby). Mexico. barbatus Gould. Mexico.
Odontophorus pachyrhynchus Gould. Peru and Colombia. speciosus Tsch. Peru. dentatus Temm. Brazil. columbianus Gould. Venezuela. stellatus Gould. Upper Amazons. balliviani Gould. Bolivia and Pern. strophium Gould. South America. thoracicus Gambel. Mexico and Guatemala. erythrops Gould. Ecuador. melanonotus Gould. Ecuador. hyperythrus Gould. Colombia. hypospodius Scl. et Salv. Colombia. spodiostethus Salv. Veragua. cinctus Salv. Veragua.

## Family Rallide.

Rallus maculatus Bodd. Panama, Colombia, Trinidad, Guiana, Para. guay, and South Brazil.
antarcticus King. Chili.
semiplumbeus Scl. Colombia.
nigricans Vieill. South Brazil and Paraguay.
Aramides albiveutris Lavor. Mexico, Guatemala, and Honduras.
ruficollis (Gm.). Guiana.
saracura (Spix). Paragnay and South Brazil.
mangle (Spix). South and East Brazil.
calopterus Scl. et Salv. Eastern Ecuador.
Porzana albicollis (Vieillo). Paragnay, South Brazil, Guiana, and Venezuela.
cayemensis (Gm.). Guiana, Amazons, and Brazil.
levraudi Scl. et Salv. Venezuela.
concolor (Gosse). Jamaica, Guatemala, and Brazil.

Porzana castaneiceps Sel. et Salv. Eastern Peru.
hauxwelli Scl. et Salv. Upper Amazous.
melanophæa (Vieill.). South Brazil, Paragnay, Bolivia, and Venezuela.
albigularis (Lavr.). Panama, Costa Rica, and Mosquita.
leucopyrrha (Vieill.). Paraguay, Argentine Republic, and South Brazil.
flaviventris (Bodd.). Guiana, Jamaica, Cuba,Venezuela, Brazil, and Paraguay.
spilonota (Gould). Galapagos Islands.
notata (Gould). Argentine Republic and Patagonia.
cinerea (Vieill.). Guiana, Amazons, Peru, and Trinidad.
erythrops Scl. Western Peru.
conops Scl. et Salv. Eastern Ecuador.
Thyrorhina schomburgki (Cab.). Guiana and Venezuela.
Ionornis parvus (Bodd.). Guiana, Amazons, and interior of Brazil.
Fulica cornuta Bp. Bolivia.
ardesiaca Tsch. Bolivia to Ecuador.
armillata Vieill. South Brazil, Paraguay, Patagonia, and Chili. leucopygia (Hartl.). Uruguay, Patagonai, Falkland Islands, and Chili.
leucoptera Vieill. Argentine Republic, Uruguay, and Bolivia,
Family Psophides.
Psophia crepitans Linn. Guiana.
napensis Scl. et Salv. Eastern Ecuador. ochroptera Pelz. Interior of Guiana. leucoptera Spix. Upper Amazons. viridis Spix. Banks of the Madeira River. obscura Pelz. Lower Amazons.

Family CDionemides.
Edicnemis superciliaris Tsch. Westerf Peru.
Family Charadrimde.
Pluvianellus sociabilis Hombr, et Jacq. Straits of Magellan.
Family Hematopodide.
Hæmatopus leucopus (Garnot). Falkland Islands.
Family Thinocoride.
Attagis latreillei Lesson. Bolivia.
chimborazensis SCl. Andes of Ecuador.
malouina (Bodd.). Falkland Islands and Straits of Magellan.
Thinocorus orbignyanus Geoffr. et Less. Chili and Peru.

## Family Recurvirostrid.a.

Recurvirostra andina Ph. et Landb. High Peru.
Family Scolopacids.
Gallinago frenata (Max.). Guiana, Brazil, and Antarctic America. undulata (Borld.). Guiana. gigantea (Temm.). South Brazil. stricklandi Gray. Chili and Patagonia. jamesoni (Bp.). High Ecuador. imperialis Sol. et Salv. High Colombia. Phegornis mitchelli (Fraser). Chili. Family Laride.

Sterna exilis Tsch. Peru and Chili. eurygnatha Saunders. Brazil and Trinidad. Larus fuliginosus Gould. Galapagos Islands. serranus Tsch. Pern, Bolivia, and Argentine Republic. Megalestris chilensis (Bp.). Chili and Straits of Magellan.

## Family Procellaritde.

Diomedea melanophrys (Temm.). Falkland Islands and coasts of Antarctic America.
Procellaria tethys Bonap. Galapagos Islands. Pelagodroma marina (Lath.). Coasts of Southern Sonth America. Puffinus elegans Gigl. et Salvad. Sonth Atlantic Ocean.
tenebrosus Natt. Coasts of Antarctic America.
Priofinus antarcticus (Gm.). Straits of Magellan.
Cstrelata fuliginosa (Kuhl.). Coasts of Brazil. phropygia Salv. Galapagos Islands. defilippiana Gigl. et Salvad. Southeastern Pacific. arminjoniana Gigl. et Salvad. Trinidad and Southern Atlantic. magentre Gigl. et Salvad. South Pacific Ocean. externa Salv. Island of Mas-a-fuera.
Prion vittatus (Gm.). Coasts of Brazil.
Halodroma berardi ( $Q$. et G.). . Falkland Islands.
Pseudoprion turtur (Smith). Falkland Islands.
Family Podicepedide.
Centropelma micropterum Gould. High Bolivia.
Family Spheniscide.
Eudyptula serresiana Oust. Faierland Islands. Spheniscus mendiculus Sund. Galapagos Islands. Dasyrhamphus herculis Finsch. (Hab. ignot.)

Family Tinamid.
Tinamus solitarius (Vieill.). Paraguay and Brazil.
tao (Temm.). Amazons, Guiana, Venezuela, and Colombia.
ruficeps Scl. et Salv. Western Ecuador to Veragua.
major (Gm.). Brazil.
suberistatas Cab. Guiana.
gattatus Pelzeln. Upper Amazons.
Nothocercus julins Bp. Colombia and Ecuador. nigricapillus Gray. (Hab. ignot.)
Cryptnrus cinereus (Gm.). Guiana and Amazons.
obsoletus (Temm.). Brazil and Paraguay.
castaneus (Scl.). Colombia.
tatanpa (Temm.). South Brazil and Paraguay.
cerviniveutris Scl. et Salv. Venezuela.
parvirostris Wagl. Brazil.
strigulosus (Temm.). Brazil.
erythropus (Pelz.). Interior of Guiana.
noctivagus (Max.). Brazil.
variegatus (Gm.). Guiana and Lower Amazons.
bartletti Scl. et Salv. Upper Amazons.
radiatus Gray. Bolivia.
undulatus (Temm.). Brazil and Amazons.
transfusciatus Scl.et Salv. Ecuador.
Rhynchotus maculicollis Gray. Bolivia.
Nothoprocta perdicaria (Kittl.). Chili.
ornata (Gray). Bolivia.
pentlaudi (Gray). Bolivia.
curvirostris Scl. et Salv. Ecuador.
taczanowskii Scl. et Salv. High Peru.
branickii Taczan. Central Peru.
dœeringi Caban. Argentine Republic.
punctulata Gay. Chili.
Nothara marmorata Gray. Bolivia.
boraquira (Spix). Brazil, Paraguay, and Argentine Republic. media (Spix). Brazil.
Taoniscus nanus (Temm.). Brazil and Paraguay. Calodromas elegans ( $D^{\prime}$ Orb et Is. Geoffr.). Argentine Republic. Tinamotis pentlandi Vigors. Bolivian and Peruvian Andes.

Family RHeid.s.
Rhea macrorhyncha Scl. (Hab. ignot.)
Pterocnemis darwini (Gould). Patagonia.

## DEACLIPTION OF A NEW AUB-BPECIEN OF LOXIGILLA FEOM THE INIAND OF ST. CHEIMTOPHER, WEST INDIEG.

## By GEORGE N. LAWRENCE.

## Loxigilla portoricensis var. grandis.

Male.-The general plumage is of a deep lustrous black, with the top and sides of the crown, the throat and under tail-coverts deep bright rufous; the under wing-coverts are white; the bill and feet are black.

Length (skin), $8 \frac{1}{8}$ inches; wing, 4; tail, $3 \frac{1}{\text { f }}$; tarsus, 1.
As the plumage of the female is similar to that of the male, it seemed so different from the recorded olive-colored plumage of the females of all others of the genus, that I wrote to Mr. Ober, asking if he was confident that the sexes were rightly determined; be replied that he was. I thought this marked difference in the coloring of the female would entitle it to full specific distinction.

In his work on the Birds of Porto Rico, Dr. Gundlach describes the female of $L$. portoricensis as being olive-colored. Therefore I wrote to him stating the close resemblance between the males of the birds from Porto Rico and St. Kitts, and called his attention to the fact that in the latter island the female resembled the male in plumage. He answered that he had just received a letter from his correspondent in Porto Rico, Dr. Stahl, who informed him that the female of L. portoricensis was like the male.

Length of 9,8 inches; wing, 33 ; tail, $3 \frac{1}{8}$; tarsus, 1.
Types in the National Museum, Washington.
In the collection from Mr. Ober were nine specimens, one only in tne olive-colored plumage, which was marked as a male. The collection also contained specimens of Loxigilla noctis.

Remarks.-The above-described bird in distribution of colors closely resembles L. portoricensis; the only noticeable difference is, that in the Porto Rico species the under wing-coverts are white, lightly marked with rufous. It is, however, larger, the bills as a rule markedly so, but in the only specimen in my collection from Porto Rico the bill is as large as that of the female from St . Kitts chosen as the type; but that of the male is larger.

In quite a large series of L. portoricensis belonging to the Smithsonian Institution, the bills average much smaller. Many of these are in the olive-colored plumage, but all are without distinction of sex.

Probably in the two forms from Porto Rico and St. Kitts, all the olive-colored birds are the young of both sexes.

Mr. F. A. Ober visited St. Christopher on his second expedition to the West Indies in 1880, but the time spent there was too limited to
admit of a satisfactory collection of its birds being made. The only one obtained of special interest is that now described.

Mr. Ober's note of it is as follows:
"'219. 'Black bird,' J, Mt. Misery. May 21, 1880.
"General plumage soft, glossy black; chin and throat, top of head and extending back over the ejes on each side, and under tail-coverts rusty red; bill and feet black. Depth of bill 3 inch.
"Soxes alike; young male different.
"Length, 84 inches; wing, 44 ; alar extent, 13."
June 10, 1881.

## NOTES ON THE MORTALITE ANONG FIBEES OE THE GULE OF MEXICO.

## By S. H. JOHNSON.

Custom-House, Corpus Christi, Texas, Collector's Office, June 17, 1881.

## Prof. Spencer F. Baird,

 U. S. Commissioner of Fish and Fisheries, Washington, D. C.:SIR: Noticing in the Forest and Stream of 9th instant some answers to queries as to the cause of mortality among fishes in the Gulf of Mexico, I make bold to present the result of my observations.

After very heavy rains and overflowing of rivers, the inner bays on the Texas coast suffer a loss of from one-half to three-fourths of their stock of salt-water fish, not including mullet, which live as well in fresh as salt water. In fact land-locked mullet in a fresh-water pond or tank grow to a weight of nine or ten pounds.

Last winter, after a heavy rain and a freeze, all the salt-water fish in the Laguna del Madre (a large sheet of water lying between Padre Island and the mainland) were fonnd dead on the banks.

We have two causes for destruction of fish here, viz., too much fresh water and too cold weather.

In the lagoon above spoken of, in a long drought, the water gets too salty for the fish, and they become covered with sores, and unless relieved by a rain they die from too much salt.

I have never known any serious mortality among fish on the Gulf coast where there was free flow of water, except during violent storms, when many fish both small and large were beached and killed.

Very respectfully,

S. H. JOHNSON, Collector.

## THE COMPARATIVE ACTION OF DRY HEAT AND SULPREROEG ACED UPON PUTRERACTIVE BACTEREA.

Pieces of woolen and cotton cloths and wadding were dipped in a solution of putrefying flesh and slightly dried; and after being shown to be infected by causing discoloration and development of bacteria in a Pateur solntion, one portion was subjected to dry heat, and the other to the iufluence of a definite quantity of sulphurous acid. When these agents had operated for a certain time, the substances were brought into a developing liquid and again observed.

These experiments, which were conducted by Dr. Wermch, were as follows:

First. Fragments of the materials above referred to, treated as meutioned and dried, produced in sixteen experiments an exceptionably rapid disturbance of the test liquid. In four experiments with wadding this was somewhat retarded. It took place most rapidly in tubes which had been inoculated with woolen thread.

Second. After inoculation with the material which had been exposed one or two minutes to a dry heat of $284^{\circ}$ to $300^{\circ} \mathrm{F}$., clouding took place in four of eight experiments; but only after from two to three days. With material which had been exposed from ten to sixty minutes to a heat of $230^{\circ}-244^{\circ} \mathrm{F}$., in five out of six experiments a derelopment of bacteria took place after the end of twenty-four hours.

Third. Substances which were exposed five minutes to a heat of $\mathbf{2 5 0}{ }^{\circ}$ to $302^{\circ} \mathrm{F}$. produced no infection whatever in ten experiments. The test liquid remained clear for eleven days from the time of inoculation.

Fourth. When the objects were exposed under a bell glass to the action of a percentage, by volume, of $1.5,2.2$, and 3.3 of sulphurous acid, in eight out of nine experiments a bacterial clouding was developed in the sulphurized material, whether the application had rontinued for one hour or twenty-two.

Fifth. In fifteen experiments, in which sulphurous acid constituted 4.6 and 7.15 per cent., by volume, of the contents of the bell glass, the introduction of the sulphurized material produced no cloudiness, when the experiment continued six hours and more. On the other hand an exposure of $20,40,60$, and 200 minutes was followed by the development of bacteria.

In conclusion, the fact was considered especially intoresting that the different fabrics gave up the infection concealed in them with different degrees of rapidity, the woolen fiber the quickest, the linen less easily, and the wadding with the greatest difficulty of all.

## LIST OF BPECIAL DESIDREATA AMONG NORTH AMERICAN BIRDB.

## By ROBERT RIDGWAY.

[The following list includes the species of North American birds specimens of which are particularly desired by the United States National Museum, and which it is hoped that correspondents may be able to supply.

The species marked with a are not represented at all in the collection, consequently specimens in any plumage and of any age will be acceptable. Of those distinguished by a the collection contains no American specimens, while in the case of others the particular deficiencies are explained. When no remarks follow the name of a species it should be understood that specpmens of any stage of plumage are desired.

The numbers and names correspond with those of the new Smithsonian catalogue.]
2. Hylocichla fuscescens (Steph.) Baird. Tawny Thrush. (Young in first plumage.)
3. Hylocichla alicia Baird. Gray cheeked Thrush. (Young in first plumage.)
4. Hylocichla ustulata (Nutt.) Baird. Russet-backed Thrush. (Especially first plumage.)
4a. Hylocichla ustulata swainsoni(Caban.) Ridgw. Olive-backed Thrush. (First plumage.)
5. Hylocichla unalasce (Gmel.) Ridgw. Dwarf Thrush. (First plumage.) † [6.] Turdus iliacus Linn. Gray-cheeked Thrush. Various stages (autumnal adult only is represented).
8. Merula confinis (Baird) Ridgw. Saint Lucas Robin. (Type specimen still unique.)
13 a. Harporhynchus rufus longirostris (Lafr.) Cones. Mexican Brown Thrasher. (Especially first plumage.)
14. Harporhynchus cinereus Xastus. Saint Lucas Thrasher.

14 a. Harporhynchus cinereus bendirei (Coues) Hensh. Bendire's Thrasher. (Especially first plumage.)
15 a. Harporhynchus curvirostris palmeri Hidgw. Palmer's Thrasher. (Especially first plumage.)
16 a. Harporhynchus redivivus lecontei (Lawr.) Cones. Leconte's Thrasher. (Especially first plumage.)
17. Harporhynchus crissalis Henry. Rufous-vented Thrasher. (Especially first plumage.)
18. Harporhynchus graysoni Baird. Socorro Thrasher. (Especially first plumage.)
$\dagger$ [20.] Cyaneoula suecica (Linn.) Brehm. Blue-throated Warbler. (Amer. ican specimens.)
[21.] Saxicola œnanthe (Linn.) Bechst. Stone Chat. (First plumage.)
25. Myiadestes tounsendi (Aud.) Caban. Townsend's Solitaire.
28. Polioptila plumbé Baird. Plumbeus Gnateatcher.
29. Polioptila californica Brewster. Black-tailed Gnatcatcher.
31. Regulus obscurus Ridgw. Dusky Kinglet.

* 32. Regulus cuvieri Aud. Cuvier's Kinglet.
[34.] Phylloscopus borealis (Blas.) Dresser. Kennicott's Warbler.

35. Chamea fasciata Gamb. Ground Tit.

41 b. Parus atricapillus occidentalis (Baird) Coues. Oregon Chickadee.
$\dagger$ 43. Parus meridionalis Scl. Mexican Chickadee.
[44.] Parus cinctus Bodd. Siberian Chickadee. (Especially first plumage.)
+49. Psaltriparus melanotis (Hartl.) Bp. Black-eared Tit.
†55a. Certhia familiaris mexicana (Gloger) Ridgw. Mexican Creeper.
†(?) 59. Catherpes mexicanus (Sw.) Baird. Mexican White-throated
Wren. (The supposed occurrence of this form in the United States
rests solely upon Giraud's type of his Certhia albifrons, said to be from Texas, which is in the National collection.)
$\dagger 60$ a. Thryothorus ludovicianus berlandieri (Couch) Coues. Berlandier's Wren.
60 b. Thryothorus ludovicianus miamensis Ridgw. Florida Wren.
62. Thryomanes brevicauda Ridgw. Guadalupe Wren.
64. Troglodytes insularis Baird. Socorro Wren.
65. Anorthura troglodytes hyemalis (Vieill.) Cones. Winter Wren.

65 a. Anorthura troglodytes pacificus (Baird.) Ridgw. Western Winter Wren. (First plumage.)
$\dagger$ [69.] Motacilla alba Linn. White Wagtail.
[72.] Anthus pratensis (Linn.) Bechst. European Titlark.
76. Helonca swainsoni Aud. Swainson's Warbler.
78. Helminthophaga bachmani (Aud.) Caban. Bachman's Warbler. (Especially the female.)
79. Helminthophaga pinus (Linn.) Baird. Blue-winged Yellow Warbler. (First plumage.)

* 80. Helminthophaga laurencei Herrick. Lawrence's Warbler.

81. Helminthophaga chrysoptcra (Linn.) Baird. Yellow-winged Warbler. (First plumage.)
*82. Helminthophaga leucobronchialis Brewster. White-throated War* bler.
82. Helminthophagn lucix Cooper. Lucy's Warbler.
83. Helminthophaga rirginia Baird. Virginia's Warbler.
84. Helminthophaga ruficapilla (Wils.) Baird. Nashville Warbler. (Fint plumage.)
85. Helminthophaga peregrina (Wils.) Baird. Tennessee Warbler. (First plumage.)
86. Parula pitiayumi insularis (Lawr.) Ridgw. Socorro Warbler. (First plumage.)

89 a. Parula pitiayumi nigrilora Coues. Sennett's Warbler.
90. Perissoglossa tigrina (Gmel.) Baird. Cape May Warbler. (First plumage.)
-91. Perissoglossa carbonata (Aud.) Baird. Carbonated Warbler.
92. Peucedramus olivaceus (Giraud) Cones. Olive headed Warbler. (Especially first plumage.)
94. Dendroca cerulescens (Linn.) Baird. Black-throated Blue Warbler. (First plumage.)
97. Dendroca maculosa (Gmel.) Baird. Black-and-yellow Warbler. (First plumage.)
99. Dendroca pennsylvanica (Linn.) Baird. Chestnat-sided Warbler. (First plumage.)
100. Dendroca castanea (Wils.) Baird. Bay-breasted Warbler. (First plumage.)
103. Dendroca dominica (Linn.) Baird. Yellow-throated Warbler.

103 a. Dendroca dominica albilora Baird. White-browed yellow-throated Warbler. (First plumage.)
106. Dendrœca chrysoparia Scl. \& Salv. Golden-cheeked Warbler. (A series very desirable.)
108. Dendraca tounsendi (Nutt.) Baird. Townsend's Warbler. (Especially first plumage.)
110. Dendroca kirtlandi Baird. Kirtland's Warbler.

- 112 Dendrceca montana (Wils.) Baird. Blue Mountain Warbler.

113. Dendroeca palmarum (Gmel.) Baird. Red-poll Warbler. (First plumage.)
114. Dendreca discolor (Vieill.) Baird. Prairie Warbler. (First plumage.)

* 116 a. Siurus navius notabilis Grinnell. Grinnell's Water Thrush.

118. Oporornis agilis (Wils.) Baird. Connecticut Warbler. (Especially first plumage.)
119. Geothlypis philadelphia (Wils.) Baird. Mourning Warbler. (First plumage.)
120. Geothlypis macgillirrayi (Aud.) Baird. Macgillivray's Warbler. (First plumage.)

* 126. Myiodioctes minutus (Wils.) Baird. Small-headed Flycatcher.

127. Myiodioctes canadensis (Linu.) Aud. Canadian Flycatching Warbler. (First plumage.)
$\dagger\left({ }^{( }\right)$130. Setophaga miniata Swaius. Red-bellied Redstart. (Giraud's type of his "Muscicapa derhami," said to be from Texas, is in the National Museum collection.)
$t(?)$ 132. Ergaticus ruber (Swains.) Baird. Red Warbler. (The type specimen of Girand's "Parus leucotis" is in the collection, and is said to have been obtained in Texas.)
$f(1)$ 133. Basileuterus culicivorus (Licht.) Bonap. Brasher's Warbler. (Type of "Muscicapa brasieri" Giraud, said to have been obtained in Texas, is in the collection.)

Proc. Nat. Mus. 81-14 Nov. 30. 1881.
$\left(\dagger{ }^{\dagger}\right)$ 134. Basileuterus belli (Giraud) Scl. Bell's Warbler. (The type specimen, one of Giraud's "Sixteen Species of Texan Birds," is in the collection.)
135. Vireosylvia olivacea (Linn.) Bp. Red-eyed Vireo. (First plumage.) 136. Vireosylvia agilis flavo-viridis (Cass.) Ridgw. Yellow-green Vireo. (Especially first plumage.)
137. Vireosylvia calidris barbatula (Caban.) Ridgw. Black-whiskered Vireo. (Especially first plumage.)
138. Vireosylvia philadelphica Cass. Philadelphia Vireo. (Especially first plumage.)
140. Lanivireo flavifrons (Vieill.) Bairl. Yellow-throated Vireo. (First plumage.)
141. Lanivireo solitarius (Vieill.) Baird. Blue-headed Vireo. (First plumage.)
142. Vireo atricopillus Woodh. Black-capped Vireo.
143. Vireo noreboracensis (Gm.) Bp. White eyed Vireo. (First plumage.)
144. Vireo huttoni Cass. Hutton's Vireo.
147. Virco vicinior Coues. Gray Vireo.
148. Lanius borealis Vieill. Great Northern Shrike. (First plumage.)

* 149 b. Lanius ludovicianus robustus Baird. Large-billed Shrike.

150. Ampelis garrulus Linn. Northern Wax-wing. (First plamage.)

152 a. Progne subis cryptoleuca Baird. Cuban Martin.
159. Certhiola bahamensis Reich. Bahaman Honey Creeper.
$\dagger$ (i) 160. Euphonia elegantissima (Bp.) Gray. Blue-headed Euphonia. ('The only presumably North American specimen of this species in the collection is the type of "Pipra galericulata" of Giraud.)
163. Pyranga hepatica Swains. Hepatic Tanager.

164 a. Pyranga astiva cooperi Ridgw. Cooper's Tanager.
165. Hesperiphona vespertina (Cooper) Bp. Evening Grosbeak.
[167.] Pyrrhula cassini Baird. Cassin's Purple Finch.
171. Carpodacus amplus Ridgw. Guadalupe House Finch.
175. Leucosticte tephrocotis Swains. Gray-crowned Rosy Finch. (Summer adults and young in first plumage.)
175a. Leucosticte tephrocotis littoralis (Baird) Cones. Hepburn's Rosy Finch. (Summer adults and young in first plamage.)
176. Leucosticte atrata Ridgw. Black Rosy Finch. (A series especially desired.)
177. Leucosticte australis Allen. Brown-capped Rosy Finch. (Especially winter speeimens and young in first plumage.)
178. Agiothus cancscens Gould. Mealy Redpoll.

179 a. Egiothus linaria holbolli (Brehm) Ridgw. Greater Redpoll.

- 180. Egiothus brewsteri Ridgw. Brewster's Linnet.

182 a. Astragalinus psaltria arizonce Cones. Arizona Goldfinch.
†(9) 182 b. Astragalinus psaltria mexicanus (Sw.) Cones. Mexican Goldfinch. (With the exception of the type of Giraud's "Fringilla texensis" there is no North American example of this form in the collection.)

+ 184. Chrysometris notwta (Du Bus) Bp. Black-headed Goldfinch.

188. Centrophanes pictus (Sw.) Caban. Smith's Longspur. (First plumage; also adults in summer.)
189. Passerculus princeps Maynard. Ipswich Sparrow. (A good series showing individual variations very much desired.)
190. Passerculus sandwichensis (Gmel.) Baird. Sandwich Sound Sparrow.
191. Pusserculus anthinus Bonap. Titlark Spurrow.
192. Passerculus guttatus Lawr. Saint Lucas Sparrow.
193. Passerculus rostratus (Cass.) Baird. Large-billed Sparrow. (First plumage.)
194. Coturniculus henslowi (Aud.) Bp. Henslow's Sparrow.
195. Coturniculus lecontei (Aud.) Bp. Leconte's Sparrow.

201 a. Ammodromus caudacutus nelsoni Allen. Nelson's Sharp-tailed Finch. (The young in first plumage particularly desired.)
203. A mmodromus nigrescens Ridgw. Black-and-White Sea-side Finch. (A good series much wanted.)
205. Zonotrichia querula (Nutt.) Gamb. Harris's Sparrow. (Young in first plumage a special desideratum.)
207. Zonotrichia gambeli (Nutt.) Gamb. Gambel's White-crowned Sparrow. (A good series of adults and the young in first plumage.)
215. Spizella atrigularis (Caban.) Bd. Black-chinned Sparrow.
216. Junco aikeni Ridgw. White-winged Suowbird. (Especially the young in first plumage, and adults in summer plumage.)
219. Junco annectens Baird. Pink-sided Snowbird. (Particularly young in first plumage.)
221. Junco dorsalis Menry. Red-backed Snowbird.
222. Junco cinereus (Swains.) Caban. Mexican Snowbird.
223. Junco insularis Ridgw. Guadalupe Snowbird.
225. Amphispizu belli (Cass.) Coues. Bell's Sparrow. (Particularly young in first plumage.)
226. Peucaa asticalis (Licht.) Caban. Bachman's Finch. (Young in first plumage an especial desideratum; adults also wanted.)
226 a. Pesccaca astiralis illinoensis Ridgw. Oak-wood's Sparrow. (Young in first plumage a particular desideratum.)
227. Peucia arizona Ridgw. Arizona Sparrow.
'223. Peucat cassini (Woodh.) Bairl. Cassin's Sparrow.
229. Peucca carpalis Cones. Rufous-winged Sparrow.
230. Peucca ruficeps (Cass.) Baird. Rufous-crowned Sparrow.

230 a. Peuccta ruficeps boucardi (Scl.). Boncard's Sparrow.
231 c. Melospiza fasciata samuelis I3airl. Californian Song Sparrow.
231 e. Melospiza fasciata rufina (Brandt.) Baird. Sooty Song Sparrow.
235 c. Passerella iliaca schistacea (Baird) Allen. Slate-colored Sparrow.
236. Embernagra rufivirgata Lawr. Texas Sparrow. (Especially young in first plumage.)
237 a. Pipilo erythrophthulmus alleni Coues. Florida Towhee. (Especially young in first plumage.)
238. Pipilo maculatus arcticus (Swains.) Cones. Northern Towhee.

238 b. Pipilo maculatus oregonus (Bell.) Coues. Oregon Towhee.
238 c. Pipilo maculatus consobrinus Ridgw. Guadalupe Towhee.
238 d. Pipilo maculatus carmani Baird. Socorro Towhee.
240 a. Pipilo fuscus albigula (Baird) Coues. Saint Lucas Brown Towhee. 242 a. Cardinalis virginianus igneus (Baird) Coues. Saint Lucas Cardinal.
$\dagger 247$ Passerina parellina (Bp.) Ridgw. Blue Bunting.
250. Passerina versicolor (Bonap.) Gray. Varied Bunting.
252. Spermophila moreletii Pucheran. Morelet's Seedeater.
†253. Phonipara zena (Linn.) Bryant. Black-faced Seedeater.
255. Spiza townsendi (Aud.) Ridgw. Townsend's Bunting. (Type still unique.)
262. Ageleus tricolor (Nutt.) Bp. Red-and-white shouldered Blackbird. 263 a. Sturnella magna mexicana (Scl.) Ridgw. Mexican Meadow Lark. 265. Icterus vulgaris Dand. Troupial.
266. Icterus auduboni Giraud. Andubon's Oriole. (Especially young in first plumage, and intermediate stages.)
$\dagger$ 267. Icterus vagleri Scl. Waglet's Oriole.
268. Icterus parisorum Bonap. Scott's Oriole.
269. Icterus cucullatus Swains. Hooded Oriole.

278 a. Quiscalus purpureus agleus (Baird) Cones. Florida Grackle.
$\dagger$ [279.] Sturnus vulgaris Linn. European Starling.
281. Corvus cryptoleucus Couch. White-necked Raven.

282 b. Corvus frugivorus caurinus (Baird) Ridgw. Northwestern Fish Crow.
287. Pica nuttalli And. Yellow-billed Magpie.
$\dagger$ 288. Psilochinus morio (Wagl.) Gray. Brown Jay.
291. Aphelocoma floridana (Bartr.) Caban. Florida Jay. (Especially young in first plumage.)
$\dagger$ 294. Aphelocoma ultramarina couchi Baird. Couch's Jay.
295. Aphelocoma sordida arizonce Ridgw. Arizona Jay.
296. Xanthura luxuosa (Less.) Bp. Green Jay. (Especially young in first plumage.)
297. Perisoreus canadensis (Linn.) Bp. Canada Jay.
293. Perisoreus obscurus Ridgw. Oregon Jay.
$\dagger$ [299.] Alauda arvensis Linn. Sky Lark.
$\ddagger$ [302.] Milvulus tyrannus (Linn.) Bp. Fork-tailed Flycatcher.
303. Tyrannus dominicensis (Gm.) Reich. Gray Kingbird.
305. Tyrannus melancholicus couchi Baird. Couch's Kingbird.
$\dagger\left({ }^{\circ}\right)$ 309. Myiozetetes texensis (Giraud) Scl. Giraud's Flycatcher. (The type specimen of this species is the only specimen in the collection from north of Mexico, and the locality of this is perhaps somewhat doubtful.)
$\dagger($ l) 314. Myiarchus laverencei (Giraud) Baird. Lawrence's Flycatcher. (No North American specimen in the collection, except the type of the species, said to be from Texas.)
323. Empidonax difficilis Baird. Western Yellow-bellied Flycatcher. $\dagger$ (\%) 329. Empidonax fulvifrons (Giraud) Scl. Fulvous Flycatcher. (The same remarks apply to this as to No. 314).
329 a. Empidonax fulvifrons pallescens Coues. Buff-breasted Flycatcher. $\dagger$ 332. Pachyrhamphus major (Bonap.) Scl. Thick billed Flycatcher.
$\dagger$ 333. Hadrostomus aglaice (Lafr.) Cab, Lose-throated Flycatcher.
341. Selasphorus alleni Hensh. Allen's Hummingbird.
342. Atthis heloisce (Less.) Reich. Heloise's Hummingbird.
344. Calothorax lucifer (Swains.) Gray. Lucifer Hummingbird.
347. Basilinna xantusi (Lawr.) Elliott. Xantus's Hummingbird.
349. Cypselus saxatilis Woodh. White-throated Swift. (Especially young in first plumage.)
35i. Cypseloides niger borealis (Keunerly) Ridgw. Black Swift.
352. Chetura vauxi (Towns.) De Kay. Vaux's Swift.
359. Campephilus principalis (Linn.) Gray. Ivory-billed Woodpecker. (Especially young, of both sexes.)
362. Picus querulus Wils. Red-cockaded Woodpecker. (Especially young.)
363 a. Picus scalaris lucasanus (Xant.) Ridgw. Saint Lucas Woodpecker.
365. Picus stricklandi Malh. Strickland's Woodpecker.
367. Picoides arcticus (Swains.) Gray. Black-backed Three-toed Woodpecker. (Especially young, of both sexes.)
368. Picoides tridactylus americanus (Brehm.) Ridgw. Banded-backed Three toed Woodpecker. (A good series wanted from Maine or the British Provinces.)
369 b. Sphyrapicus varius ruber (Gm.) Ridgw. Red-breasted Woodpecker. 377 a. Melanerpes formicivorus angustifrons Baird. Narrow-fronted Woodpecker.
378 a. Colaptes auratus hybridus (Baird) Ridgw. "Hybrid" Flicker. (Especially Eastern specimens with red feathers in the black checkstripes.)
379. Colaptes chrysoides (Malh.) Baird. Malherbe's Flicker.
380. Colaptes rufipileus Ridgw. Guadalupe Flicker. (Adult male unknown!)
+381. Momotus carruleiceps Gould. Blue-capped Motmot.
383. Ceryle americana cabanisi (Tschudi) Coues. Texan Kingfisher.
$\dagger 384$. Trogon ambiguus Gould. Coppery-tailed Trogon.
386. Coccyzus seniculus (Lath.) Vieill. Mangrove Cuckoo.
389. Crotophaga ani Linn. Savannah Blackbird.
*391. Rhynchopsitta pachyrhyncha (Swains.) Bp. Thick-billed Parrot.
392. Conurus carolinensis (Linn.) Kuhl. Carolina Parakeet.
393. Conurus holochlorus brevipes Baird. Socorro Parakeet.
394. Aluco flammeus americanus (Aud.) Ridgw. American Barn Owl.
(Especially downy young.)

## 214 PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

395. Asio americanus (Steph.) Sharpe. American Long-eared Owl. (Downy young.)
396. Asio accipitrinus (Pall.) Newton. Short-eared Owl. (Downy young.)
397. Strix nebulosa Forst. Barred Owl. (Downy young.)

397 a. Strix nebulosa alleni Ridgw. Florida Barred Owl.
398. Strix occidentalis (Xant.) Ridgw. Spotted Owl. (Especially downy young.)
399. Ulula cinerea (Gmel.) Bp. Great Gray Owl. (Especially downy young.)
[399 a]. Ulula cinerea lapponica (Retz.) Ridgw. Lapland Owl. (Especially downy young.)
400. Nyctale tengmalmi richardsoni (Bp.) Ridgw. Richardson's Owl.
401. Nyctale acadica (Gmel.) Bp. Saw-whet Owl. (Especially young.)
402. Scops asio (Linn.) Bp. Little Screech Owl. (Downy young.)

402 a. Scops asio floridanus Ridgw. Florida Screech Owl.
402 b. Scops asio maccalli (Cass.) Ridgw. Texan Screech Owl.
402 c. Scops asio maxwellice Ridgw. Rocky Monntain Screech Owl.
402 d. Scops asio kennicotti (Elliot) Ridgw. Northwentern Screech Owl.
403. Ncops trichopsis Wagl. Mexican Screech Owl.
404. Scops flammeolus (Iicht.) Scl. Flammulated Screech Owl.
405. Bubo virginianus (Gm.) Bp. Great Horned Owl. (Very yonng in down.)
405 a. Bubo virginianus subarcticus (Hoy) Ridgw. Western Horned Owl.

* 405 b. Bubo virginianus arcticus (Swains.) Cass. Arctic Horned Owl.

405 c. Bubo virginianus saturatus Ridgw. Dusky Horned Owl.
406. Nyctea scandiaca (Linn.) Newt. Snowy Uwl. (Downy young.)
407. Surnia funerea (Linn.) Rich \& Sw. American Hawk Owl. (Downy young.)
†[407.] Surnia funerea ulula (Linn.) Ridgw. European Hawk Owl. (Especially downy young.)
408 a. Speotyto cunicularia floridana Ridgw. Florida Burrowing Owl 409. Glaucidium gnoma Wagl. California Pigmy Owl. (Especially downy young.)
410. Glaucidium phalanoides (Daud.) Scl. and Salv. Ferruginous Pigms Owl. (Especially downy young.)
411. Micrathene whitneyi (Cooper) Cones. Whitney's Pigmy Owl. (Especially downy young.)
412. Hierofalco gyrfalco candicans (Gm.) Ridgw. White Gyrfalcon. (Especially downy young.)
412 a. Hierofalco gyrfalco islandus (Gm.) Ridgw. Iceland Gyrfalcon. (Adults and downy young.)
412 b. Hierofalco gyrfalco sacer (Forst.) Ridgw. McFarlane's Gyrfalcon. (Series, especially adults.)
412 c. Hierofalco gyrfalco obsoletus (Gm.) Ridgw. Labrador Gyrfalcon. (A good series of both old and young wanted.)
413. Hierofalco mexicanus polyagrus (Cass.) Ridgw. Prairie Falcon. (Especially adults and downy young.)
414. Falco peregrinus narius (Gm.) Ridgw. American Peregrine Falcon; Duck Hawk. (Adults and downy young.)
414 a. Falco peregrinus pealei Ridgw. Peale's Falcon.
†415. Falco albigularis Daud. Chestnut-thighed Falcon.
$\dagger$ [416.] Esalon regulus (Pall.) Blyth. European Merlin. (Good spries of all stages wanted.)
417. Esalon columbarius (Linn.) Kaup. Pigeon Hawk.

417 a. Esalon columbarius suckleyi Ridgw. Black Merlin.
418. Esalon richardsoni Ridgw. Richardson's Merlin. (Especially fully adult male and downy young.)
419. Rhynchofalco fusco-ccerulescens (Vieill.) Ridgw. Aplomado Falcon. (Especially downy young.)
420 a. Tinnunculus sparverius isabellinus (Swains.) Ridgw. Isabelline Sparrow Hawk.
421. Tinnunculus sparverioides (Vig.) Gray. Cuban Sparrow Hawk.
425. Pandion haliaetus carolinensis (Gm.) Ridgw. American Osprey; Fish Hawk. (Downy young.)
426. Elanoides forficatus (Linn.) Ridgw. Swallow-tailed Kite. (Especially downy young; good adults also wanted.)
427 Elanus glaucus (Bartr.) Coues. White-tailed Kite. (Especially downy young.)
428. Ictinia subccerulea (Bartr.) Coues. Mississippi Kite. (Especially downy young.)
429. Rostrhamus sociabilis plumbeus Ridgw. Everglade Kite. (Especially downy young.)
431. Accipiter cooperi Bonap. Cooper's Hawk. (Downy young.)
432. Accipiter fuscus (Gmel.) Bp. Sharp-shinned Hawk. (Downy young.)
433. Astur atricapillus (Wils.) Bp. American Goshawk. (Downy young ; also good adults.)
433 a. Astur atricapillus striatulus Ridgw. Western Goshawk.
434. Antenor unicinctus harrisi (And.) Ridgw. Harris's Hawk.
436. Buteo borealis (Gm.) Vieill. Red-tailed Hawk. (Downy young.)

* 436 a. Buteo borealis krideri Hoopes. Krider's Hawk.

436 b. Buteo borealis calurus (Cass.) Ridgw. Western Red-tail. (Melanotic specimens.)
436 c. Buteo borealis lucasanus Ridgw. Saint Lucas Red-tail.
436 d. Buteo borealis socorroensis Ridgw. Socorro Red-tail.
437. Buteo cooperi Cass. Cooper's Henhawk.
438. Buteo harlani Aud. Harlan's Hawk.
439. Buteo lineutus (Gm.) Jard. Red-shouldered Hawk. (Downy young.)
439 a. Buteo lineatus elegans (Cass.) Ridgw. Red-bellied Hawk.
440. Buteo abbreviatus Caban. Zone-tailed Hawk. (Especially downy young.)
441. Buteo albicaudatus Vieill. White-tailed Hawk. (Especially downy young.)
442. Butco scainsoni Bonap. Swainson's Hawk. (Especially downy young.)
443. Buteo pennsylvanicus (Wils.) Bp. Broad-winged Hawk. (Downy young; also adults.)
$\dagger$ 444. Urubitinga anthracina (Licht.) Lafr. Mexican Black Hawk. (Especially downy young.)
445. Asturina nitida plagiata (Licht.) Ridgw. Mexican Goshawk. (Especially downy young.)
446. Onychotes gruberi Ridgw. Gruber's Hawk. (Only two specimens known to exist in collections!)
447. Archibuteo lagopus sancti-johannis (Gmel.) Ridgw. American Roughlegged Hawk. (Downy young and melanotic specimens.)
448. Archibuteo ferrugineus (Licht.) Gray. Ferruginous Rough-leg. (Especially downy young and melanotic specimens.)
449. Aquila chrysaetus canadensis (Linn.) Ridgw. Golden Eagle. (Es. pecially downy young.)
$\dagger 450$. Thrasaetus harpyia (Linn.) Gray. Harpy Eagle.
$\dagger$ 452. Haliaetus albicilla (Linn.) Leach. Gray Sea Eagle. (Greenland specimens.)
453. Pseudogryphus californianus (Shaw) Ridgw. California Condor. (Adults and downy young.)
454. Cathartes aura (Linn.) Illig. Turkey Buzzard. (Downy young.)
455. Catharista atrata (Wils.) Less. Black Vulture; Carrion Crow. (Downy young.)
461. Zenaidura graysoni Baird. Socorro Dove.
462. Zenaida amabilis Bp. Zenaida Dove.
467. Geotrygon martinica (Gm.) Bp. Key West Dove.
†468. Starnænas cyanocephale (Linn.) Bp. Blue-headed Dove.
469. Ortalis vetula maccalli (Baird) Ridgw. Chachalaca; Texan Guan. (Especially downy young.)
470. Meleagris gallopavo Linn. Mexican Turkey. (Downy young and young in first plumage.)
470 a. Meleagris gallopavo americana (Bartr.) Cones. Wild Turkey. (Downy young and young in first plumage.)
471 a. Canace obscura fuliginosa Ridgw. Sooty Grouse.
471 b. Canace obscura richardsoni (Dongl.) Baird. Richardson's Grouse.
472. Canace canadensis (Linn.) Bp. Canada Grouse; Spruce Partridge. (Downy young.)
472 a. Canace canadensis franklini (Dongl.) Baird. Franklin's Grouse.
473 a. Bonasa umbellus umbelloides (Dougl.) Baird. Gray Ruffed Grouse.
(Downy young and young in first plumage.)

473 b. Bonasa umbellus sabinei (Dougl.) Cones. Oregon Ruffed Grcuse. (Young in down and in first plumage.)
475. Lagopus rupestris (Gm.) Leach. Rock Ptarmigan. (Adults in summer plumage and downy young.)
476. Lagopus leucurus Sw. White-tailed Ptarmigan. (Downy young and adnlts in winter plumage.)
477 a. Cupidonia cupido pallidicincta Ridgw. Lesser Prairie Hen. (Especially young in first plumage and in down.)
4i8. Pediccetes phasianellus (L.) Elliot. Northern Sbarp-tailed Grouse. (Especially young in first plumage and in down.)
480 a. Orty.x virginiana floridana Coues. Florida Quail. (Especially chick and young in first plumage.)
480 b. Ortyx virginiana texana (Lawr.) Cones. Texan Quail. (Especially chick and young in first plumage.)
481. Oreortyx picta (Dougl.) Baird. Mountain Quail. (Chick.)

481 a. Oreortyx picta plumifera (Gould) Ridgw. Plumed Quail. (Chick.)
484. Callipepla squamata (Vig.) Gray. Scaled Quail. (Chick and young in first plumage.)
486. Ardea occidentalis And. Great White Heron; Wïrdemann's Heron. (A series including all ages and phases of plumage much needed.)
†499. Mycteria americana Linn. Jabiru.
500. Tantalus loculator Linn. Wood Ibis. (Downy young.)
501. Eudocimus albus (Linn.) Wagl. White Ibis. (Downy young.)
$\dagger 502$. Eudocimus ruber (Linn.) Wagl. Scarlet Ibis. (Downy young.)
503. Plegadis falcinellus (Linn.) Kaup. Glossy Ibis. (Especially downy young.)
505. Ajaja rosea (Reich.). Roseate Spoonbill. (Downy young.)
$\dagger$ [506]. Hamatopus ostragelus Linn. European Oystercatcher. (Young in first plumage and in down.)
508. Hsematopus niger Pall. Black Oystercatcher. (Young in first plumage and in (lown.)
509. Strepsilas interpres (Linn.) Illig. Turnstone. (Downy young.)
510. Strepsilas melanocephala Vig. Black Turnstone. (Downy young.)
511. Aphriza virgata (Gmel.) Gray. Surf Bird. (Downy young.)
$\dagger$ [512.] Vanellus cristatus Meyer. Lapwing. (American specimens.)
513. Squatarola helvetica (Linn.) Cuv. Black-bellied Plover. (Downy young.)
$\dagger$ [514.] Charadrius pluvialis Linn. Golden Plover. (Greenland specimens; also downy young.)
515. Charadrius dominicus Müll. American Golden Plover. (Downy young.)
[515a.] Charadrius dominicus fulvus (Gmel.) Ridgw. Pacific Golden Plover. (Summer adults and downy young.)
518. Rgialites hiaticula (Linn.) Boie. Ringed Plover. (Downy young.)
[519.] Agialites curonicus (Gmel.) Gray. Little Ringed Plover. (Downy young.)
520. Agialites melodus (Ord.) Bp. Piping Plover. (Downy young.) ó20 a. Agialites melodus circumcinctus Ridgw. Belted Piping Plover. (Series of adults; downy young.)
$\dagger$ [524.] Scolopax rusticula Linn. European Woodcock. (American specimens.)
$\ddagger[526$.$] Gallinago media Leach. English Snipe. (Greenland specimens;$ downs young.)
526 a. Gallinago media wilsoni (Temm.) Ridgw. Wilson's Snipe. (Downy young.)
527. Macrorhamphus griseus (Gmel.) Leach. Red-breasted Svipe; Gray Snipe. (Downy young.)
527 a. Macrorhamphus griseus scolopaceus (Say) Cones. Red-bellied Suipe; Greater Gray-back. (Downy young.)
528. Micropalama himantopus (Bonap.) Baird. Stilt Sandpiper. (Downy young.)
529. Tringa canutus Linn. Knot; Robin Snipe. (Downy young.)
[533.] Actodromas acuminata (Horsf.) Ridgw. Sharp-tailed Sandpiper. (Summer adults and downy young.)
534. Actodromas maculata (Vieill.) Coues. Pectoral Sandpiper. (Downy young.)
535. Actodromas cooperi (Baird) Cones. Cooper's Sandpiper. (Type still unique!)
536. Actodromas fuscicollis (Vieill.) Ridgw. Bonaparte's Sandpiper. (Downy young.)
537. Actodromas bairdi Coues. Baird's Sandpiper. (Downy young.)
538. Actodromas minutilla (Vieill.) Bp. Least Sandpiper. (Downs young.)
$\dagger$ [539.] Pelidna alpina (Linn.) Boie. European Dunlin. (American specimens; downy young.)
539 a. Pelidna alpina anericana Cass. Red-backed Sandpiper. ¡Downs young.)
[540.] Pelidna subarquata (Guld.) Cuv. Curlew Sandpiper. (Downy young.)
542. Calidris arenaria (Linn.) Illig. Sanderling. (Downy young.)
543. Limosa fæda (Linn.) Ord. Marbled Godwit. (Downy young.)
544. Limosa lapponica novarzealandia Gray. Pacific Godwit. (Dowus young.)
545. Limosa hemastica (Linn.) Cones. Hudsonian Godwit. (Downy young.)
$\dagger$ †546.] Limosa agocephala (Linn.) Leach. Black-tailed Godwit. (American specimens; downy young.)
[547.] Totanus glottis (Linn.) Bechst. Green-shank. (Downy young.)
548. Totanus melanoleucus (Gmel.) Vieill. Greater Yellow-legs; Telltale. (Downy young.)
549. Totanu flavipes (Gmel.) Vieill. Yellow-legs. (Downy young.)
550. Rhyacophilus solitarius (Wils.) Cass. Solitary Sandpiper. (Downy young.)
$\dagger[501$.$] Rhyacophilus ochropus (Linn.) Ridgw. Green Sandpiper. (Amer-$ ican specimens; downy young.)
552. Symphemia semipalmata (Gmel.) Hartl. Willet. (Downy'young.)
553. Heteroscelus incanus (Gmel.) Cones. Waudering Tattler. (Downy young.)
[564.] Machetes pugnax (Linn.) Cuv. Ruft. (Downy young.)
556. Tryngites rufescens (Vieill.) Caban. Buff-breasted Sandpiper. (Downy young.)
559. Numenius hudsonicus Lath. Hudsouian Curlew. (Downy young.)
560. Numenius borealis (Forst.) Lath. Eskimo Curlew. (Downy young.)
$\dagger[561$.$] Numenius phoopus (Linn.) Lath. Whimbrel. (American speci-$ mens; downy young.)
[562.] Numenius tahitiensis (Gmel.) Cass. Bristle-thighed Curlew. (Downy young.)
563. Phalaropus fulicarius (Linn.) Bp. Red Phalarope. (Downy young.)
566. Recurvirostra americana Gmel. American Avocet. (Downy young.)
+568. Parra gymnostoma Wagl. Mexican Jacana. (United States

- specimens; downy young.)

570. Kallus obsoletus Ridgw. California Clapper Rail.

571 a. Rallus longirostris saturatus Hensh. Louisiana Clapper Rail.
!572. Rallus virginianus Linn. Virginia Rail. (Downy young.)
$\dagger$ [573.] Porzana maruetta (Leach) Bp. Spotted Crake. (American specimens; downy young.)
575. Porzana noveboracensis (Gmel.) Baird. Little Yellow Rail. (Downy young.)
576. Porzana jamaicensis (Gmel.) Baird. Little Black Rail. (Downy young.)
576 a. Porzana jamaicensis coturniculus Baird. Farallone Rail. (Series; also downy young.)
$\dagger$ [577.] Crex pratensis Bechst. Corn Crake. (American specimens.)
578. Ionornis martinica (Linn.) Reich. Purple Gallinule. (Downy young.)
581. Aramus pictus (Bartr.) Cones. Limpkin. (Downy young.)
582. Grus americana (Linn.) Temm. Whooping Crane. (Downy young.)
583. Grus canadensis (Linn.) Temm. Sandhill Crane. (Downy young.)
584. Grus fraterculus Cass. Little Crane. (Downy young.)
585. Phoenicopterus ruber Linn. American Flamingo. (Good adults, young, and downy young.)
$\dagger$ [586.] Olor cygnus (Linn.) Bp. European Swan. (American specimens; downy young.)

- [587.] Olor minor (Pall.) Bp. Bewick's Swan.

589. Olor buccinator (Rich.) Wagl. Trumpeter Swan. (Downy young.)
590. Chen carulescens (Linn.) Ridgw. Blue-winged Goose. (Downy young.)
591. Chen hyperboreus (Pall.) Boie. Snow Goose. (Downy young.)

501 a. Chen hyperboreus albatus (Cass.) Ridg. Lesser Snow Goose. (Downy young.)
582. Chen rossi (Baird) Ridgw. Ross's Snow Goose. (Downy yonng.)
$\dagger$ [593.] Anser allifrons Gmel. European White-fronted Goose. (Greenland specimens; downy young.)
593 a. Anser albifrons gambeli (Hartl.) Cones. American White-fronted Goose. (Downy young.)
504 c. Bernicla canadensis occidentalis (Baird) Dall \& Bann. Larger White-cheeked Goose. (Especially downy young.)
595. Bernicla brenta (Pall.) Steph. Brant. (Downy young.)
596. Bernicla nigricans (Lawr.) Cass. Black Brant. (Young in first plumage and in down.)
[597.] Bernicla leucopsis (Temm.) Boie. Barnacle Goose. (Downy young.)
598. Philacte canagica (Sevast.) Bannist. Emperor Goose. (Downy young.)
600. Dendrocyena fulva (Gme'.) Burm. Fulvous Tree Duck. (Downy young.)
603. Anas fulvigula Ridgw. Florida Dusky Dnck. (Series; downy young.)
604. Chaulelasmus streperus (Linn.) Gray. Gadwall. (Downy yonng.)
[606.] Mareca penelope (Liun.) Selby. Widgeon. (Downy yonng.)
609. Querquedula discors (Limn.) Steph. Blue-winged Teal. (Downy soung.)
[611.] Nettion crecca (Linn.) Kaup. English Teal. (Downy young.)
612. Nettion carolinensis (Gmel.) Baird. Green-winged Teal. (Downy young.)
614. Fulix marila (Linn.) Baird. Scaup Duck. (Downy young.)
615. Fulix affinis (Eyt.) Baird. Little Blackhead. (Downy young.)
616. Fulix collaris (Donor.) Baird. Ring-billed Blackhead. (Downy young.)
617. EEthyia vallisneria (Wils.) Boie. Canvas-back. (Downy young.)
619. Clangula islandica (Gmel.) Bp. Barrow's Golden-eye. (Downy young.)
621. Clangula albeola (Linn.) Steph. Butterball; Buffleheall. (Downy young.)
622. Histrionicus minutus (Linn.) Dresser. Harlequin Duck. (Downy young.)
623. Harelda glacialis (Linn.) Leach. Long.tailed Duck; Old Squar. (Downy young.)
624. Camptolamus labradorius (Gmel.) Gray. Labrador Duck. (Espec ially downy young.)
625. Polysticta stclleri (Pall.) Brandt. Steller's Duck. (Downy young.)
626. Lampronetta fischeri Brandt. Spectacled Eider. (Downy young.)

62i. Somateria mollissima(Linn.)Boie. Common Eider. (Downy young.)

627 a. Somateria mollissima dresseri (Sharpe) Coues. American Eider. (Downy young.)
629. Somateria spectabilis (Linn.) Boie. King Eider." (Downy young.) 630. Edemia americana Sw. \& Rich. American Scoter. (Downy young.)
$\dagger$ [631.] Melanetta fusca (Linn.) Boie Velvet Scoter. (American specimens; downy young.)
632. Melanetta velvetina (Cass.) Baird. American Velvet Scoter. (Downy young.)
633. Pelionetta perspicillata (Linn.) Kaup. Surf Duck. (Downy young.) $\dagger$ 635. Nomonyx dominicus (Linn.) Ridgw. Black Masked Duck. (Adult male with black head, and downy young.)
636. Mergus merganser americanus (Cass.) Ridgw. American Sheldrake. (Downy young.)
644. Phalacrocorax mexicanus (Brandt) Sel. \& Salv. Mexican Cormorant. (Adults in nuptial plumage.)
-648. Phalacrocorax perspicillatus Pall. Pallas's Cormorant.
657. Pagophila eburnea (Phipps) Kaup. Ivory Gull. (Downy young.)
661. Larus leucopterus Faber. White-winged Gull. (Downy young.)
662. Larus glaucescens Licht. Glaucous-winged Gull. (Downy young.)

- [665.] Larus affinis Reinh. Siberian Gull.

667. Larus cachinnans Pall. Pallas's Herring Gnll. (Series, especially young and downy young.)
668. Larus delatcarensis Ord. Ring-billed Gull. (Downy young.)
669. Larus brachyrhynchus Rich. Short-billed Gull. (Downy young.)
[671.] Larus canus Linn. Mew Gull. (Downy young.)
670. Larus heermanni Cass. Heerman's Gull. (Downy young.)
671. Larus franklini Sw. \& Rich. Franklin's Gull. (Downy young.)
672. Larus philadelphice (Ord) Gray. Bonaparte's Gull. (Downy young.)
673. Rhodostethia rosea (Macgill.) Bruch. Ross's Gull. (Adult and downy young.)
674. Xema sabinci (J. Sabine) Leach. Sabine's Gull. (Downy joung.)
*678. Creagrus furcatus (Neb.) Bp. Swallow-tailed Gull.
675. Sterna caspia Pall. Caspian Tern. (Young in first plumage.)
676. Sterna regia Gamb. Royal Tern. (Young in first plumage and downy young.)
677. Sterna elegans Gamb. Elegant Tern. (Young in first plumage and downy young.)
678. Sterna cantiaca acuflavida (Cabot) Ridgw. Cabot's Tern. (Downy young.)
679. Sterna trudeaui Aud. Trudeau's Tern. (All stages, but especially summer adult and young, all ages.)
680. Sterna dougalli Montag. Roseate Tern. (Downy young.)
681. Sterna aleutica Baird. Aleutian Tern. (Downy young.)
682. Sterna fuliginosa Gml. Sooty Tern. (Downy young.)
683. Sterna ancestheta Scop. Bridled Tern. (Downy young.)
684. Hydrochelidon leucoptera (Weisn. \& Schinz.) Boie. White-winged Black Tern. (Downy young; young in first plumage; winter adult.)
685. Anous stolidus Linn. Noddy Tern. (Downy young; young in first plumage.)
686. Megalestris slana (Briinn.) Ridgw. Skua Gull. (Downy young.)
687. Stercorarius pomatorhinus (Temm.) Vieill. Pomarine Jaeger. (Downy young.)
688. Stercorarius crepidatus (Banks) Vieill. Richardson's Jaeger. (Downy young.)
689. Stercorarius parasiticus (Linn.) Saunders. Long-tailed Jaeger. (Downy young and melanotic specimens of adult.)
690. Phobetria fuliginosa (Gmel.) Bp. Sooty Albatros. (American specimens and downy young.)
691. Ossifraga gigantea (Gm.) Reich. Giant Fulmar. (American specimens and young in down.)
705a. Fulmarus glacialis pacificus (Aud.) Bp. Pacific Fulmar. (Young in down.)
692. Priocella tenuirostris (Aud.) Ridgw. Slender-billed Fulmar. (American specimens and downy young.)
$\dagger 707$. Priofinus melanurus (Bonn.) Ridgw. Black-tailed Shearwater. (American specimens and downy young.)
$\dagger$ 708. Puffinus kuhli (Boie) Bp. Cinereous Shearwater. (American specimens and downy young.)
693. Puffinus Creatopus Cooper. Pink-footed Shearwater. (Downy soung.)
[711.] Puffinus anglorum Temm. Manx Shearwater. (American specimens and downy young.)
694. Puffinus gavia (Forst.) Finsch. Black-vented Shearwater. (Especially young in down.)
695. Puffinus griseus (Gm.) Finsch. Dark-bodied Shearwater. (Especially young in down.)
696. Puffinus tenuirostris Temm. Slender-billed Shearwster. (Series; young in down.)
697. Estrelata hrsitata (Temm.) Coues. Black-capped Petrel. (Series; young in down.)
$\dagger$ 718. Estrelata buluceri (Jard. \& Selby) Coues. Bulwer's Petrel. (Series, including downy young.)
698. Halocyptena microsoma Coues. Least Petrel. (Series, including downy young.)
699. Cymochoren melana (Bp.) Coues. Black Petrel. (Series, including downy young.)
700. Cymochorea homochroa Coues. Ashy Petrel. (Series, including downy young.)

- 727. Oceanodroma hornbyi (Gray) Bp. Hornby's Petrel.
+Fregetta grallaria (Vieill.) Bp. White-bellied Petrel.

730. Achmophorus clarki (Lawr.) Cones. Clark's Grebe. (Downy young.)
731. Podiceps holbölli Reinh. American Red-necked Grebe. (Young in down.)
732. Dytes auritu\& (Linn.) Ridgw. Horned Grebe. (Young in down.)
t733. Dytes nigricollis (Brehm.) Ridgw. Eared Grebe. (American specimens; young in down.)
733. Colymbus torquatus Brinn. Loon. (Downy young.)
734. Colymbus adamsi Gray. Great White-billed Loon. (Especially downy young.)
735. Colymbus arcticus Linn. Black-throated Diver. (Downy young.)
736. Colymbus pacificus Lawr. Pacifle Diver. (Downy young.)
737. Colymbus septentrionalis Linn. Red-throated Diver. (Downy young.)
$\dagger$ 741. Alca impennis Linn. Great Auk.
738. Ctamania torda (Linn.) Leach. Razor-billed Auk. (Downy young.)
739. Fratercula arctica (Liun.) Steph. Common Puffin. (Downy young.)
-743 a Fratercula arctica glacialis (Leach) Ridgw. Large-billed Puffin.
740. Ceratorhina monocerata (Pall.) Cass. Horn-billed Puffin. (Downy young.)
741. Phaleris psittacula (Pall.) Temm. Parrot Auk. (Downy young, young in first plumage, and winter adults.)
742. Simorhynchus cristatellus (Pall.) Merrem. Crested Auk. (Downy young.)
743. Simorhynchus pygmax (Gmel.) Ridgw. Whiskered Auk. (Adults in breeding plumage and in winter; downy young.)
744. Ptycorhamphus aleuticus (Pall.) Bonap. Cassin's Ank. (Downy young.)
745. Alle nigricans Link. Sea Dove ; Dovekie. (Downy young.)
746. Synthliborhamphus antiquus (Gm.) Coues. Black-throated Guillemot. (Downy young.)
747. Synthliborhamphus vurmizusume (Temm.) Cones. Temminck's Guillemot. (Series, all stages.)
748. Brachyrhamphus marmoratus (Gm.) Brandt. Marbled Gaillemot. (Downy young.)
749. Brachyrhamphus kittlitzi Brandt. Kittlitz's Guillemot. (Series, all stages, but especially downy young.)
750. Brachyrhamphus hypoleucus Xantus. Xantus's Guillemot. (Summer adults and downy young.)
751. Brachyrhamphus craveri (Salvad.) Coues. Craver's Guillemot, (Summer adults and downy young.)

* 759. Brachyrhamphus brachypterus Brandt. Short-winged Guillemot.
- 762. Uria carbo (Pall.) Gray. Sooty Guillemot.


## ON GEMPER'M METHOD OT MAKING DHT PEERARATIOT\&。

In the Jonrnal of the Royal Microscopical Society of London for August last it is stated that "Herr Semper recently exhibited to the Wiirzburg Society some zoological and anatomical preparations which had been prepared by a new method for dry preservation. After being hardened in a solution of chromic acid [the strength to be regulated according to the delicacy of the object and varying from one-half to one per cent.], the objects are placed in alcohol [ 95 per cent. will answer] th remove the water and afterwards steeped in oil of turpentine and finally dried. The tissues, while drying, are permeated by innumerable smal. air-bubbles, and in consequence the preparations retain their origins form without sensibly shriuking, while in color they assume a white tiv similar to a gypsum model. The finished preparation, which is almot pure white, and which possesses a firm, leathery consistency, may br painted with colors in parts as may be required for teaching purposes The preparations produced were partly complete animals-mussel, annelida, and so forth-with the viscera of various vertebrate and iuser tebrate animals. A preparation of a cat's eye showed that, after drying. the position of the parts-the lens, ciliary processes, aud so forthunderwent no change. A microscopical preparation of brain, treated on this method, proved that still simpler microscopic relations wes retained after the drying-and, particularly with carmine coloring, could be distinctly recognized.

Herr v. Kölliker pointed out the advantage to be derived from this method, especially the possibility of adapting the preparations for special demonstration by painting. $\dagger$

The utility of a method of preparation of this kind for moderatels sized animals, usually treated as alcoholics, will at once be apparent. If would be possible to paint the subject either in the natural colors of life. or, in the case of anatomical preparations, to indicate the parts by the use of arbitrary, conventional tints. While these preparations would be readily combustible, they would be light and absolutely free from the attacks of Dermestes, those well-known museum pests. As a most in structive method of making dry preparations for museum display, eithes of whole animals or of their auatomy, it certainly deserves a trial, as it is a much neater and cleaner method than the Wickersheimer plan, in which glycerine enters as an important element, and which would be objectionable because the object could never be thoroughly dried, but would always be sticky and disagreeable to handle and liable to soil the shelves of the musenm cases. In order to make the preservation effectual, after dehydration in 95 per cent. alcohol, which is strong enough

[^114]for the parpose, the preparation ought to be allowed to become thoroughly saturated with the oil of turpentine; the time which it will take to do this will of course depend upon the size and thickness of the object treated. The principle involved in this method is the same as that applied in making balsam or damar preparations on slips for the microscope, ouly that after dehydration is effected oil of cloves is used to make the object transparent instead of turpentine, although the latter is also used. The preparation is then covered with a drop of balsam and the cover-glass put on, when you have a specimen that, with a little care, will last a lifetime. The Semper is simply the microscopic method adapted to large objects which could not be mounted upon slides, and I see no reason why they should not be equally as durable as microscopical balsam preparations. It is equally important that the strong alcohol should completely saturate the specimen, else the turpentine will not find its way into all parts of it so as to render it indestructible when dry. Two or three hours would probably suffice for the saturation with alcohol or turpentine of moderately large specimens. The hardening in the chromic acid solution would require from 12 to 24 hours, according to the size of the object. This method is also free from the objection which applies to Wickersheimer's, that there are no corrosive metallic poisons used.

By placing the vessel containing the preparation as immersed under an air pump, the penetration of the liquids will be facilitated.

##   HCERPTION* OE NEW APECEES.

## BY DAVID S. JORDAN nIA CIIARIES II. GILBERT.

During the autumn of 1880 a cruise along the west coast of Mexico and Central America was made by the U. S. Coast and Geodetic steamer Hassler. Lieut. Henry E. Nichols, the officer in command, took much pains to make collections of fishes whenerer they were obtainable. As a result of his labors we have the small but extremely valuable collection noticed in the present paper. It will be observed that twelve of the specimens came from the Revillagigedo Islands, in the open sea to the westward of Mexico, a locality where no collections of fishes had been previously made by any one. Six of these specimens belong to species new to the fauna of North America.

We give an enumeration by localities of the species in the entire collection, with the number borne by each specimen on the records of the United States National Museum.
A.-Whaler's Bay, Guadalupe Island, Lower California.

1. Pseudojulis modestus (Girard) Gthr.
2. Pseudojulis modestus (Grd.) Gthr. (No. 28,391 U. S. Nat. Mus.)

Proc. Nat. Mus. $81-15$

Dec. 24, 1881.

## B.-Sulphur Bay, Clarion Island.

3. Caranx orthogrammus sp. nov. (No. 28,345 U. S. Nat. Mus.)

Allied to Caranx ferdau and C.gymnostethoides; species with nearly straight lateral line, many-rayed dorsal and anal, and feeble teeth.

Body elliptical, compressed, the back regularly but not strongly arched. the ventral outline forming a rather even but tess convex curve. Head longer than deep, rather pointed in profile, its median ridge somewhat elevated. Mouth low, oblique, the maxillary extending to nearly oppo site front of pupil, its length $2 \frac{1}{3}$ in head; lower jaw slightly projecting.

Teeth all equally minute, in villiform bands on jaws, vomer, palatiues, and tongue. Fye large, broader than preorbital, ite diameter $1 \underline{d}$ in length of snont, 4 in bead. Adipose eyelid little developed. Cheehs and temporal region with tine scales; rest of head naked.

Scales rather small, those below pectorals smaller; a naked area on breast, becoming wider forwards from base of ventrals. Lateral line almost straight, slightly undulated and curved upwards above pectorak, becoming straight by almost imperceptible degrees opposite lobe of anal. Greatest depth of the arch less than diameter of papil; the length of straight part less than that of the curve. Plates developed only on the - posterior third of the straight part; the plates small, with low keelk, their spines little prominent; 15 to 18 plates developed, including small ones, in front of which are about 40 ordinary scales on the straight portion of the lateral line.

Spinous dorsal very small, of three weak spines slightly connected by membrane, the highest spine not longer than diameter of puril (these spines, probably, more mumerons and larger in young examples) Soft dorsal long and low, with slender rays; a well-developed scals basal sheath anteriorly. Elevated rays in front a little more than onethird the base of the fin, a little more than half length of head; anal shorter than dorsal, its anterior lobe equally high, and with a similar basal sheath. Free anal spines obsolete in typical specimen. Caudal lobes moderate, equal, as long as head, their length equal to the depth of the in from tip to tip. Pectoral fin falcate, its tip very slender, reaching eighth ray of anal, its length $2 \frac{1}{2}$ in body. Ventrals short, -2 in head.

Head 23 in length to base of candal; depth 33.
Fin rays: 1). 1II-I, 32. A. II-I, 26.
Coloration in spirits, smutty olivaceous, everywhere irregularls clouded with darker, the belly scarcely paler than the back; opercular spot obsolete. Dorsal, anal, posterior border of caudal, and tips of ventrals blackish; fins otherwise dull olivaceous.

A single specimen of this species, 16 inches in length, was obtained by Lieutenant Nichols, at Sulphur Bay, Clarion Island, off the west coast of Mexico.

It is certainly very close to Caranx ferdau (Günther, Fisćhe Sudsee.
ii, 134, taf. 87,88 ), but it seems to differ in color and in the armature of the lateral line.
4. Caranx lugubris* Poey. (No. 28,375 U. S. Nat. Mus.)

Body oblong-orate, compressed, deep, the back elevated, but not arched. Profile gibbous from the occiput forward to above eye, thence straight and steep at a considerable angle to a point in front of nostrils, whence the snout again projects at a strong augle. Outline of back nearly straight from the occipnt to the front of the second dorsal, thence declining regularly to the caudal peduncle. Ventral outline nearly straight from the lower jaw to the origin of the anal, the base of which is placed at a similar angle to that of the soft dorsal.

Head large, very deep, deeper than long; occipital ridge not sharp. Mouth large, the broad maxillary reaching to opposite front of pupil. Lower jaw strong, the chin projecting when the mouth is closed. Teeth in the upper jaw in a narrow villitorm band, with an outer series of larger, conical teeth, six to eight in number on each side, subequal and regularly arranged. Lower jaw with a single series of teeth similar to the larger teeth of the upper jaw, a few smaller teeth intermixed with them. No differentiated canine teeth. Villiform teeth on vomer, palatines, and tongue. Gill-rakers rather long, close-set, three-fifths. diameter of eye. Eye large, with a distinct adipose eyelid, its diameter equal to that of the broad preorbital, which is wider than the maxillary, 4.2 times in length of head.

Cheeks closely scaled; opercles mostly naked below; a few scales on subopercle and interopercle. Scales on body not very small; breast closely scaled. Lateral line with a moderate curve anteriorls, becoming straight at front of anal; the length of the arch being less than two-thirds that of the straight part; greatest depth of the arch about one-fifth its length. Armature of lateral line beginning at the curve; the plates rather large, very broad, twenty eight in number. Fins with very few srales or none.

Spinous dorsal moderate, the spines rather strong, its last spine stont and free, nearly horizontal. Second dorsal falcate, the longest rays more than half the length of its base. Posterior part of the fin rather low, rising well above its low basal sheath of scales which terminates near the middle of the fin; anal similar to soft dorsal, its anterior rays more than half the base of the fin. Free anal spines moderate. Caudal lobes rather broad, equal, not very long, the upper as long as from snout to edge of opercle; depth of the fin from tip to tip, about eqnal to depth of head. Ventral fins short, not filamentous, as long as from snout to end of maxillary. Pectoral extremely long, falcate, reaching to the tenth plate of the lateral line, or about to serenth anal ray, its length 23 in that of body, less than than the greatest depth of the body.

Fin rays: D. VII-I, 21. A. II-I, 18.

[^115]Head $3 \frac{1}{3}$ in length to base of candal; greatest depth $2 \frac{3}{3}$.
Color sooty blackish, nearly uniform, the belly not paler than the back. A black spot at angle of opercle, none on pectoral. Ventrals, anal and dorsal wholly black, as are the shields of the lateral line.

The single specimen of this species (No. 23,3ki) 18 inches in length, was obtained by Lientenant Nichols, at Sulphur Bay, Clarion Island, off the west coast of Mexico. It seems to be identical with the fish figured by Dr. Giinther (Fische Sudsee, taf. 85) as Caranx ascensionis, from Kingsmill Island, but the orignal Scomber ascensionis of Osbeck is evidently a different species.
5. Balistes mento sp. nor. (No. 28,387 C. S. Nat. Mus.)

Body oblong, elliptical, slightly heariest forward; dorsal and ventral outlines similar, neither much arched. Body not strongly compressel. its greatest thickness a little less than half its greatest depth. Mouth very small, terminal, higher up than usual, nearly in the line of the asis of the body, the chin protruding besond it ; width of the mouth from angle to angle abont equal to the diameter of the eye. Lower jaw the longer, its teeth slightly directed backward; upper jaw with its teeth directed slightly forwards, shutting outside of the lower teeth. Teeth pale brownish, somewhat unequal; lower teeth wedge shaped, broadest and nearly truncate at tip; teeth of the npper jaw obliquely truncate, slightly emarginate, the outer angle pointed and projecting. Abont eight teeth in the outer row ; the mouth so closely shut that the inner row cannot be seen.

Eye small, high and well back, its diameter contained nearly twice in the interorbital width, 3 in snout. A groove in front of eye below the nostrils, about as long as the diameter of the eye. Five narrow grooves on the cheek below the eye, extending from near the mouth backward toward the base of the pectoral.

Height of gill-opening slightly greater than diameter of eye, its lowes edge opposite middle of pectoral.

Scales of body comparatively small, not very rough. Scales of belly somewhat reduced in size, arranged in oblique series running downwand and backward from the pectoral region, these forming a contrast in direction with the scales of the sides. Scales on caudal peduncle without keel or spines, similar to those on rest of body; scales on posterior portion of sides slightly carinate, forming low ridges along the rows of scales. Gill-opening surrounded by small scales and withont larger plates.

First dorsal spine very robust, placed somewhat behind eye, its beight a little more than twice diameter of ese, the deep dorsal groose as long as the spine. Second spine short and slender, its length about equal to diameter of eye. Third dorsal spine rholly wanting.

Soft dorsal rather high, its lougest rays more than half the length of the base of the fin, 1 is in head; anal similar, its base a little shorter, a few series of small scales covering the base of each in; caudal moderate, lunate, its depth from tip to tip more than its length, and $1+$ times
in length of head. Caudal peduucle subterete, deeper than broad. Ventral spine slightly movable. Pectoral short, rounded, less than half length of head.

Head $3 \frac{1}{2}$ in length; depth $2 \frac{2}{3}$.
Dorsal rays II-I, 29. Anal I, 20.
Lat. 1. 37; 23 scales in an oblique series upward and forward from front of anal.

Coloration in spirits, dark olive abore, rather pale below, the skin between the scales somewhat darker; scaly basal part of dorsal and anal abruptly black; membrane of these tins yellowish, the tips dusky. Scaly base of caudal dark brown, the medial part lighter brownish; a lunate band at tip yellowish; pectorals olivaceous.

One specimen of this species, $10 \frac{1}{2}$ inches long, was taken by Lieutenant Nichols at Clarion Island. It differs from all the known species of Balistes in the presence of but two spines in the dorsal. If this be not an accidental variation, the species should probably be taken as the type of a distinct genus. The small high mouth gives a somewhat peculiar physiognomy.

> C.-Braithwaite Bay, Socorro Island. (Taken with hook.)
6. Epinephelus sellicauda Gill. ( $28,213$.
7. Epinephelus sellicauda Gill. (28,237.)
8. Dermatolepis punctates Gill. (28,214.)
9. Dermatolepis punctatus Gill. (28,223.)
10. Pimelepterus lutescens sp. nov. (No. 28,371 , U. S. N. M.)

Body oblong-elliptical, robust; the dorsal and rentral outlines moderately and nearly equally arched. Head bluntish; the protile evenly curred, without depression in front of the eye; the preorbital region less gibbous than in $P$. bosci. Month terminal, the lower jaw slightly the shorter, the broad maxillary reaching to opposite the frout of the eye, its width about equal to that of the preorbital.

Teeth in both jaws broad, rounded or subtruncate, in single rows, the horizontal roots longer than the crown, but not twice as long; about 36 teeth in each jaw. Behind the large teeth in each jaw is a band of rasplike asperities. Gill-rakers short.

Preopercle with its angle rounded and membranaceous, the vertical limb straight and minutely serrulate. Cheeks with four rows of large scales, besides several series of smaller ones. Preorbital, jaws, snout, rim of eye, and rounded part of preopercle naked; the head otherwise closely scaly.

Scales on body rather small, firm, smoothish; those on breast smaller; fins, as usually, with the soft parts covered with small scales.

Dorsal spines rather high and strong, the middle ones highest, higher than the soft rays, nearly twice the height of the last spine, and half the length of the head, $3 \frac{2}{5}$ in greatest depth of body. Soft dorsal rather high, not at all falcate, the first rays two fifths the length of the head.

Anal fin similar, shorter and higher, the spines graduated, the longest rays more than half length of head.

Caudal wide, moderately forked, the lobes equal, the longest a litile longer than head; the depth of the fin. from tip to tip, about equal to greatest depth of body. Pectorals short, slightly longer than ventrals; as long as from snot to edge of preopercle. Ventrals placed well behind pectorals, not reaching vent.

Head 32 in length; depth 24.
Dorsal rays, XI, 11; Anal, III, 11. Scales, 12-67-22.
Coloration in spirits nearly uniform light grayish, without distinet markings; golden yellow in life, according to Lieutenant Nichols; rety faint darker streaks present along the rows of scales. Preorbital, sulorbital, and preopercle bright silvery; lower jaw silvery; both jaws dusky at tip. Fins all pale. A very obscure darker bloteh in frout of base of pectoral.

One specimen, abont 15 inches in length, taken by Lientenant Nichols at Braithwaite Bay, Socorro Island. It differs from P. bosci, in form, in color, and in the greater development of nearly all the fins.
11. Caranx melampygus Cur. \& Val. (No. $2 \mathrm{~s}, 355 \mathrm{U} . \mathrm{S} . \mathrm{N} . \mathrm{M}$.

Body oblong ovate, compressed, the back arched, the profile not steep, the curve from snout to dorsal being a nearly regular are; ventral outline nearly straight from the chin to front of anal, where an angle is formed with the ascending base of the anal.

Head moderate, compressed, not blunt in profile, the occiput and interorbital region elevated and considerably carinated. Mouth moderate. low, oblique, the lower jaw prominent, scarcely projecting beyond upper; maxillary barely reaching to opposite the front of the small eye. L"pper jaw with a band of villiform teeth, in front of which is a row of strong teeth, about ten on each side, the anterior largest, larger than in most species, but hardly canines. Lower jaw with a single row of rather large teeth, irregularly placed, much smaller than the larger teeth of the upper jaw; villiform teeth on vomer, palatines, and tongne. Eve small, placed high and far back; adipose eyelid small. Diameter of eye 2 in length of snout, 14 in the depth of the broad preorbital, $2 \frac{2}{2}$ in the post-orbital part of head, and 2 in interorbital area. Cheeks and upper part of opercles with small scales; rest of head naked. Gill. rakers long and strong, as long as eye.

Scales rather small; breast closely scaled; lateral line not strongls arched, becoming straight opposite front of aual, its curred part $1 \frac{1}{8}$ in length of straight part. Plates on anterior portion of straight part scarcely different from ordinary scales; those on posterior portion mod. crate, with high keels and appressed spines; 37 plates in all, couuting from begiuning of straight part.

Spinous dorsal moderate, the spines slender, rather high. Procumbent dorsal spine obsolete. Soft dorsal low, falcate in front, the longest ray little more than half the base of the fin, or $1 \frac{1}{2}$ in length of head.

Anterior part of the fin with a distinct scaly basal sheath, which becomes obsolete at about the 14 th ray. Anal tin similar to soft dorsal, a little shorter and lower, its scaly sheath more developed; free anal spines moderate. Caudal fin widely forked, its lobes subequal, $1 \frac{1}{3}$ in head; distance from tip to tip more than the length of either lobe. Pectorals long and falcate, their tips reaching sixth anal ray, longer than head, and a trifle less than greatest depth of body. Ventrals short, one-third length of pectorals.

Coloration in spirits olivaceous; dark above; pale below, but nowhere silvers ; top of head clear olivaceons; opercular spot obsolete; lower jaw soiled golden; no pectoral spot; base of pectoral somewhat dusky; small irregular dark brown spots, sinaller than the pupil and irregular in size, scattered without order over the body, rather most numerous about the pectorals. Caudal fin dusky, especially on its posterior edge; dorsal and anal dusky, their lobes black; ventrals dusky at tip; pectorals olivaceous.

Head $3 \frac{1}{2}$ in length (without caudal); greatest depth, $2 \frac{3}{4}$; pectoral, $2 \frac{5}{5}$; length of type, 20 inches.

Fin rays: D. VIII-I, 22. A., JI-I, 19.
A single example of this species was taken by Lientenant Nichols, with a hook, in Braithwaite Bay, Socorro Island, off the west coast of Mexico. It agrees very closely with the description and figure of Caranx melampygus giren by Günther (Fische Sudsee ii, 133, taf. 86.) 12. Platyglossus nicholsi sp. nov. (No. 28,218 U. S. N. M.)

A species of the ordinary type, without sharp markings of any kind. Body rather deep; the profile steep, evenly curved; the snout moderately pointed. Teeth strong, the posterior canines especially so. Head eutirely naked; scales on breast not much reduced. Dorsal spines very slender, flexible. Pectoral fin $1 \frac{3}{3}$ in length of head, reaching as far as the slender tips of the reutrals. Candal fin rounded, its angles not at all produced.

Coloration in spirits, plain olivaceous abore, sides brownish, belly paler; an obscure dusky bar across middle of spinous dorsal and extending down the sides; some of the scales of back with dark lines. Soft dorsal and anal fins with not very numerous small, round dark spots, especially posteriorly; otherwise plain; spinous dorsal dusky. The coloration may have been bright in life, but there could never have been any sharp markings.

Head $3 \frac{1}{2}$ in length ; depth $3 \frac{1}{2}$.
1). IX, 12. A. III, 11. Scales 2-28-8.

This species is known to us from a single example, $10 \frac{1}{2}$ inches long, taken by Lientenant Nichols at Braithwaite Bay, Socorro Island. It is readily distinguished from the only two members of the genus thus far discovered on the western coast of tropical America, P. dixpilus Giunther, and $P$. semicinctus (Ayres). It is impossible, from descriptions alone, to compare it satisfactorily with the numerous West Indian
and East Indian species of the genus, but, as all are local in their range, ours is probably a species different from any of them.

> D.-San Blax, Mexico.
13. Pomadasys fyrthi (Steindachner.) J. \& G. (28,225.)
14. Lutjanus prieto Jor. \& Gilb. (Mss.). $(\because 8,253$.
15. Centropomus pedimacula Poey.
16. Gerres axillaris Githr. (28,255.)

> E.-Acapulco, Mexico.
17. Rpinephelus analogus Gill. ( $28,235$. )
18. Pomadasys lelciscus (Gthr.) J. \& G. (28,257.)
19. Lutuanus caxis (Bloch.) Poey. (28,254.)
20. Cynoscion reticulatum ( G iinther) J. \& G. (28,250.)

> F.-Porto Escondido, Mexico.
21. Pimelepterus analogus Gill. (28,270.)

This species is closely related to $P$. bosci Lac., differing in the larger scales and greater depth of the body.
22. Caranx caballes Gthr.
23. Trachynotus fasciatus Gill.
24. Mugil brasiliensis Ag. (28,244.)
G.-Salina Cruz, Mexico.
25. Centropomus robalito Jor. \& Gilb. (Mss.) (28,245.)
26. Gerkes rhombel's C. \& V.
27. Durmitator maculatus (Bloch) Gill.
$\because 8$. Philipnus lateralis Gill. ( $28,252$. )
29. Philypnus lateralis Gill. (28,269.)
30. Chanos salmoneus (Forst.) C. \& V. (28,240.)

> I.-La Union, San Salvador.
31. Cynoscion squampinne (Giinther) Streets. (28,260.)
32. Sclena aluta* sp. nov. (No. 28,129 U. S. N. M.)

Allied to 太ciana chrysoleuca (Giinther).
Form rather elongate, the back a little elevated and compressed; caudal peduncle especially long and slender. Head rather broad above the eyes, somewhat depressed, so that the anterior profile is a little concave, in front of which the snout is rather abruptly truncate. Interorbital space a little broader than the large eye, the diameter of which is about equal to the length of the snout, and contained about four times in the length of the head. Width of preorbital two-fift hs the diameter of the eye. Preopercle strongly serrated, the three lowest serreradi-

[^116]ating, the lowest and largest one turned downward and forward. Lower jaw included, considerably shorter than upper. Snout scarcely projecting beyond premaxillaries. Mouth nearly horizontal; premaxillary much below the level of the eye; maxillary extending to just beyond middle of eye. Teeth in both jars in narrow villiform bands, the outer teeth in the upper jaw somewhat enlarged; those in the lower jaw all small. Sides and top of head somewhat cavernous, the surface yielding to the touch. Gill-rakers shortish, rather slender, about as long as pupil. Pseudobranchis large.

Dorsal fin divided nearly to base, the spines not very high, rather flexible, the longest little more than half length of head; second spine a little stouter than third, and nearly as high. Second dorsal rather low. Second anal spine strong, about half length of head, three-fourths height of the soft rays; distance from front of anal to caudal 13 in length of body; distance from vent to anal a little more than half length of sicoud anal spine. Caudal fin long, double truncate, the middle rays produced, as long as from suont to edge of preopercle; caudal pedunclo (from end of anal) $1 \frac{1}{1}$ in head; anal ending in adrance of end of dorsal, its first spine in advance of middle of soft dorsal. Ventrals long, the second ras fildmentous, reaching vent. Pectorals rather short, as long as caudal.

Scales large, those on breast not much smaller. Soft parts of rertical fins scaly toward the base.

Lower pharyngeals narrow, with small, slender, pointed teeth, those of the series on the inner edge of the bone much enlarged, also very slender.

Head $3 \frac{2}{3}$ in length to base of caudal; greatest depth, 3 .
D. X-I, 18. A. II, 8. Lat. 1., 44; 5 scales in a vertical series from front of dorsal to lateral lines.

Color light reddish brown, dingy with dark punctulations. Ground color a light coppery shade, little silvery; each scale with many dark points and a smutty edging; the general hue the same above and below; no distiuct markings. Preorbital of a soiled silvery. Fins similarly dusky, the caudal jellowish, the anal almost black. Inside of opercle dusky.

This species is known to us from one specimen, $7 \frac{1}{2}$ inches in length, numbered 28,129 on the National Museum Register. It was collected at La Cnion, on the Gulf of Fonseca, in San Salvador, by Lieut H. F. Nichols.
33. Mugil brasiliensis Ag. (29.644.)
34. Eluricithys panamensis Githr. $(28,192$.

Indiana University, November 5, 1881.

## REPORT ON TER CONTENTSOF TWO BOTTIES OF WATEEEROM TIE GUIT OF MEXICO, TOEWARDED HY TEE BMITBSONIAN INETETETION.*

By DR. W. G. FARLOW.

When received in Cambridge, May 14, 1881, the water of both bottles gave out an excessively disagreeable odor of putrefying organic matter, and ammonia was given off in cousiderable quantities, as was shown by holding a rod moistened with hydrochloric acid over the mouths of the bottles. In one bottle there was a greenish-colored, slimy deposit an inch deep, and the water above was clear. In the second bottle the water wasurbid throughout and of rather a brownish color.

The microscopic examinations showed that the contents of the two bottles were alike. The greater portion of the matter contained in the water consisted of a mass of amorphous slime, in which were numerons crystals, apparently of a fatty nature. There were, besides, a large quantity of eggs of some animal, which were easily recognized, although partially decomposed, and the remains of small crustacea. In addition to the animal substances mentioned were remains of plant tissues, leares and young stems, pine pollen, and diatoms of four or five different species.

From what has been said, it is evident that the slime in the water must have been at some time not far from the land, or else that the bottles used, or the water after it had been collected, must have been exposed to the air for some time.

It is my opiuion that the trouble is not cansed by the presence of any vegetable substance, but that the presence of the latter is accidental. The slimy mass probably originated from a mass of eggs which, for some reason or other, were killed near the surface of the water, and the smaller crustaceans in the neighborhood have been involved in the general mass of slime.

## REMAINA OF THE WALIECH (P) IN THANE.

## By C. H. BOXD.

## Addison Point, Washington County, Mane,

 October 8, 1881.Dear Sir: I have the honor to make the following statement of finding the partly fossilized bones of a walrus (i), in expectation that it may possibly prove of interest in connection with investigations of the Smithsonian, as tending to show the range of the walrus thus far south, or that this climate was more Arctic in time past.

[^117]Yesterlay, hearing that the bones of a large animal were washing out of a clay bank at Reef Point, on the eastern side of the Pleasant River, 3 miles below this village, I visited the spot to see some of the remains in situ. I then dug ont several pieces of rib and a forearm.

The Point, which is in cultivation, is 15 feet above high water, and has been washing away for many years. Mr. Oliver Look, the owner of the property, informs me that it has washed off 100 feet within the last sisty years. He also showed me a tusk with a portion of the socket attached, which he dug out here a few dass since, and from which I jurde the remains to be those of a walrus. I inclose a rough sketch and also a small piece of scale from the tusk that came off in my hand while making the sketch. These bones are in stiff blue clay about 2 feet above high water in a nearly vertical bauk, there being 6 feet of the clay above them and above that some 6 feet of gravel and soil.

Nearly opposite, on the west side of the bay, I found a kitchen midden, now covered with a growth of hard wood. From it I obtained, by digging, three picces of chipped flint and a bear's tooth.

The exact location of both these "fuds" can be obtained, if desired, from our topographical sheet now in progress, by application to Profes. sor Hilgard, assistant in charge of the Coast and Geodetic Surver.

Vers respectfully, your obelient servant,
C. H. BOYD, Assistant, C. and G. Survey.

Prof. Spencer F. Baird, Secretary Smithsonian Institution.

## DIEECTIONS FOR COLIECTING AND PRESEREINGEIBEI.

## By TALLETON II. BEAN.

1 Wash the fish thoroughly in water, to remove the slime and dirt that are almost invariably present upon them, not omitting the inside of the mouth and the gills. In cleansing fish that have a tough, scaleless skin, or such as have the scales firmly fixed, use a stiff paint brush or a scrubbing brush; for thin-wkinned fish and such as have deciduous scales, a softer brush must be taken. Some fish are covered plentifully with tenacious mucus that is with great difficulty removed by water alone; in such cases a solution of two tablespoonfuls of alum in a pint of lukewarm water will be found efficacious.
2. It is often necessary to preserve fish that are stale, or partiall, digested, and offensive to the smell. Such examples may be thoronghly disinfected by the use of the disinfecting solution of chloride of soda. Use a tablespoonful of the solution in one pint of water. With this wash the gills, and pour it into the mouth and stomach, allowing it to return by the mouth.
3. Inject alcohol in the mouth and the vent, to preserve the viscera. Make small incisions in the belly and in thick parts of the body, to allow the alcohol to penetrate the tissues. It is nearly always desirable to rehove the liver, stomach, and intestines from large tish, and to preserve these separately, numbering them so as to correspond with the fish from which they are taken.
4. It is a good plan to keep freshly collected fishes in weak alcohol for a day or two; a mixture of two parts of 95 per cent. alcohol to one of water will answer for this temporary immersion. Some species are exceedingly soft and flabby, falling to the bottom of a glass jar or other receptacle, becoming partly imbedded in their own mucus, and rapidly disintegrating in consequence. Such specimens should either be suspended in the alcohol by a thread or string from the neck of the jar or the hook sometimes found on the inside of the stopple, or a bed of excelsior or muslin should raise them from the bottom; these are necessary precautions which will prevent many losses. After the fish have been kept for not more than two days in the weak alcohol, transfer them to a mixture of three parts of 95 per cent. alcohol to one of water. Ordinarily this latter will preserve specimens that are not crowded too much at least three months; some, of course, will remain in good condition still longer; but, generally, three months will reduce the preservative power of the liquid so far as to make a renewal of alcohol necessary. The tendency with many collectors is to overcrowd specimens, and, as a result, museums frequently receive a lot of half-rotten material which is too valuable to be thrown away and is yet always a source of tronble and disappointment. A jar, tank, or case of any kind should never be expected to accommodate more than half its own bulk of fish, and even this proportion will require watchfulness to avoid loss. If a collection freshly canght is to be shipped to a distant museum or private collection, observe the directions about cleansing the fish and preserving the viscera separately if needful, and then use nothing weaker than a mix. ture containing three parts of 95 per cent. alcohol and one part of water. A good mixture which will carry fish in very nice condition is the following: 95 per cent. (or absolute) a'cobol, 3 quarts; water, 1 quart; glycerine, 1 pint; borax, 1 ounce. There is nothing better, however, than the mixture of three parts of alcohol and one of water.
5. The extensive collections of the United States Fish Commission are usually packed in copper tanks, which are tin-lined within. The lid of the tank is made to screw in the top and its diameter is always as great as the dimensions of the top will allow. The tanks (called Agassiz tanks) are made to contain 4, 8, or 16 gallons. Strong chests, of a size large enough to accommodate a 16 .gallon tank, are used for shipping; the hinges and hasps of these chests are riveted on; bandles are screwed on at the sides, and each chest is furnished with a strong lock. The chest may contain one 16 -gallon tank, or two of 8 gallons, or four of 4 gallons, or one of 8 gallons and two of 4 gallons, as may best
suit the convenience of the collector. When several tanks make up the complement it is usual to separate them by thin wooden partitions.

Cases made of ordinary tinned sheet-iron are much more generally used than the expensive copper cans, and they will answer well enough if the joints are perfectly tight and the top is securely soldered on.

Oak kegs, holding about 10 gallons each and provided with iron hoops, are capital containers for large fishes, and they will stand the wear and te ir of railway travel better than most other receptacles.

Glass preserving.jars may be shipped long distances with comparative safety, but they must be tested, by inverting them, to insure tightness; the top of the jar and the rubber band should be wiped dry; wrap the jars in strong paper and pack them in some material that will prevent breakage.

When corked bottles are used, tie a piece of bladder seciurely over the cork. Where seals and sea-lions occur, the throat, as prepared by the Aleuts for example, will be found an excellent covering. It is necessary to wet the membrane to make it pliable. Whenever jars, bottles, or any other small containers are filled with fish which are not provided with tin tags, write plainly with a lead-pencil on heavy manila or writingpaper the name of the place where the fish were taken, the date of capture, aud the name of the collector. Put a label of this kind inside of each bottle; it will remain legible for years.
6. Lach specimen should be provided with a numbered tin tag, which is to be fastened, whenever possible, by means of a string passed through the right gill-opening and out at the mouth. When the string must be tied around the body or tail of the fish it should be fixed securely and yet without injuring any of the fins. A catalogne is to be kept by the collector, in which the numbers corresponding with those on the tags must be entered, with notes as to place, time, and mole of capture, and other particulars which will be more fully mentioned further on. Wrap each fish separately in common coarse muslin (the coarser the better), and tie the ends securely. Do not tie the string so tightly around the body of the fish as to make furrows and wrinkles in the skin. If tin tags are not at hand, a label written firmly on stont paper with a lead pencil should be wrapped inside of the covering of the fisb. It is necessary always to fill the receptacle in which specimens are packed-a bottle or jar may be either filled with alcohol or the specimens may be wrapped in maslin. It is not a good plan to put tow, excelsior, or cotton wool on top of fish, as it presses them close together and prevents the free circulation of alcohol between them. For long journeys it is desimable to secure better protection than the mnslin wrapping alone affords. This may be gained by placing beds of excelsior or thin wood shavings between the layers of fish and at the bottom and top of the case.

A plainly-written card placed at the top of the box, so as to be seen when the lid is removed, telling its contents and by whom it was sent, will save much trouble when the collection is to be unpacked.
7. Notes of color, taken from the fresh specimens, should be sent with them if the fish are to be described in the museum. The collector should also preserve in his own books a record of life-colors under the catalogue numbers corresponding with the tin tags fastened on his fish. He can then obtain the identification of his species by their numbers and publish his studies upon them at his own pleasure.
8. Local names of fish should always accompany the specimens when obtainable.
9. It is desirable to know whether or not the species is abundant; Whether different sizes of the same fish are found; whether they associate in schools or not; whether they are permanent residents or migratory; if migrators, by what routes they come and go; whether they form an important article of food; what they feed upon and what species prey upon thefn; the depth and character of the bottom on which they occur; the mode of capturing them; the uses made of them and the various products which they go to form, in short, everything bearing upon the life history or the economic applications of the species should be noted in detail.
10. Before washing the fish look them over for external parasites; examine the gills and the inside of the mouth carefully, as these are far vorite situations. These parasites often furnish a clue to the migrations of the fish; remove them if they can be taken off entire, if not, let them remain, and call attention to their presence in your shipping notes. Preserve the parasites in vials or bottles, and provide them with labels stating from what fish they came and in what situation they were found.

To preserve fish indefinitely in glass jars, observe the following directions: first, select a jar of the proper size to accommodate the specimen amply, without bending or distorting it in any way; put in the fish with the tail down in nearly all cases; the tail may often rest upon the bottom of the jar, or the fish may be suspended from the hook which is now found in the stopple of the modern museum jars; cover the fish completely with the alcoholic mixture referred to in the closing sentence of paragraph 4; discoloration of the alcohol is a sign that its preservative power is weakened and calls for a renewal; fishes in alcohol will never nake a good show unless the liquid is kept clear and clean. A label giving the name of the fish, place of its capture, and name of its captor, should be tied on the neck of the jar by means of a piece of narrow tape passed through holes punched in the ends of the paper. The jars must have accurately ground glass stopples. It is best to use no kind of sealing wax to coat the joint of the stopple; simply wipe the glass perfectly dry, close the jar properly, and there will be little danger of evaporation. Do not let the direct sunlight strike your jars, and keep them well removed from stoves, registers, and the like.

## A PRELIMIVAEY CATAEOGUE OF THE PIMIEE OF ATASKAN AND ADBACENT WATERM.

## Ry TARLETON H. BEAN.

The following is a list of the fishes of Alaska which have been recorded in the principal works relating to the subject. Une hundred and sixteen species are named, all of which are in the collection of the United States National Musenm except Pleuronectes Franklinii, Muranoides dolichogaster, Scbastichthys ruber (represented by numerous examples from California and Puget Sound), Psychrolutes paraloxus, Esox lucius, Spratelloides bryoporus, and Raia batis of Pallas. The catalogue is, therefore, practically a record of what the Museam has from the Territory. The numbers preceding the localities of the species refer to the Museum reg. ister of fishes.

The eartier collections here mentioned were made principally by Messrs. Bannister, Bischoff, Dall, Elliott, Kennicott, and Turner. More recent contributions have been received from Commander L. A. Beardslee, U. S. N., at Sitka, Capt. C. L. Hooper, United States Revenue Marine, in the Arctic, and Mr. William J. Fisher, United States Coast Survey observer, at Kodiak. As will be seen by referring to the list, very large additions were made during the summer of 1880 by Mr. William H. Dall, commanding the United States Coast Survey schooner Yukon, his assistants, and the writer.

The species named are almost wholly shore species, or such as are found in comparatively shallow water; the deep-water tishes of Alaska are still undiscovered, instruments of deep-sea research, except the dredge, not having been employed there.

In the appendix will be found the names of 99 species which have been recorded from waters adjacent to Alaska, many of which will donbtless be found within the limits of the Territory.

For the sake of convenieuce, the numbers preceding the names of fishes in the faunal tables are the same as in the catalogue.

It is my intention to prepare a detailed account of the fishes here recorded, and it is expected that at least the new species will be represented by illustrations.

## GASTEROSTEID $\boldsymbol{E}$.

1 Gasterosteun cataphractus (Pall.) Tilesius.
Kamtchatka (Pallas); San Fraucisco and Puget Sound (Jordan \& Gilbert).
20489. Sitka. J. A. Fitzgerald.
28053. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.
28077. Refuge Cove, Cook's Inlet, July 6, 1880. Dall \& Bean.
27994. Chugachik Bay, Cook's Inlet, July 1, 1880. Dall \& Bean.
28069. Chngachik Bay, Cook's Inlet, July 2, 1880. T. H. Bean. 2806\%. \& St. Panl, Kodiak, July 10, 1880. Dall \& Bean.
23989. Sanborn Harbor, Unga Island, Shumagins. W. H. Dall. 25074. U'uga Island, Shumagins, July 18, 1880 . E. P. Herendeen. 2026. Humboldt Harbor, Shumagins, July 20, 1880. E. P. Herendeen. 23094. Little Koniushi Island, Shumagius, July 16, 18*0. W. H. Dall. 27965. Iliuliuk, Unalashka, July 31, 1880. Dall \& Bean. 2397\%. Unalashka. W. H. Dall. 29953. Amchitka. W. H. Dall. 24063 (10:3). Amehitka, July, 1873. W. H. Dall. 23968. Kyska Harbor. W. H. Dall. 23988. St. Paul Island, Bering Sea, 1872. H. W. Elliott. 27998. St. Paul Island, Bering Sea, August 6, 1880. Dall \& Bean. 6757. Near Bering Island. H. M. Bannister.
2. Gasterosteus microcephalus Girard.

Tulare County, California (Cooper); San Pedro, Monterey Bay, and San Francisco, California (Jordan \& Gilbert); Puget Sound (Jor. \& Gilb.).
28090. Piseco Lake, Sitka, May 31, 1850. T. H. Bean.
28016. St. Y'aul, Kodiak (fresh-water lake), July 13, 1880. Baker \& Bean. 24058 (11:0). Chirikoff Island, June, 1874. W. H. Dall.
28054. Iliuliuk Lake, Unalashka, August 1, 1880. Sylvanus Bailey.
3. Gasterosteus pungitius L. subsp. brachypoda, Bean.
28017. St. Paul, Kodiak (fresh-water lake), July 13, 1880. Baker \& Bean. 28076. Unga Island, Shumagins, July 18,1880 . E. P. Herendeen.
28085. Iliuliuk Lake (fresh water), Unalashka, August 1, 1880. Sylvanus Bailey. 24015. St. Paul Island, Bering Sea. H. W. Elliott.
6666. St. Michael's. H. M. Bannister.
6671. St. Michacl's. H. M. Bannister.
23997. St. Michael's, 1876. L. M. Turner.
27530. Port Clarence, September 6, 1880 . Dall \& Bean.
27590. Flephant Point, Eachscholtz Bay, September 2, 1880. Dall \& Bean.
27557. Near Icy Cape, Arctic Ocean, August 25, 1880. Dall \& Bean.

2:3977. Alaska, 1879. Dr. Robert White.

## AULORHYNCHID E.

4. Aulorhynchus flavidus Gill.

Monterey Bay, California (Jordan \& Gilbert); San Francisco (Peters, Ayres fide Gill); Puget Sound (Steind., Jor. \& Gilb.).
27510. Sitka, June 2, 1880. Dall \& Bean.

## PLEURONECTIDAE.

## 5. Pleuronectes stellatus Pallas.

San Luis Obispo, Monterey, and San Francisco (Jordan \& Gilbert); Columbia River and Puget Sound (Jor. \& Gilb.); Coppermine R. (Rich); Anderson R. (Baird); Plover Bay (Bean); De Castries Bay (Steind.).

23020 (Young). Sitka, June 8, 1820 . Dall \& Bean.
28012. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.
27600. Chugachik Bay, Cook's Inlet, July 1, 1880. E. P. Herendeen.

27985 (Young). Chugachik Bay, Cook's Inlet, July 1, 1880. E. P. Herendeen.
27622. St. Paul, Kodiak, July 10, 1880. Dall \& Bean.
27684. St. Paul, Kodiak. Wm. J. Fisher.

19708 (1070). Iliulink, Unalashka, September 3, 1873. W. H. Dall.
19709 (1071). Ilinlink, Unalashka, September 3, 1873. W. H. Dall.
27640. Iliuliuk, Unalashka, October 6, 1880. Dall \& Bean.
27641. Iliuliuk, Unalashka, July 28, 1880. Dall \& Bean.
21518. St. Michael's, May 30, 1877. L. M. Turner.
27693. Northern Alaska, 1880. Capt. C. L. Hooper.
27696. Northern Alaska, 1880. Capt. C. L. Hooper.
6. Pleuronectes glacialis Pallas.
P. glacialis Pall., Itin. vol. iii, p. 706-River Obi.

1 P. cicatricosus Pall., Zoog. Ross.-Asiat. iii, 424-" mari inter Camtschatcam et Americam."
27947. Kotzebne Sound, September 2, 1880. Dall \& Bean.
27700. Northern Alaska, 1880. Capt. C. L. Hooper.
7. Pleuronectes Franklinil Giunther.

Arctic Seas of America (Günther). Perhaps identical with P.glacialis Pallas.
8. Pleuronectes quadrituberculatus Pallas.

Sea between Kamtchatka and America (Pallas).
28025. St. Paul, Kodiak, 1880. Wm. J. Fisher.
9. Lepldopsetta bilineata (Ayres) Gill.

Monterey Bay and San Francisco, California (Jordan \& Gilbert);
Puget Sound (Jor. \& Gilb.).
27603. Sitka, June 3, 1880. Dall \& Bean.
28021. Sitka, June 8, 1880. Dall \& Bean.
27940. Sitka, June 13, 1880. Dall \& Bean.
27941. Sitka. L. A. Beardslee.
28013. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.
27601. Chugachik Bay, Cook's Inlet, July 1, 1880. Sylvanus Bailey.
27942. Port Chatham, Cook's Inlet, July 6, 1880 . Dall \& Bean.
27602. St. Paul, Kodiak, July 12, 18:0. Dall \& Bean.
27621. St. Paul, Kodiak, July 12, 1880. Dall \& Bean.
27673. St. Paul, Kodiak, July 23, 1880. Wm. J. Fisher.

276:4. St. Paul, Kodiak, July 24, 1880. Wm. J. Fisher.
27685. St. Paul, Kodiak, July 23, 1880. Wm. J. Fisher.
27686. St. Paul, Kodiak, 1880. Wm. J. Fisher.
28041. St. Paul, Kodiak, 1880. Wm. J. Fisher.
27644. Humboldt Harbor, Shumagins, July 20, 1880. E. P. Herendeen.
27943. Humboldt Harbor, Shumagins, July 19, 1890. Dall \& Bean.

24018 (Young). Popoff Straits, Shumagins. W. H. Dall.
27642. Jliuliuk, Unalashka, July 29, 1880. Dall \& Bean.
27639. Iliuliuk, Ünalashka, July 31, 1880. Sylvanus Bailey.
27647. Iliuliuk, Unalashka, October 6, 1890. Dall \& Bean.
28003. Nateekin Bay, Unalashka, Octobet 8, 1880. Dall \& Bean.

24009 (Young). Unalashka. W. H. Dall.
24019. Unalashka. W. H. Dall.
24048. Unalashka. W. H. Dall.

Proc. Nat. Mns. 81-16
Dec. 24, 1881.
24033. Unalanhka. W. H. Dall.

24097 (1062). Nazan Bay, Atka, August 10, 1873. W. H. Dall.
24100 (985). Chicbagofl Harbor, Attu, June 20, 1873. W. H. Dall.
24103 (1163). St. Paul Island, July 24, 1874. W. H. Dall.
10. Limanda aspera (Pallas) Bean.

Pleuronectes asper Pall., Zoog. Roнs.-As., iii, 425.
Oceano orientali (Pall.); De Castries Bay (Steind. \& Kner).
27944. Sitka, June 13, 1880. Dall \& Bean.
27945. Sitka, June 9, 1840. Sylvanus Baileg.

127591 (Juv.). St. Paul, Kodiak, July 10, 1880. W. H. Dall. 27678. St. Paul, Kodiak. William J. Fisher.

27631 ㅇ. Humboldt Harbor, Shumagins, July 19, 1880. Dall \& Bean. 20632 ¢. Humboldt Harbor, Shumagins, July 19, 1880. Dall \& Bean. 27527 (Juv.). Port Clarence, September 6, 1880. Dall \& Bean. 27550 (Juv.). Plover Bay, Siberia, August 13, 1880. Dall \& Bean. 27593 (Juv.). Indian Point, Siberia, August 15, 1880. W. H. Dall.
11. Hippoglossoides elassodon Jordan \& Gilbert.

Puget Sound (Jor. \& Gilb.).
27937. St. Paul, Korliak, July 10, 18e0. Dall \& Bean.
27938. Humboldt Harbor, Shumagins, July 19, 1880. Dall \& Bean.
27939. Iliuliuk, Unalashka, July 28, 1880. Dall \& Bean.

23970 (Juv.). Alaska. W. H. Dall.

- 24020 (Juv.). St. Michael's. W. H. Dall.


## 12. Hippoglossus vulgaris Fleming.

Sea between Kamtchatka and America (Pallas, as Pleuronectes hippoglossus); San Francisco and Puget Sound (Jordan \& Gilbert); Sitka (Bean).
27652. Port Althorp, June 20, 1880. Dall \& Bean.
27670. Port Althorp, June 20, 1880. Dall \& Bean.
27707. Port Althorp, June 20, 1880. Dall \& Bean.
27706. Chugachik Bay, Cook's Inlet, July 2, 1880. H. W. McDonald.
27708. Chugachik Bay, Cook's Inlet, July 1, 1880. Sylvanus Bailey.
27604. Off Marmot Island, near Kotiak, July 8, 1880. Dall \& Bean.

2760 . St. Paul, Koliak, July 10, 1880. Dall \& Bean.
22466 (1098). Unalashka. W. H. Dall.
22467. St. Michael's, 1876. L. M. Turner.
13. Atheresthes stomias Jordan \& Gilbert.

San Francisco (Jor. \& Gilb.).
24096 (1140) (Juv.). Port Etches, 12-18 fms., May, 1874. W. H. Dall.
2767\%. Off A fognak Island, 1880. William J. Fisher.
27683. Off A fognak Island, 1880. William J. Fisher.
27936. Off Popoff Island, Shmmagins, July 19, 1880. T. H. Bean.

## GADID E.

14. Pollachius chalcogrammus (Pallas) Jordan \& Gilbert.

Monterey Bay, California (Jor. \& Gilb.); Puget Sound (Jor. \& Gilb.); Okhotsk and Kamtchatka Seas (Pallas, as Gadus chalcogrammus). 27989. Chugachik Bay, Cook's Inlet, July 1, 1880. Dall \& Bean.
$\$ 28081$ (Juv.). Refuge Cove, Cook's Inlet, July 6, 1880. Dall \& Bean.

```
27637. Pirate Cove, Shumagins, July 19, 1880. W. H. Dall.
2%741. Pirate Cove, Shumagins, July 19, 1880. W. H. Dall.
27742. Pirate Cove, Shumagins, July 19, 1880. E. P. Hurendeen.
19710. Humboldt Harbor, Shumagins. W. H. Dall.
23972. Lat. 520 32'(%)N., lon. 164 }2\mp@subsup{0}{}{\prime}\textrm{W}
27918 (Juv.). Iliuliuk, Unalashka, July 31, 1880. Dall & Bean.
27958 (Juv.). Iliuliuk, Unalashka, Jaly 31, 1880. Dall & Bean.
2%957 (Juv.). Chernoffoky, Unalashka, October 2, 1880. Dall & Bean.
```

15. Boreogadus saida (Lepech.) Bean.

१Gadus pygmaus Pallas, Zoog. Ross.-As, iii. Off Mount St. Elias.
21525. St. Michael's, February, 1877. L. M. Turner.
21526. St. Micbael's, February, 187\%. L. M. Turner.
24031. St. Michael's, February, 1877. L. M. Turner.

24070 (1056). Alaska. L. M. Turner.
$\$ 28096$ (Juv.). Lat. $66^{\circ} 45^{\prime}$ N., lon. $166^{\circ} 35^{\prime}$ W., August 19, 1880. Herendeen \& Bean
27570 (Juv.). Cape Lisburne, Arctic O., August 21, 1830. Dall \& Bean.
27542. Plover Bay, Siberia, September 14, 18*0. Dall \& Bean.
27549. Plover Bay, Siberia, Angust 13, 1880. Dall \& Bean.
27576. Plover Bay, Siberia, 1880. E. P. Herendeen.
28005. Plover Bay, Siberia, August 12, 1880. Dall \& Bean.
16. Gadus morrhua Linnens.

Puget Sound (Jordan \& Gilbert); Cook's Inlet (Bean); between Kamtchatka and America (Pallas, Zoog., 181); De Castries Bay (Steindachner, as G. macrocephalus).

```
27654. Sitka, May 30, 1880. Dall & Bean.
27746. Old Sitka, June 10, 1880. Dall & Bean.
27606. Old Sitka, June 12, 1880. Dall & Bean.
27655. Off Marmot Island, July 8, 1880. Dall & Bean.
27656. Off Marmot Island, July 8, 1880. Dall & Bean.
27973. St. Paul, Kodiak, July 13, 1880. Dall & Bean.
24109 (924) (Juv.). Popoff Strait,July 5, 1572. Capt. W. G. Hall.
27589 (Juv.). Belkoffsky, July 23, 1880. Sylvanus Bailey.
24032. Hliulink, Unalashka. W. H. Dall.
24035. Unalashka. W. II. Dall.
24040 (Juv.). Nliuliuk, Unalashka. W. H. Dall.
28043 (Jav.). Iliuliuk, Unalashka, October 6, 1880. Dall & Bean.
27956 (Juv.). Chernoffkky, Unalashka, October 2, 1880. Dall & Bean.
22007 (Juv.). Chernoffsky, Unalashka, October 1, 1880. Dall & Bean.
28072 (Juv.). Chernoffsky, Unalashka, October 2, 1880. Dall & Bean.
94029. St. Paul Island, 9 fathom&. W. H. Dall.
```

17. Microgadus proximus (Girard) Gill.

Monterey and San Francisco, California (Jordan \& Gilbert); Puget Sound (Jor. \& Gilb.).
27982. Yakutat Bay, June 24, 1880. Dall \& Bean.
q28059 (Juv.). Yakutat Bay, June 24, 1880. Dall \& Bean.
18. Tilesia gracilis (Tiles.) Swainson.

Gadus gracilis Tiles; G. vachna Pallas.
27931. Port Chat ham, Cook's Inlet, July 6, 1880. Dall \& Bean.
27932. St. Paul, Kodiak, July, 1880. Dall \& Bean.
27909. St. Paul, Kodiak, 1880. Wm. J. Fisher.
9286. St. Michael's. H. M. Bannister.
27950. Port Clarence, September, 18*0. Dall \& Bean.
19. Lota maculosa (LeS.) Rich.
9607. Nulato, Yukon River. R. Kennicott 9

10102 (647). Nulato, Yukon River. W. H. Dall.

## LYCODIDAE.

20. Gymnelis viridis (Fabr.) Reinhandt.
21. Coal Harbor, shumagins. W. H. Dall. 23969. St. Michael's, October 10, 1876. L. M. Turner. 26623. Plover Bay, Siberia, September 14, 1880. Dall \& Bean. 27538 (Juv.). Plover Bay, Siberia, September 14, 1880. Dall \& Bean. 94001. Unalashka. W. H. Dall.
22. Lycodes Turneri Bean.

21529 (Type). St. Michael's, March 28, 1876. L. M. Turner. 27659 (Juv.). Plover Bay, Siberia, August 13, 1880. Dall \& Bean.
22. Lycodes cocoineus Bean.

3778 (Type). Big Diomede Island, September 10, 1880. T. H. Bean.

## STICHEIDA.

23. Stichæus punctatus (Fabr.) Reinhardt.
24. St. Paul, Kodiak, 1880. Wm. J. Fisher.
25. St. Paul, Kodiak, June 10, 1880. W. H. Dall.
26. St. Michael's, June, 29, 1874. L. M. Turner.
27. St. Michael's. H. M. Bannister.
28. Stichaus (1) Rothrockil Bean.

This may represent a distinct genus-see Proc. U. S. Nat. Mus., vol. iv, p. 147.

27573 (Tярев). Cape Lisburne, 1830. Dall \& Bean.
27565 (Types). Plover Bay, Siheria, 1880. T. H. Bean.
27580 (Types). Plover Bay, Siberia, 1880. E. P. Herendeen.
25. Lumpenus anguillaris (Pallas) Girard.

San Francisco to Bellingham Bay (Cooper); Bellingham Bay (Suckley); Puget Sound (Jordan \& Gilbert); Kamtchatka, Aleutians, and mainland of Alaska (Pallas).

[^118]
## XIPHISTERID.E.

26. Xiphister rupestris Jordan \& Gilbert.

Monterey Bay, California (Jor. \& Gilb.); Puget Sound (Jor. \& Gilb.). 8813. Vancouver Island. S. W. Hewson.
27502. Sitka. L. A. Beardslee.
27508. Sitka, May 30, 1880 . Sylvanus Bailey. 24017. Alaska. W. H. Dall.
27. Xiphister chirus Jordan \& Gilbert.

Monterey Bay and Puget Sound (Jordan \& Gilbert).
23958. Adakh. W. H. Dall.
23964. Amchitka. W. H. Dall.
28. Anoplarchus atropurpureus (Kittlitz) Gill.

Monterey Bay, San Francisco, and Puget Sound (Jordan \& Gilbert, as A. alectrolophus); Vancouver Island and Fraser's River (Günther, as
A. crista-galli).
27501. Sitka. L.A.Beardslee.
27509. Sitka, June 1, 1880. T. H. Bean.
28054. Port Mulgrave, June 24, 1880. T. H. Bean.
24014. Kudiak. Jno. C. Tidball.

24064 (1146). Chagafka Cove, Kodink, June, 1874. M. Baker.
24098 (1147). Chagafka Cove, Kodiak, June, 1874. M. Baker.
28034. St. Paul, Kodiak, 1880. Wm. J. Fisher.
28088. St. Paul, Kodiak, 1880. Wm. J. Fisher.
23948. Coal Harbor, Shumagins. W. H. Dall.

239r5. Coal Harbor, Shumagins. W. H. Dall.
24005. Coal Harbor, Shumagins. W. H. Dall.
23980. Sanborn Harbor, Shumagins. W. H. Dall.
23991. Sanborn Harbor, Shumagins. W. H. Dall.

24078 (973). Sanborn Harbor, Shumagins, July, 187\%. Capt. W. G. Hall.
24086. Popoff Straits, Shumagins. W. H. Dall.
27584. Iliuliuk, Unalashka, July 28, 1880. S. Bailey.
23994. Uualashka. W. H. Dall.

24084 (1187). Unalashka. W. H. Dall.
24080 (1060). Nazan Bay, Atkn, August 19, 1873. W. H. Dall.
23949. Amchitka. W. H. Dall.
23963. Amchitka. W. H. Dall.

24071 (1025). Kyska Harbor, July, 1873. W. H. Dall.
24057. Port Etches. W. H. Dall.
6758. St. Michael's. H. M. Bannister.
22018. St. Michacl's, October 10, 1876. L. M. Turnor.
23979. St. Michael's. L. M. Turner.
29. Murænoides dolichogaster (Pallas) Gill.

Kamtchatka (Pallas); De Castries Bay (Steind. \& Kner); Aleutian Islands (Pallas).
30. Murænoldes ornatus (Girard) Gill.

Puget Sound (Jordan \& Gilbert).
24117. Sitka. L. A. Beardslee.
27503. Sitka. L. A. Beardslee.
27517. Sitka (Indian River), June 8, 1880. Dall \& Bean.
27996. Sitka, Juue 2, 1880. Dall \& Bean.
27532. Sitka, June 3, 1880. Dall \& Bean.
24117. Sitka. W. II. Dall.
28035. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.
24056. Port Etches. W. H. Dall.
27568. Chugachik Bay, Cook's Inlet, July 1, 1880. Dall \& Bean.
28078. Refuge Cove, Cook's Inlet, July 6, 1880. Dall \& Bean.
23992. Kodiak. W. G. W. Marford.

24102 (1147) (Juv.). Chagafka Cove, Kodiak, June, 1874. M. Baker.
2ะ062. St. Paul, Kodiak, July 12, 1880. W. H. Dall.
23946. Coal Harbor, Shumngins. W. H. Dall.

24105 (928) (Juv.). Coal Harbor, Shumagins, July 3, 1872. W. G. Hall.
23981. Sanborn Harbor, Shumagins. W. H. Dall.
27585. Belkoffsky, Alinska Peninsula, July 23, 1880. W. H. Dall.
27521. Iliuliuk, Unalashka, July 28, 1880. Dall \& Bean.
27962. Iliuliuk, Unalashka. Dall \& Bean.
27916. Iliulink, Unalashka, August 2, 1820. Dall \& Bean.
28044. Ilinliuk, Unalashka, October 6, 1880. Dall \& Bean.
29993. Uualashka. W. II. Dall.
24002. Unalashka. W. H. Dall.
23975. Atka. W. H. Dall.
23957. Adakh. W. H. Dall.
23950. Amchitka. W. H. Dall.
23960. Amchitka. W. H. Dall.
24173. Attn, June 23, 1879. Dr. Robert White.
24006. Port Moller. W. H. Dall.

## 31. Muranoides maxillaris Bean.

23999. (Type) St. Paul Island, 1872. H. W. Elliott.

## ANARRHICHADIDE.

## 32. Anarrhichas lepturus Bean.

21509 (Type). St. Michael's, 18i7. L. M. Turner.
21510 (Type). St. Michael's, June 24, 1876. L. M. Turner.
(-) Collection of Alaska Commercial Company, San Francisco.

## TRACHINIDE.

33. Bathymaster signatus Cope.

Washington Territory (Bean); Puget Sound (Jordan \& Gilbert).
24036. Sitka, October 5, 1861. W. G. W. Harford.
27924. Sitka, June 7, 1880. T. H. Beau.
27925. Sitka, 1880. L. A. Beardslee.
27970. St. Paul, Kodiak, 1880. Wm. J. Fisher.
23954. Conl Harbor, Shumagins. W. H. Dall.
24004. Coal Harbor, Shumagins. W. H. Dall.
27646. Off Popoff Island., Shumagins, July 19, 1880. E. P. Herendeen.
27645. Iliuliuk, Unalashka, July 28, 1880. Dall \& Bean.
23976. Uualashka. W. H. Dall.
24003. Unalashka. W. H. Dall.
24016. Unalnshka. W. H. Dall.
24092. Unalaslıka. W. H. Dall.

## TRICHODONTIDA.

34. Trichodon Stelleri C. \& V.

2394\%. Coal Iarbor, Shumagins. W. H, Dall.
27920. Humboldt Harbor, Unga Island, Shumagins, July 21, 1880. Marcus Baker.
25933. Unalashka. W. II. Dall.
24054. Unalashki. W. H. Dall.

24033 (1184). C'nalashka, September 1, 1874. W. H. Dall.
24050 (1168). Cape Etolin, Nunivak Island, July, 1874." W. H. Dall.

## CYCLOPTERID $\boldsymbol{A}$.

35. Eumicrotremus spinosus (Fabr.) Gill.

Cyclopterns orbis Giinther (Esquimault Harbor).
27505. Iliuliak, Unalashka (from stomach of Alepidosaurus fcrox), October, 1880. T. H. Bean.
27506. Iliuliak, Unalashka (from stomach of Alepidosaurus ferox), October, 1880. T. H. Bean.

2\%507. Lliuliuk, Unalashka (from stomach of Alepidosaurus fcrox), October, 1880. Т. Н. Вено.
——. St. Paul Island, Angust, 1868. W. H. Dall.
2754\%. Plover Bay, Siberia, August 13, 1880. Dall \& Bean.

## LIPARIDID $x$.

36. Liparis pulchellus Ayron.

Monterey and San Francisco, California (Jordan \& Gilbert).
128091. St. Paul, Kodiak, 1880. Wm. J. Fisher.
27917. Hiuliuk, Unalashka, Angnst 2, $1 \otimes 80$. Dall \& Bean.
37. Liparis calliodon (Palles) Guinther.

Kamtchatka and Alentian Islands (Pallas).
124063 (1137). Port Etches, May, 1874. W. H. Dall.
27586. Belkoftsky, Aliaska Peninsula, July 23, 1800. W. H. Dall.
2399. Sanborn Harbor, Shnmagina. W. H. Dall.
i 24038 (Juv.). Nateekin Bay, Unalasbla, October 8, 1890. Dall \& Bean. 123966. Adakh. W. II. Dall.

24091 (105\%). Bay of Islauds, Adakh, Augnat, 1873. W. H. Dall.
22951. Amehitka. W. II. Dall.
123962. Amebilka. W. H. Dall.

124065 (1039). Amchitka, July, 1873. W. H. Dall.
? 23978. St. Michael's. L. M. Turner.
27546 . Plover Bay, Siberia, August 13, 1880. Dall \& Bean.
27536. Plover Bay, Siberia, Suptember 14, 1880. Dall \& Bern.
38. Liparis cyclopus Günther.

Esquimault Harbor ((iủnth.).
24046. Unalnahka. W. H. Dall.
24047. Port Moller. W. H. Dall.
39. Liparis gibbus Bean.
24010. Captain's Bay, Unalaslika. W. H. Dall.
.24047 (Type). St. Paul Island, 1872. H. W. Elliott.
26545 (Type). Plover Bay, Siberia, August 13, 188). Dall \& Bean.
27535 (Type). Plover Bay, Siberia, September 14, 1880. Dall \& Bean.
26625 (Type(. Off Cape Tchaplin, Siberia, Angust 15, 1830. Dall \& Bean.

## AGONIDE.

40. Biphagonus barbatus Steindachner.

Hakodadi and Nagasaki, Japan (Steind.); "Eismeer, zunächst der Behringsstrasse" (Steind.).
28052. Port Mulgrave, Yakutat Bay, Jane 24, 1880. Dall \& Bean.
14932. Unalashka. W. H. Dall.
27529. Port Clarence, September 6, 1880. Dall \& Bean.
41. Podothecus acipenserinus (Pallas) Gill.

Paget Sound (Jordan \& Gilbert); Vancouver Island, Gulf of Geor. gia (Guinther); Unalashka (Pallas).
17125. Port Townsend, Washiugton Territory, April 6, 1877. J. G. Swan. 7319. Vancouver Island. A. W. Hewson.

927583 (Juv.). St. Paul, Kodiak. W. H. Dall.
24011 (Juv.). Unalashka. W. H. Dall.
927574 (Juv.). Cape Lisburue, Artic O., Augnst 21, 1880 (no barbels). Dall \& Bean. 10134. Alaska.
42. Podothecus trispinosus (Lockington) Jordan \& Ghbert.

Santa Barbara and San Francisco, California (Jor. \& Gilb.). 21060. Sitka. W. H. Dall.

COTTID风.
43. Cottus teeniopterun Kner.

Wien. Sitzh. 1viii; 1 Abth., 310, taf. 4, fig. 10.
124062 (Jur.). Hagmeister. W. H. Dall.
21522. St. Michael's. L. M. Turner.
21523. St. Michael'B. L. M. Turner.
28004. Point Belcher, Arctic O., Angnst 27, 1880. Dall \& Bean.

127559 (Juv.). Head of Plover Bay, Siberia, Augnst 12, 1N80. T. H. Bean.
44. Cottus polyacanthocephaius Pallas.

Paget Sound (Jordan \& Gilbert); Off Mount St. Elias (Pallas).
27661. Sitka. I. A. Beardslce.

27512 (Juv.). Sitka, June 2, 1880. Dall \& Bean.
27607. Sitka, June f, 1880. Dall \& Bean.
27665. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.
27997. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.
28039. Refuge Cove, Cook's Inlet, July 6, 1se0. Dall \& Bean.
27625. St. Paul, Kodiak, July 11, 1800 (head). B. G. MeIntyro.
28063. St. Paul, Kodiak, July 12, 1880. W. H. Dall.
27986. St. Paul, Kodiak, July 24, 1880. Wm. J. Fisher.
29033. St. Paul, Kodiak. Wm. J. Fisher.
27623. Humboldt Harbor, Shumagins, July 19, 1880. Dall \& Bean.
27624. Pirate Cove, Popoff Island, Shumagins, July 19, 1880. Dall \& Bean.
28031. Popoff Island, Shumagins, July 20, 1880. Dall \& Benn.

19698 (10;8). Iliuliuk, Unalashka, September 3, 1873. W. H. Dail.
19699 (1079). Iliuliuk, Unalashka, September 3, 1873. W. H. Dall.
27520. Mliuliuk, Unalashka, July 28, 1880. Dall \& Bean.

27643 Iliuliuk, Unalashka, July 28, 1880. Dall \& Bean.
27964. Minliuk, Únalashka, July 31, 1880. Dall \& Bean.
27638. Jliuliuk, Unalashka, October 15, 1880. Dall \& Bean.
27671. Iliuliuk, Unalashka, October 15, 1880. Dall \& Bean.
27946. Iliuliuk, Unalashka, October 6, 1880. Dall \& Bęan.
23499. Unalashka. W. H. Dall.

24075 (1215) (Juv.). Unalashka, 60 fms., September 18, 1874. W. H. Dall.
28008. Chernoffsky, Unalasbka, October 1, 1880. Dall \& Bean.
27955. Chernoffsky, Unalashka, October 1, 1850. Dall \& Bean.

24099 (1062). Nazan Bay, Atka, August 19, 1873. W. H. Dall.
23965. Amchitka. W. H. Dall.

923935 (Juv.). Port Moller. W. H. Dall.
92551 (Juv.). Cape Lisburne, Arctic O., August 21, 1880. Dall \& Bean.
127543 (Juv.). Plover Bay, Siberia, September 14, 1880. Dall \& Bean.
23944. (Juv.) Alaska. W. H. Dall.
45. Cottus niger Bean.
23937. Sanborn Harbor, Shumagins. W. H. Dall.
23923. St. Panl Island, 1872. H. W. Elliott.
23929. St. Paul Island, 187\%. H. W. Elliott.

27952 (Types). St. Paul Island. August 6, 1880. John Armstrong.
27971 (Types). St. Paul Island, August 6, 1880. John Armstrong.
46. Cottus humilis Bean.
21519. St. Michael's, 1877. L. M. Turner.
21520. St. Michael's, 1877. L. M. Turner.
21521. St. Michael's, June 11, 1875. L. M. Turner.

27972 (Type). Chamisso Island, Eschscholtz Bay, August 31, 1880. Dall \& Bean.
27553 (Juv.). Point Belcher, Arctic Ocean, Augast 27, 1880. Dall \& Bean.
124013 (Juv.). Alaska.
47. Aspidocottus bison Girard.

San Francisco and Puget Sound (Jordan \& Gilbert).
27983. Sitka. L. A. Beardslec. -

29038 (Jav.). St. Paul, Kodiak. Wm. J. Fisher.
48. Ceratocottus diceraus (Pallas) Gil.

23932 (1108). Sitka, 15 fms. gn. md., May, 1874. W. H. Dall.
49. Uranidea microstoma Lockington.
27516. Indian River, Sitka, June 8, 1830. Dall \& Bean.
27534. Indian River, Sitka, 'Jnne 11, 1880. Sylvanus Bailey.

1 23927. Sitka. W. H. Dall.
26922 (Ty pe). Kodiak. W. N. Lockington.
28071. St. Paul, Kodiak, 1ez0. Wm. J. Fisher.
27596. Alentian Islands. A. Greenebaum.
28083. Lliuliuk, Unalashka, August 1, 1880. Sylvanus Bailey.
50. Gymnacanthus pistilliger (Pallas) Gill.

Kamtchatka and Unalashka (Pallas).
24089 (1014 \& 1015). Kyska Harbor, July 7, 1873. W. H. Dall.
927592 (Juv.). Point Belcher, Arctic Ocean, August 27, 1880. Dall \& Bean.
27560 (Juv.). Plover Bay, Siberia, August 12, 1880. T. H. Bean.
26626. Off Cape Tchaplin, Siberia, August 15, 1880. W. H. Dall.

## 51. Gymnacanthus galeatus Bean.

28097 (Types). Iliuliuk, Únalashka, July 30, 1880. Dall \& Bean. 727595 (Juv.). Ofi Cape Sabine, Arctic Ocean, Angust 24, 1880. Dall \& Bean.

## 52. Artedius notospilotus Girard.

Santa Barbara, San Luis Obispo, and San Francisco, California (Jor.
\& Gilb.) ; Puget Sound (Jor. \& Gilb.).
23936. Sanborn Harbor, Shumagius. W. H. Dall.
23931. Unalashka. W. H. Dall.
23933. Unalashka. W. H. Datl.
53. Hemilepidotus trachurus (Pallas) Günther.

San Francisco and Puget Sound (Jordan \& Gilbert, as $\boldsymbol{H}$. Gibbsii). 27609. Sitka, May 28, 1**0. Dall \& Bean.
27610. Sitka, May 29, 1880. Dall \& Bean.
27750. Sitka, June 2, 1880. Dall \& Bean.

27511 (Juv.). Sitka, June 2, 1880. Dail \& Bean.
27901. Sitka, 1880. L. A. Beardslee.

2766t. Port Althorp, June 20, 1840. Dall \& Bean.
24104 (1140) (Juv.). Port Etches, 12 to 18 fms., May, 1874. W. H. Dall.
27608. Port Chatham, Cook's Inlet, July 5, 1880. Dall \& Bean.

924094 (Jnv.). Popoff Strait. W. H. Dall.
24107 (925) (Juv.). Popoff Strait, Shumagins, July 3, 1872. W. H. Dall.
124066 (931) (Juv.). Coal Harbor, Shnmagins, July, 187\%. W. G. Hall.
$\$ 24090$ (934) (Juv.). Ceal Harbor, Shumagins, July, 1872. W. G. Hall.
23939 (Juv.). Unalashka. W. H. Dall.
23940 (1180) (Juv.). Uualashka, 9 to 16 fins., September 1, 1874. W. H. Dall.
24108 (1013) (Juv.). Kyska, July 7, 1873. W. H. Dall.
24101 (1014) (Juv.). Kyska. W. H. Dall.
924079 (1019) (Juv.). Kyska, July 7, 1873. W. H. Dall.
: 24082 (1026) (Juv.). Kgska, July, 1873. W. H. Dall.
24095 ( $10: 36$ ) (Juv.). Kyska, 10 fms. in Pass, July, 1873. W. H. Dall.
924066 (1062) (Juv.). Nazan Bay, Atka, Aug. 19, 1873. W. H. Dall.
924059 (1054) (Juv.). Bay of Islands, Adakh, August, 1873. W. H. Dall.
924085 (1040) (Juv.). Amchitka, July 26, 1873.
124082 (985) (Juv.). Chichagoff Harbor, Attu, June 20, 1873. W. H. Dall.

## 54. Hemilepidotus Jordan Thean.

Cottus trachurus Pallas (part), referred to in the following sentence:
"In majori specimine color supra fuscus, subtus pallido-albus, immaculatus."
27658. Port Althorp, June 20, 1880. Dall \& Bean.
27659. Port Chatham, Cook's Inlet, July $6 ; 1820$. Dall \& Bean.
27660. Port Chatham, Cook's Inlet, July 6, 1880. Dall \& Beau.
27611. St. Paul, Kodiak, July 12, 1880. Dall \& Bean.
29036. St. Paul, Kodiak. Win. J. Fisher.
27612. Humboldt Harbor, Shumagins, July 17, 1880. Dall \& Bean.
27613. Humboldt Harbor, Shumagins, July 17, 1880, Dall \& Bean.
27614. Humboldt Harbor, Shumagins, July 17, 180. Dall \& Beau.
27615. Humboldt Harbor, Shumagine, July 17, 1890. Dall \& Bean.
27634. Humboldt Harbor, Shumagins, July 19, 18e0. Dall \& Bean.

27598 (Type). Iliuliuk, Unalashka, July 30, 1880. Sylvanus Bailey.
28033 (Juv.). Ilinlink, Ĺnalashka, October 12, 1800. Dall \& Bean.
27633. Iliuliuk, Unalashka, October 15, 1880. Dall \& Bean.
23943. Iliuliuk, Unalashka. W. H. Dall.
27749. Chernoffoky, Unalashka, October 1, 1880. Dall \& Bean.

27539 (Juv.). Plover Bay, Siberia, September 14, 1880. Dall de Bean.
55. Melletes papilio Bean.

23751 (Type). St. Paul Island, 1872. H. W. Elliott.

## 56. Leptoccttus armatus Girard.

San Diego, San Pedro, Santa Barbara, San Luis Obispo, Monterey Bay, and San Francisco, California (Jordan \& Gilbert); Puget Sound (Jor. \& Gilb.).
6754. Sitka. F. Bischoff.

2:531. Sitka (very bad state). C. S. Bulkley.
27968. Sitka, May 31 to June 8, 1880. Dall \& Bean.
27976. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.
29037. St. Paul, Kodiak. Wm. J. Fisher.
57. OHgocottus maculosus Girard.

San Luis Obispo, Monterey Bay, and San Francisco, California (Jor. $\&$ Gilb.); Puget Sound (Jor. \& Gilb.).
7815. Vancouver Island. A. W. Hewson.
15029. Victoria. Dall \& Brown.

675\%. Sitka. F. Bischoff.
7322. Sitka, August 18. W. H. Dall.
27504. Sitka. L. A. Beardslee.

2:514. Sitka, June 3, 18*0. Dall \& Bean.
27531. Sitka, June 3, 1830 . Dall \& Bean.
27515. Sitka (Indian River), June 8, 1880. Dall \& Bean.
28093. Alexandrovsk, Cook's Iulet, July 4, 1880. Dall \& Bean.
58. Oligocottus globiceps Girard.

Monterey Bay and San Francisco, California (Jor. \& Gilb.); Puget Sound (Jor. \& Gilb.).
6551. Sitka. F. Bischoff.

24083 (1147). Chagafka Cove, Kodiak, June, 1874. M. Baker.
22959. Adakh. W. H. Dall.
23952. Amehitka. W. H. Dall.
59. Triglops pingelii Reinbardt.

Off Point Bingham, Jacobi Island, Gulf of Alaska (Bean).
27541. Plover Bay, Siberia, September 14, 1880. Dall \& Bean.
60. Blepsias cirrhosus (Pallas) Gunther.

San Francisco and Puget Sound (Jordan \& Gilbert).

[^119]61．Blepsias bilobus Cuv．\＆Val．
Kamtchatka（Guinther）．
28061．St．Panl，Kodiak，1880．Wm．J．Fisher．
62．Nautichthys oculofasciatus Girard．
San Francisco and Puget Sound（Jordan \＆Gilbert）．
23941 （1185）（Juv．）．Unalashka，Sept．1，1874．W．H．Dall．
24073 （1054）（Juv．）．Bay of Islands，Adakh，August，1873．W．H．Dall．
24067 （Juv．）．Kyska．W．H．Dall．
27582 （Juv．）．St．Paul，Kodiak，Jnly 10，1880．W．H．Dall．
28066 （Juv．）．St．Paul，Kodiak，July 12，1880．W．H．Dall．
63．Rhamphocottus Richardsoni Güntber．
California（Lockington）；Fort Rupert，North America（Guinther）． 26620．St．Panl，Kodiak，1880．Wm．J．Fisher．

## HEMITRIPTERID E ．

64．Hemitripterus americanus（Gmel．）Storer． H．cavifrons Lockington，Kodiak．
I have compared Lockington＇s type with $H$ ．ainericanus in the museum of the California Academy of Sciences．

## SCORP 玉NID压。

65．Sebastichthys maliger Jordan \＆Gilbert．
Monterey Bay and San Francisco，California（Jor．\＆Gilb．）；Puget Sound（Jor．\＆Gilb．）．

27713．Sitka，June 2，1880．Dgll \＆Bean．
127922 （Jur．）．Sitka，June 9，1880．Corbin Ball．
66．Sebastichthya caurinus（Rich．）Jor．\＆Gilb．
Puget Sound（Jor．\＆Gilb．）．
27714．Old Sitka，June 10，1880．T．H．Bean．
67．Sebastichthys ruber（Ayres）Lockington．
Santa Barbara，Monterey Bay，and San Francisco，California（Jor．\＆ Gilb．）；Puget Sound（Jor．\＆Gilb．）；off Point Bingham，Jacobi Island， Gulf of Alaska（Bean）．

68．Sebastichthys melanops（Girard）Jor．\＆Gilb．
Monterey Bay and San Francisco（Jor．\＆Gilb．）；Puget Sound（Jor． \＆Gilb．）．

27628．Sitka，May 28，1880．Dall \＆Bean．
27921．Sitka，May 28，1880．A．T．Whitford．
27747．Sitka．L．A．Beardslee．
27675．St．J＇aul，Kodiak，1880．Wm．J．Fisher．
69．Sebastichthys ciliatus（Tiles．）．
Aleutians（Pallas，as Perca variabilis）． 27255．Kodiuk．D．S．Jordan．

## CHIRIDAE.

70. Hexagrammus aøper Steller.

Kamtchatka (Pallas, as Labrax hexagrammus).
23930. Sitka. C. S. Bulkley.
27910. Sitka, May 31, 1840. Dall \& Bean.
27911. Old Sitka, June 12, 18 80 . Dall \& Bean.
29912. Port Mulgrave, Yakntat Bay, June 24, 1880. Dall \& Bean.
28060. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.

25079 (Juv.). Refuge Cove, Cook's Inlet, July 6, 1880. Dall \& Bean.
127974 (Juv.). St. Paul, Kodiak, July 13, 1880. Dall \& Bean.
27650. Iliuliuk, Uualashka, July 31, 1880. Dall \& Bean.
27961. Ilinliuk, Unalashka, July 31, 1830. Dall \& Bean.
28045. Iliuliuk, Unalashka, October 6, 1880. Dall \& Bean.
23982. Unalashka. W. H. Dall.
23985. Unalashka. W. H. Dall.
23986. Unalashka. W. H. Dall.
23974. Atka. W. H. Dall.
21530. St. Michael's, June, 1875. L. M. Turner.
21531. St. Michael's, June, 1875. L. M. Turner.
21532. St. Michael's, June, 1875. L. M. Turner.
21533. St. Michael's, February, 1877. L. M. Turner.

27528 (Juv.). Port Clarence, September 6, 1880. Dall \& Bean.
71. Hexagrammus ordinatus (Cope) Bean.
27987. Old Sitka, June 2, 1880. Dall \& Bean.

2842\%. Popoff Island, Shumagins, July 20, 1880. Dall \& Bean.
27523. Iliuliak, Unalashka, July 28, 1880. Dall \& Bean.
27648. Iliuliuk, Unalashka, July 28, 1890. Dall \& Bean.
27649. Iliuliuk, Unalashka, July 31, 18e0. Dall \& Bean.'

2r967. Nliulink, Unalashka, July 31, 1880. Dall \& Bean.
27975. Hliuliuk, Unalashka, October 6, 1480. Dall \& Bean.
27935. Cbernoffrky, Unalashka, October 2, 1830. Dall \& Bean.
24042. Uualashka. W. H. Dall.

2404:3. Unalashka. W. H. Dall.
72. Hexagrammus superciliosus (Pallas) Jor. \& Gilb.

Monterey Bay and San Francisco (Jor. \& Gilb.); Puget Sound (Jor. \& Gilb.); Unalashka (Pallas).
5606. Sitka. F. Bischoff.
27666. Port Mulgrave, Yakutat Bay, June 24, 1820. Dall \& Bean.
27913. St. Paul, Kodiak, July 10, 1880. Dall \& Bean.
29034. St. Paul, Kodiak. Wm. J. Fisher.
24051. Kodiak. F. Bischoff.
27934. Chernoffsky, Unalashka, October 2, 1880. Dall \& Bean.

24172 (Skin). Attu, 1879. Dr. Robert White.

## 73. Hexagrammus scaber Bean.

23961 (Juv.) (Type). Amchitka. W. H. Dall.
27920 (Juv.) (Type). Iliuliuk, Unalashka, July 31, 1880. T. H. Bean.
74. Hexagrammus decagrammus (Pallas) Jor. \& Gilb.

San Luis Obispo, Monterey Bay, and San Francisco (Jor. \& Gilb.);
Puget Sound (Jor. \& Gilb.); off Mount St. Elias, Gulf of Alaska (Pallas).
27627. Sitka, June 3, 1880. Dall \& Bean.

27709 ㅇ. Old Sitka, June 10, 1880. Dall \& Bean.
27626. Old Sitka, June 12, 1880. Dall \& Bean.

27710 f. Old Sitka. L. A. Beardslee.
27711 . Old Sitka. L. A. Beardslee.
27653. Chatham Strait, June 20, 1880. Marens Baker.
24022. Enalashka. W. H. Dall.
75. Pleurogrammus monopterygius (Pallas) Gill.

Unalashka (Pallas, as Labrax monopterygius).
27112. Kodiak. D. S. Jordan.
29035. St. Paul, Kodiak. Wm. J. Fisher.
27930. Ilinliuk, Unalashka, October 7, $1 \times 80$. Robert King.
27933. Chernoffisky, Unalashka, October 2, 1830. Dall \& Bean.
27954. Cbernoffsky, Unalnahka, October 2, 1880. Dall \& Bean. 24174 (Skin). Attu, June 23,1879 . Dr. Robert White.
76. Ophiodon elongatus Girard.

Santa Barbara, San Luis Obispo, Monterey Bay, San Francisco (Jor. \& Gilb.); Puget Sound (Jor. \& Gilb.). 2765\%. Sitka, June 7, 1880. Dall \& Bean.
77. Anoplopoma fimbria (Pallas) Gill.

Monterey Bay, San Francisco, and Puget Sound (Jordan \& Gilbert); off Mount St. Elias, Alaska (Pallas, as Gadus fimbria).
27745. Sitka. L. A. Beardslee.

## AMMODYTIDA.

78. Ammodytes americanus De Kay. A. personatus Girard.

Monterey Bay and Puget Sound (Jordan \& Gilbert).
24055 (1105). Sitka, May, 1874. W. H. Dall.
24113. Sitka. L. A. Beardslee.
28040. Sitka, May 31, 1830. Dall \& Bean.
$2805 \%$. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.
27993. Cbugachik Bay, Cook's Inlet, July 1, 1880. Dall \& Bean.
28070. Port Chatham, Cook's Inlet, July 6, 1880. Dall \& Bean. 24110 (1152). Scmidi Islands, 12 to 28 fms., June, 1874. W. H. Dall. 28011. Hnmboldt Bay, Shumagins, July 21, 1880. H. W. McDonald. 24093 (1210). UnalasLka, 20 fins., September 18, 1874. W. H. Dall. 24028. Iliuliuk, Unalashka, June 4. W. H. Dall.
27963. Hiulink, Unalashka, July 31, 1880. Dall \& Bean.
24008. Captain's Bay, Unalashka. W. H. Dall.
28006. Chernoffsky, Unalashka, October 1, 1880. Dall \& Bern.
24034. Linalashka. W. H. Dall.

24031 (1038). Constantine Bay, Amcitka, July 24, 1873. W. H. Dall.
27526. Port Clarence, September 6, 1880. Dall \& Bean.
28014. Port Clarence, September 6, 1880. Dall \& Bean.
28024. Port Clarence, September 6, 1880. Dall \& Bean.

27556 (Juv.). Point Belcher, Arctic Ocean, Angust 27, 1880. Dall \& Bean.
27562. Plover Bay, Siberia, August 12, 1k20. T. H. Bean.
27577. Plover Bay, Siberia, August 13, 1880. E. P. Herendeen.
79. Ammodytes alascanus Cope.
96667. Sitka. F. Bischoff.
24115. Sitka (180 skin-folds). L. A. Beardslee.

## PSYCHROLUTIDE.

## 80. Psychroluten paradorus Gunther.

Vancouser Island (Guinther); Kodiak Island (collection of Alaska Commercial Company, of San Francisco).

ESOCID $\mathcal{E}$.
B1. Esox lucius Linn.
Yukon River (Dall).
68z6. Fort Simpson, British America.
7552. Fort Resolntion. R. Kennicott.
8827. Fort Rue. R. Keunicott.
8158. Slave Lake. R. Kennicott.

## UMBRIDA.

82. Dallia pectoralis Bean.

6661 (Types). St. Michael's. H. M. Bannister.
23498 (Types). St. Michael's, February, 187\%. L. M. Turner.

## MICROSTOMIDE.

83. Osmerus dentex Steindachner.

De Castries Bay, Siberia (Steind.).
128058 (Juv.). Port Mulgrave, Yakntat Bay; June 24, 1880. Dall \& Bean. 21527. St. Michael's, February, 1877. I. M. Turner.
21528. St. Michael's, February, 18\%. L. M. Turner.
27914. Port Clarence, September 8, 1880. Dall d Bean.
27981. Port Clarence (dried), September 6, 1880. Dall \& Bean.
84. Osmerus spirinchus (Pallas) 1

PO. dentex Steind.
27528. Kotzebue Sound, September 2, 18:0. F. P. Herendeen.
85. Mallotus villosus (Miller) Cuv.

Kamtchatka and islands between Asia and America (Pallas).
24118. Sitka. L. A. Beardslee.
28022. Sitka, September, 1579. L. A. Beardsleo.
27990. Chugachik Bay, Cook's Inlet, July 1, 1880. T. H. Bean.
28080. Refuge Cove, Cook's Inlet, July 6, 1880. Dall \& Bean.
28038. Off Marmot Island (cod stomach), July 9, 1880. T. H. Bean.
6664. St. Michael's. H. M. Bannister.
24038. Bering Strait. Wm. Stimpson.

27572 (Juv.). Cape Lisburne, Arctic O., Angust 21, 1880. Dall \& Bean.
27555 (Juv.). Point Belcher, Arctic O., August 27, 1880. Dall \& Bean.
27563 (Juv.). Plover Bay, Siberia, August 12, 1880. T. H. Bean.
27564 (Juv.). Plover Bay, Siberia, August 12, 1880. T. H. Bean.
27579 (Juv.). Plofer Bay, Siberia, August 13, 1880. E. P. Herendeen.
86. Hypomesus olidus (Pallas) Gill.

De Castries Bay (Kner, as Osmerus oligodon); streams and lakes of Kamtchatka (Pallas, as Salmo olidus).
23973. St. Michael's, May 20, 1877. L. M. Turner. 24044. St. Michael't. L. M. Tumer.
87. Hypomesus pretiosus (Girard) Gill.

San Francisco and Puget Sound (Jordan \& Gilbert, as $\boldsymbol{H}$. olidus.)
27995. Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean.
88. Thaleichthys pacificus (Rich.) Girard.

Columbia River and Puget Sound (Jordan \& Gilbert); Vanconver Island (Giinther).
24170. Stickene River, July, 1879. Dr. Robert White.
24111. Wrangell, 1880. R. D. Crittenden.
24112. Southern Alaska. L. A. Beardslee.
24116. Sitka. L. A. Beardslee.
24661. Sitka (dried). W. H. Dall.
28001. Chilkat River, June, 18\&0. Marcus Baker.
24122. Katmai, Aliaska, 1880. B. G. McIntyre.

## COREGONID压。

89. Coregonus laurettre Bean.
90. Nulato, Yukon River. R. Kennicott.
91. Nulato, Yukon River. W. H. Dall.
92. Nulato, Yukon River. W. H. Dall.

27915 (Type). Port Clarence, September $\theta, 1880$. T. H. Bean.
27695 (Types). Point Barrow, 1880. Capt. C. L. Hooper.
90. Coregonus Merckif Günther, variety.

Kolima and other Siberian rivers (Pallas, as Salmo clupeoides, fide Günther).
23995. St. Michael's, February, 1877. L. M. Turner.
27698. Northern Alaska, 1880. Capt. C. L. Hooper.
91. Coregonus clupeiformis (Mitchill) Milner.

Great Lake Region to Polar Sea (Jordan).
17274. Fort Rae, Slave Lake.
9521. St. Michael's. H. M. Bannister.

123996 (Juv.). St. Michael's. L. M. Turner. 27790. Nulato, Yukon River. W. H. Dall.
27791. Nulato, Yukon River. J. T. Dyer.
24026. Yukon River. W. H. Dall.
92. Coregonus Kennicottil Milner.

8971 (Type). Fort Good Hope, British America. R. Kennicott.
9605. Nulato, Yukon River. R. Kennicott.
24025. Nulato, Yukon River, March 27, 1867. W. H. Dall.
93. Coregonus quadrilateralis Rich.

Arctic Ocean and rivers of Arctic North America (Giinther).
27793. Slave Lake. R. Kennicott.
27792. Nulato, Yukon River, April 21, 1867. W. H. Dall.

24000 (Juv.). Fort Yukon, 1877. L. M. Turner.
94. Thymallus aignifer (Rich.) Cuv. \& Val.

Lakes and rivers north of Mackenzie River (Rich.). 9523. St. Michael's, H. M. Bannister. 7993. Nulato, Yukon River. W. H. Dall.

## SALMONIDE.

95. Balvelinus malma (Walb.) Jordan \& Gilbert. t Salmo curilus Pallas.
McCloud River, California (Bean); Columbia River and Puget Sound (Jordan \& Gilbert).
96. Sitka, May, 1880. A. T. Whitford. 27734. Sitka, May 31, 1880. L. A. Beardslee.
97. Sitka. L. A. Beardslee.
98. Sitka. L. A. Beardslee.
99. Sitka. L. A. Beardslee.
100. Silka (Indian River), July to Angast, 1879. L. A. Beardslee.
101. Sitka, May 31, 1880. Dall \& Bean.
102. Sitka, May 31, 1880. Dall \& Bean.
103. Sitka (Pyloric cwea), June 2, 1880. T. H. Bean.

27518 (Juv.). Sitka (Indian River), June 8, 1880. Dall \& Bean.
27620. Sitka, June 8, 1880 . Dall \& Bean.
27599. Old Sitka, June 2, 1880. Dall \& Bean.
27732. Old Sitka, June 2, 1880. Dall \& Bean.
27729. Port Althorp, June 18-19, 1880. Dall \& Bean.
25952. Chngachik Bay, Cook's Inlet, July 1, 1880. T. H. Bean.

2782x. Refuge Cove, Cook's Inlet, July 6, 1820. Dall \& Bean.
2\%740. Refuge Cove, Cook's Inlet, July 6, 1880. Dall \& Bean.
27969. St. Paul, Kodiak, 1880. Wm. J. Fisher.
27727. St. Paul, Kodiak, July 10, 1880. Dall \& Bean.
28029. Humboldt Harbor, Shumagine, July 20, 1880. W. H. Dall.

28095 (Juv.). Little Koniashi Island, Shumagins, July 16, 1880. W. H. Dall.
23984. Unalashka. W. H. Dall.

19702 (1080). Unalashka. W. H. Dall.
27726. Iliuliuk, Unalashka, Jnly 28, 1880. Dall \& Bean.

27966 (Juv.). Iliuliuk, Unalashka, July 31, 1830. Dall \& Bean.
27597. Illiuliuk, Unalawha, July, 1880. Dall \& Bean.
28002. Nateekin Bay, Unalashka, October 8, 1880. Dall \& Bean.
23967. Kyska Harbor. W. H. Dall.
21511. St. Michael's, February, 1877. L. M. Turner.
21512. St. Michael's, February, 1877. L. M. Turner.
21514. St. Michael's, February, 1877. L. M. Turner.
21517. St. Michael's, March, 1876. L. M. Turner.
21513. Unalaklik River, March, 1876. L. M. Turner.
21515. Unalaklik River, March, 1876. L. M. Tarner.
21516. Unalaklik River, March, 1876. L. M. Tnrner.
27724. Port Clarence, September 8, 1830. Dall \& Bean.

Proc. Nat. Mus. $81-17$
Dec. 24, 1881.

27691 (Skin). Northern Alaska, 1880. Capt. C. L. Hooper.<br>27692 (Head). Northern Alaska, 1880. Capt. C. L. Hooper.<br>27701 (Skin). Northern Alaska, 1880. Capt. C. L. Hooper.<br>27569 (Juv.). Cape Lisburne, Arctic Ocean, August 21, 1880 . Dall \& Bean.<br>19707 (966). Alaska. W. H. Dall.<br>27725. Plover Bay, Siberia, August 12-13, 1880. Dall \& Bean.<br>28046 (Caca). Plover Bay, Siberia, August 13, 1880. T. H. Bean.

## 96. Salmo purpuratus Pallas.

Monterey Bay, San Francisco, Columbia River, and Puget Sound (Jordan \& Gilbert); rivers Bolschaya and Bystraya, Kamtchatka (Pallas).
24119. Sitka. L. A. Beardslee.
27902. Sitka, May 29, 1880. L. A. Beardslee.

9 P2905. Sitka, July or August, 1879. L. A. Beardslee.
27906. Sitka, July or August, 1879. L. A. Beardslee.
27907. Sitka. L. A. Beardslee.
27904. Sitka, May, 1880. A. T. Whitford.
27903. Sitka, June 1-3, 1880. W. M. Noyer.
24123. St. Panl, Kodiak, 1-80. W. G. W. Harford.

27690 . Northern Alaska, 1880. Capt. C. L. Hooper.
27699. Northern Alaska, 1880. Capt. C. L. Hooper.
97. Salmo Gairdner Rich.

Monterey Bay, San Francisco, Columbia River, and Puget Sound ¢Jordan \& Gilbert).

27662 \&. Sitka, June 9, 1880. T. H. Bean.
27738 ¢ (Skin). Sitka, June 10, 1880. T. H. Bean.
24195 (Eggs). Sitka, June 10, 1880. T. H. Bean.
27533 \& (Pyloric crea). Sitka, June 10, 1880. T. H. Bean.
24124 (Juv.). St. Paul, Kodiak, 1880. W. G. W. Harford.
98. Salmo irideus Gibbons.

I have doubtfully referred to this species the following young specimen:
23023. Sitka, July or August, 1879. L. A. Beardslee.
99. Onoorhynchus chouicha (Walb.) Jor. \& Gilb.

Monterey Bay, San Francisco, Columbia River, and Puget Sound (Jordan \& Gilbert).

27676 (Skin). Kassilov River, Cook's Inlet, 1880. William J. Finher.
27680 (Skin). Kassilov River, Cook's Inlet, 1880. William J. Fisher.
27679 (Skin). Alaska, 1880. William J. Fisher.
27681 (Skin). Alaska, 1880. William J. Fisher.
27682 (Spermaries). Alaska, 1880. William J. Fisher.
27716 (Belly). Yukon River. Steward of steamer St. Paul.
100. Oncorhynchus keta (Walb.) Gill \& Jordan.

San Francisco, Columbia River, and Puget Sound (Jordan \& Gilbert).
27737 \& (Skin). Old Sitka, June 12, 1880. T. H. Bean.
27617 § (Skin). Alexandrovak, Cook's Inlet, July 4, 1880. J. Cohen.
28050 (Caca and spermaries). Alexandrovsk, Cook's Inlet, July 4, 1880. J. Cohen. 27618 (Head). St. Paul, Kodiak, July 13, 1880. Dall \& Bean.

27619 (Skin). St. Paul, Kodiak, July 11, 1880. Dall \& Bean. 28010 (Eggs). St. Paul, Kodiak, July 13, 1880. Dall \& Bean. 27221 . Bering Strait, 1880. D. S. Jordan.
27687 (Skin). "Northern Alaska," 1880. Capt. C. L. Hooper. 27688 (Skid). "Northern Alaska," 1880. Capt. C. L. Hooper. 27689 f (Skin). "Northern Alaska," 1880. Capt. C. L. Hooper. 27702 (Skin). "Northern Alaska," 1880. Capt. C. L. Hooper. 27703 (Skin). "Northern Alaska," 1880. Capt. C. L. Hooper. 27704 (Skin). "Nortbern Alaska," 1880. Capt. C. L. Hooper.

## 101. Oncorhynchus nerka (Walb.) Gill \& Jordan.

Columbia River and Puget Sound (Jordan \& Gilbert). 27635 (Skin). Iliuliuk, Unalashka, July 27, 1880. T. H. Bean. 27636 (Skin). Hiuliuk, Ünalashka, July 30, 1880. T. H. Bean.
102. Oncorhynohus kisutch (Walb.) Jordan \& Gilbert.

San Francisco, Columbia River, and Puget Sound (Jordan \& Gilbert). 123042 (Juv.). Near Hot Springs, Baranoff Island, June 5, 1880. E. P. Herendeen. 27927 (Juv.). 8itka. L. A. Beardslee. 28018 (Juv.). Old Sitka, June 2, 1880. T. H. Bean. 28056 (Juv.). Port Mulgrave, Yakutat Bay, June 24, 1880. Dall \& Bean. 27928 (Juv.). Ilinliuk, Unalashka, July 31, 1880. Dall \& Bean.
927959 (Juv.). Iliulink, Unalashka, July 31, 1880. Dall \& Bean. 27929 (Juv.). Iliuliuk, Unalashka, October 6, 1880. Dall \& Bean. 27712 d. Iliuliuk, Unalashka, October 12, 1880. Dall \& Bean. 27721 of (Skin). Iliuliak, Unalashka, October 12, 1880. T. H. Bean. 28032 ठ (Caca). Iliuliak, Unalashka, October 12, 1880. T. H. Bean. 27720 of (Skin). Nateekin Bay, Unalashka, October 8, 1880. T. H. Bean. $27 \% 22$ \& (Skin). Nateekin Bay, Unalashka, October 8, 1880. T. H. Bean. 27723 d. Nateekin Bay, Unalashka, October 8, 1880. Dall \& Bean. 28036 (Csea). Nateekin Bay, Unalashka, October 8, 1880. Dall \& Bean. 2779 \& (Skin). Chernoffsky, Unalashka, October 1, 1880. E. P. Herendeen. 27953 (Juv.). Chernoffsky, Unalashka, October 1, 1880. Dall \& Bean.
123983 (Juv.). Unalashka. W. H. Dall.
103. Oncorhynchus gorbuscha (Walb.) Gill \& Jordan.

De Castries Bay (Steindachner, as O. proteus); Plover Bay, Siberia (Bean); San Francisco, Columbia River, and Puget Sound (Jordan \& Gilbert).
$27 \% 43$ of \& \&. Refuge Cove, Cook's Inlet, July 6, 1880. Dall \& Bean.
27715 f (Skin). St. Panl, Kodiak, July 11, 1880. T. H. Bean.
27744 ㅇ. St. Paul, Kodiak, Jty 11, 1880. Dall \& Bean.

## ALEPIDOSAURID疋。

104. Alepidosaurus ferox Lowe.

124052 . Unalashka (bad etate). W. H. Dall.
27705 (Skin). Iliuliuk, Unalashka, October 7, 1880. Robert King.
105. Alepidosaurus borealis Gill.

Puget Sound (Jordan \& Gilbert).
23971. Captain's Harbor, Unalashka. Geo. Davideon.

## CLUPEID王.

106. Clupea mirabilis Girard.

Kamtchatka (Pallas, as C. harengus); San Diego to Puget Sound (Jordan \& Gilbert).

27948. Sitka, July, 1879. L. A. Beardslee.<br>27978. Sitka, May, 1880. L. A. Beardelee.<br>27977. Old Sitka, June 10, 1880. Dall \& Bean.<br>27979. Port Althorp, June 19, 1880. Dall \& Bean.<br>27949. Port Mulgrave, June 24, 1880. Dall \& Bean.<br>27923. Chugachik Bay, Cook's Inlet, June 30, 1880. E. P. Herendeen.<br>27984. Chugachik Bay, Cook's Inlet, July 1, 1880. E. P. Herendeen.<br>27566. Chugachik Bay, Cook's Inlet, July 1, 1880. W. H. Dall.<br>27524. Ilinliuk, Unalashka, July 28, 1880. Dall \& Bean.<br>27718. Ilinliuk, Unalashka, Angust 1, 1880 . Dall \& Bean.<br>27717. Hiuliuk, Unalashka, July 31, 1880. 8. Bailey.<br>24021. Unalashka. W. II. Dall.<br>20663. St. Michael's, June 10, 1877. L. M. Turner.<br>20864. St. Michael's, June 10, 1877. L. M. Turner.<br>28019. Port Clarence, September 8, 1880. Dall \& Bean.<br>24049. Alaska! W. H. Dall.

107. Spratolloides bryoporus Cope.

Alaska (Cope).

## CATASTOMID疋.

108. Catostomus longirostris Le Sueur.

Nulato, Yukon River (Dall).

## MASTACEMBELIDA!

109. Ptilichthys Goodel Bean.

26619 ('Type). Iliuliuk, Ünalashka, July 28, 18e0. Dall \& Bean.

## ACIPENSERIDE.

110. Aoipenser medirostris Ayres.

San Francisco and Columbia Rirer (Jordan \& Gilbert). 27697 (202). "Northern Alaska", 1880. Capt. C. L. Hooper.
If this specimen is really Alaskan, it is the first of its kind from that Territory.
CHIMERIDF.

## 111. Chimsera Colliel Bennett.

Monterey Bay, San Francisco, and Puget Sound (Jordan \& Gilbert); Esquimault Harbor (Günther).
24041. Alaska.

24171 8. Alexander Archipelago, July, 1879. Dr. Robert White.
RAIID.
112. Raia binooulata Girard.

Monterey Bay, San Francisco, and Puget Sound (Jordan \& Gilbert). 27667 \& (Jaws). Sitka, June 2, 1880. Dall \& Bean.
27668 \& (Jaws). Bitka, June 3, 1880. Dall \& Bean.

27669 (Jaws). Port Althorp, June 20, 1880. Dall \& Bean. 27629 f (Jaws). St. Paul, Kodiak, July 10, 1880. Dall \& Bean. 27630 \& (Jaws). St. Paul, Kodiak, July 10, 1860. Dall \& Bean. 27672 J. St. Paul, Kodiak, July 23, 1880. Wm. J. Fisher.

## 113. Raia parmifera Bead.

24037 (Jaws and skull). Unalashka. W. H. Dall.
27651 \& (Type). Iliuliuk, Unalashka, October 12, 1880. Dall \& Bean.
28098 б (Jaws, claspers, \&cc.). St. Michael's, 1876. L. M. Turner.
114. Raia batis Pallas (not Linnabs).

Aleutians, Kuriles, Kamtchatka (Pallas).

## SPINACIDEE.

## 115. Bqualus aoanthias Linn.

Santa Barbara, Monterey Bay, San Francisco, and Puget Sound (Jordan \& Gilbert).
$6756^{\circ}$ (Juv.). Sitka. F. Bischoff.
27663 f. Sitka Bay, June 9, 1880. S. Bailey.
28048 (Jaws). Sitka Bay, June 9, 1880. S. Bailey.
23049 (Jaws). Port Althorp, June 20, 1880. T. H. Bean.
27616. Off Marmot Island, Júly 8, 1880. Dall \& Bean.

## PETROMYZONTIDA.

116. Ammocosten aurens Bean.

21524 (Type). Anvik, Yukon River, 1877. L. M. Turner.
124045 (Juv.). Fort Yukon, 1877. L. M. Turner.

## APPENDIX．

Most of the species named in this appendix are known to occur in waters bordering upon the limits of Alaska，and will doubtless be found by future investigators．To these are added certain others，described by Pallas，Tilesius，and Cuvier and Valenciennes，concerning which little is known，but which may yet fall into the hands of collectors in the region under discussion and become established elements of the Alaskan fauna．

## GASTEROSTEID同。

1．Gasterostens aculeatus L．var．gymnurus Cuv． Kamtchatka（Pallas，as Gasteracanthus aculeatus）．

## PLEURONECTID E．

2．Pleuronectes pinnifasciatus Steind．（De Castries Bay．）
3．Pleuronectea Pallasil Steind．（Kamtchatka．）
4．Parophryn vetulun Girard．（Puget Sound．Jordan \＆Gilbert．）
5．Parophryt Inchyurne Jordan \＆Gilbert．（Puget Sound．）
6．Pleuronichthys coenosus Girard．（Puget Sound．Jordan \＆Gilbert．）
7．Eifppoglossoiden Jordani Lockington．（Puget Sound．Jordan \＆Gilbert．）
8．Eippoglossoides exilis Jordan \＆Gilbert．（Pnget Sound．）
GADID $\mathrm{E}^{\text {．}}$
9．Gadus navaga Kölreuter．（De Castries Bay．Steindachner．）
10．Merlncius productus（Ayres）Gill．（De Castries Bay．Steindachner，as Boreogadul productus．）

CONGROGADIDE．
11．Bcytalina cerdale Jordan \＆Gilbert．（Puget Sound．）
LYCODID疋．
12．Gymnelis（1）stigma（Bennett）Gthr．（Kotzebue Sound．Lay \＆Bennett．）
13．Zoarces elongatus Kner．（De Castries Bay．）
STICHEIDAE．
14．Stichwus hexagrammus var．Kner．（De Castries Bay．）
15．Stichseun enneagrammu：Kner．（De Castries Bay．）
16．Btichzopsis nana Kner．（De Castriea Bay．）

## XIPHISTERIDA.

17. Anoplarchus alectrolophus (Pallas) Jordan \& Gilbert. (Talek Island, Gulf of Penshin. Pallas, as Blennius alectorolophus.)
18. Xiphister mucosus (Girard) Jordan. (Pnget Sound. Jordan \& Gilbert.)
19. Apodichthys flavidus Girard. (Vanconver Island. Gtinther.)
20. Apodichthys fucorum Jordan \& Gilbert. (Puget Sound.)
21. Murenoides quinquemaculatus (Kner.). (De Castries Bay. Kner, as Cenfronotus quinquemaculatus).
22. Murænoides fasciatus (Bl. Schn.) Gill. (Amur River. Steindachner, as Centronotu* fasciatur.)
23. Muranoldes tania (Pall.). (Kuriles. Pallas, as Blennius tania.)
24. Asternopteryx apus (C. \& V.). (Kamtchatka. Tilesins.)

Ophidium ocellatum Tileains fide Günther. Blennius gunnellus Pallas fide Gunther.

## ANARRHICHADIDE.

25. Anarthichas orientalis Pallas. (Kamtchatka.)
26. Anarrhichthys ocellatus Ayres. (Puget Sound. Jordan \& Gilbert.)

BLENNIID A.
27. Blennius (?) polyactocephalus Pallas. (Kamtchatka.)

Perhaps a species of Carelophus.
28. Gqnnellops roseus (Pallas). (Kariles. Pallas, as Blennius roscus.)

## BATRACHID $\boldsymbol{E}$.

29. Porichthys porosissimas (C. \& V.) Gunthet. (Puget Sound. Jordan \& Gilbert.)

## GOBIESOCIDE fide Guinther.

30. Cyclopterus (?) Steller Pallas. (Kamtchatka.)
31. Cyclopterus (?) vertricosun Pallas. (Kamtchatka.)

## LIPARIDID无.

32. Careproctus gelatinosus (Pallas) Gill. (Kamtchatka. Pallas.)

$$
\text { AGONID } \mathrm{E} \text {. }
$$

33. Aspidophoroides inermis Gitinther. (Vancouver Island.)
34. Agonus (?) stegophthalmus Tilesius. (Kuriles.)
35. Agonus (?) laevigatus Tileaius. (Sagalien Island.)
36. Brachyopsis dodecaëdrus (Tiles). (Kamtchatka. Tilesins, as Agonuo-dodokaëdrus.)
37. Brachyopsis rostratus (Tiles.) Gill. (Kamtchatka. Tilesias, as Agonus rostratus.)
Kamtchatka and Kuriles (Pallas, as Phalangistes fusiformis.)
38. Kamtcbatka. Gordon Prince.
39. Bothragonus Swanli (Steind.) Gill. (Puget Sound. Steind., as Hypagonke Suani.)
40. Hypsagonus quadricornin (C. \& V.) Gill. (Kamtchatka. C. \& V., as Aspidophorus quadricornis.)
41. Kamtchatka. Gordon Prince.

## COTTID屈.

40. Ascellohthys rhodorus Jordan \& Gilbert.

Puget Sound (Jordan \& Gilbert).
15030. Victoria. Dall \& Brown.
41. Cottus quadricornis Pallas (1 not of Linnaus). Kamtchatka.
42. Cottus mertensil C. \& V. Kamtchatka.
43. Cottus jaok C. \& V. Kamtchatka.
44. Cottus Branda Steind. (Amur River.)
45. Cottus decastrensis Kner. (Do Castries Bay.)
46. Cottus verrucosun Bean.

27547 (Type). Plover Bay, Siberia, Augnst 13, 1880. Dall \& Bean.
17. Cottus axillaris (Gilli) Bean.

Borencolfus axillaris Gill.
24027 (Type). Avatcha Bay, Kamtchatka.
48. Gymnacanthus claviger (C. \& V.). (Kamtchatka. C. \& V., as Cotins clariger.)
49. Porocottus tontaculatus (Kner).
50. Porocottun quadrifilis Gill.

6227 (Type). Avatcha Bay, Kamtchatka. Wm. Stimpaon.
27537. Plover Bay, Siberia, September 14, 1880. Dall \& Bean.
51. Megalocottus platycephalus (Pallas) Gill.

Kamtchatka \& America-(Pallas, as Cottus platycephalus.)
52. Icelus hamatus Krôyer.

27540 (Juv.). Plover Bay, Siberia, September 14, 1880. Dall \& Bean.
27551 (Juv.). Plover Bay, Siberia, September 14, 1880. Dall \& Bean.
53. Artedius lateralis Girard. (Pnget Sonnd. Jordan \& Gilbert.)
54. Artedius pugettensis Steind. (Puget Sonnd. Steind. \& Jor. \& Gilb.)
55. Scorpzenichthys marmoratus Girard. (Puget Sound. Jor. \& Gilb.)

> SCORP ENID
56. Bebastichthye nigrocinotus (Ayres) Gill.

Puget Sound (Jordan \& Gilbert); Vancouver Island (Gill).

57．Bebastichthys nebulosus（Ayres）Gill．
Paget Sound（Jordan \＆Gilbert）；Vancouver Island（Gill）．
58．Sebastichthys auriculatus（Girard）Gill．（Vancouver Island．Gill．）
59．Bebastichthys pinniger（Gill．）Lockington．（Puget Sound．Jordan \＆Gilbert．）
60．Sebastichthys mystinus Jordan \＆Gilbert．（Puget Sound．）
FAMILX UNKNOWN．
61．Ammodytes（？）septipinnis Pallas．America．
EMBIOTOCIDAE．
62．Damalichthys argyronomus（Girand）Jor．\＆Gilb．
Puget Sound（Jor．\＆．Gilb．）；Vancouver Island（Gill）．
63．Ditrema Jacksoni（Agassiz）Gthr．（Puget Sound．Jor．\＆Gilb．）
64．Ditrema laterale（Agaseiz）Gthr．（Vancouver Island．Günther．）
65．Ditrema brevipinne Günther．Vancbuver Ialand．
66．Micrometrus aggregatus Gibbons．
Puget Sound（Jor．\＆Gilb．）；Vancouver Island（Guinther）．
67．Micrometrus frenatus（Gill．）Jordan \＆Gilbert．
Puget Sound（Jor．\＆Gilb．）；Vancouver Island（Gill）：
STROMATEID.
68．Btromateus simillimus（Ayres）Gill．（Puget Sound．Jordan \＆Gilbert．）

## PERCIDE．

69．Btizostedium vitreum（Mitch．）Jordan \＆Copeland．
8469．North Red River．R．Kennicott． 8970．Athabasca Lake．R．Kennicott．

## TRACHYPTERID平。

70．Trachypterus altivelis？Kner．（Puget Bound．）

## SCOPELID A．

71．Myctophum crenulare Jordan \＆Gilbert．
Santa Barbara（Jor．\＆Gilb．）．
23445 ．N．Lat． $49{ }^{\circ}$ ，W．Long． $151^{\circ}$ ，September 15，1871．W．H．Dall．

## MICROSTOMID压．

72．Osmerus attenuatus Lockington．
San Francisco（Jordan \＆Gilbert）．
21587．Washington Territory．James G．Swan．

## CUREGONID A．

73．Coregonus Artedi（Le S．）Hoy．
Great Lake Region and Upper Mississippi Valley to Alaska（Jordan）．
I have seen no specimens of this species from Alaska．C．laurette resembles it but is quite distinct．
74．Coregonus microstomus（Pallas）．（Kamtchatka，\＆c．）
75．Stenodus Mackenxii Richardson．
Mackenzie River with its tributaries（Rich．）．
7262 （Skid）．Fort Resolution，May 7．R．Kennicott．
76．Thymallus vulgaris（fide Günther）．
Salmo thymallus Pallas（part）．（Kamtchatka．）
77．Thymallus mertonsil C．\＆V．（Kamtchatka．）

## SALMONID 压．

78．Balmo curilus Pallas．Kurile Islands．
79．Salmo lencomaenis Pallas．（ 1 Salvelinus malma［Walb．］Jor．\＆Gilb．）
Kamtchatka and northward（Pallas）．
80．Salmo lzevigatus Pallas．Kurile Islands．
Salmo lagocephalus，sanguinolentus，japonensis，lycaodon，proteus，and orientalis of Pallas may doubtless all be reduced to the five species of Oncorhynchus now recognized from the Alaskan coast．

PARALEPIDIDE．
81．Paralepis coruscann Jordan \＆Gilbert．（Puget Sound．）
ENGRAULIDID压．
82．Stolephorus ringenn（Jenyns）Jordan \＆Gilbert．
Puget Sound（Jor．\＆Gilb．）；Vancouver Island（Gill）．
NEMICHTHYID 出．
83．Nemichthys avocetta Jordan \＆Gilbert．（Puget Sound．）
CONGRID E．
84．Conger sp．（＝Murana conger Pallas）．（Kamtchatka．）
ACIPENSERID压．
85．Acipenser transmontanus Richardson．（Puget Sound．Jor．\＆Gilb．）
RAIID疋．
86．Raia rhina Jordan \＆Gilbert．（Puget Sound．）
87．Rala fullonica Pallas（not Linn．）．（Kamtchatka and Kuriles．）
88．Rala mucosa Pallas．（Kamtchatka．）
PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. ..... 267

## NOTIDANIDE.

89. Hexanchus corinus Jordan \& Gilbert. (Puget Sound.)

## CETORHINIDE.

90. Cetorhinus maximus (L.) Blainville. (Monterey Bay, Jor. \& Gilb.) GALEORHINID E.
91. Squalus carcharias Pallas. (Kamtchatka.) 1 (=Eulamia lamia [Risso] Gill.)

San Diego (Jordan \& Gilbert).
92. Galeorhinus galeus (L.) Blainville.

San Diego to San Francisco (Jordan \& Gilbert).
93. Boreogaleus arcticus (Faber) Gill. (Arctic Seas. Guinther.)
94. Carcharinus glaucus (L.) Blainville. (Puget Sound. Jordan \& Gilbert.)

SCYMNID $\mathbb{E}$.
95. Bomniosus mičocephalus (Bloch) Gill. (Puget Sound. Jordan \& Gilbert.)

## PETROMYZONTIDA.

96. Petromyzon lampetra Pallas (=Petromyzon marinus L. fide Gunther).

Okhotsk Sea (Pallas).
97. Entosphenus tridentatus (Richardson) Gill. (Columbia River. Jor. \& Gilb.)
98. Ammoccates plumbeus (Ayres) Jor. \& Gilb. (Puget Sound. Jor. \& Gilb.)
99. Armoccotes lumbricalis (Pallas). ( $=$ Petromyzon branchialis L. fide Gth.)

Jenesei River and streams of Kamtchatka (Pallas).
SPECIES NOT YET FOUND ELSEWHERE THAN IN ALASKA.
(The numbers prefixed refer to my catalogue.)
8. Pleuronectes quadrituberculatus.
31. Muraenoides maxillaris.
32. Anarrhichaः lepturun
45. Cottun niger.
46. Cottus humilis.
49. Uranidea microntoma.
50. Gymnacanthun galeatun.
55. Melletes papilio.
69. Bebastichthys cillatus.
70. Hexagrammus ordinatus.

## 73. Hexagrammus scaber.

75. Pleurogrammus monopterygias.
76. Ammodytes alancanun.
77. Dallia pectoralia.
78. Coregonus laurettze.
79. Spratelloides bryoporas
80. Ptilichthyn Goodel.
81. Raia parmifera.
82. Ammoccotes aureus

## FRESH-W ATER FISHES COMMON TO ALASKA AND EASTERN NORTH AMERICA.

19. Lota maculoma
20. Esox Incina

73 (App.). Coregonus artedl. (Great Lakes.)
91. Coregonua clupefformis. (Great Lakes.)
93. Coregonus quadrilateralis. (New Hampshire.)
95. Salvelinus malma. (New York, introduced from California.)
98. Salmo irideus. (Introduced from California.)
99. Oncorhynchus chouicha. (Introduced from California.)
108. Catostomus longirontrin. (Vermont.)

FISHES FOUND IN THE ARCTIC AND ALSO IN THE PACIFIC, SOUTH OF BERING STRAIT.
15. Boreogadus saida.
20. Gymnelis viridis.
23. Btichæus punctatue.

22 (App.). Murzenoiden fasciatus.
35. Eumicrotremus epinosus.
50. Gymnacanthus plstiliger.

52 (App.). Icelus hamatus.
59. Triglops Pingelii.
78. Ammodytes americanus
85. Mallotus villosus.

95 (App.). Somniosus microcephalus.

## SPECIES FOUND IN THE PACIFIC, SOUTH OF BERING strait, and also in the atlantic.

3. Gasterosteus pungitius subsp. brachypoda.
4. Hippoglossus valgaris.
5. Gadus morrhua.
6. Gymnelis viridis
7. Stichæua punctatui.
8. Eumicrotremus spinosus.
9. Gymnacanthus pistilliger.

52 (App.). Icelus hamatus. (N. lat. $58^{\circ}$. Collett.)
59. Triglops Pingelif.
64. Hemitripterus americanus.
78. Ammodytes amoricanus.
85. Mallotus villosus.
104. Alopidosaurus ferox.
115. Squalus acanthias.

95 (App.). Somniosus microcephalus.

## ALASKAN SPECIES OCCURRING SOUTH TO SAN FRANCISCO OR BEYOND.

5. Pleuronęctes stellatus Pall.
6. Lepidopsetta bilineata.
7. Hippoglossus vulgaris Flem.
8. Atheresthes atomian Jor. \& Gilb.
9. Pollachius chalcogrammus (Pall.) Jor. \& Gilb.
10. Miorogadus proximus (Grd.) Gill.
11. Hemilepidotus trachurus (Pall.) Othr.
12. Sebastichthys maliger Jor. \& Gilb.
13. Sebastichthys raber (Ayres) Lock.
14. Sebastichthys melanops (Grd.) Jor. \& Gilb.
15. Hexagrammus supercillosus (Pall.) Jor. \& Gilb.
16. Hexagrammus decagrammus (Pall.) Jor. \& Gilb.
17. Ophiodon elongatus Grd.
18. Anoplopoma fimbria (Pall.) Gill.
19. Ammodytes americanus DeKay.
20. Hypomesus pretiosus (Grd.) Gill.
21. Salvelinns malma (Walb.) Jor. \& Gilb.
22. Salmo purpuratus Pall.
23. Salmo Gairdneri Rich.
24. Salmo irideus Gibbons.
25. Oncorhynchus chouicha (Walb.) Jor. \& Gilb.
26. Oncorhynchus keta (Walb.) Gill \& Jor.
27. Oncorhynchus kisutch (Walb.) Jor. \& Gilb.
28. Oncorhynchus gorbuscha (Walb.) Gill \& Jor
29. Clupea mirabilis Grd.
30. Acipenser medirostris Ayres.

## ALASKAN SPECIES OCCURRING SOUTH TO COLUMBIA RIVER.

88. Thaleichthys pacificus (Rich.) Grd.
89. Oncorhynchus nerka (Walb.) Gill \& Jor.

## ALASKAN SPECIES OCCURRING AS FAR SOUTH AS PCGET SOUND.

11. Hippoglossoides elassodon Jor. \& Gilb.
12. Gadus morrhua L.
13. Cottus polyacanthocephalus Pall.
14. Sebastichthys caurinus (Rich.) Jor. \& Gilb.
15. Hexagrammus asper Steller. (Labrax Hexagrammus Pall.)
16. Bathymaster signatus Cope.

SYNOPSIS OF THE DISTRIBUTION OF ALASEAN FISHES.


## Synopsis of the distribution of Alaskan fiskes-Continued.

|  | 送 | \% |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15. Boreogadus saida |  | + | + |  |  |
| 16. Gadue morrhua | $+$ |  | $+$ | $+$ |  |
| 17. Mieronacius pruximus |  |  | $+$ | $+$ | + |
| 1*. Tilesia graciln |  |  | $+$ |  |  |
| 19. Lotu mimeutom |  |  | + |  |  |
| 24. Gmmoliu viridfo | $+$ | + | + |  | .... |
| 21. Iycode Turnerit |  |  | $+$ |  |  |
| 22. Lycoder coccincur |  | $+$ | $+$ |  |  |
| 23. Ntichaum punetatue | + | $+$ | $+$ | ... |  |
| 24. Stichout (8) Rothrochii |  | $+$ | $+$ |  |  |
| 25. Lnumpentes conguillaris |  | $+$ | $+$ | $+$ | + |
| 26. Xiphister rupestrie. |  |  | $+$ | $+$ | $+$ |
| 27. Xiphiater chirum... |  |  | $+$ | $+$ | $+$ |
| 28. A noplarchus atropurpureus |  |  | $+$ | $+$ | + |
| 29. Muremoiden dolichogaster. |  |  | $+$ |  |  |
| 30. Mfuracnoides ornatum. |  |  | $+$ | $+$ | ..... |
| 31. Muromoides matillaris. |  |  | $+$ |  | ..... |
| 12. Anarrhichas lepturus. |  |  | + |  | .... |
| 33. Bathmmater mignatus |  |  | $+$ | + | .-... |
| 34. Trichudon stelleri... |  |  | $+$ |  | .... |
| 95. Ėumicrotrernue spinows | $+$ | + | $+$ |  | .... |
| 36. Lipanis pulchellus. |  |  | $+$ |  | $+$ |
| 37. Liparis calliodon. |  |  | $+$ |  |  |
| 3*. Lipario cyoloput. |  |  | $+$ |  |  |
| 39. Liparir gillbus. |  |  | $+$ |  |  |
| 40 Nigharonus barbatus |  |  | $+$ |  | .... |
| 41. Pudothecus aetperumerinue |  | $+$ | + | $+$ |  |
| 42. Podothecus trimpinows |  |  | + |  | $+$ |
| 43 Cottus teniopterus. |  |  | $+$ |  |  |
| 41. Cottua polyacanthocephatus |  | $+$ | $+$ | $+$ |  |
| 43. Eottum niger |  |  | $+$ |  |  |
| 46. Cottur humilis |  | + | $+$ |  |  |
| 17. Ampidocottur binon |  |  | $+$ | + | $+$ |
| 4*. Ceratucottus dicerau* |  |  | + |  |  |
| 41. Cranidea micrompoma |  |  | $+$ |  |  |
| E0). Gymnacanthus pintilliger | $+$ |  | $+$ |  |  |
| 51. Gymmacanthus galatue |  | $+$ | $+$ |  |  |
| ive Artedius notompitotus. |  |  | $+$ | $+$ | $+$ |
| 59. Hemilepidotus trachurus |  |  | + | $+$ | + |
| 34. Hemilepidotur Jordani |  |  | + |  |  |
| 53. Melleter papilio. |  |  | $+$ |  |  |
| 56. Leptocotlue armates |  |  | $+$ |  | $+$ |
| \$7. Olinocntties macvionus |  |  | $+$ | + | + |
| 58. Oligocotur glabicep |  |  | $+$ | + | $+$ |
| 89. Triplope 1 implit | $+$ | $+$ | + |  |  |
| 60. Bleprias cirthome |  |  | $+$ | + | + |
| 61. Mlepsias bilobus |  |  | $+$ |  |  |
| 62. Nautichthye oculofanciatus |  |  | $+$ | + |  |
| 61. Nhamyphoottu Richardsoni |  |  | $+$ |  | +(1) |
| 68. Hemitriptarus anwericance | $+$ |  | $+$ |  |  |
| 65. Sebartiolithye muliver |  |  | $+$ | $+$ | $+$ |
| 60. Seborrichthys courinue |  |  | $+$ | $+$ |  |
| 67. Sebastichthyw nuber |  |  | + | + | + |
| 68. Sebantichthy melanopa |  |  | $+$ | + | + |
| 00. Sirluastuchlhys ciliaku | . |  | $+$ |  |  |
| 70. Hexagrawnues asper |  |  | + | $+$ | .... |
| 71. Hexaprammus ordinatus. |  |  | $+$ |  |  |
| 72. Hexagrnmmm onpercilionme. |  |  | $+$ | + | $+$ |
| 73. Hexagrammes accher ... |  |  | + |  |  |
| 74. Hexagramemus decagrammus |  |  | $+$ | $+$ | $+$ |
| 75. Pleurogrammeme monopterygi |  |  | $+$ |  |  |
| T6. Ophronlon elonquatwe .. |  |  | $+$ |  | + |
| 7. A nuplopena fimbria. |  |  | $+$ |  | $+$ |
| in. 4 mimoduter americanue | $+$ | $+$ | $+$ | $+$ | $+$ |
| 79. Ammodytes alaseanus. |  |  | $+$ |  |  |
| 80. F'my ciroluten paradomes |  |  | $+$ |  | c... |
| H1. Eivos lucius |  |  | $+$ |  |  |
| 82. Dallia pectovalis |  |  | $+$ |  |  |
| 83. Osmeriu dontex. |  |  | $+$ |  |  |
| 84. Omпетия трігіисh*s |  | $+$ |  |  |  |
| 85. Mallotue ziltonu*. | $+$ | + | $+$ |  |  |
| 88. Hypomeatu olidus |  |  | $+$ |  |  |
| 87. Hypomextu pretionus |  |  | $+$ | + | + |
| 88. Thateich thys pacifow. |  |  | $+$ | $+$ |  |
| 89. Ooregonw laureito |  | $+$ |  |  |  |

Synopeis of the distribution of Alaskan fishes－Continned．

|  |  | 㒭 | 安 |  | 碳 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coregmus Merchio r |  |  |  |  |  |
|  | Coregonus clupeiformin． |  | $+$ |  |  |  |
|  | Coreqoonus huadricoteralis |  |  |  |  |  |
|  | Thymallus sipmifer |  | $\pm$ |  |  |  |
|  | Sallino parpuratas． |  |  |  |  |  |
|  | Nalmo Giavrameri |  |  |  | $\pm$ |  |
|  | Omoorhynehus chouicha |  |  |  | $\pm$ |  |
| 101 | Oncoorhumethus bera |  |  |  | $\pm$ |  |
| $1+2$ | Oncorhmehus kinuth． |  |  |  |  |  |
|  | Cncorhunchue gorbuech A criduenurus frrox | ＋ | ＋ |  |  |  |
|  | Ateprionaurus horealis |  |  |  |  |  |
|  | Clupea mirabilis |  |  |  |  |  |
|  | Cotustomus lomivioutris |  |  |  |  |  |
|  | $P^{\text {mitichthys Goondei }}$ |  |  |  |  |  |
|  | Achpenser medirosiris |  |  |  |  |  |
|  | Raia binoculata． |  |  |  |  |  |
|  | Naia parmitra |  |  |  |  |  |
|  | Sina butio Palas． |  |  |  |  |  |
|  | A mmates nurses | ＋ |  |  |  |  |
|  | （App．）．Icelus hamatus <br> （Арр．）．Somviosus mict | ＋ | $\pm$ |  |  |  |

# method or making and preariving planter cants． 

By ANTHONY PIRZ．

## Long Island City，N．Y．， October 28， 1881.

Dear Sir：In using the method of preserving plaster casts with baryta water and soap as given some time ago，it happens that larger pieces remain damp a long time（years）and yellow iron spots readily appear on the plaster．V．Dechend，in Bonn，recommends brushing the casts with a hot saturated solution of borax twice，and larger pieces five to six times．Then apply twice a saturated and hot solution of chloride of baryta，and finally a hot solution of soap；the superfluous soap solution is to be washed off with hot water，and lastly with cold water．The whole treatment occupies but a few hours．

W．Reisig，in Darmstad，recommends covering the plaster casts with a solution of India rubber in benzole，or petroleum ether，or bisulphide of carbon．The casts so treated can be washed．
$\bar{R}$ ．Jacobsen＇s plan to make plaster casts stand the washing is： to saturate the casts hot with a solution of a most neutral soap from soda lye and stearic acid in 10 parts of boiling water．

I．W．Platonoff，in Moscow，prepares a mass for casts as follows： take 50 parts glue， 35 parts wax，and 15 parts glycerine，with 30 per
cent. zinc oxide. It becomes as hard as horn. A softer mass consists of 50 parts glue, 25 parts wax, and 25 parts glycerine. To prepare the mass, dissolve the glue in warm glycerine, then add the wax, and lastly the metal oxide.
R. Martin, in Sonneberg, mixes 20 to 100 parts zinc oxide with 5 to 10 parts tartaric acid or calcined alum and 100 parts starch (finely powdered), and the required quantity of water to form the casts. If these articles are at a temperature below $15^{\circ}$ Celsius and are poured in warm molds, the cast becomes brittle, but is at once made plastic by being placed in a water-bath of $50^{\circ}$. Then give the casts a surface which permits washing by collodion, which is mixed with a solution of wax in ether.

My method of preparing caustic baryta is: Take carbonate baryta, palverize and mix with charcoal, put in a crucible well 9 luted and expose in a white fire. Then leach with boiled water and let crystallize. As the caustic baryta so greedily absorbs the carbonic acid from the air, I give this simple cheap method, so that your department can often make the caustic baryta new, when the old has turned into carbonate baryta.

I have written these various methods and you can select what pleases you.

I shall be under great obligations to you, if yon will send me the survey and publication when ready.

I remain, dear sir, yours very truly,
Hon. Spencer F. Baird,
Secretary Smithsonian Institution, Washington, D. C.

LIET OF PISHES COLLECTED BY LIEUT. HENRY S. NICHOLS, U. g. N., IN THE GULE OP CALIFORNIA AND ON THE WEST COABT OF LOWER CALIPORNEA, WITR DESCRIPTIONA OF FOER NEW sPRCIEN.

By DAVID S. JORDAN and CHARLES H. GILBERT.
The specimens of fishes collected by Lient. Henry E. Nichols, commandant of the United States Coast and Geodetic Survey Steamer Has. sler, in his voyage along the coast of Mexico and Ceutral America, have been already noticed by us on page 225 of the present volume of the Proceedings of the United States National Mnseum. On the northward voyage of the Hassler (Jannary-March, 1881), Lieutenant Nichols made another collection, also of much importance. A list of the species obtained, with their numbers as recorded in the register of the museum, is given below.

It will be noticed that all the species obtained from the west coast of Lower California belong to the Californian fauna, while nearly all of those obtained within the Gulf are members of the tropical fauna of the west coast of Mexico. It is a fact worthy of note that very few of the Proc. Nat. Mus. 81-18 Jan. 20, 1 888.
fishes found along the southern coast of California extend their range as far southward as Cape San Lucas or Mazatlan. Only about ten species of shore fishes are known to occur both at San Diego and Mazatlan. In the region between San Diego and Magdalena Bay, the Califo.. nian fauna and its characteristic species almost wholly disappear, giving place gradually to the tropical fauna of the west coast of Mexico. Even the Labrida, Pomacentrida, and Scianide of California do not extend southward to Mazatlan.
A.-Species from the Gulf of California.

29,377. Serranus radialis (Quoy \& Gaim.) J. \& G. Punta San Ignacio, Mexico.
29,388. Mugil mexicanus Steind. Same locality. 29,353, 29,393, 29,373. Tetrodon politus Ayres. Same locality. 29,362. Cynoscion parvipinne Ayres. Guaymas, Mexico. 29,386. Pomadasys ! inornatus (Gill) J. \& G. Guaymas, Mexico.

This specimen has 58 scales in a longitudinal series, the dorsal and anal fins almost naked, the anal rays III, 11, and the snout rather long, more than one-third length of head. It differs in all these respects from the description of Pristipoma brevipinne Steindachner $=1$ Microlepidotus inornatus Gill.
20,355. Gerres californiensis (Gill) J. \& G. Guaymas, Mexico. 29,800. Gerres gracilis (Gill) J. \& G. Guaymas, Mexico.
29,357. Hemirhamphus unifasciatus Ranzani. Guaymas, Mexico.
29,356. Mugil brasiliensis Agass. Gnaymas, Mexico.
29,368 . Porichthys porosissimus (C. \& V.) Gthr. Gulf of California (dredged in 15 fathoms).
29,385. Cynoscion othonopterum sp. nov. Punta San Felipe, Mexico.
Description.-Body rather elongate, the back somewhat elevated, the profile from tip of snout to front of dorsal nearly straight; candal peduncle rather long and slender, its depth 4 in head. Head long and pointed, compressed, not regularly conical. Mouth large, the lower jaw projecting; maxillary broad, reaching to or a little beyond posterior margin of orbit; premaxillaries in front on the level of lower part of pupil; length of gape $2 \frac{1}{3}$ in head. Teeth in upper jaw in a moderate band, which becomes narrower laterally; upper jaw with two small canines, their length scarcely one-fourth diameter of pupil ; some of the other anterior teeth enlarged, and larger than the lateral teeth. Teeth in lower jaw in a narrow band in front, in a single series laterally; the lateral teeth much larger than the anterior. Eye moderate, broader than preorbital, narrower than maxillary; its diameter 62 in head, a little more than half interorbital space. Preopercle with its membranaceous border broad, and covered with small scales. GiH rakers long and strong, nearly as long as eye. Scales small, all with conspicuous membranaceous edges. All the fins excepting spinons dorsal completely covered with small scales, the bases of the fins thickened by
them; a few scales on front of spinons dorsal. Lateral line considerably curved anteriorly, becoming straight at a point in front of the vent, near the origin of the soft dorsal. Dorsal spines comparatively long and strong, little flexible; the third spiue slightly longer than the second, 23 in length of head; first spine short and slender, about $\frac{1}{3}$ length of second. Dorsals not connected; second dorsal rather high, its longest rays $3 \frac{1}{2}$ in head. Caudal fin large, lunate, the outer rays about $\frac{1}{3}$ longer than the middle rays, which are 24 in head. (In C. squamipinne the caudal fin is rhombic, having the middle rays produced, much longer than the outer rays.) Anal large, as long as high, its distal margin perfectly straight; its longest rays about one-third length of head. Anal spines small, enveloped in the scaly skin, the second abont $\frac{1}{3}$ height of first soft ray. Anal fin terminating considerably in front of dorsal. Ventrals long, not reaching quite half way to vent, their length about half that of head. Pectorals broad, rather long, reaching a little beyond tips of ventrals, and contained 13 in length of head. Head $3 \frac{1}{10}$ in length; depth 4. D. IX-I, 23; A. II, 10; Lat. 1.66 (pores 60).

Slaty bluish above, silvery below, with bright reflections; body and fins everywhere with dark punctulations; tip of chin dark; fins yellowish, the upper all with dark edging; pectorals blackish on the posterior side; the axil and the large axillary scale dusky; lower jaw bright silvery; lining of opercle dark; peritoneum pale.

A single large specimen, 23 inches long, was taken at Punta San Felipe, Mexico. Lientenant Nichols notes that it is very abundant in that locality.

This species agrees with C. squamipinne, and differs from all other known species of the genus in the complete squamation of the fins.

29,366. Stolephorus opercularis sp. nov. Punta San Felipe.
Allied to S. macrolepidotus (Kner \& Steindachner).
Body elliptical, rather short and deep, compressed, but not very strongly so, more elongate than in $S$. macrolepidotus; dorsal outline evenly curved ; belly compressed, not trenchant. Apparently not translucent in life.

Head large, compressed, the snont blantish, overlapping the lower jaw, the tip of which is just in front of the eye; maxillary comparstively short and slender, not extending backward to mandibulary joint or to margin of preopercle. Maxillary with extremely fine, hardly perceptible teeth; mandible toothless.

Cheeks forming a triangular area, the apex downward and backward, the triangle lower and much broader than usual, the base (at the eye) being four-fifths the length of the other sides. Eye moderate, 12 in length of checks, much longer than snout, 4 in head. Anterior ridge of preopercle prominent, the posterior membranaceous edge little conspicuons. Opercular region unnsually long ; distance from ridge of preopercle at lower posterior angle of cheeks backward to gill-opening
rqual to distance from same point forward to middle of eye. Length of opercle, from anterior ridge of preopercle, three-fourths its greatest height.

Insertion of dorsal midway between base of candal and middle of eye [caudal and dorsal fins nearly destroyed in type]; anal comparatively short and posterior, its insertion midway between gill-opening and base of caudal, its rays between 20 and 24 in number [two or three of the posterior rays destroyed by a string which has been tied around the tail in the ti pe specimen]. Anal fin with a large scaly sheath. Ventrals small, inserted midway between base of caudal and front of eye. Pectorals short, not reaching ventrals.

Scales large, rather adherent [those on anterior part of body lost]; about 8 in a vertical series from last ray of dorsal to anal.

Head 3 in length; depth, 4. Anal rays about 23.
Color, bluish above; middle line of back dark; sides and below bright silvery, the cheeks and opercles especially 80 ; no trace of lateral silvery stripe.

The type of this species, 5 inches in length, was taken from the stomach of a specimen of Cynoscion othonopterum at Punta San Felipe, Mexico. It has suffered somewhat from the digestive process, but the head is in perfect preservation, and all points essential to the description can be readily made out. This species seems to us most closely related, among described species, to $\mathcal{S}$. macrolepidotus, from which it differs in very many respects.
29,372. Caulolatilus princeps (Jenyns) Gill. Punta Santa Teresa (in deep water).
29,370. Balistes polylepis Steind. Same locality.
29,382. Opisthognathus rhomalcus sp. nov. Santa Maria.
(Subgenus Gnathypops Gill; allied to Gnathypops papuensis Bleeker.)
Body rather robust, compressed; head very large, ovoid, thicker and deeper than body, with swollen cheeks, the occipital region high, the snout somewhat truncate, the intermediate profile forming a nearly even curve; greatest depth of head equal to its thickness and two-thirds its length. Eye not very large, 6 in bead, longer than snout, about equal to the width of the flattish interorbital space.

Mouth large, the maxillary extending well beyond eye, but not to the margin of the preopercle nor to the mandibulary joint, its posterior margin truncate; supplemental bone small, but distinct; length of maxillary from end of snout $1 \frac{1}{4}$ in head. Teeth moderate, in both jaws, in broad hands which become narrow on the sides; outer series of teeth somewhat enlarged, especially in upper jaw ; one rather small, blunt tooth on middle of vomer. Gill-membranes scarcely connected.

Head naked. Scales on body small, smooth, somewhat imbedded; breast naked. Lateral line indistinct, ceasing opposite anterior third of second dorsal; 103 scales in a longitudinal series from head to caudal.

Dorsal fin high; a rather deep notch separating the spines from the soft rays; the longest spines 3 in length of head, more than half longer than the last spine, and scarcely lower than the soft rays. Insertion of dorsal opposite tip of the bony opercle, the opercular flap extending to opposite the third spine. Caudad in rounded, about half length of head. Anal higher than soft dorsal, its longest rays 24 in head. Ventrals large, close together, inserted in front of pectoral, $1 \frac{1}{6}$ in head. Pectorals short and broad, 14 in head.

Head $2 \frac{7}{8}$ in length to base of caudal ; greatest depth 4. Dorsal rays XI, 13; A. II, 13. Lat. 1, 103.

Color in spirits, olivaceous, slightly brownish above, scarcely paler below; everywhere more or less tinged and mottled with greenish. Head everywhere thickly and closely covered with small rounded dark brown spots, largest above and on cheeks, where they are about as large as pin's heads; smaller on lips and opercles; most thickly set on the anterior part of the bead. Eye thickly spotted. Spots similar to those on the head extending along apper part of back, forming a vague band, which grows narrower backward and disappears opposite front of second dorsal ; front side of pectoral and first three or four dorsal spines with dark spots. Dorsal dusky olive, with darker clouds, and with some dark spots, especially on the spinous part. Candal and anal plain dusky or faintly marbled with paler; ventrals blackish, greenish at base; pectorals dusky green.

The single specimen obtained $(29,382)$ is 16 inches in length, being unusually large for a member of this genus. It was taken with a hook in Santa Maria Cove, in Lower California.
29,358. Mugil brasiliensis Ag. Mulege, L. Cal.
29,359. Murana pinta J. \& G. (MSS.) Amortajada Bay, San Josef Island. 29,384. Nematistius pectoralis Gill. Picheluogo, L. Cal.
29,380. Sparus brachysomus Lockington. Same locality.
29,378. Fistularia serrata Cuv. Same locality.
29,351. Balistes polylepis Steind. Cape San Lucas.
29,354. Ophichthys callisoma (Abbott) J. \& G. Same locality.
This species is probably not identical with Ophichthys triserialis (Kanp) Gthr.

## B.-Species from the west coast of Lower California.

29,371. Umbrina roncador sp. nov. Pequeña Bay.
Cmbrina undulata Steindachner, Ichth. Beiträge, iii, 21, 1875, and Denkschrift. Math-Naturw. Kais. Acad. Gesell. Wien, x11, 1879, 35 (reprint); not of Girard, whose type, examined by ns, is a Mentioirrus. Cmbrina xanti Jor. \& Gilb., Proc. U. S. Nat. Mus., 1880, 456, and 1881, 48 (not of Gill).
Description.-Body moderately elongate, the back somewhat elevated, the curve from the sinout to the dorsal comparatively regular; the slope behind front of dorsal also regular, but less steep. Head conical, blunt-
ish, the snout considerably protruding; mouth moderate, borizontal, the maxillary extending to behind the pupil; eye moderate, $1 \frac{1}{2}$ in snout, $5 \frac{1}{2}$ in head; preopercle with its bony margin flnely serrate; teeth in villiform bands, the outer row moderately enlarged in the upper jaw. Gillrakers moderate, bluntish.

Spinous dorsal rather low, the fourth spine highest, about half the length of the head. Soft dorsal long and low, its membranes scaly. Caudal lunate, its upper lobe the longer. Anal small, the second spine rather strong, $2 \frac{2}{3}$ in head. Pectorals short and small, not reaching half way to vent and not nearly to tip of ventrals, their length two-thirds that of head.

Air-bladder well developed; pyloric cœeca 8.
Head $3 \frac{4}{8}$ in length; depth $3 \frac{1}{3}$; D.X-I, 27 ; A. II, 7.
Lat. 1. with tubes on about 55 scales; about 60 scales in a longitudinal series.

Color bright silvery, bluish above, with some brassy reflections; sides with narrow, distinct, undulating stripes of deep olive running from the head and pectoral region upwards and backwards with some abrupt curvatures to along the base of the dorsal, those below the lateral line most undulated; usually between each pair of bands are some small olive spots, often forming regular series; no distinct vertical bars, faint cross-shades rarely present ; cheeks clear white; lower fins yellow; upper fins and caudal plain clear brown; peritoneum and lining mem. brane of opercles chietly black.

This species is the "Yellow-finned Roncador" of the California fishermen, and occurs in abundance along the coast of California from Santa Barbara to San Diego. Its southernmost record is the present one from Pequeña Bay.

It was formerly erroneously identified by us with the related species Umbrina xanti Gill ( $=$ Umbrina analis Giinther), which takes its place to the southward (Cape San Lucas, Gill, to Tumbez, Peru, Steindachner.) Specimens numbered $26,758,26,849$, and 26,864 , distributed by the $U$. S. Nat. Mus. in 1881, as Umbrina xanti, are all typical of Umbrina roncador. (See Proc. U. S. Nat. Mus., 1881, 11.)

Umbrina roncador closely resembles $U$. xanti, but is readily distinguished by the smaller scales (lat. 1.45 to 50 in U. xanti), and by the color, $U$. xanti having broader and duller stripes, without the intermediate lines of dots. The peritoneum and lining of the opercle are paler in $U$. xanti and the body is deeper and less gracefully formed. 29,379. Allula vulpes (L.) Goode. Pequeña Bay.
29,388. Serranus nebulifer (Grd.) Steind. Ascension Island.
29,375. Harpe pulchra (Ayres) J. \& G. Ascension Island.
29,369. Caulolatilus princeps (Jenyns) Gill. Ascension Island.
29,365. Scorpæna guttata Grd. Ascension Island.
29,381. Xenichthys californiensis Steind. Cerros Island.
29,364, 29,352. Harpe pulchra (Ayres) J. \& G. Guadalupe Island.

29,376. Sebastodes auriculatus (Girard) J. \& G. San Martiu Island. 29,361. Sebastodes serriceps J. \& G. San Martin Island.<br>29,374. Heterostichus rostratus Grd. San Martin Island.<br>29,360. Murøna mordax Ayres.<br>Indiana University, November 15, 1881.

## ON THEGENEREAT CHITONS.

## - IT W. H. DALL。

PALEOZOIC FORMS.
The long delay in preparing the illustrations for the monograph of the Chitonida by the late Dr. Philip P. Carpenter has been the occasion of several calls from paleontologists for an abstract of the genera adopted in his revision of the fossil species. In justice to Dr. Carpenter it seems that the characteristics of the genera should be made public, the material left by him on the Palæozoic species being practically complete and ready for printing. The Mesozoic and Tertiary chitons all belong to groups represented by living species, hence the present abstract relates solely to those of earlier date. The groups of recent chitons, already reviewed by me in these Proceedings,* form the subject of the second more condensed abstract herewith.

The first fossil chiton was found by Defrance in 1802, in the Eocene, and described by Lamarck as Chiton grignonensis. It was only in 1834 that a second species, C. antiquus Conrad, was obtained, on this occasion from the Alabama Tertiary.

The first palrozoic chitons were found in the Carboniferous rocks of Tournay, in 1836, but they wele not described until 1839. Since then numerous others have been brought together and described by various anthors, as well as a number of organic remains not belonging to the Chitonidse which have wrongly been referred to the group. Dr. Carpenter expended a large amount of time and money in examining the typical specimens in American and Earopean museams, making several journeys for the purpose. His opinions, therefore, are entitled to great weight. Some time before his death, at his request, we went over the ground together, specimens and figures in hand, and the opinion then formed that his work is worthy of great respect, aud, so far as facts are concerned, of entire confidence, has not been changed by my subsequent study of his incomplete manuscripts.

An excellent digest of the history of fossil chitons to date of publication was given by De Koninck in $1857, \dagger$ which was translated for the Annals and Magazine of Natural History, of August, 1860, by W. H. Baily.

[^120]The characters for the groups herein described are due to Dr. Carpenter, and are given mostly in his own words. It will be observed that the groups named by others are restricted by him, by elimination of incongruous material included with the original types.

## Helminthochiton Salter.

Helminthochiton Salter (pars) \$1, Proc. Geol. Soc., 1846, pp. 49, 51,52, fig. 6 ( $\$ \$ 2,3$, and figs. 2, 3, exclus.).
Lorica leptoidea, elongata, regularis; mucro ischnoideus; valvas terminales haud sinuatæ; apophyses 9 (ignotæ).

Helminthochiton may be described as a greatly lengthened chitonous animal with the valves thin and angular, and perhaps without apophyses, though the negative evidence is not sufficient to estabiish so remarkable a departure from the type of the class in general. It differs from Gryphochiton in having the terminal valves regular, not sinuate, and in having a regular subcentral Ischnoid mucro instead of the Gryphaca-like beak characteristic of the second section. It may be regarded us a Leptoid Ischnoplax with the valves thrown forward.

## Species.

Helminthoohiton Griffthi Salter, 1. c., pp. 51, 52, fig. 6. Silurian of Ireland. (Type.) Helminthochiton priscoides, Carpenter. Devonian of Vilmar; Schultze. (Mus. Comp. Zoölogy.)

Gryphochiton (Gray) Carpenter.
Gryphochifon Gray (pars.), P. Z. S., 1847, p. 70; no diagnosis.
Lorica regularis elongata; laminæ laterales nullæ, suturales parra, a sinu simplici lato separatæ; mucro postice medianus, incurvatus; regio capitis et caudæ valde sinuata. Type G. priscus Munster.

Gryphochiton resembles a Leptochiton greatly drawn out and with the terminal valves more sinuated than has been observed in any recent Chiton.

## Species.

Gryphochiton priscus Münster, Beitr. zur petr. knnde, 1, p. 38, fig. 4, 1839. Carboniferous of Tournay.
Gryphochiton mempiacus Ryckholt, Bull. Acad. Roy. des Scí. de Bruxelles, 1845, p. 48, no. 4, pl. 2, figs. 5, 6, 7, 8. Carboniferous of Tonrnay.
Gryphochiton triangulatum Carpenter, Ryckholt, 1. c., pl. 2, figs. 4,9, 10. Same locality. Gryphochiton nervicanus, Ryckholt, 1. c., p. 47, No. 3, pl. 1, figs. 7, 8, 9, 1045. Same locality.

## Subgenus Chonechiton Carpenter.

Lorica leptoidea, valva centrales Gryphochitoni similes, projectre; valva postica mucrone postico, infundibuliformi.

This bears the same relation to Choneplax which Loricites does to Lorica, i.e. similarity, except in the absence of laminæ of insertion. It may be described as a Leptoid Choneplax. In the recent shell the
funnel is formed by the laminæ of insertion; as these do not exist in the leptoid section, the funnel is seen in the hollowing of the back of the valve itself.

Type.
Chonechiton (Chilon) riseticola Ryckholt, 1. c., p. 51, no. 6, pl. 3, figs. 10,11, 1845. Carboniferous of Vise, Belgium.

## Priscochiton Billings.

Leptochiton: lamina postica apicali, intus excavata.

> Type.

Priscochiton canadensis Billings, Pal. Fos. Canada, 1805, p. 394, fig. 370. Lower Silurian.

## Pterochiton Carpenter.

Lorica elongata, leptoidea; valvæ lateraliter excavatæ, projectæ postice acuminatæ; valva postica regularis, mucrone ischnoideo; valraantica (plerumque ?) sinuata; apophyses maximæ, sinu lato. Type C.eburonicus Ryckholt.

## Species.

Pterochiton eburonicun Ryckholt, Bull. l. c., part ii, p. 53, no. 8; pl. 4, figs. 7, 8,* 1845. Carboniferous limestone of Visé, Belgium.

Plerochiton legiacus Ryckbolt, Bull. 1. c., p. 52, no. 7, pl. 4, figs. 5, 6, 1845; Chiton gemmatus (pars) Koninck, An. Fos. Carb. Belg., p. 323, no. 3, pl. 23, figs. c, d, © (not tigs. $a, b$ ). Same locality as the preceding.
Pterochiton gemmatus (Koninck) Ryckholt, 1. c., 1845, p. 59, no. 13, pl. 4, figs. 1, 2, 3 (fig. 4, forsitan exclus.). Same locality as preceding.
Pterochiton Thomondiensis Baily, Nat. Hist. Review and Quart. Jonrn. Sci., July, 1859 , pl. 4, f. 2 a-c. Carboniferous limestone, Connty Limerick, Ireland.
Pterochiton Sandbergianus (i) Ryckholt, l. c., p. 62,1845. Devonian, Vilmar; Schultze. (Mus. Comp. Zoől.)
17 Pterochiton Sluseanus Ryckholt, 1. c., p. 5, No. 10. (Non C. Sluseanus ejusdem, pl. 4, figs. 7, $y=$ eburonicus.t Cf. text.)

## Subgenus Loricites Carpenter.

Related to Helminthochiton and to the recent Lorica as above stated. From the latter it differs in the absence of laminæ of insertion. Type Chiton concentricus Koninck, op. cit., $185 \overline{7}$.

## Probolaum Carpenter.

Lorica leptoidea, elongata, maxime projecta; valvis centralibus areæ centrales ante areas jugales porrectæ; valva antica sinuata, valva post-ica-? Type C. corrugatum Sandberger (pars).

Among recent forms this comes nearest to Katherina, but the difference is still extremely great.

[^121]
## Type.

Chiton corrugatus Sandberger fr., Verst. Rhein. Schicht. Nassau, p. 238, pl. 26, fig. $22 a, 1856$, not figs. 22, $22 b, 22 c, 22 d=$ fish scales and valves of barnacles, as per typical specimens in Mus. Comp. Zoülogy, etc. Devonian of Vilmar.

## Cymatochiton Dall.

Valvis centralibus transversis, antice projectis, satis elevatis, jugo acutiore, lateribus planatis; apophysibus modicis, satis extantibus, valde distantibus; sinu jugali latissimo, incurrente; umbonibus extantibus, margine antico ad jugum valde postice sinuato. Type C. Loftusianus King.

This represents a Leptochiton with the valves thrown forward. It differs from Probolaum in the valves being transverse instead of squared, and in the terminal valves being regular instead of waved. The name Cymatodus used in manuscript for this group by Dr. Carpenter is preoccupied by Newberry (1870).

## Species.

Cymatochiton Loftusianus King, Innals \& Mag. Nat. History, I, vol. 14, p. 382; Kirkby, Proc. Geol. Soc., 1e59, p. 607, 611, 615, pl. 16, 6gz. 31-41. Permian, Tunstall Hill, England.
Cymatochiton Ryckholtianus Koninck Mss. Types Mus. Comp. Zoül. Carboniferous of Vise, Belginm.
t Cymatochiton tornaticola* Ryckholt, 1. c., p. 45, pl. 1, tiga. 1, 2,3,1845. Carboniferous of Tournay.
1 Cymatochiton Scaldeanus *Ryckholt, l. c., p. 46, pl. 1, fige. 4, 5, 6, 1845. Same locality.
I Cymatochiton Howscanив Kirkby, Quart. Jonrn. Geol. Soc. 1857, p. 216, pl. 7, 6ga. 2-13. Permian, Tunstall Hill, England.
This last species is the first undoubted Chiton to put on features common to all the recent forms of the family.

Until the full record of his investigations is published, the amount of confusion as to types, discrepancies between figures and specimens, and errors of one kind and another discovered by Dr. Carpenter in his examination of the original types of many of the species can hardly be imagined. The synonymy is also necessarily left until the complete paper shall be printed. Meanwhile the student is warned that the citations herein actually made are the only ones which are guaranteed to relate to the species named, thongh there may be, and in most cases are, others which might be cited. The preceding (with synonyms) number all the Palæozoic chitons actually determined to be such up to 1873.

In the course of the investigation the following species have been found not to be chitons or chitonoid. They belong variously to fish scales, barnacle (Turrilepas) valves, ostracod crustacea, and some to undetermined organisms.

[^122]"Chiton" Grayanus Koninck, 1857. Upper Silurian.
"Chiton" Frightianus Koninck, ditto.
"Chitonellus" Hancockianus Kirkby, Proc. Geol. Soc., 1859, pl. 16, figs. 1-13. Permian, England.
"Chiton" cordatus Kirkby, ditto, fige. 24-29.
"Chitonellus" distorlus Kirkby, ditto, figs. 28-30.
"Chitonellus" antiquus Howse, Kirkby 1. c., figs. 14-23. Permian.
"Chiton" cordifer Koninck, Descr. An. Foss. Terr. Carb. Belg., 1844, p. 324, pl. 22, fig. 5 a,b (teste Ryckholt). Carboniferous of Belgium.
"Chiton" corrugatus Sandberger (pars), p. 238, pl. 26, figs. 22, 22 b, 22 c, 22d, 1836. Devonian and Lower Devonian of Vilmar and Ehrenbreitatein.
"Chiton" sagittalis Sandberger, 1. c., p. 239, pl. 26, figg. 23 a, b. Same locality ${ }^{\dagger}$
Sulcochiton Grayi Ryekholt, Journal de Conchyl., 1862, p. 259, pl. xii, f. 14. Carboniferous of Visé, Belgiam.

## ABSTRACT OF ALL THE GENERA. <br> Order POLYPLACIPHORA.

Section I.-Chitones regulares.

## Head and tail plates similarly articulated.

## A. Leptoidea.

Insertion plates obsolete or, if present, unslit.
(Extinct forms.)

1. Helminthochiton Salter.
2. Gryphochiton Gray.
a. Chonechiton Cpr.
3. Priscochiton Billings.
4. Pterochiton Cpr.
a. 1 Lorwites Cpr.
5. Probolaum Cpr.
6. Cymatochiton Dall.

## (Recent for ma.)

7. Leptochiton Gray. a. Deshayesiclla Cpr.
8. Hanleyia Gray.
9. Hemiarthrum Cpr.
10. Microplax Adams and Angas.

## B. Ischnoidea.

Insertion plates sharp, 8 mooth, fissured; with eaves.
*No pores on girdle.
11. Trachydermon Cpr. a. Trachyradsia Cpr.
12. Callochiton Gray. a. Stereochiton Cpr.
13. Tonicella Cpr.
14. Schizoplax Dall.
15. Leptoplax Cpr.
16. Chatopleura Shuttleworth.
a. Maugerella Cpr.
17. Spongiochiton Cpr.
18. Ischnochiton Gray.
a. Stenoplax Cpr.
b. Stenoradsia Cpr.
c. Ischnoplax Cpr.
d. Heterozona Cpr.
e. Inchnochiton 8. 8. Cpr.
f. Ischnoradsia Shuttleworth.
g. Lepidopleurus Cpr.
h. Lepidoradsia Срг.
19. Callistochiton Cpr.
**With girdlepores.
20. Callistoplax Cpr.
21. Angasia Срг.
22. Newcombia Cpr.
23. Ceratozona Dall.
24. Pallochiton Dall.

## C. Lophyroidea.

Iusertion plates broad, pectinated, projecting backward.
25. Chiton Linn6.
a. Radsia Gray.
26. Tonicia Gray.
a. Fanneltia Dall.
27. Eudoxorhiton Shuttleworth.
28. Craspedochiton Shuttleworth.

## D. Adanthoidea.

Insertion plates thrown forward.

* Plates broad, pectinated (A. lophyroidea).

29. Sclerochiton Cpr.

* Plates sharp, grooved outside (d. typica).

30. Acanthopleura Guilding.
a. Lucilina Dall.
b. Corephium Gray.
c. Francisia Cpr.

**Plates sharp, smooth (A. ischnoidea.)
31. Dinoplax Cpr.
32. Middendorfia Cpr. ${ }^{\text {. }}$
a. Beanella Dall.
33. Nuttallina Cpr.
34. Arthuria Cpr.
35. Phacellopleura Guilding.

Section II.-Chitones irregulares.
Tail plate abnormal or with a sinus behind.

## E. Schizoidea.

Tail valve fissured.
36. Lorica H. and A. Adams.
a. Aulacochiton (Shuttleworth) Cpr.

## F. Placiphortoidea.

Tail valve unslit, internally ridged, mucro nearly terminal.
38. Enoplochiton Gray.
39. Ornithochiton Gray.
40. Placiphora Gray.
a. Fvemblya H. Adams.
b. Euplaciphora Shuttleworth.
c. Guildingia Cpr.

## G. Mopaloidea.

- Tail valve with posterior sinus and one slit on each side.

41. Mopalia Gray.
a. Placiphorella Cpr.
42. Katherina Gray.
43. Acanthochiton (Leach) Herrm.
a. Macandrellus Cpr.
b. Stectoplax Cpr.
44. Notoplax H. Adams.

## H. Cryptoidea.

> With double sutural laminæ.
45. Crypfoconchus Blainville.
46. Amicula Gray.
a. Amicula 8. 8. Dall.
b. Chlamydochiton Dall.
47. Crypfochiton Gray and Middendorf. $\dagger$

## I. Chitonelloidea.

Tail plate funnel shaped. Laminæ thrown forward.
48. Chitonellus Blainville. a. Cryptoplax Gray.
49. Choneplax Cpr.
a. Chitoniscus Cpr.

It is hardly necessary to observe that the names here ascribed to Gray, Shuttleworth, and other older writers are more or less restricted so as to make them natural assemblages, which most of them originally were not. The subdivisions under similar names to be found in Adams' Genera of Recent Mollusea and Chénu's Manual are nearly all heterogeneous assemblages. Some names which were found to have been preoccupied in other groups have been replaced by new ones. Nearly all the names enumerated have been made public, some of them many years ago, others by Dr. Carpenter in his "Table of Regular Chitons," distributed in November, 1873, but of which a large proportion of the copies printed are still on hand. Some appeared in different papers on mollusca of the northwest coast of North America, published by Dr. Carpenter from 1863 to 1874, and several were elucidated in a paper on the New England chitons in the Bulletin of the Essex Institute in 1873. A majority of them were also characterized by me (partly from Dr. Carpenter's manuseript) in my Report on the Limpets and Chitons of Alaska, \&c., Proc. U. S. National Museum, December, 1878. Such as still remained unpublished are now included in the following aualytical tables with additioual notes elucidating their characters more fully.
It is believed that the publication of these tables will be beneficial in several ways, as in giving a genewal view of Dr. Carpenter's classification, and especially in calling attention to the characters which it is desirable should be distinctly noted by those who may describe new species of Chitonide, and for the want of which it is impracticable, in the majority of cases, to properly classify or even to sabsequently recognize the species. The technical terms used and the relations of the several parts have been explained in my report above mentioned, and it is not considered necessary here to repeat the explanations.
The publication of the entire monograph only awaits the preparation of the illustrations, which has been delayed by circumstances entirely beyond the writer's control.
It may be thought by some who have not investigated the subject that the group has been unduly divided. In regard to the permaneut
relations of its various genera, no doginatism is justifiable at present or until the characters of a much larger number of species have been definitely determined. Until then, when the questions can be decided, the various subdivisions will at least serve a very useful purpose in calling attention to differences which otherwise might pass unnoticed or unheeded. For my own part, my impressions are that the majority of the genera or subgenera proposed by Dr. Carpenter will eventually be recognized as well founded, though a certain number may be condemned to consolidation.

## NOTES ON THE GENERA.

6. Cymatodus Carpenter, MS., not of Newberry, 1870.

7a. Differs from Leptochiton not only in its hairy girdle, but also in its valves, which are thrown forward, forming a decided transition toward some of the palæozoic forms. Type Leptochiton curvatus Cpr. Okosiri, Japan ; A. Adams.
10. Microplax Adams and Angas 1864, not of Lilljeborg, 1865.
12. Cailochiton (restricted). Laminæ broken up into very numerous teeth rising out of spongy eaves, and having a tendency to become propped outside; sinus a mere wave in the united bodies of the sutural laminæ; mantle reticulated with peculiar bodies, the tips of which appear like diamond-shaped scales, and which are unlike the girdlearmature of any other Chiton. Example Chiton levis of Montague, Pennant and Gray.

12a. Subgenus Stereochiton; Callochiton: zona coriacea sparsim lanuginosa. Type Chiton castaneus Wood, Ind. Test. et Gen. Conih.
15. Valvæ tenues in zona tenui, levi, partim immersæ; laminæ insertionis acutæ, terminales panci-fissatæ, sed regulares; sinus haud dentatus; mucro medianus. Example, Chiton coürctatus Sowerby, Isle of Bohol.
17. Valvæ partim immersæ; laminæ acutæ, Ischnoidæ; sinus magnus levis; mucro medius planatus; zona spongiosa, antice producta. Ex. ample, Spongiochiton productus Cpr., New Zealand, Mus. Cuming, no. 50. This may be considered a partially covered Chatopleura, just as Leptoplax is a partially covered Tonicella.
20. Testa extus et intus ut in Callistochitone, zona porifera aliter nuda. Type Chiton retusus Sby. China Seas.
21. Testa extus et intus Chatopleuroidea sed subgrundis parvis; zona minutæ squamulopilosa, fasciculis ad suturas instructa. (=Hanleyia Ad. \&Angas, non Gray). Type A. tetrica Cpr. Ceylon. Mus. Cuming, no. 83.

Hanleia variabilis Ad. and Angas probably belongs to this group, but has not been dissected.
23. Ceratophorus Carpenter MS. (non Diesing, 1850). Valvæ extus et intus Chætopleure similis, sed dentibus suffultis, subgrundis curtis: zona levis, in cornua seu cornuum fasciculas circa suturas et marginem porrecta. Type Chiton Guildingi Reeve.

This differs from all other hairy or spiny Chitons, at all nearly related to it, in the mantle ornaments not being inserted into sockets, but being extensions of its substance.
$\because 4$. (Hemphillia Cpr. MS., non Binney.) Nuttallina: zona lanugosa; lamina centrales unifissatæ. This section unites in a form resembling Nuttallina some of the features of Middendorfia, from which the girdle differs in being spongy and covered with soft hairs instead of short shelly bristles. The shape is that of an Ischnochiton, the sculpture and girdle of Chetopleura, the insertion plates and sinus almost exactly like Middendorfia. Type Pallochiton lanuginosus Cpr. sp. Lower California.

26a. Fannia Gray, not Robineau Desvoidy, 1830.
29. Lorica Acanthopleuræ, zona Enoplochitoni similis; laminæ obtusæ, pectinata, sinus undatus, levis. Type Sclerochiton Cpr. Torres Straits. Mus. Cuming, no. 42.

Most like Enoplochiton, from which it differs in the articulation of the tail plate and the sub-ceutral mucro.

30a. Lucia Gould, not of Swainson, 1833.
30c. Acanthopleura: valvis partim immersis, planatis; laminis centralibus pleurifissatis; sinu lobato. Type Chiton spinosa Bragiere.

This form bears the same relation to Acanthopleura that Fannettia does to Tonicia, with the additional peculiarity of Radsioid nicks in the central valves. Named for Dr. Francis, once editor of the Annals and Magazine of Natural History.
31. Lorica solidissima alata: mucro hand eleratus submedianus; laminæ valvæ separatæ, acutæ, leres; V. post. antice tendentes; siuus minimus; :ona coriacea, fisciculatim spinulosa. Type Chiton gigas Chemnitz.
32. Daısonia Cpr. (prei̊c.) 1873; Middendorfia Cpr. in MS. later.) Lorica et zona extus ut in Acanthopleura; laminæ acntæ, extus rugosa, suffultæ; sinus planatus haud laminatus. Type Chiton Polii Philippi (non Deshayes), Dalmatia. Internally Ischnoid, externally Acanthopleuroid.

32a. (Beania Carpenter, not Johnstone.) Lorica et zona inter Acanthopleuram et Ischnochitonem intermedia; mucro submedianus; laminse acuti, hatd suffulti; zona squamis subspinosis striatis vix imbricata. Type Chiton Rissoi Cuming, non Payr. C. pseudorissoi Cpr. MS., Malta. Mus. Cuming, no. 51.
34. Lorica tenuis; valvæ undatæ; mnero posticus, productus, laminæ acutr, leves; V. post. antice projectæ, sinus planatus, laminatus, levis; zona coriacea, levis, seu lanugata. Type Arthuria filosa Cpr., loc. incert. Mus. Cuming, nos. 23, 38.

This has the aspect of Chatopleura externally in senlpture, but has the tail plate like Nuttallina in its structure, and like Placiphora in its external appearance.

36a. Aulacochiton pars, Shuttleworth, 1853. Lorica: mucrone postico, parum sinuato; sinu lobato; zona squamulis minimis obsita, antice producta. Example, Lorica Angasi H. Adams, P. Z. S., 1864, p. 193. Australia.

40a. =Streptochiton Cpr. MS. Type F. Collei H. Adams. Australia. 40b. Placiphora: sinu lato, planato; zonæ setis haud fasciculatim instructis. Type Chiton petholatus Sowerby. South Australia.

40c. Placiphora: valvis partim immersis; zona postice emarginata. Type G. obtecta Cpr. New Zealand. Mus. Cuming, no. 45.

43a. Acanthochiton: valvis partim tectis; mucrone Ischnoideo; lam. postica rugosim lobata; ar. lat. depressis. Type M. plumeus Cpr. Hab. 1 Mus. Cuming, no. 108.

43b. Acanthochiton: valvis per duas trientes immersis. Type S. porrecta Cpr. Japan. Mus. Cuming, no. 97.
49. Animal repens, satis elongatum : valvæ expositæ parvæ, omnino contiguæ; valva postica infundibuliformis; muero retrojectus, terminalis; lamins ut in Katherina sed obsoletim fissatæ; zona Acanthochitonoidea. Type Chiton strigatus Sowerby. West Indies.

49a. Animal et testa Choneplacis similes sed zona hand porifera.
Based on Chitonellus striatus and strigatus Sowerby, Conch. Ill., figs. 62 and 63 , which are represented as without pores. In the former the valves are separated (as in Notoplax); in the latter they tonch (as in Choneplax). The species need examination to confirm the accuracy of the figures, but it is probable that there are both pore-bearing and nonporiferous species among the vermiform as well as the compact Chitonelles. These last groups are the highest and most active in the whole order in tropical waters, as is Cryptochiton in the north.

Table I.
The following table will exhibit the minor characteristics of most of the recent Chitons in regard to the plan of the insertion plates, number of slits, if any, in anterior, middle and posterior valves; character of the tooth-like projections between the slits; and of the margin of the onter layer overhanging the insertion plates, termed eaves by Dr. Carpenter; all according to the numbers and letters of the preceding list:


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Ei } \\
\& \frac{E}{c} \\
\& \frac{6}{5} \\
\& 5 \\
\& b
\end{aligned}
\]} \& \multirow[b]{2}{*}{Plan of insertion plates．} \& \multicolumn{3}{|l|}{Slite in valve．} \& \multirow[b]{2}{*}{Teeth．} \& \multirow[b]{2}{*}{Eaves．} \& \multirow[b]{2}{*}{Gills．} \\
\hline \& \& \[
\begin{aligned}
\& \text { 这 } \\
\& \frac{3}{3} \\
\& \hline
\end{aligned}
\] \& \[
\frac{E}{E}
\] \& 发 \& \& \& \\
\hline \[
10 a
\] \& \multirow[t]{17}{*}{} \& \& \(\times\) \& \(2+\) \& \& \& （1） \\
\hline \[
17
\] \& \& 6 \& 5 \& \multirow[t]{2}{*}{1} \& Sharp，normal． Sburp，longe，mmonth． \& Projecting Minute \& （1） \\
\hline 18 \& \& \multirow[t]{2}{*}{\(\stackrel{*}{*}\)} \& \(\times\) \& \& Sharp nurmal．．．．．．． \& \& Amb． \\
\hline \(1 \sim 6\) \& \& \& \multirow[b]{2}{*}{10} \& \(\frac{1}{2+}\) \& －．．duv．．．．．．．．．．．．．．．． \& \& \multirow[t]{2}{*}{Amb．} \\
\hline 18 c \& \& \({ }^{8}\) \& \& 1 \& do \& do \& \\
\hline 181 \& \& 11 \& 11 \& 1 \& －． 40 \& \& Amb．
ind． \\
\hline 1 c \& \& k \& \(\times\) \& 1 \& \multirow[t]{2}{*}{…do} \& \(\cdots\) do \& \\
\hline 181 \& \& \multirow[t]{2}{*}{k} \& \％ \& \(3+\) \& \& Projecting long \& \multirow[t]{2}{*}{} \\
\hline 197 \& \& \& x \& 1 \& Y，．．．d10 \& \& \\
\hline 1Hh \& \& K \& ＊ \& \(2+\) \& \& 1．．．do \& \begin{tabular}{l}
Amls． \\
Amb．
\end{tabular} \\
\hline 19 \& \& \({ }^{x}\) \& \multirow[t]{2}{*}{\({ }^{*} \times\)} \& 1 \& \multirow[t]{2}{*}{Excurved，plumato．
Fxeurved，molid} \& do \& \\
\hline \(\therefore 0\) \& \& \(\times\) \& \& 1 \& \& project \& Amb． \\
\hline 28 \& \& \multirow[t]{2}{*}{＊} \& \(1 \times\)

5 \& 1 \& Konerla，proppred \& Short． \& <br>
\hline 29 \& \& \& $\times$ \& 1 \& Sulit．not propped \& ．．．lo \& （1） <br>

\hline 23 \& \& \multirow[t]{3}{*}{$$
8-10
$$} \& \multirow[t]{3}{*}{} \& 1 \& Solid，propinet ．．． \& do \& （1） <br>

\hline \multirow[t]{2}{*}{24} \& \& \& \& 1 \& Sharp，curved \& Short，spongy \& Med． <br>
\hline \& \& \& \& \& \& \& <br>
\hline $\therefore 5$ \& Nogralar，brauchimg \& $\times$ \& $\times$ \& 1 \& \multirow[t]{2}{*}{Blunt，serrate do} \& \multirow[t]{2}{*}{} \& Amb． <br>
\hline こia \& ．．．．．．dor \& \multirow[t]{2}{*}{＊} \& $\times$ \& $2+$ \& \& \& \multirow[t]{2}{*}{Anols． Amb．} <br>

\hline 2016 \& d ${ }^{\text {d }}$ \& \& ＊ \& 1 \& \multirow[t]{2}{*}{| do |
| :--- |
| Sharper，netabse |
| Sharpery，serrate，long |} \& \[

$$
\begin{aligned}
& \text { do } \\
& \text { do }
\end{aligned}
$$
\] \& <br>

\hline 263 \& \& \multirow[t]{2}{*}{＊} \& 9 \& 1 \& \& Very short \& | Amb． |
| :--- |
| Amb | <br>


\hline 27 \& Unfiswnred \& \& \multirow[t]{2}{*}{*} \& \multirow[t]{2}{*}{＊} \& \multirow[t]{2}{*}{| L＇unt，timbrites |
| :--- |
| （？） |} \& \multirow[t]{2}{*}{| Shuit |
| :--- |
| （？） |} \& \multirow[t]{2}{*}{| （1） |
| :--- |
| （1） |} <br>

\hline \& （Acanthoidea．） \& $$
\begin{gathered}
* \\
8
\end{gathered}
$$ \& \& \& \& \& <br>

\hline 29 \& Regular，Mrumeliug \& $\times$ \& $\times$ \& 1 \& Blunt，groovel ．．．．．． \& \multirow[t]{2}{*}{Projecting． grouved．} \& （1） <br>

\hline 30 \& \& $\times$ \& $x$ \& 1 \& Longer，grooved \& \& \multirow[t]{2}{*}{| Amb． |
| :--- |
| （？） |} <br>


\hline 300 \& ． 110 \& $\times$ \& | $\times$ |
| :--- |
| $\times$ |
| $\times$ | \& \multirow[t]{2}{*}{$3+$} \& \multirow[t]{2}{*}{do

do} \& \& <br>
\hline 306

304 \& ．do \& 10 \& － \& \& \& $$
\begin{aligned}
& \text {... do } \\
& \text {... dul }
\end{aligned}
$$ \& Amb． <br>

\hline 310 \& ．te） \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 10 \\
& 10
\end{aligned}
$$} \& \[

$$
\begin{aligned}
& 1.5 \\
& 10
\end{aligned}
$$

\] \& \& \multirow[t]{2}{*}{| du |
| :--- |
| Long，amooth |} \& \multirow[t]{2}{*}{| Fory short |
| :--- |
| Moxleraze not mpooved． |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { (?) } \\
& \text { (?) }
\end{aligned}
$$
\]} <br>

\hline 31 \& \& \& \& \& \& \& <br>

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 32 \\
& 3 . a \\
& 33
\end{aligned}
$$} \& do \& \multirow[t]{2}{*}{8

9

$7-8$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 9 \\
& 8
\end{aligned}
$$} \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{Propperd，smooth ．．－． Shert，Marp，sumoth．} \& Moterate，spongy \& （1） <br>

\hline \& \& \& \& \& \& \multirow[t]{2}{*}{Short} \& \multirow[t]{2}{*}{（1） Anbl．} <br>
\hline \& V．nll thrown forward \& 7－8 \& 10 \& 2 \& Very lones，sharp， sbiontl． \& \& <br>
\hline 34 \& V．gost．throwa forwar \& $9+$ \& 10 \& 1 \& Normal，sharp， smenth \& Moderate ．．．．． \& （？） <br>
\hline 35 \& （Schizoidea．） \& $6+$ \& $\delta$ \& 1 \& Fery long，sharp， smooth． \& Very short．．．．． \& Amb． <br>

\hline 36 \& \} Rerular, posterior ralves \& \multirow{2}{*}{$+$} \& $\times$ \& \multirow[t]{2}{*}{1} \& \multirow[t]{3}{*}{| Blunk rugose |
| :--- |
| Sharp，shrate |
| Sturp，long |} \& \multirow[t]{3}{*}{| Movlerato |
| :--- |
| 1，$\quad$ u： |
| Small |} \& （1） <br>

\hline 3603
38 \& $\}$ shit hetwern 2 rielsem．\＆ \& \& $\times$ \& \& \& \& （！） <br>
\hline 3 \& （Placiphoroidea．） \& $+$ \& $\times$ \& 1－2 \& \& \& Med． <br>
\hline 38 \& Str．forward，flat behind \& 0 \& $\times$ \& 1 \& Notu lehind \& Dueply furroved \& （？） <br>
\hline 39 \& Regular，the belined \& 0 \& $\times$ \& 1 \& Normal，strrate \& Monlevate．．．．． \& <br>
\hline 411 \& Regular，ribbed br hind \& 0 \& $\times$ \& 1 \& Slighsly proppeel \& Small ．．． \& A mb． <br>
\hline 40 at \& do \& 0 \& $*$ \& 1 \& Excursed \& －．do \& <br>
\hline sub \& du \& 0 \& $\times$ \& 1 \& Sharp \& Minute \& （1） <br>
\hline sue \& do．．．．．．．．．．．．． \& 0 \& ＊ \& 1 \& SLarp，very lung， smeoth． \& ．．du \& （！） <br>
\hline 41 \& \} Resular, pugterior valvo \{ \& 1 \& 8 ＋ \& 1 \& Lorug，propped \& Minute \& Meal． <br>
\hline $41 a$ \& ）lmminated． \& 1 \& $\times$ \& 1 \& Mod．，simple．．．．．． \& Smull ．．．．．．．．． \& 1？1 <br>
\hline 48 \& Thrown forward，laminated \& ＊ \& 7

5 \& 1 \& | Fery longr，propped |
| :--- |
| Lone，shatp，smooth | \& Мimute，sponis）． \& Amba <br>

\hline 4 4a \& Tlinowu furward somewhat． \& ＊ \& 5 \& 1 \& Vory loug sharp． \& Minute \& <br>
\hline 438 \& Thown for mard much \& 1 \& 5 \& 1 \& smorth． \& \& <br>
\hline 4 \& \& 1 \& 5 \& 1 \& Very longe，sharp，ra－ girse． \& do \& （1） <br>

\hline 46 \& | Tail plate cruate behind．． |
| :--- |
| （Cryptoidea．） | \& 2 \& 5 \& 1 \& Crenate，sharp， smooth． \& ．．do \& Long． <br>

\hline 45 \& Regular，lebini variable． \& ＊ \& 5 \& 1 \& Fery long，sunooth． \& Mirute \& <br>
\hline Sliza \& Mopaloid ．．．．．．．．．．．．．．．．．．．． \& 2 \& 0 \& 1 \& ．．．do．．．．．．．．． \& ．．．rio \& Sied． <br>
\hline 476 \& Coarsely mopaloid ．．．．．．．． \& 2 \& 5 \& 1 \& －de \& Nono \& Amb． <br>
\hline 47 \& （Chilonelloridea．） \& 2 \& 6 \& 1 \& do \& None \& Amb． <br>
\hline 48 \& －Very sagittate． \& 0 \& 8 \& 0－1 \& ）Wiry－hort，oxcept ${ }^{\text {a }}$ \& Distinct \& Post． <br>
\hline 480 \& …．do．${ }^{\text {a }}$ ．．．． \& 0 \& 5 \& 0 \& \} aisutures...... \& to \& Post． <br>
\hline 43 \& Intervediato．．．．．．．．． \& 1 \& ． \& 1 \& Mod．lung in front．．． \& Minuto． \& （1） <br>
\hline
\end{tabular}

## Table 1I.

## This talle enumerates in brief the characters of the sinus of the girdle and its armature, and the chief distinctive peculiarities of each group.

|  | Sinus | Girdle. | Peculiaritied. |
| :---: | :---: | :---: | :---: |
| 7 | Simple, stmonth, leep.... | Gravellyacalem, wmonthorstriated | All negrtive. |
| if | Simple, hroad. ........ | Spicule and chatiy scales..... | Flathined macro, valyes thrown forwarl |
| 8 | Simple, broad, shailow | With hairs or finespines | Lamme only on anterior calve. |
| ! |  | Solld, downy, poriferous | fermisal vaires laminsted. |
| 10 | Ohsolete | Thin, horny, timely wramulowa | Unslit laminae on all valves. |
| 11 | Broats sul | Grommlat fintish scales | Short gilie, gramular sealew. |
| 11.8 |  |  | Liudsioid rentral slita. |
| $1:$ | Extremely wmall | Looge, lunmy ncal | Small sinua, reticulato giville, crowded propped teeth. |
| 12 n | Most minuto | Smooth, do | Smouth cirille. |
| 1: | Brotul, Ahallow | Smontli or do | Strott |
| 14 | Brwal. thssured | Smontl | Valcers mit in dorand axim. |
| $1 i$ | Modenate | Thin, amooth | Teeth few, valvea parmly immensed. |
| 16 | Mrond or minut | Hairy | Inclonod plates hairy gimlle |
| $16 a$ | Broad, smooth | Short, striated, shelly bristles | Indmbid alitn hechneid plateso mtri. sted brimtien. |
| 17 | Simple, broad, deep | Spongy, downy | Half immermed ralvee, plated inch. noid. |
| 10 n |  | Irregular, chafty | Textr long, chaffr mealen. |
| 1al | do | - | Same h: lnst, with malwield alits. |
| 18 | Simple, siar8ow, dowp | Lomest striated spimen and scalen | Sanme, triplemerien os a triat ed mralea. |
| 1 nd | Simple, Uread, slabllow | Double metion mealen, stot chatly | Bods furmal, double sersem of surates. |
| 28. |  | Small tranaver | Botle nommal, amall intriate realua |
| 181 | do |  | Jhaty nommat. vatsimial wlits. |
| 109 | $\left.\begin{array}{c}\text { Brabl, shallow, some. } \\ \text { fimes duntate. }\end{array}\right\}$ | Larcre, smooth, imbricntell scales | S Seshes of Chiton, plates of Iuchnorhiton. |
| 10 | Brond, shallow, lamimate... | Narrow, with small sca | Narrow gitlle, highle meulptured ploten courved outwarl |
| -1 | Narrow, deep, lnminatr | Smonth. with marsimal tufts |  |
| :1 | Narrow, shallow, simple | Minte bristlea aud antural hair. tulte. | Proppud teeth, entural frotem. |
| 23 | Roundral, simple ... .... | Fleshy with lung, hairy brintlen | Tongh, flewher giralle, propperiteeth. |
| 23 | Narrow, shallow, aimplo. | Smooth, with horny proceseas... | Propperd tectu, horny girile procemen. |
| 4 | Rroad, ahallow, mimplo | Spongry with scattered soft hairn. | Snongy girdle, ningle laternl slits. |
| 25 | Squarev, denticulato. | Large, | Broal acrrated teeth and sinus acoly eir le. |
| 25a | do | do | Same, with sdded side slita. |
| 26 | do | Smooth or downy | Sharper teeth, smooth gisdle. |
| $26 a$ |  | Smouth, opreading | Sharper teeth, valves partly covervel. |
| 27 | Small, lamine united | Hair | Non fisanted but deeply pectinate seeth, hairi girdle. |
| 28 | (1) | "Minntiasime aspernlas" | Posteriorvalve "medio Ambriata." |
| 29 | Large, laminx united | Large, solid, grouved scalea | Nondimbricate acalem, brond groor. ed and meprate fecth. |
| 30 | Large. wared, lamine united. | Shelly briatles | Tenth short inside, long outside, wared aibus. |
| 31) | (?) .. . ...... | do | Same, with ralsioid slita. |
| 310\% | (Large, wared, lobed, lam-1 | Shelly apines | Spinous girille. lolved ninua |
| 3uc | \} luse united. | Shelly brintlex, apreading | Partly culcted valves, radsiod alita. |
| 1 | Minute, wared, *moot | Stmooth, small, downs tuft | Downy girdle tufta, mooth sharp teqih. |
| 22 | Simple, lamina separat ed. | Granular bristlen | Bristly girille, smooth propped teeth. |
| $32 a$ | do | Briatly, atriated acolen | Sharp tepth, miriate acalem. |
| 33 | do | Broad, with shelly bristles. | Loug, sharp teetb, radsioid alits, ponterior miero. |
| 34 | Nartow, mmoth, laminate. | Thin, lanumate. | Twiat el muero, snoot $h$, thinginile. thin fachnoid valrew. |
| 35 | Narrow, lamiva acparated | Thin, lanugate, wide, with sutural рмити. | Smooth, porous girille partly corer ing vilves, very long tueth. |
| 30 | Natrow .... | Slit lichind, solid smonth arales.. | Slit tail-plate, scaly kimbe. |
| 3 fia | Sarrow, lolved | Produced in front, upright acales. | Sharp toveth, proluced Eirdle, bo lobeal acalom Indeed minua |
| 11 | Narrow, rery deep | Slit behind, minute кpiculax | Firy long mal nariow, derp slit. |
| 38 | Le pr lobed.. | Latice, meparatu acales, uriatlea between. | Scaly girdle, flattened tail plate. |

Table II-Continued.

| $\begin{aligned} & \text { \& } \\ & \text { b } \\ & \text { in } \end{aligned}$ | Sinus. | Girdle. | Peculiarities. |
| :---: | :---: | :---: | :---: |
| 39 | Moderate, lobed | Chaffy hairs | Hairy girdle, glossy valven, flat tened tail-plate. |
| 40 | Small, sut laminue joined | Hairy, with regular pore-tufts | Rows of pore tufis, awollea silu. |
| 40 | Broad, shallow. |  | Outhending of the teeth. |
| 406 | Broad. deep, apongy | Crowded hairs without pores | Hainy Eirdle withont pore |
| 41 | Very narrow | Hairy, often slit bela. Dd. | Xormal shope. alarp lamine with one slit, wived bebind. |
| $41 a$ | do | Regular porea, much produced in front. | Same, with small porea. |
| 42 | Deep, broal, spongy | Smooth, valves nearly covered... | Smooth, broad girlle, teeth thrown forward. |
| 43 | . do | Hairs, with long, fasciculated apienlx. | Tuftedgirdle, large lamina, minuto tail-plate. |
| $43 a$ | Moderate | Smoother, with tufte | Valves partly corrred, sunken sito |
| 436 | SLallow, broad | Hairy, with tafta | Valves nearly covered, tufed gir. |
| 44 | Deep, narrow | Crowded apienles, with sutural | Valve separatell with narrow si- |
| 45 | Deep, arched | Smooth. tufted, valven pearly | A rehed, nearly covered valven, f11. |
| 401 | Broad | Smooth, irregularly tufted. | Tips of valves onlv exposed, moft bristlea litegularly disposed, ahort gills. |
| 463 | do | Coriacrons, irregularly tufted.... | Same, with ambient gilla. |
| 47 | Deep | Covering the shell, with numer. ous fine spiculis in tutts all over the anrface. | Valres entirely corered. |
| $49$ | ery do ...$d o$ | Crowd dl brimiles. with tufn Gravelly, with sutaral tufts. | Very long, bind ralres separato. sume, with small tultm. <br> side tufts, valres tonching. |

With the above data and those comprised in my report on the Limpets and Chitons of Alaska, \&c., students should be pretty well able to refer any Chiton of whose characters they bare made themselves masters to its proper place in the general classification.

November 30, 1881.

## Notes on certain aboriginat hheid modnde on the coast OF NEW BRUNSWICK AND OF NEW ENGLAND.

## BY S. F. BAIRD.

During several successive visits made to New England and the Provinces, I embraced the opportunity of examining a number of interesting shell mounds, intending to continue the research and to prepare a detailed account of them. Subsequeut events, however, have prevented my doing this, and I now publish some fragmentary notes on the subject, for the purpose of calling attention to the localities and inviting further examination.

In general, it is possible to determine beforehand the existence of shell heaps by the physical surroundings. Thus, whenever on the sea-coast the shore sloped gently to the south, with fresh water in the neighborhood, shell mounds or beds could always be inferred, especially if in the vicinity of flats where clams could be obtained. Here were generally established the sites of villages or of temporary encampments.

Prof. F. W. Putnam, in one of his papers upon shell mounds in New lingland, has remarked upou the comparative absence of stone implements therein. This I did not find to be the case in Maine and New Brunswick; indeed, in some cases, the abundance was quite remarkable.

The examinations of the shell beds in New Brunswick and Eastern Maine were mostly made in the summer of 1860 ; of those on Cape Cod, in 1870 and 1871; and of those on Casco Bay, in 1873. All the specimens collected are in the National Musenm at Washington.

No. 1.-Oak Bay, St. Croix River, St. Darids Parish, New BrunsurickThis locality is on the eastern side of Oak Bay, and is about eight miles from Calais, on the farm of Josiah Simpson. This is the most extensive and in fact one of the richest mounds I have ever examined. The total thickness of the bed is about 5 feet, and the different layers occur in a succession indicated in the accompanying diagram.

A striking feature in this mound is the abundance of spines and shells of Echini, which evidently constituted a large portion of the food of the aborigines. A careful examination of the ashes indicated that they were derived, for the most part, from eel-grass (Zostera marina), and it is sug. gested that the cooking of the shells was done by wrapping them up in dry eel-grass and setting fire to it. This would probably cook the animals sufficiently to enable them to be readily withdrawn from the shell.

Oak Bay is a narrow fjord, extending northward from Passamaquoddy Bay, the water being entirely salt. The tides are very high, and a vast extent of tats is exposed at low water, still abounding in the soft clam.

PROCEEDINGS OF LNITED STATES NATIONAL MUSEVM. 293
The area of the shell bed appears to be about one acre. The principal shells are the following:

Buccinum plicosum.
Natica heros.
Pecten tenuicostatum.
Pecten cardium

Mya arenaria.
Mytilus.
Helix alternata.

Velitical section of shell ineap, Oak Bay, New Brixswick, September, 1969.
[Seate 祭]


Several visits were made to Oak Bay in company with George 1. Boardman and Dr. Todd, of St. Stephen's, New Brunswick.

No.r.-Cobscook Bay, Washington County, Maine; Farm of Levi Hal. lorell.-This point was reached lyy water from Lastport, Me., and is five miles south of Denysville. It is on a narrow, sloping point, running kharply into the bay and cut away at the water's edge. The surfice is about 6 feet above the level of high tide. The edge has been much worn away by the water, and probably at one time extended considerably beyond its present position. The shells were much broken in the beds. The abundance of roots of trees rendered digging very difficult. The shells formed a layer of from 6 to 20 inches below the surface of the sod. Bones were very abundant, especially those of the moose aud beaver. Stone arrows and flint tlakes, \&e., were also very numerous. The area of the bed is about 30 feet by 20 , and gives rise to a decided swell in the slope. At other points in the neighborhood there are thin seams of shells in the sod, much mixed with charcoal and black earth, without any bones. I made several visits to this locality, and a more extended exploration was made by Mr. Gardiner, of Eastport, who presented his collections to the National Museum.

No. 3.-Cobscook Bay, Washington County, Maine; South Bay, at the southern end of Long Island.-This bed is at some distance from the water and was not very productive. It is situated on a high bank, sloping graulually to the water, and terminating abruptly. Much of it has been washed away. There appears to have been one continuous layer, covering about 30 or 40 feet by 20 with outlying hummocks. The sod is five or six inches thick, succeeded by a bed of large unbroken shells, with little or no dirt within eight or ten inches of the top. A few stone arrows were obtained here, but not many bones-none to warrant further exploration.

No. 4.-Grand Menan, New Brunswick; Grand Harbor -Grand Menan is situated about 90 miles from Eastport. This was found to contain many deposits of small shell heaps; no beds, however, were very extensive. Those at Newton's Point and Ingall's Head, in Grand Harbor, were found to be the most productive localities.

The shells were much broken and mixed with dirt. Where the bed reached the water's edge it was about 40 feet wide and 10 inches thick. The only mammals observed were seals, some beaver, many bones of birds and a few of fishes were obtained. Stone articles were abundant; many arrows, flint flakes, \&c. A few worked bones of the beaver were secured.

No. 5.-Grand Menan ; Nantucket Island.-This is the residence of Simeon L. Cheney, the well known naturalist of Grand Menan, whose assistance to many American naturalists has been so often gratefully acknowledged.

No. 6.-Grand Menan, Cheney Island, near Whitehead Island.-The shells in the last two localities occur on the south side of the island in detached heaps or hummocks, containing each from half a bushel to three or four bushels, not connected by any layers. They are usually high up
in the field and covered with thick sod. These heaps show very few bones, and very seldom any stone implements. They appear to have been casual in their origin, and do not mark long continued settlements.

Cormorant bones were found quite abundantly in the Nantucket Island heaps. There appeared to be an unusual scarcity of bones of fishes in the Grand Menan deposits, and those chiefly of small fishes, such as sculpins, and the like. Bones of codflish, and perhaps even of goose fish, and other large fish were more common at Eagle Hill, Ipswich, where the mounds, while abounding in the bones of fish, furnished very few of mammals and birds.

No. 7.-Pope Logan, Lepreau Bay.-The locality visited is on Holland's farm, on the north part of the island and west of the westermmost sawmill. Of the numerous deposits in the vicinity only one was examined; this revealed an abundance of shells of the soft clam (Mya arenaria), still found in numbers in the neighborhood, the locality being celebrated all along the coast in this respect.

The shell heap examined is on a sloping bank descending to the south. the lower end being about 10 feet above high tide, and occupying an area of 150 feet by 50 , and having a depth of 20 feet in the several layers. The shells were, for the most part, entire and unstratified, with very little mixture of earth. The bones of large mammals, such as the moose, and probably the caribou, were extremely abundant, occurring by the cart-load. They were much less broken up than usual.

No. 8.-Bliss's Istand, New Brunswick.-This locality is situated near the head of the bay on the right hand of Pentlow's Cove, to the southwest. Here the shells occur in thin, compact layers on the bank facing the northwest, much mixed with black dust. The deposit is scanty and scarcely worth working.

No. 9.-Bliss's Island, Fisherman's Cove, New Brunsucick.-This locality is on the northeast side and north of the weirs. Here the shells occur unstratified in a bed about 20 inches thick, almost free from mixture, and covered with a light, loose soil, 6 to 10 inches deep. Very few bones were found.

No. 10.-Frye's or Cailiff's Island, New Brunsuick.-This bed was one of the richest I have ever examined. It is situated on English Cove, directly opposite Bliss's Island, to the east of Long Point. It is near the farm bnildings, between two willows. Here the shell bed was a very large one, about 15 feet above the present high tide, and seems to have been torn up by the tde and restratified by the water, so that articles of the same kind and specific gravity were usually found in association. The lasers consisted of black beach gravel, alternating with nearly pure grave!. The total bed was from 20 to 30 inches thick, the productive layers occupying only a few inches of it. The shells had been cast in strata on either side of a ravine or gulch, along the bottom of which there were but few shells, but containing neatly all the bones and stone implements of the original bed mixed with gravel. West of this locality is another bed at a lower level than the first.

I am much indebted to Mr. Henry Frye, of St. George, New Branswick, for permission to examine this locality, the scientific interest of which be appears fully to appreciate.

No. 10A.-East side of Digidequash River, Passamaquoddy Bay, New Brunscick.-Not very productive.

No. 10B.-Roque's Island, Maine.-This is on the southern side of an island bordering on Roque's Island thoronghfare, which separates Roque's Island from Spruce Island, and situated between Machias and Quoddy Head. The bed here was 3 feet thick, with old loam above it nearly a foot thick, the whole extending nearly a mile. This localitv was not visited by myself, but reported by Lieut. J. A. Slocum, of the rerenuecutter Mosswood.

No. 11.-Green Point along Letite, Passamaquoddy Bay, Maine.-Not examined.

No. 12.-Seely's Cove.-Not examined.
No. 13.-Bocabec, Passamaquoddy Bay.-Not examined.
No. 13a.-Damariscotta, Mie.-The shells of this well-known locality consist almost entirely of oysters, the beds covering many acres in extent to a depth of from 5 to 15 or 20 feet. The oysters were all very large and usually narrow or slipper-shaped. Very few are now found living in the vicinity. The number of worked bones of animals or of stone implements, mixed with the shel!s, is extremely small; a long search of perhaps an hour will sometimes be necessary before anything of the kind can be detected.

No. 13b.-Bocabec.-Not examined.
These constitute the principal localities examined in Eastern Maine and New Brunswick. As already stated, they are characterized in some cases by large beds of shells of the soft clam (Mya arenariu), never of the quahang or Venus mercenaria, with a little admixture of earth; in others the shells are in a much decouposed condition, with black earth scattered among them; again, by the association of large bones, especially of the moose and caribou, with but little mixture of anything else. Oceasionally these beds alteruated with pure shell or pure bone, possibly the shells being aggregated in summer and the bones of manmals in winter. Everywhere the bones of the great auk were found, as also those of the beaver. The only other localities examined in Maine were some islands in Casco Bay, where the bones of the great ank were unusually abundant.

No. 13B.-Nantasket Beach, Boston Harbor.-At varions points in the vicinity of this beach are found numerous seams and hillocks of shells, consisting, however, almost entirely of Mactra solidissima, or horse-clams; neither Mya nor Venus were observed. The deposits are small and situated in the sand. The principal locality examined was near Skull Head.

No. 13C.-Eagle Hill, near Ipsuich, Mass.-This locality is widely known from the investigations made therein by Messrs. Morse, Putnam, and other Massachusetts npecialists.

The aborigimal shell beds are very extensive, and consist very largely
of shells of the Mya, or soft clam. The number of stone implements and of worked bone is, however, extremely small, much less than in the shell heaps of Maine and New Brunswick.

No locality on the coast perhaps furnishes so many fresh clams for commercial purposes as the vicinity of Ipswich, plonghs being used for turning them up. They are obtained by the thousands of barrels for bait for codtish, and the refuse shells constitute masses of enormous magnitude.

No. 14.-Nonamesset Island, near Naushon, Buzzard's Bay.-This locality is in the inner Hadley's Harbor, on Nick's Neck, the property of Mr. John M. Forbes, and nearly opposite to Wood's Holl, Mass. The heap is very extensive, covering quite an area of the beach, and abounds in bones of the deer. The shells are principally soft clams (Myn), with a few quahaugs and pectens. The stone implements are extremely scarce.

No. 15.-Great Harbor, Wood's Holl, Mass.-Quite an interesting locality exists on Long Neck, to the west of the guano factory. The deposit covers about one hundred square yards to a depth of a foot. The shells consist almost entirely of Crepidula plana. Bones were very scanty, and quite a notable proportion of these were of birds. Very few stone implements were found.

No. 16.-l'arker's Point, Wood's Holl.-On the cast side of Parker's Point, opposite the low, depressed portion, is quite an extensive bed of almost entire clam-shells, the quahang, or hard clam (Venus mercenaria), and but little broken. The locality covers about two hundred square yards, to a depth of about two feet. No implements or bones of any kind were ever found in this locality.

No. 17.-Quisset Harbor, on Buzard's Bay, north of Wood's Holl.Here the heaps consisted entirely of sliells of the quahang. No bones nor implements of any kind were fonnd.

No. 18.-Cataumet Inrbor, North Falmouth, Buzards Bay.-Were is a very large deposit of quahang shells, on a point in Squeteague Pond; but no bones or implements.

No. 19.-Mud Core, back of Toby Island, north pud of Buzards Bay.Here, as in the three preceding localities, the deposit consisted also ot shells, without any bones or implements.

I have already referved to the abundance of bones of the great auk in the shell heaps of New Brunswick and Maine. They also occur in considerable numbers at Eagle Mill, near Ipswich. I do not remember to have found ans myself on Cape Cod, but am under the impression that Professor Wyman reports them as discovered by him at Cotnit, on Vineyard Sound. There is certainly a great scarcity of stone implements in the shell heaps of Sonthern Massachusetts, compared with what we find farther north.

All the collections made by me at the localities mentioned in the present paper are fow in the National Museum.

# LIST OE MAEENE INVERTEEEATEAS，MAINLT FEGN TEIE NEW  TIONAT．MUBELIX． 

## SEries II．

## Prepared ay Richard Rathbes．

The species enumerated in the present list were collected by the $\mathbb{U}$ ． S．Fish Commission，mainly during the past four years，and represent is portion of the duplicate material resulting from their sea－coast explora－ tions，and now available for distribution．Several of the species in cluded in these duplicate sets are recent additions to science，obtained by the U．S．Fish Commission steamer Fish Hawk，from the inuer edge of the Gulf Stream Slope，south of Martha＇s Vineyard，during the sum－ mers of 1880 and 1881．This region，which was first explored in 18s0， has proved to be the richest dredging ground set discovered upon our coast，both as regards variety of life and abundance of specimens．

Nearly all the species enumerated are included in each set，but of a few species only enongh duplicates were secured to supply a portion of the sets．In the printed list to accompany each set sent out，the species omitted from that set will be erased．Except where otherwise indicated， the specimens are all preserved in alcohol．The sets will number about one hundred．The crustacea have been identified，for the most part，by Prof．S．I．Smith，and most of the other species by Prof．A．E．Verrill． The names are mainly those used in the Preliminary Check－list of the Marine Invertebrata of the Atlantic Coast，by A．L．Verrill，edition of 1879．A considerable number of species that have since been described are，however，here included．

Washington，D．C．，November， 1881.

## CRUSTACEA． DECAPODA．

1．Gelasimus pugnax Smith．
U．S．F．C．－Narragansett Bay，R．I．，shore．
2．Platyonichus oce！latus Latr．
U．S．F．C．－Viveyarll Sound，Mase．，shore．
3．Platyonichus ocellatus Latr．Young．
U．S．F．C．－Narragansett Bay，R．I．
4．Carcinus maenas Leach．
U．S．F．C．－Ncerport，R．I．，shore．
5．Pasopeus Sayi Suith．
V．‥ F．C．－Vineyard Sound，Mass．，shore．
6．Cancer irroratus Say．
U．S．F．C．－Narragansett Bay，R．I．
7．Cancer irroratus Say．
U．S．1゚．C．－Vineyaril Sound，Mass．
8．Ca：icer irroratus Say．Young． U．心．ト．C．

9．Hyas coarctatus Leach． U．S．F．C．－Gulf of Maine．

10．Hyas coarctatus Leach．
U．S．F．C．－George＇s Bank， 45 fath．
11．Hyas coarctatus Leach．
U．S．F．C．－Le Have Bank， $4 \overline{5}$ fath．
12．Libinia emarginata Leach．
U．S．F．C．－Narragansett Bay，I．I．
13．Euprognatha rastellifera Stimp．
U．S．F．C．-74 miles S．of Nantucket Islaud， 76 fath．

14．Hippa talpoida Say．
U．，S．F．C．－W Wod＇» Holl，Mass．，Bhore．
15．Eupagurus pollicaris Stimp． U．S．F．C．－Vineyard Sound，Mass．
16．Eupagurus pollicaris $S$＇imp．
U．S．F．C．－Narragauselt B．s．，R．I．
17. Eupaguras longicarpus Stimp. U. S. F. C.-Narragansett Bay, R. I.
18. Parapagurus pilosimanus Suith.
U. S. F. C.- 87 miles 8. of Martha's Vineyard, 312 fath.
19. Munida, Sp.
U. S. F. C. -73 miles S. of Martha's Vineyard, 65 fath.
20. Homarus americanus Edwards.
U.S.F.C.-Southern coast of New Eingland.
21. Crangon vulgaris Falir.
U. S. F. C.-Vineyard Sound, Mass.
22. Pontophilus brevirostris Sinith. U.S.F.C. -73 miles S. of Martba's Viueyard, 65 fath.
23. Pandalus leptocerus Smith.
U. S. F. C. -60 miles S. of Martha's Vineyard, 45 fath.
24. Palzmonetes vilgaris Stimp. U. S. F. C.-Narragansett Bay, R. I., shore.

## SCEIZOPODA.

25. Mysis amerioana Suith.
U. S. F.C.-Vineyard Sound, Mass.
26. Thysanopoda norvegica M. Sars. U. S. F. C.-Bay of Fundy, surface.

## AMPEIPODA.

27. Orchestia agilis Smith.
U. B. F. C. - New port, R. I., shore.
28. Talorchestia longicornis Smith.
U. S. F. C.-New Haven, Conn., shore.
29. Gammarus natator Smith.
U. S. F. C.-Wocd's Holl, Mass.
30. Ptilocheiras ptaguis Stimp.
U. S. F.C.-Long I. Sd., off Noank, Conn.
31. Unciola irrorata Say.
U. S. F. C.-Off New port, R. I.
32. Themisto bispinosa Back.
U. S. F. C. - 87 miles S. of Block Island, R. 1., 335 fath. (Stomach of Hake.)

## ISOPODA.

33. Idotea robusta Kröger.
U. S. F. C.-Otf Block Idiund, R. I., surface.
34. Ligla oceanica Fabr.
U. S. F. C.-New port, R. I., shore.
35. 正ga psora Kröyer.
U.S.F.C.-Ofi Nova Scotia, on cod and halibut.

## ENTOMOSTRACA.

36. Artemia gracilis Verrill.
L. B. F.. C.-Now Haveu, Coun., salt vats.
37. Temora longicornis Milller.
U. S. F. C.-Block Islaud Sound, surface. CIRRIPEDIA.
38. Lepas fasciculanis Ellis and Sol.
U. S. F. C.-Vineyard Sound, Mase., surface.
39. Lepas anatifera Linn.
U.S. F. C. -100 miles off Martha's Vineyard, surface.
40. Balanus balanoides Stimp.
U. S. F. C.-New Haven, Conn., shore.
41. Balanus porcatus Costa.
U. S. F. C.-Ofl Chatham, Mass., 16 fath.
42. Balanus Hameri Darwin.
U. S. F. C.-Off Chatham, Miss., 16 fath.

## MEROSTOMATA.

43. Limulus Polyphemus Latr. Dry. U. S. F. C.-Soutbern New England, Bhore.

## ANNELIDA. CHIETOPODA.

44. Aphrodita aculeata Linno.
U. S. F. C.-Off Martha's Vineyard, $1 \overline{2} 0$ to 216 fath.
45. Lætmatonice armata Verrill.
U. S. F. C.-Off Martha's Vineyurd, 140 to 400 fath.
46. Lepidonotus squamatus Leach.
U. S. F. C. - East port, Me.
47. Lepidonotus squamatus Leach.
U.S.F.C.-Vineyard Sound, Mass., 8 to 12 futh.
48. Harmothoë imbricata Malmgren.
U. S. F.C.-Eastport, Me.
49. Nephthys incisa Mgn.
U.S.F.C.-Off Newport, R. I., 12 to 40 fath.
50. Nephthys incisa Mgn.
U. S. F. C.-Off Cape Cod, 10 to 50 fath.
51. Nephthys caca Jolinst.
U. S. F. C.-Cape Ann, Mass., shore.
52. Nereis virens Malugren.
U. S. F. C.-New Haven, Conn., shore.
53. Nereís pelagica Liuu6.
U. S. F. C.-Vineyarl Sound, Muss.
54. Nereis pelagica Linn6.
U.S. F. C.-Off Chatham, Mass., 15 to 40 futb.
55. Hyalinceia artifex Verrill.
U. S. F. C.- 90 miles S. of Martha's Vineyard, 160 to 388 fath.
56. Eyalincecia artifex Verrill.
U. S. F. C. $-7 \forall$ miles S. of Martha's Vine. yard, 192 fath.
57. Hyalincecia artifex Verrill. Dry.
U. S. F. C.-Of Martha's Vinegard, 160 to 388 fath.
58. Euglycera dibranchiata Ver. U. S. F. C.-New port, R. I., shore.
59. Clymenella torquata Verrill.
U. S. F. C.-Ne wort, R. I. , shore.
60. Cirratulas grandis Verrill.
U.S F. C.-Naushon Island, Mass., shore.
61. Trophonia affinis Verrill.
U. S. F. C.-Off Newport, R. I.
62. Sternaspis fossor Stimp.
U. S. F. C.-Off Martha's Vinegard, 20 to 100 fath.
63. Amphitrite ornata Verrill.
U. S. F. C.-Naushon Island, Mass., shore.
64. Thelepus cincinnatus Verrill.
U. S. F. C.-Bay of Fundy.
65. Thelepus cincinnatus Verrill.
U. S. F. C.-Off Chatham, Mass., 16 to 40 futh.
66. Potamilla reniformis Mgn.
U. S. F. C.-Off Chatham, Мass., 16 to 40 finth.
67. Filigrana implexa Berkeley.
U.S. F. C.-Off Chatham, Mass., 16 to 40 fath.

## GEPGYREA.

68. Phascolosoma Gouldil Dies.
U. S. f. C.-New port, R. I. , shore.
69. Phascolion Strombi Theel.
U. S. F. C.-Narragausett Bay, R. I., 10 to 20 fath.
70. Phascolion Strombi Theel.
L. S. F. C.-Ott Martha's Vineyard, 40 to 150 fath.

## CEATOGNATEA.

71. Sagitta elegans Verrill.
U.S.F.C.-Vineyard Sound, Masso, surface.

## MOLLUSCA. CEPHALOPODA.

72. Loligo Pealel Leaneur.
U. S. F. C.-Vineyard Sound, Mars.
73. Loligo Pealei Lesueur. Young.
U.S. F. C.-Buzzard's Bay., Mas8., 7 fath.
74. Loligo Pealel Lesueur. Young.
U. S. F. C.-Off Newport, R. I., 10 to 20 fath.
75. Loligo Pealei Lesueur. Eggs.
U. S. F. C.-Narragansett Bay, R. I.
76. Heteroteuthis tenera Verrill.
U. S. F. C.-Off Martha's Vinesard, 85 to $2: 5$ fath.
77. Octopus Bairdil Verrill.
U. S. F. C.-Off Martha's Vineyard, 200 to 388 fath.

GASTROPODA.
78. Fulgur carica Conrad. Dry.
U.S. F. C.-Narragansett Bay, R. I.
79. Fulgur carica Conrad.
U. S. F. C.-Narraganeett Bay, R. I.
80. Sycotypuscanaliculatus Gill. Dry.
U. S. F. C.-Suathern New England.
81. Sycotypus canaliculatus Gill.
U. S. F. C.-New Haven, Conn.
82. Neptunea propinqua (Alder).
U. S. F.C.-Off Martha's Vineyard, 65 to 300 fath.
83. Neptunea (Siphonella) pygmzea Verrill.
U. S. F. C.-Off Martha's Vineyard, 65 to 150 fath.
84. Neptunea Stimpsoni var. (Mürelı). U.S.F.C.-Off Martha's Vineyard, 40 to 100 fath.
85. Buccinum undatum Linn6.
U. S. F. C.-Off Marthu's Vineyard, Maes, 28 to 40 fath.
86. Tritia trivittata H. and A. Adams.
U. S. F. C.-Off Newport, R. I.
87. Ilyanassa obsoleta. Stimp.
U. S. F. C.-New port, R. I., shore.
88. Urosalpinx oinerea Stimp.
U. R. F. C.-New port, R. I., shore.
89. Eupleura caudata Stimp.
U. S. F. C.-Buzzard's Buy, Mass.
90. Purpura lapillus Lamarck.
U. 8. F. C.-New port, R. I., sbore.
91. Astyris lunata (Say) Dall.
U. S. F. C.-Wood's Holl, Mass.
92. Anachis avara (Say). Perk.
U. S. F. C.-Wood's Holl, Mass.
93. Luratia heros H. \& A. Adame. Dry. U. S. F. C.-Vineyard Sound, Mass.
94. Neverita duplicata Stimp. Dry.
l' S. F. C.-Vineyard Sulnd, Mass.
proceedings of linited states national musevm. 301
95. Cingula Jan-Mayeni (Fr.) Verrill.
U.S.F.C.-Off Martha's Vineyard, $\mathscr{U}^{3} 3$ to 500 fath.
96. Littorina littorea Menke.
U. S. F. C.-New port, R. I., shore.
97. Littorina palliata Gould.
U. S. F. C.-New port, R. I., shore.
98. Littorina rudis Gould.
U. S. F. C.-New port, R. I., shore.
99. Bittium nigrum (Totten) Stimp.
U.S. F. C.-Wood's Holl, Mass.
100. Crepidula fornicata Lam.
U. S. F. C.-Buzzard'н Bay, Mass.
101. Crepidula convexa Say. Dry.
U.S. F. C.-Off Newport, R.I.
102. Crepidula plana Suy.
U.S. F. C.-Otr Newport, R. I.
103. Acmzea testudinalis Han.
U. S. F. C.-East port, Me., sbore.
104. Fiona nobilis Ald. \& Han.
U.S.F.C.-Off Martha's Viucyarl, surfuce.
105. Pleurobranchía tarda Verrill.
U. S. F. C.-Off Martha's Vinegard, 65 to 200 fath.
106. Scaphander puncto-striatus (Mighels).
U. S. F. C.-Off Martha's Vineyard, 115 to 372 fuh.
107. Melampus lineatus Say.
U. S. F. C. -New port, R. I., shore.
108. Trachydermon ruber Carp.
L. S. F. C.-Eastport, Me.
109. Trachydermon albus Carp.
U.S. F. C.-Eastport, Me.

## SOLENOCONCEA.

110. Deatalium striolatum Stimp.
U. S. F. C.-Kast port, Mo., 10 to 30 fath.

## LAMELLIBRANCEIATA.

111. Teredo megotara Hanley.
U.S. F.C.-Off Martha's Vineyard, surface.
112. Clidiophora trilineata Carp. Dry. U. S. F. C.-Buzzard's Bay, Muse. 7 fath.
113. Mulinia lateralls Gray. Young. U. S. F. C.-Narragansett Bay, R. I.
114. Callista convexa H. \& A. Ad. Dry. U. S. F. C.-Buzzard's Bay, Mass.
115. Tottenia gemma Perkins. Dry. U. S. F. C.-Provincetown, Maso., shore.
116. Cyprina islandica Lam. Dry. U.S. F. C.-Off Nuw port, R. I.
117. Loripes lens Verrill \& Smith.
U.S.F.C.-Off Martha's Vineyard, $8 \overline{\text { to }}$ 120 fath.
118. Venericardia borealis Carp.
U. S. F. C.-Off Newport, R. I., 13 to 15 fath.
119. Astarte undata Gould.
U.S. F. C.-Narragansett Bay, R. I., 20 to 27 fath.
120. Astarte crenata Gray.
U. S. F.C.-Ot Martha's Vineyard, 100 to 365 fath.
121. Nucula proxima Say. Dry.
U.S. F. C.-Narragansett Bay, R.I.
122. Nucula proxima Say.
U. S. F. C.-Buzzard's Bay, Mass.
123. Yoldia limatula Woodward.
U.S. F.C.-Narragansett Bay, R. I., 11 fath.
124. Yoldia sapotilla Stimp.
U. S. F. C. -76 miles S. of Martha's Vineyard, 100 fath.
125. Yoldia thraciformis (Storer) Stimp.
U.S.F.C.-Gulf of Maine, 50 to 100 fath.
126. Scapharca transversa Ad. Dry.
U. S. F. C.-Off Now Haven, Conn.
127. Limopsis minuta (Phil.).
U. S. F. C.-OtI Martha's Vineyard, 238 to 365 fath .
128. Modiola modiolus Turton.
U. S. F. C.-Enst port Harbor, Maine.
129. Modiola plicatula Lam.
U. S. F. C.-New port, R. I., shore.
130. Mytllus edulis Linn.
U. S. F. C.-New port, R. I., shore.
131. Pecten irradians Lam.
U. S. F. C.-Provincetown, Mass., shore.
132. Pecten tenuicostatus Mighels.
U. S. F. C.-Off Martha's Vineyard, 45 fath.
133. Pecten tenuicostatus Mighels. Dry.
U.S.F.C.-Off Newport, R. I.
134. Peoten vitreun Woodward.
U. S. F. C.-Off Martha's Vineyard, 300 to 458 fath.
135. Anomia glabra Verrill.
U. S. F. C.-Buzzard's Bay, Mase., 5 fath.

## TUNICATA.

136. Ascidiopsis complanata Verrill.
U. B. F. C.-Eastport IIurbor, Me., 15 fath.
137. Ciona ocellata Verrill.
U. S. F. C.-Newport, R. I., ohore.
138. Molgula manhattensis Verrill.
U. S. F. C.-Wood's Holl, Mass., shore.
139. Halocynthia parita Verrill.
U. S. F C.-New port, R. I., shore.
140. Halocynthia pyriformis Vorrill.
U. S. F.C.-Eastport, Me.
141. Boltenia Bolteni (Linn6.)
U. S. F. C.-East port Harbor, Me., 15 fath.
142. Perophora viridis Verrill.
U. S. F'. C.-Wood's Holl, Mass., shoro.
143. Botryllus Gouldii Verrill.
U. S. F. C.-Newport Harbor, R. I.
144. Botryllus Gouldif Verrill.
U. S. F. C. - Woorl's Holl, Mass.
145. Amorcocium pellucidum Verrill.
U. S. F. C.-Vineyard Sound, Mass.
146. Amorcecium stellatum Verrill. U. S. F. C.-Vineyard Sound, Mass.
147. Amorcecium constellatum Verrill. U. S. F. C.-Vinejard Sonnd, Mass.
148. Leptoclinum albidum Verrill. U. S. F. C.-Vineyard Sound, Mass.
149. Salpa Caboti Desor.
U. S. F. C.-Off New port, R. I., surface.
150. Balpa. (Large species.)
U.S.F.C.-Off Martha's Vineyard, surface.

## MOLLUSCOIDA. BRACEIOPODA.

151. Terebratulina septentrionalis Gr. U. S. F. C.-East port Harbor, Me., 15 fath.

## POLYZOA.

152. Bugula turrita Verrill.
U. S. F. C.-Vineyard Sound, Mass.
153. Bugula Murrayana Busk.
U.S.F.C.-Off Cape Cod, Mass.
154. Gemellaria loricata Busk.
U. S. F. C.-Off Cape Cod, Mass.
155. Electra pilosa Fisch.
U. S. F. C.-Narragansett Bay, R. I.
156. Lepralia americana Verrill. Dry.
U. S. F. C.-New port Harbur, R. I.
157. Discopora nitida Verrill.
U. S. F. C.-Viueyard Sound, Mass.

## ECHINODERMATA. HOLOTHURIOIDEA.

158. Thyone Briareus Selenka.
U. S. F. C.-Wood's Holl, Mass., sbore.
159. Leptonynapta Girardu Verrill.
U. S. F. C.-Newport, R. I., shore.

## ECEINOIDEA.

160. Bchizaster fragilis (Dub. \& Kor.) Dry.
U. S. F.C.-Off Martha's Vineyard, 100 to 258 fath.
161. Echinarachnius parma Gray. Dry. U. S. F. C.-Cape Cod Bay, Mass.
162. Strongylocentrotus dröbachiensis A. Ag.
U. B. F. C.-Off Newport, R. I.
163. Arbacia punctulata Gray.
U. S. F. C.-Newport Harbor, R. I., shore.

## ASTERIOIDEA.

164. Asterias Forbesii Verrill.
U. S. F. C. - New for , R. I., shore.
165. Asterias valgaris Verrill.
U.S.F.C.-Off Martha's Vineyard, 20 to 50 fath.
166. Asterias stellionura Perrier.
U. S. F. C.-OIf Nova Scotia, 90 to 200 fath.
167. Leptasterias compta Verrill.
U. S. F. C.-Off Block Id., R. I., 27 fath.
168. Leptasterias compta Verrill.
U.S.F.C.-Otf Martha'y Vineyard, 25 to 65 fath.
169. Btephanasterias albula Verrill.
U. S. F. C. -80 miles oft Nantucket, 94 fath.
170. Hippasteria phrygiana Ag. Dry.
U.S. F. C.-Gulf of Maine, 50 to 100 fath.
171. Cribrella sanguinolenta Litk.
U. S. F. C.-Bay of Fundy, 10 to 20 fath.
172.-Odontaster hispidus Verrill.
U.S.F.C.-Off Martha's Vineyard, 70 to 200 fath.
172. Ctenodiscus crispatus D. and Kor.
U.S. F. C.-Massachusetts Bay.
173. Archaster americanus Verrill.
U. S. F. C.-Off Martha's Vineyand.
174. Archaster Agassizil Verrill.
U. S. F. C.-Off Martha' Vineyard.
175. Archaster Florae Verrill.
U. S. F. C.-Off Martha's Vineyand, 200 to 350 fatb.

## ophiuroidea.

177. Ophiopholis aculeata Gray.
U.S. F. C.-Gulf of Maine.
178. Ophiopholis aculeata Gray:
U. S. F. C.-Off Martha's Vincyard, 130 to 200 fath.
179. Ophioglypha Barsil Lyman.
U. S. F. C.-Off Martha's Vineyard, Mass., 45 fath.
180. Ophioglypha Sarsii Lym. Dry.
181. S. F. C.-Off Martha's Vineyard, Mass.
182. Ophioscolex glacialis M. \& Tr.
U.S.F.C.-Off Martha's Vineyard, 200 to 258 fath.
183. Ophiocnida olivacea Lyman.
U. S. F.C.-Oti Martha's Vinegari, 85 to 125 fath.
184. Ophiacantha millespina Verrill.
U.S. F. C.-Off Martha's Vineyard, 130 to 260 fath.
185. Amphiura macilenta Verrill.
U. S. F. C.-Off Martha's Vineyarl, bi fath.
186. Astrophyton Agassizii Stimp.
U.S.F.C.-Off Cape Cod, Mass., 20 to 30 fath.
187. Astrophyton Agassizii Stimp. Dry.
U. S. F. C.-Off Cape Cod, 20 to 30 fath.

## CRINOIDEA.

187. Antedon dentatum (Say) Verrill. (= Sarsii D. \& K.)
U. S. F. C.- -75 miles S. of Nantucket, 146 fath
188. Antedon dentatum (Say) V. (= Sarsii D. \& K.)
U. S. F'. C.-Off Martha's Vineyard, 183 to 258 fath.

## CCELENTERATA. ANTEOZOA.

189. Pennatula aculeata Dan.
U. S. F. C.-82 miles S. of Murtha's Vineyard, 202 fath.
190. Renilla reniformis.
U. S. F. C.-Beaufort, N. C.
191. Acanella Normani Verrill.
U. S. F. C.-Ofl Martha's Vineyard.
192. Alcyonium carneum Ag.
U.S. F. C.-Off Cape Cod, 20 to 25 fath.
193. Metridium marginatum Edw. \& H.
U. S. F. C.-New port, R. I., shore.
194. Sagartia abyssicola Verrill.
U. S. F. C.-Off Martha's Vineyard, 100 to 300 fath.
195. Urticina nodosa Verrill.
U.S.F.C. -80 miles 8. of Martha's Vineyard, 160 fath.
196. Halocampa producta Stimp.
U. S. F. C.-Newport, R. I., shor.
197. Epizoanthus americanus Verrill.
U. S. F. C. -75 miles S. of Martha's Vineyard, 86 fath.
198. Epizoanthus paguriphila Verrill.
U.S.F.C.- 87 milea S. of Martha's Viueyard, 312 fath.

## HYDROIDEA.

199. Obeila ceniculata Hincks.
U. S. F. C.-Off New port, R. I., 13 fath.
200. Sertularella tricuspidata Hincks.
U. S. F. C.-George's Bank, 30 to 50 fatls.
201. Sertularia cupressina Liund.
U.S.F. C.-Off Nova Scotia.
202. Bertularia pumila Linné.
U.S. F. C.-New Haven, Conn.
203. Diphasia fallax Agassiz.
U. S. F. C. - East port Harbor, Me., 15 fath.
204. Globiceps tiarella Ayrea.
U.S.F.C.-Nuw port Harbor, R. I.

## PORIFERA.

 SIIICEA.205. Microciona prolifera Verrill. Dry. U. S.F.C.-New Haven, Conn.
206. Microciona prolifera Verr 11. Dry. U. S. F. C.-Wood's Holl, Mass.
207. Cliona sulphurea Verriil.
U. S. F. C.-Narragausett Bay, R. I., 4 fath.
208. Suberites compacta Verrill.
U. S. F. C.-Massachusetts Bay.
209. Tethya gravata Hyutt.
U. S. F. C.-Buzzard's Bay, Mass., 5 fath.

## PROTOZOA. RHIZOPODA.

210. Astrorhiza arenacea. (Sch.)
U. S. F. C.-Off Block Ioland, R. I., 28 fath.

# L.AST OF MARINE INVERTRBRATES PROM THE NRW ENGLAND COANT, DINTRIEUTED BY THE UNITED BTATES NATIONAR. MCNECM. 

Series III.-Educational Series.

Prepared by Ricilard Rathaux.
The United States National Museum, having received frequent applications for collections representing the principal groups of marine invertebrate animals occurring upon our coast, and suitable for class demonstration, in connection with zoological lectures, has prepared fifty collections of this character, for distribution the present winter. Tho specimens necessary for this undertaking have been selected from among the duplicates accumulated by the United States Fish Commission, in their explorations of the New England coast, and, therefore, represent only those groups which occur more or less abundantly in the waters of that region. At the present time, it is impossible to enlarge these sets, as many of the representative species, which it would be desirable to include in them, are of too rare occurrence, and have been collected only in small numbers.

The specimens are all preserved in alcohol, unless otherwise indicated in the list, and each set contains all the species enumerated.

Washington, D. C., November, 1881.

## CRUSTACEA. DECAPODA

1. Gelasimus pugnax Smith. Fiddler Crab.
U. S. F.C.-New Haven, Conn., shore.
2. Callinectes hastatus Ordway. Blue Crab; Edible Crab.
U. S. F.C.-Chesapeake Bay.
3. Cancer irroratus Say. Rock Crab.
U. S. F. C.-Vineyard Sound, Mass.
4. Libinia emarginata Leach. Spidkr Crab.
U. S. F.C.-Vineyard Sound, Mass.
5. Euprognatha rastellifera Stimp.
U. S. F. C. - 74 miles S. of Nantucket Id., 76 futh .
6. Hippa talpotda Say. sand Bug; Bait Bug.
U. S. F'. C.-Woorl's Holl, Mass., shore.
7. Eupagurus pollicaris Stimp. Ifermit Chab.
U. S. F. C.-New Llaven, Conn.
8. Eupagurus longicarpus Stimp. Hermit Crab.
U. S. F. C.-Narragansett Bay, R. I., 5 to 15 fath.
9. Parapagurus pilosimanus Smith. Hairy-clawed Hermit Crabs.
U.S. F. C. -57 milen S. of Martha's Vireyard, 312 futh.
10. Munida, sp.
U. S.F. C. -73 miles S. of Martha's Vineyard, 65 fath.
11 Homarus americanus Edw. Amehican Lohster.
U.S. F. C.-New England coast.
11. Crangon vulgaris Fabr. Common Shrimp.
U. S. F. C.-Narragansett Bay, R. I.
12. Pandalus leptocerus Smith. Dekp-witer Prawn.
U. S. F'. C.- 60 miles S. of Martha's Vineyard, 45 fath.
13. Palaemonetes vulgaris Stımp. Commun Prawn.
U. S. F. C.-Narragansett Bay, R. I.

## SCEIZOPODA.

15. Thysanopoda norvegica M. Sars. Surface Shrimp.
U. S. F. C.-Bay of Fundy, surface.

## AMPEIPODA.

16. Orchestia agflis Smith. Sand Flea; Beach Flea.
L.S.F.C.-Newport, R. I., shore.
17. Talorchestia longicornis Smith. Large Sand Flea.
U.S. F. C.-New Haven, Conn., shore.
18. Ptilocheirus pinguis Stimp.
U. S. F. C.-Long Id. Sd., off Noauk, Conn.

## ISOPODA.

19. Idotea robusta Kröyer.
U.S. F. C.-Off Block Id., R. I., surface.
20. Ligia oceanica Fabr.
U. S. F. C.-Newport, R. I., shore.

ENTOMOSTRACA.
21. Artemia gracilis Verrill. BRINE SHRIXP.
U.S. F.C.-New Haren, Conn.
22. Temora longicornis Muller. MENHADEN FEED.
U.S. F. C.-Block Id. Sound, surface.

## CIRRIPEDIA.

23. Lepas fascicularis Ellis and Sol. Clear Goose Barnacle.
U. S. F. C.-Vineyard Sound, Mass., surface.
24. Lepas anatifera Linn. Goose Barnacle.
U. S.F.C. -100 miles ofi Martha's Vine5ard, surface.
25. Balanus balanoides Stimp. Dry. Rock Barnacle ; Acons Shell.
U.S. k. C.-New Haven, Conn., shore.

## MEROSTOMATA.

26. Limulus Polyphemus Latr. Dry. King Crab; Horse-shoe Crab.
U.S. F.C.-Vineyarl Sound, Mass., shore.

## ANNELIDA. CEATOPODA.

27. Lepldonotus squamatus Kinb. U.S.F.C. - Bay of Funi:y.
28. Latmatonice armata Verrill.
U. S. F. C. -Off Martha's Vineyard, 100290 fath.

Iroc. Nat. Mus. 81 - 30
29. Nephthys caeca Johnst.
U. S. F. C.-Cape Ann, Mass., shore.
30. Nereis virens Malmgren. Clam Worm; Bait Wurm.
U. S. F. C.-New port, R. I., shore.
31. Hyalincecia artifex Verrill. Deep 8ra, Tube-dwelling Worm.
U.S.F.C.-80 miles oft Martha's Vinoyard, 192 fath.
32. Eyalincecia artifex Verrill. Dry. (TUBF:8 ONLY).
U. S. F. C.-Off Martha's Vineyard, Mass., about 200 fath.

## GEPEYREA.

33. Phasrolosomá Gouldii Dies. (SIPJNCULOID WORM.)
U. S. F. C.-New port, R. I., shore.
34. Phascolion Strombi Theel. (SiPUNCULOID WORM.)
U. S. F. C.-Narragausett Bay, R. I., 16 ratb.

CHEDOGNATHA.
35. Sagitta elegans Verrill.
U.S. F. C.-Viney ard Sd., Mass., surface.

## MOLLUSCA. CEPHALOPODA.

36. Loligo Pealei Lesueur. SQUID.
U. S. F. C.-Vineyard Sound, Mass.
37. Loligo Pealei Lesueur. Eggs. SQUiD.
U. B. F.C.-Narragansett Bay, R. I. GASTROPODA.
38. Buccinum undatum Linn. WHELK.
U. S. F.C.-Eastport, Me., shore.
39. Tritia trivittata H. \& A. Ad. U. S. F. C.-Off New purt, R.I.
40. Iyanassa obsoleta Stimpson. Black Mud-8nail.
U.S. F. C.-Gloncester, Mass., shore.
41. Purpura lapillus Lamarck. Purple.
U.S. F. C.-Barnstable, Mass., shore.
42. Littorina littorea Menke. Periwinkle.
U. S. F. C.-Gloucester, Mass., shore.
43. Littorina palliata Gould. Small Periwinigle.
U. S. F.C.- luncester: Mass., shore.

## March 8, 1882.

44. Crepidula fornicata Lam. Dry. Double-Decker; Boat Shell.
U. S. F.C.-New Haven, Conn.
45. Trachydermon albus Carp.
U.S.F.C. - East port, Me.
46. Acmæa testudinalis Han. Limpet.
U. S. F.C.-Fast port, Me., shore.
47. Melampus lineatus Say. Salt-marsh Sanil.
U.S.F. C.-New port, I. I., shore.

SOLENOCONCHA.
48. Dentalium striolatum Stimp. U.S.F.C. - East port, Me.

> LAMELLIBRANCEIATA.
49. Mya arenaria Linn. long Clam.
U. S. F. C.-Gloucester, Mass., ahore.
50. Clidiophora trilineata Carp. Dry. U. S. F. C.-Buzzard's Bay, Mass., 7 fath.
51. Mulinia lateralis Gray. Young.
U.S.F.C.-Narragansett Bay, R. I.
52. Venus mercenaria Linn. Round Clas; quahog.
U. S. F. C. - Southern New England.
53. Tottenia gemma Perkins. Dry.
U. S. F. C.-Proviucetown, Mass., slare.
54. Nucula proxima Say.
U. S. F. C.-Narragansett Bay, R. I.
55. Mytilus edulis Linn. Common Mussel
U. S. F. C. - Newport, R. I., piles of wharves.
56. Modiola modiolus Turton. Horse Mussel.
U. S. F.C.-East port, Me., shore.
57. Modiola plicatula Lamarck. Ribied Mubsel.
U. S. F. C.-Newport, R. I., shore.
58. Pecten irradians Lam. Common Scollop.
U. S. F. C.-Buzzard's Bay, Mass.
59. Pecten tenuicostatus Mighels. Sмооth Scollop.
U. S. F.C.-Off Martha's Vineyard, 45 fath.
60. Pecten tenuicostatus Mighels. Dry. Syootil Scollop.
U. S. F.C.-Off Martha's Vineyard.
61. Anomia glabra Verrill. Sulver-bhell; Gold-siell; Jingleshell.
U. S. F. C.-Buzzard's Bay, Mass., 5 fath.
62. Ostrea Virginiana Lister. Dry. Oyster.
U. S. F.C.-Chesapeake Bay.

## TUNICATA.

63. Ascidiopsis complanata Verrill. sea Potato.
U. S. F. C.-Enstport Harbor, Me., 15 fath.
64. Molgula manhattensis Verrill.
U.S.F.C.-Race Point, Cape Cod, Mass., shore.
65. Halocynthia partita Verrill.
U. S. F.C.-Wood's Holl, Mass., shore.
66. Boltenta Boltent (Linn.) Stemmed Sea-peacu.
U. S. F.C.-Eastport Harlor, Me., 15 fath.
67. Botryllus Gouldid Verrill.
U.S. F. C.-New port Harbor, R. I.
68. Amorøcium pellucidum Verrill.
U. S. F.C.-Vineyard Suand, Mass.
69. Amorcecium stellatum Verrill.
U. S. F. C.-Vineyard Sound, Mass.
70. Amorcacium constellatum Verrill.
U. S. F.C.-Vineyard Sonnd, Mass.
71. Leptoclinum albidum Verrill.
U. S. F. C. - Vineyard Sound, Mass, 14 fath.
72. Salpa Cabotd Desor.
U. S. F. C.-Off Newport, R. I., surface.

## MOLLUSCOIDA. BRACEIOPODA.

73. Terebratulina septentrionalis Gray. Lamp Shell.
U. S. F. C.-Eastport Harbor, Me., 15 fath.

## POLYZOA.

74. Bugala turrita Verrill.
U. S. F.C.-Narragansett Bay, R. I., 4 fatb.
75. Electra pilosa Fisch.
U. S. F.C.-Narragausett Bay, R. I.
76. Lepralia americana Verrill.
U.S.F.C.-Newport Harbor, R. I.

## ECHINODERMATA. HOLOTHURIOIDEA.

77. Thyone Briareus Selenka.

Sea-cucumber.
U. S. F. C.-Wuod's Holl, Mass., shore.

## ECHINOIDEA.

78. Strongylocentrotue dröbachiensis A. Ag.

Common Sea-urchin; Greex Sea EgG.
U.S.F.C.-Off Newport, R. I.
79. Arbacia punctulata Gray. Purple Ska-Ukchin.
U. B. F. C.-New port Harbor, R. I., ahore.
80. Echinarachnius parma Gray. Dry. Sand-dollar.
U. S. F. C.-Cape Cod Bay, Mass.

## ASTERIOIDEA.

81. Asterias Forbesi Verrill. Green Star-fish.
U. S. F. C.-Newport, R. I., shore.
82. Leptasterias compta Verrill.
U. S. F. C. -18 miles S. E. of Block Island, R. I., 27 futh.
83. Ctenodiscus crispatus D. and Kor. Velvet Star.
U. S. F. C.-Mabsachneetts Bay.
84. Archaster americanus Verrill.
U. S.F.C.-Off Martha's Vineyard, Mass., about 200 fath.

## OPEIUROIDEA.

85. Ophiopholis aculeata Gray. Variegated Serpent-star.
U. S. F.C.-Gulf of Maine.
86. Ophioglypha Barsti Lyman. Sars' Serpent-star.
U. S. F. C.-Off Martha's Vineyard, 45 fath.
87. Ophioglypha Sarsil Lyman. Dry. Sars' Serpent-btar.
U. S. F. C.-Off Martha's Vineyard, Maes., about 200 fath.
88. Astrophyton Agessizil Stimp. BASKET-FI8H.
U. S. F. C. -Off Cape Cod, Mass.

## CRINOIDEA.

89. Antedon dentatum (say) V. (=Sarsii D. \& K.). See No. 187, page 303.) Feather Stak.
U. S. F. C.-75 milee 8. of Nantucket, 146 fath.

## CGELENTERATA. ANTEOZOA.

90. Pennatula aculeata Dan. Spiny Ska-peather.
U. S. F.C.-82 miles 8. of Martha's Vineyard, 202 fath.
91. Acanella INormani Verrill. Jointed Bush-cural.
U. B. F. C.-Off Martha's Vineyard, about 200 fath.
92. Primnoa reseda Verrill. Bush-coral.
U. S. F. C.-Fishing Banks, off Nova Sootia.
93. Urticina nodosa Verrill. Warty Sea-rose.
U. S. F. C. -80 miles S. of Martha's Vineyard, 160 fath.
94. Epizoanthus americanus Verrill. U.S. F. C. -75 milea S. of Martha's Vineyard, 86 fath.
95. Epizoanthus paguriphila Verrill. U.S. F. C. -87 miles S. of Martha's Vineyard, 86 fath.

## HYDROIDEA.

96. Obelia geniculata Hincks. U. S. F. C.-Off Block Island, R. I., 13 fath.
97. Diphasia fallax Agassiz.
U. S. F. C.-Eastport Harbor, Me., 15 fath
98. Globlceps tiarella Ayres.
U. S. F. C.-Newport Harbor, R. I.

## PORIFERA.

## SILICEA.

99. Chalina oculata Bowerb. Dry. Finger-bponge.
U. S. F. C.-Narragansett Bay, R. I.
100. Suberites compaota Verrill. Dry. U. B. F. C.-Buzzard's Bay, Mass.
101. Cliona sulphurea Verrill. Boring Sponge.
U. S. F. C.-Buzzard's Bay, Mass.

## PROTOZOA. ritizopoda.

102. Astrorhiza arenacea (Sch.)
U. 8. F. C. -20 miles S. E. of Block Island, R. I., 28 fath.

## CATALOGEEOEACOLIECTION OF JAPANESE WOODAPREAENTED  OF TOMIO, JAPAN.

The collection of woods recently presented to the National Museum by the University of Tokio, a catalogue of which is herewith presented, has been prepared in a very unique and artistic manner. Each kind of wood is represented by a polished panel about 9 by 12 inches in dimension, upon which are painted, in color, accurate delineations of the leaves, flowers, and fruit of the tree. Each panel is framed between strips of wood sawn from the outer portion of the tree, and covered with bark provided with corner pieces, which are round blocks cut transversely from branches an inch or more in diameter. The catalogue of this collection has been prepared by Mr. Lester F. Ward, who has supplied the modern approved names for such species as are labeled with the older synonyms. In a few cases no authority could be found for the name given, while in others the species are not named and have been provisionally determined.

MAGNOLIACEX.

1. Illicium anisatum, L.
2. Magnolia hypoleuca, Sieb. \& Znec.

## BIXINE E.

3. Idesia polycarpa, Maxim.

TERNSTROEMIACERE.
4. Eurya Japonica, Thunb.
5. Stuartia monadelpha, Sieb. \& Zucc.
6. Camellia Sanagua, Thunb.
7. Camellia Japonica, L.

MALVACEE.
8. Hibiscus Syriacus, L.

TILIACE E .
9. Tilia Mandschurica, Maxim.

RUTACERE.
10. Xanthoxylum piperitum, DC.
11. Citrus trifoliata, L.
12. Citrus vulgaris(?), Riss.

SIMARUBEAS.
13. Picrasma ailanthoides, Planch.

MELIACEE.
14. Melia Azedarach, Adans.

ILICINE E.
15. Ilex Sicboldi (?).
16. Ilex integra, Thunb.
17. Ilex crenata, Thunb.

CELASTRINE正。
18. Euonymus Sieboldianus, Blum.

## RHAMNEA.

19. Zizyphus vulgaris, Lam.
20. Hovenia dulcis, Tḥunb.

SAPINDACEE.
21. Esculus turbinata (\%).
22. Sapindus Mucorossi, Gaertu.
23. Acer palmatum, Thunb.
24. Acer spicatum (?), Lam.

ANACARDIACEAS
25. Rhus semialata, Murr.
26. Rhus succedanea, L.
27. Rhus vernicifera, DC.

## LEGUMINOS.E.

28. Sophora Japonica (9), L.
29. Gleditschia Sinensis, Lam.
[G. Japonica, Lodd.]
30. Albizzia Julibrissin, Durazz.

## ROSACEAE

31. Prunus Persica, Benth. \& Hook.
[Amygdalus Persica, L.]
32. Prunus Mume, Sieb. \& Zucc.
33. Prunus ssiori (1), Fr.
34. Prunus Japonica, Thunb. (1.)
35. Prunus Japonica, Thunb. (2.)
36. Prunus pseudo-cerasus, Steud.
37. Prunus subhirtella (9).
38. Pirus Chinensis, Roxb.
39. Pirus communis, L., [var. Sinensis ?].
40. Photinia Japonica, Benth. \& Hook.
41. Photinia glabra, Maxim.

CORNACEA.
42. Cornus officinalis, Sieb. \& Zucc.
43. Cornus brachypoda, C. A. Mey.

CAPRIFOLIACEA.
44. Sambucus racemosa, L.

EbENACER
45. Diospyros Kaki, L.
46. Diospyros Lotus, L.

STYRACEA.
47. Styrax Japonicum, Sieb. \& Zuce.

OLEACEAE
48. Olea Aquifolium, Thunb.
49. Olea fragrans, Thunb.
50. Ligustrum Ibota, Sieb. \& Zuce.
51. Ligustrum Japonicum, Thunb.

SCROPHULARINEAS.
52. Paulounia imperialis, Sieb. \& Zncc.

GESNERACER.
53. Didymocarpus Japonicus, Benth. \& Hook. [Rotlera Japonica Spreng.]
verbenaces.
54. Vitex cannabifolia, Sieb. \& Zucc.
55. Clerodendron trichotomum, Thanb.

LAURINE,
56. Cinnamomun Loureirii, Nees.

EL GAGNACET.
57. Elaagnus pungens, Thanb.

URTICACEX.
58. Zelkova acuminata, Planch.
|Planera Kaki, hort.|
[Zelkova Keaki (\%).]
59. Celtis Sinensis, Pers.
60. Aphananthe aspera, Planch.
61. Morus alba, L.

JUGLANDE. $\boldsymbol{E}$.
62. Juglans Sieboldiana, Maxim.

6i3. Juglens , Mandchourica, Maxim.
64. Iterocarya rhoifolia, Sieb. \& Zucc.

## CUPULIFERAE.

65. Alnus maritima, Nutt.
66. Alnus incana, L.
67. Quercus dentata, Thunb.
68. Quercus glandulifera, Blume.
69. Quercus serrata, Thunb.
70. Quercus glabra, Thunb.
71. Quercus ncuta, Thunb. (1.)
72. Quercus acuta, Thunb. (2.)
73. Quercus glauca, Thanb.
74. Qsercus cuspidata, Thunb.
75. Castanea vulgaris, Lam.

## SALICINE ${ }^{\text {S. }}$

76. Salix Bürgeriana (?).

CONITERAE.
75. Thuya squarrosa, Benth \& Mook.
[Retinoxpora squarroxa, Sieb. \& Zucc.]
[Thuyopsis squarrosa (?).]
78. Thuya orientalis, L.
[Biota orientalis, Dons]
79. Thuya obtusa, Mill.
[Retinospora obtusa, Sieb. \& Zuce.]
[Chamecyparis obtusa, Endl.]
80. Thuy pisifera, Beuth. \& Hook.
[Rctinospora pisifera. Sieb. \& Zucc.]
[Chamacypuris pisifera, Endl.]
81. Thuya plumosa, Benth. \& Hook.
[Chamacyparis кp.]
82. Cryptomeria Japonica, Don.
83. Torreya nucifera, Sieb. \& Zncc.
84. Ginkgo biloba, L.
85. Pinus Koraiensis, Sieb. \& Zucc.
86. Pinus parriflora, Sieb. \& Znce.

8i. Pinus densiflora, Sieb \& Zuce.
88. Pinus Thunbergii, Parlat.
89. Abirs firma, Sieb. \& Zucc.

## PALMACER.

90. Chamarops excelsa, Thunb.

##  COAWT OR THEE UNITED WTATES AND OF ALABEA, EOR TRES YEAK 1880.

## By TARLETON H. BEAN.

We have, in Bulletin 11 of the United States National Museum, a bibliography of the fishes of the Pacific coast of the United States, brought up to the end of 1879 , by Prof. Theodore Gill. There was, however, such great activity of publication during 1880 on the fishes of the same waters that I have collected the titles of papers in the principal works referring to the region, in order to make them immediately available in conjunction with the Bulletin already printed.

The titles are arranged, for the most part, strictly in the order of their publication; in a few cases, however, this order was not ascertained, and they are simply placed with those published in the same month.

1879-Deseription of a new fish from Alaska (Anarrhichas Icpturua), with notes upon other species of the genus Anarrhichan. By Tarleton H. Bean. <Proc. U. 8. Nat. Museum, v. 2, pp. 212-218, Dec. B, 1879.
[Measurements of Anarrichas lepturus, A. lupue, A. latufrons. Symopais of all the specier.]

## $1880-$

Notes on certain typical specimens of American fishes in the British Mnseum and in the Museum d'Histoire Naturelle at Paris. By David S. Jordan, M. D. <Proc. U. S. Nat. Museum, v. 2, Jan. 20, 1880.
[Ceratichehys cumingi Gunthr. noticed at page 220.]
Descriptions of new species of North American fishes. By David S. Jordan. <Proc. U. S. Nat. Museum, v. 2, pp. 235-241, Jan. 20, 18 e0.
[Xiphister proposed as a subatitute for Xiphidion Girard, at p. 241.]
The salmon industries of Oregon. <The Popular Science Mouthly, pp. 573574, vol. xvi, No. iv, Feb., 1830.
On the Pacific species of Caulolatilus. By W. N. Lockington. <Proc. Acad. Nat. Sci., Phila., pp. 13-19 (sig. 2), March 23, 1800.
[Caulolatilus anomalus (Cooper) Gill and C. afinie Gill are conjectured to be identical with C. princeps (Jenyns) Gill. The material upon which the above paper is based is insutticient to eatablish the synonymy proposed. Withont some explanation it would bo difficult to understand the table of dimensions on page 17: the third column of Agures, beginning with 30 , and the aecond column, beginning with 10.05 inchen, should be traneposed. The columns beginning with 304 and $23 /$ should have this beading: "Hundredtbe of total length."
Descriptions of new genera and species of fishes from the coast of California. By W. N. Lockington <Proc. U. S. Nat. Museum, v. 2, pp. 326-332, March 25, 1880.
[N. g. nnd n. g. Leurynnis paucidens, n. g. nnd n. a Odontopyxis trispinosus, n. B. Artediue quadriseriatus. Leurynnis = Lycodopsis, Collett, fide Gill, <Proc. U. S. Nat. Muncum, v. 3, p. 247. Odontopyzin $=$ Podothecus, fide Jordan and Gilbert, <-Proc. U. S. Nat. Muneum, v. 3, p. 454.]

Descriptions of some genera and species of Alaskan fisbes. By Tarleton H. Bean. <Proc. U. S. Nat. Museum, v. 2, pp. 353-359, March 29, 1880.
[Cottur polyacanthocephalus Pallas, Melletes papilio, n. g. and n. s., Dallia pectoralis, n. g. and $n . s .1$

## Proceeding of united states national museum.

## 1880-Continued.

Notes on a collection of Fishes from San Diego, California. By David 8 . Jordan aud Charles F. Gilbert <Proc. U. S. Nat. Museum, v. 3, pp. 23-34, April 26-May 6, 1880.
[An annotated liat of 57 species which were collected by the writers in January, 1880. The following new genera are described: Roncador and Leureathee, and the new specien, Aphoristia atricauda, Dasybatis dipterurus, and Platyrhina exasperata.)
Description of a New Flounder ( Xystreurys liolepis) from Santa Catalina Island, California. By David B. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, v. 3, pp. 34-36, May 6, 1880.
Description of a new ray (Platyrhina triseriata), from the coast of California. By David S. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, v. 3, pp. 36-38, May 6, 1880.

Description of a new species of "rock cod" (Sebastichthys serriceps) from the coast of California. By David S. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, v. 3, pp. 38-40, May 6, 1880.
On the occurrence of Cephaloscyllium laticeps (Duméril) Gill, on the coast of California. By David S. Jordan and Charles H. Gllbert <Proc. U. S. Nat. Museum, v. 3. pp. 40-42, May 6, 1880.
On the oil shark of Southern California (Galeorhinus galeus). By David $\mathbf{S}$. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, v. 3, pp. 42-43, May 6, 1880.
The surf smelt of the northwest coast, and the method of taking them by the Quillehute Indians, west coast of Washington Territory. By James G.
Swan. <Proc. U. 8. Nat. Museum, v. 3, pp. 43-46, May 6, 1880.
[Referring to Hypomesus pretiosus Girard, under the name H. olidus.]
Description of a new flounder (Pleuronichthys verticalis), from the coast of California, with notes on other species. By David B. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Mnseum, v. 3, pp. 49-51, May 6, 1880.
[Pleuronectes quadrituberculatus Pallas is bere referred to Pleuronichthws, but is restored to its proper genus in a subsequent paper by the same anthora. The additional species are Pleuronichthys cenosus, $X$ ystreurys liolepis and $A$ thereathes ( n . g.) stomias based upon Platyaomatichehys stomias Jordan and Gilbert.]
Notes on sharks from the coast of California. By David S. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, v. 3, pp. 51-52, May 6, 1880.
[Pleuracromylon levis (Risso) Gill recorded from Monterey.]
On the generic relatious of Platyrhina exasperala. By David S. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Mnseum, v. 3, p. 53, May 6, 1880
[Zapteryx ( $\mathbf{n} . \mathrm{g}$. ) oreated for this species.]
Remarks on the species of the genus Chirus found in the San Francisco market, including one hitherto undescribed. By W. N. Lockington. <Proc. U. S. Nat. Museum, v. 3, pp. 53-57, May 6, 1880.
(Chirus maculo-seriatus (n. 6.), C. guttatus and C. constellatus are all equal to Hexa. grammus decagrammus, fide Jordan and Gilbert, same volume, p. 455.)
Description of a new fish from Alaska (Uranidea microstoma.) By W. N. Lockington. <Yroc. U. S. Nat. Museum, v. 3, pp. 58-59, May 6, 1880.
Description of a new species of Agonidae (Brachyopsis rerrucosus), from the coast of California. By W. N. Lockington. <Proc. U. S. Nat. Museun, v. 3, pp. 60-63, May 6, $18 \times 0$.
[Brachyopsis, Gill, ia defined on page 63.]
Description of a new genus and some new species of California fishes (Icosteus anigmaficus and Osmerus attenuatus). By W. N. Lockington. <Proc. U. S. Nat. Museum, v. 3, 1p. 63-68, May 6-24, 1880.

## 1880 -Continued.

Notes on California fishes.-Salmonida. By W. N. Lockington. <Amer. Naturalist, vol. xiv, No. 5, pp. 366-38, May, 1820.
[The statement concerning the anal rays of the Pacufic coast salmon an distinguished from those of Earopean salmon and all trout may have been obscured by some typographical error. The list of species on page 36s should be compared with Jordan and Gilberts list of Pacitic coast species in Proc. U. 8. Nat. Museum, ith. pagers 452 to 458, in order to make it agree with the latest nomenclature. Hypomesus olidus in not Californian; the Californian species is H. pretiosus.)
Description of a new species of Sebastichthys (Sebastichthys miniatus), from Monterey Bay, California. By David S. Jordan aud Charles H. Gilbert. <Proc. U. S. Nat. Museum, iiii, pp. 70-73, May 24, 1880.
Deacription of a new species of "rock-fish" (Sebastichthys carnalus), from the coast of California. By David 5. Jordan and Cbarles H. Gilbert. <Proc. U. S. Nat. Mueum, iii, pp. 73-75, May 24, 1e30.

Check list of duplicates of North American fishes distributed by the Smithsonian Institution in behalf the United States National Museum, 1077-80. By Tarleton H. Bean. <Proc. U. S. Nat. Museum, vol. 3, pp. 75-116, May 24-June 7, 1880.
[ 15 weat coast species were distributed.]
Description of a new species of ray (Raia stellalata) from Monterey California. By David 5. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 133-135, July 2, 1880.
Descriptions of new species of Xiphister and Apodichthys, from Monterey, Califormia. <Proc. U. \&. Nat. Museum, iii, pp. 13i-140, July 2, 1eco.
[Xiphister chirue n. B., Xiphister rupestris n. s., A podichthys fucurum n. B. The writers. on page 138, express the opinion that Cebedichthys, Xiphister, und Apodichthys do pot represent distinct familien.]
Description of $t$ wo new species of Sebastichthys (Sebastichthys entomelas and Sebastichthys rhodochloris), from Monterey Bay, Califorwia. By David 8 .
Jordan aud Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 142146, July \%, 1880 .
(List of the species of Sebastichthys obtained in Monterey Bay, pp. 145-146.)
On the occurrence of a species of Cremnobates at San Diego, California. By Rosa Smith. <Proc. U. S. Nat. Museum, iii, pp. 147-149, July 2, $18 \mathrm{c}_{0}$. [Cremnobates integripınnia n. s.]
Description of a new Agonoid fish (Brachyopsis xyosternus), from Monterey Bay, California. By David S. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 152-154, July 2, 18su.

Description of a new flounder (Hippoglossoides exilis), from the coast of California. By David S. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 154-156, July 2, 1880.
The herring of the Pacific coast. By W. N. Lockington. <Amer. Naturalist, vol. xiv, No. 7, pp. 518, 519, July, 1860.
[Distinguishing characters of Olupea sagax and $C$. mirabilis.]
Ichthyologische Beitrige (ix). Von Dr. Franz Steindachner, wirklichem Mitgliede derk. Akademie der Wissenschaften. (Mit 6 Tafeln.) (Vorgelegt in der Sitzung ain 15. Juli 18®0.) <Sitzb. derk. Akad. der Wissensch., B. lxxxii, I Abth., Juli-Heft, pp. 29 (2288-2666), 1880.
II.-Uber zwei neue Agonus-Arten aus Californien. Agonus (Brachyopsis) Barkani n. sp., Taf. v.
[From San Francisco. Equals Brachyopsis verrucosue Lockington, according to Jordas and Gilbert, Proc. U. S. N. M., iil, p. 332.)

Aуопия (Brachyopsis) dnпœ n. sp., Taf. vi, figs. 1-16.
[Vicinity of Sin Franciaco. Equals Brachyopsis xyosternue Jordan and Gilbert, according to Jordan and Gilhert, op, el loc. cil.]

1880-Continued.
III.- Uher cinige Fischarten aus dem nürdlichen Japan, gesan melt vom Professor Dybowski.
〔Sebastes Taczanowelii n. s., Hypoptychus Dybovskii n. g. and n. s., Centronolus Dy. bowskii D. B., Oentronntus Taczanowakii n. B., Veazoarces pulcher n. g. and n. B., Gasterusteus japonicus n. s. Urocentrus pietus Kner is referrad to Centronotus, and Centronotus quin. quemaculatus Kner to Opisthocentru* quinquemaculatus Kner. The typen of the last two species were from De Castries Bay, and not from Pinang and Singapore-(Steind.).]
Notes on new and rare fishes of the Pacitic coast. By W. N. Lockington. <Amer. Naturalist, vol. xiv, No. 8, pp. 59:-600, August, 1880.
(Remarks on recent dincoveries of the writer and Jordan and Gilbert, relative to apecies of Sebastichthys, Pleuronichthys, Lepidopsetta, Agonida, Embiotocida, Chirida, Collida, Icosteide, \&ec., \&c. Plcurogrammus Gill is parlly characterized. Measurements of Tor. pedo californica are given.]
On the identity of the genus Leurynnis, Lockington, with Lycodopsis, Collett. By Theodore Gill <Proc. U. S. Nat. Museum, iii, pp. 247-248, Sept. 4, 1880.
[New combinations-Lycodopsis pacifeus and Lycodopsis paucidens.]
Description of a new Chiroid fish, Myriolepis zonifer, from Monterey Bay, California. By W. N. Lockington. <Proc. U. S. Nat. Museum, iii, pp. 248251, Sept. 4, 1880.
[Myriolepis zomifer (n. g. and n. s.).]
Description of a new species of ray, Raia rhina, from the coast of California. By David 5. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 251-2533, Sept. 4, 1880.
Description of a new species of Hemitripterus from Alaska. By W. N. Lockington. <Proc. Acad. Nat. Sci. Phila., pp. 233-236 (sig. 16), Sept. 7, 18e0.
[The supposed new species is $M$. cavifron. I have examined the type in the California Academy of Sciences and do not hesitate to atate my belief in its identity with Hemitripterus americanus (Gmel.) Storer. 1
Description of a new species of Catostomus (Catostomus cypho) from the Colorado River. By W. N. Lockington. <Proc. Acad. Nat. Sci. Phila., pp. 237-240 (sig. 16), Sept. 7, 1880.
The eulachon or candle-fish of the northwest coast. By James G. Swan. <Proc. U. S. Nat. Musenm, iii, pp. 257-264, Sept. 15, 1880.
[It is now known that the sand smelt referred to on page 258 in Hypomesus pretionus and not $\boldsymbol{H}$. olidus.)
Descriptions of two new species of fishes, Ascelichthys rhodorus and Scyfalina oerdale, from Neah Bay, Washington Territory. By David s. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 264-268, Sept. 15, 1880.
[4scelichthys n. g. Cottid, Scytalina n. g. Congrogadid.]
Neue Gattungen und Arten von Fischen. Von Franz Steindachner. <Auzeig. Akad. Wien, No. xix, pp. 158-159.
["N. g. Ptychochromis, Anchariue, Hypoptychue, Neozoarces, mit Diagnoseu."-Zool. Anzeiger, ili, No. 65, p. 460, Sept. 20, 1880.]
Description of two new species of Scopeloid fishes, Sudis ringens and Myctophum crenulare, from Santa Barbara Channel, California. By David 8. Jordan and Charles H. Gllbert <Proc. U. S. Nat. Museum, iii, pp. 273276, Sept. 28, 1880.
Do flying fish fly By C. O. Whitman. <American Naturalist, vol. xiv, No. 9, pp. 641-653, Sept., 1880.
Description of two new species of Aounders (Parophrys ischyurus and Hippoglossoides elassodon), from Puget's Sound. By David S. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 276-280, Sept. 28, 1880.
[Definition of genus Parophrye modisied, page 277.]

Description of a new sparoid fish (Sparus brachysomus), from Lower California. By W. N. Lockington. <Proc. U. S. Nat. Musenm, iii, pp. 284-\&86, Sept. 28, 1880.
Description of seven new species of Sebastoid fishes, from the coast of California. By David S. Jordan and Charlen H. Gilbert <Proc. U. S. Nat. Mияеиm, iii, pp. 287-298, Sept. 28, 1881.
[New species: Sebastichthys atrovirens, rubrivinctus, vexillaris, chlorostictus, constellatus, rastrelliger and fasciolaris Lockington (a substitute for Sebastes fasciatus Girard, the name fasciatus being preocenpied).]
Description of a new Embiotocoid (Abeona aurora), from Monterey, California, with notes on a related npecies. By David B. Jordan and Charlen H Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 299-301, Sept. 28, 1880.
[Ditrema brevipinne Gunther is considered a synonym of Brachyistiue frenatus Gill]
Description of a new flounder (Platysomatichthye stomias), from the coast of California. By David 8. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 301-303, Sept. 28, 1880.
[The writera, in a paper written later than the above, but published earlier (op. cil., p. 51), founded the genue Atheresthes for this species.)

Description of a new Embiotocoid fish (Cymatogaster rosaceus), from the coast of California. By David S. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 303-305, Sept. 28, 1880.
[Brachyistius frenatus GIII is referred to the genas Cymatogaster.]
Description of a new species of deep-water fish (Iciohthys Lociingtoni), from the coast of California. By David S. Jordan and Charles E Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 305-308, Sept. 28, 1880.
[Icichthys n. g., representing a now family, Icosteida, which is defned on page 307. Ieostous and Ieichthys compared. J
Description of a new Embiotocoid fish (Ditrema atripes), from the coast of California. By David S. Jordan and Charles E. Gilbert. <Proc, U. S. Nat. Museum, iii, pp. 320-322, Sept. 28-Oct. 27, 1880.
[Phanerodon Girard is considered a aynonym of Ditrema.]
Description of a new Scorpannoid fish (Sebastichthys maliger), from the coast of California. By David S. Jordan and Charles H. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 322-324, Oct. 27, 1820.
Note on a new flat-fish (Lepidopsetta isolepis), found in the markets of San Francisco. By W. N. Lockington. <Proc. U. S. Nat. Museum, iii, p. 325 , Oct. 27, 1880 .
Note on a forgotten paper of Dr. Ayres and its bearing on the nomenclature of the Cyprinoid fishes of the San Francisco markets. By David S. Jordan. <Proc. U. S. Nat. Museum, iii, pp. 325-327, Oct. 27, 1880.
|The paper referred to was published in the "Daily Placer Timea and Transcript", isnue of May 30, 1854; it determino the nomenclature of Telestes gibbosa, Orthodon microlepidotus. Pogonichthys macrolepidotus, and Catostomus occidentalis.]
Description of a new Scorpanoid fish (Sebastichthys proriger), from Monterey Bay, California. By David s. Jordan and Charles E. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 327-329, Oct. 27, 1880.

Description of a new Agonoid (Agonus vulsu8), from the coast of California. By David S. Jordan and Charles E. Gilbert. <Proc. U. S. Nat. Museum, iii, pp. 330-332, Oct. 27, 1830.
(In a foot-note on page 332, Agonue (Brachyopois) Barkani Steind. is stated to be a synonym of Brachyopsis verrucosus Lock., and Agonus (Brachyopsis) Anne Stoind. is aaid to be antedated by Brachyopsis xyosternus Jor. \& Gilb.]
Description of a new species of Hemirhamphus (Hemirhamphns rosen), from the coast of California. By David S. Jordan and Charles E. Gilbert. <Proc. U. 8. Nat. Museum, iii, pp. 335-336, Oct. 27, 1880.

## 1980-Continued.

Do flying fish fly By David S. Jordan. <Amer Naturaliby, vol. xiv, No. 11, pp. 804-805, November, 1820 .
[Observations on Exocatus californieus Cooper.]
On the fight of the flyiug fish. By C. O. Whitman. <The Zoologist, London, Third Series, vol. iv, No. 47, November, 1880, pp. 471-481.
["From the Amer. Naturalist for September. Slightly abridged."]
Description of a new species of Notidanoid shark (Hexanchas corinus), from the Pacitic const of the United States. By David S. Jordan and Charles F. Gilbert. <Proc. U. S. Nat. Musenm, iii, pp. 252-3i5, Nov. 23-Dec. 21, 18m0. [Heptranchias maculatus, deacribed on pages 353 and 35 , Somniosus microcephalus. Lamna cornubica, and Eulamia sp, are noted as additions to the list of sharks on the Pacific coant. 1
An introduction to the Study of Fishes. By Albert C. L. G. Günther, M. A., M. D., Ph. D., F. R. S., Keeper of the Zoological Department in the British Museum. Elingburgh, Adam and Charles Black, 1880 .
| Weat const speciea are frequently referred to. |

CATALOGEE OF OLI WOTITD HERDAEN TEIE UNETED BTATES NATAONAL MUSEEV.

## By ROBERT RIDGWAY.

The following list includes all the species of extra-American birds at present represented in the collection of the U.S. National Museum, numbered, named, and classitied according to Gray's "Hand-list."
The object of this list is to render apparent the desiderata of the Natioual Museum in the way of Old World birds, so that museums or individuals desiring to make exchanges may know what species are wanted. Genera and subgenera not now in the collection, are the chief desiderata, and as many as possible of them are desired, especially of forms belonging or nearly related to groups which are represented in the American avian fauna.

Fam. GYPETIDE (I, p. 1).

1. Gypaëtus barbatus.

Fam. VULTURIDE.
Snbfam. Vulturines (I, p. i).
3. Vultur monachns.
5. Otogyps auricularis.
8. Gyps fulvus.
11. bengalensis.

Subfam. Neopironine (I, p. 4).
21. Neophron percnopterus.

Far. FALCONID.E.
Subfam. Buteonine (I, p. 6).
36. Buteo vulgaris.
38. plumipes. (Juv.)
81. Archibuteo lagopus.
84. asiaticus. (Jnv.)
8. hemilasius. (Juv.)

Subfam. Aquilinse (I, p. 10).
87. Aquila chrysaeitos.

BH. imperialis.
91. clanga.
92. nevia.
99. Paendaeitus bonelli.
100. Hieraaëtrs penuatus.
119. Circaëtus gallicus.
128. Spilornis holospilus.
131. Pandion haliaütus.

1:59. Poliornis poliogeny\%. (Juv.)
144. Haliæëtus albicilla.
146. Thalassoaittus pelagicus. (Juv.)

[^123]142. Cuncuma leucogaster.
150. vocifer.
153. Ifelotarsus ecaudatus. (Jur.)
155. Haliastur indus.
157. sphenurus.

Subfam. Falconive (I, p. 18).
160. Hierofalco gyrfalco. (Juv. only!)

1i5. Fulco orientalis.
176. Gennaia saker. (Juv.)
180. Hypotriorchis subbuteo.
181. lunulatus.
182. Dissolectes concolor.
192. Esalon regulus.
199. Ieracidea berigora.

200 . occidentalis.
201. Harpe nover-zealandis.
203. Tinuunculus alaudarius.
207. newtoni.
209. cenchroides.
213. Erythropus vespertinus.
214. amurensis. (\% ad.).
215. Tichornis cenchris.
219. lerax carrulescens.
222. sericeus.

Subfam. Milvivas (I, p. 24).
23. Pernis apivorus.
243. Milvus regalis.
244. govinda.
245. migrans.
247. xyyptius.

2is. Elanus melanopterus.
261. axillaris.

26\%. вcriptus.
Sabfum. Accipitrine (I, p. 29).
26\%. Astur palumbarine.
276. Leucospiza novis-bollandis.
277. rayi.
299. Accipter nisus.
327. Urospiza torgnata.
329. cirrhocephalus.
330. approximaus.
331. rufitorques. (Type.)
342. Micromesns gabar.
347. badius. (Juv.)

Subfam. Circive (I, p. 36).
356. Circus reruginosus.
3.d. assimilis.
:33. jardinii.
364. Strigiceps cyaneus.
368. ciuereus.
36.). Glaucopteryx cineracens.
$3 \% 0$. pallidus.

Fam. SERPENTARIIDE (I, p. 38).
3\%5. Serpentarius reptilivorus.
Fam. STRIGID.E.
Subfam. Surnise (I, p. 38).
376. Surnia ulula.

37\%. Athene noctua.
379 glanx.
:167. Tienioghux whitelii.
394. Microglanx perlata.
393. Hierocoglaux connivens.
397. strenиa.
400. Spiloglaux boobook.
403. nove-zealandir.
45.). Ninos sentellata.
433. Microptynx passerinum.

Subtam. Bebonine (I, p. 43).
444. Huhna orientalis.
440. Bubo maximus.
4.4. Nisuella madagascariensis.

4ix. Ketupa flavipes.
4i9. javenmis.
461. Scops zorca.
464. stnia.

Subfam. Syrnilite (I, p. 48).
300. Syruium aluco.
503. Japponicum.
512. Ptynx nralense.
513. fulvescens. (Pullus.)
514. Bulaca indranee.
539. Othe vulgaris.
553. Phasmoptynx capensis.
554. Nyctala "funcrea L. " $=$. . teng malmi Gm.).
Subfam. Sthigine (I, p. 52).
558 . Strix tlammea.
563. delicatula.
564. Julu. (Type.)

Fam. CAPRIMULGIDE.
Subfam. Podaroivet (I, p. 53).
582. Podargus strigoides.
584. megacephalus.
542. Hatrachostomus javanensis.

Subfam. Caprimelgine (I, p. 56).
612. Caprimulgus europaus.
614. ruticollis.
626. albonotatus.
633. macrumus.

Fam. CYPSELIDE ( $\mathbf{I}, \mathbf{p} .63$ ).
717. Cypselus apus.
719. Cypselns melba.
723. gallilzernsis.
753. Collocalia spodiopyeria. (Type.)
7.0. -arlencophwa. (Туре.)

To. Hirmodapus caudacuta.
Fam. HIRUNDINIDE (I, p. 68).
746. Hirundo rustica.
79. Cecropis cucullata.
sik. Lillia rufula.
817. Hylerhelidon nigricans.
riz. Pisonoprogne rupestris.
8\%0. Chelislon urbica.
Fam. CORACIADE (1, p. 75).
897. Coracias garmula.

90:. Eurystomus orientalis.
9\%7. proiticus.
910. glancurus.

Fam. EURYLAIMIDE.
Subfam Ecrulaimise (I, p. 77).
916. Eurylaimus javanus.

91\%. ochromelas.
922. Cymbirhynchus macrorhynchus.

Subfam. Calyptompanse (I, p. 7s).
924. Calyptomena viridis.

Fram. TROGONIDA (I, p. 81).
991. Harpactes kasumba.
:M2. diardi.
993. Pyrotrogon ardens.
99.: Duvancelius rutilus.

Fum. ALCEDINIDE (I, p. 89).
1060. Dacelo gigas.

105\% cervina.
10is. Choncaleyon gandichandi.
10\%t. Tanysiptera sylvia.
$107 \%$ doris.
10-\%. Halcyon erythsorhyncha.
10\%\%. Eutomobia suyruensis.
109:\% gularis.
10.7. pileata.
1039. Calialcyon coromandeliana.
1105. Cyanaleyon macleayi.
:112. Sauropatis smncta.
1113. vigans.
1116. chloris.
1120. vitieusis. (Type.)

11:30. Todirhamphus sacra.
1131. tuta.

11:2. venerata.
113\%. recurviroutris.
115. Lacedo pulchella.
1140. Syma torotoro.
1141. flavirostris.

11ti6. Corythornis cristuta.
11\%5. Alcyone azurea.
1180. Ceryle rudis.
1183. Megaceryle gittata

Fam. MEROPIDE (I, p. 98).
1194. Nyetiornis amictus.
1196. Bucia athertoni.
1197. Meropiscus gularis.

1:01. Merops apiaster.
1202. Melittophas biculor.

120\%. Blepharomerops agyptias.
1:216. savignyi.
12017. philipplinas.

1:20. Airops albicolliw.
1:10. Phlothrus viritlis.
1217. Cosmaïropm ornatus.

1:19. Sphecophobus angolensis.
124. Coccolarynx bullocki.

Fam. UPUPIDE.
Subfain. E'plpixat (I, p. 103).
12:0. Lрициа ероря。
Subfam. Imbisomise (I, p. 103).
12:9. Irrisor erythrorhynchos.
Sulofam. Epimachine (I, p. 104).
1:う̀. Ptilomis paradiken.
1273. Craspedophora magnifica.

Fam. PROMEROPID A.
Subfam. Nectabinine (I, p. 106a
1278. Sectarinia famona.
1282. Cinnyrin chalybea.

1:~\%. омеп.
130.. Chalcomitra ametlystina.
1306. Henegalensis.

Subfam. Prompiopinis. (I, p. 10
13:38. Promerops cafer.
1:iu3. Anthobaphes violacea.
Subfam. Arachsotherine.
1:365. A rachnothera longirostra.
1:i\%. Arachnoraphis chiysogenys.
1394. Leptocoma hasseltii.
1398. Anthreptes longuemarii.

Subfam. Drepanise (1, p. 113
1403. Drepanis coccinea.
1406. Himatione sanguinea.
1407. Hemignathus lucidus.
1409. Moho nobilis.
1412. Psittirostra paittacea.
1432. Microchelidon hirandinaceum.

Fam. MELIPHAGID.E.
Subfam. M yzomeline (I, p. 153).
1950. Myzomela aanguinoleuta.

19丈1. erythrocepbala.
1984. jugularis.
1992. nigriventris. (Type.)
2002. Gliciphila fulvifron*.
2000. caledonica.
2008. chlorophza.
2014. Acanthorbynchus tenuirostris.

Subfam. Meliphaginte (I, p. 155).
2016. Meliphaga phrygia.
2017. Ptilutis lewinii.
2022. lencotis.
2023. nuricomis.
2027. penicillata.
2023. fusca.
2029. chrysops.
2051. Foulehaio carunculata.
2052. procerior.
2053. Phylidonyris anstralasiana.
2004. Meliomis nova-hollandis.
2056.
sericea.
2058. Prosthemadera novm-8eelandid.
2059. Authornis melanura.
2063. Anthochara carunculata.
2065. Anellobin mellivorn.
2066.
lunulata.
2067. Chaoptila angustipluma.
2068. Leptornis samoënsis.
2072. Acunthogeuys rufogularis.
2080. Philemon lessoni.
2084. Tropidorbynchus corniculatus. 2089 . buceruĭdes.
2092. Entomiza cyanotis.
2094. Manorina melanophrys.
2095. Myzantha garrula.

Subfam. Melithreptine (I, p. 161) .
2099. Melithreptus lunulatus.
2100. brevirostris.
2103. allognlaris.
2107. Zosterops carulescens.
211. albogularis.
2113. grisconota.
2114. xanthochroa.
2124. japonica.
2133. madagascariensis.
2142. flaviceps. (Type.)
2151. simplex. minuta Layard. (Loyalty Islanda )
2172. Orosterops montana.

## Fam. ANABATID.E.

Subfam. Sittivat (I, p. 181).
2484. Sitta cresia.

24\&. syriaca. $\sim$
2502. Sittella chrysoptera.

250う. pileata.
2507. Acanthisitta chloris.

Fam. CERTHIDDE (I, p. 183).
Subfam. Certhinfe.
2512. Certhia familiaris.

Subfam. Tichodromine.
2520. Tichodroma muraria.

2521 . Climacteris leacophea. 2523.
scandens.
Fam. MENLRIDE.
Snbfam. Menurine (I, p. 185).
2529. Menura superba.

Subfam. Orthoxycine (I, p. 135).
2532. Orthonyx spinicanda.
2534. Mohoun ochrocephala.

Fam. TROGLODYTIDE.
Subfam. Troglodytine. (I, p. 188).
2562. Troglodytes parvulus.

Subfam. Tatarine (I, p. 194).
2679. Tatare lougirostris.

## Fam. LUSCINIDE.

Subfam. Malurinee (I, p. 195).
2669. Orthotomus phyllorrhaphens.
2720. Urymoipus extensicauda.
2731. Drymoica maculosa.
2739. subruticapilla.
2405. Cisticola schrenicolas
2875. Chthonicola sagittata.
2876. Malurus cyaneus.

248\%. lumberti.
2807. dosmalis.
2891. callainns.
2892. Stipiturus malachurns.
2903. Cinclorhampbus cruralis.
2904. cantillans.
2905. Megalnrus palustris.

290\%. Sphenœacus africanns.
2910. pu ctatas.

Subfam. Calamodytine (I, p. 206).
2917. Calamodyta arundinacea.

2:19. orientalis.
2922. palustris.
2926. Calamodyta cantans.
2940. Calamoherpe arundinacea.
2953. Psendoluscinia luscinioides.
2954. Cettia sericea.
2964. Calamodus schœnobænus.
2969. Lusciniola melanopogon.
2972. Locustella rayi.
2979. Aëdon galactodes.
2988. Thamnobia fuicata.
2990. coryphaus.

Subfam. Sylviave (I, p. 212).
3001. Sylvia melanocephala.
3003. Melizophilus undatus.
3004. sarda.
3006. Alsœecns subalpinus.
3007. conspicillatus.
3012. Sterparola cinerea.
3013. curruca.
3016. Sibilatrix sylvicola.
3017. Monachus atricapilla.
3019. rippellii.
3021. Adophonens orpheus.
3024. Philacantha nisoria.
3025. Epilais hortensis.
3032. Asilus trochilus.
:1033. bonelli.
3034. rufa.
3043. Phyllopneuste polyglotta.
3054.
3057. sylvicultrix.
brunnea.
3065. Reguloidee proregulus.
3067. superciliosus.
3100. Regulus cristatus.
3101. ignicapillus.
3106. Sericornis frontalis.
3113. Acanthiza nana.
3114. lineata.
3115. pusilla. 3119. flavolateralis.
3125. Geobasileus chrysorrhœa.
3126. reguloïdes.

Subfam. Luscinine (p. 220).
3151. Luscinia vera.
3152. philomela.
3153. Ruticilla phænicura.
3154. tithys.
$3159 . \quad$ aurorea.
3185. Nemura cyanura.
3193. Erythacus rubecula.
3196. Cyanecula suecica.
3198.
3200. wolfi.
3202. Calliope camtschatkensis.

Proc. Nat. Mus. 81-21

Subfam. Saxicoline (I, p. 224).
3205. Saxicola cenanthe.
3206. albicollis.
3207. stapazina.
3208. lencomela.
3250. Dromolaa leucura.
3274. Pratincola rubicola,
3275. rubetra.

3:76. torquata.
3229. Petroica "multicolor, Vig. \& H."
$=P$. leggi Sharpe.
-. multicolor (Gm.) (Norfolk I.)
3290. Petroica goodenovii.
3291. phœenicea.
3294. pusilla. (Type.)
3298. Erythrodryas rosea.

3:300. Melanodryas cucullata.
3007. Myiomoira macrocephala.

330\%. Miro albifrons.
3315. Origma rubricata.

Subfam. Accentorine (I, p. 230).
3316. Accentor alpinus.

33i4. Tharrhalens modularis.
Fam. PARIDE.
Snbfam. Parine (I, p. 231).
3328. Parus major.
3329. ater.
3333. Parus minor.
3335. cinerens.
3348. Pcecile palnatris.
3349. borealis.
3351. lugubris.
3352. cinctus.
3365. Cyanistes cyanens.
3366. caruleus.
3373. Lophophanes cristatus.
3395. Orites caudatus.

Subfam. Egithalines (I, p. 236).
3416. Egithalus pendulinus
3428. Panurus biarmicus.

Fam. MOTACILLIDE.
Subfam. Motaciline (I, p. 245).
3562. Motacilla alba.
3564. yarrelli.
$3566 . \quad$ japonica.
$3567 . \quad$ luzoniensis.
3569. maderaspatana.
3570. dukhunensis.
3573. - capensis.
3576. ocularis,

March 10, 1882.
2578. Budytes flavns.
3579. melanocephala.
350. cinereocapilla.
3582. rayi.
3563. citreola.
305. viridis.

3590 . flaveola
3592. Calobates boarula.
3505. Grallina picata.
3607. Ephthianura albifrons.
3608.
aurifrous.
3609. tricolor.

Subfam. Axthinse (I, p. 249).
3614. Anthus apinoletta.
3615. obscurus.
3635. Agodroma campestris.
3640. Pipastes plumatus.
364. Spipola pratensis.
3646. cervinus.
3649. Corydalla richardi.
3602. striolatus,

36"~3. malayensis.
3656. anstralis.

3 358. novn-zealandiæ.
361. Macronyx capensis.

Fam. TURDIDA.
Sulfam. Tundine (I, p. 253).
3667. Turdus viscivorua.
3573. Arcenthornis pilaris.
3674. nanmanni.
3675. fuscatus.
3677. Hylocichla musica.
3678.

3 367. Oroocincla varia.
3649. Junnlata.
heinei Caban. (Australia).
3697. Merula vulgaris.
3698. simillimn.
3703. sinensis.
$3709 . \quad$ xanthopus.
3710. vanikorensis. pritzboueri. (Losalty Isiande.)
3715. Cichloselys cardis.
3720. Thoracoeincla torquata.
s\%21. Cichloides atmgularis.
3723 pallidns.
$3724 . \quad$ chrysolaus.
3725. olivaceus.
3728. rufulne.
3734. hortulorum.
3790. Geocichla citrina.
3800. Monticola saxatilis.
3801. Monticola rupestris.
3805. Petrocincla cyanea.
3506. pandos.
3807. solitaria.
3859. Myiophoneas cartuleas.

386i. Arreuga horstieldi.
3868. Bessonornis caffra.
3884. Copsychus sanlaris.

3e86. mindanensis
3693. Corcotrichas macrourus.

Fam. HYDROBATIDE (I, p. 266).
3899. Hydrobata cinclus.
3902. asiatica.

## Fam. PYCNONOTIDA.

Subfam Pycnonotin.e (I, p. 268).
3916. Microscelis amanrotis.
3919. Microtarsus melanolencus.
$30: 1$. olivacens.
3922. Trachycomus ochrocephalus.
3924. Pyenonotus capensis.
3926. barbatus.
393. brunneus.
3942. Ixos goiavier.
3948. sibensis.

39 x i. chrysorrhoides.
3960. Otocompser jocosa.
3961. - pyrrhotis.
3968. tympanistrigus.

3972 . Brachypodins melanocephalus.
3973. metallicus.

Subfam. Pivillornithine (I, p. 2\%2).
3981. Hypsipotes ganeesa.

398\%. nigervima.
4048. Iole olivaceus.
4070. Phyllornis javensis.
4071. cyanopogon.
4074. icterocephala.

4\%9. malabarica.
Subfam. Chaterorodine (I, p. 277).
4088. Pomatorhinus musicus.
4089. erythrocnemis.
4097. Pomatostomus temporalis.
4106. Mulacocircus grisens.
419. Cinclosoma punctatum.

412\%. castanotum.
4126. cinnamomeum.
4127. castaneothorax.
4154. Garrulax perspicillatus.
4184. Petrocyclus cachinnans.

41:3. Lencodioptron taivanne,
4204. Psophodes crepitans.
proceedings of dnited states national museum. 323

Fam. DICRURIDE.
Subfam. Dicrumine (I, p. 284).
4207. Dicrurus annectans.
4209. bracteatus.
4217. furcatus.

422\%. albirictus.
4241. Dissemurus brachyphorns.

4:49. Bhringa remifer.
4251. Chibia bottentotta.
4250. Melacnornis edolioides.

Subfam. Irfninse (I, p. 288).
42f6. Irena puella.
4267. malayensis.
4268. cyanogastra.

Fam. ARTAMIDE.
Subfam. Artamine ( $\mathbf{I}, \mathrm{p} .289$ ).
4270. Artamus fuscus.
493. sordidus.
4277. persodatus.
4278. snperciliosus.
4279. lencopygialis.
4250. melanoleucus.
4281. mentalis.
4289. Cyanolavius bicolor.

Fam. ORIOLIDE.
Sulfam. Omolinfe (I, p. 291).
4297. Sphecotheres maxillaria.
4298. flaviventris.
4299. Oriolus gallonla.
4305. chinensis.
4319. melanocephalus.

4:323. Mineta viridis.
4324. flavocinctus.

Subfam. Ptilosorhynchise (I, p. 293).
433:3. Sericulus melinus.
4335. Ptilonorhynchns holosericeus.

43:36. Ailnmedus crassirostris.
4339. Chlamydera nnchalis.
4340. maculata.

Fam. PITTIDE (I, p. 294).
434. Pitta coronata.

4:44. molnccensis.
437. strepitans.
4350. simillima.
433. Melanopitta encnllata.

430 . sordida.
43:9. Hyilrornis maxima.
43\%. Phocnicocichla granatina.
4378. Erythropitta erythrogastra.

Fam. EGITHINIDE.
Subfam. Leiotrichive (I, p. 312). 4670. Leiothrix latea.

Subfam. Egithinine (I, p. 314).
4693. Timalia nigricollis.
4694. macnlata.

4i2\%. A.githina scapularis.
4729. lafresnayi.
4730. Malacopteron magnum.
4747. Macronis ptilosus.
4751. Cacopitta lepidopleurns.

Fam. MUSCICAPIDE。
Suhfam. Mugcicapine (I, p. 319).
4786. Monarcha "carinata Vig. \& Horef." $=$ M. melanopsis Vieill.
4807. Pomarea nigra.
4811. Muscicapa griseola.
$4814 . \quad$ hypogramenica.
4*21. IIcdymela atricapilla.
482. collaris.
4839. Erythrosterna parva.
4848. Zanthopygia narcissina.
4055. Microca fascicans.
4878. Cyornis rubeculoides
4879.
banyumas.
4892. Cyanoptila cyanomelæna.
4990. Stoporala albicaudata.

Subfam. Myiagrine (I, p. 327).
4910. Seisura inquieta.
4915. Myiagra rubecula.
4918. latirostris.
4922. viridinitens.
4924. caledonica.
4930. aznrea.
4935. Muscitodus rufliventris.
4940. Platysteira cyanca.
4953. Rhipilura flabollifera.
4955. albiscapa.
4056. rufifrous.
4965. caniceps.
4973. nebulosa. (Tyре.)
-. caledonica. (New Caledonia.)
verreauxi. (New Caledonia.)
bulgeri. (Now C'alcdonia.)
4992. Muscylva lesboui.
4993. Sauloprocta motacilloides.
4998. tricolor.
5005. Tchitrea melanogastra.
5003. ferreti.
5025. Xeocephalus rufus.

## 324

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM.

Subfam. Campephagine (1, p. 334).
5033. Pericrocotus flammeus.

5040 . peregrinus.
5050. cinerens.
5051. griseigularis.
5034. Graucalus melanops.
5065. parvirostris.
5067. mentalis.
5078. hypoleuca.
5079. "Swainsoni Gould" ( $=$

$$
\text { G. lineatus } 8 w_{0} \text { ) }
$$

5090. Gazzola caledonica.
5091. Lalage humeralis.
5092. pacifica.
5093. montrosieri.
5094. Ceblepyris cæsia.

Fam. LANIIDE.
Subfam. Pachycephalinte (I, p. 385).
5828. Colluricincla harmonica.
5848. Cracticus robustus.
5351. cassicus.
5853. Bulestes torquatus.
5857. Falcunculua frontatus.
5859. Pardalotus punctatus.
5861.
striatus.
5862.
affinis.
5871. Pachycephala gutturalia.
5871. melanura.
5872. rufiventrig.
5887. icteroìdes. (Type.)
5488. flavifrons. (Type.)
5890.
5904. albifrons. (Type.)
littayei. (New Caledonia.)
5911. Hylocharis philomela.
5913. Eopsaltria anstralis.
5916. caledonica.
5918. flavigastra.
5926. Phæornis obscura.

Subfam. Laninse (I, p. 390).
5927. Collyrio excubitor.
5928. meridionalis.
5942. Fiecus collaris.
5947. Leucometopon nubicus.
5949. Laniellus shach.
5950. erythronotus.
5965. Enneoctonus collurio.
5966. minor.
5970. Lanius lucionensis.
5971. superciliosus.

507\% magnirostris
5978. Phoneus senator.

## Subfam. Malaconotine (I, p. 394).

6009. Laniaring barbarus.
6010. Telophorus gutturalis.
6011. Pomatorhynchus cucullatus.

## Fam. CORVIDE.

Subfam. Struperine (II, p. 1).
6058. Strepera graculina.
6061. auaphonensis.
6062. Gymnorhina Hbicen.
6063. leucouota.

Subfam. Garrulinet (II, p. 2).
6070. Garrulus glandarius.
6073. Garrulus "melanocephalus Gene." (=G. atricapillus Geoffr.)
6082. Perisoreus infanstus.

Subfam. Calleatinse (II, p. 7).
6141. Callaas cinerea.
6144. Struthidea cinerea.
6149. Dendrocitta sinensig,
6155. Vagabunda rufa.

## Subfam. Corvins.

6161. Nucifraga caryocatactes.
6162. Pica caudata.
6163. media.
6164. Cyanopolius cyana.
6165. cooki.
6166. Corvas corax.
6167. japonensis.
6168. culminatus.
6169. corone.
6170. cornix.
6171. australis.
6172. umbrinns.
6173. Tuficollis. (Type of C. leptonyx Peale.)
6174. frugilegus.
6175. pastinator.
6176. Pterocorax torquatus.
6177. Lycos monedula.
6178. Anomalocorax splendens.

Subfam. Pyrrhocoractive (II, p. 15).
6243. Pyrrhocorax alpinus.
6244. Corcorax melanorhamphos.
6245. Coracia graculus.

Fam. Paradiseide (II, p. 15).
6247. Paradisea apoda.

6248 . minor.
6251. Diphyllodes speciosa.

625\%. Cicinnurue regius.

Fam. STURNIDE.
Subfam. Manucodive (II, p. 17). 6259. Manucodia gouldi.

Subfam. Eulabetine (II, p. 18).
6264. Enlabes religiosa.
6267. javanensis.
6275. Gymnops tricolor.

Subfam. Sturnina (II, p. 19).
6280. Pastor roseus.
6282. Acridotheres tristis.

628\%. cristatellus.
6291. Gracupica nigricollis. (Juv.)
6002. Temneuchus pagodarum.
6293. malabaricus.
6299. Sturnia sinensis.
6301. pyrrhogenys.
6306. Sturnus vulgaris.
6307. unicolor.
6309. cineraceus.
6316. Creadion carunculatus.
6318. Heterolocha gouldii.

Subfam. Buphagine (II, p. 22).
6319. Buphaga africana.

Subfam. Juidin E (II, p. 23).
6328. Lamprocolius auratus.
6329.
splendidus.
6352. Spreo bicolor.
6357. Pyrrbocheira morio.
6363. Aplonis tabuensis.

6:364. cassini. (Type.)
63i7. atronitens.
6369. caledonicus.
6370. brevirostris. (Type.)
6376. Calornis metallica.
6388. atrifusca. (Type.)

Fam. PLOCEIDE.
Subfam. Ploceinse (II, p. 40).
6575. Oriolinus olivaceus.
6613. Ploceus philippensis.
6633. Oryx capensis.

Subfam. Viduine (II, p. 47).
6664. Videstrelda paradisea.

Subfam. Spermestina (II, p. 49).
6685. Estrelda astrild.
6707. bengalus.
6710. amandava.
6724. modesta.
672. Trifauda.
6740. phae̊ton.
6762. Munia malabarica.
6766. jagori.
topela (Hainan).
6767. Donacola castaneothorax.
6776. Padda oryzivora.
6781. Lonchura acuticauda.
6789. Steganopleura guttata.
6790. castanotis.
6793. Stictoptera bichenovi.
6794. Egintha temporalis.
6796. Zonæginthus bellus.
6801. Amblynura pealei. (Type of prasina Peale.)
6802. cyanovireus. (Type.)

Fam. FRINGILLIDE.
Subfam. Fringillines (II, p. 80).
7166. Fringilla colebs.
7168. montifringilla.
7171. Carduelis elegans.
7177. Chrysomitris spinus.
7201. - citrinella.
7203. totta.
7206. Dryospiza serinus.
7219. Lignrinus chloris.
7221. kawariba.
7222. sinica.
7243. Petronia diadema.
7251. Montifringilla nivalis.
7257. Passer domesticus.
7258. montanue.
7269. italis.
7270. rafipectus. (\%)

Subfam. Cocothracbtine (II, p. 87).
7286. Cocothraustes vulgaris.
7287. japonicus.
7693. Eophona melanura.

Subfam. Pyrrhuline (II, p. 99).
7477. Pyrrhula rubicilla.
7481. coccinea.
7488. Crithagra butyracea.
7493. canicollis.
7507. Carpodacus erythrinus.
7522. Propasser roscus.
7523. Bucanites githagineus.

Subfam. Sprrmophiline (II, p. 102).
7529. Uragus sibiricus.

Subfam. Loxiante (II, p. 108).
7632. Loxia curvirostra.
7633. pityopsittaca.
7637. tanioptera.
7639. Pinicola enucleator.
7645. Linaria cannabina.
7646. flavirostris.
7619. Egiothns linaria.

76:\%. Leucosticte aretoa.
7659.
brunneonucha
Subfam. Embemzivae (11, p. 111).
7675. Granativora melanocephala.

76\%s. Hypocentor anreola.
7680. sulpharata.

TCS. Molophus melanictern.
-6as3. Emberiza citrinella.
7634. cirlus.

765\%. hortulana.
7688. spodocephala.
7689. personata.
7695. rustica.

7697 . miliaria.
7698. cia.

ร700. pithyornus.
7704. ciopsis.
7708. sehæuicla.

7\%09. pyrthuloides.
7716. Fringillaria capensis.
7719. cassia.

7726 . striolata.
7727. Plectrophanes nivalis.
7720. Centrophanes lapponicus.

Fam. ALAUDIDE (1I, p. 116).
7734. Otocorys alpeatris.
7735. nivalis
7737. longirostris
7744. Alauda arvensis.
7753. calivox.
7760. Lullula arborea.
776. Galerida cristata.
7767. isabellina.
7775. Calandrella brachydactyla.
7780. Melanocorypha calandra.
7786. Saxilauda calandra.
7594. Alaemon desertorum.
7815. Megalophouus apiatus

Fam. COLID.E (II, p. 123).
7840. Colius capensis.
7814. Rhabdocolius striatus.

Fans. MUSOPHAGID $\mathcal{E}$ (II, p. 124).
78.0. Turacus musophagus.
7852. persa.
7859. Schizorhis cristata.

Fam. BUCEROTIDA (II, p. 127).
7366. Buceros rhinoceros.
7873. Hydrocissa convexa.
78.7. Anorrhinus galeritns.
7859. malayanus.
7834. Hydrocorux planisornis.
7892. Penelopides panini.
7808. Tockus nasutus.
7908. Rhinoplax ecutatus.

## Fam. PSITTACIDE.

Subfam. Pezoromine (II, p. 136).
7983. Platycercus pennanti.
7044. adelaids.

79 $\times 8 . \quad$ palliceps.
7999. browni. (1)
7990. eximins.
7994. Psephotus multicolor.
7996. pulcherritnus.
7997. hematonotus.
7999. xanthorrbous.
8001. Barnardias barnardi.
8003. semitorquatus.

8004 . Purpureicephalus spurius.
8005. Polytelis barrabandi.
8006. melanura.

8003 . Aspromictus erythropterus.
8011. cyanopygins.
8014. amboinensis. (?)
8015. Pyrrhulopsis personatus.
8016. splendens. (Type.)
8017. hysginus.
8018. tabuensis. (Type of atrogularis Peale.)
8019. Cyanorhamphus novi-zealandis.

8 826. auriceps.
8033. Melopsittacus undulatus.
8034. Eaphema pulchella.
8039. aplendida.
8042. Pezoporus formosus.
8047. Urodiscus discurus. (1)
8051. Palseornis torquatus.
8054. purpureus.
8055. schisticeps.
80.26. columboides.
8063. Belocercus longicaudus.

80ti5. erythrogenys.
8068. javauicus. ( $\uparrow$ )

Subfain. Lorinse (II, p. 151).
8167. Coriphilus taitianus. 8168. smaragdinus.
8169. Loriculns galgulus.

81\%2. vernalis.
8173. indicus.
8184. Lorius domicella.
8191. Chalcopsitta ater.
8195. Vini kuhlii.
8196. Vini fringillaceus.
8198. Phigys solitarius.

Subfain. Trichoglosinfe (II, p. 155).
8210. Trichoglossus rubritorquis.

Q211. nove-hollandize.
8214. massena. 8217. chlorolepidotus.
8224. Ptilosclera versicolor.
8225. Nanodes discolor.
8226. Glossopsitta concinna.
8227. pusilla.
8228. porphyrocephala.
8239. Eclectus linnei.
8240. rorratus.
8243. Muscarinus polychlorus. (1)
8247. Tanygnathus lucionensis. (\%)

Subfam. Nestorinae (1I, p. 158).
8252. Nestor meridionalis.

Subfan. Psittacine (II, p. 159). $83^{2} 0$. Psittinas incertus.

Fam. CACATUIDE.
Subfam. Cacatuina (II, p. 168).
8333. Calopsitta nove-hollandis.
834. Cacatua hematuropygia.
8391. galerita.

8i99. Lophochroa leadbeaterl.
8400 . sanguinea.
8401. Eolophus roseicapillus.

Subfam. Calyptoriynchine (II, p. 170). 8405. Calyptorhyuchus banksi.
8408. molandri.
8410. funereus.
8412. Callocephalon galeatus.

Fam. STRIGOPIDE.
8416. Strigops habroptilus.

Fam. CAPITONID.E.
Subiam. Pogoxorhyschine (II, p. 172). 8418. Pogonorhyuchus dubius. 8422. torfuatus. 84\%. lencomelas.

Subfam. Megulaiminte (II, p. 173). 8432. Megalaima virens. 843:3. versicolor. 8435. chrysopogon. 843. mystacophanos. 84:5. beurici. 84:8. armillaris.
844. Cyanops asiatica.
8445. Xantholæma rosea.
8448. hæmacephala
8450. duvancellii.
8454. Chotorea corvina.
8457. caniceps.
8459. viridis.
8479. Calorhamphne lathami.
8487. Psilopogon pyrolophus.

## Fum. PICIDE.

Subfam. Picinse (II, p. 181).
8j36. Picoides tridaotylus.
8540. crissoleucus. (1)
8541. Picus major.
8552. Dendrodromas leuconotus.

8iñ. Dendrocoptes medius.
85j.8. Xylocopus minor.
8i77. Yungipicus acintilliceps.
8588. moluccensis.
8631. Reinwardtipicus validus.
8634. Dryocopus martius.

8i44. Chrysocoloptes sultanens.
815\%. Mesopicus menstruus.
\&666. Hemicircus sordidus.
8467.
concretus.
B671. Gecinus viridis.
8676. guerini.

8677 . canus.
8i:8.. Chrysophlegma miniata. 8686. mentalis. 86\%7. punicea.
8707. Thriponax javensis.

8\%46. Brachypternus puncticollis.
87\%5. Gauropicoides rafflesi.
Subfum. Colaptine (II, p. 202).
88:38. Meiglyptes tristin. (?)
Ex5. grammithorax.
8840. Micropternus phaioceps. (1)
$8 \times 4!$. brunneus.
8841. squamigularis.

Subfam. Yungine (II, p. 204).
8845. Yunx torquilla.

## Fam. CUCULID.E.

Subfam. Indicatorine (II, p. 204).
8854. Indicator variegatus.

Subfam. Phenicopihainine (1I, p. 205).
88i5. Rhamphococcyx curvirostris.
8-71. Leptugrammus cumingii.
8573. Zanclostomus javanicus.
8881. Rhododytes diardi.

8834 . sumatranus.
8885. Rhinortha chloropluea.

Subfam. Cestropodinge (II, p. 212).
8956. Centrococcyx viridis.
8065. sinensib.
8980. Nesocentor melanops.
8982. Polophilus phasianns.
8083. macrourus.
Subfam. Cuculive (II, p. 215).
8985. Cuculus canorus.
9006. Nicoclarius canorinns.
9007. optatus.
9008. tenuirostria
9013. Cacomantis pallidus.
9015. Ololygon lugabria
9016. merulinus,
9017. threnodes.
9019. sonneratii. (7)
9020. flabelliformis.
9027. simus. (Type.)
9028. bronzinus.
9042. Lamprococcyx lucidus.
9060. Coccystes glandarius.
9061. coromandus,
9069. Eudynamis malayana. (1)
9070. minandensis.
9071. cyanocephala.
9072. orientalis.

90r7. taitiensis.
90\%8. Scythrops novie-hollandix.

## Fam. COLUMBIDE.

Subfam. Treronine (II, p. 222).
9090. Crocopus chlorogaster. ( $\left.{ }^{( }\right)$
9091. Osmotreron malabarica.
9095.
9096. olax. ( 1 ) viridis.
9102. Butreron capellei.
9116. Ptilinopus 8wainsoni.
9117. ewingi.
9121. perousii.
9122. fasciatus.
9124. greyi.
9131. Kuratreron purpuratus.
9134.
coralensis. (Type.)
9150. Ramphiculus jambu.
9158. Lamprotreron superbus.

Subfam. Columbinte (II, p. 228).
9169. Carpophaga chalybura.
9180. Globicera microcera.
9183. aurorie. (Type.)
9184. vanwycki. (Type.)
9186. Serresius forsteri.
9187. Myristicivora bicolor.
9199. Ducula latrans. (Type.)
9211. Ianthœnas vitiensis.
9214. hypoinochroa. 9216. castaneiceps. (Ty1re.)
9217. Megaloprepia magnifica.
9218. assimilis.
9221. Hemiphaga nova-zealandix.
9222. spadicea.
9226. Ptilocolpha griseopectus.
9228. Lencomelzna norfolciensia.
9230. Lopholaimus antarcticus.
9231. Columba livia.
9233. schimperi.
9234. intermedia.
9241. Palumbana œиas.
9243. Palumbus torquatus.
9246. olplinstonei.
9286. Geopelia striata.
9287. tranquilla.
9289. Erythrauchœena humeralis,
9290. Stictopeleia cuneata.
9293. Macropygia phasianella.
$9294 . \quad$ tenuirostris. ( $\boldsymbol{f}$ )
9311. Turtur auritus.
9313. rupicolus.
9315. suratensis.
9316. chinensis.
9317. senegalensis.

9:319. cinereus. ( 9 )
9:25. Streptopelia semitorquata.
9328. risoria.
9332. humilis.

Subfam. Gourin E (II, p. 239).
9413. Ocyphaps lophotes.
9415. Chalcophaps indica.
9417. chrysochlora.
9418. stephani.
9427. Phaps chalcoptera.
9428. elegans.
9431. Lencosarcia picata.
9432. Phapitreron leucotis.
9439. Calenas nicobarica.
9442. Phloganas luzonica.

9446 . erythroptera.
9452. Goura coronata.

Fam. DIDUNCULIDE (II, p. 248).
9455. Didunculus strigirostris.

Fam. PTEROCLIDE.
Subfam. Pterocline (II, p. 249).
945\%. Pterocles arenarius.
9467. Pteroclurus alchata.

Subfam. Syrrhaptinte (II, p. 250).
9471. Syrrhaptes paradoxus.

PROCEEDINGS OF UNITED STATES NATIONAL MUSEUM. 329

Fam. MEGAPODIDE.
Subfam. Talegalline (II, p. 254). 9537. Talegallus lathami.

Subfam. Megapodine (II, p. 255). 9547. Megapodius tumulus.

Fam. PHASIANIDE.
Subfam. Pavoninet (II, p. 255 ).
9560. Pavo cristatus.
9563. Polyplectron bicalcaratum.
9572. Argusianus giganteus.

Subfam. Phasianine (II, p. 257 ).
9574. Phasianus colchicus.
9575. torquatus.
9587. versicolor.
9.8. . Chrysolophus pictus.
9587. Pucrasia macrolopha.
9089. xanthospila.
9597. Euplocomus vieilloti.
9.99. Acomus pyronotus.
9601. Gallophasis albocristatus.
9602. leucomelanos.
9007. Gennaus nycthemerus.

Subfam. Gallinte (II, p. 261).
9614. Gallus ferrugineus.
9616. sonnerati.
9620. Creagrius varius. ( ${ }^{1}$ )
9621. Ceriornis satyrus.

Subfam. Numidines (II, p. 262).
9629. Numida meleagris.

## Fam. TETRAONIDEE.

Subfam. Perdicine (II, p. 263).
9647. Pternistes nudicollis.
9652. afer.
9660. Scleroptera africana. ( ${ }^{(1)}$
9080. Francolinus vulgaris.
9681. chinensis.
9688. Perdix cinerea.
9803. Coturnix communis.
9707. coromandelica.
9708. pectoralis.
9711. Synoicus australis.
9715. Perdicula cambayensis. ( ${ }^{(1)}$
9720. Microperdix erythrorhyncha.
9721. Excalfactoria chinensis. (1)

Subfam. Rolluline (II, p. 269).
9726. Rollulus roulroul.
9727. Melanoperdix niger.

Subfam. TUnnicise (II, p. 270). 9729. Turnix sylvatica.
9743. varia.
9749. Areoturnix pugaax.

Subfam. Caccabinine (II, p. 274).
9801. Lerwa nivicola.
9802. Caccabis saxatilis.
$9803 . \quad$ grwea.
9805. chukar. 9r06. rufa.
9811. Alectoris petrosa.
9813. Ammoperdix heyi.
9815. Tetraogallus himalayensis.

Subfam. Tetraoninfe (II, p. 275).
9819. Tetrao urogallus.
9821. hybridus.
9822. Lyrurus tetrix.
9832. Tetrastes betulinus.
983.. Lagopus scoticus.
9837. mutus.

Fam CASUARIIDA.
Subfam. Dromaines (III, p. 2),
9845. Dromaius novæ-hollandix.

Subfam. Casuarinae (III, p. 2).
-. Casuarius (undetermined).
Fam. APTERYGIDE (III, p. 3),
9853. Apteryx australis.
9855. oweni.

Fam. OTIDIDE (III, p. 7).
9913. Otis tarda.
9914. Tetrax campestris.
9921. Choriotis anstralis.
9930. Afrotis afra.
9937. Houbara nudulata.
9938. macqueeni.

Fam. CHARADRIIDE.
Subfam. Edicnevines (III, p.9).
9939. Edicnemis crepitans.
9947. Burhinus grallarius.
9948. Esacus magnirostris.

Subfam. Cearadrinse (III, p. 10).
9950. Vanellus cristatus.
9953. Chettusia gregaria.
9954. wagleri.
0959. Lobivanellus indica.
9961.
lobata.
905. Hoplopterns spinosus.
9976. Sarciophorus pectoralis.

997\%. Stephanibyx melanopterus.
99*2. Charadrius apricarins.
9984. lougipes. (Winter pl. only.)
9985.
fulvus. (Wiuter pl. and young only!)
3929. Eudrumias morinellus.

G991. australis.
9992. veredus.
9993. Cirrepidesmus geoffroyi.
9994. mongolicus.
9995. pyrrbothorax.
9993. Egialites hinticula.
9939. Aluviatilis.
10000. philippinus.
10002. tricollaris. 10008. nigrifrons.
10013. Ochthodromus bicinctus.
10014. Leucopolins marginatus.
10016. kittlitzi.
10020. Egialophilus cantianus.
10021. ruficapillus.
10024. Anarhynchus frontalis.

Fam. GLAREOLID.E.
Subfam. Glareolinat (11I, p. 17).
10026. Glareola pratincola. 10031. orientalis.
10032. Stiltia grallaria.

Subfain. Cunsorin e (III, p. 18).
10035. Plavianus mgyptius.
10036. Cursorius gallicus.

Fam. CHIONIDIDE (III, p. 20).
10056. Chionis minor.

Fam. HEMATOPODID.E (III, p. 21).
1005\%. Hamatopus ostralegus.
-_ osculans Swinh.
10062. longirostris.

Fam. GRUIDE (III, p. 24).
10079. Grus cinerea.
10081. monacha.
10091. australasiana.
10012. Anthropoides virgo.
10094. Balearica pavonina.

Fam. ARDEIDA.
Subfam. Anderine (III, p. 26).
10999. Ardea cinerea.
10101. pacifica.
10102. Arden purparea.
10108. Herodias alba.
10110. intermedia.
modesta.
10113. Garzetta uivea.
10117. Dewiegretta nove-hollandiz.

1012u. sacra.
101: 2 . Bubulcus ibis.
10133. coromanda.
10134. Ardeola comata.
10140. prasinicollis. (Juv.)
10146. cinuamomea.

1014\%. sinensis.
10148. Ardetta minuta.
10157. Butorides javanica.
10160. patruclis. (Type.)

Subfam. Botauriva (III, p. 32).
10161. Botaurus stellaris.
10162. proiciloptilus.
10171. Nyctiardea nycticorax.

1017\%. caledonica.
Fam. CICONIIDE.
Subfam. Ciconinse (IlI, p. 34).
10184. Cíconia alba.
10186. Melanopelargns nigra.
10187. episcopus.

Subfam. Plataleide (III, $p, 37$ ).
10199. Platalea leucorodia.
10203. Platibis favipes.
10204. Spatherolia melanorhyncha.

Fam. TANTALIDE.
Subfam. Tantaline (III, p. 35).
10208. Tantalus iluis.

Subfam. Ibidina (III, p. 38).
102!4. Plegadis falcinellus.
10220. Carphibis spinicollis.
10221. Threskiornis athiopicus.
10224. strictipenuis.
Fam. SCOLOPACIDE.
Subfam. Limosinse (III, p. 41).
10233. Numenius arquata.
10241. tenuirostris.
10246. tabitiensis,
10249. phaopus.
10252. luzonieusis.
10254. minor.
10257. femoralis. (Type.)
10258. Limosa regocephala.
10250. lapponica.
10261. Limosa uropygialis. ( $=10262$.) 10:62. nove-zealandis.
19263. Therckia cinerea.

Subfan. Totanine (111, p. 44).
10266. Totanus stagnatilis.

102:7. Helodromas ochrophus.
14tit8. Rhyacophilus iflareola.
10270. Heteroscelus iacanus.
10272. $\qquad$ ? calidris.
10:75. Erythroscelus fuscus.
10276. Glottis canescens.
10279. Triugoides bypoleucus.
10283. Tryngites cancellata. (Types of parcirostris, Pealo.)
Subfam. Recurvibosthine (III, p. 47). 10:25. Recurvirostra avocetta.
10te8. rubricollis.
10291. Cladorhynchus pectoralis.
14292. Himautopus autumnalis. 10295. - leacocephalus. $10 z 96$. hovæ-zealandic.

Snbfam. Tringine (III, p. 48).
10299. Philomachns pugnax.
10304. Limnocinclus acuminatus,
100305. Limicola platyrbyncha.

10:30. Scheniclus cinctus.
10311. Actodromas minuta.
10313. salina. 10314. australis.
10315. Leimonites temmincki.

10:319. Ancylocheilus subarquata.
10:323. Eurinorhynchus pygmaus.
Subfan. Scolopacine (III, p. 51). 10328. Gallinago major.
10329. scolopacina.
10330. macrodactyla.
10331. australis.
10341. . nemoricola.
1034. gallinula.
10343. solitaria.
10344. horsfieldi.
10347. aucklandica. (Types of holmesi, Peale).
10352. Scolopax rusticola.
10353. saturata.
10356. Rhynchæa capensis.

103i7. bengalensis.
1035\%. australis.
Fam. RALLIDE.
Subfam. Ocydromine (III, p. 56).
10363. Ocydromus australis.
10365. earlei.
10375. Hypotanidea tomuata.

1037\%. philippensis.
1037 月. striata.
10390. Rallina fascinta.
10391. fusca.
10395. rubiginosa. (1)
10401. minahasa. (?)

Subfain. Rallinat (III, p. 58).
10408. Rallus aquaticus.
indicus.
10450. Ortygometra crex.
10451. Porzana muruetta.
10452. nove-hollandis.
10461. Zapornia pygmaea.
1046. minuta.
10463. tabuensis.
10464. quadristrigata.

Fam. GALLINULIDE.
Subfam. Porphyrionine (III, p. 64).
10476. Porphyrio veterum.
10478. melanotus.
10481. indicus.
10484. vitiensis. (Types.)

Subfam. Gallincline (III, p. 66).
10495. Gallinula chloropus.
10496. tenebrosa.
sandwichensis Streets.
10508. Eyrthra phenicura.
10511. Gallicrex cristata.

Subfam. Fulicinfe (III, p. 67).
10513. Fulica atra.
10514. anstralis.
15519. alai. (Types.)
10521. Lapha cristata.

Fam. PARRIDE (III, p. 69).
10537. Metopodins albinucha.
105.3. indica.
10539. Hydralector cristata.
10540. Hydrophasianus chirurgus.

Fam. PHGENICOPTERIDE (III, p. 72).
10544. Phænicopterns antiquorum.

Fam. ANATIDE.
Subfam. Plectroitemine (III, p. 73).
100̃2. Anseranas melanoleuca.
10555. Sarkidiornis melanonota. ( ) )
10557. Chenalopex wgsptiaca.

Subfam. Anserine.
10561. Anser cincrens.
10563. Begetum.
10565. Anser albifrous.

1056R. Marilochen erythropns.
10574. Cyguopsis cygnoides.
1057. Chlamidochen jubata.

105*2. Leucopareia sandwichensis.
10596. Anserella albipennis.

Subfam. Cygninae (1II, p. 78).
10597. Cygnus olor.
10600. Olor cygnus.
10605. Chenopis atratus.

Subfam. Anatives (III, p. 79).
10608. Dendrocygna arcuata.
10611. major. ( 1 )
10617. Leptotarsis eytoni.
10618. Tadorna cornuta.
10620. Stictonetta nevosa.
10621. Casarca rutila.
1062. talornoides.
10623. variegata.
10627. Aix galericulata.
10628. Mareca penelope.
10631. punctata.
10646. Anas luzonica.
10647. superciliosa.
10648. chlorotis. (\& juv. only.)
10656. Querquedula circia.
10601. Nettion crecca.
10663. giblerifrons. ( $\uparrow$ *
evtoni. (Kerguelen Is]and.)
10671. Eunetia falcata.
10672. formosa.
-. Chaulelasmus conesi Streets. (Types.)
10675. Marmonetta angustirostris.
10677. Spatula rhynchotis.
10681. Malacorhynchns membranaceus.

Subfam. Fuliguline.
10683. Fuligula rufina.
1064. Fulix cristata.
10689. Aythya ferina.
10693. Nyroca leucophthalma.
10694. australis.
10710. Oidemia nigra.
10714. Melanetta fusca.

Subfam. Eribmaturine (III, p. 89).
10716. Biziura lobata.
10718. Erismatura lencocephala.

Subfam. Mergine (III, p. 91).
10734. Mergelins albellus.

Fam. PODICIPID. $\mathbf{E}$ (III, p. 92).
10793. Podiceps cristatus.
10740. anstralis ( $=10793$ )
10947. Pedeaithyia griseigena.
10751. Dytes auritus.
10553. Proctopus nigricollis.
10763. Sylbeocyclus minor.
10766. nove-hollandize.

Fam. SPHENISCID天 (III, p. 98).
10796. Pygoscelis papua.
10201. antipoda.

10z03. Dasyrhamphus adelím.
10805. Eudyptila minor.

Fam. PROCELLARIDE.
Subfam. Pelecanoidine (III, p. 162).
10825. Pelecanoides urinatrix.

Subfam. Proceltarinee (III, p. 102).
10386. Puffinus assimilis.
nativitatus Streete.(Types
Christmas Island.)
1C852. Procellaria nereis
10861. Oceanites lineata. (Type.)
10864. Pelagodroma fregata
10868. Fregetta melanogastra.
10876. Priocella antarctica.
10881. Estrelata lessoni.
10882. rostrata. (Type.)
10884. incerta.

108e9. parvirostris. (Type.)
kidderi Coues. (Type:
Kerguelen Island.)
10893. Cookilaria cooki.
10897. mollis. (Type.)
10902. Halobæna caerulea.
10903. Pagodroma nivea.
10907. Pterodroma macroptera.
10915. Majaquens æquinoctialis.
10921. Pseudoprion turtur.

Subfam. Diomedeinae (III, p. 109).
10425. Diomedea exulans.
10929. Thalassarche melanophrys.

Fain. LARIDE.
Subfam. Lahine (1II, p. 111).
10905. Larus canns.
10953. Dominicanus vociferus.
10959. Clupeilarus fuscus.
10969. Laroides cachinnans.
10974. michahellesii. (Juv.)
10977. Blasipus crassirostris.
10979. Alelarus hemprichi.
10980. Icthyae̊tus pallasi. (Juv.)
10981. Chroicocephalus ridibundus. 10982. capistratus. 10953. brunneicephalus.
11001. Hydrocolæns minutus.
11002. Gelastes nova-hollandix.
11004. andersoni.

Subfam. Sternine (III, p. 117).
11030. Sterna longipennis.
11034. frontalis.
11014. Actocbelidon cantiaca.
11045. affinis.
11057. Thalassens bergii.
11059. novae-hollandis.
11062. Sternula minuta.
11071. Pelodes hybrida.

1107\%. albistriata.
vittata. (Kerguelen Island.)
11081. Haliplana lunata. (Type.)
11082. Thalawipora infuscata. (?).
11083. Gygis alba.
11009. Proc-llosterna cinerea.

Fam. PHaETONTIDE (III, p. 124).
11098. Phaëton rubricaudus.

Fam. PLOTIDE (III, p. 125). 11102. Plotus novie-hollandim.

Fam. PELECANIDAE.
Subfam. Graculine (III, p. 126).
11114. Graculus novm-hollandim.
11120. cristatus.
11124. glaucus.
11134. Hypoleucus varius.
11135. leucogaster.
11137. carunculatus.
11140. Stictocarbo punctatus.
11142. Microcarbo pygmzus.
11144. melanognathos. (?)
11146. brevirostris.
11149. sulcirostris.

Subfam. Pelecanine (III, p. 129).
11151. Pelecanus onocrotalus.
11152. crispns.
11153. mitratus.
11154. javanicus.
11158. Catoptropelicanus conspicillatus.

Subfam. Atagenine.
11162. Atagen minor.

## NOTES ON BOME COBTA BICAN BIRDS.

## By RORERT RIDGWAY.

The following birds, all of greater or less interest, have recently been received at the National Museum from Sr. Don José C. Zeledon, of San José :

1. Catharus fuscater (Lafr.) Scl. (f)

What seems to be a somewhat immature example of this species appears at first sight to be quite a different bird from two fully adult specimens, a male and a female, from the same country. In these adnlts the throat and jugulum are entirely uniform dull ash-gray, while the entire abdomen is white.* The specimen in question, however, has the

[^124]chin and throat indistinctly streaked with dingy whitish and duskr, while the jugnlam and entire sides are dark slate, very much darker than in the other specimens, only the centre of the abdomen being whitish. Some of the feathers of the breast show indistinct whitish shaft-streaks, while the entire under surface is pervaded by a greater or less amount of fuliginous wash. The entire upper parts are a perfectly uniform black, the other specimens having a decidedly slatecolored cast. The bill and feet of this specimen still retain their brilliaut hue, the entire mandible and edges of the maxilla being an intense orange-red, while the legs and feet are a deep orange-yellow color. The collector's notes upon the label are as follows: "Iris white ; bill orangered, with upper mandible black; tarsi and feet orange-yellow".

This specimen was obtained at Cuscua, La Palma, September $2 \tilde{5}$, 1881, by Mr. Juan Cooper.
2. Thryothorus hyperythrus Salv. \& Goim. (Biolog. Centr.-Am. Aves, i, p. 91).

A single specimen from Carrillos, Alajuela (October, 1879; Juan Cooper), agrees exictly with examples from Veragua and Panama.

## 3. Troglodytes (\%) ochraceus, 8p. nov.

Sp. cir-Above bright tawny-brown, duller posteriorly, the forehead and lores more ochraceous; a very conspicuous supereiliary stripe of bright ochraceons, most distinct posteriorly by reason of its strong contrast with a broad post-ocular stripe of dusky brown. Entire side of head (except as described), with whole lower parts, bright tawnsochraceous, paler, but by no means inclining to white, on the throat and abdomen (the last deep buff). Remiges and wing-coverts narrowly barred or vermiculated with dusky, their inner webs uniformly of this color ; tail dull brown, narrowly and irregulary barred, or vermiculated, with dusky. Crissum bright ochraceous-buff with a few rather indistinct bars of dusky. Lining of wing plain pale ochraceons; inner webs of remiges edged with grayish white. Wing, 1.80; tail, 1.25 ; culmen, . 65 ; tarsus, 70 ; middle toe, .50. 3d, 4th, and 5 th quills equal and longest ; 2d equal to 7th; 1st much shorter than the secondaries (. 60 shorter than longest primary). Tail graduated, lateral feather .25 or .30 shorter than middle pair; rectrices very narrow. Culmen regularly and very decidedly curved from the base.

Type, No. 85j 47 , coll. U. S. Nat. Mus. Volcan de Irazú, Costa Rica, October 10, 1880; Juan Cooper.

This diminutive and very pretty Wren is very different both in proportions and coloration from any other species with which I am aequainted. In size it is abont equal to Anorthura troglodytes, but it is otherwise not to be compared with that species, the bill being more curved than in any other member of the group that I have seen (except, perhaps, Uropsila leucogastra, of which the only specimen of which, that I have been able to examine, has the bill broken). It is with consider.
able doubt that I refer it to Troglodytes at all, and I do so only because I do not know where else to place it, while I am reluctant to institute a new genus for its special reception. Comparing it with specimens of typical Troglodytes (T. aëdon, T. furrus, T. tesselatus, T. brunneicollis, \&c.), Anorthura troglorytes, and Uropsila lewcogastra, I find that it agrees best with the latter in pattern of coloration and in general form, but the wing is much less rounded, the tarsi shorter, and the nostrils very different; those of Cropsila being (in the specimen before me) broadly oval, with very little membrane above them, while the present bird has a narrow, longitudinal or slit-like nostril overhung by a broad scale. I am inclined to beliere, however, that extreme caution is necessary in using the shape of the nostril in dried skins as a generic character, since its external appearance is so easily modified by accidental circumstances attending the preparation of a specimen. For the present, therefore, I refer the species to Troglodytes, and leave further consideration of the question of its generic relationship in abeyauce.

As to the coloration of this species, it is most like T. brunneicollis, but the tint which prevails over the entire lower parts and the greater part of the head in T. ochraceus is decidedly brighter and more yellowish than the light rufons color of T. brunneicollis, which, moreover, has this color restricted to the throat, jugulum, and breast. Furthermore, in $T$. ochraceus there is not the slightest indication of bars or other markings on the sides or flanks.

## Genus ACANTHIDOPS, nobis.

$$
\text { (' } A \kappa \in \nu \forall \iota s, i s o s=A c a n t h i s \text {, and } \dot{\omega} \psi=\text { facies.) }
$$

Gex. Ch.-Most nearly related to Automolus, Placellodromus, and allied genera in structure of the feet, \&c., but very different in form of bill, and other characters. Bill about as long as the middle toe, cuneate in all its protiles, somewhat swollen basally, the culmen and lateral outlines decidedly concave in the middle portion; mandibular tomia very strongly inflexed, with a prominent angle near the base, anterior to which the edge is decidedly concave; maxillary tomia with a decided notch near the base, immediately above the mandibular angle; gonys very long (about equal to the exposed portion of the culmen); nostrils exposed, small, longitudinal, occupying less than the lower half of the nasal fosse. Tarsus a little longer than the middle toe and claw, divided into abont six plates, but these entirely fused on the outer side, except the lower one, which is distinct; lateral toes equal, the points of their claws falling short of the base of the middle claw; inner toe entirely separated at the base from the middle toe, and outer with only its first phalaux united; hallux about equal in length to the lateral toes, but much stronger, its claw decidedly larger than that of the middle toe.

Wings decidedly longer than the tail, very concave beneath, the 3d, 4th, and 5th quills nearly equal and longest, the $2 d$ very little shorter, the 1st about equal to the 7th. Tail about equal to the wing measured to the ends of the secondaries, nearly even or very slightly rounded, consisting of twelve rectrices, which are acute but not stiffened at the points; the outer web of the intermedia broader at the base than the inner web.

Type, A. bairdi, sp. nov.
This remarkable genus is so very distinct from any other hitherto described that it is quite difficult to decide where to place it. It evidently belongs, however, to the Synallaxiue group, on account of the structure of the feet, but the bill is so widely different from that of any other member of the family ("Dendrocolaptide") as to suggest certain Fringilline forms, as Carduelis and Chrysomitris. In fact, the bill is so similar in form to that of the genera named that the collector had referred it to the latter genus.

As characters additional to those given in the above diagnosis, it may be stated that the lill is slightly notched near the tip; that the rictal bristles are so minute as to be hardly perceptible, and that the posterior face of the tarsus, on both sides, is entirely undivided, in which latter respect the present bird differs from Synallaxis and Placellodromus, but agrees with Automolus.
4. Acanthidops bairdi, sp. nov.

Sp. CH.- $\boldsymbol{F}$ (adult 9 ) : Above dull olive-brown, the back washed with rusty; wings dusky, the middle and greater coverts tipped with pale rusty, forming two distinct bands, the iuner secondaries broadly edged with darker rusty; remaining secondaries narrowly skirted with dark umber-brown, the primaries with light, dull ochraceous or yellowish olive. Tail dusky, the outer webs slightly greenish olivaceous. I'ileum indistinctly streaked with dusky; sides of the head and neck dull olis. aceous, lighter than the crown and nape; chin and throat still paler, the feathers pale ashy beneath the surface ; rest of lower parts dull, light olivaceous, tinged with deeper olive across the breast and along the sides. Maxilla blackish, paler along the edge; mandible whitish; legs and feet light brownish (in dried skin) ; "iris pale blue." Wing, 2.50; tail, 2.20 ; culmen, . 58 ; commissure, . 65 ; tarsus, .80 ; middle toe, .i0.

Type, No. 85̃̃49, coll. U. S. Nat. Mus., Volcan de Irazú, Costa lica, Oct. 10, 1880; Juan Cooper.

## b. Nyctibiun jamaicensis (Gm.) Gosse.

Two very fine specimens, both females, from Sarchi, Alajuela (altitude 3,000 feet), August and September, 1881, agree with examples from Colombia and Eastern Peru, in rich dark colors. The two skins differ much in proportions, however, though evidently both adults; and after comparing with a considerable series of specimens from Jamaica, Mirador
(Easturn Mexico), Panama, Bogota, and Eastern Peru, I am unable to detect differences other than what appear to be chiefly of an individnal -haracter, thongh there is much varistion both in size and colors among the different specimens.

## DESCRIPTION OF A NEW PIXCATCEPR AND A SUPPOSED NEW PETAEL ERON THE MANDWICII IELANDN. <br> By KOBERT HIDGWAY.

Chasiempis sclateri, sp . nov.
SP. CII.- Above dull ferruginons, more umber on the back, more rufescent on the rump and upper taileoverts; sides of head and neck, chin, throat, and breast bright ochriceous-rufous; rest of lower parts pure white, the sides tinged with rufous; wings and tail dusky, the middle and greater coverts tipped with pale ferruginous, producing two distinct bands; secondaries edged with pale dull rusty; inner webs of rectrices (except middle pair) tipped with white, this about .40 of an inch wide on the lateral pair and decreasing in axtent towarl the inner feathers. Wing, ".70; tail, $2.70-2.75$; tarsus, . $95-1.00$; midille toe, .45.

Types, Nos. 41955 and 41956 , coll. U. S. Nat. Mus., Waimea Kaui, Sandwich Islands; V. Knudsen.

Although I have been unable to compare the specimens described above with either $C$. sanducichensis (Gim.) or C. dimidiata (IIartl. $\mathbb{E}$ linsch), I am satisfied, from reference to the descriptions of these in Sharpe's catalogue of the Muscicapide ("Catalogue of the Birds in the British Museum," vol. ivy, pp. 231-233, that it is quite distinct specilically. The former is lescribed as having the "wing-coverts black, tipped with white spots," the "under wing-coverts white," the cheeks and throat white, the tatil only 2.15 inches in length, and the tarsus only .85 long; while the latter is still more different both in proportions and colurations.

Cymochorea cryptoleucura, sp. nov.
Sp. CII.-Adult: Uniform fuliginots, the head and upper surface more slats, the grester wing coverts and outer webs of tertials paler, inclin. ing to dull ash-gray; remiges and rectrices dull black, the latter (except midhle pair) white at the base; upper tail-coverts white, the longer fealhers broadly tipped with blackish (as in Iroccllaria pelagica); anal region mixed with white, and white of the upper coverts extending laterally to the sides of the crissum. Tail only slightly forked or emarginated, the outer feathers being ouly about .20-.30 of an iuch longer than the middle pair. Bill, legs, and feet (including webs) deep black; wing, $\overline{5} .80-6.30$; tail, 3.00-3.15) bill (measured in straight line from base of rulmen to point of the maxilla), .60; tarsus, $85-.90$; middle toe, with сіае, .85-.90.

Proc. Nat. Mus. 81-22
March 29, 1882.

Hal.-Waimea Kani, Sandwich Islands (V. Knudsen). (Types, Nos. 41949 and 41950 , coll. U. S. Nat. Mus.)

This fourth species of Cymochorea is very different from C.leucorrhoa (the only other having white on the tail-coverts), in several very inportant particulars, as follows: (1) The upper tail-coverts are pure white, terminated by a band of black .35-.50 of an iuch wide; (2) the rectrices (except the middle pair) are distinctly white at the base, though this white is concealed by the coverts; (3) the greater wing. coverts and outer webs of the tertials are much datker, offering less decided contrast with the general color of the wings; (4) the tail is much less deeply forked, the depth of the fork not exceeding . 30 of an inch, whereas in C. leucorrhoa it amounts to about . $\overline{5}$ of an inch. In other respects the two species are much alike.

This bird is a true Cymochorea, having very prominent nasal tubes, the outer toe longer than the middle, the tarsus about equal to the middle toe (with claw), and the first primary shorter than the fourth as in the typical species of that genus.

##  FEON MARATLAN, NEXICO.

## By DAVID S. Jordan and CHARLES H. GILEERT.

During the fall and winter of $1880-81$, Mr. Gilbert spent ten weeks nt Mazatlan, on the west coast of Mexico, in making collections of fishes for the United States National Museum. One hundred and seventy species were obtainel, of which the following appear to be new to science:

1. Clupea stolifera.
2. Pristigaster lutipinnis.
3. Stolephorus ischanus.
4. Stolephorus lucidus.
5. Stolephorus exiguus.
6. Stolephorus curtus.
7. Stolephorus miarchus.
8. Synodus scituliceps.
9. Muчana pinta.
10. Murana pintita.
11. Ophichthys systurus.
12. Ophichthys zophochir.
13. Muranesox coniceps.
14. Atherinella eriarcha.
15. Caranx vinctus.
16. Serranus calopteryx.
17. Lutjanus colorado.
18. Luljanus prieto.
19. Micropogon ectenes.
20. Sciana icistia.
21. Scarus perrico.
22. Pomacanthus crescentalis.
23. Gobiesox zebra.
24. Gobiesor cos.
25. Gobicsox crythrops.
26. Gobiesox adustus.
27. Gobiosoma zosterurum.
28. Clinus zonifer.
29. Tripterygium carminale.
30. Salarias chiostictus.
31. Fierasfer arcnicola.
32. Etropus crossotus.
33. Malthe elater.
34. Clupea stolifera, sp. nov. (28125.)

Allied to Clupea lile, C. \& V.
Body deep, much compressed; the dorsal outline with a slight curve; ventral outline more strongly arched; body deepest immediately before dorsal fin. Head short, preopercular margin subvertical; opercle but little oblique, evenly curved. Mouth very small, oblique; maxillary reaching to below front of pupil; lower jaw longer than the upper, which is scarcely emarginate; tip of lower jaw not reaching level of upper protile of snout. Both jaws with a few very small, weak, decidnous teeth; none on vomer or palatines; tongre with a very distinct linear pateh. Gill-rakers slender and numerous, the longest about three-fitths diameter of orbit; about 29 on anterior limb of arch. Fye large, longer than shout and more than one-third length of head.

Dorsal fin iuserted anteriorly, its origin nearer end of snont than base of candal, by a distance equalling one-half length of head; the first long rays are much longer than base of fin, which is about three-fifths length of head. Anal tio short and low; distance of its origin from base of cautal equals height of body. Candal scarcely louger than head, the lower lobe longer than the upper. Pectorals reaching two thirds distance to root of ventrals, $1 \&$ in head. Ventrals inserted nearly under first dorsal ray, their length $1 \frac{1}{3}$ in head.

Scales smooth, tirm, elosely adherent, their edges entire; a very narrow sheath of scales along bases of dorsal and anal fins; candal fin sealed for one-half its length. Ventral scates very strongly developed, running from thorax to front of anal, the posterior with strong spines; 17 in front of ventral fins, 12 behiud them.

Head, 4 in length to base of caudal ; depth, $3 \frac{1}{3}$. D. 14; A. 16; L. lat. 40 ; L. transv. 11.

Color translucent ; sides with silvery luster; each scale on back with marginal half black-punctate; a dark line along median line of back, becoming distinctly blackish on tail; snout greenish above, its tip and the end of the lower jaw dusky; a very bright, well-detined, silvery band along sides (as in Atherina and Stolephorus), margined above with a narrow bluish line; this band is constantls widest at middle of body, tapering slightly towards head and caudal peduncle, abruptly expanding at the end of the latter and covering nearly the entire breadth of the end of the tail. The width of this band is just the depth of me scale, a little more than the depth of the pupil. Dorsal and candal nos light yellowish-green, the tips of anterior rays of dorsal and of upper and lower caudal lobes usually jet-black. The base of each anal ray marked by black dots. Paired fins immaculate.

Many specimens of this beautiful, well-marked species were obtained at Mazatlan, where it is very common. It does not reach a greater length than 5 or 6 inches, and usually escapes through the coarse menhes of the fishermen's seines.

The numerous types of $C$. stolifera are numbered 28125 on the reg. ister of the National Museum.
2. Pristigaster lutipinnis, sp. nov. (28126, 28.09, 28320.)

Body elongate, very strongly compressed, especially towards ventral outline; profile nearly straight from origin of dorsal to occiput, where it forms a slight angle; head small, its upper outline but little descending, the lower rapidly rising. Mouth large, very oblique, the lower jaw longest, its tip almost entering upper protile of head; maxillary reaching to or slightly beyond vertical from anterior margin of pupil, its length a little more than half head. Teeth large, in a single series in each jaw; in the upper jaw numerous and comparatively close-set, in the lower few and distant, but considerably larger; margin of maxillary with minute, close-set teeth; palatines and pterygoids toothed, vomer smooth. Eye very large, much longer than snout, and more than onethird length of head. Gill-rakers not longer than pupil, about 18 in number; pseudobranchize developed.

Dorsal small, posterior, its origin constantly slightly nearer base of caudal than occiput. Pectorals long, not nearly reaching vent, slightly shorter than head. Anal shorter than in other species, its origin midway between middle of caudal base and front of eye, its base contained 23 in boly ; anterior anal rays highest, a little longer than eve. Lower caudal lobe longest.

Scales thin, very readily deciduous; ventral scutes very strong, running from throat to origin of anal fin. D. 13; A. 53; L. lat. 44; L. tr. about 11 ; ventral scutes, 29 ; head, $4 \frac{1}{2}$ in length; depth, $3 \frac{1}{2}$.

Color: Greenish olive above, on sides silvery with a tinge of yellow; a small black spot on upper angle of preopercle, and a larger very distinct black humeral spot; a black line along dorsal ridge; end of snout and tip of lower jaw black. Anal and caudal golden yellow on basal portions, the tips transparent, dotted with black; pectorals and dorsal with a yellow bloteh on middle of first rays, sometimes largely yellow.

This species is rare at Mazatlan and but few specimens were obtained. It is very closely related to $P$. macrops and $P$. dovii, differing from them chiefly in the ferer rays and backward position of the anal fin. The types are about 6 inches long and are numbered 28126,25203 , and $28: 320$ in the United States National Museum.
3. Stolephorus ischanus, sp. nov. (28246.)

Closely related to Stolephorus brouni.
Body clongate, little compressed and searcely elevated, nearly as high at nape as at front of dorsal; belly compressed, its edge usually rounded. Head long and slender, its height at occiput but little greater than half its length; opercular margin very oblique, forming a more or less evident angle at junction with sutiopercle; cheeks triangular, moderately broad; opercle short. Maxillary sleuder, tapering to a blunt point, not quite reaching opercular margin; teeth small, evident for entire length of both jaws, those near symplysis of lower jaw slightly enlarged. Gill-rakers numerous, of moderate length,
the longest about two-thirds diameter of orbit. Snout long, about three-fourths length of orbit, which is large and contained three and three fourths times in length of head. Dorsal fin with upper margin straight, the posterior rays not prolonged; origin of dorsal about equidistant from base of median caudal rays and front of orbit. Origin of anal under base of posterior dorsal rays, midway between front of orbit and tip of caudal ; its base very short, less than two-thirds length of head. Caudal very short, much less than length of head, the lower lobe the longest. Pectorals broad and short, not nearly reaching base of ventrals, which reach about one-half distance to front of anal. Scales thin, moderately deciduous.

Head, 33 in length; depth, 5 ; eye, $3 \frac{1}{2}$ in head. D. 13 ; A. 16 ; Lat. 1. $39+2$; L. tr. 7 .

Color: Translucent, with silvery luster; a sharply-defined, bright silvery band on sides, broadest opposite middle or end of anal, and tapering each way; the streak is confined to a single series of scales (being distinctly narrower than in S. browni); sides of head bright silvery; top of head blackish above orbits; two large, welldetined clusters of black dots behind occiput, one on each side of median line; between dorsal and occiput from one to three series of scales black margiued; behind dorsal the median series ouly thus margined. Median line of back with a black streak the entire length; tip of snout, median line of head anteriorly, and region behind orbits black-specked.

This species is very common in the harbor at Mazatlan, reaching a leugth of $2 \frac{1}{2}$ to 3 inches. The trpes are numbered 29246 U. S. Nat. Mus. This is apparently the speries recorded by Steindachner from the west coast of Mexico as Engraulis browni. The latter slecies has a deeper body, distinctly broader silvery stripe, and a larger number $(19-20)$ of rays in the anal fin.
4. Stolephorus lucidus, sp. nov. (28121.)

Body closely compressed but not greatly elevated, the dorsal outline with a very weak arch; belly more curved, carinate in front of anal fin, but not serrate. Head short, rather pointed, the margin of opercle and subopercle forming an even curve which is but little oblique.

Maxillary narrow, pointed, reaching to or slightly beyond mandibulary joint, but not to gill-opening; teeth very evident along eutire length of maxillary and mandible, becoming larger towards symphysis of lower jaw ; snout short, projecting, about one-half diameter of orbit, which is about one-third length of head; cheeks obligue, V-shaperl, the length more than half head; opercle moderate; gill-rakers not very numerous and rather short, the longest not more than one-half diameter of orbit.

Origin of dorsal in midway between base of middle rays of caudal and front of orbit; upper margin of dorsal straight, the last rays not prolonged. Dorsal much higher than loug, its base equaling about one-
half head. Origin of anal under middle of dorsal, its base a little longer than head. Caudal short, the lower lobe longer than the upper; the median rays about one-third the longest. Pectorals three-lifths length of head, nearly or quite reaching base of ventrals, which are short and do not reach the vent. Scales moderately adherent; dorsal sheath very low ; that of anal fin higher.
D. 12; A. 27 ; Lat. 1. $36+2$; L. transv. 6. Depth, 33 in body; head, $3 \frac{1}{5}$; eye, 3 in head; B. 11-12.

Color: Body translucent; scales with a silvery luster; dorsal region much punctate with black and with some yellow speckling which broadly covers the margins of the scales; a distinct dark median line, composed of minute dark specks, along entire length of back; sides with a rather diffuse silvery band, broadest anteriorly, becoming very narrow on caudal peduncle, then expanding to base of fin; it covers less than one row of scales, and is narrower than diameter of orbit ; top of head, symphysis of lower jaw, and snout, with much black speckling, the snont yellowish; anal fin thickly speckled at base; anterior rays of dorsal and anal, and lower rays of caudal, with some faint greenish-yellow and more or less black dotting; tip of caudal blackish, more distinctly so at end of lobes.

Common in the harbor of Mazatlan and called Sardine in common with the other species of this genus, and Clupea stolifera. It reaches a length of 4 to 5 inches. The many types are numbered 28121 in the United States National Museum.

## 5. Stolephorus exiguus, sp. nov. (2 $2 \times 120$.)

Allied to S. curtus, but with much slenderer body and shorter anal fin.

Body not greatly compressed and not elevaled; belly compressed, subcarinate, serrulate; head rather short, its height at nape more than two-thirds its length; opercular margin not much oblique ; cheek narrowly triangular; snout longer than two-thirds diameter of orbit; eye large, three and one-fourth in head; maxillary tapering to an acute point, reaching to or nearly to opercular margin; teeth present in both jaws; in the lower minute and developed on anterior half cnly; in upper jaw small, but easily perceptible. Gill-rakers short, the longest not more than one-half diameter of orbit.

Origin of dorsal fin midway between base of median candal rays and middle of pupil; base of fin but little more than one-half length of head. Origin of anal under anterior third of dorsal fin; its base abont four fifths length of head. Candal short, not nearly equaling leugth of head. Pectorals not nearly reaching ventrals.

Scales very decidnous.
D. 12; A. 17 ; L. lat. 38; L. transv. 5. Head, 3 ? in length ; depth, 5.

Color translucent; scales with silvery luster; a faint silvery streak along sides, widest and most distinct posteriorly, becoming faint anteriorly, and usually disappearing before reaching head. Scenles on back
with dotted margins, no median dark line on back; sides of head bright silvery ; top of head dusky posteriorly; caudal and dorsal fins dotted with black, these dots forming two faint blotches at base of caudal; a series of black dots between anal and caudal fins.

About 10 specimens were obtained in the Astillero at Mazatlan, the largest $2 \frac{1}{2}$ inches long. It is apparently less abundant than the other species of this genus in company with which it is found.

The types are numbered $281 \% 0$ on the register of the National Musenm.
6. Stolephorus curtus, sp. nov. (29242.)

Body more compressed and elevated than in S. ischanus; dorsal outline nearly straight, the ventral scarcely curved except anteriorly; cuudal peduncle deep; belly in front of rentral fins sharply compressed, carinate and serrulate. Head short and high, its depth at occiput seventenths its length; snout blunt, not mnch produced; tip of lower jaw in front of eye; maxillary tapering to a sharp point, which usually does not quite reach gill-opening; both jaws with very minute teeth, perceptible towards symphysis of lower jaw, but not laterally. Opercle shortish; cheeks broadly triangular. Gill-rakers on upper limb longest, about two thirds diameter of orbit. Eye large, contained 23 to $3+4$ times in length of head.

Origin of dorsal fin midway between base of middle rays of caudal and middle of pupil; the fin short and rather high, its base but little more than one half length of head; the last rays not produced. Origin of anal fin under middle or anterior third of base of dorsal; the base of the fin moderate, varying from nearly as long as, to a little longer than, head. Caudal short, less than length of head; the lower lobe longest; the fin moderately forked; the middle rays about two-fiths the length of the longest. Pectorals very short and rounded, variable in length, but usually not reaching base of ventrals. Scales thin, caducous.
D. 11 or 12 ; A. 22 or 23 ; L. lat. 35; L. transi. $5 . ~ H e a d, ~ 41$ in length; depth, 4 ?

Color translucent; sides with a silvery luster; top of head dusky; sides of head and a faint streak along sides of body with silvery pigment; the streak is somewhat indistinct, especially forwards, where it often disappears; basal half of dorsal fiu punctate with black and yellow dots; a double series of these dots along base of fin, rumning back to base of caudal; candal not black margined; base of anal thickly punctate, a series of dots usually extending back to caudal fin; paired tins immaculate; tip of snout yellowish, without black specks; no dark line in front of dorsal fin.

Many specimens $2 \frac{1}{2}$ inches long were obtained at Mazatlan, where it is common in the muddy waters of the Astillero. The types are numbered 29242 on the register of the National Museum.
7. Stolephorus miarchus, sp. nov. (28119.)

A slender species, distinguished by the very small anal fin. Known to us from immature specimens only.

Borly very slender, not strongly compressed (perhaps becoming deeper with age); belly not trenchant. Snont sub-conic, compressed. Teeth rather large, distinct in both jaws; maxillary reaching to elge of preopercle. Lower jaw much overlapped by the snout, its tip exteuding little in front of the eve, which is not especially large.

Insertion of dorsal tin midway between suout and caudal; anal fin extremely short, its first ray inserted under last of dorsal, the length of its base less than that of the caudal peduncle behind it. Scales lost.

Color perfectly translucent in life, with a diftuse silvery lateral shade, but no distinct stripe; clusters of dark points on occiput; base of caudal with dark markings above and below formed of dark points; the entire fin speckled; a small black streak on each side of ventrals; black points at the base of each fiu ray.

Head, $4_{5}^{1}$ in length; depth, 6.
Dorsal with about 12 rays ( 11 to 13); anal, 12 to 14.
This species is known to us from eight specimens (28119 U. S. Nat. Mus.), the largest 13 inches in length, killed by dynamite cartridges in deep water in the harbor of Mazathon, where they were exceedingly abundant. They are, of course, immature, but the species to which they belong will be known from all others by the short anal.
8. Synodus scituliceps, sp. nov. (28392, 29449.)

Allied to S. fotens L., but with a much smaller head.
Body slender, subterete, less depressed than in S. foetens. Head rery short and slender, its length above not greater than greatest depth of body. Snout pointed, triangular, about as broad as long. Interorbital space slightly concave, about as broad as eye; a longitudinal ridge on each side of its middle, which sends out radiating branches opposite posterior part of eye; preopercle somewhat raised above eye, its margin somewhat serrate; maxillay extending much beyond orbit, its length $1 \frac{3}{5}$ in head; lower jaw a trifle shorter thau upper, its symphyseal knob scarcely included. Teeth essentially as in S. jatens, the bands, perbaps, a little narrower; palatine teeth forming a very narrow band, which becomes posteriorly a single series. Gill-rakers undeveloped. Branchiostegals, 14. Cheeks with four rows of large seales; opercles with four.

Distance from origin of dorsal fin to adipose fin equal to the distauce from the former to the middle of orbit; origin of dorsal nearer to end of snout than to base of caudal by a distance equal to $\frac{2}{5}$ head.

Dorsal fin much higher than long, the first and last rays coterminous when the fin is cleflexed. Caudal well forked, the upper lobe the longer, 1f in head; the middle rays scarcely more than one third the length of the outer. Ventral fins long and pointed, their ley gth scarcely more than half the distance from their base to front of anal, $1 \frac{1}{8}$ in head.

Pectorals short, their length just about half head, equal to length of snout and eye.

Scales comparatively large; 5 series between lateral line and ventrals; 4 between adipose fin and lateral line. Scales of breast little reduced; 11 between the bases of the two pectorals.

Head, $4 \frac{3}{3}$ in length ( 4 in S. fatens), $5_{8}^{\frac{1}{6}}$ including candal; greatest depth, 62. D. 11; A. 13. Scales, 6-61-6.

Color in life, brownish-olive above, white below; each scale of back with one or more paler flecks; top and sides of head marbled; lower jaw sometimes marked with darker. Pectorals and caudal mostly blackish; adipose fin black, with a pale border; ventrals and anal immaculate. No yellow iu life.

Two specimens of this species were obtained, one $7 \frac{1}{2}$ inches long (28392) from the harbor of Mazatlan, the other 7 inches long ( 29449 ) from Panama. The species is much like the S. foctens of the Atlantic Coast, but may be readily known by the small head and the somewhat larger scales. Synodus fatens has beeu recorded from Panama, by Dr. Giinther, but the reference is probably to S. scituliceps.
9. Muræna pinta, sp. nov. (28:38, 28177, 2天388, 28197, 29608, 29359.)

Allied to Murana lentiginosa Jenyns.
Body rather stout and compressed. Teeth all comparatively small, subequal, everywhere uniserial; those of the vomer developed only posteriorly and smaller than the others. Two anterior teeth of man-lible larger than the other teeth, but hardly canine-like. Lateral teeth of both jaws rather narrow, sharp, directed a little backwards, those of lower jaw smallest. Mouth not closing completely. Jaws about equal Anterior nostril with the tube two-thirds diameter of eye; tube of pos terior nostrils nearly as long as pupil. Cleft of mouth $2 \frac{3}{5}$ in head. Gill opening longer than eje. Eye $2 \$$ in snout, a little nearer tip of suout than angle of mouth. Head $2_{5}^{2}$ in trunk. Tail a very little longer than rest of body. Dorsal well elevated, beginning in front of gill-opening.

Color rather dark olivaceous brown above, belly slightly paler, everywhere covered with round or horizontally oblong light yellow spots, each surrounded by a wide black border. On the body these spots are placed with some regularity; the larger ones, which are a little larger than the pupil, are arranged in 5 or 6 horizontal rows, those of each row being connected by dark streaks two-thirds as wide as their diameter; between the larger streaks are numerous small ones, some of them mere points; all except the very smallest are surrounded by darker rings, and none are indistinct or contluent. The spots are rather larger and brighter and more crowded on the belly than on the back, where the ground color occupies more of the surface than the spots; towards the head the spots become closer together and rather smaller, and on the anterior and lower parts of the head the ground color is reduced to mere reticulations around the spots. Space about gill-opening dusky

Fins colored like the region to which they belong; the dorsal anteriorly with a median row of oblong spots.

The specimen described (No. 28238 U. S. Nat. Mus.) is 18 inches long.
This species is very abundant among the rocks in the harbor of Mazatlan, where numerous specimens were obtained. It is known to the Mexican fishermen as Anguila pinta. (From the Latin puncta, i. e., panctate.) Another specimen (29359) was obtained by Lieutenant Nichols at San Josef Island. ,
10. Muræna pintita, sp. nov. (28311 U. \&. Nat. Mus.)

Subgenus G!mnothorax ; allied to Murana docii Giinther, bat differing in color and proportions.

Tail longer than body, by about two thirds the length of the head; distance from snout to anterior edge of gill opening contained $2 \frac{3}{3}$ times in length of trunk. Eye above middle of cleft of month; diameter of orbit slightly lass than half length of suout. Cleft of mouth rather more than two-fifthe length of head. Tueth all uniserial; those in sides of lower jaw small, compressed, directed backward, of nearly equal size, some of the posterior larger than the anterior ; front of lower jaw with 4 to 6 moderate, movable canines. sides of upper jaw with some fixed canines among the smaller teeth; premaxillaries with two rather small movable canines; four small conical teeth in front. Vomer with two large movable canines, distant from cach other, the posterior the larger. Mouth capable of being nearly closed.

Tubes of anterior nostrils short, scarcely equaling half the diameter of orbit. Posterior nostrils withont tubes. Gill-slit one-third wider than orbit. Dorsal fin beginning much in front of gill-slit.

Coloration: Chestnut-brown; upper parts of body and tail with numerons yellow non-ocellated dots, the largest much smaller than pupil, most of them being minute dots. Dorsal colored like the back. Anal plain brown, becoming darker posteriorly. Head without spots; longitudinal furrows under throat, black.

A single example, 19 inches in length, was taken among the rocks near Mazatlan; the species is called Anguiln pintita by the fishermen.
11. Ophichthys xysturus, 8p. nov. (28142, 28247, 29642.)

Sulgenus Pisodontophis; allied to O. maculosus (Cuv.).
Teeth all more or less blunt and granular; a band of three or four series, on each side of lower jaw ; a band of two rows, on each side of upper jaw; vomer with a long series divided into two for about half its length. Auterior nasal tubes conspicnous, turned downward. Eye $2 \frac{1}{2}$ in snout; front of eye above middle of gape, the length of which is a little more than one thitd of head; the angle of mouth well behind eye. Interorbital wilth about $\frac{2}{3}$ length of the rather long and slender snout, which projects much beyoud lower jaw, the tip of the latter about reaching middle of snout.

Length of head contained 44 times in that of the trunk; head and trunk together shorter than lail, and contained 28 to $2 \frac{2}{2}$ times in total length. Pectoral very small, its length about equal to depth of gillopening. Dorsal beginning close behind nape, much in front of gillopening ; fins low; tail poiuted, the tip sharp.

Color light olive; sides each with three series of large round brown spots, those of the two upper series of equal size, those of lower searedy half as large, faint, and often obsolete anteriorly; the spots irregular in their arrangement, those of the upper series uswally twice as mumerous as those of the next; those of the upper series along base of dorsal fin extending partly on the base of the fin; lower series of spots alung base of anal, some of them extending on the fin or ceven entirely upon it ; on the belly are sometimes small dark spots scarcely arranged in series. Dorsal tin with a terminal series of dark spots, which are partly confluent, the fin narrowly margined with white. Anal reddish, with a lighter margin. Pectoral with a blackish blotch. Head covered with round black spots, which become smaller and more numerous towards the suont. Lower jaw with dark spots. Iris light yellow.

Several specimens, from 1 to 2 feet in length, were obtained.
12. Ophichthys zophochir, sp. nov. (28280, 28277, 29220, 29239.)

Allied to Ophicathys parilis (Richardson) Giinther.
Cleft of month wide, the snont much overlapping the lower jaw; length of gape from tip of snout to angle of mouth contained $2_{3}$ times in length of head. Teeth smal, sharp, subequal, in two somewhat irreg. ular rows on each of the dentigerons bones; points of the theth diree ed backwarls; no canines; patch of vomerine tecth long, the two series converging backwards. Eye large, its diameter two-thirds the interorbital width, which is slightly less than length of snout. Anterior pair of nostrils at end of anterior third of snout, in a stort tube, which is less than one-third diameter of orbit and widened at tip. Posterior nostrils large, below the anterior margin of the orbit, not tubular, but the margin with tree dermal flaps.

Gill-opening one-third wider than eye, its upper edge slightly above middle of base of pectoral; length of slits slightly greater than the isthmus between them.

Tail long, very nearly twice as long as rest of bods. Length of head contained $2 \frac{1}{2}$ times in that of trunk.

Pectoral fin well developed, its length $2 \frac{1}{2}$ in length of head, in adults; proportionally longer in the young. Dorsal fin beginning slighly in advance of tip of pectorals, well developed, the rays distinct. Tip of tail fiuless, moderately acute.

Color olive brown, becoming paler on sides, whitish below; snout and mandible blackish, yellowish brown anteriorly; mandible with a series of black pores below; throat yellowish, the color extending up on the opercles. Pectoral blackish, its base pale. Anal with the distal balf black. Dorsal with a broad black margin. Length about two feet.

This species is rather common in the rocks about Mazatlan, where it is known to the fishermen as "Anguila blanca." Several specimens are in the collection.

## 13. Muranesox coniceps, sp. nov. (28136, 28141, 28212.)

Body compressed, stoutish, head twice in length of trunk. Snout slender, conical, rather pointed, nearly half longer than broad at frout of eyes, the distance between anterior nostrils less than half its length; cleft of mouth from tip of snout $2 \frac{1}{2}$ in length of head; upper jaw projecting beyond the lower; teeth all erect, not very large or sharp and without evident basal lobes; teeth in jaws small, compressed, blunt, triserial, those in the inner series much the largest; teeth in outer series very small and blunt; teeth in front of jaws largest, sharp, forming small canines which are shorter than the pupil; about 23 large teeth in each side of lower jaw; middle series of vomerine teeth compressed, without basal lobes, about ten in number; the outer teeth blunt, much smaller. Both nostiils without tubes, the anterior with a narrow free rim. Eie large, 2 in snout, $1 \frac{1}{2}$ in interorbital width, its front much nearer angle of mouth than tip of snout; anterior nostril nearer tip of snout. Gillopening beginning below upper edge of pectoral, its length greater than the distance between the two openings. Dorsal beginning above gillopening, moderately high, its longest rays equal to length of eye and snout. Tail about one-third longer than head and body. Pectorals nearly as long as head, a litt!e longer than cleft of mouth from tip of upper jaw. Lateral line very distinct.

Clear olive brown above, dull whitish below with olive tint; dorsal olive brown; anal dusky; both fins with a black margin becoming wider posteriorly; the candal nearly uniform black; pectorals black, light olive at base; iris grayish silvery.

This species is not very common among the rocks in Mazatlan Har. bor, and is not distinguisbed by the fishermen by any peculiar name. It reaches a length of three feet, and, in common with the other species at Mazatlan, is occasionally eaten but not highly valued. The specimen here described (No. 28136 U. S. Nat. Mus.) is about 2 feet long. This species was also obtained at Panama.

## 14. Atherinella eriarcha, sp. nov. (29243.)

Body comparatively deep, deepest at base of pectorals, strongly compressed. Head short, less compressed than the body, the snout very short, blunt, and rounded in profile; maxillary very sleuder, almost reaching the vertical from anterior margin of pupil; cleft of mouth oblique, curved, the lower jaw included. Eye very large, 28 in head in the type specimen. Premaxillaries very protractile, narrow. Teeth in a narrow band in each jaw, rather strong, recurved; none on vomer or palatines. Gill-rakers long and slender.

First dorsal very short, its origin slightly behind origin of aual; of three very slender weak spines. Space between first and secoud dorsal
three fifths length of head. Second dorsal beginning over middle of anal, terminating slightly in advance of its last ray; the first rays highest. Origin of anal considerably nearer snout than base of caudal. Base of anal oblique, the anterior rays much highest, the posterior very short. Caudal deeply forked. Ventrals short, not reaching front of aual. Pectorals very broad and short, slightly falcate, scarcely longer than distance from snout to posterior margin of pupil.

Scales adherent, with entire edges.
Color transp:rent, with a wide, very sharply-defined, silvery band along sides, margined above by a narrow dark line; this band abruptly constricted mear the middle of the caudal peduncle and again widened at base of tail into a silvery blotch without dark edging; opercles and branchiostegals silvery; lips punctulate with black dots; silvery peritoneum showing through walls of abdomen; candal dusted with black; a black point at base of each dorsal and anal ray.

Head, 4 in lenyth; depth, 4 4.
D. III-I, 12; A. I, 27 ; Lat. I. 36 ; L. trans. 7.

We refer this species to the genus Atherinella of Steindachner, without raising the question of the distinction of the latter group from Atherina proper. Atherinella eriarcha is known to us from a single young specimen (No. 29243 U. S. Nat. Mus.), $2 \frac{1}{8}$ inches in length, found in a rock pool at Mazatlan. It is distinguished from A.panamensis Steind. by mumerous characters, notably the much longer anal and shorter pectoral tius.
15. Caranx vinctus, $\kappa$ p. nov. ( 28365 , 28366.)

Allied to C. cibi Poey.
Body elongate, elliptical, compressed, upper profle evenly arched from snout to caudal peduncle, the lower nearly rectilinear from snout to origin of anal fin; upper profile slightly carinate anteriorly. Width of cheek about equal to diameter of eye. Mouth moderately oblique, the jaws subequal, the lower scarcely included; intermaxillaries anteriorly about on a level with axis of body, just below level of lower margin of eye; maxillary reaching vertical from frout of orbit, 3 in head; teeth very small, blunt, in a narrow band in each jaw, becoming a single series in sides of mandible; the outer series slightly enlarged; teeth on vomer, palatines, and tongue similar to those on jaws. Gill-rakers very long, numerous; the longest, two-thinds diameter of orbit, their number about 10-27. Eye large, less than length of snout, about equaling interorbital width, 4 in head. Adipose eyelid moderately developed. Preopercle with its posterior margin very oblique, the augle broadly rounded. Preorbital thin, its least width three fifths diameter of orbit.

Spinous dorsa! well developed, the spines high and flexible; the antrorse spine well developed; the fourth spine the longest, the fifth but little shorter; those posterior rapidly decreasing; the fourth spine equals twofifths length of head; leigth of longest dorsal ray less than one half
length of head. Anal spines strong; the soft rass a little lower than those of dorsal. Soft dorsal and anal entirely received within a membranaceous scaly sheath, which is two-fifths the height of the median dorsal rays, and terminates before the ends of the fins, leaving the last two rays free; the two fins not falcate, the rays rerularly decreased from the first. Pectorals rery long, falcate, reaching much beyond the origin of the anal, and to the twelfth lateral scute; the fins one-third length of body. Ventrals reaching to or slightly beyond the rent, which is nearly equidistant from their inner axil and from second aual spine. Caudal lobes not falcate, the upper slightly the longer, a little less than length of head.

Lateral line with a strong curve anteriorly, the width of which is less than one-half the straight portion; the depth of the curve about onefourth its width. Plates very strongly developed, extending the whole length of straight portion of lateral line, which legins under first dorsal rays. Top of head, opercles, jaws, and preorbital scaleless or with a very few scattering scales; cheeks scaly, breast entirely covered with fine scales; membrane of caudal fin with series of scales.
D. VIII-I, 24 ; A. II-I, 19 ; Lat. I. 48. Head $3 \frac{1}{2}$; depth 3.

Color duskg-bluish above, silvery below, with golden and greenish reflections; eight or nine vertical dark half-hars descend from back to below lateral line, the widest about equaling diameter of orbit, and more than twice as wide as the light interspaces; breast blackish; head dusky; end of snout black; a distinct black bloteh on upper angle of opercle. Fins somewhat dusky; pectoral without spot; anal white at tip.

Common at Mazatlan, but not one of the most abundant fishes. Ninmerous specimens are in the collection.
16. Serranus calopteryx, sp. nov. (28123.)

Allied to Serranus scriba (L.), but with shorter soft dorsal.
Body elliptical, little elevated, the dorsal outline gently arched. Snout sharp; lower jaw distinctly longest; maxillary reaching vertical from middle of pupil, or beyond; interorbital space somewhat concave and ridged. Teeth small, cardiform, two small canines in front of lower jaw ; four in front of upper jaw ; the inner series of teeth somewhat enlarged, containing 2 or 3 large fixed canines in the middle of sides of lower jaw, these larger than the canines in front. Strong teeth on vomer and palatines. No supplemental maxillary bone. Gill-rakers short, few in umber, about 8 in all. Preopercle nearly evenly rounded, the posterior margin nearly vertical and, as well as the angle, very finely, evenly, and sharply sermated, the serra on angle scarcely larger; the lower limb nearly entire. Opercle ending in three compressed spines, the middle the largest, the membrane extending much beyond them.

Scales well ctenoid, on cheeks small, in about 11 rows; opercles with about 4 series of large scales; jaws aud top of head naked.

Spinous dorsal low, not notched, the first two spines shorter than the others, which are of equal length and shorter than the soft rays; length of spines about equaling distance from snout to middle of eye, 3 in head. Soft dorsal elevated, the auterior rays somewhat shorter than the posterior, the tips of which reach rudimentary caudal rays, $2 \frac{1}{5}$ in head. Anal spines short and strong, the middle one stronger and slightly longer than the third; the second about equal to dorsal spines; anal rays more elevated than those of dorsal, the last ray the longest and about equal to two-thirds length of head. Ventrals reaching vent; pectorals slightly beyond it, two-thirds length of head; ventrals inserted in front of axil of pectorals. Caudal short, somewhat lunate, with the outer rays produced; the fin $1 \frac{2}{5}$ in head. Dorsal and anal scaleless.

Head $2 \frac{5}{6}$ in length; depth $3 \frac{1}{8}$. D. X, 12; A. III, 7 ; scales 5-ion-15.
Color: Body light olivaceous, the dorsal region with abont 12 broad dark brown cross-bands extending from back to below lateral line, where they are interrupted, to reappear on the level of base of pectorals as a series of roundish blotches; those in front pinkish, behind brown. A light streak from nape to front of dorsal, with two parallel ones (usually indistinct) on each side of it. The brown bar immediately behind soft dorsal is replaced by the ground color, but the corresponding brown spot on sides is present. A brownish streak from snout throngh eye to upper angle of opercle, clear brown anteriorly; suborbital light blue, with a narrow median streak of clear brown; numerous clear browu blotches on top of head. Base and axil of pectorals largely pink, the fin very finely barred (vermiculated) with pink and light blue. Dorsals reddish, with a median light streak, which disappears posteriorly on soft dorsal ; distal part of soft dorsal with numerous small dark brown spots, becoming light pink posteriorly and alteruating with similar spots of whitish or light blue. A dark brown spot at base of ventrals; one below base of pectorals, and one in front of the latter at margin of gill-opening. Caudal brown at base and on outer rays, pink on inner rays, vermiculated with iregular narrow light bluc lines. Anal and ventrals light glaucous blue, thickly marked with brownish-yellow spots.

Five or six sperimens of this species were taken in a seiue in the Astillero (estuary), at Mazatlan.
17. Lutjanus colorado, sp. nov. (28:38t, 28305, 28261, 28383.)

Body comparativels deep, highest at front of spinous dorsal, and with an angle at origin of soft dorsal. Profile of back evenly arched to origin of dorsal fin; ventral outline rectilinear to origin of anal fin, the base of which fin is very oblique in the young, less so in the adult.

Snout rather short, less acute than in L. prieto, less than one-thirl length of head. Maxillary reaching nearly or quite to vertical from frout of pupil, 23 in head. Width of cheek from orbit to angle of preoperclo
less than snout. Eye, in adult, half the interorbital width and two-fifths length of snout, proportionately larger in the young. Vertical margin of preopercle with minute, even, serrations for its entire length. A shallow emargination above the angle, which is provided with coarser, but still inconspicuous, serrations; lower limb of preopercle smooth on its anterior half.

Upper jaw with a very narrow band of villiform teeth, behind the conical teeth, which are not very large. A single pair, or more usually two unequal pairs, of canines in front of upper jaw, between which is a pair of small teeth. Conical tecth in lower jaw larger than those of upper, close-set, largest in the middle of the jaw, becoming smaller in front and behind; about 8 on each side. Vomerine teeth arranged in a crescent-shaped patch, without backward extension on the median line. Teeth on tongue in two patches, a roundish one anteriorly, usually formed by the junction of three smaller ones, and an oblong patch on the median line behind this.

Gill-rakers distant, few, the longest half length of orbit, their number about $1+7$.

- Dorsal spines strong, the fourth the longest, the last more than half its length; the fourth spine 23 in head, as long as the snout in the adult, a little longer in young. Soft dorsal and anal similar to each other, some of the posterior rays of each being considerably elevated, the tin thus being pointed instead of rounded in outline. In the young these rays are much longer than the dorsal spines and slightly longer than the caudal pedurcle. In the adult they are lower but still longer than the dorsal spines. Longest rays of anal about half head.

Caudal not deeply emarginate. Pectorals long, acute, reaching to or beyond vent, $1 \frac{1}{5}$ in head. Ventrals not nearly reaching vent, as long as snout and orbit. Aual spines strong, the second rather longer than third and a little stronger, $3 \frac{1}{3}$ in head.

Scales rather small, the scries forming an angle at the lateral line, those below it running the more obliquely, those above lateral line forming nearly horizontal series, parallel with the lateral line. Scales on cheeks in about 7 rows, one row on subopercle and about 7 on opercle. Scales on breast very small, much smaller than those on opercles. Soft rays of vertical fins with accompanying series of scales.

Head 23 times in length ; depth 3. D. X, 14; A. III, 7; scales 5-47-11; tubes in lateral line 47.

Coloration in life: Above dark olivaceons, each scale with the basal half dark olive brown; sides with or without some silvery luster at bases of scales, forming when present faint longitudinal streaks; head and lower parts of body bright red, especially bright on lower parts of head, the color extending up on the sides for a varying distance; upper jaw and maxillary reddish; upper parts of head dark olivaceons; scales on sides of head without dark spots; a much interrupted light blue line
from middle of preorbital along suborbital, rarely extending behind the orbit, much less distinct than in J. argenticittatus, and disappearing in alcohol; cheeks sometimes with bluish spots or lines; inside of mouth red; vertical fins very dark, with more or less reddish; spinous dorsal with a broad median streak of very light slaty blue; pectorals and ventrals reddish, the latter with dusky.

This species is a very abundant food-tish at Mazatlan, being seen daily in the markets. It is preferred (probably on account of its bright colors) as a market fish to the other species of Lutjanus. It reaches a weight of about 15 pounds, aud is kuown to the Mexicau ishermen as "Pargo Colorado."

Body comparatively elongate, the back little elevated; profile very gently curved; snout long and pointed, one-third length of head; eye small, less than breadth of the wide preorbital; maxillary barely reaching to opposite front of orbit, its length $2 \frac{3}{3}$ in head; each jaw with a very narrow band of villiform teeth, outside of which is a single series of larger teeth; those in sides of upper daw small; two in front, however, developed as large fang.like canines, larger than usual in this genus, their length about equal to the diameter of the pupil; a pair of sinaller canines near the middle of the upper jaw, between the large ones; conical teeth of lower jaw distant, canine-like, 6 to 8 in number on each side, larger than in any of our other species of Lutjanus, much larger than those on sides of upper jaw ; teeth on tongue in a large oval patch, in front of which are two smaller patches; teeth on vomer forming a crescent-shaped patch, without backward prolougation on the median line.

Gill-rakers few, not very large, distant, about $1+7$. Preopercle with its posterior margin extending very obliquely forward, the angle therefore very obtusely rounded; a broal shallow notch above the angle, the margin above the notch convex, its edge minutely serrulate; a few coarser teeth at the angle; lower border mostly smooth. In the adult the whole margin of the preopercle is without serrations; suprascapular serrate. Posterior nostril nearly round; a single narrow band of scales extending downward and backward from occiput. Dorsal spines rather long, with sharp flexible tips, the fourth the longest, but shorter than the snout, $3 \frac{1}{8}$ in head; anal spines short and strong, much stronger than dorsal spines, the second and third of nearly equal length, the second somewhat strongest, not much longer than diameter of the orbit, 4 in head. Soft rays of anal low, 34 in head. Caudal fin emarginate, 13 in head. Pectorals much longer than ventrals, extending slightly beyond them, their length 1 s in head.

Scales moderate firm, present on cheek, opercle, subopercle, and in a single series on interopercle. Scales above lateral line forming very
oblique series rumning upward and backward, not parallel with the lateral line. Scales on breast not very small, smaller than those on operele. Basal portions of vertical fins scaly.

Head $2 \frac{2}{3}$ in length (3t with caudal): depth $3{ }^{2}(4)$; eye $5 \frac{1}{3}$ in head. D. X, 13; A. III, 7; scales 6-45-11; lateral line with 50 tubes.

Coloration: Back and sides very dark olive brown; the back with a slaty tinge, the sides often with some faint purplish; sides pater below; the belly and lower parts of head white. Each scale on the dorsal region with the basal half dark. Head colored like the body; maxillary brownish, no blnish streak on preorbital. Vertical fins dark brownish; the spinous dorsal olive brown with a narrow dark streak at base and tip; anal with the margin of its first is rays white; pectorals olivaceous brown; ventrals dark brownish, becoming reddish at base. Iuside of mouth reddish vellow. loung with the margin of spinous dorsal, and most of anal black.

This species is very abundant in the harbor of Mazatlan. It reaches a weight of 15 pounds, and as a food-tish ranks high, little below the "P'argo Colorado." It is known to the fishermen as "Pargo pricto."

The species of Lutjonus found at Mazathan may be thus compared:
a. Vomerine teeth forming an anchor-shaned patch, the band prolonged backward on the median lime; boely rather deep, the bank somewhat elevated.
b. Second analmune shoter than thind; solt tins rather high; teeth weak; snout moderate; scales above lateral line forming oblique series; a temporal as well as an occipital batud of scales; dorsal spiues shender; pectoral tin long: josterior nostril oblong. Color red; a large black blotch on lateral line below last doral spines; back aud sides with rows of dark spots following the series of scales; tins redulish.

> Gettates。*
bb. Second anal spine longer than third; teeth strong, the upper canines very large; 8uout long and pointed, the preontital broal; seales above lateral line forming series parallel with the bateralline; one narrow occipital band of scales: dorsal spines strong; pectoral fin long; posterior nostril slit-like. Color hrownish, with faint silvery streaks along the rows of scales on sides: a light home streak along preorbital and suborbital uswally iuterrupted and often extending on the operele; fins mostly pale

Amgentivitratus. $\dagger$
aa. Vomerine teeth forming a rrescent-shaped patch, without prolongation on the median line.

[^125]c. Scales above the lateral line forming oblique series; teeth very strong; lower jaw with about 8 canines, which are not much smaller than the canines of the upper jaw ; posterior nostril nearly round ; a narrow occipital band of scales; anal spines graduated; dorsal spines ten, rather semeler; pectoral shortish, not nearly reaching anal; soft rass rather low; bods rathere clongate, the liack not arched. Color dark brown; ventrals aud anal largely blachish.. l'meto.
cc. Scales above the lateral line forming horizontal suries parallel with the lateral line; teetld rather strong; the large toeth of the lower jaw not canine-like, much smaller than the upper canines; pusterior nostril oblong; oceipital band of seales very harrow.
d. Body rather deep, the depth about equal to lenerth of head: soales rather small and firm, in five series above lateral line; secomd anal ngine larger than third; dorsal spines ten, rather low and whong; sutt rays of dorsal and anal bigh; pectorals long, about reaching anal. Color red, dusky above: a short bue streak on suborbitals; anal and ventrals largely dusky..... Colomado. dd. Bodse elongate, the back not elevated, the debuh less than leugth of head; scales large aud rather thin, in four series above lateral line: dormal spines eleven, high and slender: second anal spine nmatler thas third: soft dorsal and anal low; pectorals much longer than ventrals, but not reaching vent. Color brown, with broat silvery stripes along the rows of scales; young with silvery bars; lower fins dusky................................................................
aaa. Vomerine teeth manown; boely plongate, the: depth less than length of head; second anal spine longer than third ; dorsal spines tern, low ; pectorals very short, not longer than ventrals; scales rather small. Color purplish-hrown, the centers of the seales paler; boly with nine faint vertical bars; upper fins edged with dusky; base of pectoral dark

Novempasciatuos. $\dagger$

Head $3 f$ in length ( $3 \frac{2}{3}$ with candal); depth $3 \frac{4}{5}\left(4_{0}^{2}\right)$. Length (28295) $16 \frac{1}{2}$ inches. D. $\mathbf{X}-\mathrm{I}, 2$ or $\mathbf{2}-\mathrm{I}, 24$; A. II, 7 or II, 8 ; scales $7-53-13$; tubes of lateral line 54 .

Body rather clongate, slewderer than in M. undulatus, moderately compressed, the back little elevated; anterior protile straightish or slightly undulate. Heal long, rather low, the snout long, and abruptly trmeate at the tip, which projects but little beyond the premaxillaries. Mouth nearly horizontal, the lower jaw included, the maxillary barely reaching to opposite front of eye; its length $3_{\frac{1}{6}}$ in head. Teeth in rather broad bands, the anterior in upper jaw little enlarged.

Snout with the usual fobes and pores at tip, its length 3 ? in head; chin with 5 large pores; about four small barbels on the inner edge of each deutary bone anteriorls. These are rather shorter than the posterior nostril, which is oblong and much longer than the anterior nostril.

Eye rather large, 6 in head, $1 \frac{1}{2}$ in interorbital width, a little more than half snout, a little less than preorbital width. Preopercle with numerous rather strong teeth above the angle which has two large,

[^126]strongly-divergent teeth; the lower of these is directed obliquely downward. Gill-rakers short. Psembobanchise well developed.

Scales of moderate size, those on the breast little reduced. No scales on the dorsal or anal, except a basal series. Caudal largely scaly; about 20 seales in an oblique series from front of anal upward to spinous dorsal; 18 from vent upward to soft dorsal. Lateral line becoming straight well in advance of anal.

Spinous dorsal high, not higher than in M. undulatus, its third spine not very much shorter than the fourth. Third spine varying in length, about 2 in head ( 13 to $2 \frac{1}{3}$ ); all the spines freely flexible; longest soft ray 3 in head. Caudal slightly double-concave, the upper, middle, and lower rays about equal, 13 in head; lower rays shorter in young specimens; anal small, endiug well in advance of posterior ray of dorsal; second anal spine rather small, its length $3 \frac{3}{5}$ in head; longest soft ray $2 \frac{1}{2}$ in head. Pectoral fin very long and pointed, reaching past ventrals, but not to vent, its length $1 \frac{1}{\frac{1}{~ i n ~}}$ head. Ventrals with the first ray filamentous; 18 in head, withont flament.

Color grayish silvery, without brassy tinge; dorsal regiou and sides above lower edge of pectorals marked with dark streaks extending obliquely upward and backward along the series of scales. Besides these, about ten short oblique dark bars extending downward and forward, crossing the arched portion of the lateral line, the longest of these about as long as snout; lining of gill-cavity blackish; peritoneum pale; fins all yellowish, the tip of spinous dorsal blackish; upper edge of pectoral and border of soft dorsal dusky; region above and below base of pectoral with dark punctulations.

This species is rather common at Mazatlan, where it is known as "Corbina." It was not noticed at Panama, where its place is taken by the closely related Micropogon altipinnis. It is closely allied to Micropogon undulatus (L.) C. \& V., of the Atlantic coast, differing in its more elongate body, rather larger scales, \&c. The color and number of fin rays are also somewhat different in the two species. From M. altipinnis, to which it is still more closely allied, it differs chiedy in the smaller scales and greater number of dorsal rays.
20. Scizena icistia, 8p. nov. (28182, 28228, 29205, 28369, 29566, 29613, 20615, 29775, 29790.)

## Subgenus Bairdiella Gill.

Body elongate, compressed, the back a little elevated; snout very short, compressed, and rather blunt, 4 in head; mouth moderately wide, oblique; lower jaw souewhat included; maxillary reaching vertical from posterior margin of pupil, $2 \%$ in head; upper jaw with a narrow band of villiform teeth and an external series of somewhat larger teeth; lower jaw with a single series of teeth smaller than the enlarged teeth of upper jaw and more close-set; in front this series broadens into a narrow band.

Chin with 4 pores; premaxillaries on the level of lower part of pupil projecting beyond snout. Interorbital region slightly depressed. Gillrakers long and strong, about 6-17 in number. Preopercle with its lower edge sinooth, the posterior edge armed with distinct spines, the three spines nearest the angle much the longest, the lowest directed vertically downward and somewhat forward. Eye large, its diameter slightly less than length of snout and than interorbital width, $4 \frac{2}{3}$ in length of head. Scales rather small: series of small scales on membrane of dorsal and anal; lateral line little arehed, becoming straight opposite interval between rent and anal.

Spinous dorsal high, the spines all very slender, weak, and flexible, more slender than in other species of this subgenus; the third and fourth about equal, much longer than the others, the upper margin of the fin very oblique; the longest spine about seven tenths length of head, much longer than the soft rays, which are about $3 \frac{3}{3}$ in head.

Second anal spine exceedingly strong, 13 in head, about four fifths length of fourth dorsal spine, and about as long as first soft ray of anal; midde rays of candal slightly produced, $1 \frac{1}{2}$ in head, the fin subtruncate. Ventrals long, their length more than half the distance from their base to origin of anal. Pectorals not reaching vertical from tips of ventrals, about equal to them in length, $1 \frac{1}{2}$ in head.

Hearl $3 \frac{2}{6}$ in length ( 4 with candal); depth $3 \frac{3}{6}\left\langle\frac{1}{5}\right\rangle$. D. X-I, 25 ; A. II, 8; scales $9-62-15$; Lat. 1. with 52 tubes.

Color grayish silvery above, silvery on sides and below; dorsal region with faint streaks produced by darker centers of the scales. Spinous dorsal blackish, darker on membrane of first spine, the soft portion as well as the caudal yellowish-lusky. Ventrals and pectorals pale, each with a faint yellowish blotch; axil of pectoral black above; anal pate.

This species differs from Sciena armata (Bairdiella armata Gill = Corrina acutirostris Steindachner) in the much longer and more slender dorsal spines, as well as in varions details of form. The teeth of the lower jair are also quite different.
S. icistia is very common at Mazatlan, where it is known as "Corbineta". It reaches an arerage leugth of 6 inches, and is little valued as a foodfish. Many specimens were obtained.
21. Scarus perrico, sp, nov. (2N328 U. S. Sat. Mus.)
subgenus Hemistoma* Sw.; allied to S. chlorodon Jenyns.
Body robust, deep, compressed; top of head with a very large adipose hump. Teeth green; no pointed teeth at angle of month; upper lip covering about half the surface of the upper dentary plate; lower lip covering base only of lower dentary pate. Cheeks with two rows of scales, the lower of four, the upper of tive; lower limb of preopercle wholly naked. Caudal in somewhat rounded, its lobes not produced. Pectoral fin three-fourths length of head; rentrals inserted under front of pectorals.

[^127]Coloration in life: light brownish, with some greenish shading on sides and bluish-green on caudal peduncle; fins all bright blue; snout and forehead bluish; orbits surrounded by radiating dots and dashes of green. In spirits: a yellowish area below and in front of eye; upper edge of dorsal and lower edges of caudal, anal, and ventrals yellowish, as is the lower side of the head.

Head, 3 in length; depth, $21 . \mathrm{D} . \mathrm{IX}, 10$; A. II, 9 ; Lat. 1. $\because 4$.
This species is very common in the rocks abont Mazatlan, where it is called Lora or Perrico, both words meaning parrot. It is seldom caught and is not eaten. One specimen, 23 inches in length, was procured, and is the type of the species.
22. Pomacanthus crescentalis, sp. nov. (28139.)

Subgenus Pomacanthodes Gill; allied to Pomacanthus zonipectus (Gill) Gthr.

Body broadly ovate, with short and slender caudal peduncle. Head deeper than long, the profile very steep and uneven; a bulge above the occiput, another above the eye, and another at the premaxillaries, the interspaces between these concave. Eye broader than preorbital, $3 \frac{1}{2}$ in head (in the largest specimen), its diameter half the width of the cheeks below it. Eyes proportionally larger in smaller specimens. Vertical limb of preopercle minutely serrate, the spine at the angle about as loug as pupil. Mouth small, with broad bands of setiform teeth as in other species. Length of mandible half greater than diameter of eye. Gill-rakers very short; gill-membranes narrowly joined to the isthmus.

Dorsal spines rapidly graduated, the last (eleventh) spine two-thirds to three-fourths length of head, three fifths the height of the soft rays of dorsal. A nal spines long. stronger than those of dorsal, rapidly gradnated. Soft rays of anal lower than those of dorsal, the outline of the fin rombled. Soft dorsal highest towards the front, the rays more rapidly shortened posteriorly than those of anal. Candal peduncle deeper than long, the fin somewhat rounded. Pectoral fins short, reaching scarcely past rent, a little shoter than head. Ventrals elongate, the first ray filamentous; the tin one-thid longet than head, reaching third anal spine.

Head everywhre scaly, the sodes of head, breast, and front of bock, very small; anteriorly redued to shagreen-like roughness, as in Pomacanthus arcuatus. Scales of body irregular in size, very rongh; large and small ones closely intermixed.

Color brownish-black, becoming pure black on dorsal and anal fins; top of head with a median line of bright yellow which divides on the snont, a branch passing down on each side of mouth, the two meeting, or nearly meetine. on the throat: a shall white spot on chin: sides with five very distinct marow bright gellow cross-bass strongiy consex for
wards; the first from front of dorsal, touching posterior margin of orbit, extending along preopercle to base of spine, then turning abruptly backwards, the two meeting on belly immerliately in front of ventral fins; the second from immediately in front of anal base, in a strong curve behind base of pectorals, reaching dorsal at base of seventh and eighth spines, thence narrowed and continued backwards on the fin; the third extends from eighth and ninth soft rays of dorsal to the fourth and fifth of the anal, the fourth from end of dorsal base to end of anal base, the two latter bands much curved and continued backwards on dorsal and anal fins, the attenuated ends sometimes blue; the fifth bar crosses the candal near its base, and runs back on fin above and below. Between these yellow bars and parallel with then are numerons narrow blue lines. Dorsal blue-edged anteriorly, this color a backward continuation of the first bands. Caudal translucent with a vertical series of short livear black blotches.

This species is said by the fishermen to be common among the rocks in Mazatlan Harbor, and is called by them Muneca. But two specimens were seen liy the collector. Several others were afterwards obtained at Panama, where it is rery common.

2\%.Gobiesoz zebra, sp, nov. (sheno.)
Body comparatively very long and narrow, the greatest width about one-fifth the total length. Head narrow, depressed, its width about $4 \frac{1}{2}$ times in length of body. Eye small, its diameter about half interorbital width. Opercular spine well developed. Ventral disk nearly as long as head. Mouth rather small, anterior, maxillary reaching front of eye. Incisors of lower jaw nearly horizontal, rather broad, three-lobed at tip, the middle casp the longer. Upuer teeth much smaller, the median ones compressed, blunt, close set, a little shorter than the lateral teeth and with dentate edges: one or two series of small teeth close behind them. Anal berimning under middle of dorsal; the distance from insertion of dorsal to base of catulal is contained $3 \frac{2}{\overline{3}} \mathrm{in}$ length: pectoral half as long as head; caudal truncate with romoded angles.

Head 32 in length; depth nearly 8. 1D. 7: A. 6.
Back with five dark cross hars about as widn as the interspaces, three of them in front of the dorsal fin, the two anterior much broader and more distinct than the others; these hars are all distinet on the back, fading on the sides, which are often vaguely clouded with dark; the color of these dark bars varies trom reddish-brown to back, and that of the interspaces from olivaceous to light pink and bright rose red; top of head bright red, marbled with light slaty-bluish: a black bloteh on opercle, and two rers distinct black cross spots, one on each side of median line, forming the front of first dorsal bar; sometmes cheeks with 2 or 3 pale bhish streaks: dorsal, pectoral, and eandal more or less shaded with dusky; lower tins pale; usually a dark bar at base of caudal and one aronss middle of the fin.

Very abundant in the rocky tide-pools around Mazatlan, hiding under the numerous sea-urchius. About 30 specimens were collected, the largest nearly 3 inches long.
24. Goblesox eos, sp. nuev. (29247.)

Body comparatively short, stont, and narrow, the head rather broad, but, as well as the body, much less depressed than in G. erythrops; the width of the head less than its length, contained $3 \frac{3}{3}$ times in body; incisors serrate or tricuspid, the teeth as in G. zebra. Ese moderate, about $1 \frac{1}{2}$ in interorbital space, which is about $3 \frac{2}{2}$ in head. Pectoral about one-half length of head. Veutral disk shorter than inead. Distance from base of caudal to front of dorsal $3 \frac{1}{5}$ in total leugth. Caudal truncate. Head 3 in length; depth $5 \frac{1}{2}$. D. 6; A. 6. Bright rosy red, sometimes made dusky above with black points; back with from one to three faint dark bars; three dark lines downwards and backwards from orbit, and usnally one or two more on the opercle; candal usially with a reddish bar at base and a dusky one towards tip; fins otherwise nearly plain.

Very abundant in the rock-pools, where it is nearly always found, in company with $G$. zebra, hiding under the sea-urchins. The largest examples seen are about $1 \frac{1}{2}$ inches long.
25. Gobiesox erythrops, sp. nov. (29tere.)

Head scarcely longer than broad, proportionately very broad and depressed, its breadth three times in total. Incisors in both jaws entire and rather broad, the lateral teeth, as usual, pointed; no canines. Eyes very large, considerably wider than the narrow interorbital area, 3 it in head; interorbital area nearly of in head. Ventral disk a little longer than head, ${ }^{3}$ in body. Pectoral abont one-third leugth of head. Distance from front of dorsal to sambal, $3 \frac{2}{3} \mathrm{in}$ body. Candal truncate with rounded eslges.

Head 22 $2_{2}$ depth 6. D. 6; 4. 5.
Light olivaceous; body with three or four bars of cherry red; head marbled with red; eyes intensely cherry red, their upper border blackish; fins pale, the upper mottled with reddish; caudal barred with red.

But $t$ wo specimens, $1 \frac{1}{2}$ inches long, taken in a rock-pool; evidently rare. A specimen of this species from the Tres Marias Islands, is in the collection at Woodward's Gardeus, San Francisco.
26. Goblesox adustus, sp. nov. (2924.4.)

Head and boty broad and that, much depressed; width of heard nearly equal to its length, 3 in body. Incisors in middle of lower jaw broad, entire; those in upper jaw narrow, blunt, little compressed, entire, shorter than the lateral teeth; behind these two or three series of smaller teeth. Eyes rather large, separated by a broad interorbital space, which is one-third the length of the head and about hatf greater than diameter of eye. Operenlar spine sharp. Pectoral short. about hali
length of head; ventral disk as lons as head; distance from base of caudal to front of dorsal equaling three-tenths of the length; caudal rounded behind.

Head 3 in length; depth nes. D. 9; A. 7.
Brown, banded with blackish on boty, the head marbled with darker brown; front of dorsal black, the fins dusky with dark points.

Three specinens, the largest about 2 inches long, were obtained in a tide pool at Mazatlan. The species is evidently not common.

2\%. Gobiosoma zosterurum, sp. nov. (20:4\%)
Body long, slender, its greatest depth less than greatest depth of head. Head long, slender; mouth large, the lower jaw projecting; maxillary extending slightly beyond posterior edge of orbit. Eye rather large, longer than snont, $3_{3}$ in head; the interorbital space narrower than the pupil. Teeth small, in villiform bands, the outer in the npper jaw slightly enlarged. Snout rather pointed, subconical, the profile not very gibbous. Spinous dorsal high, the spines slender, the anterior filamentons, its height considerably more than greatest depth of body. Ventrals $1 \frac{3}{5}$ in length of head; pectorals short, half length of head. Caudal ${ }_{\mathrm{g}}^{\mathrm{y}}$ length of head, skin wholly naked.

Heal $3 \frac{1}{3}$ in length ; depth 6 ? ; D. IV-10; A. 12. Olivaceons, vaguely barred, everywhere closely punctate with darker, even the belly not pale; lower parts of head thickly punctate with dark dots like the sides; sides of body aud head with some faint pale spots; caudal with two distinct black lengthwise bands, its upper and lower edges white, the middle part colored like the body; dorsal and anal largely black, with pale edgings; pectorals and ventrals dusky.

A single specimen about $1 \frac{1}{2}$ inches long was taken with a seine in the Astillero at Mazatlan.
28. Clinus zonifer, sp. nor. (28122.)

Subgenus Labrosomus Swainson; allied to Clinus delalandi C. \& V.
Form rather stout, compressed; snout not very short, rather pointed, the profile gibbous above the eyes, thence declining straight to the tip of the snont; mouth rather small, the maxillary reaching front of eye; eye large, $3 \frac{1}{2}$ in head, as long as snout; small slender cirri above the eyes, and a fringe of rather long filaments at the nape rather longer than the orbital cirri. Outline of spinous dorsal emarginate ; first spine a little longer than eye, the second, third, and fourth progressively sbortened, the fifth again longer; the eighth to eleventh spines are the longest, thence gradually decreasing to the next to the last, which is much shorter than the last; soft dorsal rays considerably higher than the spines, the longest about one-hatf length of head. Anal long, not very high, the membrane deeply notched betweea all but the last six rays, which are the highest. Pectorals hive-sixths length of head;
ventrals as long as from snout to edge of preopercle. Belly naked anteriorly; the scales swall, cycloid; lateral line complete.

Head 32 in length; depth $4 \frac{1}{5}$. D. XIX, 9 ; A. II, 19 ; Lat. 1. $\mathbf{3} 3$.
Color olivąceous, darker above, much mottled and speckled with clear dark brown; sides with five distinct irregular dark brown bars, extend. ing from base of dorsal to level of lower margin of pectoral, their lower edges connected by a vague undulating longitndinal band; a blackish blotch on occipital region, and black blotches on cheeks, opercles, and before base of pectoral ; opercle with several narrow pinkish streaks; head below with narrow streaks formed by series of dark brown spots; an interrupted brown bar across lower jaw; belly unspotted; ventrals pale; other fins all barred with narrow series of dark brown dots; anal somewhat dusky.

Clinus zonifer is the most abundant devizen of the rock-pools around Mazatlan, with the single exception of Gobius soporator, and reaches a length of about three inches. This is the species mentioned by Mr. Lockington (Proc. Acad. Nat. Sci. Philad. 1881, 114) as Clinus phillipi Steind., from the Gulf of California.
29. Tripterygium carminale, sp. 110 v . (28118.)

Body rather slender, heary forwards, rapidly tapering behind. Head short, the snout low and rather pointed, the profile straight and steep from the snout to opposite the front of the eyes, there forming an augle and exteuding backwards nearly in a straight line. Eyes very large, longer thau snout, 3 in head, high up and close together. Mouth wide, the jaws subequal, the maxillary extending backwards to front of pupil. Teeth moderate, essentially as in species of Clinus, those of the outer series enlarged. No evident cirri on the head. Scales on body of moderate size, ctenoid, the edges strougly pectinate; belly naked; lateral line extending to opposite last ray of soft dorsal, ascending anteriorly but without consex curve. Dorsals three, the tirst and second contiguons, the second and third well separated; first dorsal of three spiues, the first of which is the highest and about as long as diameter of eye; the second dorsal of higher and slenderer spines, the anterior the highest, the longest abont equaling greatest depth of body; sott dorsal shorter and a little lower than second spinons dorsal. Caudal small. Anal long, beginning nearly under middle of spinous dorsal. Pectoral long, longer than head, raching much past front of anal. Ventral three fourths length of head.

Head 3 za in length; depth about $5 \frac{1}{2}$. I. IIT-XII, 9; A. II, 17; Lat. 1. 40.

Color light brownish, with four dark brown cross-bars on sides, about as wide as the interspaces, which are marked with more or less reddish and with some lighter spots; belly pale; space behind pectoral dark; a dark bar downward and one forward from eye. First dorsal mottled with darker, second and third dorsals nearly plain; a narrow dark bar
at base of caudal, and a broader one towards tip, the fin sometimes entirely black, pectorals somewhat barred; lower fins plain.

This species is represented in our collection by four specimens, each about $1 \frac{1}{2}$ inches long, taken from a deep tide-pool at Mazatlan.
30. Salarias chiostictus, sp. nov. (\%311\%.)

Body moderately elongate, compressed, the head short, blunt, almost globular, about as broad as deep, and a little longer than broad. Mouth inferior, without lateral cleft, the lower jaw included; width of cleft of mouth two-thirds length of head. Teeth small, weak, finely pectinate; canine teeth small, not so long as diameter of pupil. Supraorbital cirrus divided in four, its height three fourths that of the eye. Eye 34, in head. Interorbital space channelled, narrower than eye. Maxillary extending to behind middle of eye. No crest on top of head. First dorsal low and even, its spines rather slender, the last spines short, scarcely connected by membrane with the soft rays; soft dorsal well separated from caudal. Caudal subtruncate, with rounded angles. Anal lower than soft dorsal, with a little longer base. Pectorals a little longer than head; rentrals about half as long.

Head $4!$ in length ; depth $5 \nmid$; D. XII-15; A. 15.
Color in life: Olive brown abose, lighter below; five broad dark bars from dorsal fin to middle of sides, each terminating above on the fin, and below on sides in a pair of black spots ; sometimes only the spots are dis. tingruishable, the bars being obscure; sides below spinous dorsal with numerous back specks, and with mumerons oblong spots of bright sil. very; sometimes a silvery streak from upper portion of base of pectorals to base of candal; aroad salmon-colored streak on each side of rentral line; sometimes the space between the silvery lateral hand and the base of the anal is darker, the vertical bars again appearing as galiss of hack, vertical blotches. Head yellowish olive, darker above ami refirulated with narrow brown lines, these appearing as parallel bars on the upper lip and radiating from the median line on the under side of the head. Vertical tins light grasish, with black spots, which appear as wavy bars on the caudal tin. Pectorals and ventrals pate, the former with a rellowish shade at hase. Orbital tentacles bright red.

This species is known from four sperimens (the largest $2 \ddagger$ inches in length), taken in a deep rock pool at Mazatlan.
31. Fieranfer arenicola, sp. nov. (2tr24.)

Body with nape slighty elevated, thence tapering regulanly to the tail. Snont blunt, rounded, protruding; the mouth subiuterior. mearly horizontal, large, the lower jaw inchuled; gape wide. the maxillay onehalf leagth of head, exteading leyom the vertical from orthit teeth in upper jaw very small, acute, in a harrow band, none of them enlarged; those in lower jaw and on vomer blmen, conic, in a wide band; those in outer series acute; a few on each side of matible, and two or three anteriorly on vomer eularged, canimelike.

Gill-openings very wide, the branchiostegal membranes little united, leaving nearly all of isthmus uncovered; the membranes united as far back only as vertical from end of maxillary. Opercle adherent above the upper angle, which is produced in a point extending above the base of pectorals. Below the angle the opercular margin runs very obliquely forwards. Eye large, equaling length of snout, greater than interor bital width.

Origin of dorsal fin distant from nape by the length of the head; the fin a very inconspicnous fold anteriorly, becoming higher posteriorly, where the rays are evident. Anal well developed along entire length, beginning immediately behind vent and running to tail ; its rays visible. Candal exceelingly short. Pectorals very well developed, more than half length of head. Vent just in front of base of pectorals.

Head $6 \frac{1}{2}$ in length; depth $10 \frac{1}{2}$; eve 5 in head.
Head and body perfectly transluceut; a faint silvery luster on middle of sides anteriorly ; a few inconspicuous small light yellowish spots along middle of sides (disappearing in alcohol); tip of tail dusky; upper margiu of orbit black.

A single specimen, $3 \frac{1}{4}$ inches long, was found buried in the sand at tow-tide on the beach of Mazatlan.
32. Etropus crossotus, gen. and sp, nov. (Pleuronectida.) (28124.)

Char. gen.-Eyes and color on the left side. Body deep, regularls oval. Head small; mouth very small, the teeth close set, pointed. in is single series, mostly on the blind side. Eyes narrow, separated by a narrow scalcless ridge. Margin of preopercle free. Ventrals free from the anal, that of colored side on ridge of abdomen. Dorsal beginning above eye; candal fin donble truncate; anal tin not preceded by a spine; seales thin, ctenoid on left side, smooth on blind side; lateral line sinnple, nearly straight. ( $\varepsilon$ foov, abdomen; nous, foot; the ventral being on the ridge of the abdomen.)

Char. spec.-Body oval, strongly compressed, with the dorsal and ventral curves nearly equal; both outlines strongly arched anteriorls. Head very small; snout short; mouth very small, its cleft not so long as the diameter of the orbit. Teeth conical, pointed, close-set, strongly incurved, in a single series. Those in the upper jaw on the blind side ouly; those in the lower jaw, on both sides. Eyes large, the lower in advance of the upper, the two separated by a very narrow scaleless ridge, which extends backward above the preopercle. Edge of operele on the blind side, with a row of conspicnons white ciliz. Upper nostril turned somewhat to blind side; anterior nostril of left side, with a very slenter cirrus.

Dorsal fin commenciug over front of upper eye, its middle rays highest, the anterior not elevated. Anal fin not preceded by a spine, its midule rays highest. Caudal fin very sharply double truncate; as long as head. Pectorals short, that of left side the longer, abont three-

Sourths length of head. Ventral of colored side on the ridge of the sabdomen; the membraue of its last ray nearly reaching base of first ray of anal. Ventral of blind side longer than the other, half the length of the heal, inserted farther forward than the ventral of colored side. Vent lateral, with a well-developed anal papilla.

Scales thiu, large; ctenoid on colored side, smooth on blind side, those on the middle part of the body larger. Head entirely scaly, except snout and interorbital ridge. Rays of vertical fins, with scales on the basal half, on colored side. Lateral line developed equally on both sides, nearly straight.

Head 45 in length; depth $1 \frac{9}{10}$. D. 80 ; A. 61 ; V. 6 ; Lat. l. about 48.
Color light olive brown, with some darker blotches. Vertical fins tiuely mottled and streaked with black and gray. Pectoral and ventral of left side spotted.

A single specimen, about 5 inches long, was taken with a seine in the Astillero at Mazatlan. Numerous others were afterwards obtained at Panama.
33. Malthe elater, sp. nov. (28127.)

Body very broad and depressed, the disk considerably broader than long, its width $1 \frac{9}{3}$ times in leugth of body; back and snout considerably raised above rest of body; greatest depth of body scarcely more than width of mouth. Mouth small, its width half greater than diameter of orbit. Snout very short, scarcely projecting beyond month, its length about equal to the interorbital width, shorter than its own width in front. Eye rather large, much longer than snout, wider than the interorbital area. Process representing first dorsal spine present, small. Skin covered with spines which are comparatively slender and sharp, their stellate bases inconspicuous; the spines on snout and middle of back and tail largest, much slenderer and sharper than in M. notata. No spines on ocella of back. Belly rough. Under side of tail with tubercular plates. Tail depressed towards base of fin. Soft dorsal and anal so shrunken that the rays cannot be counted. Pectorals one-third longer than rentrals, their length $1 \frac{2}{3}$ width of mouth. Candal a little longer than pectoral, $4 \frac{1}{4}$ in body. Length 4 inches.

Color light olive, above everywhere thickly and uniformly corered with small round spots of dark brown, these about as large as the pupil, and about as wide as the lighter interspaces. A conspicuous ocellus, larger than eye, on each side of back. This ocellus has a bright yellow central spot surround by a black ring, aroud which is a pale ring, and finally a fainter dark one. Under parts plain white. Pectorals spotted; candal yellowish at base with a terminal blackish band.

A single specimen was collected in Mazatlan Harbor and presented to the National Museum by Dr. J. U. Bastow. Two other specimens were afterwards seen but not obtained. The species is evidently rare at Mazatlan, and is unknown to the fishermen.

## DEMCHIPTBONOEA NEWOWTERON PORTO RHCO.

## By KOBERT KIDGWAI.



SP. CH.-Ahore dasky hrown, nearly or quite umiform on the dosa region; the scapulars. however, narowly bordered with pate ochractons or dull butt; feathers of the head namowly, and those of the nalw broadly, edged with butfy; rump and upper tail coverts pater browa or fawn-color, the feathers marked near their tips by a crescentic bar of dark brown. Tail deep ochraceons, crossed by about five distime bauds of dark brown, these very narrow on the lateral rectrices, bat growing gradually broader toward the intermedie, which are dark brown, with fise or six pairs of ochaceous spots (corresponding in poi tion to the ochraceons interspaces on the other tail leathers), these spors sometimes having a central small brown hoteh. Wings with dark brown prevailing, but this much broken by aveneral and conspicuous spotting of ochaceons: primaries crossed with bands of dark brown and deet ochraceons, the latter broadest on the outer quills, the picfure of which is much as in A. accipitrimus, but with the lighter color usually less extended. Face with dull, rather pate, ochraceous prevailing; this becomjng nearly white exteriorly, where borlered, around the side of the head, by a uniform dark brown post-amricular bar ; eyes eutirely sur. rounded by uniform dusky, this broadest beneath and behind the eve. Lower parts pale ochraceons or buff, the crissum, anal region, tarsi, and tibize entirely immaculate; jugulum and breast marked with broad stripes of dull brown, the abdomen, sides, and flanks with narrow stripes or streaks of the sanue. Lining of the wing nearly immaculate ochraceons. Bill dusky; iris yellow. Wing, 11.25-12.00; tail, 5.20-5.50; culuen, . 00 ; tarsus, $1.85-2.00$; middle toe, $1.20-1.30$.

Hab.-Portu Rico.
In "History of North Ameriem Birds," Vol. III, p. 25, under the head of "Otus brachyotus," reference was made to this form of the short-cared $O_{\text {wl }}$, as follows: "A specimen from Porto Rico (No. 39643) is somewhat remarkable on account of the prevalence of the dusky of the upper parts, the unusually few and narrow stripes of the lower parts, the roundish ochraceons spots on the wings, and in having the primaries barred to the hase. Should ay other specimens from the same region agree in these characters, they might form a diagnosable race. The plumage has an abnormal appearance, howerer, and I much doubt whether others like it will ever be taken." That the latter nufortunate prediction was quite unnecessary is fully demonstrated by three additional specimens kiudly sent me for examination by Mr. George N. Lawrence, all of which closely resemble the one in the National

Museum collection. In fact, the characters of the four examples are so uniform as to leave no doubt that the Porto Rican Short-eared Owl is a well marked local form, which, on acconnt of its isolation and consequent improbability of its intergradation with A. accipitrinu*, I propose to recognize as a distinct species.

In connection with this subject I hare carefully examined a rely large series of $A$. accipitrinus, and have been entirely unable to distinguish between continental specituens from any part of the world. Examples from Chili, the Argentine Republic, Brazil, and Costa Rica can be perfectly matched by others from North America and Asia; an example from Costa Rica is almost exactly like one from Besrout, Syria; another from the Sandwich Islamls is unlistinguishable from certain American specimens, while there appears to be no constant difference between North American specimens and those from Europe and Asia. As a rule, liuropean skins are paler than North American ones; but the palest as well as the most deeply colored) examples I have seen are from North America. In short, I find that in a series from any given locality, on either continest, the individual variation is greater than any geographical variation in this species.

Although I have not seen the Short-eared Owl of the (ialapagos (Otus galapagoensis (iould), I have no doubt of the validity of that species. The thansverse bars on the feathers of the lower parts and the longitudinal streaks on the legs, are features never observable in A. acripitrimus nor in A. portoricensis. In other respects, however, A. galnpegoensis appears to be quite similar to the latter, but is still darker colored, as well as smaller.

It appears, therefore, that, besides the common and nearly cosmopolitan A. accipitrinus, there are two well-marked insular forms belonging to the subgenus Brackyotus, which, though in all probability deseended from the same ancestral stock, should, on accomnt of their geographioal isolation, be considered as distimet species. Compared with A. accipitrinus, they differ from that species, and from cach other, as follows:
a. Legs entirely immaculate; lower parts without trace of transverse bars; first primary much shorter than second.

1. A. Acciprerinus. Dorsal region ronspienonsly striped with ochraceous; onter webs of primaries with ochraceous largely prevailing toward the base. Wing usually more thatu 12.00 inches. Hab.-Europe, Asia, the whole of continental America, and Sandwich Islands. (Strongs Island, West Indies ?)

[^128]2. A. portoricensis. Dorsal region nearly unitorm dark brown; outer webs of primaries with the ochraceous spaces scarcely or not at all more extensire than the brown ones on the basal por tion of the quills. Wing, 11.25-12.00. Hab.-Porto Rico.
b. Legs marked with narrow dusky streaks; lower parts with a greater or less number of transverse bars; first primary scarcely shorter than the second.
3. A. galapagoensis. Dorsal regiou irregularly barred or transversely spotted with fulvous; outer webs of primaries with the brown spaces more extensive than the fulvous ones, on the basal portion of the quills. Wing, 11.00. Mab.-Galapagos Islands.
I am aware that my couclusions, as giveu above, are somewhat different from those of Mr. R. B. Sharpe in rol. ii as expressed in his "Catalogue of the Striges" in the British Museum (pp. 238, 239). Mr. Sharpe there arranges the specimens of $A$, accipitrinus in the British Museum collection under four headings, as follows: " $\alpha_{0}$ Asio accipitrinus," " $\beta$. Asio cassini," " $\gamma$. Asio galapagoensis," and " $\boldsymbol{o}^{2}$. Asio sandvichensis"; this arrangement being based upon the examination of 39 specimens of the first, 24 of " $\beta$ ", 3 of " $\gamma$ ", and 2 specimens of the last named. He admits, however, the impossibility of always distinguishing between American and European specimens, though he states that "in America the general run of the specimens is rather darker and more ochraccous," both of which statements entirely agree with my own observations. The Falkland Island birds, says Mr. Sharpe, "seem permanently rufescent, but cannot be distinguished from some Chilian skins; and as some of the latter agree perfectly with European examples, no line for specific separation can be drawn." As for myself, never having seen specimens from the Falkland Islands, I am unable to comment thereon.

The Galapagos Short-eared Owl is referred by Mr. Sharpe to $A$. accipitrimus solely, it appears, on account of the close resemblance between a Bogota skin and specimens from those islands in general darkness of coloration; but since the former is especially stated to lack the leg.streaks, which constitute perhaps the most important character of coloration in A. galapagoensis, it wonld seem that such a view of the case is hardly warranted. That this disposition of A. galapagoensis was, howerer, made very doubtfully by Mr. Sharpe is evident from his remarks in connection with the subject, as follows: "The Owl from the Galapagos is by far the most different of any, by reason of its small size, dark coloration, golden forehead, and striped thigh-feathers. I have never seen a specimen from any other locality exhibiting the latter character; at the same time a Bogota skin in every other respect approaches it in appearance, and therefore, although I admit that at present it would appear to be specifically distinct, I should like to be sure that the New Granadan Short-eared Owl would not form a connecting link."
"The specimens from the Sandwich Islands," says Mr. Sharpe, "form
an interesting pair on account of their locality, but they cannot be separated as a species. They are rather small, and have a very dusky frontal patch; this I have found in other Asiatic specimens, and therefore the Sandwich Island $O w l$ can only be considered a small race of A. accipitrinus."

The United States National Museum possesses a single specimen (No. 13890, T. R. Peale) of the Short-eared Owl from the Sandwich Islands, and this one can be exactly matched, both in coloration and dimensions, by American specimens, while many of the latter are smaller than the two Honolulu examples the measurements of which are given by Mr. Sharpe. Thus it seems that the Sandwich Island bird can be in no way separated from the common and widely distributed $A$. accipitrinus,

As to the difference in coloration said by Mr. Sharpe to distinguish the sexes in this species, I cannot substantiate it with regard to the specimens in the Cnited States National Museum, if the determinations of collectors are to be relied upon. Two specimens from China, represent nearly the extremes of coloration, yet the lighter colored one is the female, the darker one the male (according to the labels); one of the lightest colored of North American specimens is marked as a female, while many dark colored specimens are determined as males. Neither can I agree with Mr. Sharpe in his opinion that the dark bar or spot sometimes found on the basal portion of the inner web of the outer primary is a "tolerably good indication of an adult bird," but from an examination of many specimens am inclined to regard it as merely an individual peculiarity, having no reference to either age or sex. As to the very marked variation in the depth of the ochraceons coloring (some specimens being deeply tawny and others nearly white beneath), it appears to me that the two extremes, instead of being sexual, are mercly analogous to the normal and erythrismal phases of other Owls, there being every gradation in different specimens between the two extremes of coloration.
Below are given the principal synonyms and references pertaining to A. accipitrinus and its allies.

## 1. ASIO ACCIPITRINUS (Pall.) Newton.

## (Short-eared Ocl.)

[^129]Man. 1, 1832, 132.-Aud. Orn. Biog. v, 1839, 273, pl. 432.-Sw. \& Ricn F. B. A. ii, 18.31, 75 ("brachyota").

Strix brachiotus Meyert \& Wolv Taschenb. Vög. Deutschl. i, 1810, 43.
Otus brachyotus Boie Isis, 1822, 549.-ALD. Synop. 1839, 28; B. A. Am. i, 1840, pl. $34 .-\mathrm{Cass}$. IHustr. 180̈4, 182.-Scl \& Salv. Nem. Neotr. 1873, 116.
Otus (Brachyotus) brachyotus Ridgw. in B. B. \& R. Hist. N. Am. B. iii, 1874, 22.
Asio brachyolus Macgill. Hist. Brit. B. iii, 1ल40, 4il.-Strickl. Orn. Syn. i, 18iñ, 209.
Ulula brachyotus Macgill. Rapac. B. Gt. Brit. -, 412.
Egolius brachyotue Keys. \& Blas. Wirl. Eur. 1840, 32, 143.
"Strix ulula" Gmel. (nee Linn.) 8. N. i, pt. 1, 1788, 294.-Pall. Zoüg. Rosso-As. i, 1831, 322.
"Anio ulula" Less. Man. i, 1831, 116.
"Otus ulula" Cuv. Règ. An. i, 1817, 323.
Strix tripennis Schrank. Famua Boica, i, 1798, 112.
1 Strix palustris Becnet. Nat. Deutachl. ii, 1791, 344; ed. 2, ii, 1805, 906.
Otus palustris Brehs Vög. Deutschl. 1831, 124.
Brachyotus palustris Bonar. Comp. List, 1838, 7; Consp. i, 1850, 51.-Gould B. Eur. pl. 40 ; B. Gt. Brit. pl. xxxii.-DeKay Zool. N. Y. ii, 1844, 2\%. pl. 12, f. 27.-Coues Key, 1872, 204; Check List, 1873, No. 321 ; B. N. W. 184, 306.
Strix passerina, Var. B. Lati. Iud. Orn. i, 1790, 66.
Strix canpia Stuaw Gen. Zool. vii. 1809, 27\%.
Strix agoline Pall. Zoüg. Rosao-As. i, 1831, 309.
Brachyotus agolius Bonap. Rev. et Mag. Zool. 1854, 541.
Otus miorocephalua Leach Syst. Cat. Brit. Mus. 1816, 11.
Strix brachyura Nilss. Orn. Suec. i, 1817, 62.
Otus agrarins Вкеим Yōg. Deutsehl. 1×31, 124.
Brachyotus agrarius Breem Nnum. 18i5, 270.
Brachyolus paluntris europans Bonap. Consp. i, 1850, 51.
Brachyotus palustris americanue Bonap. 1. c.
Otus brachyolus americanus Max. J. f. O. 1858, 27.
Otus breriarius Licht. Nomencl. 18is, 6 (Brazil).-Schleg. Mus. P.-B. Oti, 1862, 4.
Brachyotus leucopsis Brehm Naum. 1855, 270.
Brachyolus cassini Brewer Pr. Boston Soc. 1856, -; N. Am. Oül. i, 1857, 68.Cass. Baird'e B. N. Am. 1858, 54 ; Orn. U. S. Expl. Exp. 1858, 108.-Baird Cat. N. Am. B. 1659, No.
Otus cassini Gray Hand-1. i, 1869, 51.
Otus brachyotus 3. cassini Ridgw. Field and Forest, June, 1877, 210.
Asio arcipitrinus, ß. Asio cassini Sharpe, Cat. Striges Brit. Mus. 1875, 238.
Strix sandwichensis Blox. Voy. Blonde, 18:6, 250 (Sandwich Islands).
Asio sandvichensis Blyth lbis, 1863, 27.
dxio accipitrinus, ס. Asio sanduichensis Sharpe, J. c.
Brachyotus gmelinii Malm. Göteb. och Bohusl. Fauna, 1077, 75.
La Chouette BUFF. PI. Eul. 488.
Caspian Owl Lath. Synop. i, 1785, 147.

## 2. ASIO PORTORICENSIS Ridgw.

## (Porto Rican Short-eared Owl.)

"Otus (Brachyotus) brachyotus" Ridaw. (part) in B. B. \& R. Hist. N. Am. B. ili, 1874, 25 (npec. ex Porto Rico).
"Brachyotus cassinii" GUxDL. J. f. O. 1874, 307, 310.
Asio portoricensis RIDGW. MSS.

# 3. ASIO GALAPAGOENSIS (Gould) Strickl. <br> (Galapagoan Short-eared Oct.) 

Otus (Brachyotus) galapagoensis Gould PZS. 1837, 10 (Galapagos).<br>Brachyotus galapagoensis Bosar. Consp. i, 1850, 51.-Fass. Illuntr. B. Cal. Tex. ete. $1854,183$.<br>Otus galapagoensis Darwin Voy. Beag. Birds, iii, 1844, 32, pl. 3.-Gray Genera B. i, 1844, 40 ; List. B. Brit. Mun. -, 108; Hand-l. i, 1865, 51. Asio galapagoensis Staick L. Orn. Syn. i, $1855,211$. Brachyotus palustris, c. galapagoensis Coces Birde N. W. 1874, 307.<br>"Asio accipitriwus" Sharpe Cat. Strig. Brit. Mus. 1875, 234 (part). Asio ascipiltinus, $\gamma$. Asio galapagoenais Shanpe t. c. 23\% (Galapagos).<br>Smithsonian Institution, January 13, 1881.

## DESCRIPTION OF TWO NEW RACRE OF MVADRETES OBHCUREA L.AFRE.

## RY LEONHARD STEJNEGER.

During a recent examination of the species of the genus Myadestes, I have found that $M$. obscurus ought to be divided into three distinct races. I am indebted to the kindness of the authorities of the National Museum for the opportunity of describing them.

Prof. S. F. Baird in his "Review" of American Birds, I, p. 431, has already remarked, that "in specimens from Western Mexico, Tonila, and Tres Marias, the ash of head invades the back," and that "the rufous of the back is paler." But I find, also, that the specimens from the continent and those from the islands mentioned differ from each other so essentially in other particulars, that I have thought it convenient to separate them as follows:
$a^{1}$ Head and neck slate-colored, rest of upper parts brownish olive.

> 1. M. dscurns LafR.
a: Head, neck, and fore part of the back lighter ash-colored, changing gradually into the paler olivaceons of the remaining npper parts.
$b^{3}$ Finst primary not longer than the longest of the primary coverts; the secopd shorter than the seventh. Only the three outer tail-feathers tipped with white. Innermost secondaries without light edges on the tip.
2. M. obscurus var, occidenlalis Stejnkaer.
$b^{6}$ First primary much longer than the longest of the primary coverts, the second equal to the beventh. All the tail-feathers distinctly tipped with white. Innermost secondaries with the tips light-edged.
3. M. obscurus var. innularis Stejneger.

## Myadestes obscurus Lafr.

Myadeates obscurus Lapr. Rev. Zool. 1839, p. 98.-Baird, Rev. Amer. Birds, I, p. 430.Sclat. and Salv. Exot. Ornith. pt.iv, p. 49, pl. xxv.
Descr.-(U. S. Nat. Mus. No. 30722. Volcan de Fuego, Guatemala, Nov., 1861. O. Salvin.)-Slate-gray, the back brownish olive, more
rusty on the fore part, and more olivaceous on the rump and upper tailcoverts; upper head and neck gray, the latter slightly washed with olivaceous, the forehead scarcely lighter. Round the eye a pure white ring; chin, a stripe from the nostrils to above the ese, aud another from the base of the lower mandible, between the black of the lores and line bordering the chin to below the eye dull whitish, fading out gradually into the gray of the sides of the head and the throat. The flanks are strongly suffused with olivaceous, the remaining under parts very slightly so, the middle of the belly and the edges of the under tailcoverts becoming dull white. Wing feathers brownish black, edged with bright rusty on the outer web; the concealed base and edge of the inner web of secondaries and inner primaries light buff, forming two large patches on the under side of the wing. Tail-feathers black, except the middle pair, which are gray, tinged with olive, especially on the outer web; the exterior pair has the outer web and the apical half of the inner one light grayish buff, the edge of the light-colored part and the tip being white; the next pair has only a wedge-shaped and similar colored patch towards the tip; the third pair with a narrow tip of white. Feet brown; bill brownish black.

List of specimens examined, and their dimensions.

|  | Locality. |  | From whom received. | 品 | Length of 1at primary. |  | $\frac{8}{3}$ |  | 光 |  | Bill: Exposed culmen. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | mm | mm | mm | mm | mm | mm | wm | m |
| 13660 | Orizaba, Mex ...... |  | Sclater | ad | 23 | 63 | 100 | 97 | 20 |  | 11 | 19 |
| 207208 | Volc de Fuego, Guat | Nov., 1881 | Salvix | -ad | 22 | 61 | 99 | 06 | 20 | 20 | 11 | 9 |
| 37500 | Orizaba, Mex ........ |  | Sumichrast | -ad | 24 | 66 | 102 | 93 | 20 | 20 | 12 | 19 |

Wing formula.

| United States Natinnal Muscum catalogue <br> number. |
| :--- |
| Distance from the tip of the longent primary to the tip <br> of the- |

Mab.-High table-land of Sonthern Mexico and Guatemala.
Myadestes obscurus var. occidentalis Stejneger.
Myiadestes obscurns Lafr. apud Baird, Rev. Amer. Birds, i, p. 430 (part).
Descr.-(U. S. Nat. Mus. No. 35038.-s ad. Tonila, Jalisco, October, 1863. John Xantus.) Light slategray, only the interscapulars,
hind back，rump，and upper tail－coverts suffused with olive，somewhat rusty on the middle of the back；the head，neck，and upper back gray， forehead as light as the chin．Flanks pure gray without olive tinge． In other respects the colors agree with the typical form，excepting that the gray on the under parts is lighter and purer，and the rusty on the wings paler and more mixed with olive．

Dimensions．－Length of the first primary， $18^{\text {man }}$ ；of the second， $66^{\text {num．}}$ ． Wing，105；tail to basal end of feathers， 101 ；tarsus， 21 ；middle toe with claw， 19 ；exposed culmen， 11 ；and commissure， $18 \mathrm{~mm}^{\mathrm{mm}}$ ．

Hing formula．－Distance from the tip of the longest primary to the tip of the $1 \mathrm{st}, 63 ; 2 \mathrm{~d}, 16 ; 3 \mathrm{~d}, 4 ; 4 \mathrm{th}, 0 ; 5 \mathrm{th}, 1 ; 6 \mathrm{th}, 4$ ；and 7 th， $13^{\mathrm{mm}}$ ．

Hab．－Southwestern coast of Mexico and Guatemala．
Remarks．－The chief differences between the typical obscurus and the above－described race consist in the rather duller shade of the gray，and the brighter color of the rusty in the former，and in the absence of the rusty or olive wash on the fore part of the back aud the flanks in the latter．In many respects it comes very near to Myadestes elisabeth，but is easily distinguishable from this species by having the wings more rusty，and the upper head and fore part of the back pure gray．

## Myadestes obscurus var．insularis Stejneger．

Myiadeales obscurus Lafr．apnd Baird，Rev．Amer．Birds，i，p． 430 （part）－LAWr． Proc．Bost．Soc．Nat．Hist．181，p．277，and Extr．p． 19.
Descr．－（U．S．Nat．Mus．No．37327．－\＆ad．Tres Marias Islands， Jan．，1865．（Uol．A．J．Grayson．）In color this race shows very great resemblance to the foregoing，the olive－colored part of the back being only a trifle more rusty．It differs，howerer，in having the light fore－ head decidedly tinged with oliraceous buff，as also the light malar stripe；besides，the flanks are slightly tinged with olive．The most striking differences，however，are the light buff elges on the tip of the innermost secondaries，and the small，but very distinct and pure white spot on the tip of all the tail feathers．Grayson（Lawr．1．c．）gives the color of the eyes and the feet as black；but the latter are in the three specimens before me clear umber brown．

List of specimens examined，and their dimensions．

| $\begin{aligned} & \text { E. S. National Musenm } \\ & \text { catalogue number. } \end{aligned}$ | Locality． |  | From wham re celred． |  | Length of lat primary． |  | 星 |  | 安 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | m\％ | mm | พาพ | mm | mm | mm | mm | ต的 |
| 37127 | Tres Marias Islanda ．． | Jan．， 1865 | Colonel Graysox． | of ad． | 23 | 67 | 100 | 102 | 23 | 21 | 11 | 17 |
| 37388 | ．．．．．do ．．．．．． | Jan．， 1865 | ．．．．do ．．．．．．．．．．．． | dod． | 24 | 65 | 08 | 96 | 23 | 22 | 11 | 13 |
| $6{ }_{6031}$ | ．do |  | －．．．do | $\delta^{\circ} \mathrm{ad}$ ． | 22 | 65 | 97 | 96 | 22 | 21 | 11 | 12 |

Colonel Grayson gives (1. c.) the total length of the male, measured fresh, to 7.90 inches.

Wing formula.

| United States National Museum catalogue number. | Distance from the tip of the longeat primary to the tip of the- |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 1. | 2 d . | d. | 4 tb . | 5th. | 6 th . | 7th. |
| 37327 | mm. | mm. | mm. | mm. | mm. | mm. ${ }^{\text {a }}$ | min |
| 371528 | 50 | 10 | 1 | 0 | 0 | 2 | 10 |
| 55051 | 81 | 10 | 1 | 0 | 0 | 2 | 10 |

Hab.-Tres Mari is Islands.
Remarks.-This insular race is distinguishable from the var.occidentalis mainly by its less pointed wings and the longer first primary. In color, the two races agree very well, except that the bird frou the Tres Marias Islands shows a faint olive wash. all over. From both the other forms it may be easily distinguished by the light edgings on the inner secondaries, and the very distinct white tip of the tail feathers, which is to be found also on the three middle pairs. It seems that this character is constant, and that it does not depend on seasoual change or more or less good state of the feathers. All the specimens, which I have examined, seem to have been collected in the winter, and the quills are in all of them in a quite perfect state.

Washington, D. C., January 12, 1882.

## By ROBERT RIDGWAY.

## 2a. Hylocichla fuscescens salicicola subsp. nov.

(Willow Thrush.)
Turdus fuscescems Baird, B. N. Am. 18j8, 922, 927 (Ft. Bridger, Wyoming); Rev. Am. B. i, 1864, 17 (part ; spec. from Ft. Bridger).-Allen, Bull. M. C. Z. iii, 1872, 155, 173 (Mts, of Colorado).-Ridgw. Bull. Essex Inst. 1873, 172 (Salt Lake Valley, Utah); Bull. Essex Inst. 1873, 179 (Colorado): ib. 1875, 35 (Provo R., Utah); Orn. 40th Paral. 1874, 398 (valleys of Bear, Provo, and Weber R's, Utah; breeding).-Henshaw, Aun. Lyc. N. Y. xi, 1874 (Utah); Rep. Wheeler's Exp. 1874, 39, 56, 71 (do.); Zoül. Wheeler's Exp. 1875, 148 (Deuver \& Ft. Garland, Colorado; breeding).Cours, B. N. W. 1874, 5 (part).
Turdus (Hylocichla) juscescens Coves, B. Col. Val. 1878, 39 (part).
Ch.-Similar to $\Pi$. fuscescens, but averaging decidedly larger, the upper parts much less tawny, and the jugulum less distinctly buff. Wing, 3.80-4.25 (4.02); tail, 2.95-3.40 (3.20); culmen, .55-. 60 (.57); tarsus, $1.15-1.28$ ( 1.17 ); middle toe, . $65-.75$ (.69).*

[^130]Aslult in spring.-Above nniform russet-olive (much as in II. ustulata); jugulum and lower part of throat pale buff, as in ustulata, much lighter than in fuscescens, the markings, howerer, small and narrow as in the latter. Sides of head dull grayish, without trace of lighter orbital ring; sides of breast, sides, and flanks ash-gray (rather deeper than in fuscescens), the breast very faintly or not at all spotted with darker.

Adult in fall and winter.-Above darker, more umber, brown; jugulum and lower part and sides of throat deeper buff, with much darker spots.

The general appearance of this bird at first glance is more that of $\boldsymbol{H}$. ustulata than true $H$. fuscescens, the upper paits and anterior lower parts being quite similarly colored. A close examination, however, immediately reveals radical differences, the most important of which is the total absence of any light orbital ring, which is always present, and very distinct, in ustulata. The wings and tail, instead of being appreciably more rufescent than the back and rump are, on the other hand, less so; the buff of the jugulum gives way very abruptly to the ash-gray on the sides of the breast, and the spots end quite as abruptly, the breast being plain ash-gray laterally, and white medially, with very indistinct spots of grayish between the white and the gray. In ustulata the sides are decidedly brown, with very distinct transverse spots of a darker shade of the same color entirely across the breast. Another excellent character consists in the color of the axillars and lining of the wing, which are light grayish in the present bird, and deep brownish buff in ustulata.

The differences from typical fuscescens of the Atlantic States, as in. dicated in the above diagnosis, are exceedingly constant.

A specimen from Chicano, III., in the collection of II. K. Coale, of that city (No. 1568, Coll. H. K. C., Sept. 16), is referable to this race, and is evidently a fall straggler from the Rocky Mountain district. It is even more olive above than most specimens from that region, having almost exactly the same shade of color as a fall specimen of $H$. scainsoni from Massachusetts, the latter, however, an unusually brown example. The entire absence of any light orbital ring, the narrow, almost linear, streaks of the jugulum, and the peculiar proportions, however, refer it at once to fuscescens.

I have called this new form salicicola on account of its marked predilection for willow thickets, to which, along the streams in the valleys and lower caũons of the Rocky Mountain region, it is chiefly confued during the breeding season.

List of specimens examined．
MALES．

|  | Locality． | 4 | 边 |  |  | $\frac{\text { d }}{\frac{\text { d }}{\frac{1}{4}}}$ | 安 | 要 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 79461 N．M． | Fort Garland，Colo | Ad． | May 28 | 4． 25 | 3.40 | 1．30 | ． 70 | 55 |
| 66067 N．M． | F．．．do | At． | May 20 | 4．10 | ${ }^{3}, 40$ | 1． 15 | ． 70 | ． 69 |
| cetar N．M． | do | Ad． | May 17 | 4． 20 | 3， 25 | 1． 15 | ． 70 | ． 55 |
| 60sk9 N．M． | do． | Ad． | June 10 | 410 | 3． 25 | 1． 20 | ． 67 | ． 50 |
| 10663 N．M． | Fort Bridger，W yo | Ad． | May 28 | 4． 00 | 3． 10 | 1． 25 | ． 68 | 58 |
|  | A verage． |  |  | 4． 13 | 3.26 | 1.17 | ． 69 | 57 |

## FEMALES．

| 79460 N．M． | Fort Garland，Oolo | Ad． | June 19 | 4． 00 | 3． 25 | 1． 12 | ． 65 | ． 55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60ncos N．M． | Laramies，Wyo | Ad． |  | 3． 80 | 2.95 | 1． 10 | ． 70 | ． 55 |
| 10.81 N．M． | Fort Bridger，W yo | Ad． | Mas 27 | 3． 90 | 3.05 | 1．15 | ． 68 | ． 58 |
|  | Average |  |  | 3.90 | 3.08 | 1． 12 | ． 68 | ． 50 |

## SEX NOT DETERMINED．



Below is given a list of the specimens of $I I$ ．fuscescens examined in this connection，with their measurements．

MALES．


List of specimens examined-Ccontinued.
FEMALES.


## 3a. Hylocichla alicle bicknelli Ridgw.

## (Bicknell's Thrush.)

Cr.-Similar to Hylocichla alicia Baird, but much smaller and (usually) with the bill more slender. Wing, 3.40-3.80 (3.65); tail, 2.60-2.90 (2.75); culmen, .50-. 52 (.5) ; tarsus, 1.10-1.25 (1.13) ; middle toe, . $6.5-.70$ (.68).

Mab.-Breeding near the summit of Slide Mountain, Ulster County, New York (Bicknell), and probably in other mountainous districts of the northeastern United States; in migrations mixed with H. alicid.

Mr. Eugeue P. Bicknell, of Riverdale, N. Y., has very kindly given me permission to describe the present new Thrush, which no one else appears to have met with. The above diagnoses and following remarks are based entirely upon the specimens in Mr. Bicknell's collection, which are the only ones I have seen. It is also proper to state here that the differences presented by these specimens from true $\Pi_{\text {. alicice were first }}$ noticed by Mr. Bicknell, and by him pointed out to me.

The seven specimens upon which this new race is based are uniformly very much smaller than true $\Pi$. alicic, with slenderer bills, and present also certain slight but rather indefinite peculiarities of coloration. After a very careful comparison, however, I am unable to find any constant color-differences which can be expressed in a diagnosis. Some specimens, notably the two males from Slide Mountain (where Mr. Bicknell found the present bird breeding in company with H. ustulata suainsoni and $H$. unalasca pallasi, and having very distinctive habits and notes as compared with the two species in question), have the upper parts much browner than in alicia, with the wings and tail appreciably more reddish. In fact, the general aspect of the upper parts approaches more closely that of $H$. ustulata, but the shade is much darker
and less fulvous, while, as in typical alicia, there is no trace of a lighter orbital ring. The bill is much more slender than in most specimens of the larger form, while in several examples it is of a very peculiar shape, being much depressed basally, with the middle portion of the culmen somewhat concave. In fact, the bill in these specimens is much like that of the Nightingale (Luscinia philomela) in shape, but with even a more prominent angle at the base of the gonys, and still more depressed at the base. The extreme form of the bill, in this respect, as exhibited in No. 653 (coll. E. P. B.), suggests very strongly that of Cinclus.

Mr. Bicknell sends me the following notes, based upon his specimens:
"In regard to the differences of coloration of the two forms, I find that, though some specimens in my series can be closely matched, the majority can be separated by color differences. These, however, are not very tangible, but most specimens of the smaller form present a somewhat undefinable appearance, which separates them from the larger. This is best seen about the head, and seems to be produced by a brownish shate relieving those colors which in true alicia are dark and sooty. Though my two Catskill examples are darker than spring specimens of alicia, specimens of the smaller form taken in the fall are quite unilormly paler than those of true aliciar taken at the same season; and though this seems to be contrary to a recognized law of geographical distribution, it certainly is the fact. Besides in the general color it is noticeable in the legs and feet, some of the smaller forms having the tarsi a pale clear yellow, while in many large specimens they are uniformly dark. The base of the lower mandible is also more largely and generally jellow in the smaller form."

Lish of specimens examined.
Males.


SEX CNDETERMINED.


For comparison, I give below measurements of all the specimens of H. alicia Baird examined in convection with the present subject:

MALES.

|  | Locality. | $\dot{8}$ |  | $\begin{aligned} & \text { Tail to liamal end } \\ & \text { of feathers. } \end{aligned}$ |  | $\begin{aligned} & \dot{8} \\ & \frac{8}{3} \\ & \frac{3}{3} \end{aligned}$ | $\begin{aligned} & \text { © } \\ & \text { 8 } \\ & \text { E } \end{aligned}$ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18072 Nat. M. | Gmowntar Bav, Labrador | All. | 4. 30 | 3. 00 | 1. 30 | 68 | 58 | Julv 24 |
| 323 11. W. H. | Cambridge, Mass | All. | 4. 30 | 3. 20 | 1. 20 | . 70 | . 53 | 64-pt. 3 \% |
| 039 H W. 4 . | do | A.1. | 3.83 | 8.05 | 1. 20 | . 70 | .5: | Sept 30 |
| 340 H. W. 11. | do | Ad. | 4. 90 | 3.15 | 1. 25 | . 72 | . 55 | Sept. 30 |
| 83512 Nat. M. | do | All. | 4. 10 | 3. 0.5 | 1. 20 | . 6.5 | . 57 | Uet. 3 |
| 63064 Nat. M. | do | Aul. | 4.00 | 3.00 | 1.18 | . 72 | . 5. |  |
| \%7170 Nat. 11. | Cook County, Illinoie | All. | 4. 30 | 3.10 | 1. 20 | .70 | . 55 | May 8 |
| H2ils Nat. M. | Mount Carcoel, 111 | At. | 1. 10 | 3. 40 | 1.15 | . 70 | . 50 | U. ${ }^{\text {a }} 15$ |
| 8.516 Nat. M. | Fairfax Connty, Virginia | Al. | 4. 40 | 3. 25 | 1. 20 | . 70 | . 58 | Alay 10 |
| 25213 Nat M. | Wuahington. D. C | Ad. | 4. 25 | 3. 20 | 1. 2.5 | . 68 |  | Srept.- |
| 70160 Nut. M. | Saint Micharle, Alaska | Ad. | 4. 20 | 2. 00 | 1. 18 | . 70 | . 67 |  |
| 81304 Nat. M. | $\ldots \mathrm{d}$ | Ad. | 4. 20 | 3.00 | 1. 20 | . 67 | . 53 | June 5 |
| 813.34 Nat. M. | Korliak, Alnaka. | Ad | 4. 30 | 3. ${ }^{\text {cos }}$ | 1. 15 | . 67 |  | July 13 |
| 4708 Nat. M. | Vermilion River | Ad. | 4.25 | 3.11.5 | 1. 14 | . 70 | . 53 |  |
| 64364 Nat. M. | Takute, Alama, | Ad. | 4.10 | 2. 85 | 1. 15 | . 60 | . 52 | Jnue 13 |
| $8+11$ E. 13. 13. | Riverdale, $\mathbf{N} . \mathbf{Y}$ | Aul. | 4. 20 | 340 | 1. 30 | . 75 | . 58 | Mny ${ }^{\text {a }}$ |
| 511 K. P. 13. | do | All | 4. 25 | 3.13 | 1. 30 | . 75 | . 52 | Srpt. $2 \overline{3}$ |
| $3: 10$ E. P. 13. | do | All | 4. 35 | 8. $\% 0$ | 1. 20 | . 71 | . 55 | May 11 |
| 691 E. P. 13. | do | All | 4. 20 | 3. 235 | 1. 15 | . 70 | . 5.6 | Segpt. $\quad 1$ |
| - E. 1P. 3 . | do | All. | \$. 85 | 3. 10 | 1.11 | . 61 | . 52 | Septaso |
| 18 R. P. 3. | Jo | Ad. | 4.15 | 3. 20 | 1. 15 | . 70 | . 55 | Oct. 11 |
| 697 E. P.B. | do | Ad. | 4.00 | 3. 04 | 1.19 | . 71 | . 32 | Oct. 4 |
| 25 H. 13. B. |  | Ald. | 4.15 | 3. 10 | 1. 22 | .71 | . 35 | (let. 14 |
| 707 L. 1. 13. | ...... do | Ad. | 3.85 | 3. 60 | 1. 20 | . 72 | . 58 | Oct. 8 |
|  | Arerage |  | 4. 18 | 3.17 | 1. 20 | . 70 | . 55 |  |

FEMALES.

| - II. W. H. | Grantril' ${ }^{\text {a }}$ Mus | Al. | 3.100 | 2. 85 | 1.15 | . 75 | . 81 | May ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - 11. W. 11. | ......dr | Ail. | 3. 75 | 2.85 | 1. 18 | . 65 | . 68 | 3lay 4 |
| 6306e Nat. M. | . 60 | All. | 4. 10 | 3.17 | 1. 1.5 | . 68 | . 67 |  |
| - II. W. 11. | Washingtun, D. U | A13. | 3. 214 | 2. 45 | 1. 20 | . 68 | . 58 | (1.t. 12 |
| - II. W. II. |  | Ad. | 4.105 | 3. (14) | 1. 25 | . 70 | . 5.5 | (3)t. 13 |
| $82515 \mathrm{NaC} 11.$. | do | Aul. | 380 | 2. 50 | 1. 18 | . 65 | . 4 n! | 3.-p1 26 |
| 50901 Nnt. M. | do | All | 8.90 | 8.10 | 1.15 | . 70 | . 52 | Spept. 29 |
| 71350 Nat. M. | Fort Sieseton, Dak | All. | 4. 10 | 2. 80 | 1. 12 | . 60 | . 55 | May 3 |
| S55002 Nat. M. | Fort Macon. N. S. $^{\text {a }}$ | All. | 4. 20 | 3. 20 | 1. 15 | .70 | . 58 | May 4 |
| $22600^{\circ} \mathrm{Nat}$ M. | Fort Simpann, Britimh Amevrica | Ad. | 4. 05 | 2.90 | 1. 30 | . 68 | .37 | Srut. 10 |
| 43194 Nut M. | Fort A uderson, British Armerica | Al. | 3. 05 | 2.90 | 1.12 | . 65 | . 58 | Jıme 11 |
| 43205 Nat. M. | -.....do | Ad. | 4.05 | 2.90 | 1. 12 |  | . 55 | fanc- |
| 10 E. P. 1. | Riverinle, $\mathbf{N}$. $\mathbf{Y}$ | All. | 4100 | 3.0 .5 | 1. 15 | . 68 | . 77 | (elt. 18 |
| $63{ }^{\text {E E P P B. }}$ | . . do ... | Ad. | 3.95 | 2.85 | 1.15 | . 68 | . 50 | Oct. 2 |
|  | A varage of femalea A veruge of malew |  | $\begin{aligned} & \hline 3.99 \\ & 4.16 \end{aligned}$ | $\begin{aligned} & 3.09 \\ & 3.17 \end{aligned}$ | $\begin{aligned} & \text { 1. } 18 \\ & \text { 1. } 20 \end{aligned}$ | $\begin{array}{r} 67 \\ .70 \end{array}$ | $\begin{aligned} & .55 \\ & .55 \\ & \hline \end{aligned}$ |  |
|  |  |  | 8. 15 | 6. 10 | 2.36 | 1.37 | 1.10 |  |
|  | Avernge of both mexee |  | 4. 07 | 8. 09 | 1.18 | . 08 | . 56 |  |

##  LEPIDOPU*.

## By G. BROWN GOODE and TARLETON H. BEAN.

The United States Fish Commission has recently received from Capt. Roderick Morrison, of the Gloucester fishing schooner Laura Nelson, a remarkable fish, taken from the stomach of a halibut caught on the western edge of the Grand Bank of Newfoundland in eighty fathoms
of water. The sperimen represents a species first made known by F.E. Clarke in Transactions and Proceedings of the New Zealand Institute, (xi, 1878, p. 294, pi. xiv) under the name Lepidopus elongatus. Clarke had seen eight or ten examples, all taken at Hokitika, on the South Island of the New Zealand group. Hokitika is in about south latitude $43^{\circ}$ and east longitude $171^{\circ}$. A remarkable range is thus discovered for this singular Trichiurid. The species differs in so many important characters from Lepidopus and other allied genera that we are forced to establish for it a new genus more nearly related to Ecoxymetopon Poey and Lepidopus Gouan than to any other forms at present known to ichthyologists. Its distinctive characters may be formulated as follows:

## Benthodesmus new genus, Trichiuride.

Borly naked, much compressed, attennate, tapering gradually from vent to base of caudal. Caudal peduncle very slender, supporting a small but well-developed caudal fin. Vent considerably nearer to head than to tail.

Lateral line simple, in a deep, wide furrow, nearly straight, in front of the vent giadually ascending to the scapular region.

Head compressed, its upper profile nearly horizontal; snout gibbous near its end, as in Lepidopuz.

Top of head very flat, concave between the eyes, with no occipital crest. Interorbital ridges not elevated.

Eyes large, slightly postmedian. Operculum oblong, reaching a little beyond the base of the pectoral fin. Nostrils horizontal, in frout of the eyes.

Supramaxillary not extending to rertical from front of eyes. Lower jaw with stont cutaneous appendage.

Three very long, simple, compressed teeth on each intermaxillary in front; outside of these a few minute teeth, and behind them a row of large acicular teeth. In lower jaw a single row of moderately large acicular teeth, more numerous than in the upper jaw, largest in the middle of the jaw. Palatine teeth minute.

Dorsal fin, beginning above the operculum, nearly uniform in height thronghout its entire length, and continuous almost to the caulal. Rays very numerous (over 150 in B. elongatus). Anal beginning near the vent, preseded by a single scale-like appendage; spines very numerous (numbering with the rays about 100 in B. elongatus, all except 28 or 30 being spines), minute and almost hidden; a short fin posteriorly.

Caudal small, normal, forked.
Pectoral fins inserted almost horizontalls, with lower rays longest, and its upper outline rounded.

Veutral fins represented each by a minute scale like spine, inserted below the origin of the pectorals.

Pseudobranchix present; gills 4, a slit behind the fourth.
Gill-rakers short and spiny, in a single series on the first and second
arches, almost obsolete on the the third and fourth. (In Lepidopus caudatus all the arches are supplied with several series of rakers.)

Type, Lepidopus elongatus Clarke.
Benthodesmus may be distinguished from Lepidopus, the most closely related genus, by the following salient characters:

1. The slenderer, lower form of the body, the height of which in $B$. elongatus at the vent is one-fourth the length of the head, in Lepidopus caudutus, nearly half the length of the head.
2. Iv che location of the vent, which is considerably nearer to the head.
3. In the straighter course of the lateral line, and the greater size of the furrow in which it is situated.
4. In the depressed form of the head, its flat profile, the insignificance of the frontal ridges, and the absence of the occipital crest.
5. In the horizontal instead of oblique position of the nostrils.
6. In the extension of the opercula beyond the origin of the pectorals, and in the rounded apper outline of the pectorals.
7. In the much greater number of dorsal rays.
8. In the more advanced position of the rudimentary ventrals, which are situated in Benthodesmus under the base of the pectorals, in Lepidopus under their tips.
9. In the presence of a single small postanal scute, in place of the two larger ones in Lepidopus.
10. In the characteristic arrangement of the gill-rakers.

## Benthodesmus elongatus (Clarke) Goode and Bean.

Lxtreme length of type (No. 29116), 896 millimeters ( $35 \frac{1}{2}$ inches).
Body attenuate, its height at the vent contained four times in length of head, its width being about one-third of its height at the point mentioned. Length of caudal peduncle half of greatest height of body. Least height of tail one-third width of interorbital area.

Length of head contained $7 \frac{1}{2}$ times in length of body, its greatest width one sixth of its length; its greatest height nearly one-fourth of its length; width of interorbital area (on the bone) one-fourth of the height of the head. Length of snout contained 2.2 times in length of head. Upper jaw not reaching to vertical from anterior margin of ese, and equal in length to the postorbital portion of head. Lower jaw in length equal to about twice the greatest height of body. Mandibular tip nearly one-third as long as the diameter of the eye. Eye slightly jostmedian in location, the orbital diameter equal to half the length of the snoat.

Besides the three long teeth, there are on each intermaxillary 8 or 9 of moderate size; on one side many small intermediate teeth are present. The number of teeth in the lower jaw varies from 13 on the one side to 21 on the other.

The first branchial arch has 13 gill-rakers, the longest of which meas-
ures abont 2 millimeters. The second arch has about the same number, while on the third there are but 6 or 7 , very small, and present ouly in the angles, while in the fourth there are about the same namber, very inconspicuous.

The dorsal fin originates above the middle of the operculum, and at a distance from the snout equal to twice the length of the snout.

The anal fin is composed of about 100 spines and rays. Owing to the mutilation of the specimen it is impossible to determine how many there are of each, but there are supposed to be about 28 rays normally united by a membrane into a fin.

The caudal is also imperfect, but the middle rays are seen to be abont half as long as the remnants of the external rays. The fin is supposed to resemble in shape that of Lepidopus caudatus.

The pectoral originates under the tip of the opercular flap. Its outline is ronnded above instead of emarginate, as in Lepidopus caudatus. Its longest ray equals in length the postorbital part of the head.

The ventrals originate at a distance from the snout equal to that of the base of the pectorals from the same point. They are rudimentary and represented by minute scutes, the length of which is $3 \frac{1}{2}$ millimeters in the specimen before us, and about equal to half the interorbital width.

Branchiostegals 7; D. 154; A. 100; P. 12; V.I.
Cacal appendages 8 in the specimen examined. Some, however, may have been lost, the abdominal viscera having been partly digested by the halibut, in the stomach of which it was fonud.

Color: Uniform silvery, with traces of dark color upon head and tail.

## Measurements.

Taken by Capt. Roderick Morrison (achooner Lanra Nelson), from the stomach of a halibut.

Current number of specimen, 29116.
Lucality, western edge of Grand Bank, 80 fathoms.

|  | Millimeters. |
| :---: | :---: |
| Extreme length | $896=$ ( 304 inches. $)$ |
| Leugth to origin of middle caudal rays. | 878 |
| Body : |  |
| Greatest height | 33 |
| Greatest width. | 13 |
| Height at ventrals | 33 |
| Height at anus | 30 |
| Least height of tail | 2 |
| Length of caudal peduncle | 16 |
| Head: |  |
| Greatest length | 116 |
| Greatest width.. | 20 |
| Width of interorbital area (on the bone) | 6 |
| Length of snout... | 47 |
| Length of upper jaw | 42 |
| Length of mandible.. | 69 |
| Length of mandibulary tip. | 6 |
| Distance from anout to orbit. | 47 |
| Diameter of eye.. | 22 |

R
Dorsal (spinous):
Distance from snout ..... 94
Length of longest ray ..... 20
Leugth of last ray ..... 7
Anal:
Distance from shout ..... 350
Length of longest ray ..... 9
Caudal:
Length of midille rays ..... 8
Length of external rays ..... $17+$
Pectoral
Distance from snout ..... 110
Length ..... 42
Ventral:
Distance from snout ..... 111
Length ..... 31
Branchiostegals ..... VII
Dorsal ..... 154
Anal, about ..... 100
Pectoral ..... 12
Ventral ..... I, I
Number of ceecal appendages ..... 8 (1)U. S. National Mleseum, Wabhington, D. C., Dec. 30, 1881.
DEACRIPTION OF A NEW MPECEEA OF POMADAMYS FRON MAZAT. LAN, WITEI KEY TO THE NPECIEA KNOWN TO INIABET THER PACIPIC COAFTS OF TROPICAL AMERICA.
By DAVID S. JORDAN and CHARLES H. GILEERT.

Pomadasys cæesius ap. nov.

Allied to P. pacifici (Gthr.).
Head, $3_{5}^{2}$ in length ( $3 \frac{4}{5}$ with caudal); depth, $2 \frac{1}{3}$ ( $2{ }_{7}^{8}$ with caudal).
Length (28158), 94 inches; D. X1I, 16; A. III, 9; scales, 6-5٪-13.
Body ovate, compressed, the back rather strongly arched; anterior profile rather steep and straightish, gibbous between eyes and also behind them, slightly depressed above eyes and at the nape. Ventral outline considerably arched. Caudal peduncle moderate, about half as long as head, and somewhat longer than deep.

Head short and deep; deeper than long. Snout very short, blunt and thick, about one-third length of head. Mouth very small, the maxillary not quite reaching to the front of the eye, its length (from tip of snout) 34 in head. Teeth cardiform, in broad bands, the onter series enlarged, but smaller than in P. pacifici. Eye large, $3 \frac{1}{2}$ in head, shorter than snout, about one-fourth wider than the broad preorbital. Lips thick. Chin with a median furrow and two pores; lower jaw included. Anterior nostril much larger than posterior. Preopercle rather weakly serrate, its upright limb somewhat concave. Gill-rakers short and weak, abont 10 on lower limb of arch.

Scales rather large, arranged as in related species, those above the
lateral line forming series parallel with the back, but placed so that the cross rows are very oblique. Soft parts of vertical fins almost entirely covered with small scales; series of seales also on membrane of pectorals and ventrals. Scaly sheath of vertical fins well developed.

Dorsal fin low, rather deeply emarginate, its spines very strong, the second spine slightly longer than the eye, and two-thirds the height of the third, which is but little shorter than the fourth or longest, and about two-fifths length of head; soft rays more than two-thirds height of lougest spines. Candal rather large, moderately forked, the upper lobe somewhat the longest, about four fifths length of head. Anal rather low, its distal margin perfectly straight, vertical; second anal spine very robust, half length of head, half longer than the third spine, which is moch lower than the soft rays. Ventral fins $1 \frac{1}{3}$ in head, about reaching vent. Pectoral fins long, subfalcate, a little longer than head, nearly or quite reaching anal.

Color in life, grayish-silvery above, with gellowish tinge; lower part of sides with indistinct darker streaks, formed by clusters of dark points on the margins of the scales. A faint dark bar, most distinct in the youngest specimens, extending from the region in front of the dorsal to, or a little below, the base of pectorals. In young specimens this bar is as wide as the eye, growing narrower below, but in the adult it is scarcely wider than the pupil. No trace of the black cross-bars seen in P. docii and in P. pacifici, nor of the dark spots seen in P. furthii, nor of the lengthwise stripes of $P$. bilincatus and $P$. virginicus. Vertical fins and pectorals dusky yellowish; distal half of ventrals and base of anal blackish. Upper part of head dusky, especially between eyes. Lining of opercle pale, with yellow patches in life. Peritoneum white.

This species is known from three specimens (28158, 29632, and 28333), obtained in the harbor of Mazatlan. It was not seen at Panana.

The species of Pomadasys thus far known from the Pacific coast of tropical America may be readily distinguished by the characters given in the following table:

ANALY8IS OF BPECIES OF POMADASYR FOUSD ON THE PACIFIC COASTS OF MEXICO AND CENTIAL. AMERICA.
a. Anal fiushort, its rays III, 7 to III, 10 ; dorsal fin deeply emarginate, its spines more or less robust.
b. Anal spines strong, the second longer and much stronger than third.
c. Soft elorsal and anal with series of scales extending on the rays; onter teeth in upper jaw enlarged.
d. Body ovate; back elevated; depth greater than length of head; outer teeth moderately enlarged, pointed; lips thick.
(Anisothemes* Gill. 1
e. Scales above lateral line in oblique series, not parallel with the lateral line. $f$. Scales rather small, 50 to 70 in a horizontal series.

* Genytremus Gill = Paraconodon Blecker.
g. Color golden, with about seven light blue horizontal stripes, each edged above and below with paler; a dark band downward, and one forward and downward from uape; pectoral longer than head; second anal and third dorsal spines subequal, half head
.Virginices."
g9. Color olivaceous; a jet black bar from anterior part of dorsal to below middle of side; base of pectoral, and membrane of opercle black; peotoral longer than head; second anal and fourth dorsal spiues about equal, shorter than head ......... Davidsoni. $\dagger$
ggg. Color olivaceous, the adult nearly plain, the young with two black longitudinal stripes; fins blackish; second anal spine longer than fourth dorsal, about half head

Bilineatus.!

## ff. Scalea large, about 7-34-12. Color grayish, each scale on upper anterior

 part of body with a blackish spot; fins more or less dusky; pectoral a little shorter than head; second anal spine robust, half length of head, longer than fourth dorsal spine.FURTHI. $\$$
ec. Scales above lateral line in series parallel with the lateral line.
h. Dorsal spines rather low, the longest about half length of head; second anal spine half length of head.
i. Color plain grayibh-silvery; a faint bar downward from nape; pectoral longer than head, about reaching anal; dorsal spiues stout and short, two-fifths length of head; eye but half wider than the broad preorlital; dorsal rays, XII, 16......Cesicts. ii. Color dusky grayish, with four irregular blackish cross-bands. which grow faint with age; pectorals much shorter than head, not reaching tips of ventrals; clorsal spines comparatively sleuder, half length of head; eye more than twice as wide as the narrow preorbital ; dorsal rays, XI, 14.

Pacificl. $\|$

[^131]hh. Dorsal spines very high, the longest two-thirds length of head: second anal spine nearly two-thirds length of head ; color grayish-silvery, with tive jet black cross-bands; pectorals much shorter than head. Dovir.
dd. Body oblong, the depth less than the length of the head; outer teeth much enlarged, blunt ; preopercle very sharply serrate $\qquad$ .. (Cosodos Cuvier.)
j. Color silvery, with eight dark cross-bands; snout not obtuse; second anal and fourth dorsal spines strong, half length of head; pectoral shorter than bead; caudal lunate $\qquad$ Nobilis. ${ }^{\text {t }}$
©. Soft dorsal and anal destitute of scales or very nearly so ; form oblong; scales above lateral line in serics parallel with the back.
k. Outer teeth in upper jaw slightly enlarged, acute.
(Pomadasye. $\ddagger$ Lac.)

1. Dorsal spines 12; vertex convex; preorbital broad.
m. "Scales rather small (8-56-20) ; fourth dorsal spine $2 \frac{1}{8}$ in head; second anal spine more than half head; pectorals not reaching vent; snout produced; coloration uniform" Humilis.
mm. Scales larger (6-48-14); longest dorsal spine nearly half length of head, abont equal to second anal spine; pectorals long, abont reaching vent; suout sharp, protruding; color grayish, with four faint dark cross-bande. Macbacanthles.!
u. Dorsal spines 13 ; vertex with a small but evident concave depression; head low; preorbital narrow.
n. Dorsal spines very high, the highest more than half length of head; color grayish-silvers, nearly plain

Branicki. $\%$
$k k$. Outer teeth in upper jaw not enlarged.
(Pseudopristipoma Sanvage.)
o. Third dorsal spine produced, much longer than the others, and abont half length of head; second anal spine somewhat shorter; protile convex: scales nearly smooth; pectoral very long, nearly

[^132]as long as head; preopercle weakly serrate; color silvery; lower tins white; a distinct dark blotch on opercle, and a fainter one on sides below spinous clorsal Panamensis.*
bb. Anal spines weak, the second little, if any, louger or stronger than the third, and both lower than the soft rays; body ob. long, not clevated; soft dorsal and anal rays with series of scales; scales above lateral liue in series parallel with the back; color grayish, with light and darks stripes along the rows of scales, these ofteu obscure.
(Hemulopsis Steind.)
p. Pectoral fin long, nearly as long as head; a black blotch below in the axil, encroaching on thes lower rays of the fin; preorbital broad, about as wide as eye $\qquad$ . Axillearis. $\dagger$
pp. Pectoral fin short, much shorter than head; axillary spot, if present, not encroaching on the fin.
q. Preorbital narrow, not so wide as eye; a round dark humeral blotch; anal spines very small, graduated $\qquad$ .Nitides. $\ddagger$
qq. Preorbital very deep, wider than eye; anal spines not graduated Leveiscus. $\$$
aa. Anal fin long and low, its rays III, 11 to 1I1, 13 ; dorsal fin low, scarcely emarginate, its spines slender; anal spines small, graduated; scales small, those above lateral line in oblique series ... (Orthophistis Gill.\|)
r. Dorsal spincs 12; soft parts of dorsal and anal naked: preorbital very deep, as decp as eye; scales small, about 8-50-15.
8. Body oblong-ovate, the depth considerably more than one-third length; protile from nape, straight or slightly coneave; pectorals long, 3 3 in body; body brownish above, with faint dark cross-bands and oblique pale streaks.

Charcevs.f
*Pristipoma panamense Steindachner, Ichthyol. Beitr. iii, 8, 1875. Mubitat: Mazatlan (Gilb.); Panama (Stcind.; Gilb.).
+Pristipoma asillare Steindachner, Ichth. Notiz. viii, 7, 1863. Habitat: Mazatlan (Steind.; (iilbert).
$\ddagger$ Pristipoma nitidum Steindachner, Ichthyol. Notiz. viii, 5, 1809. Habilat: Mazatlan (Steind.; Gilb.); Panama (Gilb.).
© Pristipoma leuciscus (iinther, Proc. Zool. Soc. Lond. 1864, 157. Habitat: Lower California (Strecta); Mazatlan (Gilbert); San Jose (Gthro), Chiapam (íthr.), Panatna (Gilhr.). Two of our Mazatlan spectnens of this species agree with Dr. Giluthor's description and fintre, in having the anal spines rather large, the secoud larger than thirl, $2{ }^{\frac{\pi}{3}} \mathrm{in}$ length of head; the remaining specimens from Mazatlan and Panama are slenderer, with more pointed snout and deeper suborbital, the anal spines being quite suall, the second in to 4 in head. These perhaps represent a different species or variety, but we are not prepared to give it a separato name.
$\|=$ Microlepidohes Gill = Pristocantharus Gill.
¢T'ristipoma chalcewm Githr. Proc. Zool. Soc. Lond. 1864, $146=$ Pristipoma kneri Steind. Ichth. Notiz. viii, 18¢9, 3. Habitat: Mazatlan (Steind.; Gilb.); Panawa (Gthr.; Gilb.).
88. Form oblong-elliptical, the depth less than one-third length; profile slightly convex; pectoral short, 41 in body ; sides with longitudinal dark streaks $\qquad$ Cantharincs.
rr. Dorsal spines 13 (or 14); soft parts of donsal and anal acaly; preorbital very narrow, its width much leas than diameter of eye; pectoral long, as long as head, $3 \frac{1}{2}$ in body ; scales very small ; color grayish, with narrow oblique dark streaks

Inornates. $\dagger$
Indiana University, January 3, 1882.

# THE RAPID PREPARATION OF LARGR MYOLOGICAL BPECIMENS. 

## Hy M. FELIX PLATEAU,

Profisseur à l'Enicersité de Gand.
(Read before the "Association Française pour l'avancement des Sciences," Congrès do Reins, 1880 . Séance du 13 Aoat, 1:80.)
[Translated by H. C. Yarrow, M. D., for the Smithsonian Institution, Washington.]
The laboratory of comparative anatomy of the University of Gand is of restricted dimensions. Its surronndings, sufficient for elementary practical teaching, are very modest, but, happily, material for study is not wanting, thanks, above all, to the administration of the Zoological Garden of Antwerp, one of the richest of the continent, which generously donates to us its losses and carries the obligation still farther in sending to us the bodies of animals by express. It is thus that during the acallemical years of 1879 and 1880 we have had at our disposal a series of very rare monkeys, a kangaroo, a cheetah or hunting leopard, a young American ostrich, the principal viscera of an adult African elephant, and other interesting specimens.

With the assistance of a single helper I have been able to utilize all these objects and rapidly prepare, daring the few hours which my other duties leave me, a great number of permanent anatomical preparations to enrich our museum, which is already comparatively complete. $\ddagger$ Our

[^133]collections being relatively poor in preparations of the muscular system, I have above all endeavored to till this want. We have, indeed, made many preparations of the entire muscular system of animals of medium size.

As the solution of this problem, i.e., how to make rapidly and at a trifling cost, in a laboratory of second rank, large permanent myological preparations might interest professors of comparative anatomy and zoology, I have thought it best to brietly relate the method which I have employed.

Having a horror of dried and rarnished preparations, I have endeavored to prepare muscular specimens with phenolized glycerine, easily handled, and which could constantly serve for demonstration. With ns the muscles are red, the tendons white; in a word the uninitiated would believe that they saw the fresh muscle.*

In order that I may be well understood I will give a résume of the easy operations to which we have subjected a very large monkey, the Cynocephalus sphin.x, in order to prepare the whole of its muscular system.

The animal belng skinned, care being taken of the superficial museles or muscles of the skin, the abdomen having been split longitudinally and the viscera removed, it was first of all necessary to preserve this specimen from decomposition, and to employ a process which would permit us to dissect all the muscles at our pleasure.
It is impossible to use alcohol for animals of this size; the body is simply planged into a saturated solution of the alum of commerce. The muscles in a short time are capable of being indetinitely preserved, and all the conjunctive elements, aponeuroses, tendons, sheathes of the nerves, \&c., acquire a firm consistence and become very white.

Whenever the specimen is required for dissection it is taken from its bath, and when the work is over it is replaced.

We have thas been able to dissect at our leisure all the muscles of the Cynocephalus, continuing the labor for at least ten days.

Having finished the dissection, it becomes necessary to impart to the muscles their original color. It is in this operation that I employ, and always successfully, the process which I have exemplitied since 1874, and which is based on the property that carmine presents, viz, in forming when in the presence of alum an insoluble red laquer. $t$

The animal having been dissected and taken out of the bath, is planged in pure water for twenty-four hours; this is done in order to get rid of the excess of alum.

[^134]Pure powdered sarmine, a little chrome yellow, and liquor of ammonia are the only substances nccessary. The carmine is deposited on an earthenware dish; the ammonia is employed as water is by the watercolor painter, and traces of chrome gellow correct the tints which are too purple. Finally, the white surface of the plate serves as a background on which the tints may be criticized.

The muscles of the specimen are painted with the aid of an ammoniacal solution of carmine, taking the precaution not to cover the teudons or bones, and in general those parts which should remain white. In fact, these parts are protected by wrapping them separately in strips of tolerably thick paper.

It is unnecessary for me to recall the fact that carmine tints the muscles and penetrates them to a certain depth.

This operation finished, it is next in order to fix the tint. For this parpose the specimen is simply replaced in the bath of alum. An insoluble red lapuer is formed, constituting two coats, the one superficial and pulverulent (this comes from the bottom of the liquid), the other penctrating much deeper into the muscular tissne itself and remaining fixed in the tissue.

From this time forth the carmine is fixed and the muscles are red, having the appearance of fresh tlesh, and may be handled for an indefinite period withont soiling the fingers of the operator with their coloring matter. Specimens which we thus prepared in 1572 , have been used every year in the comparative anatomy course, and have lost nothing of their value.

The next step is the employment of glycerine. The specimen is plunged into a bath of phenolized glycerine, but, as the alum has already rendered the specimen proof against decomposition, a long maceration is unuecessary, eight days being a sufficient length of time.

Finally, to place the specimen in a definite condition. It is well known how annoying ordinary preparations are in which glycerine has been used, it being necessary to let them drain for several months. Here we have employed a more expeditions method. After having allowed the specimen to drain for some honrs, we wrap the members of the animal and the trunk, in fact the entire body, in a covering of white filtering paper, theu in many coverings of ordinary gray paper, around the whole of which twine is wound.

One week after, the paper, which has absorbed all the glycerine in excess, is taken off, the abtomen is filled with packing, the body is sewn up, the muscles are restored to their proper position, and the specimen is finished.

Thanks, probably to the alum, the tendons are white and not yellorish, as preparations are when made by ordinary processes. The muscles are never found to be glued together.

To state it brietly, the method is composed of the following opera-
tions: 1st, maceration in alum during the dissection; 2d, washing in pure water; 3d, tinting with carmine; 4th, the fixing of the carmine by alum; 5th, maceration in phenolized glycerine; 6th, getting rid of the excess of glycerine by compression between pieces of absorbent paper.

This is the whole of the process which is warranted by known facts; it is quite inexpensive, simple, and expeditious.

As an example of the rapidity of execution I will cite the following fact: On May 23, of this year, an adult African elephant died in the Zoological Garden of Antwerp. One month after that event we displayed, in one of the exhibition cases of the National Exposition of Brussels the enormous heart of this auimal prepared by the abovedetailed method.

## ON THE CHINNOOH NAMEAOF THE MABNONEN THECOLUMEEA RIVER.

## Ey SILAS B. SMITH.

[Note.-The following notes were contributed by Mr. Silas B. Smith, a lawser, at Skipanow, Wash., and a half-breed Chinnook, in answer to questions asked by Mr. Charles J. Smith, of Brookfield, Wash. As the Chinnook names have a considerable place in our Salmon literature, it seems very desirable to place the facts given by Mr. Smith on record. I give the present accepted wames of the different species in foot-notes.-D.S.J.]

The Chinnook names for the different varieties, following the order given by you, are as follows:

1st. Chinnook Salmon,* "E.quinna" (accent second syllable and give the " $a$ " the broal sound).

2d. Blue-back, $\dagger$ "Oo.chooy-ha" (accent first syllable and give the broad sound to " $a$ ").

3l. Silver-side, $\ddagger$ "O-o.voun" (accent first syllable). Your next is "Dog Salmon (red)." My mother and all the other Indians I have spoken to on the matter, and some of the whites, maintain that the red-skinned salmon with hooked nose or beak is nothing more or less thon the male silver-side, having turned red after iuhabiting fresh water, and his nose assuming that shape upon its becoming poor.

[^135]They say that there is another species of Salmon that comes in the fall, having transverse dark spots, large teeth, and nose largely curved, but it does not turn red or but little at most. I will give the name and consider it in place of the "Dog Salmon."

4th. Spotted Fall Salmon,* "O-le-arah" (accent on first syllable).
5th. Steel-head, $\dagger$ "Quan-nesho" (accent last syllable).
I have been unable to give the right sound in English to the last syllable of the last name. The above is as near as I can make it.

There is another salmon which you did not mention. It comes in the last of the summer run; it is as large if not larger than the spring salmon, but of a darker color and not so fat.

It will make number-
6th. $\ddagger$ "Ek-ul-ba" (accent first syllable).

## RENARKS UPON THE OHTEOLOGY OF ORHEOAAURUE VENTEAKIA.

## By Dr. R. W. SHUFELDT, U. S. A.

(Read before the Biological Society of Washington, D. C., December 23, 1881.)
Guided, to a great extent, by external characters, modern herpetologists, in the arrangement of our American reptiles, have assigned this lizard to the genus Opheosaurus, of the family Anguida, of the suborder Diploglossa. This arrangement brings it very near the genus Gerrhonotus, a lizard with which I have osteologically compared it. The external characters are referred principally to the form and disposition of the scales, the presence in Gerrhonotus of a ventral line, and the position of the external ear.

Opheosaurus ventralis inhabits the entire Austroriparian region. Teunessee, Kansas, and several of the Middle States. It is found lurking in the woods in damp places, frequently burrowing uuder ground, and is at all times a gentle and harmless lizard. We all know that in common parlance Opheosaurus has been termed the Glass Snake, from the fact that when a moderate blow is delivered it, it usually parts with a portion of its tail, the fracture sometimes taking place at one or more points. These ruptures, and they always occur from violence, are invariably postanal, and the part lost is susceptible of reproduction from the locality at which the fracture took place in the lizard's body. Interesting as this part of the natural history of our subject is, it does not rightfully come within the limits of a paper devoted to its osteology,

[^136]and I will be obliged to dismiss this characteristic in Opheosaurus here by simply calling the attention of the student to the fact that, as far as my studies have carried me, it appears that true caudal vertebra are never reproduced in the new tail, be it only a portion or the entire appendage is lost, but in their place we have substituted a series of semiosseous nodules, that eventually form the bony core to the new part.

The opportunity has not been'afforded me to enter very extensively into the occurrence of bone in the exoskeleton of this lizard, but Professor Owen tells us (Anat. of Verts., vol. i, p. $55 \tilde{5}$ ) that "bone is developed at the base of the scale, forming part thereof, or combining scute and scale, in Ophisaurus, Tribolonotus, and Trachysaurus." We may add to this that there certainly seems to be more or less bone tissue, be it semi-rsseous or otherwise, in the tough and brittle plates that overlie the true skull, superiorly. It requires but a very superficial examination of the skull of this snake-like lizard to satisfy the zoötomist that he has before him a creature that, so far as this part of its bony framework is concerned, at least, makes a very near approach to the typical Lacertilian, an indication that is more than likely to be carried out in other parts of its anatomy.

We find the occipital condyle to be uniform in outline, being notched above, with its long axis placed transversely ; it stands out quite prominently from the lower margin of the elliptical foramen magnum, which in turn has its long or major axis parallel with the axis of the condyle; prominent though this latter may be, it cannot be said to be pedunculated, but really is sessile, its prominence being greatly due to the segments that support it. The part that the basi and exoccipitals took in its formation is plainly indicated even in the adult by delicate little furrows that mark the boundaries of the original segments.

This condition of the condyle obtains in many of our American lizards, notably in Gerrhonotus and in Sceloporus and kindred forms among the Iguanida. Substantial protection is afforded the brain below by the perfect union that has taken place among the bones of the basis cranii, the basisphenoid, basioccipital with the exoccipitals, which latter support tuberous and outstanding paroccipitals. On the other haud, the anterior wall of the brain case depends solely in the living animal upon thin membranous partions for the defense of the encephelon, the representatives of the ali- and orbitosphenoids. This open space in the articulated cranium is bounded below by the basisphenoid and laterally by the parotic on either side. Above we again find the brain completely guarded by osseous plates, which here are the united parictals, that in turn become indistinguishably amalgamated with the jarge stuperoccipital. Mesiad, the united parietals anchylos with the parotics of the brain-case, while anteriorly these bones articulate suturally with the hinder borders of the frontals; no parietal formmen ever existing at this point as found in some lizards. Laterally, each parietal is extended backwards in a diverging limb, that on either side articu-
lates thronghout its entire margin with the squamosil overlapping the latter at its termination and abutting against the lateral process of the occipital. In their course these wings of the parictals bend downwards by a gentle curve, which is more abrupt in the shorter skull of Gerrhonotus.

The interfrontal suture is persistent, and these bones form the midplates at the top of the skull; taken together the plate is narrower behind than it is in front, where it meets the nasals, while on either side it articulates with the lacrymal and postfrontal ; a limited portion of this margin being free, it enters into the formation of the superior moiety of the periphery of the orbit. In our Holbrookia maculata among the Iguanide we find this interorbital portion of the frontal plate crowded to a mere osseous and median line by the immense orbits. The nasals have united medially just as the frontals have, and they, being now anteorbital, are allowed to curve downwards on either side to meet the maxillaries, while anteriorly they form the upper and posterior margin of either nostril, and receive between them in the middle line the posterior process or nasal process of the premaxillary. This latter bone forms the rounded anterior end of the skull; it also completes the nostril in front and below, this subcircular aperture having its border or periphery eventually made entire by the assistance of the maxillary on either side, it filling in the lower and posterior part. This portion of the skull is formed in a like manner in Eumeces, but in this genus the termination of the cranium auteriorly is more acute, being blunter and broader in Gerrhonotus scincicaudus. We will complete this view of the cranium by calling attention to the longitudinal foramen that exists anteriorly between the squamosal and parietal on either side.
The lateral aspect of the skull (Fig. 1) presents for examination


Fig. 1. quite a number of interesting points. We have, posteriorls, a free os guadratum that stands as a protecting pillar at the portals of the auditory meatus. This bone has a quadrilateral outline in front, nearly flat, while behind it is deeply concave thronghout its length, and supports below an oblong facet, placed transversely for a similar shaped articulating surface on the lower maxilla. Above it is very much expanded, antero-posteriorly, the hinder part of which surface is ocenpied by the end of the squamosal. This form of the os quadratum (o. g., Fig. 1) obtains in Gerrhonotus and Eumeces, and in fact seems to be but slightly departed from by the vast majority of our lizards. Between the anterior boundary of the os quadratum and the posterior boundary of the orbit, and the arching squamosal above that meets both points, there is exposed to view in the skinll of this lizard, and, I believe, in all of its congeners, through an open space here existing, the delicate
little columella (el., Fig. 1), that has its superior end abutting against the under surface of the parictal, while its lower rests in a cirenlar socket intended for it, on the upper surface of the middle of the pterygoid. Its lower articnlation is anterior to its upper, $i$. $e$, the bone leans backwards.

In all of the American lizards that I have examined this bonelet is constant, and Professor Ifuxley tells us in his Anatomy of Vertebrated Animals, page 219, that "In the principal group of the Lacertilia, a column-like membrane bone, called the columella (but which is not to be, by any means, confounded with the stapes, to which the same name is often applied in reptiles), extends from the parietal to the ptersgoid on each side, in close contact with the membranous or cartilaginous wall of the skull. Hence they have been called "Kionocrania" or "column skulls."

Through this open space we also have lateral views of the pterygoids and the basisphenoid with the parotic and pro-otic bones above and immovably articulated with the latter. There seems to be a small separate ossification wedged in between the squamosal ant parictal behind, articulating with the exoccipital and os quadratum, that seems to correspond with Professor Huxley's pterotic. In the dried skull it is not movable.

The orbit is bounded by three bones: above by the frontal, as already described; anteriorly by the lacrymal, that articulates with the jugal by a descending process, anteriorly with the maxillary, nasal, and frontal; while the postfrontal and jugal bound its posterior moiety, the former bone articulating above with the frontal and parietal, below and posteriorly with the jugal and squamosal, and the latter, the jugal, by its anterior process with the lacrymal, by its posterior with the postfrontal and squamosal; thus we see that the orbital periphery is complete. The skull is completed laterall: by the maxillary; this boue bears teeth in its alseolar process below, articulating with the bones that go to form the roof of the mouth internally, while, upon the aspect of the skull we now have under consideration, it articu-
 lates behind with the lacrymal and jugal, above with the nasal, anteriorly with the premaxillary.

The prefrontal fulfills its customary function in constituting in part an osseous septum narium, meeting the ordinary segments as they are arranged in the Lacertilian skull.

Passing to the base of the craninm (Fig. 2), we find the basisphenoid giving off, near its anterior termination, or the base of the rostrum in some vertebrates, on either hathl, well-developed pterapophysial processes that hare dilated extremities to articulate with longitudimall!elongated facets upon the pterygoids. These latter bones form one of the principal features of the basis cranii; they extend backwards, cou-
verging outwards from the points where they articulate with the processes of the sphenoid, to articulate by movable joints at the anterior and lower angles of the quadrate bones; anteriorly they develop horizontal plates that articulate in front with the palatines, laterally by a process that, on either side, meets the os transcersum. Their npper surfaces form the greater part of the floor of the orbit, while on their under surfaces they present for examination on either bone a longitadinal row of minute conical teeth, the row being double behind and produced anteriorly so that $n$ few of them are fonnd upon the palatines beyond. The palatines complete the roof of the month distally, leaving between them quite an extensive palatine fissure that ceases when it meets the romer where that bone dips down to lend its aid in establishing the septum narium. A palatine starting from the oblique pterygoidal articulation proceeds forwards by a rather broad horizontal plate that, as it comes opposite the maxillary, throws off an external and lateral process to meet that bone and close in the "nasal aperture" behind; it then turns inwards to the commencement of the palatine fissure, to proceed by a much broader plate that bounds the nasal aperture internally, and only terminates by quite an exteusive articulation with the maxillary laterally, and with the premaxillary and vomer anteriorls, curling outwards to complete the aforesad nasal vacuities. On either side an os transversum is found; this little bone is wedged in between the maxillary and jugal on its outer side, while it articulates with a process coming from the palatine on its inner, thus forming quite an important element in completing the floor of the orbit and the base of the cranium.

The bones are arranged at the base of the craninm and roof of the mouth, in nearly all lizards, so as to encircle and bound certain foramina or vacuities; these have been described by Owen and named by that distinguished anatomist as, first, the "interpterygoidal racnitr," the largest of all, a mesial, open, elliptical space in our subject bounded by the pterygoids and palatines laterally, the basisphenoid behind, and continuous with the palatine fissure anteriorly; the next, being parial, are the "pterygo-maxillars" vacuities; these occur on either side, and are bounded laterally by the maxillary and os transversum, internally by the pterygoid and palatine; while, finally, we hare the " nasal apertures," bounded on their outer sides by the maxillaries, behind and internally by the palatines. In Gerrhonotus, the skull being broader, these apertures are consequently wider; otherwise the general arrangement of the bones at the base of the skull is the same. In examining the eye, we discover the sclerotals to be present, as they are in Aves. They are quadrate in outline, slightly overlapping each other, and number from eighteen to twenty in the average number of specimens examined.

The rami of the lower maxilla are turned out wards, so that the alreold processes are the most exterual; this condition is so much increased after we pass the coronoid bones that the sides of the jaw become nearly
horizontal. They terminate by quadrate plates that tend to approach the median plane, these horizontal plates protruding in the articulated skull back of the articular facets and the quadrate bones. Broadly oblong, and raised above the general level of the bone, the articular facets look upwards and a little backwards and outwards. The coronoid bones are placed, one on either side, slightly posterior to the middle point of the ramus; they project upwards and backwards as laterally-compressed processes that show externally still fairly-developed traces of their original sutures; upon this aspect, also, we observe the irregular sutural line, indicating the point of ending of the dentary portion of the maxilla.

Each ramus is perfectly smooth beneath, being gently convex from side to side, broadly so longitudinally. The external curve about the symph; sis is parabolic in outline, the inner being sharply acute, and, passing back-
 wards as the inferior ramal border, maintains a more or less parallel position with the external or alveolar border. Anchylosis is never thoroughly established between the dentary elements at the symphysis, this joint having an articulation very similar to the symphysis pubis of anthropotomy, the interested bones coming apart upon very slight provocation in the dried skeleton, showing each articular face to be roughened for an amphiarthrosial joint.

In the specimens that I have examined, the teeth in the upper jaw seem to invariably pass completely round the alveolar process, while in the lower jaw a few always seem to be lacking on cither side of the

rig. *: symphysis; this is also the case in Gerrhonotus, but not so in a specimen of Eumeces skiltonianus. These teeth are of the pleurodont type; in other words, they are anchylosed to an outer alveolar plate, as in many of the Iguanida. Above their points of union to the alveolar process they are conical in form, pearly white, and glistening, being arranged in a row of some seventeen to twenty in each ramus, the largest being found in the middle and the smallest at either end. The
 hyoidean arch seems to be largely cartilaginous in structure, though a good deal of bone tissue does exist in it, particularly about the center. In form it resembles the capital letter X, the upper limbs being directed forwards and outwards, the hinder ones backwards and outwards; the body of the hyoid occupying the intersection as an equilateral triangle, with one of the angles placed anteriorly in the middle line, ard from which is produced a delicate "glosso-hyal"; the posterior limbs spring. ing from its outer angles, and the anterior ones, apparently by articu-
lation, from midpoint of its sides. Gerrhonotus has a hyoidean arch very similar to the one found in Opheosaurus.

In the largest and best specimen that was examined, there were found 147 vertebre with a series of caudal nodules where a tail had been replaced; there were 59 pairs of ribs, and this number was also found in a smaller specimen. The atlas is characteristic of the usual Lacertilian type, and a stumpy odontoid process is found upon the axis. Free rertebral ribs are not exhibited until we have passed backwards for three or four segments, but when the series commences it is continuous to withiu one vertebra of the rudimentary pelvis, and even this interveniug segment may develop a small free pleurapophysis. These ribs have rounded bodies with laterally compressed and dilated extremities below; the pair when articulated lie in the curve of a broad ellipse that sustains the shape of this lizard's body. They articulate by feebly developed capitula, at the base of the diapophyses, at the very anterior margin of the centrum of each vertebra, in concave facettes placed there for their accommodation. Commencing with the atlas, the first two or three vertebrae support hypapophyses, that are at first directed downwards, then directly backwards in a sharp point; it is with this segment, too, that the quadrate neural spine makes its appearance, to be contianed throughout the chain, past the pelvis; to become directed more and more back wards, and more pointed as we pass through the caudal series.

Well-developed pre and post-zygapophyses are found upon the neural
 arches of all of the vertebre, and the cup and ball socket between the centra is ellipsoidal in form and placed transversely on the bone, being concave in front, convex behind. The neural tube, beginning more or less triangular, becomes subelliptical as we pass posteriorly. Caudal vertebrie derelop sharp, spine-like diapophyses, that are directed
 ont wards at right angles with the neural spines and the chevron bones below, which latter in these segments are in each case a wedge-formed bypapophysis, attached to each vertebra, the triangular hemal canal passing through them all. The sternum and scapular arch in Opheosaurus is largely cartilaginous, thongh bone tissue is deposited about the points, where in the higher lizards the glenoid cavity exists, and other localities where additional strength is required. So far as my examinations have extended I have thus far failed to discover the presence of a rudimentary pectoral limb; even the very semblance of the glenoidal socket appears to be missing. The clavicles do not meet in the median line, but their onter extremities articulate with the expanded blade of the scapula on either side, which latter bone is semiosseous only. A transverse plate, covering the lower borders of the coracoids, is the sole representative of a sternum. The entire apparatus is placed immediately over the trachea, while the outer and expanded blades of the scapulie lap over the first and second plemapophyses.

Taken as a whole we could hardly look for a better example of a rudimentary apparatus throughout, even to its minor details. In Gerrhonotux, all of the points that are so feebly developed in Opheosaurus have been carried to a still higher point, and one approaching the true Lacertilian type, and although in this lizard the anterior and posterior limbs are present, they are weaker than in other forms, such as the Iguanida. In Gerrhonotus the clavicles meet mesiad, and the coracoids articulate with elongated facets upon a semi-osseons sternum, that has inserted along its sides the hrmapophyses that articulate above with the dorsal ribs. Passing next to the examination of the pelvis, we find that although some parts have been more or less suppressed or have almost passed beyond recognition, we still find a rudimentary femur present. The fifty-seventh vertebra has suspended from its diapophyses, and articulating freely with their extremities, two spoon-shaped bones, one on either side; these do not meet in the median line, but are separated by a space of several milimeters. The dilated extremity of each is below, and from the middle point on the outside surface, rotating in a diminutive acetabulum, we find the rudimentary femur, represented by a minute cylinder of bone, rounded at both extremities. A faint sutural line passing through this cotyloid cavity indicates the division between the ilium above and the puboischium below. Professor Mivart found this condition in some of pig. the forms he examined, and he tells us in his sig. 9 Lessons in Elementary Anatomy, page 195, that "confining ourselves, therefore, for purposes of comparison, to Mammals, Sauropsida, and Batrachians, we find the femur under a certain aspect more constantly present than the humerus. For although it is often absent when the humerus is present (as in forms like Siren, which have pectoral limbs but no pelvic ones), yet it is sometimes present in a more or less rudimentary condition when no representative of the foot coexists with it. Such is the case, $e . g$, in some whales (as the Greenland whale) amongst mammals, and certain snakes, e. g., Boa, and certain lizards, e. g., Lialis, amongst the reptiles."

In Gerrhonotus all three of the pelvic bones go to form the acetabulum, the pubic elements curving far anteriorly as delicate osseous columns to meet, mesiad, in a common cartilaginous articulation. The arch is suspended in a like manner from the transverse processes of a vertebra.

Though a little foreign to our subject, it will be of interest to many to know something of the character of food of this lizard, and in this Professor Riley has kindly assisted me, and sends the following diagnosis of a stomach that I sent him:
"The contents of stomach of Opheosaurus rentralis consists almost entirely of fragments of a tolerably common spider, Lycosa ruricola Hentz, with a single small black seed and seed-pod of some plant, not determinable ou account of condition."

Dr. Vasey kindly examined the seed and thinks it may be a Helio. charis, but is not certain. Uufortunately, the writer has not had the opportunity, from lack of material, of examining such a form as Barissia olivacea, a lizard that Cope has placed as the leading genus under Gerrhonotida; as far as our examination has gone, however, of forms representing other genera, it should leave no doubt as to the soundness of the classification in placing our apodal Opheosaurus in the niche it now occupies.

## EXPLANATION OF Figures.

Fig. 1.-Left lateral view of skull of Opheosaurus ventralis, life size: pm., premaxillary 1 , nostril ; n., nasal ; m., maxillary ; l., lacrymal ; $f$., frontal ; pf., postfrontal; p., parictal; aq., squamosal; po., pro-otic ; pt., pterotic; o.q., os quadranum; cl., columella ; c., coranoid ; d., dentary ; j., jugal; pg., pterygoid.

Fig. 2.-Skull of Opheosaurus ventralis seen from beneath, taken from a smaller specimen than Fig. 1, and enlarged: v, vomer; pl., palatine; o. t., os transrersum; sq., squamosal ; o. q., os quadratum ; n. a., nasal aperture; pgm., pterygomaxillary vacuity ; pg., pterygoid; ip., interpterygoid vacuity.
Fig. 3.-Lower jaw of Opheosaurus ventralis, life size, same specimen as Fig. 1, seen from above: c., coronoid; a.f., articular facet.
Fig. 4.-Hyoid and scapular arch of Opheosaurus rentralis, life size, seen from in front: $H$, hyoid; Tr., trachea ; c., clavicle; s., scapula; cr., coracoid; st., sternum.
Fig. 5.-Same from Gerthonolus scincicandus, letters indicate the same thing: gl. c., glenoid cavity.
Fig. 6.-Anterior view of vertebra, with its ribs, from Opheosaurus rentralis, from midde of spinal column; n.s., neural spine; $r$., rib.
Fig. 7.-Anterior view of candal vertebra from same specimen.
Fig. 8.-Anterior view of vertebra that beans the pelvic arch, $O$. ventralis, slightly enlarged: n. s., neural spine ; ct., centrum ; I., ilium; p.i., pubo-ischium; $F$., rudimentary femur.
Fig.9.-Sketch of lateral view of pelvis of Gerrhonotus acincicaudus, slightly eularged: tr., transverse process of vertebra; A., acetabulum.

##  

## Ry W. II. DALL.

I have received from Professor Verrill certain limpets or patelliform shells and chitons collected under his supervision off the southeast coast of New England in deep water by the United States Fish Commission parties in 1881, with his kind permission to describe then. Though without particular beauty and of small size, the hope that these specimens wonld prove of interest has not been disappointed.

Limpets are generally shore or shallow water mollusks; the connection of certain peculiarities of structure in them with their geographical distribution, and the progressive development indicated by the characters of different geuera, have already been the subject of comment by me.*

[^137]The forms of lowest organization and least specialized characters amon! those already known are those which inhabit the deeper water; hence there was reason to suppose that features of much interest would be exhibited by the few specimens which had just been brought up from much greater depths than any from which limpets had hitherto been obtained.

The examination was rendered more complete by the possession of additional specimens which are contained in the deep-sea collection from the Antilles made by Prof. Alex. Agassiz and Lieutenant-Commander Bartlett, U. S. N., on the United States Coast Survey stcamer Blake. These afforded valuable confirmation of impressions derived from the study of the material obtained from Professor Verrill.

Some of the specimens obtained are of unusual interest as showing a combination of characters which has heretofore been unknown in animals of the same order. While the shells present few salient features, the soft parts show extraordinary and unexpected characters. They are divided into reprecentatives of the orders Rhiphidoglossa, Docoglossa, and Polyplaciphora. The Docoglossa comprised representatives of both the suborders Abranchiata and Heterobranchiata, but all somewhat anomalons in their characters. It is in the first-mentioned order, however, that the richest results were obtained, since it appears necessary to separate the three species obtained into two genera, representing each a family, which differs by apparently sound characters from any hitherto known, and which it has therefore been necessary to describe as new.

Almost all the species appear to be blind.

## Order RHIPHIDOGLOSSA.

Family COCCULINIDAE Dall.

Shell patelliform, not nacreous, srmmetrical, with an entire non-sinuated margin, and a posteriorly inclined apex with a deciduous spiral nuclens. Muscular impression horseshoe-shaped, interrupted over the head.

Animal with a prominent head and muzzle, two tentacles as in Lepetidx; gill single, plumose, asymmetrical, resembling that of Acmaida, extending between the under surface of the mantle and the foot (from a point above and behind the head) back ward on the right side, attached only at its base. Anus anterior, opening above and behind the head. Mantle margin plain; sides and margin of the foot without papilla or ornamental processes excepting two filaments, one on each side of the median line, between the mantle and the foot-disk behind. Radula with a small or moderate rhachidian tooth (in the known species), three inconspicuous laterals with denticulate cusps and a fourch dentate, Proc. Nat. Mus 81-26

April 24, 1882.
larger outer lateral;* uncini numerons (50-150), similar, hooked at the tip, those of each lateral series springing from a common base.

Formula:

$$
\frac{1}{\mathrm{~m}(1+3 \cdot 3+1) \mathrm{m}} .
$$

This family differs from its nearest described allies (the Fissurellide) in its single asymmetrical gill, in the absence of appendages to the sides of the foot or on the mantle edge, and in its patelliform, unfissured. unsinuated, and wholly external shell.

From the succeeding family, Addisoniida, it is separated by its symmetry, the character of the gills, and by its dentition. By its dentition it is most nearly allied to Parmophorus or Scutus, if figures be taken as a criterion (and much resembles some species of Helicina), but it mast be borne in mind that very few species of Fissurellida, have been figured in proportion to the whole number known. The other characters, however, forbid its incorporation with the Fissurellida as they conflict in nearly every important feature with the definition appropriate to that family.

At first it was thought that Propilidium might be incorporated in this family, but an examination of the available data relative to that genns indicates that it belongs rather in the Fissurellida, where it, apparently, represents an imperforate Puncturella.

## Genus Cocculina Dall.

Animal blind; shell colorless, with radiating and concentric sculpture; for other characters see diagnosis of family.

## Cocculina Rathbuni, n.s.

Shell depressed, white, thin, with sides nearly parallel and their slopes lightly flattened, and with ends similarly broadly rounded; sculpure of faint closely (but irregularly) set grooves radiating from a smooth apex (which has originally a subspiral nucleus) and crossed by coucentric growth lines, which are more or less irregular in difierent individuals: faint yellowish areas seem to indicate a thin, rery closely adherent epidermis; apex prominent, more or less incurved and slightly laterally compressed, ustally showing a scar where the embryonic nuclens was attached ; inside polished or smooth; length 11.0 ; width 6.5 ; altitude 2.75 mm . Another dead specimen is three times larger.

Soft parts: Foot ovate, thin, not very high, somewhat pointed behind: mantle margin moderately wide with a thickened plain border; behind, on each side of the "tail," between the mantle and foot, is one cylindrical blunt filament; sinus above the head and neck quite deep; gill exactly as in Acmaen, s mall, hardly projecting out of the sinus; head large, end of muzzle semi-lanate, with a strongly marked margin; in the midst of this flat lanate area is a rounded papillose space surrounding the mouth; this

[^138]organ, if furnished with jaws at all, has them of such soft and cuticular consistency as to show neither under the kuife nor under an ordinary dissecting microscope, but it appeared to be without jaws; tentacles moderate, subeylindrical ; eyes none; course of the intestine much as in Patclla, but shorter.

Dentition.-Rhachidian tooth squarish, rounded in front, nearly flat, abont as long as the two inner laterals; inner three laterals slender, with small denticulate cusps, outer or third usually a little longer than the others, but the proportions slightly different in the less mature part of the radula; fourth or major lateral about twice as long as the others and slightly broaler than the rhachidian tooth, rather strongly cusped, the cusp notched into five or six denticles, and the shaft somewhat curced, the shaft and cusp translucent; uncini numerous ( 100 or more), slender, slightly twisted and hooked, united on each side on a single continuous base, which is a little longer than the width of the radula between the uncini.

Mabitat.-Station 937 of the Cnited States Fish Commission in 1881. This is 102 miles S. by E. $\frac{1}{2}$ E., by compass, from Gay Head Light, Martha's Vineyard. The bottom temperature being $40^{\circ} .5 \mathrm{~F}$., and that of the surface 720.0 F . The same species was obtained by the United States Coast Survey dredgers on the steamer Blake, Lieutenant-Commander J. R. Bartlett, commanding, under the supervision of Prof. Alex. Agassiz, on hard bottom (temperature $44^{\circ} .5$ F.), at station 288, in 399 fathoms, off Barbadoes; and off Martinique, in $50 \% \frac{1}{2}$ fathoms sand and ooze, at station 195 , bottom temperature $41^{\circ} .0 \mathrm{~F}$., the surface in both cases locing about $80^{\circ} .0 \mathrm{~F}$. I take pleasure in naming this species after Mr. I. Rathbun, of the United States Fish Commission.

## Cocculina Beanii, n.s.

Shell elevated, white, thin, resembling in sculpture and general features the last species, except in the following particulars: The form of the base is about as in C. Rathbuni, but the profile differs widely, the anterior and posterior slopes of the present species, instead of being subequal and nearly similar, are unequal, the anterior being considerably the longer, roundly and conspicuously arched; the posterior slope is about lialf as long as the other and deeply concavely excavated; this results from the fact that the apex, instead of being depressed aud nearly central, is elevated, subposterior and much incurved; like that of the previous species it bears a scar where the (probably spiral) embryonic shell was attached; the sculpture resembles that of the preceding species, being stronger and more cancellated in some specimens and nearly obsolete in others. The very young show proportionally stronger sculpture, even slightly spinous at the intersections in some specimens. The surface is generally partly eroded, probably from the same action as that which so rapid'y reduces dead shells and corals to a species of gray ooze in the deep sea. There scems to be no indication of epidermis in this species. Length 8.0 ; breadth 5.0 ; height $4.0^{\mathrm{mm}}$.

Soft parts in general as in the last species, except that the head and muzzle are much elongated, the sinus behind the head deep; gill longer and larger than in C. Rathbuni, projecting out on the right side of the head; tentacles longer and foot shorter proportionally than in $C$. Rathbuni; the mantle margin is much puckered, but this is probably due to the alcohol ; the margination, which forms a semilunar area at the end of the muzzle in the preceding species, in C. Beanii is interrupted before the papillose area which here distinctly forms the end of the muzzle, the effect of which is to produce two lappets, one on each side, extending from the end of the muzzle to the anterior edge of the foot. There appears to be no jaw.

Dentition.-In this species the bands of nncini are proportionally longer and wider and the rhachidian tooth smaller than in the preceding. The rhachidian tooth is small, with a tridentatecusp and bifureate base; it is about half as long as and hardly wider than the first three laterals; the latter are elongate, slender, with denticulate cusps, the outer is rather the shorter in the mature part of the radula; the major lateral is longer, with a more slender shaft than in C. Rathbuni, and a proportionally larger, very concave cusp with seven or eight denticulations; the banded uncini are singly broader than in C. Rathbuni, and collectively about one-half longer.

Habitat.-Station 871, U. S. Fish Commission, lat. $40^{\circ} 0 \mathbf{2 0}^{\prime} 54^{\prime \prime}$ N., lon. $70^{\circ} 23^{\prime} 40^{\prime \prime} \mathrm{W}$., in 115 fathoms muddy sand ; station 894 , U. S. Fish Commission, lat. $39^{\circ} 53^{\prime}$ N., lon. $76^{\circ} 58^{\prime} 30^{\prime \prime} \mathrm{W}$., 365 fathoms mud and gravel, both in 1880 ; station 947,312 fathoms sandy mud, bottom temperature $44^{\circ} \mathrm{F}$.; station 949, $79 \frac{1}{2}$ miles south of Martha's Vineyard, in 100 fathoms yellow mud, bottom temperature $52^{\circ} .0$, surface $66^{\circ} .0$ F.; station 997,335 fathoms, yellow mud, bottom temperature $40^{\circ} \mathrm{F}$.; these last in 1881 (Verrill); and from the same localities as C. Rathbuni in the West Indies (Agassiz), with the additional locality of station 264, 416 fathoms gray ooze, off Grenada, bottom temperature $4 \because 0.5 \mathrm{~F} . *$ It is named in honor of Dr. T. I. Bean, of the United States Fish Commission.

## Family ADDISONIID E Dall.

Shell asymmetrical, porcellanous, somewhat like Capulacmea Sars.
Soft parts mnch as in the last family, but strongly asymmetrical, with an enormously developed lateral series of separately inserted gilllamine, like those of Patellide, and without filamentary appendages of any kind. Radula with a large simple rhachidian tooth with, on each side, two large simple transverse laterals, followed by two minute ones, and a large outer lateral with a strong tridentate cusp, outside of which

[^139]is a single scale-like flat uncinus, bearing an elongated thickened ridge, but no cusp.
$$
\text { Formula : } \frac{1}{1\left(\frac{1}{3}+2+2 \cdot 2+2+\frac{1}{3}\right) 1}
$$

This family might be incorporated with the last were it not for the differences in the branchize and in its dentition. These latter are of great weight. The dentition of Addisonia is like nothing known in the whole group of Rhiphidoglossa, but, while it recalls the dentition of the Chitonide in some features, has a decidedly Docoglossate aspect. Perhaps the most rational hypothesis is that this group bears to the preceding family much such a relation as in Pulmonata is borne by the Cyclotacea of Troschel toward the Cyclostomacea. Indeed, the resemblance of the radula of Cocculina Rathbuni to that of some of the species of Helicina figured by Troschel is quite remarkable. This family contains, so far as kuown, but oue genus.

## Genus AddisoniA* Dall.

Shell ovate, subconical, strongly asymmetrical, porcellanous, thin; with a blunt apex curved backward, downward, and to the left, without an epidermis; with an unthickened, simple, entire margin; pedal muscular impression horseshoe-shaped, interrupted in front. Soft parts: head provided with two tentacles withont eyes or eye tubercles; muzzle plain, simple; foot thin, orbicular, without lateral or posterior tubercles, processes, or fringes; mantle edge simple, thickened; gill composed of leaflets as in Patella, the series starting on the right behind the head and continued within the mantle edge backward, the body of the animal being asymmetrically placed with regard to the aperture of the shell to afford room for the enormous series of branchial leaflets; anus opening behiud and above the head slightly to the right of the median line, and indicated by a small papilla.

Radula: See description of the family.
Type and only species yet known.

## Addisonia paradoxa, n.s.

Shell ovate, thin, whitish; apex presenting an appearance as if an embryonic tip (perhaps spiral) had fallen and been replaced by a peculiarly blunt ovate apex, which in the young shell is nearly marginal posterior and to the left of the middle line, but in the adult is considerably within the margin, curved dowuward and backward, and much more asymmetrical; sculpture of faint grooves radiating from the (smooth) apex and reticulated by the stronger concentric lines of growth, beside which the extremely inflated arch of the back is somewhat obscurely

[^140]concentrically waved; over the sculpture the shell has a polished appearance; margins thin, sharp; interior smooth, somewhat polished; the scar of the pedal muscle narrow, a considerable distance within the margin, the anterior ends of the scar enlarged, hooked backward on their inner elges; these ends connected by a line broadly arched forward and marking the attachment of the mantle to the shell orer the head. Soft parts whitish, dotted with fine purple dots; mantle edge thickened, smooth; muscular base of the foot nearly orbicular, extremely thin and delicate, not high; muzzle short, plain, without any strongly defined margination, with the end fiuels papillose and a little puckered; mouth small, furnished with two lateral pads covered by a cartilaginous thin coat which completely dissolves in liquor potasse, and hence can hardly be termed a jaw, though it occopies the place of the buccal plates in other genera; head moderate, not much produced, broaler than long, extended laterally into a single rather short and stout tentacle on each side; tentacles showing slight transverse ridges (due to contraction ?) destitute of any basal elbow or tubercle, such as bears the eye in allied groups, and with no appearance of auy organ of vision or bulbus, whatever. Behind the head a thickened ridge, containing a large vessel, takes origin and passes backward around the right mantle edge, reaching nearly to the posterior median line; from this ridge depend fifty or sixty branchial leaflets resembling those of Patella, and not like those of Acmata or the Fissurellida; these leaflets are very large in proportion to the size of the animal, and gradually diminish posteriorly: they are slightly inclined outward; the anal papilla is very inconspicaous, opening between the line of the branchia and the liead, a little to the right of the head; the intestine is much shorter than in the Patel. lida, and coiled in much the same way through the very large greenish hepatic mass; this surrounds the ovary, which rises to the surface of the back in about its center, and in this individual was crowded with eggs already in various stages of segmentation and of about the size and general appearance of those of Acmat patina. The ovary appeared to be a single simple sac like body of irregular contour as in Acmax; no crop was noticed and the stomach seemed of very moderate sizf.

Since but one specimen was available the observations were more or less imperfect, especially since the interual parts were somewhat softened. To obviate the extreme contraction caused by alcohol, the specimen was placed in water with the result that it almost immediately swelled and became covered with an immense quantity of very slimy mucus, which rendered it almost impossible to handle, being so slippery, and it had to be replaced in alcohol again to harden before the examination could proceed. The edge of the mantle is marginated with a rather broad thickened baud, apparently without papilla or other ap. pendages of any kind. The space occupied by the branchise is solarge that the remainder of the animal is forced a good deal to the left in the aperture of the shell.

The radula has a large flat, ovate central tooth with a thickened anterior edge but no marked cusp; on each side of this two rhomboidal flat laterals with a similarly thickened anterior margin, the inner is the larger and the outer somewhat more rounded in form; close to this are two minute narrow laterals with small cusps, hidden partly under the cusps of the uext or major lateral, for which reason they caunot well be made ont until the radula is partly torn apart or broken up; these two little laterals are the most anterior of the transverse series, which has a form like a very transverse $M$; the major lateral has strong Docoglos. sate features, being set on a flat plate whose posterior inner and anterior outer corners are thickened and raised into the likeness of a pseudocusp, the true shaft of the tooth being very short and terminating in a strong tridentate pellucid cusp; the outer tooth is a squarish, plate-like uncinus, exactly as in some chitons, with a thickened longitudinal ridge near the inner margin.

Length of shell abont 10.0 ; width 7.5 , and altitude $4.0^{\mathrm{mm}}$.
Dredged by the United States Fish Commission in 1881 at stations 923,940 , and 950 in 96,130 , and 69 fathoms, sand $y$ bottom, about 75 miles S. and W. from Martha's Vineyard. Bottom temperature 520, which belongs to the warmer bottom area. This very remarkable form would have been called a "synthetic type" by Prof, Louis Agassi\%. The shell at once recalls Capulacmaza ( $=$ lilidium Midd.), which, however, is distinctively Trenioglossate in dentition. The details of the bratichial leaves resemble those in Patella, the position of the branchise and the form of the head resemble Acmaca, the smooth thick mantle margin and absence of eyes are characters found in Lepetida. Some features in the dentition recall Chitonide, and others Cocculinida. The position of the animal in its shell is as in the Rhiphidoglossa universally.

Nothing of the kind has been recognized in the collection made by Messrs. Sigsbee and Bartlett, of the U.S. Navy, in the Gulf of Mexico and Antilles, under the supervision of Prof. Alex. Agassiz, on the United States Coast Survey steamer Blake, leading to the supposition that this may be a rather more northern form, though found in the warm area.

Order DOCOGLOSSA.

## Suborder ABRANCIIIATA.

Animal destitute of external branchiz. Embryonic shell spiral.

## Family LEPETID E Gray.

Lepetida (Gray) Dall. Ann. Mag. of Nat. Hist. vii, pp. 286-291, April.
Subfamily LEPETIN.E.
Animal without eyes, without lateral teeth, with a rhachidian tooth, and crect uncini ; muzzle with an entire margin, which is extended back-
ward into a tentacle-like filament ou each side; shell patelliform, with a subspiral nucleus, which is generally lost in early life, the permanent tip being erect or anteriorly directed. Typical genus Lepeta Gray.

## Subfamily LEPETELLIN, n .

Shell and soft parts as in Lepetida, except that it has distinct eves and is provided with true lateral teeth and also with scale-shaped uncini. Typical genus Lepetella Verrill.

## Genus Lepetella Verrill.

Lepetella Verrill, Am. Journ. Sci. xx, p. 393, Nov. 1880.
Type Lepetella tubicola Verrill J. c., also Proc. U. S. Nat. Mus. iii, p. 355, Jan. 1881.

Mabitat.-In two to four hundred fathoms of the SE. coast of New England (stations 869 and 894, U. S. Fish Commission, 1880) in old tubes of Hyalincecia artifex V. (Coast of Norway in deep water, Sars !)

Professor Verrill has well described this little shell in the articles referred to, as well as its dentition, which he calls Trenioglossate. It is indeed so in one sense, though not in the technical sense of belonging to the order Tanioglossa, which has a formula $\frac{1}{3 \cdot 3}$, while the formula of
Lepetella is $\frac{1}{1(2 \cdot 2) 1}$, the essential difference being that all Tanioglosan have on each side of the rhachidian tooth three laterals and no uncini, while Lepetella has two laterals and an uncinus.
The specimens examined by me were dry or from de:erioration of the alcohol had become quite soft, and for this reason, perhaps, I could not detect the eyes seen by Professor Verill so distinctly in the fresh and living animal.* So far as the external features could be determined there was no difference between them and those exhibited by Lepeta or Cryptobranchia. The dentition is remarkable, both in relative number of teeth and in presenting the only instance of a well-developed, distinct, scale like (chitonoid) uncinus yet known in the order. In fact, the radula has throughout distinctly Chiton like features, and bears additional testimony, if such were needed, to the acuteness of Troschel in combining (dental characters only being considered) both chitons and limpets in one dental order. The external form is, of course, partly due to its peculiar habitat; other specimeus will, no doubt, eventually be found clinging to some flat surface and of normal shape. It seems to be a northern form, and does not occur in the Blake collections.

[^141]
## Suborder PROTEOBRANCHIATA.

Animal with external branchiæ. Embryonic shell conical.
Family ACM AID
Gill plumose, cerrical.

## Genus Scutellina Gray.

Scutellina Gray, P. Z. S. 1847, p. $163=$ Scutella Broderip, not Lamarck. Type S. crenulata Broderip.
The animal of the typical species of Scutellina is unknown; according to Arthur Adams, that of a closely-allied species (S. ferruginet) resembles Acmaca in its externals, except that the shell is pure white, with prominently reticulated sculpture, and the apex is prominent, pointed, and very anteriorly situated. Mr. Adams distinctly states that the animal has eyes, and it is quite probable that the genus will eventually prove to be a good one.

A speemen was recently obtained, with the dried animal (from some West Indian corals), of a species which is also represented in the Blake collection, and which would probably be referred, from the shell characters alone, to Scutellina, though it differs from the received diagnosis of that genus in having a blunt, subceutral, erect apex, much like ordinary Acmaas. An examination of the soft parts showed, however, wide differences from any described genus, necessitating the establishment of a new one for its reception.

## Genus Pectinodonta Dall.

Shell resembling Scutellina, with a blunt, subcentral apex. Soft parts resembling Acmaxa, except in the following details: Animal blind, with the front part of the head between the tentacles and above the muzzle much produced upward and forward, extending considerably further forward than the end of the muzzle. Muzzle marginated, with lappets at the outer corners. Jaw thin, translucent. Gill exactly as in Acmica; sides of foot and mantle-edge simple, nearly smooth: Dentition $\begin{gathered}0 \\ 0 \\ (1.1) 0\end{gathered}$; teeth large, with transverse pectinated or denticulate cusps, like those of the large lateral teeth of some Tectibranchs or Nudibranchs.

## Pectínodonta arcuata n. s.

Shell white, elongate-ovate, moderately elerated, with a blunt, polished apex, on which in young specimens remain traces of the disk-like, chalky, embryonic shell; the slopes from the apex to the ends both convexly arched, margin simple or slightly denticulated by the radiating sculpture; within polished; scars as in Acmaa; epidermis none; sculp-
ture externally of fine, uniform, rounded, closely-set threads, radiating from near the apex to the margin, and reticulated by the finc, rather prominent, regular, concentric ridges of growth, both ridges and threads averaging near the margin about three and a half to the millimeter. Lon. from end to end, $14.5^{\mathrm{mu}}$; from apex to anterior cud, $5.5^{\mathrm{mm}}$; lat. $10.0^{\mathrm{mm}}$; alt. $5.5^{\mathrm{mm}}$.

Mabitat.-West Imlies; St. Thomas, in coral; Santa Lucia, station 215 , in 226 fathoms, Blake expedition.

The examination of a well preserved specimen showed that the end of the muzzlo formed a semilunar area with a distinctly-marked margin and lappets at the posterior corners. In the middle of this flat aud nearly smooth aren is the mouth, surrounded by a small circular papillose area. The jaw is thin and translucent, but sufficiently strong to resist contraction on the drying up of the soft parts. The radula cortains about 175 series of teeth, which are large, with strong cusps, which are turned toward the middle line of the ralula and strongly deuticulate. The denticuiate part, as in most Docoglossa, is nearly black, the anterior denticles are larger, the posterior nine subequal in size, the whole number of denticles is twelve; the whole tooth has somewhat the appearance of a coarse curry-comb, and suggests that it is due to a consolidation of the normal three Docoglossal laterals rather than the suppression of all but one and the modification of that one.

The protrusion of the anterior arch of the head is very peculiar and remarkable; the foot is rather short for the size of the shell; otherwise the features are those of Acmwa, in general. The gill is rather large and exactly as in Acmara.

The number of teeth is the smallest known in any limpet, and none of the same shape have been recorded in the order. It is likely, however, that Scutellina, when incestigated, will prove to have very similar dentition.*

## CHITONIDE.

## Genus Chetopleura (Shattleworth) Cpr.

## Chatopleura apiculata Say.

Habitat.—Station 038, United States Fish Commission, 1881, being 100 miles SE. by E. $\frac{1}{2}$ E. (magnetic) from Gay Head Light, Martha's Vineyard. The depth was $\geqslant 10$ fathoms, green sand and mud, the bottom temperature $40^{\circ} .5$, the surface 720.0 F .

In these researches only two specimens of Chitonidas were obtained, and these are not of a genus characteristic of the decps. These specimen were young, but did not differ from young ones of the same species from shallow water. There have been fond in depths of 100 fathoms

[^142]or less along the northeastern coast of New England, and northward, two other tolerably common chitons, one of them Trachydermon albus Linne, which does not go to great depths, as far as known, either in the Atlautic or Pacific. In Alaska it is abundant from low-water to 100 fathoms. The other, Leptochiton canccllatus Suwerby, occurs off the British Possessions, and may reach a depth oi 300 fathoms. Rarer species, which may be found in deep water, are Leptochiton alveolus Sars ( 150 fathoms Gulf of Mane); Hanleyia mendicaria Mighels and Adams; H. delilis Gray (to 300 fathoms) ; and H. tropicalis Dall, from southern waters (Sand Key, 128 fathoms).

The greatest depth from which chitons have been reported is 1,006 fathoms, at which the Leptochiton Belknapi Dall, was obtained in the North Pacific. It has since turned up from Kerguelen in the Challenger collections, and, perhaps, may eveutually be found in the North Atlantic.

## NOTES ON THE GENERA.

The slender side teeth of Lepeta are distinguished from true laterals by not being situated on the central longitudinal area of the radula. By their form alone it would be impossible to distinguish them from teeth which are truly laterals; like the inner laterals of Lepetella.
since 1869 (when I revised the classification of the Lepetide and, somewhat later, of the order to which they belong), little by little information has been coming in which fills the gaps then known to exist in our knowledge of the order. It is now possible to review more understandingly the relations of the dentition of the different groups. It would seem at first sight as if the dentition of Lepeta and Lepetella differed very widely, but more reflection diminishes the apparent divergencies.

It may be suggested that in Lepeta caca the large rhachidian tooth really represents a consolidation of the six laterals characteristic of Acmaxa, which is supported by the fact that G. O. Sars* figures the lateral cusps of the rhachidian tooth in I'ilidium fulvum as accessory rather than inherent parts of that tooth, a view (I find on relerence to them) supported in part by my own original drawings, and a condition which, though not universal nor necessars, may yet be characteristic of some stages of the development of the individual or of the radula; or perhaps of some individuals merely, while in others the consolidation goes so far that the sutures (as in the bony strnctures of higher animals) are obliterated. In that case the rhachidian tooth of Lepetella would represent the consolidation of the two inner laterals merely, if the number six be taken as typical, which, from its universality elsewhere in the order, we may reasonably assume to be the case. This is the typical number in the Tanioglossa to which (as Irofessor Verrill indicates in his description) the radula of Lepetella is in some respects analogous; though the Tanioglossa have no uncini. In the same way, as has before

[^143]been pointed out, the single large dentate laterals of Pectinodonta may represent, in the other division of the order, each a consolidation of the three typical laterals of Acmaca.

The name Onychoglossa has been used by G. O. Sars (1878) to denominate the same group and as indicative of the same characters as those possessed by the Docoglossa (Troschel, 1861), as revised by me eight years previously. I do not see any especial gain which might result to science from substituting the newer for the older name.

The relations of the groups may be expressed somewhat as follows:

## Order DOCOGLOSSA.

Shell wholly external, dish-shaped, with apex anteriorly directed; animal with two short tentacles, a non-extensible muzzle; branchis external or none; renal and anal apertures situated above the neck, between body and mantle edge; no copulatory or extemal genital organs; mouth provided with a horny jaw aud long radula with peculiar teeth; dental formula not exceeding $\frac{1}{3(3 \cdot 3) 3}$; metamorphosis of the embryo taking place in the egg, which is fertilized in the orary.

## Suborder ABRANCHIATA.

Animal without external branchix. Embryonic shell spiral.
Family LEPETIDAE.
Subfamily Lepetinc. Without eyes; with a marginated mazzle ex. tended into (on each side) a tentacular process. Uncini erect. Dental formula $\frac{1}{2(0 \cdot 0)^{2}}\left(1=\frac{0}{2(3+3) 2}\right)$.
Lepeta Gray $\left\{\begin{array}{l}\text { Lepeta s. s. }(+ \text { Pilidium Forbes non Middendorf). } \\ \text { Cryptobranchia Middendorf. }\end{array}\right.$
Subfamily Lepetellinc. With eyes; other soft parts as in Lepeta. Uncinus scale-like. Dental formula $\frac{1}{1(2 \cdot 2) 1}\left(T=\frac{0}{1(3+3) 1}\right)$. Lepetella Verrill.

## Suborder PROTEOBRANCHIATA.

Animal with external branchiz. Embryonic shell conical.

## Family ACMAEID.

With a plumose cervical branchia; with or withont a branchial cordon; muzzle frilled; no rhachidian tooth.
A. Without a cordon.
A. Muzzle with lappets.
a. Blind.

Pectinodonta Dall. $\frac{0}{0(1 \cdot 1) 0}\left(I=\frac{0}{0(3 \cdot 3) 0}\right)$.
b. With eyes.

Scutellina Gray. Typical species not yet examined.
Acmáa Esch. $\frac{0}{0(3 \cdot 3) 0^{\circ}}$

> B. Without muzzle lappets.

Collisella $\left\{\begin{array}{l}\text { Collisella Dall, s. s. } \\ \text { Collisellina Dall. } \frac{0}{1(2-1 \cdot 1-2)} \mathbf{~} \mathbf{l}^{*} \\ \hline(2-1 \cdot 1-2) 2^{2}\end{array}\right.$
B. With an interrupted cordon; no lappets.

Lottia (Gray) Cpr. $\stackrel{0}{1(2-1 \cdot 1-2)} 1$.
c. With complete cordon; no lappets.

Scurria Gray (not Cpr.). $\frac{0}{1(2-1 \cdot 1-2) 1^{\circ}}$.

## Family Patellide.

Without a cervical branchia, but with a more or less complete cordon; muzzle papillose, not frilled, marginated, or with lappets.
A. Branchial cordon complete.
a. With rhachidian tooth; branchial lamelle arborescent, produced; sides of foot smooth. Ancistromesus.

Ancistromesus Dall.

$$
\frac{1}{3(1-2 \cdot 2-1) 3} .
$$

b. Without rhachidian tooth; branchial lamella short, linguiform. Patella.

Patella Linné. Foot smooth, branchial lamellæ subequal all around. $\frac{0}{3(1-2 \cdot 2-1) 3}$.

## 414 proceedings of caited states national museum.

Patinclla Dall. Foot with a scalloped frill interrupted only in front; gills as in Patella. $\begin{aligned} & 0 \\ & 3(2-1 \cdot 1-2) 3\end{aligned}$
Nacella Schumacher. Foot frilled ; gills sery small in front ; shell peculiar; lateral teeth all bidentate.

0
$3(2-1 \cdot 1-2) 3$.
B. Branchial cordon interrupted in front.
a. Sides of foot smooth. Helcion.

Helcion Montfort. Third laterals posterior, bidentate. $\frac{n}{3(1-2 \cdot \sqrt{2}) 3}$.
Helcioniscus Dall. First laterals anterior.
0
$3(2-1 \cdot 1-2) 3$.
Patina Gray. Third laterals posterior, denticulate; shell peculiar. 0 $3(1-2 \cdot 2-1) 3^{\circ}$

Metoptoma Phillips. Posterior edge emarginate or waved.
Fossil in Carboniferons of Great Britain.
January 22, 1882.

## ON TWO HECENT ADDITHONATOTEIE NOETEAMERECAN BERD. <br> FAUNA, EYE. IEELDENG.

## By RORERT RIDGWAT.

1. Motacilla ocularis, Swinhoe. (Ibis, 1860, p. 55).

This species, which is the common East-Asiatic species, has been taken at La Paz, Lower California, by Mr. Belding, who secured a single adult specimen in winter plumage, on the 9th of Jantary, 1882. It was undoubtedly a straggler, but it seems incredible that ic could have found its way there across the broad expanse of the Pacific Ocean. On the other hand, it is difficult to conceive by what other means it could have reached a locality so far from its natural habitat, not being known from any part of the Pacific coast of North America, even in Alaska, although specimens have been obtained at Plover Bay, Siberia. In eastern Asia it occurs in winter as far south as Amoy, where it was first discovered by Mr. Swinhoe.

This species much resembles M. alba of Europe, having like it a gray back, but differing in having a large white putch covering both rows of wing-coverts, and in having a distinct post-ocular streak of black, running into the black of the occiput.
2. Dendrceca vielloti bryanti, Rilgway.
(l)endroica rieilloti var. bryanti Rıdgw. Am. Nat., vii, 1873, p. 606; B. B. \& R., Hist. N. Am. B., i, 1nï4, p. 218.-Dendroca rieillodi Sai.vin \& Godman, Biol Centr.-Am. Aves, i, 1879, 125, part.)
This species, described originally from Yucatan, Honduras, and Mazatlan, was found to be quite common at La Paz, in January, 1882, by

Mr. Belding. He sends tro specimens, an adult male and female, which ayree closely with Mazatlan examples. These western specimens all differ appreciably from eastern ones (from Yucatan and Honduras) in the darker shade of chestnut on the head and in some other less im. portant characters, but until I have seen more specimens I do not venture to separate them.

The group to which this species belongs is an exceedingly difficult one on account of the great amount of variation with locality. A recent examination of a large series of specimens from various localities strongly suggests the probability of the existence in Middle America and the West Indies of but a single species of "Golden Warbler" besides $D$. astica, but this broken up into numerous local races more or less distinct from one another. According to this view, D. petechia, D. capitulis, and other West Indian races, D. aureola, of the Galapagos, $D$. risilloti, and the present bird would all represent merely local variations of a single species, the difference being appreciable chictly, if not only, in fully adult males, and consisting in the varying amount of rufous on the head and under parts. So far as the material in the National Museum collection is coucerned, the distinctions between the present bird and the true $D$. cieilloti, pointed out in the descriptions above cited, hold good, and I must therefore, for the present at least, beg to dissent from the opinion of Messrs. Salvin and Godman (in Biol. Centr.-Am. Aves, i, p. 125) that D. bryanti cannot be separated from $D$. vicilloti.

Smithenian Institution, March 10, 1882.

##   

## By G. BROWN GOODE.

The following essay toward a reformulation of the characters by which the members of the sword fish family are classified is the outcome of a systematic study of this group of fishes, a detailed statement of which, together with an account of the sword-fisberies of the world, are given in full in a forthcoming report of the United States Fish Commission. The views of the writer having been somewhat modified since reading the proof-sheets of the report just referred to, the portion relating to the classification of the group has been rearranged and is here presented. The views of Dr. Liitken, of the Zoological Museum, Copeuhagen, as expressed in his recent work entitled "Spolia Atlantica", have received a careful consideration in the preparation of these notes, and have, to a considerable extent, been adopted.

As Dr. Liitken has pointed out, the genus Xiphias, to which the common sword-fish belongs, cannot, as has hitherto been customary, be regarded as the central type of the family, but must be considered an
aberrant or divergent type; the round-billed species, provided with ventral fins, especially those of the genus Histiophorus, being the most typical and representative of the group.*

Representatives of all the genera of the sword-fish family occarring in the waters of the United States the writer has had opportunities of studying and formulating by means comparison, certain structural characters never before expressed.

## Description of the family Xiphide.

## Family XIPחUD Æ, Agassiz.

Xiphioides, Agassiz, Recherches sur les Poissons Fossiles, v, 1843, p. 89.-Blefker, Ennm. Sp. Pisc. 18́s9, p. 62.
Xiphida, GONther, Catalogue of the Fishes in the British Musenm, ii, 1860, p. 511 ; Fische des Suidsee, i, 1873-51, p. 103; Study of Fishes, 1880, p. 431.-G11.L Arrangement of the Families of Fishes, 1872, p. 8 (name only).-Day, Fishes of India, i, 1876, p. 198.

## Diagnosis of family.

Scombroid fishes, with elongate, compressed bodies, covered with elongate scale-like scutes (Tetrapturina) or naked (Xiphiinc). Premaxillaries with nasal and vomerine bones produced in a long spear. like snont, immovably articulated with the prenasal and maxillary. Teeth rudimentary (Tetrapturina) or absent (Xiphiina). Nasal bone cellular at its base. Ventrals rudimentary (Tetrapturiner), or absent (Xiphiintr). A single dorsal, extending nearly the whole length of the body in young, persistent (Histiophorus) or subpersistent, divided in middle with age (Tetrapturus), or becoming with age subdivided into two short dorsals (Xiphiinte). A similar rudimentation of anal fin in both subfamilies. Ireopercular spine preseut in young (Jiphiina), or parietal and preopercular spines (Tetrapturince), disappearing with age. Seven branchiostegals. Pseudo-branchio present. Branchia cancellated or reticulated. Air-bladder present, cellulated (Tetrapturus and Histiophorus (')), or simple (Xiphiinn). Intestine short, not sinuous (Tetrapturina), or long, sinuous (Xiphiincr). Gall-bladder free, hanging at some distance from the liver. Articular processes developed from the parapophyses.

## Synopsis of subfamilies.

Ventrals present: skin with scutes: snout rounded: candal keela donble.
Tetrapturinas, Gill.
Ventrals absent: skin scaleless: snont flat: candal keel single.. Xiphine, Swainson.

[^144]
# Descriptions of the subfamily Tetrapturine and the genera Tetrapturus and Histiophorus. 

## Subfamily TETRAPTURINE, Gill.

Tetrapturince, Gill, in Rep. U. S. F. C. i, 1873, p. 787 ; Cat. Fish. E (Soast N. A. 1873, p. 9 (name only; no description).

Diagnosis of subfamily.
Xiphiid fishes, with bodies mach compressed, covered with elongate, scale-like scutes. Sword somewhat flattened, but rounded at edges, spear-like. Tooth-like granulations upon the jaws. Pelvic arch present. Ventrals reduced to a single ray. Dorsal fin single (Histiophorus) or in two portions, but little remote, separated by aborted section (Tetrapturus). Preopercular spine absent (but probably present in young). Two keels upon each side of caudal pednncle. Ultimate dorsal and anal rays suctorial. Air-bladder very large, sacculated, consisting of numerous separate divisions. Intestine short, straight. Two genera, Histiophorus and Tetrapturus.

## Synopsis of genera.

Dorsal fin single, high, sail-like: ventral rays two or three.... Histiophorus, Lacépède. Dorsal fin double, Xiphias-like: ventral rays one ............. Tetrapturus, Rafinesque.

Genus Tetrapturus Rafinesque.
Tetrapturus, Rafinesque, Caratteri, etc., 1810, p. 54, pl. 1, fig. 1.
Tetrapterus, Agassiz, Poiss. Foss. v, 1843.

## Diagnosis of genus.

Xiphiid, tetrapturine fishes, with body much compressed. Two dorsal and two anal fins in adult state; single dorsal and anal in immature ages. Tooth-like asperities on palatines and lower jaw. Body covered with cultriform scale-like scutes, under epidermis. Dorsal rays much more numerous than in Xiphias, less su than in Histiophorus. Ventrals rudimentary, consisting of one pair of very elongate, flattened rays. Vertebre 25 (T. belone). Pyloric cæca very numerous. Intestine short, nearly straight.

Habitat.-Mediterranean, tropical and subtropical Atlantic.

1. Tetrapturus imperator (Schneider), Goorls.

Diphias imperator, Schneider, Bloch's Syst. Ichth. 1801, p. 93, pl. xxi (poor figure), fonnded on Duhamel, iii, p. 333, pl. xxvi, fig. 2.
Tetrapturus belone, Rafinesque, Caratteri Animali e pianti delln Sicilia, 1810, p. 54, pl. i, tig. 1.-Cuvier, liègne Animal, 2d ed. 182y, ii, p. 201.-Cuvierr \& Valexciexnes, Hist. Nut. Poist. viii, 1831, p. 280, pls. ccxxvii (skeleton), cexxviii (adult tish).-Boxapante, Catologo Metodico, 1846, p. 80.
Tetrapterus belone, Agassiz, Poissons Fossiles, 1843, v, p. 89, tab. E. (tine figuro of skeleton).
Tetrapterurus belone, Bonaparte.
Histiophorus belone, GUnther, Cat. Fish Brit. Mus. if, 1860, p. 513.
Skeponopodus typus, Nardo, Isis, 1833, Heft iv, p. 417 (Adriatic).
Proc. Nat. Mus 81——27 April 25, 1882.

This species appears to be limited to the waters of the Mediterranean. It was not noticed by Linnseus, or indeed by any of the binomial writers before Schneider. In his posthumous edition of the writings of Bloch, the latter has made reference to a figure and description in Dubamel, and has given to a fish, which he tigures in plate xxi of this work, the name Niphias imperator. This name was rejected by Curier (Rège Animal, l. c.), and has not been recognized by later writers. It seems to me, however, that Schneider has, perhaps unintentionally, yet quite intelligibly, expressed the principal differential characters of Tetrapturus. By "dorso scabro" he covers the question of the scales; by "carina caudali nulla" he refers to the absence of the single caudal carina of Xiphias, while by figure and by implication in his description he admits the presence of ventral fins. His figure, though bad, is as good as most of the old figures of Xiphias-that of Lacepede for example.
T. imperator is said to attain the length of fire or six feet, and the weight of 150 pounds. It has been taken in the Straits of Messina with the harpoon, but according to Rafinesque is very rarely seen ou the coasts of Sicily, and then only in autumn, when it is following the dolpbin and flying-fish, upon which it feeds. It is ordinarily seen in pairs, male and female together, and they are taken often in the nets together. Its flesh is white but not particularly well flavored. At Messina it is called "Aguglia imperiale" (Cuvier \& Valenciennes, l. c.).

## 2. Tetrapturus indicus, Cuvier \& Valenciennes.

Tetrapturus indicus, Cev. \& Val. Hist. Nat. Poiss. viii, 1831, p. 286 (on figure belonging to Sir Joseph Banks).

A species founded on a figure of a specimen obtained in Sumatra communicated by Sir Joseph Banks to Broussonet, who refers to it at the end of his "Memoire sur le Volier"."

The description is worthless. It is stated by Cuvier and Valencienues that this fish had been supposed to be the male of IIistiophorus gladius, but that it is much more nearly related to Tetrapturus of the Mediterranean, though with a longer beak.

The notes accompanying the figure state that it attains the length of nine feet and the weight of 200 pounds, and was known to the Malays by the name "Joo-hoo".

Giinther regards it as perhaps synonymons with T. Herschelii, Gray. ${ }^{\dagger}$
3. Tetrapturus Herachelii, Gray.

Tetrapturus Herschelii, Gray, Ann. Nat. Hist. i, 1838, p. 313, pl. x.-Letkex, ll.c. Histiophorus Herschelii, Gexther, 1. e.
This species was described from a specimen eleven feet long obtained at Table Bay, Cape of Good Hope, in 1837. The description is repro-

[^145]duced in the appendix, and the plate is also here presented. The type of T. Herschelii is in the British Museum. The United States National Museum has some fine skins, apparently of this species, brought from Mauritius by Col. Nicholas Pike, United States consul. There is no reason to doubt that this species may be the same with T. indicus, Cuv. \& Val., just described, there being little probability that there are two species in waters so close as those of Sumatra and the Cape of Good Hope.
4. Tetrapturas Georgil, Lowe.

Tetrapturus Georgii, Lowe, Proc. Zool. Soc. viii, 1\&40, p. 3f: Trans. Zool. Soc. iii, 1849, p. 3 (reprint of first).-GCsther, op. cit. p. 512, foot-note.-LOthen, 11.c.

This species known at Madeira as "Peito", was described by Lowe thus briefly: "I am enabled to state that it forms a new and very distinct species of Tetrapturus, Raf., differing from T. belone Raf., as described by MM. Cuvier and Valenciennes, especially in having the pectoral fins proportionately twice as long, and the body clothed with large scales of a peculiar shape and character."

Liitken believes it to be identical with the two species of the Indian Ocean just discussed, as well as with the two Cubian species. It should surely be carefully compared with the latter.
5. Tetrapturus albidus, Poey.

Tetrapturus albidus, POEy, Mem. Hist. Nat. Cubn, ii, 1858, p. 237, pl. xv, fig. 1 ; pl. xvi, figs. 2-13; pl. xvii, figs. 1. 5, 6-9, 10-11, 26 : Ib. p. 258: Rep. Fis. Nat. Cuba, ii, 1868, p. 380.-Gili, Cat. Fish E. Coast N. A. 1873, p. 24.Leteen, 11.c.
6. Tetrapturus amplus, Poey.

Tetrapturus amplus, PoEy, op. cit. p. 243, pl. xv, fig. 2; pl. xvi, figs. 12-25; Rep. Fis. Nat. Cuba, ii, 1868, p. 3en.-Lt'tken, 11. c.
These two species are described by Poey from Cuba, and one of them, T. albidus, is not uncommon on the Atlantic coast of the United States. Liitken is disposed to consider them both identical with the T. indicus type, and it seems to me that there is as much reason for this procedure as for merging the Sail-fishes of the Atlantic and Indian Oceans, as has been persistently done by all writers on ichthyology.
7. Tetrapturus brevirostris (Giinther \& Playfair), Liltken.
"Histiophorus brerirostus, GLenther \& Playfair, Fishes of Zanzibar, 1866, pp. 53,145 , figure."-Day, Fishes of India, 1876, p. 199, pl. xvii, fig. 3.
Tetrapturus brevirostrin, LOTKEN, 11. c.
Histiophorus, Knox, Trans. New Zealand Institute, ii, 1870, pp. 13-16, fig. 1.
This species, the habitat of which is given by Day as "! East coast of Africa, seas of India, perhaps New Zealand", is referred by Liitken to the same species with T.indicus and T. Herschelii. Day considers it closely allied to Tetrapturus Lessonii, Canestrini.
8. Tetrapturus Lessonií, Canestrini.

Tetrapterus Lessonii, Canesthini, Arch. Zool. 1861, i, p. 259, pl. vii.-LCtest, 11. c.-Day, 11. c.

This species, described by Canestrini from the Mediterranean, is referred by Liitken to the general cosmopolitan type, of which T. indicus and $T$. Herschelii are the representatives.

## Descriptive notes on the American spear-fish, Tetraptures albidus.

The following description was drawn ap from a fine specimen of the spear-fish taken at Block Island, R. I., in 1s75:

A male fish of $2,150^{\mathrm{mm}}$ ( 84.646 inches), ordinary size.
Body elongated, nape elevated, bringing the greatest height orer the operculum ( 10.27 inches). At the point of the pectoral the height is nine-elevenths of that at the operculum ( 8.4 inches), and is contained about 10 times in total length.

The head from extremity of lower jaw is contained in the total length 4 times (21.161 inches). The eye is situated midway between operculum margin and tip of lower jaw. The length of the bill beyond lower jaw equals greatest height of head. Palatines with a narrow band of rongh denticulations. Asperities on the lower jaw. Bill extremely hard, especially at its extremity; its form is depressed, its edges rounded, its height greater than half its width. Preoperculum situated far back; commences midway between the eye and the opercular margin. The other opercular bones are not visible in fresh specimen.

Lateral line marked by a series of minute apertures on a continuous band, connected at the top of operculum; continues backward in a straight line for a short distance, then bends downward and reaches the middle line of the body at the point of the pectoral. Scales bonr, linear, absent from the head, except on the cheeks. Those of lateral line not pierced. All the scales covered by epidermis.

Br. 7 ; D. 3, 39-6; A. 2, 13-6; P. 19 ; V. 1, 4; C. 12.
All the rays osseous, not articulated ; those indicated as osseous are only distinguished from the others by their terminating in a point, which is not free. The others are flattened towards the extremity and frayed at the ends. The two first anal and three first dorsal rays are ossified to each other and upon the ray behind them, so that they appear to sight and touch as if only a single ray. Dissection shows that the first dorsal is very small ( $20^{\mathrm{mm}}$ ) ; second, 212 times as high ( $50^{\mathrm{mm}}$ ); third, $115^{\text {num }}$; the fourth twice as long. The same in anal. First, $30^{\text {mm }}$; second, $70^{\text {min }}$; third like fourth dorsal in form. These fins are for the most part hidden in the furrows, and their last rays are extremely short, so that it is necessary to lay them bare by dissection.

First ray of second dorsal and second anal flat and striated; these fins are crenated. The fourth of 3rst dorsal and third of first anal tou h the summits of the fins, which are slightly rounded.

First ray of pectoral very strong and prolonged to the extremity; 8 last short, forming the subbrachial dilation.

Ventral appears at first sight a single ray, but dissection shows 5, the 3 first anchylosed. They are received in a furrow, which extends to the anus.

Caudal stiff; bifurcation making angle of $72^{\circ}$ from middle of the tro caudal crests to the point of the lobes, and, neglecting points, $80^{\circ}$.

Origin of first dorsal above preopercle, its height surpassing by onesixth the height of the body beneath it.

Pectoral one eighth length of body from point of lower juw.
First anal lower than dorsal.
The two others are small and opposite. The second dorsal a little farther back, a little higher, and a little more "échaucrée".

Color.-Pronounced deep blue above, a little lighter on the flauks, passing into white below. Fins intense blue; second anal and outside of pectoral lighter. First dorsal with rounded spots, more intense, of same color. Iris clear blue; cornea blackish.

Four gills of double structure and an accessory, reticulated as in Xiphias.

Pylorus attached high up and has great longitudinal folds; also the duodenum, which is swollen and receives, by two openings, the secretions of the compact and glandulous mass which covers it.

Intestine slender, with two short convolutions, embracing in its last the spleen.

Swim-bladder cellulous, showing great puffs, which extend far behind the anus.

A second specimen, the measurements of which are given below (B), suggested the following notes:

Top of head and body, upper lobe of caudal fin, and caudal cartilage blaish black. Belly and throat white. Cheeks and opercular blackish, covered with a pearly sheen. The black hue of the back shades into the white of the belly through an insensible gradation of lines, the most prominent of which are rich purplish brown and light smoky gray. The belly and the sides are pearly up to the lateral line. The boundary between the colors of the back and the belly is indicated by an indistinct line, which may be traced from the base of the rostrum over the top of the orbit and the operculum, then descending across the lateral line at a point above the middle of the pectoral tin; it then rises in the are of a circle above the lateral line, which it meets again at the tail, the distance between them being the greatest over the anal fin. The lower lobe of the caudal is blackish, with a pearly sheen. The veutrals and second dorsal fins are blue-black. The anterior rays of the first dorsal are also blue-black, the membrane being light bluish purple, irregnlarly spotted with circular dots from one-quarter to one-half an inch in diameter. The first anal is deep bluish purple at its extremity, but on its basal half bright pearly white. The inner surface of the pectoral is
bluish purple，brightest in the axil ；its outer surface is blackish，thongh completely covered with a pearly sheen．

The ventrals，first dorsal，and first aual，when not erected，are com－ pletely hidden in grooves．The second dorsal and second anal are not so hidden．The pectorals are flat，closely clinging to the sides when not in motion；their base received into a depression in the side of the fish．

The lanceolate scales may be seen through the epidermis，giving a reticulated appearance to sides of the fish．

The second dorsal and the second anal have broad，flattened，ultimate rays，which adbere closely to the body of the fish．

## Measurements．

| Current number of apecimen． | A． | B． |
| :---: | :---: | :---: |
| Lecality | $\begin{aligned} & \text { New Bedforil, } \\ & \text { Mans, July, } \\ & 25,1875 . \end{aligned}$ | Wool＇s Fail． Masen， 1673. |
|  | Inchen． | Incher |
| Estritur lebuth | 8）． 00 | atier |
| Length to end of midill caudal maya． Sorly： | 70． 30 | kLev |
| Greatent lecight． | 0． 0 en | 11 ke |
| Heightat ventrala | 2.80 |  |
| Iearl． |  |  |
| Greatest length Gruateat winth | 27,04 5.04 | $3 \%$ |
| Width of interorbital area | 4． 23 |  |
| 1ength of maout | 17． 50 | $18 \times$ |
| Letugth of bill ．．． |  | 1320 |
| Length of operenlum | 3． 40 |  |
| Lensth of uppor faw to commisaure of jawn |  | 迷 8 |
|  |  | 里为 |
|  | $\begin{array}{r}17.10 \\ 4 \\ \hline 181\end{array}$ | 4 |
| Dornal |  |  |
| Diatance from musut | an + Tr | 38 |
| lerouth of buse | 40.014 | 15 |
| Grwiteat height |  | 1285 |
| Ifought at tirat mpine ．． | 11． |  |
| Heritht at mewothi spiav | 11.8 |  |
| Hwatht ist Itimt sping | $11 . \mathrm{um}$ | － |
| Hupht ut fameth spure | 10． 8 in | － |
| Helight at intit spint． | 10． 24 | － 4. |
|  | 82． 88 |  |
| Meleht at mewnth npine | 7 |  |
| Weight at righth приue | 5． 3 mi | \＄．．．．．．．．．．． |
| Heright at ninth spane | 573 | －n |
| Hipight at tenth spine ．． Hivighe at＋liventla | 4． 34 | －．-2. |
|  | 3 \％ 4 |  |
|  | a． sat |  |
| Henght at thastebatio npane Hevight at fourtwath suine | 3．as |  |
| Anid： |  |  |
| 13atance from miant | 48.80 | 54． |
| Iomith of hasm． | 15，0010 | 14.36 |
| Hepizht of firat spibe | 7 70 |  |
| Hevight at secont apine | 7.10 | $\cdots \quad$－ |
| Helitht at third apine | 6.73 | ．． |
| Hoplitit at frurthepinos | \％． 040 |  |
| Peizht at fitht nplive | 5． 81 | ＋ |
| Metitht at saxth aprian | 2.75 | $\checkmark$ |
| Hright at meventls mpiue | － 81 | － |
| H－ublet at wielsth spluw | 20 | $\cdots$ |
| Height at oluth spmer | at | －，－．．．． |
| Nousht at tenthapine | 成 | ．．．．．．． |
|  | ． 10 | 725 |

[^146]\％Over vent．
Beyond tip of lower jaw．

Measurements-Continued.


## Genus Histiophorus Lacépède.

<Istiophorur, Lacéplede, Hist. Nat. Poiss iii, 1803, p. 3 3i4.
<Miatiophorus, Cuvier \& Valemciennes. Hist. Nat. Poiss. viii, 1833, 291. <Histiophorus, Génther, Cat. Fish. Brit. Mns. ii, 1860, p. 512.
Notistium, Hermann, Observ. Zool. 1804, p. 305.

## Diagnosis of genus.

Xiphiid, tetrapturine fishes, with body slender and very much compressed. Dorsal single (though the last few rays are nearly abortive), retaining the character of extreme jonth, which is lost in Xiphias aud Tetrapturus, and very lofty. Vertebre 24 ( $H$. indicus). Anal findouble. Numerons tooth-like asperities on the jaws. Body covered with elougate scales. Dorsal rays, being unaborted, very numerons. Ventrals consisting each of two or three elongate rays. Intestine short, nearly straight, with two foldings. A single species in the United States, Histiophorus americanus, Cuvier.
9. Histiophorus gladius (Bronssonet), Lacépède.

> Scomber gludius, Brocssonet, Mem. Acad. Sci. 1786, p. 454, pl. x.
> <Scomber gladius, Bloch, Ichthyology, pl. ceeslv: Hist. Nat. Poins
> < Istiophorus gladius, Lacépł̀de, " $\mathrm{iii}, \mathrm{pp} .374-5 ", 2 d$ ed. $8^{\circ}, 1819, \mathrm{p}, 542$.
> Histiophorus gladius, GUnther, 1. c. p. \$13.-Gill, Il, c.
> $<$ Niphias relifer, SChneider, 1. c. p. 9.3.
> Histiophorus indicuf, Cuv. \& VAL. 1. c. p. 293, pl. coxxix.

This species, described first by Broussonet from specimens brought from the Indies-"la mer des Indes"-by Banks, has usually been considered, perhaps rightly, by later authors to be identical with the American form.
10. Eistiophorus americanus, Cuvier \& Valenciennes.

Guebucu brasiliensibu, Marcgrave, Hist. Brasil. 1648.
<Scomber gludius, BlociI, 1. c.
<Histiophorus gladins, authors.-
Histiophorun americanus, CUv. \& VAL. 1. c. p. 303.
Skeponopodas guebncu, Nando, Lnis, Ileft iv, p. 416.
The history of this species is given below. Luitken follows the general lead in identifying this with $H$. gladius.
11. Eistiophorus orientalis, Temminck \& Schlegel.

Mistiophorus orientaliz, Temm. \& Schleg. Fiuna Japonca, Pisces, 1842, p. 103, pl. Iv (specimen 7 feet long, from Japan),-G0xthFr, op. cit. p. b14.Letteen, Vill. Med. Nat. Foren. $1875, \mathrm{p} .1, \mathrm{pl}$. i (specimen 7 feet $1 \frac{1}{6}$ inches long, from singapore).
In his first paper on the Sword fishes Litken, though doubtful, seemed inclined to consider this a distinct species. In "Spolia Atlantica" he speaks of two species of Mistiophorus, but I am unable to decide whether it is this or $H$.gracilirostris which he regards as well separated firm II. gladius. Speaking of the occurrence of this fish in the seas of Japan, Temminck and Schlegel remark that its Jrpanese name is "Herivo"; that it is occasionally taken in autumn on the southwest coast of Japan during the progress of the tunny fishery, and that its flesh is much esteemed.
12. Histiophorus immaculatus, Riippell.

Mistiophorus imnaculatus, Reppell, Proc. Zool. Soc. iii, 183\%, p. 187 (alsstract): Trans. Zool. Soc. ii, p. 71, pl. xv: "N. W. Fische, p. 4i, taf. xi, fig. 3".GUnther, 1 c.-LUtikes, 11. c.-Day, Fish. India, 1ñ6, p. 199.
Riippell's specimen came from Djetta on the Red Sea, where the Arabs caught it in a net. He regards it as rare because the Arabs had no common name for it. The specimen is preserved in the museum at Frankfort, and, if I rightly understand Dr. Liitken, is 18 inches long. Dr. Liitken unhesitatingly prononnces it the soung of $H$. gladius or $H$. orientalis, considering it to be slightly older than the one figured by Cuvier and Valenciennes as $\Pi$. putchellus.

Day mentions a specimen of this species in the Madras Museum 5 feet 9 inches long. This, to be consistent with Liitken's theory, must be regarded as a specimen in which the colors have disappeared.
13. His 'iophorus pulchellus, Cuvier \& Valenciennes.

Histiophorus pulchellus, CCV. \& Val. Hist. Nat. Poiss. viii, 1ع̌31, p. 305, pl. cexx.-GUNTHER, op. cit. p. 514.-LOTKEN, 11. c.
Cuvier and Valenciennes described under this name a specimen 4 inches long taken in the Eastern Atlantic, north of the Cape of Good Hope, probably somewhere on the west coast of Africa, by M. Rayuaud. There were said to have been a great many more of the same size in the place where it was taken.

Liitken regards it as the young of Histiophorus gladius. He uses it to
complete the series of development between the small specimens described by Guinther and the adult forms.
14. Histiophorus gracilirostris, Cuv. \& Val.

Histiophorus gracilirostris, Cuv. \& Val. 1. c. p. 308 (deacription of a snout from Seychelles).-LUtKen, Il. c.
Cuvier and Valenciennes had in their possession, and rescribed, a beak or spear the breadth of which was contained 25 to 26 times in its length, and the sides of which were more rounded than in the other specimens accessible to them. This was from Seychelles. Liitken is inclined to admit this provisionally as a distinct species. Guinther, on the other hand, ignores $H$. gracilirostris, but regards $H$. ancipitirostris as a possibly existing form.

## 15. Histiophorus ancipitirostris, Cuv. \& Val.

Histiophorms ancipitirostris, Cuv. \& Val. op. cit. p. 309.-GCNTHER, op. cit. p. 51:, note.

A snout (locality unknown), having a flattened surface, its width contained 19 or 20 times in its length, was the basis of Curier's description. Probably a species of Tetrapturus.
16. Makaira nigricans, Lacép.

Makaira nigricam, Lacép $k$ de, Hist. Nat. Poiss. "iv, pp. 688, 689, pl. xiii, fig. $3^{\prime \prime}$.-Cuv. \& Val. Hist. Nat. Poiss. viii, p. 287.
Xiphias makaira, Shaw, Zool. iv, Fish. p. 104.
Machara relifera, Cuvier, Nouv. Ann. Mus. Hist. Nat. 1832, p. 43, pl. 3.LUtKen.
Xiphias relifer, GUNTHER, op. cit. p. 512.
This species is undoubtedly mythical. Luitken and others have pointed out the error of arranging it, as Giinther has done, with Xiphias. He suggests that in the specimens described by Lacepede the ventral rays rere hidden in the ventral furrow, and unperceived. In this case, he remarks, it would be identical with Histiophorus gracilirostris; but, at all events, whether it has ventral fins or not, its right place is with the subfamily Histiophorine.

The specimen described by Lacépede was never seen by him. It was driven ashore near Rochelle, and his sole acquaintance with it was from a drawing and description given him by M. Traversas, sous-prefet of that town. It seems strange that so much stress has been laid upon this description and so much discussion has been held over ts true classification.

## Descriptive notes on the American Sail-fish, Distiopiorles gladis.

Strange as it may seem, the American species of Histiophorus has never been studied by an ichthyologist, and no attempt has ever been made to describe it, or to compare it carefully with the similar species
occurring in the Indian Ocean. The identity of the two has been assumed by Dr. Guinther,* but since no American specimens have ever been seen by this authority, I hesitate for the present to follow his lead.

This history of the Sail-fish in ichthyological literature is as follows:
The first allusion to the genus occurs in Piso's " Historia Naturalis Brazilise", printed at Amsterdam, in 1648. In this book $\dagger$ may be fouml an identifiable though rongh figure of the American species, accompanied by a few lines of description, which, though good, when the fict that they were written in the serenteenth century is brought to mind, are of no value for critical comparison.

The name given to the Brazilian Sail-fish by Marcgrave, the talented young German who described the fishes in the book referred to, and who afterwards sacriticed his life in exploring the unknown fields of American zoology, was Guebucu brasiliensibus. The use of the name Guebucu is interesting, since it gives a clue to the derivation of the name "Boohoo" by which this fish, and probably the Spear-fishes, are known to English-speaking sailors in the tropical Atlantic.

Sail-fishes were observed in the East lndies by Renard and Valeutijn, explorers of that region from 1680 to 1220 , and by other eastern vosagers. No species of the genus was, however, systematically described until 1786, when a stuffed specimen from the Iudian Ocean, eight feet long, was taken to London, where it still remains in the collections of the British Museum. From this specimen M. Bronssonet prepared is description, giving it the name Scomber gladius, rightly regarding it as a species allied to mackerel.

In 1803 Lacépede established the genus Histiophorus for the reception of this species.

When Cuvier and Valenciennes published the eighth volume of their Natural History of Fishes they ignored the name gladius, which had been given to the East Indian fish by Broussonet, redescribing it under

[^147]
## sECOND TITLE.

Guilielmi Pisonis, M. D. |Lngduno-Batavi, | de Medicina Braziliensi |Libri Quatuor: | I De Aëre, Aquis \& Locis | II De Morbis Endemiis. | III De Venenatis \& Antidotis. I IV De facultatibus Simplicium | et Georgi Marcgravi de Liebstad I Misuici Germani, | Historis Rermm Naturalinm | Brazilia, ! Libri octa: | Quornm | Tres puores agunt de plantis | Quartus de Piscibus. | Quintus de Avibus. | Sextus de Quadrupedibus \& Serpentibus \| Septimus de Insectis. | Octavas de Ipsa Regione, \& Illius Incolis. | Cum | Appendice de Tapnyis, et Chilensibus | loannes de Lat, | Antwerpianus, | In ortinem digessit \& Annotationes addidit, \& varies ab Auctore | Omisss supplevit \& illustravit.
the name Histiophorus indicus. At the same time they founded another apecies upon the figure in Piso's Natural History of Brazil, already mentioned. This they called Histiophorus americanus.

In a paper printed in 1833 , Dr. Nardo, of Venice, proposed the establishment of a new genus allied to Tetrapturus and Xiphias, to be called Skeponopodus. In this he included the fish described by Maregrave, under the name Skeponopodus guebucu, and also a form observed by him in the Adriatic in 1829, which he called S. typus. I am not aware that ichthyologists have yet learned what this may have been.*

From the time of Marcgrave until 1872 it does not appear that any zoologist had an opportunity to study a Sail-fish from America, or even from the Atlantic, yet in Giunther's "Catalogue" the name Histiophorus americanus is discarded and the species of America is assumed to be identical with that of the Indian Ocean. $\dagger$

Guinther restores Lacépède's name $\Pi$. gladius for the Indian species. Possibly, indeed probably, this name will be found to include the Sailfish of our own coast. At present, however, it seems desirable to retain a separate name. To unite species from widely distant localities withont ever having seen them, is very disastrous to a proper understanding of the problems of geographical distribution.

The materials in the National Museum consist of a skeleton and a painted plaster cast of the specimen taken near Newport, I. I., in 187\%, and a drawing made of the same, while fresh, by Mr. J. H. Blake.

The occurrence of the Sail-fish is, as has been already stated, very unusual. Marcgrave saw it in Brazil as early as 1648. Sagra and Poey mention that it has been seen about Cuba, and Schomburgh includes it in his Barbados list. The specimen in the United States National Museum was taken off Newport, R. I., in 1872, and given to Professor Baird by Mr. Samuel Powell, of Newport. No others were observed in our waters until March, 1878, when, according to Mr. Neyle Habersham, of Savanuah, Ga., two were taken by a vessel between Savannah and Indian River, Florida, and were brought to Savannah, where they at tracted much attention in the market. In 1873, according to Mr. E. G. Blackford, a specimen in a very mutilated condition was brought from Key West to New York City.

## Description of the slbfamily Xiphinee and the genus Xiphias.

Subfamily XIPHIINE, Swainson.
$>$ Siphyine, Swalnson, Nat. Hist. Fish. Amphib. \&e. 1839, p. 239.
> Xipheini, Bonapartr, Cat. Metorl. Pesci Europei, 1846, p. 80.
Xiphiner, Glle, Canadian Naturalist, 1ebif, p. 250.

[^148]
## Diagnosis of subfamily.

Xiphiid fishes, with bodies somewhat compressed, scaleless, or in young state covered with rough gramulations. Sword flattened horizoutally. Teeth absent. Pectorals sublateral. Pelvic arch and rentrals absent. A keel upon each side of the caudal peduncle. Air-bladder simple. Intestine long, sinuous. A single genus, Xiphis, L.

## Genus Xiphias Artedi.

Jiphias, Artedi, Genera Piscium, 1738, p. 29.
Nuphiar, Lins. Syst. Nat. ed. x, $175{ }^{2}$, p. 24x; ed. xii, p. 432.
Niphias, Cuviek, Règne Animal, 1817, p. 326, 1829, p. 200.
Xiphiar, GCnther, l.c.

## Diagnosis of genus.

Xiphine fishes, with two dorsal fins in adult condition, the continn ous dorsal of the young having become rudimentary in its median portion. Preoperculam spineless in adult, the large spine of the young disappearing at an early age. Teeth absent "except upon the plaryngeal bones, which are covered with a villosity of extremely fine and minute denticles." (Ocen.) Number of dorsal rays probably variable. Vertebre 26 (Steindachner). Branchiostegals 7. Stomach siphonal, pyloric caeca very numerous. Gall-bladder large.

Habitat.-Tropical and temperate parts of the Atlantic, Mediterranean, New Zealand, South Pacitic, and South Sea.

A single species of this genus is now known, Xiphias gladius, L. The species recorded in Günther's Catalogue of the Fishes in the British Museum, vol. ii, p. 512 , under the name -liphias velifer, if not mythical, is probably a Mistiophorus. Lacépede's tigure represents it with two caudal carine.
17. Xiphias gladius, Linnæus.

Xiphins gladius, Lissseves, Sjstema Naturse, 10 th ef. 1700 , i, p. 248: 12th ed. 1766, i, p. 432. ("Mabitat is oceano Europa".)
Bloch, Ichthyologie, i, 17e6, pl. 1xxvi, p. 23. (Habits, from statements of Chevalier Hamilton.)
Gmelin, Linu, Syst. Nat. 1782, 1. 1149 (includes also under (B) the American Histiophorus.)
Walbaum, Arteali, Genera Piscinm, 1792, p. 207.
Lacépìdro, Hint. Nat. Poiss. 2d ed. 8vo. 1819, i, p. 538, fig. 2, pl. 24 (grotesque fignre).
Schneideri, Bloch's Systemar Ichthyologite, 1801, p. 93 (mentious vecurrence in Baitic).
Shaw, Zoology, 1804.
Kisso, Ichthyologie de Nice, 1xio, p. 99 (obs on habity): Itist. Nat. Europe Meridionale, $1826-7$, iii, p. 208 .
Cuvier, Regne Animal, 1 ed. $1 \times 1 \%$, p. $326 ; 2 d$ ed. $1 e 29$, p. 200: Griffith's ed. 1034, p. 187, 11. xxvii, tiga. 1, 2 (takeu from Cuv. de Fal. Hist. Nat. Poisw, 9, v), Supl. p. 349.
Scurambs, in Eilisburg Phil. Journ. iii, p. 441 (vessel struck by awond (ish).

Fleming, British Animals, p. 220, and in Brewster's Journal, ii, p. 187 (specimens taken in the Tay).
Cuvier \& Valenciennes, Hist. Nat. Poiss. viii, 1835, p. 235, pls. cexxy (figure of young of 12 to 18 inches length), cexsvi (fig. of adult).
Jenyns, British Vertebrates, 1835, p. 364.
Yarrell, History of British Fishes, 1st ed. 1836, p. 14:3 (fig. of young); 2d ed., p. 164 (fig. of young).
Richardson, Fauna Bor. Amer. 1866, pp. 78, 81. (Denies its existence in the Weatern Atlantic.)
Wilsos, Encyclopedia Britanuica, art. Ichth. p. 184, pl. ccii.
Parnell, Fishes of the Firth of Forth, 1838, p. E5.
Storer, Report on the Fishes of Massachnsetts, 1839, p. 51: Memoirs American Academy of Sciences, 1846, p. 347; 1853, p. 149: Synopsis of the Fishes of North America, 1846. p. 95: History of the Fishes of Massachusetts, 1867, p. 71, pl. xiii, fig. 2.
Dekay, Zoology of New York, Fishes, 1842, p. 111, pl. xxvi, fig. 79.
Lowe, Trans. Zoological Society, London, iii, 1849, p. 5.
Guichenot, Exploration Scientifique de l'Algérie, Poissons, 1851, p. 60.
Gunther, Cat. Fish. Brit. Mus. if, 1860, p. 571 ; Fische der Sidsee, i, 1873-5, p. 105 ; Study of Fishes, 1880 , pp. 173, 431 (cuts), and article on Ichthyology, Encyc. Britannica, vol. xii : Journ. Mus. Godeffroy, part ii, p. 170, figs.
Gill, Cat. Fish. E. Coast N. E. 18131, p. 38; Canadian Naturalist, 1865, p. 250; Cat. Fish. E. Coast N. A. 1873, p. 24; and in Rep. U. S. C. F. i, 1873, p. 802.
Poky, Syn. Piscium Cubensium, ii, 1868, p. 379 (Xyphias gladius).
Sterndachner, Sitzb. Ak. Wiss. Wien. 1868, p. 396 (measurement of a Spanish specimeu).
Hector, Trans. New Zealand Institute, vii, 1873, p. 246 (occurring at Aukland) (Ziphias gladius).
Hutton, Trans. New Zealand, part vii, 1873, p. 211 (second occ. at Anckland).
Cheesfman, Trans. New Zealand, part viii, 1875, p. 219 (Ziphias gladius, measurements of specimens from Shelly Bay, Aucklani).
Goode, Cat. Fishes Bermudas, 1876, p. 45.
Goode \& Bean, Cat. Fish. Mass. Bay, 1879, p. 14.
Giglioli, Catalogo Esp. Internat. di Pesca. Berlin, 1880, p. 88.
Litken, Vid. Selsk Slir. 5te. Rnckke, naturv, og math. Afit. iii, 6, (Spolia Atlantica), pp. 441, 592, figy. 1, 2, 3, pl. ii, fig. 10. (Notes upon the yonug of Jiphian gladius and related species.)
Xiphias Rondeletii, Lrach, Mem. Wernerian Nat. Hist. Society ii, 1818, p. 58.
Steindachner, Sitzb. Ak. Wibs. Wien. 1868, p. 396.
Hetron, Trans. New Zealand, part viii, 187:3, p. 211.

## Descriptive notes on the sword fish, Xiphias gladius.

My notes fail to supply the necessary data for a full description of the species, and since the fish is not likely by any one to be confounded with any other, I do not think it necessary to defer publication until this data can be supplied. I append the following note upon a small specimen, and also partial measurement table for two others, one in inches, the other in millimeters.

A specimen taken off Seaconnet, July 23, 1875. Weight 113 pounds; extremity of sword gone. One of the smallest ever seen in this region.

Dorsal fin in its median part nearly destroyed, but traces of the groore and spines remaining.

Color.-Above rich purplish blue, shading into whitish beweath the sides, and belly with a silvery luster. Fins bluish dark with silvery sheen, except dorsal. Top of the head rich purplish blue, the color extending upon the rostrum. Lower side of rostrum rich brownish purple. Eye deep blue. No trace of scales.

Viscera.-Liser greenish light brown. Stomach siphoual; pyloric cæea infinite in number; intestine spiral 10 inches long when in position, 90 when stretched out. Gall-bladder large, situated on the same line with the spleen, and at same distance from the liver, connected by a duct. Air-bladder simple, large. Spermaries large, 6 inches long. Stomach contained small fish, perhaps Poronotus, and jaw of Loligo Pealii. Fluke worms in cover of stomach and air bladder.

Table of incusurements.


[^149]Table of measurements.

| Locality | Poriland. <br> Me., Aug. ${ }^{5}$. |
| :---: | :---: |
|  | Millimeters. |
| Extreme length | 3, 030 |
| Length to end of middlo caudal rays | 3, inc |
| Boll: Greatent heicht |  |
| Greatest width | 4 T |
| Crantest circumferrace | 1,705 |
| Meicht at origin of nmal | 530 |
| Least beight of tail. | 120 |
| Height ander mecond slormal | 220 |
| Length of caudal pedunole | 2 c |
| Hearl: |  |
| Greatent lencth | 1, 5 50 |
| Greatent wilth | $3 \times 5$ |
| Winlth of interot lital area | $\because 23$ |
| Lemgth of smout | 1,085 (870) |
| Leagth of operculum | 3041 |
| Length of mandible | 4.35 |
| Diameter of orblt. | 100 |
| Doranl (-ppinous): |  |
| Diatance from sllont | 1,530 |
| Length of base | 500 |
| Greateat height | 5 |
| Dormal (woft) : |  |
| Lengilh of base ... | 51) |
| Distance from moat | 3.175 |
| Merght . . . | (4) |
| 1) | 1.208 |
| Anal: |  |
| Distance from snout. | 2,538 |
| Length of bise. | 380 |
| D:stance of mecond anal from sno | 3,125 |
| Height at longest ray | 344 |
| Cantal: |  |
| Width at candal torine. |  |
| Leugih of external mass | 1.140 |
| Pectoral: |  |
| Distance from snout. | 1,508 |
| Length | 5id |
| Weight, nhout (pounds) | 600 |

Stelndachner has given the following measurements of two specimens obtained by him on the coast of Spain, the largest 3 feet 7 inches in length, the smallest much younger and corresponding to the young specimen figured by Cuvier and Valenciennes in the Histoire Naturelle des Poissons, pl. 225.*

Table of measurements.

|  | A. | 13. |
| :---: | :---: | :---: |
|  | Inches. | Iuches. |
| Total length | 430 | 24.8 |
| Sength of hearl. | 30.7 | 9.7 |
| Length of intermaxillary from anterior margin of evee. |  |  |
| Length of mouth-opening from point of intermaxiliary to posterior end of upper jaw | 15.04 10.2 | 8.0 |
| Preadth of forehond | 1.0 | 1.1」 |
| 1 eagth of under jaw | 6.0 |  |
| Height of body..... | 4.8 | 2.31 |
| Length of pectoral | 5.8 | 3. 51 |
| Meight of doranl at firat cleft rays | 6.2 |  |
| Grentest height of dorsal......... |  | C.12 |
| Leagth of lense of doreal | 14.4 |  |
| Movight of anal .......... | 8.4 | 1.11 |
| Length of base of amal | 4.6 | ...... |

- Sitzb. Ak. Wiss. Wiev, $186 \mathrm{~s}, \mathrm{p} .396$.

The following measurements were taken by T. F. Cheeseman, esq., F. L. S., from a specimen stranded in January, 1875, at Shelly Beach, New Zealand:

|  | Feet. | Incare. |
| :---: | :---: | :---: |
| Total lungth from tip of mmout to cod of catudal fin | 11 | 3 |
| Iasasth of mout from tip to center of aye... | 3 | 111 |
| Longth of stmit from tip to gapo. | 4 | , |
| Jeengt of suont from tip to freen andge of oper reulum | 4 | 5 |
| Length of nout from tip to noatrils. | 3 | , |
| Length off lower jaw from point to gape | 0 | 11 |
| Proluetion of upper jaw over luper | 8 | 2 |
| Hoieht of dorwal tin | 1 | 3 |
| From dorsal to csundal | 4 | 0 |
| Length uf pectural tinc. | 1 | 3 |
| Length olf anal. | 0 | \% |
| Height of accond doysal | 0 | 8 |
| From anal to catulal | 1 | 8 |
| Widelo ncruse the tail | 2 | , |
| Girth just, lehind the oyes | 2 | 11 |
| Girth mehind doraal. | 4 | 8 |
| Girfh behind caudal | 0 | 11 |
| Diameter of ere. | 0 | 3 |

The extreme point of the snout was broken off, about three inches being wanting.*

## Geographical range of the Sword-fish family.

Although it may not seem desirable at present to accept in full the views of Dr. Litken regarding the specific unity of the Spear-fishes and the Sail-fishes of the Atlantic and Indian Oceans, it is convenient to group the different species in the way he has suggested in discussing their geographical distribution.

The Sword-Fish, Xiphias gladius, ranges along the Atlantic coast of America from Jamaica, lat. $18^{\circ}$ N., Cuba, and the Bermudas to Cape Breton, lat. $47^{\circ}$. Not seen at Greenland, Iceland, or Spitzbergen, but occurring, according to Collett, at the North Cape, lat. $71^{\circ}$. Abundant along the coasts of Western Europe, entering the Baltic and the Metiterranean. I can find no record of the species on the west coast of Africa south of the Cape Verles, though Liitken, who may have access to facts unknown to me, states that they oceur clear down to the Cape of Good Hope, South Atlantic in mid-ocean, west coast of South America and north to Southern California, lat. 34ㅇ, New Zealand, and in the Indian Ocean off Mauritius. Good authorities state that sperm-whales, though constantly passing Cape Horn, never round the Cape of Gool Hope. Can this be true in the case of the Sword-fish?

The Sail-fish, Histiophorus gladius (with H.americanus and $H$. orientalis, questionable species, and $H$. pulchellus and $\boldsymbol{H}$. immaculatus young), occurs in the Led Sea, Indian Ocean, Malay Archipelago, and south at least as far as the Cape of Good Hope, lat. $35^{\circ} \mathrm{S}$.; in the At. lantic on coast of Brazil, lat. $30^{\circ} \mathrm{S}$. to 10 , and north to Southern New England, lat. $42^{\circ} \mathrm{N}$. ; in the Pacific to Southwestern Japan, lat. $30^{\circ}$ to $10^{\circ} \mathrm{N}$. In a general way, the range may be said to be in tropical and temperate seas, between lat. $30^{\circ} \mathrm{S}$. and $40^{\circ} \mathrm{N}$., and in the western parts of those seas.

[^150]The Bill-fish or Spear-fisin, Tetrapturus indicus (with the various doubtful species mentioned above), occurs in the Western Atlantic from the West Indies, lat. $10^{\circ}$ to $20^{\circ}$ N., to Southern New England, lat. 420 N.; in the Eastern Atlantic from Gibraltar, lat. $45^{\circ} \mathrm{N}$. , to the Cape of Good 1Lope, lat. $30^{\circ} \mathrm{S}$. ; in the Indian Ocean, the Malay Archipelago, New Zealand, lat. $40^{\circ} \mathrm{S}$., and on the west coast of Chili and Perin. In a general way, the range is between lat. $40^{\circ} \mathrm{N}$. aud lat. $40^{\circ} \mathrm{S}$.

The species of Tetrapturus which we have been accustomed to call $T$. albidus, abundant about Cuba, is not very unusual on the coast of Southern New Lingland. Several are taken every year by the Sword-fish fishermen. I have not known of their capture along the Southern Atlantic coast of the Ünited States. All I have known about were taken between Sandy Hook and the eastern part of George's Banks.

The Mediterranean Spear-fish, Tetrapturus belone, appears to be a land-locked form, never passing west of the Straits of Gibraltar.

## Fossil forms.

Agassiz, in his work on Fossil Fishes, has described two species of Tetrapturus: one, Tetrapturus priscus (vol. v, p. 91, tab. 31), from the Loudon Clay, in the Isle of Sheppey; the other, Tetrapturus minor (vol. r, p. 91 , tab. 60 a, figs. $9-13$ ), from the Lewes Crag. The types of the former are in the Paris Museum (others similar in the collections of Lord Enniskellen and Sir Philip Egerton); of the latter, in the collection of Mr. Mantell.

He has also described the genus Colorhynchus, from fossil fish-beaks which appear to belong to members of the Sword-fish family. These are very long, sleuder, tapering more geatly, even, than in the living forms, and are hollow throughout the entire length. There are two species, distinguished by name, but not described, viz, C. rectus and C. sinuatus, both from the London Clay of the Isle of Shepley.

Four extinct species of Histiophorus have been described: II. priscus, Ag., from the London Clay, the beak of which is not known; H. minor, Ag., which has a deeply fluted beak; $H$. robustus, Ltidy (Post-pliocene Foss. S. Car. p. 119, Xiphias), which is from the Post-pliocene of Ashley River, South Carolina, with beak mnch depressed, the dentigerous surface a continuous plane, separated by a deep groove; II. antiquus (Leidy) Cope, from the New Jersey Eocene, is also a more depressed species, with the dentary surfaces on one plane.*

At a meeting of the Boston Society, October 6, 1852, Professor Wyman exhibited three fragments of the beak of a fossil Isthiophorus, from the Tertiary deposits at Ricbmond, Va.

Paleorhynchus, of the schists of Glaris, has a bill like Tiphias; also Hamorhynchus DesHayes, first described by Agassiz as Histiophorus Des Haycs, a Scombroid with elongated bill.

* E. D. Cope, Proc. Bost. Soc. Nat. Hist. 玉it, 186), p. 311.

Proc. Nat. Mus. $81-28$
May 6, 1882.

## ON THIE NOETII AMEEICAN LAND TORTOIEES OE TEE GENE XEROBATEAS.

## By FREDERICK W. TRUE.

[Read before the Biological Society of Washington, Dec. 23, 1881.]
The land tortoises, to which this paper is intended to direct attention, are those which are found living within the borders of the Cnited States at the present time. The species, three in number, I shall recognize under the names Xerobates polyphemus (Daudiu) Cooper, the Gopher; Xerobates Agassizii Cooper, Agassiz's Tortoise, aud Xerobates Berlandieri Agassiz, Berlandier's Tortoise.

The Gopher, to speak in general terms, inhabits the southeastern and southern parts of the United States, Xerobates Agassizii the sonthwestern portion, and $X$. berlandieri the extreme southwest and northeastern Mexico.

## I. TAXONOMY AND DESCRIPTION OF SPECIES.

History of Xerobates polypiemus.-In tracing the history of the first of these animals, $X$. polyphemus, we become involved at once in a whirlpool of contlicting opinion and uncertainty. The first allusion to it in zoological literature appears to be in Seba's work upon the curiosities of his museum,* where an imperfect figure is given undes the name "Testudo terrestris major americana." No mention of it occurs in the tenth edition of Limmeus' Systema Nature, but in the interval between the publication of this edition and the twelfth the great naturalist scems to have had his attention called to Sebas figure, for in the latter edition he cites it as the last synonym moler his Testudo carolina.t From his fact and the additional one that in the thirteenth edition of the Systema Naturæ, Gmelin, thinking to improve Linnés somewhat incomplete description of T. carolinn, added certain remarks on the characteristics of the plastron drawn from a study of the animal portrayed in Seba's work, $\ddagger$ some naturalists have thought themselves justified in regarding T. (or X.) carolina as the proper name for our gopher. That this is not a correct view of the case is made evident by the consideration of the first of Linne's references, the only one which occurs in the tenth edition. The citation is from George Edwards' Natural History, published between 1743 and 1751.

[^151]The phrase quoted is as follows: "Testudo tossellata minor caroliniana, Edw. Au. 205, t. 205."* On the same page in Edwards' work on which this phrase occurs, the following description (if we may trust the accuracy of IIolbrook $\dagger$ ) is given: "The lower shell is divided across the middle of the belly and joined to the upper shell on the sides by a tough flexible skin, by means of which it can, when it draws in its head and legs, close up its shell, as firmly as that of an oyster. $\ddagger$ It is evident that this description was taken from a specimen of the box tortoise, denominated Cistudo clausa in Cope's check-list, § but which should undoubtedly receire the name Cistudo carolina.

It does not seem probable that Linné would have confonnded two species so distinct as the box tortoise and the gopher, if he had had definite information regarding the latter. He was undoubtedly misled by the imperfection of Seba's figure, and made to believe that it portraved the same animal which Edwards had described.

That it may appear still more clearly that Linne's T. carolina is the box tortoise, I will quote the pertinent paragraph from Miiller's Linnés Systema Natura, a translation of the 12th edition, in which extended descriptions of many animals are given. The author states in his preface that he has had access to much of the material which Linne had elaborated. The description of Testudo carolina is as follows:
"11. Tife Carolina Tontoise. Testudo Carolina.-This animal is named from its native country, but is also called Turapin by the English, and Terrapen by the Spaniards. It is smatler than the preceding species [ $\boldsymbol{T}$. graeca], and is as much tessellated, but in six-cornered pieces, and is still further distinct in that it has no tail. The color of the plates is dark brown, abundantly sprinkled with yellow patches of different sizes. The plastron is likewise different from that of the former animal, for it is cleft in the middle, and is attached to the upper shield on the sides only by skin so that it can be closed when the animal would hide himself entirely. The head is yellow and provided with scales, similar ones also being on the fore feet; the long neek and the hind feet are of bluish flesh-color. As regards the claws, there are five on the fore feet and four on the hind feet, as in the preceding species." $\|$ This deseription, taken apparently from a very well preserred specimen, and coming as it does before Gmelin's unfortunat6 additions, leaves little doubt but that the box tortoise should bear the name Testudo (or Cistudo) carolina. In this opinion I am supported by Holbrook, Duméril, Strauch, Say, Marlan, and Gray, while Le Conte, Louis Agassiz, and Cope, at least in his check-list, entertain

[^152]a contrary view. Gray proposed the name T. gopher, but many years after Daudin had giren the tortoise a name.

The next mention of the gopher in literature, succeeding that occurring in Seba's unfortunate plate, is the full and tolerably accurate description given in William Bartram's account of his travels in the Southern States, published in 1791.* It is described in this work under the name "gopher." This appelation was undoubtedly first given to the animal by the Spanish settlers of Florida, the Spanish word "golfa," meaning pit or burrow, being very appropriate, as pointing to one of the most noticeable proclivities of the gopher, namely, the digging of pits or holes in the ground. The derivation of the first syllable of the word "mungöfa," a name given by Holbrook in later years as one in popular use, I have been unable to determine. It may be a corruption of "muñon," brawn or muscle, and refer to the great strength of the animal, or may be of African origin.

Dandin, in his Natural History of Reptiles, published in 1803, $\dagger$ appears not to have noticed the remarks of Gmelin upon Linnés T. Carolina, accepts Bartram's statement as to its being an entirely new species, gives it the name Testudo polyphemus, and adds a latin diagnosis. He also paraphrases Bartram's description and notes.

In later times the gopher has been described among European writers by Bose, in 1803, under the name "La Tortue Gopher"; by Gray, in 1831, 1844, and 185.), under the names "Testudo polyphemus," and "Testudo gopher." $\ddagger$ IIolbrook places T. depressa of Cuvier, § among his synonyms of T. polyphemus, || but apparently without reason, fot nothing relative to the tortoise exce;t the words "T. depressa, Cuv." appestr in that work on that page or elsewhere.

Among the earlier American zoologists who have written regarding the gopher I may mention Say, who wrote in 1825 , using the name T. polyphemus; fl Le Conte, who wrote in 1899 (?), employing the name T. carolina;** Harlan, who wrote in 1829, applying the name T. polyphemus; t十 and Holbrook, who wrote in 1836 and 1812, using the name T. polyphemus. $\ddagger \ddagger$

A list of all the writings in which reference to this and the remaining species of North American Testudinide indisputably occurs, such as I

[^153]have been able to make up from the literature at command, will be found at the close of this article.

Establishment of the genus Xerobates.-In 1857, Louis Agassiz placed the American gophers in the new genus Xerobates, a distinction which has been accepted by Cope, Gray, and other herpetologists. The characters of the genus are based on the form of the alveolar surfaces of the jaws and on the form of the fore feet and claws. The latter characters, however, in my opinion, are of less generic value than the former, since $\boldsymbol{X}$. Berlandieri, which agrees with $X$. polyphemus and $X$. Agassizii in form of alveolar surface, has fore feet but little compressed; and even in the two last-named species the amount of compression varies considerably. The bluntness of the claws is due largely to the nature of the soil in which the animals live and to their habit of burrowing. The claws of the young, in all the species, are sharp, and but little compressed, although almost perfectly straight.

History of Xerobates Agassizit.-The history of the scientific discovery of the western gopher, unlike that of its eastern relative, is a very simple one. The tortoise was first made known to science by Dr. J. G. Cooper in a paper on "New Californian Animals," read before the California Academy of Sciencis, July 7, 1861, and published in the second volume of the proceedings of that society, issued in 1863. The description is as follows:
"Professor Baird thinks with me that the following will uudoubtedly prove a new species, after a comparison of specimens:
"Xerobates Agassizif.-Agassiz's Land-Tortoise.
"Spec. char.-Young, with the carapax higher and more arching than in $X$.curolinus; the margin serrate all round, the primary disks of the scales projecting from a tenth to an eighth of an inch. Color of primary disks entirely pale yellow, the annual rings of growth only being dark brown. (Young just hatehed, probably all yellow.)
"Remarls.-Closely resembles X. carolinus, the 'Gopher' of Florida and the other Cotton States, of which no descriptions accessible are full enough to enable me to point out all the differences. But as another species intervenes between the range of that and this one, namely, X. berlandieri of Agassiz, found in Southern Texas and Mexico, I feel confident that comparison of specimens will show constant distinctions between them. From $X$. berlandieri it differs even more than from carolinus. Besides the serrate margin, which is most distinct in my youngest specimens (four years), while $\Lambda$ gassiz's figure of the young has no serrations, and different coloration, it has but twenty-four instead of twenty-six marginal scales (abnormal in his figured specimen?), and the primary disk of the vertebral scales is more than half as long (antero-posteriorly) as it is broad, instead of about twice as broad as long. The other scales also differ in details of form.

[^154]"Three young specimens, a male of seven years of age, two females of six and four years, obtained from the mountains of California, near Fort Mojave."*

The next account published is the very meager one contained in Cronise's "Natural Wealth of California," issued in 1868. The herpetology of this work was outlined or written, in part or entirely, by Dr. J. G. Cooper. The paragraph relating to Agassiz's Tor oise is as follows: "A gassiz's Tortoise (1. Nerobates Agassizii) is found only in the southeast quarter of California, which is both the driest and warmest. They grow a foot in lengtl, aud live wholly on vegetable food, closels resembling the tortoise called Gopher (i.e., burrower), in the Gulf States. They are like that and most other species, eatable, but not very well flavored." $\dagger$

The name Xerobates Agassizii alone appears again in Dr. Cooper's paper on "The Fauna of Califoruia and its Geographical Distribution," read before the California Acatemy, September 6, 1860, $\ddagger$ and also in Cope's Check-list of Reptiles, published in 1875.§

These descriptions and allusions, together with one other to which I shall presently refer, complete, so far as I am aware, the literature of the subject. As they do not furnish suficient data for the identification of the mature animal, I have julged it not unimportant to add a description of the species, drawn from a careful staly of specimens of adults and young in the National Museum, aud to point out the characters which separate it from Ierobates polyphemus.

Description of Aerobates Agassizil Cooper.-The shell is considerably depressed, and nearly flat above. Its margin is serrate all around, except in specimens worn by attrition with the soil, but most strongly behind and in front, and is quite strongly recolute over the thighs and shoulders. The center of each plate of the carapace (with the exception of the marginals) is raised, forming a sort of boss; the bosses of the anterior and penultimate vertebral plates are not prominent. The vertebral plates are five in number; the anterior hexagonal, the shortest side abutting against the nuchal plate; the second bexagonal, the posterior side longest; the third hexagonal, the anterior and posterior sides of equal length; the penultimate hexagonal, the anterior side a little the longest; the posterior hexagonal, the posterior side long. est, the posterior angles very obtuse, makiug the plate appear almost quadrilateral. The first lateral plate is irregularly heptagonal, but the anterior angles arevery obtuse, so that the plate often appears to be quadrilateral or rudely triangular, with a rounded inferior side. The second and third laterals are heptagonal, the lower angles as before; the fourth is quadrilateral, the anterior side a little the longest. The marginal

[^155]plates are twenty-four in number. The nuchal is irregularly quadrilateral, broadest behind. The supra-caudal is single, large, twice as long as high, and but slightly bulging. It stands in an almost vertical position. The first marginal plate is irregularly pentagonal; the second and third quadrilateral or pentagonal; the fourth pentagoual; the fifth quadrilateral; the sixth pentagonal; the seventh to the eleventh; inclusive, quadrilateral. All the plates are about equally striated with conceutric lines.

The sternum is very thick, and in adults extends about an inch beyond the anterior edge of the carapace. The gular plates together form an elongated pentagon, but there is sometimes a deep notch between them anteriorly. The brachial plates are quadrilateral, the free border longest; the anterior borders, which receive the posterior sides of the gular plates, together crescentic in outline. The surface of these plates, unlike that of those of $X$. polyphemus, is level in the an-tero-posterior direction. -The thoracic plates are rudely quadrilateral, narrow, and but little expanded at their outer extremities. The abdominal plates are nearly quadrilateral, but less nearly square than in $X$. polyphemus. The femoral plates are also rudely quadrilateral, but much narrower than in $X$. polyphemus, the interior lateral border being scarcely more than half the length of the anterior side. The subcaudal plates, which do not differ from those of the eastern species, are rudely quadrilateral, the interior lateral border being a little shorter than the exterior.

These characters, as in all tortoises, are quite variable and unsatis. factory.


Fig. I.-X. polyphemus.


Fig. II.-X. Agassizit.

Contour of the head shown by passing a plane through the lowest point of the orbit parallel to the upper surface of the head.

The head is considerably compressed at the sides and elongated. Its superior surface is covered with flat scales, which decrease in size backward, and are usually divided into pairs between the eyes, and very large. The nostrils are quite small and near together, and are raised a little above the upper edge of the sheath of the upper jaw. The eyes are large and
look a little forward; they are situated high in the head. The jaws are irregularly but quite finely serrated, the margins being almost in a straight line. The sheath of the upper jaw is very high, between the snout and the eye, but becomes narrowed abruptly under the eye. The neek is of moderate length, with granulated skin.

The anterior extremities are large, stout, and more or less compressed in the antero-posterior direction. The claws, five in number, are short, stout, and not curved. The scales on the anterior aspect of the arm are all approximately equal in size. Those on the exterior edge are a little larger. On the posterior surface the scales decrease in size gradually from the exterior to the iuterior edge.

The posterior extremities are terete, the feet elephantoid, the soles being large and round in contour. The scales surrounding the edge of the sole are large, the two posterior ones being very thick and broad. The four nails or claws resemble those of the fore feet, but show a slight tendency to curve. There are two or three promineut scales on the posterior part of the thigh.

The tail, although very short, is considerably longer than that of $X$. polyphemus.

The general color of the whole animal is brown. The centers of the plates of the carapace in the young, and in some adult specimens, is light tawny sellow. The color of the plastron is usually a little lighter than the general color of the carapace.

In this description I have followed as closely as possible that gisen by Dr. Ilolbrook, for $\lambda^{\text {. }}$ polyphemus, in order that the two may be contrasted.

Specific distinctions.-The leading difference in structure between X. polyphemus and X. Agassizii, one which is constant in all ages, is in the size of the fore feet as compared with the size of the hind feet. This distinction may be formulated as follows: The distance from the base of the first claw of the hind foot to the base of the fourth claw equals the distance from the base of the first claw of the fore foot to the base of the third claw in $X$. polyphemus; the fourth claw in $X$. Agassizii.

Again X. polyphemus, at all ages, has the anterior end of the plastron bent upward quite sharply toward the carapace, a character which does not occur in $X$. Agassizii. The inguinal plates of the former species do not usually exceed four in number-one large one and two or thre small ones internal to it-and are set obliquels. Those of $A$. Agassizia are usually five or six in number-two large ones and three or four small ones between them-and are set vertically. X. polyphemus has one scale on the inner aspect of the knee.joint of the fore leg very much larger thin the others covering that member, while in Agassiz's Tortoise all are approximately equal. This character is most noticeable in the young. The horny sheath of the upper jaw extends further back of the eye in $X$. polyphemus than in X. Agassizii. Other characters of less importance
might be added, but these will suffice, I think, to render the two species readily distinguishable. The relative proportions of the fore and hind feet is a matter of especial importance.

Mistory ot Xerobates Berlandieri.-The third species to be considered is Xerobates Berlandieri Agassiz, the only published description of which is contained in Agassiz's Contributions to the Natural History of the United States, rolume i, page 447. The notice is so short that I will quote it in full. It is as follows: "Xemobates berlandieki, Ag. The young is represented Pl. 3, fig. 17-19. It has a small yellow dot in the centre of the median and costal scales; the marginal scales are only edged with yellow. The sternum is narrower and more projecting in front than that of $X$. carolinus; in the adult it is even forked. Behind it is broader and more turned downward. The centre of the scales remains granular for a longer time. The gland of the lower jaw is larger and more prominent. This species is smaller than the preceding, and limited to southern Texas and Mexico. All the specimens that I have seeu were forwarded to me for examination by the Smithsonian Institution. They were collected by the late Mr. Berlandier, a zealous French naturalist, to whom we are indebted for mnch of what we know of the natural history of northern Mexico." *

The use of Berlandier's name in the denomination of this species is very appropriate, since that unfortunate naturalist was not only the first to collect specimens of the tortoise, but was the first to describe it. His manuseripts, deposited in the Smithsonian Institution, contain an extended description of the animal, under the name Testudo tuberculata, together with a carefully drawn figure, and some notes on its distribution.

Mention of this animal occurs in later times in the writings of Strauch, $\dagger$ Gras, $\neq$ Baird, $\S$ and Cope, $\|$ but, with the exception of the last two naturalists, all regard it merely as a synonym of $X$. polyphemus. Professor Baird enumerates it among others as a separate species, giving the scientific name which Agassiz has applied and the common name, "Texas Gopher." Cope also employs Agassiz's name, and adds, "I obtained a specimen of this land tortoise, collected by Mr. Marnock in the southwestern part of the State [Texas], where, according to that gentleman, it is common. He has also found it near San Antonio. I did not meet with it on the first platean." That it is a separate species I think no one who has compared the heads of the two can doubt. The following description is intended to show that Berlandien's Tortoise is a species entirely distinct from the gopher, and not merely a variety of the latter as Strauch and some other writers have supposed.

Description of Xerobates Berlandiert.-Shell short and high, slightly emarginate and revolute in front, strongly incurvated behind.

[^156]Of the five vertebral plates, the anterior is pentagonal, the two posterior angles right angles; the second and third are hexagonal, the anterior and posterior lateral margins approximately equal; the fourt is hexagonal, the posterior lateral border longer than the anterior lateral and curved in watd; the fift is hexagonal, the anterior lateral borders longest. The first lateral plate is quadrilateral (or resembles a triangle with a rounded apex), the lower border presenting rounded angles, and joined to the first four marginal plates; the seeond and third are hexagonal, the lower angle very obtuse; the posterior is quadrilateral and in adults nearly square. There are twenty fonr marginal plates. The muchal is small, quadrilateral, largest in front, or sumare; the supra-candal is quadrilateral, bat considerably less than twice as broad as high. The marginal plates differ much in different specimens. The first is rudely pentagonal, usually with an acnte angle directed toward the muchal; the remainder are irregularly quadrilateral; the sixth, however, is sometimes phanly pentagonal. In arlults, the center of the righth, ninth, tenth, and eleventh plates is usually strongry depressed, the free border being revolute.

The sternam is broad and convex at the sides, and extends an inch or less beyom the carapace in front. Each gular plate is quadrilateral. They are united, the anterior border of the resulting pentagon being invariahly emarginate, often very strongly notched. The nuchal phates change shape to a remarkable degree from youth to maturity. In the newly-born animal they are broad and short, but in the adult they are narrow and elongated. The brachial are quadraugular ; in the adult, both free and posterior borders convex. The thoracic are rudely quadrilateral, and very narrow at their juncture in the median line. The femoral are quadrilateral, very long and broad, covering more than a third of the sternum; the anterior and posterior borders parallel. The abdominal are thomboidal, the exterior side longer than the interior,


Fig. III.-X. Berlandieri. Contorr of head obtained as before. and convex. The sub-caudal are quadrilateral, with a notch of medium clepth between them posteriorly. The axillary are usually three in number-one large one between two small ones. The in. guinal are also three in number, ar. ranged as are the axillary plates.

The head is slightly elongated, deep, and from the eges forward wedgeshaped; it is covered with flat scales of moderate size which in adults are approximately equal. In the young the scales on the fore part of the head are clearly larger than elsewhere and are divided into pairs, but these distinctions become unappreciable in the adult. There is usually also one verg large scale over the tympanum. Nostrils moderate. Eyes large, set obliquely, and looking slighty for-
ward; lower lid about three times as broad as the upper. Jaws short and thick; sheaths short and deep, that of the upper jaw ending under the middle of the eye; a depression beneath the eye. The two tooth-like processes at the symphysis of the lower jaw large and high, giving the cutting margin a concave outline.

Anterior extremities not greatly larger than the posterior, frequently compressed in the antero-posterior direction, but sometimes nearly terete. Five claws with stout nails. The whole anterior surface of the leg covered with very large rounded scales, approximately equal in size. Scales on the sole of the foot large.

The posterior extremities are terete and clavate, and bear four flattened, pointed nails. Scales on the heel large, two especially so.

Color of the carapace jellowish-brown, the surface within the smaller stria of each plate yellow. Steruum light dirty yellow. Head and legs yellowish gray. Jaws yellowish.

Specific distinctions.-The main differences which separate $\boldsymbol{X}$. Berlandieri from X. polyphemus and $X$. Agassizii relate to the size and shape of the head and jaws, the size and shape of the legs, and to the height of the shell. In X. polyphemus the length of the carapace is more than twice the height of the shell, while in X. Berlandieri the length of the former is considerably less than twice the height of the latter. In the former species the fore legs are largest at the extremity, while in the latter they are largest at the knees. In I. polyphemus again the cutting edge of the lower jaw is nearly straight, while in X. Berlandieri it is very considerably arched, giving the mouth a hank's bill appearance. Many other minor differences exist in the arrangement of scales on the legs, and the like.

Size.-Of the three species, $X$. Berlandieri is the smallest. The adults of $X$. polyphemus and X. Agassizii are of about equal size. The following table gives the actual measurements of greatest length and breadth of six adult specimens:

| Speciea. | Locality. |  |  |
| :---: | :---: | :---: | :---: |
| X. polyphemus: <br> No. $\qquad$ |  | Incher. | Inches. <br> 31 |
| No. 9627 | Florila | R | 4 |
| No. (3) | Nashville, Ga | 11 | 43 |
| X. Agaswizit: |  |  |  |
| No. ${ }_{\text {Not }}$ | Fort Yuma, Ca. | 10 | 44 |
| 1. Berlandieri: |  | c1 | ${ }^{3}$ |
| No. Marda. | Brownaville. Tex | 7 | 31 |
| No. 89.6 | Brownsville, Tex | 61 | \% |

Allied Genera.-The Brazilian Tortoise, Chelonoidis tabulata, inhabiting the northern parts of the neotropical region, although resembling, when half grown, the species of Xerobates, differs from them all in characters of generic value, such as the absence of a nuchal plate,

## 444

and the presence of a pit in place of a ridge in the horizontal alscolar surface of the upper jaw, at the symphysis.

Fossil species.-In 1878, Professor Cope placed two fossil tortoises from Kansas in the genus Xerobates, under the names $X$. orthopygius and X.cyclopygius. The skull of the latter species, bowever, was not found, and, the author states, "it is not certain that it belongs to the genus Xerobates." 1 . orthopygius, if I understand the description correctly, is an aberrant form as far as regards its shell, and may belong to a subgenus. As I have no fragments of these animals at command I cannot speak with confidence regrarding either of them.

## II. IABITS AND CAPTURE.

Habits of the gopher.-Regarding the habits of the gopher considerable has been written by IIolbrook, Bartram, Louis Agassiz, Sar, and other observers and writers of less note. These all agree that it is an animal of docile nature, preferring situations of the utmost dryness and reveling in an abundance of sunshine and warmth. It has an innate repugnance to rain and all moisture, and at the approach of winter retreats to the depths of its burrow and becomes dormaut. Its native home is in the sandy pine barrens of the South; far from them it is never found.

The habit of digging pits or dens in the earth seems to be peculiar to this genus of tortoises; I have been unable to find proof of any similar proclivity existing among tortoises of allied genera inhabiting other countries. "The domicile of the Gopher," observes Dr. Savage, "consists of an excavation of a size at the mouth just sufficient to admit the animal, and runs in an oblique direction to the depth of about four feet. From the entrance it enlarges and expands to a considerable extent, resembling in its interior ontline a vessel of globular shape. Being concealed, it is sometimes a dangerous carity to horsemen at full sped. It is inhabited by but one pair." $\dagger$

The remarks of Rev. C. F. Knight, on the habits of this species, made before the Boston Society of Natural Mistory, June 15, 15:0, disugree somewhat with this account. He states that the gallery leading to the burrow is often sixteen feet long, sinking to a depth of twelve feet, and that the latter consists of several chambers. At the mouth of the burrow there is always a mound or hillock of considerable size, formed by the carth which the animal casts behind him in excavating.

Forbes states that gophers are sometimes forced to share their quarters with a brood of rattlesnakes, these unwelcome lodgers intruding themselves here as they do into the homes of the prairie dog. Rev. Mr. Knight, in the communication just referred to, affirms that, "on one

[^157]occasion, a pair of opossums, a raccoon, a rattlesnake more than six feet long, and two other suakes, besides several of the native black rats of the district (Florida) were taken from one of these holes."*

The gopher is entirely gramini corous, feeding upon various succulent vegetables and grass. It does not distinguish between wild and cultivated plants, and often causes much amoyance to planters in the South by devouring great quantities of the sweet-potato vine and other garden regetables. It is also fond of the gum which exudes from the pine tree. It has been generally supposed that the gopher wanders from its den in search of food only at night, but the animals which Holbrook kept in confinement partook of food at all hours of the day indifferently.

There is need of more extended information regarding the breeding habits of gropher. The account of Dr. Savage, which, so far as I am aware, contains all that has been published on the sulyect, is not derised from personal observation, and is incomplete in some details. From him we learn, however, that the eggs are not deposited in the burrow itself, but at some point near the mouth. "The habit of the animal in oviposition, it is said, is to draw a circle on the ground about four inches in diameter, and to excavate within this to a depth of about the same number of inches, expanding as it proceeds, in a manner similar to that adopted in making its domicile. In this are deposited five white eggs, of a round form. The number being complete, the cavity is filled with earth and pressed down smoothly, and to a level with the surfice, by the weight of the animal. The time in hatching is said to be between three and four weeks. The month in which they lay is June." $\dagger$

The age attained by Xerobates polyphemus is a matter of some dispute. Some herpetologists hold that the number of concentric striae on the dorsal scales of a tortoise form a reliable index to the number of years of its life, one ring being formed anuually. But for the species under consideration, at least, I am convinced that little is to be learned from an examination of these strix. Specimens, apparently of advanced age, are frequent in which long attrition with a sandy soil has effaced all traces of striation from the shell. Furthermore, I conceise that if the growth of the layers of the scales is connected with the phenomenon of hibernation, owing to the varying mildness of southern winters, two or more layers might be formed in a single year.

As the alligator snapper ( $M$. lacertina) is the strongest of American tortoises, as regards its jaws, so the gopher, as regards its legs. That it will walk about with a man standing upon its back is a fact too commonly observed to admit of doubt. Le Conte writes that it can support a maximum weight of 600 pounds; but this statement is not derived from his own observation.

The ordinary mode of capturing the gopher is to dig a pit at the en-

[^158]trance of the burrow, into which the animal will fall when emerging from the latter in search of food. Wailes, however, in his report on the resources of Mississippi, gives an account of another method, which was related to him, but which it would seem must be taken cum grano salo. He writes: "A common box terrapin is used for the purpose, being driven into the gopher's hole, from which he is speedily driven out; but, in the eagerness of pursuit, the gopher frequently follows him so far above ground as to be cut off from his retreat and captured by the waiting hunter."*

Habits of Agassiz's and Berlandien's tortoises.-Regarding the habits of Agassiz's and Berlandier's tortoises, but little has been recorded. The following notes by Mr. E. T. Cox are of recent date and point to a similarity of habits, except in the last particulars, between the eastern and western gophers. Speaking of Xerobates Agassizii, be says: "He is a vegetarian, feeding, as I am told, on cacti. His flesh is highly esteemed as food by the Indians and Mexicans. You will perceive that his mandibles are notched or toothed. His legs are corered with bony scales, and his front toe nails are made long and strong for digging amongst the rocks, while the hind feet are round like an elephant's.
"In preparing the specimen, I found on each side, between the flesh and carapax, a large membranons sack filled with clear water; I judged that abont a pint run out, though the animal had been some days in captivity and without water before coming into my possession.t Here then is the secret of his living in such a dry region; he carries his supply of water in two tanks. The thirsty traveler, falling in with one of these tortoises and aware of this fact, need have no fear of dying of immediate want of water." $\ddagger$

I consider it donbtful whether Berlandier's tortoise digs burrows. The form of the legs is such that excavation by their aid would be a very tedions process. I have been unable to find any notes relating to its habits, save the single sentence in Berlandier's manuscript: "Elle est herbivore."

Its eggs, unlike those of the other species, are elliptical.

## III. GEOGRAPHICAL DISTRIBUTION.

It is somewhat difficult at the present time to work out with exactitude the geographical distribution of the three North American Xerobates, owing to a "plentiful lack" of citations of the exact localities in which specimens have been found. In a general was, however, little difficulty is encountered.
Distribution of the Gopier.-The National Musenm has specimens of X. polyphemus from Saint Simon's Island, Ga. (7551); Nashville,

[^159]Ga.; Clear Water, Fla. (16057); Homossasa, Fla. (10069-70); Gainesville, Fla. (10471), and Brownsville, Tex. (8926), together with others labeled East Florida (7554-55-57). I have a memorandum in my possession stating that Mr. G. Brown Goode shipped 19 specimens of this animal, collected in the vicinity of Arlington, Fla., to the zoological gardens in Philadelphia. Bartram found traces of them sonth of the Savannal River, in Georgia and Florida. Holbrook states that they are numerous in Edgefield and Barnwell districts (S. C.), whence they extend throngh Georgia, Alabama, and the Floridas, and that, "According to Le Sueur, they are brought to the New Orleans market, though probably not from the immediate neighborhood." Wailes knew of their existence in the southern part of Mississippi.

From these data it would appear that Xerobates polyphemus inhabits all the drier portions of the Austroriparian region, from Sonthern South Carolina to the Rio Grande del Norte, with the exception, perhaps, of Southern Florida. Furthermore, Gray was informed of its introduction into Cuba, where, according to Mr. W. S. MacLean, it "lives in domestication." ${ }^{1}$

Distribution of Agassiz's Tortoise.-Of the species Xerobates Agassizii the U. S. National Museum has specimens from Fort Mohave, Ariz. (6i18); Dr. Cooper's types from the Solado Valley, Cal. (7888), and from Fort Yuma, Cal. (10398-99, 10412).

The distribution of this tortoise, therefore, must be limited for the present to the southern, sandy desert portions of California and Arizona.

Distribution of Berlandier's Tortoise.-Testudo Berlandieri was described by Agassiz from specimens from Northern Mexico. Berlandier writes: "It inhabits the plains of Tamaulipas between Matamoras and San Fernando de las Presas. At Laredo, on the banks of the Rio Braro, this tortoise forms an important article of diet for the soldiers of the presidios when crossing the deserts." Cope, as we have seen, knew of specimens from San Antonio, Tex., and of the occurrence of the animal in the southwestern part of that State generally.

Its distribution, therefore, would seem to be limited to the lower regions of Texas and northeastern Mexico, between the twenty fifth and thirtieth parallels.

## IV. SYNOPSIS OF THE SPECIES.

Terrestrial; horizontal alveolar surface of the upper jaw with two ridges; an interval at the symphysis, occupied by a transverse ridge; a notch in the lower jaw fitting over the transverse ridge. Anterior extremities more or less cumpressed in the antero-posterior direction; posterior extremities clavate; nails 5:4

Xerobates.

[^160]- Shell more than twice as long as high; head rounded in front; margin of jaws straight; fore-legs broadest at the extremity.

Anterior part of the plastron bent upward. Distance from base of 1st claw to base of 4th claw, hind foot, equal to distance from base of 1st claw to base of 3 d claw, fore foot.....X. polyphemus.
Plastron level in the antero posterior direction. Distance from base of 1st claw to base of 4 th claw, hind foot, equal to distance from base of 1 st claw to base of 4th claw, fore foot.. $X$. Agassizii.
**Shell less than twice as long as high; head wedge-shaped in front; margin of jaws curved; fore-legs broadest at the knee. . X. Berlaudieri.

## BIBLIOGRAPHY.

1734-17ij. Spba, Albert. Locupletissimi rerum naturalinm thesanri accurata descriptio et iconibus artificiosissimus exprexsio, per universam physices historiam. Amsterdam, 1734-1765, I, pl. 80, fig. 1. (Testudo terrestris majop americana.)
1791. Bartram, William. Travels through North and South Carolina, Georgin East and West Florida. Philadelphia, 1791 (London, 1794), pp. 1*2, 1*3, 20. (Gopher.)
1803. Daudis, F. M. Histoire Naturelle des Reptiles, II, 1503 (An X), pp. $256-239$. Paris. 8o. (Testudo polyphemus.)
1803. Bosc. Nouvelle Dictionnaire d'Histoire Naturelle, XXII, 1803, p. 22.6. Paris 8. (Testudo prolyphemus.)
1812. Schwagger, A. F. Prodromus Monographax Cheloniorum. Königberget Archiv, 1, 1812, pp. 317 and 442. (Emys polyphemus.)
1821. Forbes, J. G. Sketches, historical and topographical, of the Floridas; particularly of East Florida, 18:21, p. 172. 80. New York. (Gouffre.)
1825. SAY, Thos. Journal Acad. Nat. Sci. Philadelphia, IV, pt. ii, 1825, pp. 20ï-sw. (Testudo polyphemus.)
1829. Hahlan, R. Journal Acad. Nat. Sci. Pbiladelphia, VI, pt i, 1829, pp. 21-22 (Testudo polyphemns.)
1830. Boxaparte, C. L. Osgervazioni sulla Seconda Edizione del Regno Animale del Barone Cuvier, 1830, p. 152. Bologna, 80 . (Testudo polyphemus)
1831. Gray, J. E. Syuopsis Reptilium, pt. i, 1831, p. 11. London. 80. (Testodo polyphemus.)
1835. Dleméril, A. M. C. \& Bidron, G. Erpétologie Générale, II, 1835, pp. 102-10e (Testudo polyphemus.)
1828-1833. Le Conte, Joux. Annala Lycemm Nat. Hist., New York, III, 1828-1854, pp. 97-100. (Testudo carolina.)
1836. Ноцввоок, J. E. North American Herpetology, 1st ed., I, 1836, pp. 41-46, pl. I. Philadelphia. $4^{\circ}$. (Testudo polyphemus.)
1842. - - 24 edition, I, 1842, pp. 25-30, pl. i. Pbiladelphia. $4^{\circ}$.
1844. Gray, J. E. Catalogue of Tortoises, Crocoliles, and Amphisbeans in the collection of the British Musenm, 1844, pp. 4,5. London. $122^{\circ}$. (Gopher of Mangofa.)
1850. Chateacbriand, Le Viconte de. Vogage en Amérique. Edition of 1850, pp. 336, 337. Paris. 120. [Also in earlier editions.]
1851. Deshéril. M. C. \& M. A. Museum d'Hist. Nat. de Paris. Catalogne Métrodique de la Collection des Reptiles, 1851, p. 5. Paris. 80. (Tortue polyphème.)
1855. Grax, J. E. Catalogue of Shield Reptiles in the Collection of the British Mrsenm, Part 1, 1855, p. 5. London. $4^{\circ}$. (Testudo gopher.)

185\%. Agassiz, Lovis. Coutributions to the Natural History of the Cuited States of America, I, 1857, pp. 446, 44\%. (Xerohates carolina, X. Berlandieri.) Philadelphia. $4^{\text {D }}$.
1859. Balrd, Spexceit F. U. S. and Mexicau Boundiary Surver. Reptiles, 1859, p. 4. Washington. 40. (Xerobates Berlaudieri.)
1863. Cooper, J. G. Proceedings California Acad. Sci., 1I, 1\&33, pp. 120-121. (Xerobates Agassizii.)
1865. Strauch, A. Mémoires de l'Acad. Imp. Sci., St. Petersburg, series vii, VIII, 1865 , article $13, \mathrm{pp} .28,29$. (Testudo polyphemus.)
1868. Cronise, T. F. The Natural Wealth of California, 186\%, p. 4e0. San Francisco. $4^{\circ}$. (Xerobates Agassizii.)
1870. Gray, J. E. Supplement to the Catalogue of Shield Reptiles in the Collection of the British Museum. Part I, 1870, p. 4. London. $4^{\circ}$. (Testudo gopher.)
1872. Knight, C. F. Proceedinge Bostou Society Nutural History, 1873, p. 16. (Testndo polyphemus.)
1573. Cooper, J. G. Proceedings California Acal. Sci., IV, 1873, p. 67. (Xerobates Agassizii.)
1873. Griy, J. E. On the Skulls and Alveolar surfaces of Land Tortoises. Proc. Zool. Soc. London, Nov. 4, 1873, p. 723. (Xerobates gopher.)
1875. Cope, E. D. Check-list North American Batrachia and Reptilia, 1880., p. 54. 80. Washington. (Testudo carolina, Testudo Agassizii.)
1880. Cope, E. D. Bulletin U. S. National Mnseum, No. 17, 1880, p. 13. (Testudo Berlandieri.)
1881. Cox, E. T. Anerican Naturalist, XV, 1881, 1003.
E. S. National Museum, Washington, January 27, 1882.

CATALDGUE OF A COLLECTION OF JAPAXESE COTTON FIRER PEESENTED TO THE UNITED STATES NATBONAI, MUBEEJIBY THE GOVERNMENT OF JAPAN, TOGETHER WITH THE AMOUNT OF THE ANNUAL CLOP OF JAPAN ANB THE PRICE OF COTTON.*
[Prepared by the Japanese Legatiou.]

## No. 1. Cotton produced by- <br> Konishi Shojiro, <br> Awadono mura, Soyekami-gori, Yamato, Osaka-Fu.

Annual crop, about $225 \mathrm{kin}=298.14075$ pounds.
Market price, 7.1 sen per $1 \mathrm{kin}=1.32507$ pounds.

[^161]Proc. Nat. Mus. 81-29
May 13, 1882.

No. 2. Cotton produced by-
Shiokawa Daigoro,
Higashi-ajiro-mura, Shibnkawa-gori, Kawachi, Osaka-Fu.
Annual crop, about 3,905 kin $=5,174.3983$ 5 pounds. Market price, $9 \frac{3}{5}$ sen per $1 \mathrm{kin}=1.32507$ pounds.

No. 3. Cotton produced by-
Yamada-Heishiro,
Shinmachi-mura, Sumiyoshi-gori, Settsu, Osaka-Fu.
Annual crop, about $419 \mathrm{kin}=555.20433$ pounds. Market price, $11 \frac{1}{2}$ sen per $1 \mathrm{kin}=1.32507$ pounds.

No. 4. Cotton prorluced by-
Naka Saburobeye,
Sakuratsuka mura, Toshima-gori, Settsu, Osaka-Fu.
Annual crop, about $334 \mathrm{kin}=442.57338$ pounds. Market price, 78 sen per $1 \mathrm{kin}=1.32507$ pounds.

No. 5. Cotton produced by-
Midsutani Kiyoji,
Nishikata-mura, Kuwana-gori, Ise, Miye-ken.
Annual crop, about $276 \mathrm{kin}=365.71932$ pounds.
Market price, $8 \frac{8}{8}$ sen per $1 \mathrm{kin}=1.32507$ pounds.
No. 6. Cotton produced by-
Akita Heiyemon,
Uyeno-mura, Aki-gori, Ise, Miye-ken.
Annual crop, about $1,314 \mathrm{kin}=1,741.14198$ pounds.
Market price, 7.3 sen per $1 \mathrm{kin}=1.32507$ pounds.
No. 7. Cotton produced by-
Tanaka Heihachi,
Shinowara-mura, Aichi-gori, Owari, Aichi-Ken.
Annual crop, about $194 \mathrm{kin}=\mathbf{2 5 7 . 0 6 3 5 8}$ pounds. Market price, 8 sen per $1 \mathrm{kin}=1.32507$ pounds.

No. 8. Cotton produced by-
Suzuki Hikozayemon,
Nakane-mura, Hadsu-gori, Mikawa, Aichi-ken.
Annual crop, about $950 \mathrm{kin}=331.26750$ pounds. Market price, 7.3 sen per $1 \mathrm{kin}=1.32507$ nounds.

No. 9. Cotton produced by-
Fukazawa Moheye,
Senakawa-mura, Anbara-gori Suruga, Shidsuoka-ken.
Annual crop, about $313 \mathrm{kin}=414.74691$ pounds.
Market price, 6.7 sen per 1 kiu $=1.32507$ pounds.
No. 10. Cotton proluced by-
Kawanishi Chojiuro,
Nanko-mura, Maka-kioma-gori, Kai, Yamanishi-ken.
Annual crop, about $655 \mathrm{kin}=894.42225$ pounds.
Market price, 8.3 sen per $1 \mathrm{kin}=1.3: 507$ pounds.
No. 11. Cotton produced by-
Ishii Riohei,
Kamo-mura, Niihara-gori, Hitachi, Ibaraki-ken.
Annual crop, about $175 \mathrm{kin}=231.88725$ pounds .
Market price, 8 年 sen per 1 kin $=1.32507$ pounds.
No. 12. Cotton produced by-
Sumigama Deubeye,
Magari-mura, Nakashima-gori, Mino, Gifu-ken.
Annual crop, about $5,100 \mathrm{kin}=6,757.857$ pounds. 'Market price, $7 \frac{1}{\mathrm{~s}}$ sen per $1 \mathrm{kin}=1.32507$ pounds.

No. 13. Cotton produced by-
Miyasaha Kansaku,
Riokusheki-mura, Sarashina-gori, Shinano, Nagano-ken.
Annual crop, about $262 \mathrm{kin}=347.16834$ pounds.
Market price, 8 sen per $1 \mathrm{kin}=1.32507$ pounds.
No. 14. Cotton produced by-
Narita Shodayu,
Wada-mura, Ohi-gori, Wakasa, Fukui-ken.
Annual product, abont $150 \mathrm{kin}=198.7605$ pounds.
Market price, 8.7 sen per $1 \mathrm{kin}=1.32507$ pounds.
No. 15. Cotton produced by-
Hamada Jirokichi,
Morioka-mura, Kuwaimi-gori, Hoki, Shimane-ken.
Annual crop, abont $1,650 \mathrm{kin}=2,194.31592$ pounds.
Market price, 8 sen per $1 \mathrm{kin}=1.32507$ pounds.

# No. 16. Cotton produced by- <br> Mishima Okataro, Oki mura, Kuboya-gori Bitchiu, Okayamarken. <br> Annual crop, about 1,050 kin $=2,583.8865$ pounds. Market price, $9 \frac{1}{2}$ sen per $1 \mathrm{kin}=1.32507$ pounds. 

No. 17. Cotton produced by-<br>Kami-mura Kametaro,<br>Imatsu-mura, Chinka-gori, Suwo, Yamaguchi-ken.<br>Annual crop, about $1,725 \mathrm{kin}=2,285.74575$ pounds.<br>Market price, 8.7 sen per $1 \mathrm{kin}=1.32507$ pounds.

No. 18. Cotton produced byUramoto Joichiro, Naka-mura, Amakusa-gori, Higo, Kumamoto-ken. Annual crop, about 2,275 kin $=3,014.53425$ pounds. Market price, 88 sen per $1 \mathrm{kin}=1.32507$ pounds.

## BRIEF ACCOUNT OF COTTON HUSBANDRY IN JAPAN.

Cotton is produced along the coasts, and where there are sandy soils in the warm parts of so-called districts Kinai, Kanto, Chiugoku, and Kiushiu; but in the most northeastern parts of so-called districts Tô oku and Hokuriku, where frost visits very early, the soil is unsuitable for the cultivation of cotton, 80 that it is very rarely cultivated.

Although the era of the cultivation of cotton in the empire is get uncertain, as there are varions opinions, it is certain that the mode of the cultivation in western provinces was introduced from Kinai, and that the seeds grown in eastern provinces were brought from the province of Mikawa. It seems, however, that the modes of all the provinces westward from Kinai would have been developed in a very accurate manner and that the general objects turned to obtain more and more grool crop. So it is; in the province of Settsn the crop is largest and could never be surpassed by that of all the other provinces through. out the e cmpire, though the expenditure for the cultivation in that prosince is nearly two times that of another province where the expeud iture is smallest, but as the staples are rather short and hard it is not suitable for the consumer for both spioning rery fine yarns and wearing fine and delicate goods. In recent years cotton yarns are imported on a large scale, and on account of fine yarn being easily got, the homeproduced cotton must, it seems, be spun into coarse counts for warp and used also for stufting. Taking this as a cause, it became fiually the general custom to prefer a cotton plant which produces a larger anount of cotton wool to all the other sorts, whether the staple is long or short
and hard or soft. Therefore, even in the provinces of Owari and Mikawa, the seed of western provinces has been taken and cultivated, and the natural, long and soft stapled wool could be very rarely seen in the markets. Fet in the provinces of Hitachi and Shimatsuke, \&e., where fine cotton groods are manufactured, the sort of cotton-plant producing long, soft, and strong stapled wool has long been cultivated after the old custom, but, unfortunately, as the interests for planters were gradually decreased on account of the lowering price of cotton of that sort, the custom of cultivating with the seeds of western province after the mode of cultivation in that part is increasing year by year.

Cotton plants have different names in different provinces, so that it is difficult to distinguish them readily one from another, but it is believed that there are but three sorts, the so-called Kinai, Kanto, and Ainoko. The Kanto produces long, soft, and strong stapled wool ( $\frac{1}{2}$ inch to $\frac{8}{3}$ inch in length), of glossy appearance, and contains 5 to 7 seeds in each cell, the size of which is large with less wool; and 3.2507 ounces of the seed cotton give $.975 \% 1$ ounce of ginned cotton. On the contrary, Kinai has hard and short stapled wool ( $f$ inch to $d$ inch in length), of larger diameter and rather destitute of glossiness, and contains 8 to 11 seeds in each cell, of smaller size and covered with more wool, and 3.2507 ounces of the sced cotton yield 1.23526 ounces to 1.46281 ounces of ginned cotton. Ainoko is the result of a reciprocal acelimatization, viz, Kanto seeds (that is the seed of eastern part) being grown in Kinai district (middle part), and Kinai seeds in Kanto district, or Kimai seeds in Kiushin (sonthwestern part), and Kiushiu seeds in Kinai; the properties, qualities, and lengths of the stapled wool of the former are intermediate between those of the two precediag, and those of the latter intergrade between those of the native cottons of Kinai and Kiushiu.

The mode of cultivation and manures are various according to both the soils and the climates, and also to the customs of every district. In Kinai district and the provinces of Owari, Mikawa, \&ic., cottonplanters like to have the cotton-plants rather short and thin instead of growing them tall and large, the rootlets spreading ont fully, and in Kanto and some other districts they like to have the trunks of the plants grow tall and large, the primary root descending deeply in the ground; cultivators generally dislike the latter plan, and there is no doubt that sucb plauts by no meaus give valuable returus. Agreeably to these views, it is thought that the fact that the cotton crop in Kanto could not be equal to that in Kinai is to some extent due to the mode of cul. tivation, which, in Kanto, has not attained great excellence; there is alsu the difference of the seeds.
Cottons to be presented ought to be collected for the purpose in cotton producing districts, but in order to avoid losing time those specimens already collected from among the exhibits at the competitive exhibition of cotton and sugar, held at Osaka in last year (1880), are sent; therefore, the glossiness of the cotton-wool may be rather defective in comparison with that of the new crop.

## DEACREPTION OF A NEW APECIESOF XENICHTHEA (XENICYTHTM 

## By DAVID S. JORDAN ard CHARLES H. GILBERT.

Xenichthys xenurus, sp. nov .(4:3ifi).
Allied to Menichthys californiensis Steindachner; belonging to the group or subgenus, with the soft dorsal and anal short, not longer than the spinous dorsal.

Body rather deep, compressed; mouth very oblique; the maxilla:y barely reaching the vertical from the front of the pupil. Teeth in jaws small, in a band in front, which becomes in single series toward the sides; similar teeth on vomer, none on palatines or tongue.

Preorbital distinctly serrulate; preopercle evenly and fiwely serrate on the lower margin and on the angle, its upright edge entire above the angle; opercle terminating in two Hat points. Eye very large, its diameter ${ }^{2}{ }^{3}$ in head. Gill rakers long and slender, about two fifths the diameter of the eye, their number abont $9+\because 4$.

Lateral line with a slight curve in front, not quite concurrent with the back.

Spinous dorsal very high, the spines slender and somewhat flexible, the fifth and longest about two thirds length of head; notch between spinous and soft parts deep. Anal spines rather stonter than those of the dorsal, the third longest, but little shorter than the first soft ray and two thirds the longest dorsal spine. Caudal deeply forked, the lobes elongate, the middle rays but one thind the length of the lower.

Pectorals two-fifths length of head. Veutrals barely reaching rent, their length equal to the distance froan the snout to the posterior margin of orbit.

Base of caudal scaly; rest of the fin as well as the dorsals and anal naked, the scaly sheath of the dorsal and anal, leaving the last three rays free.

Head $3 \nmid$ in length ; depth 를. D. IX-I; 11; A. III, 11; Lat. 1. in.
Color olivaceous above; silvery below.
This species is known from one specimen (No. 435 m U. S. Nat. Slns.) sent to the United States National Musemm from San Salvador, vilere it was taken several years ago by Capt. J. M. Dow. Its small number of fin rays distinguished it at once from $X$. xanti and $X$. agassizii, while from $X$. califurniensis it differs in numerous respects.

Indiana Unifersity, November 22. 1881.

## LIET OF ANTHROPOLOGICAL PUBLICATIONA

## EY CHARLES RAU.

1859-1882.
Die Graber von Panama. Relating to the discovery of gold figures in Chiriqui. In: Die Natur, herausgegeben von Dr. Otto Cle nod Dr. Karl Müller von Halle. Vol. VIII, Halle, 18in9, p. 372 ; illustrated.
Amerikanische Alterthümer. Twelre illustrated articles. In: Die Natur, Vol. XI, 1862.
Negeremancipation in Jamaika (anonymous). Against sudden emancipation of negro slaves. In: New- Yorker Staats-Zeitung, June 14, 1862.
An Account of the Aboriginal Inhabitants of the Californian Peninsula, as given by Jacob Baegert, a German Jesuit Missionary, who lived there Seventeen Years during the Second Half of the Last Century. Translated and arranged for the Smithsonian Institution by Charles Rau. In: Smithsonian Reports for 1863 and 1864 , pp. 352 and 378 , respectively.
Agricultural Implements of the North American Stone Period. In: Smithsouian Report for 1863 , p. 379 ; illustrated.
Archäologisches aus der alten und neuen Welt. Relating to pile-dwellings and artificial shell-deposits. In: Die Natur, Vol. XII, 1863, p. 110.
Altindianische Industrie. Ten illustrated articles. In: Die Natur, Vol. XII, 1863.
Artificial Shell-deposits in New Jersey. In: Smithsonian Report for 1864, p. 370 ; with illustration.

Indian Pottery. In: Smithsonian Report for 1866, p. 346; illustrated. Translated into French by M. Emile Cartailhac, under the title:-
Les Ustensiles en Argile des Indiens de l'Amérique du Nord. In: Matériaux pour l'Histoire Primitive et Naturelle de l'Homme, Vol. V, Paris, 1869, p. 205 ; without illustrations. Reprinted in: Flint Chips, by E.T. Stevens; London, 1870, p. 245 ; without illustrations.
Remarks on the Stone Age. In: The Historical Magazine, New York, April, 1866, p. 97.
Notes on the Anthropological Congress at Paris. In: The Historical Magazine, Morrisania, N. Y., October, 1867, p. 210 (many typographical errors).
Ueber künstliche Muschelbetten in Amerika. In: Archiv fiir Anthropologie, Vol. II, Braunschweig, 1867. p. 321 ; illustrated.
Drilling in Stone without Metal. In: Smithsonian Report for 1868, p. 392 ; illustrated.
A Deposit of Agricultaral Flint Implements in Southern Illinois. In: Smithsonian Report for 1868, p. 401 ; illustrated.
Translated into French by M. Emile Cartailhac, under the title:Trouvaille d'Ontils Agricoles en Silex du Sud de l'minois. In: Matériaux, etc., Vol. VI, 1870-71, p. 367 ; illustrations on Plate XIII.

Die Thongefasse der nordamerikanischen Indianer. In: Archiv für Anthropologic, Vol. III, 1S68, p. 19; illustrated.
Die durchbohrten Geräthe der Steinperiode. In: Archiv für Anthropologie, Vol. III, 1868, p. 187 ; illustrated.
Memoir of C. F. P. von Martius. Partly ethuological in character. In: Smithsonian Report for 1869, p. 169.
Steinerne Ackerbaugerathe der nordamerikanischen Indianer. In: Archiv für Anthropologie, Vol. IV, 1870, p. 1; illustrated.
Ueber das Vorkommen der Coscinopora globularis auf der Insel Rügen. In: Correspondenz-Blatt der deutschen Gesellschaft fuir Anthropologie, Ethnologie und Urgeschichte, April, 1871 (No. 4), p. 31.
Von Martins on Some Points of South American Ethnology. In : Journal of the Anthropological Institute of New York, Vol. I, New York, 1871-'72, p. 43.
Die Tauschverhältnisse der Eingebornen Nordamerika's. In: Archiv fuir Authropologie, Vol. V, 1872, p. 1 ; illustrated.
Ancient Aboriginal Trade in North America. In: Smithsonian Report for 1872, p. 348.
North American Stone Implements. In: Smithsonian Report for 1872, p. 359; illustrated.

Translated into German by Prof. Jos. Philibert Baron von Lazarini under the title:-
Nordamerikanische Steinwerkzenge. Graz (Austria), 1875. All illustrat tions reproduced (special impression from the Twenty-fourth Annual Report of the Ober-Realschule at Graz).
Indianische Netzsenker und Hammersteine. In: Archiv für Anthropologie, Vol. V, 1872, p. 260 ; illustrated.
Indian Netsinkers and Hammerstones. In: The American Naturalist; March, 1873, p. 139 ; illustrated.
Review of "The Ancient Stone Implements, Weapons, and Ornaments of Great Britain," by John Evans, F. R. S., F. S. A.; New York, D. Appleton and Company, 1872 (anonymons). In: North American Review, Vol. CXVI, Boston, 1873 , p. 213.
Review of "Antiquities of the Southern Indians, particularly of the Georgia Tribes," by Charles C. Jones, jr.; New York, D. Appleton and Company, 1873 (anonymous). In: North American Review, Vol. CXVII, 1873, p. 468.

Amerikanische Gesichtsvasen. In: Archiv für Anthropologie, Vol. VI, 1873, p. 163 ; illustrated.
Steinzeit (anonymons). In: Deutsch-amerikanisches ConversationsLexikon, bearbeitet von Prof. Alexander J. Schem, Vol. X, New York, 1873, p. 474.
Auszag aus einem Briefe an Dr. A. von Frantzius. Relates to the predilection for green stones among uncivilized races. In: CorrespondenzBlatt der deutschen Gesellschaft für Anthropologie, etc., January, 1874 (No. 1), p. 8.

Ueber ein in Deutschland gefundenes Steinwerkzeng. In: Correspondenz. Blatt der deutschen Gesellschaft für Anthropologie, etc., February, 1874 (No. 2), p. 13; with illustration.
Der Onondaga-Riese. In: Archiv für Anthropologie, Vol. VII, 1875, p. 267 ; illustrated.
The Stone Age in Europe. Six illustrated articles. In: Harper's New Monthly Magazine; April, May, June, July, August, and September, 1875.

The same in book-form as:-
Early Man in Europe. New York, Harper \& Brothers, 1876. Large $8^{\circ}$, pp. 162; illustrated.
The Archæological Collection of the United States National Museum, in Charge of the Smithsonian Institution, Washington, D. C.-Smithsonian Contributions to Knowledge, No. 257 (in Vol. XXII); Washington City, published by the Smithsonian Institution, 1876. Large $4^{\circ}$, pp. XIV, 104; 341 illustrations in the text.
The Prehistoric Antiquities of Hungary. An Address delivered by Prof. F. F. Romer at the Opening of the .International Anthropological Congress, held at Budapest, September, 1876. From the "Materiaux pour l'Histoire Primitive et Naturelle de l'Homme."-Translated for the Smithsonian Institution by Charles Rau. In: Smithsonian Report for $1876, \mathrm{p} .394$.
The Stock-in-trade of an Aboriginal Lapidary. In:.Smithsonian Report for 1877 , p. 291 ; illustrated.
Observations on a Gold Ornament from a Mound in Florida. In: Smithsonian Report for 1877 , p. 298 ; illustrated.
Observations on the Dighton Rock Inscription. In: The Magazine of American History, Vol. II, New York and Chicago, 1875, p. 82.

Reprinted in: The American Antiquarian, Vol. I, Cleveland, Ohio, $187 \mathrm{~s}, \mathrm{p} .38$.
Der Nachfolger des Onondaga-Riesen. In: Archiv für Anthropologie, Vol. $\mathrm{X}, 187 \mathrm{~s}, \mathrm{p} .418$; with illustration.
The Palenque Tablet in the United States National Museum, Washington, D. C.-Smithsonian Contributions to Knowledge, No. 331 (in Vol. XXII); Washington City, published by the Smithsonian Iustitution, 1879. Large $4^{\circ}, \mathrm{pp} . \mathrm{X}, 81 ; 2$ plates and 17 illustrations in the text.

Trauslated into Spanish by Messrs. Joaquin Davis and Miguel Perez under the title:-
Tablero del Palenque en el Maseo Nacional de los Estados-Unidos. In: Anales del Museo Nacional de México, Vol. II, Mexico, 1880, p. 131. Illustrations as in the original.

Translated into French by M. L. de Milloué under the title:-
La Stèle de Palenqué, du Musée National des Etats-Unis. In: Amales du Musée Guimet, Vol. IV, Lyon. All illustrations given. In press.

The Dighton Rock Inseription. An Opinion of n Danish Archæologist. In: The Magazine of American History, Vol. III, New York and Chicago, 1879, p. 236.
Review (illustrated) of "Archéologie Américaine. Déchiffrement dea Ecritures Calculiformes ou Mayas. Le Bas-relief de la Croir de Palenqué et le Manuscrit Troano." Par M. le C ${ }^{\text {te }}$ H. de Charencey, Alençon, 1879. In: The American Art Review, Vol. 1I, Boston, 1880, p. 32.
Aboriginal Stone-drilling. In: The American Naturalist, July, 1881, p. 536 ; illustrated.
Observations on Cup-shaped and other Lapidarian Sculptures in the Old World and in America. In: Contributions to North American Ethnology, Vol. V (U. S. Geographical and Geological Survey of the Rocky Mountain Region, J. W. Powell, in Charge). Washington, Government Printing Oftice, 1881. $4^{\circ}, \mathrm{pp} .102$; 61 illustrations on 35 plates.
Die Jadeitgegenstånde des National-Museums zu Washington. In: Archiv für Anthropologie, Vol. XIV; illustrated. In press.
Articles on Anthropological subjects, contributed to the Annual Reports of the Smithsonian Institution from 1863 to 1877. Washington, publisbed by the Smithsonian Institution, 1882. $8^{\circ}$, pp. X, 169; illustrated (No. 440 of Smithsonian Publications).

## denchiption of five new species of pinhel fiom mazatLAN, MEXICO.

## Bẏ DAVID S. JORDAN and CHARLES H. GILEERT.

Tylosurus sierrita, 8p. nov. (28162, 28265, 29227, 293i7, 29378.)
Closely allied to Tylosurus exilis (Grd.).
Body very slender, not compressed; caudal peduncle depressed, half wider than deep, the lateral line forming a moderate keel, which is not black.

Jaws very long, slender, and fragile, as in T. exilis, longirostris, \&c., the tip of the lower (as usual) projecting; length of upper jaw from eye 23 times length of postorbital part of head, 9 times space between nostrils; maxillary scarcely reaching vertical from front of pupil, abont half of its posterior portion slipping under the preorbital ; preorbital small, not exteuding backward to tip of maxillary.

Teeth essentially as in T. longirostris; an outer hand of small acute teeth in each jaw, and an inner series of long, sharp, slender teeth, 50 to 60 in each jaw; middle line of lower jaw in front of tongue with a band of rasp-like teeth; no teeth on vomer; no gill-rakers.

Eye large, contained $2 \frac{1}{2}$ times in postorbital part of head : interorbital region with a rather broad and deep, scaly groove, widest anteriorly and extending backward to opposite middle of cheeks; behind this, the mid. dle part of the cranium is somewhat elevated and bounded by two longi.
tudinal ridges, which rise higher than the temporal ridges; this entire region nearly or quite destitute of scales [in T. exilis the middle of the top of the cravium is scarcely elevated and without longitudinal ridges, the whole region being more or less closely scaled; scales of frontal region extending little forward of base of premaxillaries (in T. exilis, extending for more than one-fourth the length of the premaxillaries.) Cheeks well scaled; scales on opercle very minute.

Scales not very small, green.
Dorsal tin beginning and ending behind anal, its origin above base of fifth anal ray; anterior rays of both fins produced; median and posterior rays equal, the latter not reaching nearly to base of candal ; anal lobe higher than dorsal lobe, its height four-fifths length of postorbital part of head. Veutrals small, extending about one-third the distance to origin of anal, their insertion midway between base of median caudal rays and middle of cheeks. Pectorals broad, as long as postorbital part of head, the upper ray broad. Caudal lunate, the lower lobe the longer; the middle rays not quite twice as long as eye.

Head $2 \frac{4}{6}$ in length; depth nearly 18. D. 1, 16; A. 1, 17 ; P. 13; Lat. l. ca. 250.

Color; green above; white below; a dusky dorsal stripe; a silvery lateral stripe; sides of head silvery; upper part of cheeks punctulate; body and fins without dark points; a blackish half-bar between cheeks and opercles; a blackish blotch above ese and one in front of nostrils. Fins olivaceous, all more or less dusky at tip. Posterior portion of pectorals abruptly black.

This species is abundant at Mazatlan, where it is one of the common market fishes. It reaches a length of about two feet, and it is known to the Mexican fishermen as "Sierrita."

It resembles its Californian representative, Tylosurus exilis, very closely, differing in several details, some of which are noticed above. The two species may be distinguished at sight by the color of the pectorals, which are, in T. exilis, plain olivaceous. The dorsal and aual lobes in the latter species are not dusky at tip.
2. Tylosurus fodiator, sp. nov. ( 28190,28323 .)

A species of large size, remarkable for the great strength of its jaws.
Body robust, subterete, as broad as deep; caudal peduncle slightly compressed, as deep or deeper than broad, the lateral line forming a low black cutaneons fold along its length.

Head very broad and strong, the cheeks nearly vertical. Interorbital space very broad, two thirds length of postorbital part of head. Middle of top of head with a broad, shallow, nearly scaleless, longitudinal groove; sides of top of head obliquely striated and rugose, forming a prominent ridge above the eye; distance between nostrils greater than usual, more than one sixth length of snout.

Jaws comparatively short, tapering, very stiff and not fragile; lower
jaw wider and longer than upper. Both jaws with broad bands of small rasp-like teeth, which extend as small roughnesses on the sides of the jaw; within these is a series of very large teeth, compressed and knife-shaped, much stronger than in most of the species of this genss. The length of one of these teeth is not more than three times its breadth; posterior tecth in both jaws directed backward, the anterior erect. Number of large teeth about ${ }_{20+20}^{30+30}$; length of large teeth about onesixth diameter of eve; no teeth on vomer. Teeth, scales, and probably bones, green. Gill-rakers obsolete.

Upper jaw, from eye, about half longer than rest of head. Eye large, $6 \frac{1}{2}$ in snout, 3 in postorbital part of head, and 2 in interorbital width. Only a narrow edge of the maxillary not covered by the preorbital. Cheeks closely scaled; opercles almost wholly naked. Scales extremely small.

Dorsal fin rather high in front, becoming low posteriorly, its longest rays two-fifths the length of its base, a little shorter than the postorbital part of the head. Caudal lunate, its lower lobe about one-thind longer than the upper, the middle rays half longer than eye. Anal falcate, low posteriorly, its longest rays about equal to postorbital part of head.

Ventral fins long, inserted midway between middle of candal base and middle of orbit, their length a little more than length of pectorals and equal to postorbitar part of head; upper ray of pectorals broad, sharp edged.

Head $3 \frac{2}{3}$ in length; depth 15. D. I, 19; A. I, 17; V. 6; P. 14; Lat. 1. about 440 .

Color green above, silvery below; fins somewhat dusky, except the anal, which is pale; cheeks and lower jaw silvery; middle line of hack darker.

This species is abundant in the harbor of Mazatlan, where it is known to the fishermen as "Aguja." It is seldom brought to the market, as it is not considered a good food-fish. Its strong jaws are dreaded by the fishermen, who say that it is able to thrust through the bottom of a boat. The largest specimen obtained by Mr. Gilbert (No. 28190) was 43 inches in length, and has served particularly as the type of the present descriptiou. A smaller specimen is numbered 28323.
3. Cynoscion xanthulum, sp. nov. (28109.)

Body moderately slender, compressed; head rather long, compressed and pointed; caudal peduncle rather slender. Eye large, 6 in head; a fourth less than interorbital width, which is slightly less than length of snout. Maxillary broad and truncate, its tip as wide as eye and reaching to just beyond its posterior margin; length of maxillary a little less than half length of head; month moderately oblique, the lower jar prominent; premaxillaries in frout, below level of lower edge of ere. Band of teeth in front of lower jaw narrow, becoming a single series
laterally; the outer series of tecth in the upper jaw and the lateral series of teeth in the lower jaw larger than the others; upper jaw with two series of small teeth behind the outer series, and with two canines (sometimes but one), which are smaller than is usual in this genus. Gill-rakers rather short and strong, as long as pupil. Pseudobranchiæ present.

Scales small; lateral line well arched in front, becoming straight opposite the vont. First dorsal high, the spines not very slender, the third spine a little less than half length of head, nearly equal to the fourth and not very much longer than the second; sott dorsal rather high, the longest rays 22 in length of head, not sealy, but with a distinet high basal sheath. Candal fin double concave, the middle rays considerably produced, their length about two-thirds that of head. Anal rather short and high, its longest ray two-thirds length of head, its spines small but rather stout. Ventrals a little more than half length of head, reaching about balf way to vent. Pectorals $1 \frac{1}{3}$ in head, not quite reaching tips of ventrals.

Head, $3 \frac{1}{3}$ in length; depth, $4 \frac{1}{3}$. D. IX-I, 20 ; A. II, 8 ; Lat. 1.81 (vertical rows of scales, the number of pores about 66); about 12 rows of scales between front of dorsal and lateral line.

Bluish above, silvery below, upper parts and more conspicuously the middle of sides, punctate with dark points; upper fins dark, their margins dusky; lining of opercle black; peritoneum white; inside of mouth bright yellow in life.

This species has many points in common with C. allum Gthr., but is readily distinguished by its much smaller scales (about 65 in C . album). It is very abundant at Mazatlan, where it is one of the most highly valued and most common food-fishes.

The type (28109) is 15 inches in length.
4. Cultus æquidens, sp. nov. (29268, 29240.)

Body elongate, depressed anteriorly, much slenderer than in C. fuscus, the head especially very broad and Hat, longer and more depressed than in C. fuscus. Mouth large, broad, very oblique, the maxillary reaching nearly or quite to opposite posterior margin of eye; lower jaw considerably projecting. Length of maxillary $2 f$ in length of head. Teeth in jaws all equal, in broad bands, the onter not at all enlarged. Eye small, anterior, its length in the adult, equal to half the width of inter. orbital space, which is nearly one-third the length of head; a conspicuous knob at npper anterior and posterior angles of orbit; preopercular spine (as in all species of the genus) well developed, strong, compressed, directed downwards and forwards.

Scales on head very small, mostly cycloid, covering cheeks and opercles, and upper part of head to the eyes. Scales on body smaller and smoother than in most other species of the gews, those on belly much smaller than those on sides; scales on back and belly cycloid, ouly those on the sides of the body being distinctly ctenoid.

Pectoral fins moderate, reaching to near end of base of first dorsal, 12 in head; ventrals inserted just behind axil, reaching half way to vent, and about half length of head. Interspace between dorsals abont equal to diameter of eye. Soft dorsal and anal short and high, very similar, coterminous; last ray of anal a little more than half length of head. Caudal peduncle long, a little shorter than head. Caudal fin rounded, $1 \frac{1}{5}$ in head.

Head $3 \frac{1}{2}$ in length to base of caudal ; greatest depth about 6.
D. VI-I, x ; A. I, 8; Lat. $1.60 ; 24$ scales in an oblique series from front of soft dorsal downward and backward to anal; about 20 in a vertical series.

Color, dark, dull, olivaceous brown, paler below; y ounger specimens mottled below with bluish and speckled with dark brown. Sides without longitudinal stripes. Fins dusky, all of them finely mottled and speckled with darker; the dark markings on dorsal and anal forming undulated longitudinal stripes; on pectorals and ventrals forming dark bars.

This species is known to us from three specimens, the longest abont a foot in length. They were obtained from near Mazatlan; according to fishermen from fresh-water at Presidio.

Culius aquidens apparently differs from other species of the group in the large mouth with small equal teeth, and in the small smoothish scales.

Calius belizanus, lately described by M. Sauvage* from Belize, is very similar, but has the teeth of the outer row enlarged.
5. Centropomus robalito, sp. nov. ( $28102,28132,28150,28310,28321,29562,2036$ 土 . $_{\text {. }}$

Allied to Centropomus armatus Gill; belonging to the division of the genus with large scales, and very large anal spine.

Body comparatively elongate, the back little elevated; profile from snout to base of dorsal more nearly straight than in most of the species; upper outline of head somewhat concave; nuchal region little gibbous. Mouth smaller than in C. armatus, the maxillary barely reaching the vertical line from the front of pupil (in C. armatus of the sime size reaching past front of pupil), the gape contained nearly 3 times in length of head; snout long, longer than in C. armatus, $3 \frac{1}{2}$ in head; eve moderate, a little more than half length of snout; preorbital with strong re trorse serræ. Top of head narrower than in C. armatus and more strongly ridged; the two interior ridges on the interorbital space sejarated by a space little wider than the nostril, coalescing opposite the nostrils and forming a single ridge for a little distance forward to near the base of the spines of the premaxillary. Preopercle with rather distant teeth of nearly equal size on the eutire length of its vertical margin; similar teeth on the horizontal part, growing larger backward; about two teeth at the angle much longer and stronger than the others

[^162]Suprascapula with five or six strong teeth. Opercular flap reaching about to front of spinous dorsal. Gill-rakers long, about two-thirds diameter of orbit.

Dorsal spines high and rather strong, but distinctly slenderer and more flexible than in C.armatus, their tips when depressed reaching considerably farther back than the tips of the pectorals or ventrals; third spine longest, a little less than half length of head; fourth spine but little shorter than third. Iusertion of first dorsal spine a trifle nearer last ray of second dorsal thau tip of snout. Second anal spine very long (slender and perfectly straight in two specimens, strong and carved in the others,) its tip about reaching base of caudal. It is much longer than third dorsal spine or than third anal spine, and is about $1 \frac{1}{2}$ in length of head. Third anal spine about equal to first soft ray. Caudal fin well forked. Ventral fins long, reaching in most cases scarcely to the vent. Pectorals about equalling ventrals, $1 \frac{2}{3}$ in length of head, not reaching tips of ventrals. Vent about midway between base of ventrals and middle of base of anal.

Scales large, those in front of dorsal not crowded, 10 to 14 in number ( 16 to 18 in C.armatus); 5 series between lateral line and front of spinons dorsal.

Head (with opercular flap) $2 \frac{9}{3}$ in length; depth $3 \frac{1}{2}$ ( $3 \frac{1}{4}$ in C. armatus). D. VIII-I, 10; A. III, 6; scales, 5-51-9.

Color olivaceons, white below; lateral line pale. Membrane of anterior dorsal spines and of second and third anal spines blackish, as in C.armatus; pectorals and soft parts of vertical fins somewhat dusky; ventrals plain yellowish.

This species is rather common at Mazatlan, where numerous specimens were obtained. It reaches a length of about a foot, and is known to the fishermen as "Constantino" or "Robalito", the larger species of the genus, C. undecimalis and C. nigrescens, being called "Robalo".

Two specimens, 29208 from Mazatlan, and 28245 taken by Lieutenant Nichols at Acapulco, differ from the others in the following respects: The anal snine is shorter, slenderer, and perfectly straight, and the veutoal fins are longer, reaching well past the vent, as in C. armatus.
-xmiana University, December 2, 1881.

# JOTES ON A COELECTION OF PISIEE MADE HY OAPTAIN RENRY E. NICROL, U. S. N., IV REITHER COLUMBIA AND BOUTBERN ALABKA, WITR DESCRIPTIONS OF NEW SPECIEA AND A NEW GENUS (Delolepis). 

## By TARLETON H. BEAN.

In the summer of 1881 Captain Nichols made a voyage in command of the United States Coast and Geodetic Survey steamer Hassler, through the inland waters of British Columbia and Southern Alaska, during which he preserved for the United States National Museum 31 species
of fishes, all of which were received in excellent condition. Although Captain Nichols made no special effort to obtain all the species occurring in the region traversed, he succeeded in making some very important additions to our knowledge of the fauna. Hippoglossoides Jordani, Psettichthys melanostictus, and Xiphister mucosus have not previously been known to occur north of P'aget Sound. Gymnacanthus guleatus was recorded with certainty ouly from Cualashka. Sebastodes paucispinis has had San Francisco as its northern limit. A new species of Gobius was obtained in Departure Bay, and a scaled genos of Cryptacanthide in Kingcombe lnlet, and at Wrangel. This goes to show what might be brought to light by a systematic search of the waters of Alaska.

It is due to Captain Nichols to say that no better-presersed lot of fishes has been received from any other collector.

1. Hippoglossus vulgaris Fleming. 29147 (120) juv. Sitka, Alaska, Sept. 13, 1881.
Length of specimen, $11 \frac{3}{3}$ inches. D. $103 ;$ A. 79 , the last ray in each of these fins is double. The usual plumpuess characteristic of Alaskan halibut is maintained.
2. Hippoglossoides Jordani Lockington.

29810 (90). Safety Cove, British Columbia, Aug. 4, 1881.
Length 14 inches. D. $99 ;$ A. 77 , the last four rays of each of these fins being split. Teeth of upper jaw iu two rows, the outer row haring stronger teeth. Lower jaw with one row of teeth.

Taken in 16 fathoms of water. Not previously known to occur north of Puget Sound.
3. Psettichthys melanostictus Girard.

〔980! (107). Wrangel, Alaska, Aug. 16, 1881.
Length $12 \frac{1}{2}$ inches. D. 81 ; A. 59. The first known instance of its capture in Alaska.
4. Limanda aspera (Pallas) Bean.

29146 (110). Wrangel, Alaska, Sept. 13, 1881.
A single example, $\boldsymbol{b}_{5}$ inches long. On the eyed side are namerons small black blotches, involving the dorsal, anal, and caudal as well as the body. This species has the lemon color on the posterior part of the blind side just as in L. ferruginea. I have again compared aspera with ferruginea, and find that they are sertainly congeneric.
5. Pollachius chalcogrammus (Pallas) Jordan \& Gilbert. 29126 ( $6^{\circ}$ ) . Hearl of Kingeombe Inlet, Brit. Col., Ang. 2, 1851. 29127 ( 8 \%). Head of Kingeombe Inlet, Brit. Col., Aug. 2, 1831. 29128 (104). Wrangrel, Naska, Aug. 17, 1881.

29126 is 10.7 inches long; 29127, $11 \frac{1}{5}$ inches; and 29128, $11 \frac{1}{6}$ inches. In these examples the eye is four-fifths as long as the snout. There are no traces of the jiseudo stripes characteristic of the adult fish.

The first of these was caught in 18 fathoms, nearly fresh water.
6. Gadus morrhua Linn.

29124 (80) juv. Drew's Harbor, Brit. Col. July 27, 1881.
29125 (114) juv. Kygani Straits, Alaska. Sept. 1, 1881.
No. 29124 is 9.7 inches long; No. 29125 measures 9 inches. There are 19 gill-rakers on the first branchial arch, the longest of them scarcely more than one-third as long as the eye. The tish are entirely free from external parasites.

No. 29124 was takeu in 12 fathoms.

## Delolepis, new genus, Cryptacanthida.

Body anguilliform, moderately compressed from the vent backward; provided with small, cycloid, imbricated scales.

Vent nearly median; a small ana! papilla.
Lateral line continuous, nearly straight, slightly above the middle of the body in front of the vent, median from vent backward; it consists of a series of open pores withont prominent raised tubes.

Head oblong, subquadrangular, shallow concave on the vertex, naked, with the muciferous channels well developed. Snout short, obtuse. Nostrils single, tubular, close behind the intermaxillars, in a horizontal line with the middle of the eye. Eyes small, encroaching on the dorsal outline, somewhat more prominent than in Cryptacanthodes, separated by a moderately wide interspace and surrounded by a series of shallow pits. Mouth wide, oblique, terminal, the lower jaw projecting beyond the upper.

Lips tlesby. Intermaxillars slightly protractile, with two rows of small conical teeth, re-enforced by a few larger ones at the symphysis behind the imer row. Mandibular teeth uniserial, larger than the intermaxillar, a few additional ones at the symphysis. Vomer and palate armed with a few moderately large teeth. Tongue smooth, adherent. A few shallow pits in the under surface of the mandible, continued in a series on the posterior borler of the preoperculum. Operculum unarmed.

Gill-openings wide, the membranes attached to a narrow isthmus, ex. tending backward beyond the pectoral base, and without a projecting Hap. Gills four, a wide slit behind the fourth; gill-rakers very short, obtuse, in moderate number. Psendobranchiæ.

Branchiostegal rays, 6.
Pectoral tins short, their bases almost vertically placed and entirely below the middle of the body.

Dorsal fin commencing over the upper angle of the gill-opening and Proc. Nat. Mıs. 81 - 30

Aug. 4, 1889.
continuous with the caudal, composed entirely of spines, of which a few anterior ones are weak.

Anal fin commencing a little in front of the middle of total length, composed of a couple of spines and a large number of split rays, continuous with the caudal.

Caudal fin moderately long, pointed.
Ventrals absent.
Abdominal viscera as in Cryptacanthodes. The stomach is a simple straight sac. The intestine is short (three-fourths of total length in the typical species). Pyloric cæca few, short, not greatly unequal in size.

Type, Delolepis virgatus Bean.
The close resemblance of Delolepis to Cryptacanthodes will be at once observed. The two are nearly identical in every other respect save the dermal structure. The muciferous channels are more developed in Cryptacanthodes, but the arrangement is similar. Delolepis is, therefore, established as a distinct genus mainly on the single character of developed scales, a character which I consider of sufficient importance in this small family to serve as a basis of subdivision.

## 7. Delolepis virgatus, new species.

Captain Nichols forwarded two fine specimens of the fish which is here described: one of them taken at the head of Kingcombe Inlet. British Columbia, in 18 fathoms of nearly fresh water, August 2,1880 (numbered 86 in the collector"s list and called "eel"); the other caught at Port Wrangel, Alaska, in the latter part of August, 1880 (numbered 111 in collector's list and called "eel"). These types are numbered 29149 and 29150 in the United States National Museum Fish Register. The smaller is 470 millimeters ( $18_{1 \frac{3}{0}}$ inches) and the larger 795 millimeters ( $311_{1^{3}}{ }^{3}$ inches) in length.

The body is eel-shaped, moderately compressed and tapering in its second half; its greatest height, which is about midway between pectoral and vent, contained 11 times in total length and equal to greatest width of head; greatest width of body slightly exceeds length of upper jaw. Beginning at a short distance behind the origin of the dorsal fin small, oblong, cyeloid scales, closely imbricated, cover a strip of the body along the region traversed by the lateral line; the scaled area gradually widens until, from the rent backward, the whole tail is covered except a rery narrow strip along the dorsal and anal fin bases.

The length of the head to end of operculum is contained from 6 to $6=$ times in total length; its width and depth are nearly equal. Width of interorbital area, measured on the bone, equals length of snout and onethird of length of lower jaw. The supramaxillary extends a little behind the eye; its length is contained 3 times in distance from snout to dorsal fin. The length of lower jaw is contained 122 times in total length. The eye is one-half as long as the snout and one-eleventh as long as the head. The nostrils are placed immediately behind the upper lip and as far apart as the limits of the interorbital space.

The dorsal fin begins at a distance from the snout equal to twice the greatest depth of head, or just over the upper angle of the gill-opening. The first spine is balf as long as the 71 st, which is the longest of all. The fin is continuous with the caudal.

The two anal spines are of uearly equal length, being about one-third as long as the longest anal ray. The distance of anal from snout is 3 times distance of pectoral from snout.

The caudal is developed but connate with dorsal and anal; its length is contained from 10 times to $12 \frac{1}{2}$ times in total length.

The distance of pectoral from snout is contained $6 \frac{1}{2}$ times in total length. The length of pectoral equals one-third length of head to upper angle of gill opening.

Body of the smaller type brownish yellow, top of head brown, lips and forehead dotted with dark brown, branchiostegal membrane and lower part of head whitish, a brown stripe along lateral line, another along the back nearer to dorsal fin than to lateral line, and a third indistinct one along anal base; vertical fins, with a dark margin, which becomes wider and involves almost the whole surface posteriorly; pectoral brownish, mingled with highter; caudal mostly dark. In the larger example the general color is violet brown, the dotting and stripes are almost black, the dark margins of the vertical fins are absent except posteriorly, and there is less whitish color on the lower parts.

## List of specimens.

29149 (86)-(type). Kingcombe Inlet, Brit. Col. Aug. 2, 1881. 29150 (111)-(type). • Wrangel, Alaska. Aug. 2, 1881.
The first was caught at the head of the inlet, in nearly fresh water, 18 fathoms.

MEASUREMENT8.
Species: Delolepis virgatue.


| Measurements-Continued. |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 100the of length. | Mild. meters. | 100tbe of leagth. |
| Dorsal (spinotes). |  |  |  |
| Distance from snout | 17 | 148 | 18. |
| Length of longest spine (71st) | 4 | 29 | 3. 4 |
| Length of lirst spine... | 218 | 16 |  |
| Length of last spine. | 3.83 | 0 | 214 |
| Anal. |  |  |  |
| Distance from snout | 48 | 348 | 48.53 |
| Lutugth of (trst spine | 1.7 | 13 | 1. ${ }^{5}$ |
| Length of gecond spine | 1. 91 | 18 |  |
| Length of tirst ray... | 3. 19 | 21 | 484 |
| Length of longest ray (45th) | 5.74 | 87 | 4.65 |
| Length of last ray | 4.5 | 31 | + |
| Caudal. |  |  |  |
| Leugth of middle rays | 10 | 64 | \% |
| Pectural. |  |  |  |
| Distance from snout | 15. 33 | 123 | 1578 |
| Leugth.... | 6 | 43 | 51 |
| Branchiostegala. |  | vi | ......... |
| Dorsal ........ |  | 1xx | .... |
| Aual.... |  | 11, 16 | .... |
| Pectoral .................... |  | 14 | -......... |
| Number of caecal appendagea |  |  | . .......... |
| Length of longest appendago |  |  | . ......... |
| Lengil of shurteat appendige. |  |  |  |
| Lougth of intestine |  | ..... | -... |

8. Lumpenus anguillaris (Pallas) Girard.

29801 (112). Wrangel, Alaska. Aug. -, 1881.
29801 (122). Sitka, Alaska. Sept. 13, 1881.
Length of first, 11 inches; of second exactly the same. Vomer with out trace of teeth.
9. Xiphister mucosus (Girard) Jordan.

29815 (113). Wrangel, Alaska Ang. -, 1881.
Two examples $7 \frac{1}{2}$ to 8 inches long. D. LXXVI; A. 49-50. In these specimens, which I have provisionally referred to mucosus, the occiput is equidistant from snout and dorsal; the anal origin is a little nearer the snout than the tip of caudal ; the dorsal spines and anal rays are as in $X$. rupestris ; the pectoral is as long as the eye. There is, consequently, a little difficulty in deciding what are the closest affinities of the examples here considered. A re-examination of all the Alaskan specimens of $X$. rupestris (so called in my preliminary catalogue, pnblished Dec. 24, 1881) reveals a similar intermingling of the characters of rupestris and mucosus to some extent.
10. Anoplarchus atropurpureus (Kittlitz) Gill.

30221 (96). Port MeLaughlin, Brit. Col. Aug. 6, 1881.
29814 (113). Wrangel, Alaska. Aug. -, 1881.
No. 30221, two specimens, found on the beach at low water. No. 29814 includes six individuals, of which the largest two were $4 \frac{1}{2}$ and $5 \frac{3}{5}$ inches long, respectively, with the following fin rays: smaller, D. 57, A. 40; larger, D. 5õ, A. 40.

I have examined many Alaskan specimens of Anoplarchus without finding one that has as many spines and anal rass as $\boldsymbol{A}$. alectrolophus (Pallas) Jor. \& Gilb.
11. Murænoides ornatus (Girard) Gill. 29813 (113). Wrangel, Alaska. Ang. -, 1881.
Ten individuals varying in length from $3 \frac{1}{5}$ to $7 \frac{1}{3}$ inches. The largest has the following radial formula ; D. 87 ; A. II, 38.
12. Gobius Nicholail, new species.

The type of the present description (catalogne number 29803, collector's number 78) was secured by Captain Nichols at Departure Bay, British Columbia, July 26, 1881. It was found at a depth of 20 fathoms.

The species is closely related to Coryphopterus glaucofrenum Gill but differs from this in (1) its radial formula, (2) relative proportions, and (3) coloration.

The extreme length of the single typical specimen is 112 millimeters (four and two-fifths inches).

The body is stout, compressed, its greatest height under the middle of the spinous dorsal contained 6 times in the extreme length given above. The least height of the tail is about equal to the greatest width of body. The length of caudal peduncle equals nearly one and one-half times its height.

Head scaleless, nape showing mere traces of undeveloped scales. The width of head exceeds its greatest depth and equals two-thirds of its length. The length of head is contained four and two-thirds times in extreme length. The eyes are separated by a narrow interspace equal to one half of their long diameter. The obtuse, declivous snout is about as long as the eye. Nostrils double, not tubular, close together near eye, in a line with pupil. The intermaxillaries are slightly protractile downward. The upper jaw extends to the vertical throngh the anterior edge of pupil; the mandible, to below middle of pupil. The eye is one-fourth as long as the head. On the vertex and nape there is an inconspicuous median fold of skin simulating a crest. The lower jaw protrudes very slightly. Teeth in the jaws slender, conical, slightly recurved, pluriserial, the outer scries somewhat enlarged; no canines. Gill-openings separated by a wide isthmus.

Distance of spinous dorsal from snout equals twice length of its base, and, also, twice height of body at rentrals. The tirst spine equals onehalf length of head. The second spine is one-half as long as base of second dorsal. The last spine is as long as lower jaw. The dorsals are separated by a rery small space, scarcely equal to that between the eyes. The last two rays of the soft dorsal are almost as long as head and more than twice as long as the first ray.

The vent is midway between end of snout and origin of middle caudal
rays. Anal papilla one-half as long as eye and equal to interorbital distance. The anal is similar to the soft dorsal in form and is apparently made up of rays only, the first of which is one-third as long as the last and the last but one. The last anal ray is five-sixths as long as head; it extends backward to a vertical through origin of middle caudal rays, while the last dorsal ray extends beyond this line. The anal ends slightly in advance of the end of soft dorsal.

Caudal convex behind (imperfect in the typical example), nearly as long as the head.

The middle pectoral rays are longest, about equal to length of head. None of the pectoral rays are free and silk-like.

The ventral originates immediately beneath the pectoral origin and does not reach to vent; its length equals greatest height of body (threefourths length of head).

Br. v; D. VI, $13 \frac{1}{2}$; A. $11 \frac{1}{4}$; C. 13 (developed) ; P. 20 ; v. i, 5 ; L. lat. 26 ; L. trans. 10.

Colors.-Top of spinous dorsal black. Second dorsal and caudal spotted with dark color. Anal with some traces of dark color on its first half. Ventrals black. Body and tail olivaceous, a broad dusky margin on all the scales. Head colored like body but cheeks dusky and traces of purplish on side of snout.

Dedicated to Capt. Henry E. Nichols, U. S. N.
MEASUREMENTS.
Speciea: Gobius Nicholrit.


## Measurements-Continued.

|  | Millimetera. |
| :---: | :---: |
| Anal: |  |
| Diatance from snout | 81 |
| Length of bane. | 19 |
| Diatance of vent from anout | 49 |
| Length of Erat ray. | 7 |
| Lengith of lougeat ray (11th) | 21 |
| Length of last ray. | 20 |
| Caudal: |  |
| Length of middle mays Pectoral: | About 22 |
| Distance from anout | 28 |
| Length. | 28 |
| Ventral: |  |
| Distance from anout | 26 |
| Leugth ...... | 10 |
| Brauchioetegals.. | V |
| Dorsal ....... | V1, 13t |
| Anal | 12 |
| Caudal | +13+ |
| Pectoral | 20 |
| Ventral | 1.5 |
| Number of noalen in lateral line | 26 |
| Number of transverse rows above | 10 |

13. Cottus polyacanthocephalus Pallas.

29139 (84). Head of Kingcombe Inlet, Brit. Col. Ang. 2, 1881. 29140 (94). Port McLanghlin, Brit. Col. Aug. 5, 1881.
29141 (98). Port Simpson, Brit. Col. Ang. -, 1881.
29142 (106.) Wrangel, Alaska. Aug.-, 1881.
29139.-Length $4 \frac{3}{10}$ inches. D. X, 13; A. 12 ; found in 18 fathoms, nearly fresh water.
29140.-Length $12 \frac{3}{10}$ inches. D. X, 14 ; A. 12 ; in 14 fathoms of water.
29141.-Length 124 inches. D. X, 14 ; A. 11 ; in 14 fathoms. The midalle preopercular spine of the right side is distinctly bifid, as a result, no doubt, of some early injury. This species sometimes has two, but usually three, developed preopercular spines.
29142.-Length 6 inches. D. IX, 14 ; A. 12.
14. Gymnacanthus galeatus Bean.

29144 (102) 8. Chacan, Alaska. Aug. 15, 1881.
29145 (116). Sitka, Alaska. Sept. 13, 1881.
The first of these is $8 \frac{1}{10}$ inches long and bears out the characters of the species fully as to armature of head, depth of body about half length of head, \&c. D. XI, 16; A. 18. Ventral reaches to third anal ray. From 10 fathoms of water.

The smaller individual is $4 \frac{9}{10}$ inches long, and also has the characters of the adult.
15. Artedius notospilotus Girard.

29143 (80). Drew's Harbor, Brit. Col. July 27, 1881.
Length 5 inches. D. IX, 17; A. 13; V.I, 3. Caught in 12 fathoms.
16. Hemilepidotus trachurus (Pallas) Günther.

29138 (117). Sitka, Alaska. Sept. 13, 1881.
A single example 12 inches long. D. III + VIII, 18t; V. I, 4. Four rows of scales in dorsal band.
17. Oligocottus maculosus Girard.

29816 (113). Wrangel, Alaska. Aug. -, 1881.
There are two examples, the larger measuring $3 \frac{1}{10}$ inches, the smaller 27 $\frac{7}{10}$ inches. The fin rays of both are alike: D. VIII, 17; A. 13. The first dorsal is only two-thirds as high as the second. The preopercular spine is bifid, with hooks incurved.
18. Sebastichthys maliger Jordan \& Gilbert.

29130 (93). Port McLaughlin, Brit. Col. Aug. 5, 1881.
A large example 15 inches long and 5 inches deep. D. XII, I, 13; A. III, 7. The abdominal cavity is well supplied with tape-worm-like entozoa. The fifth dorsal spine has been broken off, so that it is little longer than the second, yet it has acquired a remarkably sharp point. This specimen is very much like an overgrown caurinus, yet it has the characters ascribed to maliger. Caught in 14 fathoms of water.
19. Sebastichthys caurinus (Rich.) Jordan \& Gilbert.

29807 (77) (juv.). Departure Bay, Brit. Col. July 26, 1881.
29806 (124) (juv.). Rose Harbor, Queen Charlotte Island. Sept. 18, 1881.
29808 (103) (juv.). Chacan, Alaska. Aug. 16, 1881.
The smallest (No. 29808) is probably young melanops; it is $4 \frac{1}{10}$ inches long and has the following fin rays: D. XII, I, 15; A. III, 8. These individuals measure $4 \frac{4}{5}, 6 \frac{1}{2}$, and $6 \frac{7}{10}$ inches respectively; their fin rass are: D. XII, I, 12, A. III, 6; D. XII, I, 13, A. III, 6; D. XII, I, 13, A. III, 7. Number 29807 includes 2 specimens taken in 20 fathoms.
20. Sebastichthys ruber (Ayres) Lockington.

29129 (115). Kygani Strait, Alaska. Sept. 1, 1881.
Iength of the single specimen, 19 inches. D. XII, I, 16; A. III, 8. The mandibular knob projects $\frac{s}{10}$ of an inch forward. The longest gill. rakers are nearly one inch long, equal to the distance between the anterior pair of nostrils. There are 36 rakers on the first arch, some of them distinctly club-shaped.
21. Bebastodes paucispinin (Ayres) Gill.

29131 (95). Port MeLaughlin, Brit. Col. Aug. 6, 1881.
Length 143 inches. D. XIII, I, 14; A. III, 7; V. I, 5. Canght in 14 fathoms of water.
22. Hexagrammus asper Steller.

29133 (97). Near Port Simpson, Brit. Col. Aug., 1881.
Length of specimen, 10 inches. The uppermost lateral line extends to the 17 th dorsal spine. D. XXIII, 21; A. 24.

Captain Nichols catalogues this as from a fresh-water lake near Port Simpson.
23. Hexagrammus superciliosus (Pallas) Jordan \& Gilbert.

29132 (125). Rose Harbor, Queen Charlotte Island. Sept. 18, 1881.
Length of specimen, $12 \frac{1}{2}$ inches. A brilliantly colored individual, with black, white, crimson, and brown finely contrasted. Scales decidedly ctenoid (!) except on head and pectoral bases.
24. Hexagrammus decagrammus (Pallus) Jordan \& Gilbert.

29134 (118). Sitka, Alaska. Sept. 13, 1881.
29135 (126). Nootka Sound, Vancouver Island. Sept. 13, 1881.
29136 (127). Nootka Sound, Vancouver Island. Sept. 13, 1881.
29137 (129). Nootka Sound, Vancouver Island. Sept. 13, 1881.
29134 * 13 inches long; 29135 子 $11 \frac{1}{5}$ inches long; 29136 \& 9 inches long; 29137 \& 124 inches long. The last three were caught in Friendly Cove.
25. Anoplopoma fimbria (Pallas) Gill.

2917 (99). Port Simpson, Brit. Col. Aug. -, 1881.
29118 (83). Head of Kingcombe Inlet, Brit. Col. Aug. 2, 1881. 29119 (105). Wrangel, Alaska. Aug. 17, 1881.
2911 is 142 inches long; 1 D. 19 ; 2 D. 17; A. 18; top of second dorsal and tips of candal white. Caught in 14 fathoms of water.

29118 measures $13 \ddagger$ inches; 1 D. 19; 2 D. 19; A. 19; 18 fathoms, nearly fresh water. 29119 is 17 inches long; 1 D. 21; 2 D. 17; A. 18.
26. Damalichthys argyrosomus (Girard) Jordan \& Gilbert. 29811 (128). Friendly Core, Nootka Sound, Vancouver Island. 1881.
Fourteen inches long; D. X, 22; A. 29; L. lat., 66; L.transverse, $7+17$.
27. Mallotus villosus (Muller) Cuv.

29812 (123). Sitka, Alaska. Sept. 13, 1881.
There are 12 specimens of this species ranging from abont 4 inches to 4t inches in length. Une individual examined had: D. 14; A. 24; V . 8; P. 18.

## 28. Salvelinus malma (Walb.) Jordan \& Gilbert.

29148 (100). Near Port Simpson, Brit. Col. Ang. -, 1881.
A very plump specimen, one foot in length, taken from a fresh-water lake near Port Simpson. No external parasites are present.
29. Chimæra Colliei Bennett.

29123 (91). 8. Safety Cove, Brit. Col. Aug. 4, 1881.
Length, 19 inches.
30. Raia binoculata Girard.

29805 (92). (Head.) Safety Cove, Brit. Col. Aug. 4, 1881. 29804 (108). (Head.) Wrangel, Alaska. Aug. -, 1881.
Teeth of tirst, $\frac{44}{48}$; of second, $\frac{47}{45}$. The second is a much larger individual than the first. The first was caught in 16 fathoms.
31. Squalus acanthias Linn.

29121 (79). 8. Drew's Harbor, Brit. Col. July 27, 1881. 29122 (81). ठ'. Menzie's Bay, Brit. Col. Jaly 31, 1881. 29120 (101). \&. Red Bay, Alaska. Aug. 14, 1881.
Length of 29121 is $2 \frac{2}{2}$ feet. No. 29122 is $21 \frac{1}{2}$ inches long. 29120 is 29 inches long. The snout of the female is more obtuse than in the two males. All of these specimens have a low keel along the lower margin of the caudal peduncle from the end of the second dorsal to the root of the caudal, just as in Atlantic specimens.

These three dogfish were caught in 12,5 , and 12 fathoms, respectively.
United States National Museum, January 31, 1882.

## 

## BI FREDERICK W. TRUE.

At the time when Dr. Elliott Coues published his valuable monograph of the Saccomyide* the United States National Museum possessed but four specimens of the species Cricetodipus parrus Baird-two of them in bad condition-including the single type-specimen of Professor Baird. On account of this scarcity of material he was forced to speak very cautiously regarding the animal, leaving it uncertain whether it was a distinct species or merely a varety of C. flarus Baird.

In an interesting collection of rodents in alcohol, recently received into the Museum from Mr. Gustav Eisen, of Fresno, Cal., I found nine additional specimens of this doubtful species, seven of which are in perfect condition. A careful examination of these has convinced me that $C$. parrus is a distinct species. The averages at the bottom of the follow. ing table of measurements, compared with those given by Dr. Cones for C. flavus, $\dagger$ bring out, I think, very clearly the characteristic differences of the two species.

[^163]Actual measurements in inches of six specimens of Cricetodipus partus (Baird) Conet.

| E | Locality. | Distance from tip of nose to- |  |  |  |  | $\begin{aligned} & \text { o } \\ & \text { = } 8 \\ & \text { a } \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${\underset{U}{5}}_{5}^{E} \vec{g}$ |  | Eye, Mar. | Ocriput | Bane of tasl. |  |  |  |
| 13101 | Fresno, Col | . 80.80 | 1. 10 | 2. 30 | 2.80 | . 30 | 83 |
| 13394 | do | . 43.70 | 1. 00 | 2.40 | 2. (4) | .30 | . 72 |
| 13396 | . do | . 50 . 70 | 1. 00 | 2. 10 | 2. T11 | - 30 | . 75 |
| $13: 197$ | . do | .30 . 75 | 1. 05 | 2.10 | 2.60 | . 31 | . 70 |
| 13396 | ....do | .45:.70 | 1. 10 | 2.20 | 2.75 | .30 | . 75 |
| 13399 | .... do | .45 , . 70 | 1. 00 | 2.15 | 250 | . 30 | . 70 |
|  | Average | 0.4750 .725 | 1.03 | 2.24 | 2.68 | 0.302 | 0. 724 |
|  | Average given by Dr. Coues for eighteen specimens of C. رavus | 0.42:0.74 | 0.00 | 207 | 2.06 | 0.30 | 0.63 |

If this table be examined, it will be perceived that in C. parrus (1) the head is longer by one-tenth inch than in C. favus, and that (2) the eye is decidedly nearer the ear in the former species than in the latter. Furthermore, it appears that in C. parrus (3) the tail is always longer than the head and body, averaging about half an inch more; and that (4) the lensth of the hind-foot approximates closely to one-third that of the head and body, sometimes exceeding one-third. The hind-foot of $C$. parcus it will be observed does not average quite as much as Dr. Cones was led to suppose; nevertheless, it is longer than in C. flarus.

There is another character, which, unless I am very much deceived, will make it an easy matter to distinguish the two species from each other; I refer to the colors of the hair. In parting the hair of a specimen of C. flacus, along the center of the dorsal surface, from near the tip of the nose to the base of the tail, it will be seen, as Professor Baird has already observed,* that the basal portion of the hair, nearly two-thirds, is everywhere of a clear lead-color, a porion above, not as wide, buff, and the tip dusky. In C. parrus a decidedly different distribution obtains. The majority of the hairs of the top of the head are light buff from immediately below the tip almost or quite to the base; a smaller proportion are dusky throughout, darkest at the tip. On the neck the plumbeous color is diseernible at the base of the hairs, but does not occupy more than about one-half of the total length. Pos. teriorly the proportion of lead color diminishes rapidls, so that about the base of the tail it is barely perceptible, or may be said to have dis. appeared entirely. The tatil is distinctly bicolor. The hair of c. parrus is coarser than that of the Yellow locketmonse, more inclined to be hispinl, and shorter, measuring searcely more than one-quarter of an inch at the middle of the back. In general color but little difference is observable between the two species, but when the hair is disamanged the former species appears more strongly finsons than $C$. flarus, on account of the lack of lead-color at the base of the hairs.

* Baird. Mammals, Pacific R. R. Survey, viii, 1857, I. 424.


## APPENDIX.

Digitized by Google

## SMITHSONIAN INSTITUTION.

# UNITEDETATESNATIONALMUEEUM. 

No. 1.

## PLAN OF OBGANIEATION AND BEGULATION解

## Washington, October 1, 1881.

Sir: In compliance with your request, I have prepared a code of regulations for use in the National Musenm, which I herewith submit to you for your criticism.

They are in large part merely formulations of the unwritten laws and usages which have guided the officers of the Museum in past years, and which have now become so numerous and complicated that it has seemed necessary to reduce them to some tangible form.

To the code of rules has been prefixed a brief statement of the scope and aims of the Museum, as already defined by yourself in the reports of the Smithsonian Institution and elsewhere.

I am, sir, yours very respectfully,

> G. BROWN GOODE, Assistant Direotor.

Prof. Spencer F. Baird,
Director National Museum.
[General Order No. 3.]
United States National Museum, Washington, October 15, 1881.
The accompanying code is adopted for the government of the National Museum, and for the regulation of the operations of its officers and employees.

All the provisions of former general orders are hereby annulled, and the provisious of the present code will hold in force uuless they are expressly changed by future general orders.

Ofteces and employees are requested to become faroiliar with its provisions, and to aid in carrying them out.

SPENCER F. BAIRD,
Director U. S. National Museum.

# ORGANIZATION AND ADMINISTRATION <br> os the <br> UNITED STATES NATIONAL MUSEUM. 

Jandary 1, 1882.

## ANALYSIS.

Page
Foundation and Scope ..... 5
Function and Aims ..... 7
Classification of the Departments ..... 9
Classification of Officers and Employés ..... 10
Duties of Opficers ..... 11
Buildings and Apartments (Nomenclature and Classification) ..... 14
Division of Administration: ..... 18
DEPARTMENT OF DIRECTOR.
Installation ..... 18
Furniture ..... 18
Apartmenta and Keys ..... 18
Catalogues ..... 19
Labels ..... 20
Plans for Installation and Arrangement ..... 20
Use of material for investigation ..... 21
Complaints ..... 22
Passes and Permits ..... 22
Correspondence ..... 22
Conferences and Communications ..... 23
General Rules ..... 25
Routine of Administration ..... 25
DEPARTMENT OF REGISTRY AND ETORAGR.
Reception and Record-Routine ..... 26
Registry ..... 27
Sorting and Diatribution ..... 27
Announcement and Acknowledgment ..... 28
Packing and Shipment ..... 29
Depositories and Storage Rooms ..... 31
DEPARTMENT OF ARCHIVES.
Classification and Administration of Archives ..... 32
Proc. Nat. Mus. $81-31$ (481) ..... 3

## DEPARTMENT OF LIBRARY.

Objects and scope of Library ..... 37
Central and Sectional Libraries ..... 37
Entries of Books ..... 37
Limitations to use of Library ..... 37
Regulations of Sectional Libraries ..... 38
Duties of Librarian ..... 3
DEPARTMENT OF PUBLICATIONB.
Description and Administration of Collections ..... 38
List of Accessions ..... 39
Publication Storage ..... 39
DEPABTMENT OF DUPLICATES AND EXCEANGES.
Application for Duplicates and their Distribution ..... 40
DEPARTMENT OF BUPPLIEG.
Isane of Orders ..... 40
Purchase of Supplies ..... 40
Storage of Supplies. ..... 40
Requisitions for Supplies and Laborers ..... 40
Property Record ..... 41
Inventory ..... 42
Disposal of Condemned Property ..... 42
Jars and Bottles ..... 42
Alcohol and Preservatives ..... 42
Exhibition Cases. ..... 43
Blanks. ..... 43
DEPARTMENT OF ACCOUNTS.
Preparation of Vouchers, and Disbursements ..... 44
Certification and Approval ..... 4
Instructions for making out Accounts ..... 4
DEPARTMENT OF BUILDINGS AND LABOR.
Duties of Employes ..... 45
Hours of work ..... 48
Opening and closing of Museum ..... 48
General Rules ..... 49
Access to building after office hours ..... 49
Removal of Property ..... 49
Approvals ..... 49
DRPARTMENT OF ELECTRIC ARRVICE.
Apparatus and duties of workmen ..... 50
DEPARTMENT OF PREPARATION.
Duties of Preparators ..... 51
Appointments and Leaves of Absence, \&c ..... 51

## ORGANIZATION OF THE U. S. NATIONAL MUSEUM.

## FOUNDATION AND SCOPE.

## I.

The National Museum was organized in 1846 by the act of Congress transferring to the Smithsonian Institution the custody of the "National Cabinet of Curiosities," at that time deposited in the PatentOffice Building.* These collections were, in 1857, placed in the Smithsonian building, the Regents of the Institution having accepted the trust on condition that the necessary appropriations for their maintenance should be continued by Congress.

## II.

The act above referred to provides that "all objects of art and of foreign and curious research, and all objects of natural history, plants, and geological and mineralogical specimens belonging or hereafter to belong to the United States, which may be in the city of Washington," shall be delivered to the Regents of the Smithsonian Institution, and, together with new specimens obtained by exchange, donation, or otherwise, shall be so arranged and classified as best to facilitate their examination and study. $\dagger$

The National Museum is the authorized place of deposit for all objects of natural history, mineralogy, geology, archeology, ethnology, \&c., belonging to the United States or collected by the Coast and Interior Survey, the Geological Surver, or by any other parties for the Government of the United States, when no longer needed for investigations in progress. $\ddagger$

## III.

The ESTABLISHMENT of the Smithsonian Institution, to which, in addition to the carrying out of the other requirements of the bequest of Smithson, is entrusted the control of the National Museum, is composed

[^164]of the President of the Cnited States and his Cabinet, the Commissioner of Patents, and a BOARD OF REGENTS, which has for its members the Vice President and Chief Justice of the United States, three members of the Senate, three members of the House of Representatives, and six other persons, not members of Congress, two of whom are residents of the city of Washington.*
IV.

The management of the National Museam is entrusted to the Secretary of the Smithsonian Institution, who is, ex officio, its director. He is aided by a staff of assistants, who are chosen by him, and for whose action he is responsible to the Regents.
V.

The operations of the Museum are carried on by means of an appropriation annually made by Congress "for the care and preservation of the collections."

> VI.

The collections are stored and exhibited in the building erected for the use of the Smithsonian Institution between 1847 and 1857, and in the new building, just finished, known as the ${ }^{4}$ National Museam."

## VII.

The Masenm is made up, in large part, of the following materials:

1. The natural-history and anthropological collections accumulated since 1850 by the efforts of the officers and correspondents of the Smithsonian Iustitution.
2. The collections of the Wilkes Exploring Expedition, the Perry Expedition to Japan, and other naval expeditions.
3. The collections of the scientific officers of the Pacific Railroad Survey, the Mexican Boundary Survey, and of the surveys carried on by the Engineer Corps of the Army.
4. The collections of the United States Geological Survers under the direction of United States Geologists Hayden, King, and Powell.
5. The collections of the United States Fish Commission.
6. The gifts by foreign governments to the Museum or to the President and other public officers of the United States, who are forbidden by law to receive them personally.
7. The collections made by the United States to illustrate the animal and mineral resources, the fisheries, and the ethnology of the native races of the country, on the occasion of the International Exhibitiou at Philadelphia in 1876, and the fishery collections displayed by the Uuited States in the International Fishery Exhibition at Berlin in 1880.
8. The collections given by the governments of the several foreign

[^165]nations, thirty in number, which participated in the exhibition at Philadelphia.
9. The industrial collections given by numerous manufacturing and commercial houses of Europe and America, at the time of the Philadelphia Exhibition and subsequently.
10. The material received, in exchange for duplicate specimens, from the museums of Europe, Asia, and Australasia, and from numerous institutions and collectors in North and South America.

## VIII.

As necessary adjuncts to the work of the Museum, a working library, a chemical laboratory, a photographic establishment, a workshop for taxidermy, modeling, and the preparation of skeletons, and several smaller workshops are carried on as a part of the general work of administration.

## LX.

The scientific results of the labors of the officers of the Museum, and of investigations upon the collections belonging to it, are to be found for the most part in the following works:
Bulletin of the United States National Museum; the Proceedings of the United States National Museum; the Reports of the Smithsonian Institution; the Smithsonian Miscellaneous Collections; the Smithsonian Contributions to Knowledge; the Reports of the Bureau of Ethnology of the Smithsonian Institution; and in the Reports of the United States Commissioner of Fisheries; and the Bulletin of the United States Fish Commission; also occasionally in other scientific reports of other scientific departments of the government.

## FUNCTION AND AIMS OF THE MUSEUM.

## X.

The collections in the National Museum are intended to exhibit the natural and industrial resources, primarily of the United States, and secondarily of those of the remainder of the world, for purposes of comparison.

## XI.

The activity of the Museum is exerted in three directions:
(a) The permanent preservation of objects already in its possession.
(b) The acquisition of new material.
(c) The utilization of material already in its possession, by its exhibition in the most instructive manner, and by the prosecution of and publication of scientific researches for which it forms the basis; by the distribution of properly-labeled duplicates of materials to colleges and other educational institutions.

The preservation of material is accomplished by means of the vigilance of the curators and the skill of the preparators.

## XII.

New material is acquired (a) in accordance with law, from the varions government surveys and expeditions; (b) by gift from individuals, from other institutions, and from foreign governments; (c) by exchange for its duplicate specimens or publications; ( $d$ ) by the efforts of officers of the Museum, who make collections in counection with their regular duties, or are detailed for special service of this nature; (e) by purchase, when appropriations are made by Congress for that purpose.

## XIII.

The treasures in the custody of the Museum are atilized to the world by exhibiting them to the public, and by encouraging investigations on the part of the officers of the Museum and other suitable persons, and facilitating the publication of the results; also by the distribution to other museums and educational institutions of duplicate specimens, which have formed the basis of scientific investigation, these being identified and labeled by the best authorities.

## XIV.

The Museum by these means fulcills a threefold function:

1. It is a Museum of Record, in which are preserved the material foundations of an enormous amount of scientific knowledge-the types of numerous past investigations. This is especially the case with those materials which have served as a foundation for the reports upon the resources of the United States. Types of incestigations made outside of the Museum are also incorporated.
2. It is a Museum of Research, by reason of the policy which aims to make its contents serve as fully as possible as a stimulus to and a foundation for the studies of scientific investigators. Research is necessary in order to identify and group the objects in the most philosophical and instructive relations. Its officers are selected for their ability as investigators, as well as for their trustworthiness and abilities as custodians, and its treasures are open to the use of any honest student.
3. It is an Educational Museum of the broadest trpe, by reason of its policy of illustrating by specimens every kind of natural object and every manifestation of human thought and activity, by displaying descriptive labels adapted to the popular mind, and by its policy of distributing its publications and its named series of duplicates.

## CLASSIFICATION OF THE DEPARTMENTS.

## XV.

The following classification of the collections has been previsionally adopted:*
Division of Anthropology.
Department I.-Art and Industry.
Department II.-Races of men.
Department III.-Antiquities.
Division of Zoology.
Department IV.-Mawmals.
Department V.-Birds.
Department VI.-Reptiles and Batrachians.
Department VII.-Fishes.
Department VIII.-Mollusks.
Department IX.-Insects.
Department X.-Crustaceans.
Department XI.-Worms.
Department XII.-Raliates and Protozoans.
Department XIII.-Invertebrate Fossils.
Division of Botany.
Department XIV.-Recent Plants.
Department XV.-Fossil Plants.
Division of Geology.
Department XVI.-Physical Geology.
Department XVII.-Minerals and Rocks.
Department XVIII.-Metallargy and Economic Geology.
Division of Exploration and Experiment.
Department XIX.-Exploration and Field work.
Department XX.-Chemistry.
Department XXI.-Experimental Physiology.
Department XXII.-Vivaria.
To these divisions is added a sixth, the
Division of Administration.
Department A.-Direction.
(Supervision of routine work ; Installation and labeling; Apartments and keys; Cases and furniture ; Supplies; Offers, bids, and contracts; Certification of accounts; Requisitions and complaints; Assignments of work-leaves of absence; General correspondence and circulars; Supervision of other departments in division of administration; Reports.)

[^166]Department B.-Registry and Storage.
(Registry; Reception and assignment ; Packing and unpacking; Shipment; Storage; Catalogues, blanks, and labels; Acknowledgments; Transportation.)
Department C.-Archives.
(Records and Registers; Files.)
Department D.-Library.
Department E.-Publication.
Department F.-Duplicates and Exchanges.
(Preparation of duplicates for distribution; Distribution of daplicates; Applications and proposals for exchanges.)
Department G.-Property and Supplies.
(Purchase; Registry; Storage; Requisitions and issue; Samples and price-lists.
Department II.-Accounts.
(Estimates; Contracts and orders; Audit; Disbursement.)
Department I.-Buildings and Labor.
(Police and inspection; Mechanics and labor; Heating and lighting; Construction and repairs; Cleaning; Public comfort.)
Department K.-Electric Service.
(Telephone service; Time service; Burglar alarm serrice; Watch-clock service.)
Department L.-Preparation.
(Taxidermy; Modeling; Skeleton preparation; Mounting and attaching labels; Lapidaries' work; Stone-cutting work; Draughting; Photographing; Painting; Poisoning and applying preservators.)

CLASSIFICATION OF OFFICERS AND EMPLOYEES.
The officers and employees of the Museum are graded and designated as follows:

| Grade. | Title. | Mootaly solary. |
| :---: | :---: | :---: |
| I. | Dimetar |  |
| II. | Asmistant Directar |  |
| III, | Cisatora |  |
| 17. | Asuintint Corators |  |
| V. | I'repuraters (ithe clase) |  |
|  | Propaunter (6th rlase) |  |
|  | Merchauie f9th clasm) |  |
| VL | Asaintiant (fost clann) |  |
|  | Preparater (Sth class) |  |
|  | Abl (eth clase) |  |
|  | Murlhinte (Sth clasie) |  |
| VII | Ainl rith clasut ..... |  |
|  | Proparator t4th clans) |  |
|  | Clerk ith h clawes |  |
| VIII | Stowhativ 17th clasas |  |
| VIII | Abl (6ith clanal Preparatior (ad clabu) |  |
|  | ('loik latli clana) |  |
|  | Mrectantic etith rlas3) |  |
| IX. | Aitl (5il) clusa) .. |  |

Classification of officers and employb-Continued.

| Graile | Title. | $\begin{aligned} & \text { Monthly } \\ & \text { valary. } \end{aligned}$ |
| :---: | :---: | :---: |
| IX. | Preparator (2d class) |  |
|  | Clerk (th class). |  |
| $x$. | Merhanic (6th clase) |  |
|  | ${ }_{\text {Preparator (lat class) }}$ |  |
|  | Clerk (3d clasa) .... |  |
|  | Mechanie (3th clase) |  |
| $X$ X. | Aid (3d class) |  |
|  |  |  |
|  | Meebanic (3th class) |  |
| XII. | Aid (tal class) |  |
|  | Clerk (lat chass). |  |
|  | Muechanic (thr class) |  |
| XIII. | Aiol (1st clasar |  |
|  | Coplist (6t 4 class). |  |
|  | Mectanies (3d claan). Watchman (3) clase) |  |
| XIV. | Copyist (5th clase) |  |
|  | Mechanic (2l class) |  |
|  | Watchman (2d clase) |  |
|  | Firenuan (2d class). |  |
| XV. | Moinaic (lat clasa). |  |
|  | Wateliman (1at clase) |  |
|  | Firemin (lat class). | - |
|  | Latworer (isl class). |  |
| XVI. | Cupyist (ad class). |  |
|  | Attenlant (2d class) |  |
|  | Clemuer (2al class) .. |  |
| IV14. | ( ${ }^{\text {apyiat (2d class) }}$ |  |
|  | Mesme.tiger (4th clues) |  |
|  | Inioorer (1st class) |  |
|  | Aitendint (1at class) |  |
| xvirl. | Copurist (1st class). |  |
|  |  |  |
| $\begin{gathered} \text { XIX. } \\ \text { XX: } \end{gathered}$ | M-wswnger (20] clame) |  |
|  | Mrssenger (1at clauss) |  |

The grading of special officers of the Museum not mentioned by title in the foregoing lists is for the present adjusted as follows:
> IV. Modeler (7th class preparator).
> V. Chemist (2d clasa asaiatant). Registrar (2d class assiatant).
> Artiat (6th clans preparator).
> Superintendent of Buildings (2d class asaistant).
> Engineer (0th clases mechanic).
> VIII. Electrician (eth claan merhanic).
> X. Taxidermint (lst clas preparator).

## DUTIES OF OFPICERS.

## XVII.

Assistant Director.-The Assistant Director will have entire cbarge of everything connected with the general administration of the establishment. All requisitions for materials and supplies will be made upon him and furnished only on his approval, or in his absence upon that of the Chief Clerk of the Smithsonian Institution.

All details connected with the general administration and the routine of the Museum, the assignment of space, the construction of cases, and the recording, labeling, and installation of specimens will be in charge (489)
of the Assistant Director. He will also employ, or assign, laborers and assistants so as best to facilitate the operations of the Museum, and will co-operate with the Chief Clerk of the Smithsonian Institation in all matters in which the general interests of the establishment are concerned.

## XVIII.

Curators.-The Curators and Acting Curators will be held responsible for the preservation and proper use of all objects belonging to the departments under their charge. They will direct the labors of such assistants as may be assigned to them. They will receive and make entry of specimens sent them by the registrar and make the necessary reports on the accession cards upon their names and nature for use in the preparation of the "list of accessions." They will keep the collec. tions under their charge conveniently and accessibly arranged either in the exhibition halls or in the laboratories belonging to their respective departments and will aid investigators in gaining access to specimens which they may desire to consult. They will conduct such correspondence as may be assigned to them, in accordance with the regulations laid down in the section of this document relating to correspondence.
XIX.

Reports of Curators.-Curators and Acting Curators will make monthly reports to the Director of the Museum of the work done in their respective departments, designating its general character, the number of spec. imens entered or catalogued, and such details as may be necessary to furnish a current history of the operations of the Museam.

## XX.

Assistants-Assistant Curators, Assistants, and Aids (abore grade X) may be assigned to duty as "acting curators" of departments, in which case they are subject to curators' rules. Otherwise they will be detailed to special duty as assistants to curators or to service in the Division of Administration.

> XXI.

Clerks, Copyists, and Messengers.-Clerks, Copyists, and Messengers will be detailed to work under the direction of the chief of some department.

## XXII.

Artists and Preparators.-Artists and Preparators, when not otherwise assigned, will report for instructions to the Assistant Director.

> XXIII.

Mechanics, Laborers, Attendants, and Cleaners.-Mechanics, and Laborers, Attendants, Cleaners, \&c., when not otherwise assigned, will report for iustructions to the Superintendent of Buildings.

The duties of special officers will be explained in the regulations of the special departments.


Plan of the National Museum, Washington, D.C.
(491)

## BULLDINGS AND APARTUENTS.

## XXIV.

The buildings occupied by the National Museum are:
The Smithsonian Institution [in part].
The National Muscum.
The Armory.
The Annex [including stable].
xxv.

Designation of Rooms.-The general system by which rooms and doors are designated need not be explained here. A definite nomenclature for the different apartments or suites of apartments used in the work of the Museum is necessary and such a one is here presented, together with a code of symbols to be used in their designation. These symbols are intended for nse in making assignments, in marking disposition of property upon the "Property Record," and in marking keys of cases, desks, \&c.
The various apartments and suites of apartments in the buildings may be classified as follows:
Exhibition Halls [Symbol, X] are rooms in which objects are publicly displayed.
Laboratories [Symbol, L] are suites of rooms under the charge of a curator or acting curator, including his study and those of his aids, and the store-rooms and work-rooms used in connection with the laborators, even though not adjacent.
Depositories [Symbol, D] are storage, file, or supply rooms in which packages or supplies are stored.

Offices [Symbol, O ] are the places of busiuess of executive officers.
Work Rooms [Symbol, W] are rooms or suites occupied by preparators or mechanics.
Public Comfort Rooms [Symbol, P] are retiring-rooms, waiting-rooms, restaurants, \&c.
The Exhibition Halls are designated as follows:
MUSEUM BULLDING.
Main Halls.-These are the four arms of the cross, extending from the Rotunda to the four main entrances:

North Main Hall.......................................... XA
East Main Hall ...... .................................. XB
South Main Hall......................................... . XC
West Main Hall...... ................................. . XD
Courts.-These are the four square halls included between the Main Halls in the angles joining the Rotunda:

North East Court............................................... XE

South West Court . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XG
North West Court. . . ............................................... XH
(492)

Ranges.-These are the outer halls, eight in number. Those on the north side are the North Ranges-" East North" and "West North." Those on the east side the East Ranges-" North East" and "South East." Those upon the south side are the South Ranges-"East South" and "West South." Those on the west side are the West Ranges-" South West" and "North West":
East North Range ..... XI
North East Range ..... XK
South East Range ..... XL
East South Range ..... XM
West South Range ..... XN
South West Range ..... XO
North West Range ..... XP
West North Range ..... $\mathbf{X Q}$
The Rotunda is under the Central Dome:
Rotunda ..... XR
The Pavilions and Tovers, though not exhibition rooms, may, if neces-sary, be designated by symbols corresponding to those of the main halls,by transposing the letters of the symbol of the apartment into whichtheir doors open, e.g.:
N. Tower ..... AX
E. Tower ..... BX
S. Tower ..... CX
W. Tower ..... DX
NE. Pavilion ..... IX
SE. Pavilion ..... MX
SW. Pavilion ..... NK
NW. Pavilion ..... QX

The rooms and doors in the Smithsonian Building are already classified by a very perfect system, elsewhere published.

The Exhibition Halls are designated as follows:
South Vestibule...[G and F, 1st story] ..... XS
Main Hall .... .. [E, 1st story] ..... XT
Upper Main Hall. . [E, 2d story]. ..... XU
West Range ......[0, 1st story] ..... XV
West Hall .........[P, 1st story] ..... XW
North Vestibule ..... XX

## SMITHSONIAN BUILDING.

In this building, to conform to an early system, each part of the build. ing, from cellar to roof, is designated by a pair of letters, and the separate apartments are designated by three letters. The general assignment of symbols is as follows :


## XXVI. <br> ASSIGNMENT OF APARTMENTS. LABORATORIES.

Art and Industry Laboratory ...[QX, 3d floor] ............... IAA

Archeological Laboratory ...... [A, B, C, 3d floor]......... LB
Materia Medica Laboratory ..... [DX. (North), 1st floor] . . . . LC
Food Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LD
Bird Laboratory . . . . . . . . . . . . . . [G, 5th and 6th floors]..... LE
Reptile Laboratory . . . . . . . . . . . [O (SE.), basement] ....... LF
Fish Laboratories ............... [P, basement]............... LG
[O (NE.), 1st \& 2d stories].
Invertebrate Laboratories ...... [O (SW.), basement]...... IH
[O, (NW.), 1st story].......LI
Mollusk Laboratory ............. [A, B, C, 4th floor]........ LK
Insect Laboratory . . . . . . . . . . . . . [MX (NE.), 2d floor]....... LL
Annelid Laboratory ............. [AX (E), 3d floor]......... LM
Paleontological Laboratory..... [CX (W.), 1st floor] .......LN
Fossil Plant Laboratorg - . .... [CX (E.), 1st floor] ........ LO
Mineral Laboratory . . . . . . . . . . . . IDX (S.), IVX] ............. LP
Chemical Laboratory . . . . . . . . . [NX, 2 d floor] . . . . . . . . . . . LQ
Photographic Laboratory ...... [MX, 2d and 3d floors].... LR
Registry Rooms ..................[I, J, K, L, basement] .... LS
DEPOSITORIES.
Library............................[QX, annex, 1st floor].... DA
Archive Room ......................|QX, first floor]........... . DB
Label Room....................... [QX, 2d floor].... . . . . . . . . DC
Sample Depository ...... ....................................... DD
Curator's Supply Deposit .......[QX, annex, od floor]..... DE
Bottle Deposit, No. 1...... ....[P, apse, basement].......DF
Bottle Deposit, No. $2 \ldots .$. .... [QX, basement] ...........DG
Alcohol Depository . . . . . . ...... [Q, basement]. ........... . DH
Superintendent's Depository . . . [IX, basement]............. DI
Duplicate Depository ............|K (SW.), basement]..... DK
Modeler's Depository . . . . . . . . . [O (S.), basement $] \ldots .$. . . . DL
Temporary Storage..............[LL (SE.), basement]...... DM
General Storage..................[O(N.), basement $]$........ DN
Private Storage. . . . . . . . . . . . . [L (NE.), basement] ..... DO
Stationery ........................[K ( ), 2d story].... ..... DP OFFICES.
Director's Office and Office of Secretary S. I ............... . O
Office Chief Clerk S.I................................................. . OA
Office Assistant Director ............................................... $O$ OB
Office of Registrar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OC
Office of Accountant. . . . . . . . . . . . . . . . . . . . . . . . .............. . OD
Office of Superintendent of Buildings ........................ . OE
Office of Assistant Superintendent of Buildings ............ OF

## WORK-ROOMS.

Modeler's Room ..... WA
Taxidermist's Room ..... WB
Artist's Room ..... WC
Assistant Modeler's Room ..... WD
Preparator's Room ..... WE
Poisoner's Room ..... WF
Electrician's Room ..... WG
Engineer's Room and Fire-room, No. 1 (Smithsonian) ..... WH
Engineer's Room and Fire-room, No. 2 (Museum) ..... WI
Machinist's room ..... WK
Carpenter's Shop ..... WL
Painter's Room ..... WM
Stone-cutter's Room ..... WN
Lapidary's Room ..... WO
Draughtsman's Room ..... WP
PUBLIC COMFORT ROOMS.
Public Comfort Room ..... $\mathbf{P}$
Lunch Room ..... PA
Ladies' Reception Room ..... PB
Ladies' Lavatory, Museum ..... PC
Men's Lavatory, Musenm ..... PD
Ladies' Lavatory, Smithsonian ..... PE
Ante-room, Smithsonian ..... PF
DIVISION OF ADMENISTRATHON.
DEPARTMEN'T OF DIRECTION.
XXVII.

Installation.-The assignment of floor space and exhibition cases in the public halls, the arrangement of the cases, their interior fittings, the styles of labels and the manner of their attachment, the stands and the manner of mounting the specimens, will be under charge of the Assistant Director, who will confer upon these points with the Curators.

## XXVIII.

Furniture.-The construction and purchase of cases and furniture and the assignment of the same to offices and laboratories will be under the charge of the same officer.
XXIX.

Apartments.-Applications for the use of apartments should be made in writing to the Assistant Director, who will submit them to the Director for approval.

## XXX.

Cse of keys.-Keys will be issued only upon requisition, and must be receipted for. Holders of keys will be held responsible for their safekeeping; they must not lend them or allow them to pass out of their own hands. No one will be allowed to obtain duplicates except by requisition. The loss of keys should be promptly reported. Keys not in use are to be returued to the office from which they were obtained. The loss of keys should be at once report to the Superintendent of Buildings.

> XXXI.

18sue of keys.-Kess to doors in the Smithsonian Building not assigned to the Museum are controlled by the Chief Clerk of the Smithsonian Institution.

Keys to doors in National Museum and other buildings will be kept by the Superintendent, who will issue them only upon requisitions indorsed by Director or Assistant Director.

Keys to exhibition cases will be kept in office of Assistant Director.

## XXXII.

Apartments in Smithsonian Building.-Apartments in the Smithsonian Building which may be desired for the use of the Museum may be transferred to the control of the management of the Museum by requisition from said management upon the Chief Clerk of the Smithsonian Institution.

## XXXIII.

## Catalogues.-The following MS. Records are kept:

Name.

Symbols.
Announcement Record ..... Ann.
Accession Records ..... A.
Card Catalogue of Accessions ..... A.C.
Distribution Records ..... D.-
Transportation Record ..... T.
Storage Record ..... S.
Property Record ..... P.
Order Book ..... O.-
Lost and Found Record ..... L.F.
Time Book ..... TB.
Visitors' Register ..... R.
Drawings, \&c ..... Draw.
Electrotypes and Engravings ..... Eng.
Photographic Registers ..... Phot.
Ethnological Catalogue ..... C.I-III.
[Volumes assigned to separate departments.]
Mammal Catalogue ..... C.IV.
Bird Catalogue ..... C.V.
Proc. Nat. Mus. $81-32$ ..... (497)

| Egg Catalogue | -a |
| :---: | :---: |
| Reptile Catalogue | C.VI. |
| Fish Catalogue | If. |
| Shell Catalogne | I. |
| Insect Catalogne |  |
| i.e., the number of |  |
| the letter C. giv |  |
| Library Catalog | C.D. |

## XXXIV.

Labeling exhibition scrics.-Each object displayed in the exbibition series is to be provided with a printed label, giving (a) catalogue number, (b) names, (c) locality, (d) source of obtaining, and (e) such explanatory remarks as may be practicable for the purpose of enabling visitors to understand its significance.

The cops for these labels, with designation of size, according to schedule provided, should be delivered to the Assistant Director, who will attend to the printing.
XXXV.

Sizes of labels.-The size of labels to be designated by the size of the space inclosed within the rectangular rule which surrounds the legend upon each label.

The margin outside of this rule to vary as may be necessary, in accondance with the size of the card.

The size of the label to be designated by two letters; the first iudicating lieight, the second length.

The unit of measurement to be one inch,
The larger cards to be multiples of the unit.
The letters shall stand for the numbers in order as follows: $A=1 ; B$ $=2 ; \mathrm{C}=3, \& \mathrm{c}$.

A card 2 inches square would be $\mathrm{BB} ; 3 \times 6$ inches, OF ; a card $6 \times 3$, FC, \&c., \&c.

Labels to be printed on thick card-board, unglazed, of some soft net. tral tint.

## XXXVI.

Plane for installation and arrangement.-The collections in the National Museum are now being assorted and rearranged, for the purpose of placing on exhibition a selected series of objects which shall be of interest to visitors, and of making the remainder serviceable for purposes of scientitic and technological investigation. A large portion of the most interesting material has never yet been exhibited on account of lack of space.

The following general principles have been adopted in this worl:

1. No object will be placed on exhibition which is not of evident edncational value, and likely to interest and instruct a considerable percentuge of the persous visiting the Museum.
(498)
2. The exhibition of duplicate material is to be avoided.
3. Each object will be placed in a case of the form best suited for its effective display, and the light, color of the background, \&c., will be so adjusted as to show it to best possible adrantage, and with the least possible fatigue to the eves of the visitor.
4. Each object, or group of objects, will be accompanied by a large, plaiuly printed label, which will give a coucise description of what is shown, an account of its origin and uses, a synopsis of its history, and the name of the person or organization contributing it to the Museum.
5. The objects will be grouped together in systematic order, and each case will be provided with a geueral descriptive label. In the case of collective exhibits, the general label may also give the name of the contributor.
6. The specimens will be illustrated and supplemented by pictures, diagrams, books, and maps, in such manner that the Muscum will form an encyclopedia, the illustrations for which are in the exhibition cases, the text in the labels.
7. Guide-book manuals of the different departments will be published, which will embody in concise and systematic form the information given by the specimen labels, together with such illustrative material as may seem necessary to present in addition.

## XXXVII.

Use of material for investigation.-Persons not officers of the Museum may obtain access to the collections for purposes of study ly filing an application, which must be indorsed by the Director. Such investifations must be conducted in the Museum buildings, and the Curator of each department is required to see that the materials are properly used, without loss to the Museum.

## XXXVIII.

Loans of material.-No collections will be sent out of the city for study, except to oflicers of other museums, and then only by special arraugement.

## XXXIX.

Announcement of proposed incestigations.-It is strongly recommended that officers of the Musemm contemplating the prosecution of investigations upon special groups in the departments under their charge file statements of their intention, in order to secure priority in the use of material.
XL.

Property receipts.-The following form of "receipt" from naturalists who may borrow its material, has been adopted by the Institution:

$$
\text { [Locality } \quad \text {, date -_ }]
$$

"Received from the Smithsonian Iustitution a collection of $\longrightarrow$, (499)
corresponding to the accompanying list. I herebs accept them in trust upon the following conditions: First. That they are to be used for purposes of inrestigation, and returned in as good condition as they were receised, and as soou as my work upon them is completed. Second. 'That no unique specimens constituting part of the reserve series of the National Museum shall be mutilated. Third. That dnplicates when necessary may be dissected, understanding by 'duplicate' a specimen which is not necessary to illustrate variations of form or range of geographical distribution. Fourth. That the specimens when returned shall be labeled with the names which I have employed in my publications upon them. Fifth. That credit shall be given to the Smithsonian Iustitution in all publications based upon material furnished by it. ${ }^{7}$
[Siguature of borrower.]

## COMPLAINTS.

## XLI.

Any failure on the part of an officer or employé to properly perform his duties should be promptly reported in writing to the Director ; also to the Assistant Director any losses of specimens, or any damages received by specimens in the Museum or in packing and transit.

## PASSES AND PERMITS.

## XLII.

Passes for individuals and permits to remove articles must be signed by the Director, the Assistant Director, or the Chief Clerk of the Smithsonian Institution.

## CORRESPONDENCE.

## XLIII.

Correspondence of a formal or complimentary character, transmitting specimens or books, acknowledging gifts or courtesies, making arrange, ments for exchauges, \&c., \&c., as well as all announcements, circulars and communications of general importance will be signed by the Director, who may request any officer of the Museum to prepare such writing.

Letters of an informal character should be signed by the officer to whom they are referred, the signatures being accompanied by the signers' official title.

All correspondence relating to the general administration of the Maseum will be in charge of the Assistant Director and the Registrar.

The Curator of each department will attend to correspondence relating especially to the matters under his charge.

Copies of all official letters must be kept either in copy book or stylograph book, and these books shall constitute a part of the archives of the Museum.

When the symbol A is marked upon a letter it signifies that an answer is to be prepared for the signature of the Director. When the
symbol is $a$, it means that the answer is to be signed by the person to whom it is referred.

All letters referred are to be returned to the officer from whom they are received. If a copy of any letter, or portion of letter, is desired, which the Curator has no facilities for making, the passage should low marked and the symbol $C$ with signature added. The copies will be made by the Museum copyist.

All letters are to be filed in the archives of the Museum, according to the specifications of the section relating to Archires, LXXVI. They will there be always readily accessible.

> LETTERS-REQUESTS FOR INFORMATION.
> XLIV.

Officers of the Museum will pay prompt atteution to any requests for information which may be referred to them for action, it being considered an important part of the work of the Museum to attend to such matters fully, courteously, and promptly. The rule of the Smithsonian Institution that each day's mail shall be attended to on the day of its receipt, is to be followed in the Museum also.

## CONFERENCES AND COMMUNICATIONS.

## XLV.

The symbol $C$ indicates that a personal conference is ciesired.
The Director will confer personally with the officers of the Museun in his office in the afternoon, or in his visits to the several departments.

Every communication on Museum business, whether it be an amonncement or a request, should be made in the form of a written memorandum. The same should be done if any action is decided upou as the result of a conference. It is recommended that in communications between ofticers of the Museum, the stylograph be used, since this affords a means of preserving duplicate copies of the communication.

## XLVI.

EXPLANATION OF SYMBOLS USED IN BUSINESS OF THE SMITHSONIAN INSTITUTION AND THE NATIONAL MUSEUM.

Action to be taken.
L. Library.
M. For tiles of the Museum.
S. For files of the Smithsonian Institution.
F. For files of the United States Fish Commission.
A. Answer.
a. Prepare answer.
$r$. To be read, and contents noted.
C. Personal conference desired.
k. To be kept until article anuounced arrives and to be then returned. (501)
$t$. To be translated.
*. Confidential.
$r$. (As a second letter)-to be returned as soon as possible.
$f$. To be filed in general correspondence, or under special head des. ignated.

The combination of two letters shows that donble action is to be taken: as-a. $r$. Answer and return; t.r. Translate and return; r. r. Read and return ; S. $f$. File in Smithsonian correspondence.

## Albreviations for reference of letters, dc.

Baird, S. F ................................................ .
Bean, T. H .... ....................................... Bn.
Boehmer, G. H............................................. . . .
Brown, S. C. . . . . . . . . . . . . . . . . . . . . . . . . .......... . S. C. B.
Brown, S. G ............................................... S. G. B.
Brown, J. T. ............................................................ B.
Cushing, F. H.................................................. . . .
Daingerfield, Miss . ..................................... . . Dd.
Dall, W. II ............................................. . . Dl.
Dewey, F. P . ............................................... Dy.
Flint, Dr..................................................... F.
Foreman, E................................................ Fn.
Gass, Henry ................................................ .
Goode, G. B . ................................................. B. B. G.
Gill, Herbert A . ............................................... G.
Griffin, Miss M. E ........................................ M. G.
Bawes, G. W .................................................. W. H.
Hobbs, George S . . . ........................................ G. S. H.
Horan, Heury .................................................... .
Leech, D .....................................................
Mason, O. T ................................................ Mn.
Powell, J. W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P.
Rhees, W. J . ....... ..................................... . .
Rau, C ....................................................... R.
Ridgway, Robert ....... ...... .. ...................... R. R.
Rathbun, Richard ............................................ Rn.
Smiley, C. W................................................ C. S.
Stoerzer, Mrs. L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.
Shindler, A. Z................................................ A. Z. S.
Smillie, T. W ................................................ T. S.
Taylor, W. B ..................................................
Taylor, F. W..................................................... W. T.
True, F. W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tr.
Turner, Miss J. A . . . . . . . . . . . . . . . . . . . . . . . . . . . J. T.
White, C. A ..................................................... .
Assistants should always write their initials in the upper right-haud corner of the first page of letter which they have prepared for signatures

INK TO BE USED IN MUSEUM WORK.

## XLVII.

Ink to be used in Museum coork.-Every officer of the Museum is required to have upon his desk two linds of ink.
a. Record ink, in which all catalogie entries and other writings of permanent record are to be made. This must be a nutgall or carbon ink (not aniline).
b. Copying ink, in which all correspondence should be conducted.

## XLVIII.

## GENERAL RULES.

The exhibition halls are open to the public from $9 \mathrm{a} . \mathrm{m}$. to $4.30 \mathrm{p} . \mathrm{m}$. every day in the year, except Sundays.

## XLIX.

The business offices are open from $9 \mathrm{a} . \mathrm{m}$. to $4 \mathrm{p} . \mathrm{m}$.

## L.

The work-rooms and shops are open from $7.30 \mathrm{a} . \mathrm{m}$. to $4.30 \mathrm{p} . \mathrm{m}$.
LI.

No smoking allowed in the public halls.
ROUTINE ADMINISTRATION OF COLLECTIONS.

## LII.

Routine administration of collections.-The full routine for the administration of objects received in the Museum is as follows:

1. The package is received by the Registrar, who, if necessary to ascertain the uature of its contents, opens it, and if it contains objects belonging to several departments unpacks it and distributes its contents to the proper receptacles in the sorting-room.
2. The Registrar notifies the sender of the package that it has been received.
3. The Registrar enters the package in the Accession Recorl.
4. The Registrar writes upon an "Accession Card" the facts concerning the accession, and submits this card to the Director and Assistant Director, one of whom marks its assignment to one of the Museum departments.
5. The Registrar now sends the contents of the package or packages to the chicf of the department to which assignment has been made, accompanied by the arcession card and such other memoranda and letters as may help to complete its history.
6. The Curator examines and identities the objects, writes mpon the (503)
accession card the entries necessary to complete the record for the "List of Accessions" and the "Historical File," and retu:ns card and memoranda without delay to the Registrar.
7. The Curator enters the specimen or specimens in the Museum Catalogue belonging to his department.
8. The Curator marks each specimen indelibly with catalogue number, locality, and donor.
9. The Curator, after submitting the specimens, if necessary, to a preparator, assigns them places in the exhibition series, the atudy series, or the duplicate series.
10. The Curator also keeps a systematic or ledger record of the specimens, either upon catalogue cards or upon the Museum register-sheets.
11. A letter of thanks, prepared under the direction of the Registrar, and signed by the Director, is sent to every person who has given specimens to the Museum.

## DEPARTMEN'T OF REGISTRY AND STORAGE: <br> RECEPTION AND RECORD ROUTINE.

## LIII.

All packages coming by wagon to be received by the Transportation Clerk of Smithsonian Institution and entered in his record of trausportation, for the purpose of checking the accounts of express companies and cartmen. Number of Transportation Record, prefixed by letter "T," to be marked upon them.

## LIV.

All packages of specimens coming through the hands of the Trans. portation Clerk, by messenger, mail, or in exchange boxes, to be deliv. cred to the Registrar.

## LV.

Packages received in other buillings, of whatever nature, the property of the Museum, or intended for use in the Museum, must be reported by the person receiving them, who shall deliver full written memoranda to the Registrar before 4 p. m. ou the day of receipt.

> LVI.

The Registrar shall enter all packages received, in serial order, in the Accession Record, and, when practicable, mark upon each its accession number, preceded by the letter $A$.

## LVII.

The Registrar may open any package of the nature of whose contents he is ignorant, aud when it contaius articles belonging to different departments shall unpack and assort them.
(こU4)

## LVIII.

The accessions of each day shall be arranged in serial order in the unpacking room, and the Registrar shall daily prepare a list of the accessjons upon the blank "Accession Cards," which shall pass through the hands of the Assistant Director to the Director and be reclaimed from the Director's office by the Registrar; such additional facts as may be necessary to complete the record being written in.

## LIX.

The packages are to remain in the unpacking room until the "Access. ion Cands" have been returned. If special instructions concerning any package are needed they will be inscribed upon the cards. The packages may then be removed to the "Sorting Room."

## LX.

The sorting room is provided with closets with glass doors. One closet will be assigned to each department, and the Curator will be furnished with a key to its door. In assigning objects to the several departments, the schedule number of the department will be used as a symbol. The following additional syinbols may be used :
S. I. ..... Smithsonian Institution.
F. C.... . Fish Commission.
P.........Private.
M...... Mistake-to be returned.

H ...... . Hold without mpacking until further instruction.
Also, the symbols for the varions deposits.

## SORTING AND DISTRIBUTION.

## LXI.

The Registrar, after sorting the objects iuto lots, may send them direct to their destination or may place them in the closets, subject to the order of the Curator to whom they are referred. When a package belongs to a single department it should not be unpacked by the Registrar.

## LXII.

Each accession lot or portion of accession lot sent ont by the Registrar is to be accompanied by an accession card, upon which are written
(a.) The accession number.
(b.) Name and address of sender.
(c.) References to any explanatory letters or memoranda which may be on tile. [When thought desirable, these may accompany the card]
(d.) Any other facts not ascertainable from the specimens. The Registrar shall retain a duplicate of this card upon which is marked the name of the Curator to whon the arcession lot is delivered.
( C 0 5 )

## LXIII.

The Curator, after receiving an accession lot, shall, at his earliest convenience, and as a matter of urgent routine business (if possible the same day), fill up the accession card with the data necessary for the "Descriptive List of Accessions," and return it to the Registrar, who shall file it in the Card Catalogne of Accessions, the accompansing memoranda being placed in the Historical File, after the printer's copy for the list of accessions has been prepared. The Accession Cards for the current year are kept in a separate series and are not distributed in the General Card Catalogue until the yearly report has been prepared.

## LXIV.

When an accession lot is divided the general accession number is to be attached to each sub-lot, followed by the symbol of the department to which it is referred.
LXV.

If the accession cards are not promptly returned the Registrar is to send a recall-memorandum.

## ANNOUNCEMENT AND ACKNOWLEDGMENT. LXVI.

The Registrar is to make the entries in the Announcement Record and to present on the first of each month a list of arrearages of anuouncements.

## LXVII.

When a package has been received the Registrar is to acknowledge the fact on the same day, by postal-card memorandum to sender.
LXVIII.

The Registrar shall have prepared for the signature of the Director the formal letters in acknowledgment of gifts.

## LXIX.

Letters or postal-cards annouucing shipment of packages are to be prepared by the Registrar.

> CONTRIBUTIONS AND THEIR ACKNOWLEDGMENT.
LXX.

No money having at any time been specially appropriated for increasing the collections by purchase, the growth of the Museum has ever been and still is dependent solely upon the exertions of its officers and those of other branches of the public service, and upon the public spirit aud liberality of its friends.

The friends of the Smithsonian Institution and the National Musenm are earnestly invited to take part in the work of building up the collections, and, in particular, to respond to special requests for advice or other aid, which may reach them by letter.

The following rules for the acknowledgment of specimens will be adhered to:

1. Each contribution will be recognized by a formal written acknowledgment from the Director.
2. Each contribution will be annonnced in the annual reports of the Smithsonian Institution and the National Museum; and in the catalogues and other publications of these establishments, in which the objects contributed may be alluded to, the name of the contributor will always be given.
3. On the label, which is invariably attached to every object, the name of the contributor will be conspicuously printed. In the case of donations the form will be, "Gift of —_, " and where the objects have been obtained by special exertions of a friend of the Museum, who, however, is not their donor, the form will be, "Obtained by
$\qquad$
4. Objects which may have been bought by special appropriations, such as those for the Philadelphia and Berlin exhibitions, will not be labeled with the name of the persons from whom purchased, except by special agreement in cases where these persons have been ouly in part paid for their exertions.
5. The Museum will make every possible return for aid rendered by offering in exchange its publications and its duplicate specimens.

PACKING AND SHIPMENT.

## LXXI.

Packing will be done under the direction of the curators or in the packing room under the supervision of the Registrar, to whom objects to be packed may be sent with written memorandum of instructions.

Packing boxes may be obtained by requisition on the Registrar.

## LXXII.

Each package intended for shipment by express, freight, mail, or messenger, shall pass through the hands of the Registrar, and shall be accompanied by a memorandum, specifying its contents, and signed by the sender or packer. The Registrar shall make the proper eutries in the Distribution Book.

## LXXIII.

The Registrar will have special instructions as to what classes of packages need the indorsement of the management of the Museum before they can be sent out of the building.

## LXXIV.

No Museum package is to be sent by the Transportation Clerk which has not been stamped with the proper cipher and marked with the words Express, Fast Freight, Frcight, Mail, or Messenger.

SHIPMENT OF PACKAGES TO THE MUSEUM.
LXXV.

Packages of small size may be sent by express, charges to be collected on delivery. and larger packages by freight.

Packages may also be sent from points in the vicinity of military posts by addressing them to "U.S. National Museum, care of Depot Quar. termaster (stating name of post)", the quartermaster having instructions to forward all such packages.

On the Pacific slope, packages may also be sent in care of the Alaska Commercial Company, San Francisco.

Foreign packages intended for the Museum may be sent by mail, addressed to the Smithsonian Institution, Washington, D. C., or, if of large size, through the following agents of the Smithsonian Institution:

Algeria: Commission Francaise des ! Java: Genootachap van Kunsten en Wo Echanges Internationanx, I'aris.
Australia: See New South Wales, New Zealand, Queensland, South Australia, Tasmania, and Victoria.
Austria-Huvgary: Dr. Felix Flügel, 49 .iflonien Strasse, Leipzig.
Belgium: Commission Belge d'Echange Internatiouaux, Brussels.
Bazil: Iustituto Historico, Geographico y Eihnographico, Rio Janeiro.
Chilo: Universidad, Santiago.
Cbina: U. S. Consul-General, Shanghai.
Cuba: Prof. F. Poey (R. University), Havana.
Denmark: Kongelige Danske Videnskiahernes Selakab, Copenhagen.
France: Commission Française dea Echanges Iuternationanx. Paris.
Germany: Dr. Felix Fluigul, 49 Sidonien Strasse, Leipzig.
Great Britain: William Wealey, 28 Esscx atreet, Straud, Lonilon.
Greece: By mail direct.
Hayti: Sécrétaire de l'Etat dea Relations Extérienres, Port-an-Prince.
Holland: See Netherlands.
India: William Wesley, London.
Italy: Biblioteca Nazionale Vittorio Emanuele, Romu.

Java: Genootschap van Kunsten en We tenschappen, Batavia.
Mauritius: William Wesley, London.
Mexico: Museo Nacional, Mexico.
Netherlands: Burean Scientifique, Profes sor von Banmbaner, Harlem.
New Sonth Wales: Royal Society of New South Wales, Sydney.
New Zealand: Parliamentary Librar!, Wellington.
Norway: Kongelige Norske Frederiks C"aiversitet, Christiania.
Portugal: Escola Polytechnica, Lisbon.
Queensl:ud: Government Meteorological Observatory, Brisbane.
Russia: Commission Russe des Échauges Interuatiounux, 8t. Petersburg.
South Australia: Astronomical Obserrytory, Adelaide.
Spain: Real Academia de Ciencias, Madrid.
sweden: Kongliga Svenstia Vetenskape Akademien, Stockbolm.
Switzerland: Bundes Canzlei, Berne.
Syrin: By mail direct.
Tasmania: Royal Society of Tasmanis, Hobarton.
Turkey: By mail direct.
Venezuela: Universidad [Dr. A. Ernst], Caracas.
Victoria: Poblic Library, Melbonrne. West Indies: By mail direct.

If sent from seaport towns by vessel to New York, packages may be directed to Smithsonian Institution, care of Collector of Customs, port of New York.

DEPOSITORIES AND STORE ROOMS.

## LXXVI.

The classification and designation of the several depositories and storage rooms has already been detailed. The assignment of material to these deposits is as follows :

The Library (DA) shall contain all printed books and papers.
Librarian.
The Archive Room (DB) slall contain all manuscripts, books, and papers relating to the history of the Museum and its contents. Assistant Director.

The Label Room (DC) shall be the depository for labels and blauks, and may be used as a work-room for labeling and catalogning.

Registrar.
The Sample Deposit (DD) shall receive samples of all kinds of articles used in the museum, drawings and specifications, and dealers price-lists aud circulars.

## Assistant Director.

The Supply Deposit (DE) contains curator's supplies of all kinds, needful for mounting and preservation; stands, label-holders, \&c.

Registrur.
The Bottle Deposits No. 1 (DF), in Smithsonian building, and No. 2 (DG), in Museum building, shall contain bottles.

> Superintendents.

The Alcohol Deposit (DH) shall contain alcohol on tap.

> Curator of lchthyology.

The Superintendent's Deposit (DI) sha!l contain supplies for mechanics and laborers.

## Superintendent.

The Duplicate Deposit (DK) is the receptacle for duplicate specimens awaiting distribution.

Registrar.
The Modeler's Deposit (DL) contains molds and uufinished casts. Modeler.

The Temporary Storage (DII) is a deposit for packages pending administration.

Registrar.
The General Storage ( $D N$ ) is the receptacle for packages set aside, pending administration, for a considerable time.

The Private Storage (DO) is a deposit for the private efects of offcers of the Museum.

Registrar.
The Stati nery Deposit (DP) is a supply deposit for articles of stationery.

Stationery Clerk.

## LXXVII.

The officer in charge of a storage-room shall deliver packages onls upon written order from the management of the Museum or in accordance with regular routine of administration.

## LXXVIII.

A record book is provided for articles assigned to general or prirate storage.

## LXXIX.

Effects belonging to persons not officers of the Musenm may be placed in or removed from private storage only upon written order from the Director or Assistant Director.

## DEPARTMENT OF ARCHIVES. <br> CLASSIFICATION OF ARCHIVES.

## LXXX.

The Archives of the Museum shall consist of the following classes of papers, printed and manuscript, to wit:

1. The Announcement Record.-The manuscript volumes, in which have been entered all announcements of objects forwarded to the Museum, and promises to send contributions in future.
2. The Accession Record.-Consisting of (a) the manuscript volunes (Accession Books) in which all accessions to the Museum are cutered from day to day, in order of their reception, and (b) the card catalonne (Card Catalogue of Accessions), in which the same record is kept, arranged alphabetically under names of senders.
3. The Record of Applications.-The manuscript volumes in which are entered, in order of reception, all applications for specimens or other scientific material, either as gifts or loans, all proposals for exchange, se.
4. The Distribution Record.-The manuscript volumes in which are entered all lots of scientitic material sent away, either as gifts, loaus, or exchanges.
5. The Specimen Registers.-Consisting of (a) the manuscript volumes"Museum Catalogues"-in which the individual specimens belonging to the several sections of the Museum have been entered by the Curators of the sections under serial numbers, corresponding to those which have been indelibly marked upon the specimens themselves, and (b) the "Museum Register," which is kept in separate series, one in each sec-
tion of the Museum, by means of which, either (1) on catalogue cards, (2) on specially printed forms, or (3) in blank record books, arranged after the manner of a bookkeeper's ledger, a record in systematic order of the specimens is kept.
6. The Historical File.-Consisting of all papers, manuscript and printed, relating to the history or description of specimens or other scientific material received in the Museum-particularly letters and catalogues which may accompany any specimens or lots of specimens at the time of their reception. This file is accessory to and illustrative of the Accession Record, No. 2.
7. The Application and Proposal File.-This file is made up of all letters and other papers relating to applications, such as are entered in the Record of Applications (No.3), and particularly lists of desiderata submitted by correspondents, and lists of duplicates in collections of correspondents, sent for use in exchange or purchase. Here also may be filed unaccepted proposals for furnishing supplies, furviture, \&e., arranged, however, in a separate series.
8. The Distribution File.-Made up of check-lists and memoranda relating to material sent out. When an application has been fully complied with and is canceled, the papurs relating thereto to be transferred from 7 to 8 and arranged with those relating to the sending of objects in response to said application.
9. Correspondence Files.-This to consist of (1) indexed copy-book record of letters written on Museum business, and (2) alphabeticochronological files of letters received in connection with same.
10. Administration Files.-Consisting of the papers relating to the internal administration of the Museum, reports, requisitions, orders, bills, plans, contracts, registers of visitors, \&c., \&c.
11. Publications relating to work of Muscum, or founded upon material which is its property.-This series of papers should be complete, arranged with special reference to convenience of consultation.

## LXXXI.

Management of Announcement Record.-The Announcement Record shall be kept by the Registrar, to whom all memoranda and letters relating to specimens or other objects announced or promised are to be given. After entering in the Announcement Book such facts as may be called for by the printed heads to the columns, these letters, \&c. are to be marked with the current number of the announcement and returned, filed in serial order, until the object is received. A monthly statement of arrearages is to be furnished by the Registrar.

## LXXXII.

Management of Accession Record.-The Accession Record shall also be kept by the Registrar, who shall enter all accessions in serial order,
marking each package with its current number, prefixed by the letter " $A$," at the same time marking in the same manner any papers which may accompany it.

A new rolume of the Accession Book shall be opened with the beginning of each vear. The current volume shall be kept in the office of the Registrar, the back volumes in the Arehive Room.

The Card Catalogue of Accessions is alno to be kept up by the Registrar, each accession being described in writing upon the proper carl, and these cards to be arranged aphabetically to serve as an index to the Accession Book. As soon as the list of accessions for a full year has been printed, the cards for that year shall be intercalated in their proper phaces in the general Card Catalogue, which is a complete alphabetical record of accessions from foundation of Museum to beginning of each current year.

The Catalogne for the current sear is to be kept in the office of the Registrar, the General Catalogue in the Archive Room.

The current card-catalogues, as added to and anended by the curators to whom the cards are to be submitted in accordance with Rule LXIII, will serve as copy for printing the aunual or other lists of accessions.

## LXXXIII.

Management of Record of Applications.-The Record of Applicationn shall be kept in the office of the Assistant Director. An alphabetical index to the same will be supplied by the packets in the Application and Proposal File.

## LXXXIV.

Managoment of Distribution Record.-The Distribution Record shall be kept by the Registrar, throngh whose hands, in accordance with Rule LXXII, all packages intended for shipment, and who shall retain and file as a voucher in the Distribution File the written orders iu accordante with which each packige is sent out.

An alphabetical index to the Distribution Record, in so far as it relates to collections distributed, will be supplied by the packets in the Distribution File, which is to be kept in the office of the Registrar.

## LXXXV.

Management of the Specimen Register.-The Museum Catalogues and the Museum Registers belonging to each section shall be under thes charge of the Curator or Actiug Curator of the section, whose duty it shall be to enter, at the carliest opportunity, each specimen assigned to his department, giving it a provisional name, assigning to it a current number, which, together with name of sender and locality, are to be marked indelibly upon or permanently afixed to the specimen.

With each object or collection the Curator will receive from the Reg. istrar a card, upou which is entered the history; so far as may be known
(512)
to him, and accompanied by such papers as may belong therewith. Upon this card the Curator is expected to inscribe a concise description of the accession lot, returning the card and accompanying papers as soon as possible to the Registrar, in order that the Accession Record and the Historical File may be completed and the descriptive list of accessions prepared for the printer. When a letter is sent to the sender of a specimen, giving an account of the object, a copy of this should be made by manifold process (stylograph) or upon a leaf of a letter-book, and this copy should be sent to the Registrar.

## LXXXVI.

Management of Historical File.-The Historical File, in which all papers relating to the history of objects in the Museum are to be arranged, shall be under the charge of the Registrar, in whose room shall be kept the part belonging to the curreut year, the main file being arranged in the office of the Assistant Director, or in the Archive Loom, as may prove most conreuient.

In this file should be preserved all letters (or copies of them) which relate to objects preserved in the Museum. |If necessary, index slips referring to these may be prepared, to be arranged with the files of the Smithsonian Institution.] Applications for publications should becopied on the proper blank form.

Each accession shall, if accompanied by papers, have assigned to it an envelope, in which all such papers shall be ultimately arranged. On the outside of this envelope shall be entered the current number of the accession, the name of the sender, and the date of the accession.

These packets to be filed serially, in order of accession numbers, in locked cases. An alphabetical catalogue to the same is supplied by the card Catalogue of Accessions.

Any packet or letter mar be taken out for temporary use by presentation of an application slip on which the name of the applicant is signed. This slip is to be filed in place of the removed packet. Packets or letters may not be retained more than four weeks. If any paper is needed for permauent retention, a copy of it will be furnished upon application.

Only Curators or Acting Curators may be permitted to withdraw packets from the historical file.

## LXXXVII.

Management of the Application and Proposal File.-The make up of the Application and Proposal File has already been defined (Rule LXXX). This file, like the Record of Applications, to which it serves as an alphabetical index, shall be kept in the office of the Assistant Director. The papers of this file are to be enveloped and docketed like those in the Historical File.

Proc. Nat. Mus. 81—33

## LXXXVIII.

Management of the Distribution File.-The Distribution File is to be kept in the office of the Registrar. Every package sent out shall have assigned to it an envelope, upon which the address, date of sending, and nature of object sent shall be marked. These shall be arranged alphabetically, to serve as alphabetical index to Record of Distribution. Complete invoices of every sending consisting of more than oneobject shall be filed here, and the packets in this file may be removed only by order of Director or Assistant Director.

In this file, with the other papers relating the distributions, shall be kept applications which have been filled.

## LXXXIX.

Management of Correspondence File.-The Copy-Book Record of letters signed by the Director of the Museum shall be kept by the Corresponding Clerk of the Smithsonian Institution. In the file-roum of the Smithsonian Institution shall be kept all letters not relating directly to the administration of the Museum or the history of the collections.

The Assistant Director shall keep the required record of his correspondence by copy-book and letter file, and in his letter-file may be placed letters received by the Director or other officers of the Museum relating to the actual administration of the Musenm.

Curators of sections are expected to keep copy-book records of letters written by them on Museum business, the same to be at any time open to the inspection of the authorities of the Museum, and to hand in for filing in the Historical File letters relating to history of specimens, and in the Correspondence Division of the Administration Files letters relating to general administration which they may receive.

## XC.

Management of Administration Files.-The Administration Files shall be arranged in the most convenient manner in the office of the Assistant Director, who will, when desired, aid other officers of the Museum in consulting their contents. These files shall contain:

Reports of officers of the Museum.
Reports of collectors working for the Museum.
All records or memoranda which have been kept in the past by officers of the Museum.

Plans and specifications for cases, bottles, and all kinds of Musenm supplies.

Samples of labels, stationery, blanks, bottles, locks, \&c., \&ec., including all kinds of Museum sapplies.

Contracts and proposals.
Catalogues, plans, \&ec., illustrating work of other museums.
Circulars and price lists of tradesmen and manufacturers.
(514)

DEPARTMENT OF LIBRARY. OBJECTS AND SCOPE OF THE LIBRARY.

## XCI.

For the convenience of the scientific staff of the Museum, a working library has been established, in which will be kept such works as are necessary for constant reference in the classification and study of the collections, and in the work of publication. In this library shall be kept all books, pamphlets, journals, maps, \&c., and such of the archives of the Museum as may be there assigned.

## CENTRAL AND SECTIONAL LIBRARIES.

## XCII.

In the Central Library shall be retained all books treating of more than one subject, such as periodicals, proceedings of societies, serial reports, dictionaries, and cyclopedias, together with such monographs as are not desired in the Sectional Libraries. To each Sectional Library which may be formed, ouly those works may be assigned which relate directly to the work of that section only. Books in Sectional Libraries shall be considered to be personally loaned to the Curators in charge.

ENTRIES OF BOOKS, ETC.

## XCIII.

All books and other matter shall first be entered at the Central Library, and the necessary acknowledgments made, after which monographic works, upon application, may be sent to the Sectional Libraries, their assigument being designated upon the card catalogne.

## LIMTATIONS TO THE USE OF THE LIBRARY.

## XCIV.

No person who is not a member of the scientific staff of the Museum shall withdraw books or other matter, without special written permission from the Director of the Museum. Persons taking books from the Central Library shall be responsible for the safe-keeping of the same, and shall make gool any losses. They shall not be allowed to withdraw other books until those which may have been lost are restored. No one is expected to retain books longer than two weeks, unless they are in actual use. Certain works of reference may be designated, which shall upon no account be taken from the Library. All books and other matter shall be at all times subject to recall by the Librarian.
(515)
XCV.

No book shall be withdrawn from the Central Library until the applicant has filled out and signed the prescribed blank form of application or call-card. Supplies of call-cards may be obtained from the Librarian or the Registrar.

## regulation of sectional libraries.

## XCVI.

Each Sectional Library shall be under the control of a Curator or Acting Curator, who shall be responsible for its safe-keeping, and who shall on no account lend the books. Books in a Sectional Library must be returned to the Central Library before they can be issued for use outside of the room to which they are accredited. The books of each Library shall be kept separate from all other books in suitable cases in the rooms of the Curator, the locks of which shall be controlled by a master-key in the hands of the Librarian, who may at any time examine them, and call the attention of the Curators to any deficiencies.

## DUTIES OF THE LIBRARIAN.

## XCVII.

The Librarian of the Museum shall be responsible for all books, pamphlets, and periodicals belonging to the Museum, and for such of the archives as may be assigned to his care.

## DEPARTMENT OF PUBLICATIONS. <br> XCVIII.

Description of Publications.-The Publications of the United States National Museum consist of two series, the Bulletins of the United States National Musenm, and the Proceedings of the United States National Museum. These are published under the direction of the Secretary of the Interior, to whom application should be made by those who desire to obtain them.

## XCIX.

Rules for Administration of the Publications.-Articles intended for publication in the Proceedings of the National Museum or Bulletin of the Fish Commission must be submitted to the Director for approval.

After approval, all papers are to be given to the Editor of Proceedings and Bulletin, who will record the titles, number of pages of manuseript, number and character of illustrations, date of receiving them, giving each article a number by which it may be subsequently referred to (516)
whenever necessary. If a paper is to have illustrations, the manuscript will not be sent to the printer until the blocks are ready to accompany it.

The Editor will forward original drawings to the engraver, receive and take charge of the blocks, and, after recording, numbering, and plainly marking the blocks, so that their place may be easily determined, he will send them to the printer. Original drawings not in actual use will be kept by the Editor and filed, so as to facilitate future reference. Plates not in use will be placed in charge of the Smithsonian Institution.

Proofs of all papers will be sent by the Public Printer to the Director, who will transfer them to the Editor for distribution to the authors to whom they belong. Each author will be responsible for the proper correction of proofs of his papers and for their return to the Editor.

Applications for extras, stating the number desired, must be made to the Director when the manuscripts are presented for approval.

The Editor will atteud to the general management of the volumes, arranging title pages, prefaces, heads, numbering plates, \&c., \&c. He will assign a card to each article, on which will be given the serial number, copy of title, number of manuscript pages, character of illustrations, date of receipt, date of sending drawings to engraver, time of seuding blocks to printer, and the various stages of progress of proofs.

## C.

Printed List of Accessions.-A list of the accessions to the Museum will be printed from time to time, and at the end of the year incorporated in the annual report. In connection with the list will be printed the memoranda relating to the history of each accession list, which may be worthy of presentation. This list will be prepared by the Assistant Director and Registrar, aided by the several curators.

To secure promptness and accuracy in this work it is important that the accession cards, sent with each accession list to the curator to whom it is assigned, should be filled out and returned with all possible expedition. This work should be the first and most important in the routine of each day. Otherwise the records of the Museun will be imperfeet.

## CI.

Publication Storage.-The publications, stereotype plates, and woodcuts, property of the Museum, will be administered upon under the rules of the Smithsonian Institution, and under the direction of its Chief Clerk.

## CII.

List of the publications.-A list of the prblications is given in Circular No. 12, and also in the Catalogue of Publications of the Smithsonian Institution; both Proceedings and Bulletin being reproduced in the Smithsonian Miscellaneous Collections.
(517)

## DEPARTMENT OF DUPLICATEAS AND EXCHANGES.

 CIII.Application for Duplicates and their Distribution.-Applications for duplicate specimens must be made in writing, and when from domestic institutions, should be indorsed by a member of Congress. These must be approved by the Director, and after the assignment has been made, and the specimens selected, the Curator or the Registrar will attend to packing and the latter to shipment, send invoices, make the record, and attend to the necessary correspondence.

The list of applications for daplicates is provided for in the regulations of the Department of Archives.

## DEPARTMENT OF SUPPLIES.

## CIV.

Purchase of Supplies.-Supplies for the Museum may be obtained br a written order to the dealer or manufacturer, signed by the Director, Assistant Director, or Chief Clerk of the Smithsonian Institution, or upon indorsement of requisition by an order from the order-book, issued by the Superintendent of the Buildings. The Museum will not be responsible for the payment of bills contracted without such written order, which must be filed with the bill, if not proven paid.

Orders to the amount of over 8100 may not be made withont a written agreement with, or offer from, the person from whom it is ordered.
CV.

Is8ue of Orders.-Orders for miscellaneous supplies, such as tools and material for use by mechanics and laborers, shall be issued by the Superintendent upon the proper blanks.

The Superintendent may also issue orders for other articles, under the instructions of the Management of the Museum. No bills shall be paid unless accompanied by the official order. Bills accompanied by orders are to be examined by the Superinteudent.
CVI.

Storage of Supplies.-Supplies shall be stored in one of the several "depositories" provided for their reception.

## CVII.

Requisitions.-The Assistant Director will take action on requisitions for-

Assignment of rooms or space in exhibition halls.
The use of furniture or exhibition cases.
(518)

The services of preparators, clerks, or copyists.
The purchase of supplies.
The Registrar will act on requisitions for blanks and circulars, packing, and shipment.

The Stationery Clerk will supply articles from the stationery room on indorsement of Chiefs of Departments, a list of whom will be posted in the stationery room.

The Superintendent of Buildings will act on requisitions for-
Repairs.
Cleaning.
Services of laborers.
Regular articles of Museum supply.

## CVIII.

Issue of Supplies and Assignment of Laborers.-Officers of the Museum requiring supplies or the use of furniture, or other property of the Museum in the custody of the Superintendent, may obtain them by filing a reguisition with that official.

If the article needed is not in stock, or of a kind not ordinarily kept in stock, the requisition must be indorsed by the Director or Assistant Director.

Requisitions must be countersigned by the chief of the special department of the Museum from which they emanate.

The Property Record shall show, under each number, the final disposition of each article.

The Superintendent shall keep an account with each Chief of Depart. ment, debiting him with property delivered to him, and crediting hin with its return. Certificates of expenditures may cancel debits in this book.

Requisitions for labor or other service shall be made in a similar manner, and a book shall be kept in which each Chief of Department shall be charged with labor assigned to him.

## CIX.

Preservation of Supplies-Inspection.-The Superintendent shall have charge of and be responsible for the buildings and property not otherwise assigued.

He shall make a monthly examination of all furniture and fixtures, water and gas pipes, locks, window fastenings, roofs and gatters, plugs and stop-cocks, hose, sinks, urinals, washstands and water-closets, and shall attend to the necessary repairs of the same, reporting result of inspection and his action in the premises in writing to the Assistant Director.
CX.

Property Record.-The Superintendent shall receive and, when desired, receipt for every piece of furniture, implement, or article of sup(519)
plies, ard shall catalogue every movable article in the Property Record, marking it indelibly with its entry-number and the words " C . S National Museum."
CXI.

Inventory.-The Superintendent shall make a semi-aunual inventory of property (during the months of December and May), making a report to the Management upou articles destroyed, expended, or sent away.

## CXII.

Disposal of Condemned Property.-All property unfit for use, such as brokell furniture, waste paper and metal, packing-boxes, \&c., shall be delisered to the Superintendent to be disposed of under instructious from the Management of the Museum.

## CXIII.

Property removed.-The Superintendent shall be responsible for and take receipts for all property leaving the Museum building, for spectmens removed, except under the orders of the Registrar, and shall allow wothing to be removed except by written permit signed by proper authority.

> CXIV.

Jars and Bottles.-Jars and bottles may be obtained by requisition upon the Superintendeut. When possible, if large quantities of any given kind are to be needed, this requisition should be made in adrance. Kequisitions should be made in accordance with schedule symbols upon diagrams, copies of which may be obtained from the Registrar.

## CXV.

Alcohol and Preserratires.-Alcohol is stored in fire-proof vaalts ander the charge of the Curator of Ichthhology. Supplies are obtained by requisition upon that officer. On no account shall alcohol be issued except for use in preserving or poisoning specimens or in the work-rooms of preparators.

Other preservatives are kept in the same custody.
CXVI.

Exhibition Cases.-The cases of the Museum may be designated as follows:

## Approved Patterns.

| Symbol. | Name. | Dimensions. |
| :---: | :---: | :---: |
| Case A (4.4). | Pier nprights | . $8.6 \times 4.4 \times 9$ |
| A (3.3) | Pier uprights | $8.6 \times 3.3 \times 9 .-$ |
| B (4.4) | Floor upright | $8.6 \times 4.4 \times 7$. |
| B (3.3). | Floor upright | $8.6 \times 3.3 \times 7$ |

(520)


Drawings and samples of cases and appliances may be found in the office of the Assistant Director.

## CXVII.

Blanks.-The following blanks, inteuded for the use of officers and employees, may be obtained by requisition upon the Registrar:

Museum Catalogues.
Invoice Sheets (for collectors). Museum Register Sheets. Property Record.

Library Catalogue Cards.
Library Call Cards.
Museum Catalogue Cards.
"Memorandum" pads.
"Orler for work" pads.
"Shipment Memoraudum" pads.
"Requisition for Supplies" pads. Preparator's Record.
Preparator's Memorandum.
Stylograph Books.
Mouthly Report blank.

## CXVIII.

Preparation of Vouchers and Disbursements.-All accounts will be aaministered under the direction of the Chief Clerk of the Smithsonian Institution, and all payments made from his office.

The Museum will not be responsible for the payment of any bills contracted without a written order from the Director or Assistant Director or Chief Clerk of the Smithsonian Institution.

Orders are to be returned by the party furnishing the article required, with the cost stated, and the receipt of the person to whom it was delivered.

Bills presented are to be examined by the Accountant, to see that the calculations are correct and the voucher in proper form, prices reasonable, and the articles delivered.

The payment of bills is to be made between the twenty-fifth and the last day of each month, and of salaries on the last day of the month.

Cash from sales of old material, publications, postage-stamps, \&e, to be deposited with the Accountant.

The amount required to pay bills in foreign countries is to be ascertained by the Accountant, and the statement of the bank as to cost to be kept with the voucher.

A statement is to be made to the Drector monthly of the receipts and expenditures, and of all contracts and agreements involving expenditure.

## CXIX.

Certification and Approval of Accounts.-Accounts must be certified to by the Assistant Director or other officer designated by the Director, and must be approved by the Director or Secretary of the Smithsonian Institution.

## CXX.

instructions for making out accounts.

1. Vouchers must be signed in ink, and by the person in whose name the account is made-not "per" any agent or clerk-and the amount expressed both in writing and figures.
2. The signature should be at the bottom of the page, and should correspond with the name of the individual or company, at the head of the account. Signature by agent will not answer; it must be by the principal. Nothing should be written on the blanks excepting the signature. Any racant spaces will be filled up in this otbice when payment is made.
3. Evidence of anthority to sign vouchers for incorporated or unincorporated companies must accompany accounts. Such evidence should be in the form of an extract from the by-laws or records of the company or association, showing the authority of the officer to receive and receipt for moneys for the company, and giving his name and the date of his election and appointment, which extract must be verified by a cortiti(522)
cate, under seal, signed by the president or secretary, or by one of thesis officers, and not fewer than two of the directors, which certificate must state that such anthority remains unrevoked and unchanged.

If the company have no seal, the extract should be certified as correct by a notary public or other competent officer under his seal.
4. Siguatures by mark must be witnessed. If John Smith has a bill and he is unable to write his name, it should be written for him, and then he should place his mark-thus: John $\stackrel{\text { his }}{+}$ Smith. Witness: David O'Neill.
5. Accounts for traveling expenses should give the places of departure and destination, supported by sub-vouchers, such as hotel bills, \&c. Lach day's expeuses should be mentioned under its date.*
6. Hotel bills should give the dates of arrival and departure and the rate per day. Thus a person arriving before breakfast June 20, and leaving after dinner June 24, will have been at the hotel four and a half days, which, at $\$ 3$ per day, would amount to $\$ 13.50$, and should so express it in the account.
7. Vonchers for supplies must be in detail, showing the nature, quantities, and rates, as well as the amount, namely: 5 pounds mails, at 5 cents, 25 cents.
8. Accounts for service must give the dates, stating whether inclusive or not, between which such service was performed, and the rate of pay, thus: A man employed from June es to July 10, inclusive, would have served 13 days, which, at $\$ 1.50$ per day, would amount to 819.50 .
9. Accounts involving sub-vouchers, some or all of which, for good reasons, cannot be furnished, must be signed by the party, and aftidavit made before a notary public or justice of the peace that the account in questiou is correct.

The seal of the officer before whom an account is sworn should be affixed.

## DHPARTMENT OF TBUILDINGB AND IAABOR.

## CXXI.

Duties of Superintendent.-The Superintendent of Buildings shall be responsible for the policing of the buildings and the conduct of the mechanies and laborers.

Laborers and Mechanics.-Me shall direct the work of all mechanics, jaborers, messengers, and other employees of the Museum. and shall keep a time-book, in which shall be recorded their time of service, the nature of the work performed, and the rate of pay, reporting to the disbursing officer monthly, or at the close of the service of any individual.

[^167]Details of Workmen.-Workmen may be detailed by him for special service upon the presentation of proper requisitions.

Lost and Found Record.-He shall keep a "Lost and Found Record," and attend to the identification of claimants and the restoration of articles found in the Museum.

Tools.-He may issue tools to workmen, holding them responsible for their safe return.

## CXXII.

Duties of Assistant Superintendents.-The Superintendent shall have two assistants-one in each building. The assistant in the Museum building shall have especial charge of records and the property storage, and in the absence of the Superintendent perform his duties. The assistant in the Smithsonian building shall have charge of that building and the property it contains, and shall report all needful action to the Superintendent. The assistants may not deviate from routine except by special order.

## CXXIII.

Duties of Electrician.-The Electrician shall inspect and keep in proper running order all telephones, burglar-alarms, electric clocks, watch-clocks, and other electric apparatus generally, and such other as may be placed in his charge.

## CXXIV.

Dutics of Engineer.-The Engineer shall have charge of all boilers, heating-apparatus, water-pipes, and gas-pipes, making weekly inspec: tions and keeping them in repair; he shall be responsible for their work. ing; he shall inspect monthly and record the readings of all gas-meters; he shall attend to the inspection, reception, and storage of wood and coal, under the direction of the Superintendent, and shall report deticiencies at least a week in advance; he shall attend to the removal of ashes, giving to the cartmen the regulation tickets, one for each load, which they present to the Superintendent in claiming payment ; he shall make repairs of locks, water and gas tixtures, \&c., as may be ordered by the Superintendent.
CXXV.

Duties of Assistant Engineer.-Au Assistant Engineer shall have charge of and be responsible for the heating apparatus in the Smithsonian building, under the supervision of the Engineer.

## CXXVI.

Duties of Firemen.-The Firemen work under the direction of the Engineer, and one of them shall, when necessary, serve as blacksmith.
(524)

## CXXVII.

Duties of Carpenter.-The Carpenter shall work under the direction of the Superintendent. Extra carpenters may be employed by the Superintendent when so instructed.

## CXXVIII.

Duties of Inspectors.-The Inspectors shall have their beats assigned them by the Superintendent. They shall be responsible for the safety of property within their beats, and shall report cases of damage; they shall see that the Museum rules relating to visitors are enforced, preventing smoking and disorderly conduct and reporting irregularities; they shall deliver all articles found in the Museum to the Superintendent's office.

The Inspectors shall answer the questions of visitors and serve as guides as far as possible without conflict with other duties and without leaving their beats.

They shall receive no fees, under penalty of discharge.
The Inspectors constitute the first vatch, and shall continue on duty till relieved by the sccond watch.

## CXXIX.

Duties of Watchmen.-The Watchmen shall be responsible for all property under their care. When going upon duty they shall (1) examine all doors and windows; (2) satisfy themselves that there are no strangers in the building; (3) see that the fire.plugs are in order for use.

They shall visit each record station every hour and make the proper record with the clock; any failures to do this must be strictly accounted for. When relieved, the Watchman is to report to the next watch any irregularities or suspicious circumstances he may have observed.

All signals and telephone calls to be answered without delay, and emergercies to be announced by the code signals.

Watchmen shall remain upon duty until regularly relieved. The Watchmen who admit the workmen shall keep their time-record.

## CXXX.

Duties of Janitors.-Janitors stationed at the public entrances shall be in their places at the sound of the signal for opening, and shall not leave during the hours of exhibition. They shall refuse admission to disorderly persons and children withont guardians. Canes, umbrellas, parasols, baskets, and bundles shall be retained at the door and checks given for the same. No bundles shall be taken from the building without properly signed permits, which most be filed. No fees shall be received under penalty of discharge. Dogs shall be excluded by the jauitor.

The Janitors shall record daily the readings of the automatic enumerators.
janitors stationed at the entrance to offices shall answer questions and prevent intrusions.
CXXXI.

Dutics of Messengers.-Dispatch messengers shall report at the Superintendent's office, and may be summoned by signal.

Office Messengers shall be sent away from the buildings only upon special service.
CXXXII.

Duties of Cleaners.-Cleaners shall have their work assigned them by the Superinteudent. The work shall be done before $9 \mathrm{a} . \mathrm{m}$.

## CXXXIII.

Duties of Laborers.-Laborers shall work under the direction of the Superintendent or other officers who make requisition for their serrices They shall report, when out of work, to the Superintendent or his assistants.

## CXXXIV.

Outside Workmen.-Mechanics and laborers emploved by the day shall report each day at the Superintendent's office, before beginning and after ending work, otherwise their claims for payment may be disallowed.
CXXXV.

Hours of Work.-Workmen, unless otherwise ordered, serve from 7.30 a. m . to $4.30 \mathrm{p} . \mathrm{m}$.

Janitors serve from $8.30 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$.
Watchmen and inspectors serve according to special schedule.
Ontside workmen serve according to agreement.
Workmen report to watchmen on duty at entrance door.

## CXXXVI.

Opening and Closing Museum.-The hours of opening and closing the Museum, and the beginning and end of noon recess, will be announced by signal from Superintendent's office.

The outer doors of the Smithsonian and Museum buildings must be locked at the time of their closing to the general public, and no one allowed to enter by means of pass-keys. A watchmau will be in attendance to open the doors when summoned.

## CXXXVII.

General Rules.-The following general rules will be enforced by the Superintendent:

The exhibition halls are open to the public from $9 \mathrm{a} . \mathrm{m}$. to $4.30 \mathrm{p} . \mathrm{m}$. every day in the year, except Sundays.
(526)

The doors shall be permanently closed at $5 \mathrm{p} . \mathrm{m}$.
The business offices are open from $9 \mathrm{a} . \mathrm{m}$. to $4 \mathrm{p} . \mathrm{m}$.
The work rooms and shops are open from $7.30 \mathrm{a} . \mathrm{m}$. to $4.30 \mathrm{p} . \mathrm{m}$.
No smoking will be allowed in the public halls.
No dogs will be admitted to the exhibition halls.
Canes and packages will be deposited with the janitor.
Employees of the Mnseum are forbidden under penalty of discharge to receive fees from visitors.

## CXXXVIII.

Access to the Building after Office Hours,-After the buildings are closed in the afternoon, and until the hour of opening, the watchmen are forbidden, under penalty of dismissal, to allow to remain, or to enter, any persons whose names are not upon the lists furnished them, or who are not provided with a properly certified pass. This rule applies to Sundays and other days when the Museum is closed. No exceptions can be made in favor of friends of the watchmen.

The main entrance of the Museum building will be kept closed except during hours of public admission, and access to the building can be gained ouly by ringing the bell at the entrance to the Northwest pavilion. Every person admitted to the building, when closed, shall register his name upon a spectal record kept for the purpose, and the watchman is required to note opposite his name the hours of his admission and departure. When a person whose name is on the list is accompanied by a friend, he must sign his own name underneath that of his friend preceded by the words "Introduced by."

## CXSXIX.

Removal of Property.-No Museum property shall be removed from the buildings except upon the presentation of a written order signed by the Director of the Museum, the Assistant Director, or the Chief Clerk of the Smithsonian Institution.

The Janitors shall be instructed to detain packages, unless the bearer presents a permit signed by some officer whose name is on his permitlist. These permits shall be filed.

These rules do not apply to boxes and packages leaving the buildings under the management of the Registrar.

## CXL.

Approvals.-Requisitions for supplies shall require the approval of the chicf of the department for which they are needed.

The written indorsement of the Director or the Assistant Director shall be necessary before proceeding with-
(1.) Any changes in arrangement or decoration of the buildings.
(2.) Any changes in the use or occupancy of apartments.
(527)
(3.) Any changes in the duties of Museum employés, except those of low grade.
(4.) Any changes in the installation of cases or other objects in the exhibition halls.
(5.) Any changes in the color or internal arrangement of cases.
(6.) Any changes in the installation of collections in the exhibition halls or the removal of objects.
(7.) The making of cases, pedestals, trays, labels, blank forms, or any other fixtures or appliances of general Museum administration.
(8.) Any temporary deviation from the provisions of the rules in the general orders.
(9.) Memoranda and requisitions referring to any of the above topics may be filed with the Superintendent of Buildings, with the Assistant Director, or with the Director. They must not be acted upon until properly indorsed.

## DEPARTMENT OF ELECTRIC SERVVICE.

CXLI.

Apparatus.-The following is a description of the apparatus in the Electric Room of the National Museum : One 50 drop annunciator with 29 telephone connections, of which 9 are connected with telephones in the Maseam building, 11 in the Smithsonian building, and 9 to instruments at various outside points, including the central office of the telephone exchange, through which connnection may be had with any part of the city ; one 100 -drop annunciator to which are connected 300 windows and 85 doors thronghout the Museum building; one 81-drop annunciator comected with the doors of the exhibition cases; one large watch clock for recording on paper dials the alarm signals which the watchman turns in from the twelve o'clock stations throughout the building as he makes his patrol ; and one District telegraph alarm box. In the Smithsonian building there are nine clock stations, controlled in the same manner as those in the Museum building, and also a special telephone connection with the city.

## CXLII.

Duties of Telephone Clerk.-The Telephone Clerk is on duty from 8 oclock a. m. to 4 o'clock p. m., and is to answer all calls promptly, and under no circumstances is the Telephone Room to be left unattended. A record is to be kept of all calls, giving the names of both the persons calling and called, and also of the exact time the call was made.
CXLIII.

Duties of Watchman in Telephone Room.-The watchman on duty in the telephone room is required to answer all telephone calls, and to notify the watchmen in the building of signals on the burglar annnnciator. He is also required to turu in a signal to the night-watch at the
(528)

District Telegraph Office every hour from $5 \mathrm{p} . \mathrm{m}$. to $8 \mathrm{a} . \mathrm{m}$. In case of neglect to do this a messenger is immediately sent to the Muscum to ascertain the cause, and the fact is reported to the Superintendent the next morning.

## CXLIV.

Duties of Watchman on Patrol.-The watchman making the rounds of the building, which duty occupies exactly an hour, is required to turn in an alarm at each of the twelve stations. The time and place are registered on paperdials which are kept on file in the Superintendent's office and renewed daily.

## CXLV.

Signals.-Signals may be made from the Electric Room upon signal bells in various parts of the building. These signals may be answered by persons upon the push-buttons, of which there are seventy eight in the building, and the location of which is indicated by a white star. The code of signals being for the private use of the officers of the Museum, should be kept secret. The code for whistle signals is the same as that for bell siguals.

## DEPARTMENT OF PREPARATION. CXLVI.

Preparators' Records.-Each Preparator must keep a record book in which to enter the name and catalogue number of each article passing through his hands, with statement of character of work done upon it and length of time devoted to it, name of person from whom received and to whom delivered, with dates.

## CXLVII.

Instructions to Preparators.-Each object sent to a Preparator must be accompanied by a memorandum giving its catalogue number and name, and with definite instructions as to character of work to be done, and to whom to be delivered.

## CXLVIII.

Importance of Memoranda.-Preparators should iusist upon having such memoranda, and will be held accountable for failure to obtain them.

## CXLIX.

Duties of Photographer.-The Photographer is subject to the rules governing the action of Preparators. He shall take such photographs as he may receive written instructions for, and shall keep a perfect record of the negatives, property of the Museum, under his charge. Also one copy of each protograph he makes, arranged in suitable books in chronological order. He shall report monthly all work done for the Museum. He shall make requisition for such supplies as are necessary for the prosecution of Musenm work.

Proc. Nat. Mus. 81-34 (529)

> CL.

Applications.-All applications for positions must be made in writing. Applications, with the accompanying letters of recommendation, are to be filed in the office of the Chief Clerk of the Smithsonian Institution.
CLI.

Appointments.- A letter of appointment, stating salary, terms of tenure, duties, \&c., signed by the Director of the Museum, will be given each appointee. Appointments to grades lower than grade VI are made with the understanding that they are subject to recall at the end of each fiscal year.

## CLII.

Promotions.-Except in cases where the duties of an employé are changed to such an extent as to add greatly to the responsibility of his position, promotions can only be made at the beginning of each fiscal year. With each promotion a new letter of appointment will be issued by the Director.

## CLIII.

Discharges and Suspensions.-Any appointment may be canceled at the discretion of the Director. No discharge is valid until the person discharged has been notified by a formal letter of discharge signed by the Director. Suspension of pay may be made subject to the approral of the Director.

> CLIV.

Leaves of Absence.-Unusual leaves of absence and vacation of officers of the scientific staff be arranged by the Director. The ordinary vacations of preparators, mechanics, and administrative employés will be arranged by the Assistant Director, subject to the approval of the Director; those of laborers and cleaners by the Superintendent of the Buildings, subject to the approval of the Assistant Director.

> CLV.

Temporary Employment.-Laborers, mechanics, and copyists may be employed by the day at the discretion of the Assistant Director, in carrying out plans approved by the Director.

## CLVI.

Record of Appointments, \&c.-A copy of each letter of appointment, promotion, or discharge shall be filed at once in the office of the Chief (530)

Clerk of the Smithsonian Institution. On or before the 20th of each month a statement of the names and rates of compensation of each person temporarily employed during the month shall be submitted to the Chief Clerk of the Smithsonian Institution. Daily memoranda of action shall be submitted.

## ALPHABETICAL INDEX．

Page．
Assistant Engineer，Duties of ..... 41
Absence，Leaves of ..... 2.52
Accession Book ..... 3
Accession Card ..... 2
Accessions，Card Catalogue of ..... 3
Accessiona，List of ..... 12， 39
Accession Record，Management of ..... 32 33
Accountant ..... 4
Accountant，Office of ..... 12
Accounts ..... 10
Accounts，Approval of ..... 4
Accounts，Certification of ..... 0． 44
Accounts，Department of ..... 44
Accounts，Instructions for ..... 44
Acting Curatora
10， 2829
Acknowledgment ..... ，
Adminiatration，Dicision of ..... 2， 18
Administration File23
Administration Files，Management of ..... 36
Athidavit ..... 45
Alaska Commercial Company ..... 30
Alcohol ..... 42
Alcohol Deposit ..... 31
Alcohol Depository ..... 12
Annelid Laboratory ..... 17
Announcement ..... 28
Announcement Record ..... 起
Announcement Record，Management of ..... 33
Anthropology，Division of2
Antiquities ..... 2
A partments ..... ．2． 14.18
A partmenta，Assignment of ..... 17
A partments．Une or occupancy of ..... 12
Apparatus ..... 501
Applances ..... 43
A pplications ..... 34， 52
Application File ..... 33
Application File，Management of ..... 35
Applications，Record of ..... 32
Applying Preservatora ..... 10
Appointments ..... 52
Approvals ..... 49
Archives． ..... 10
Archives，Classification of ..... 32
Archives，Department of ..... 32
Archive Room ..... 17,31
Archeological Laboratory ..... 17
Art ..... 2
Artists ..... 12
Art Laboratory ..... 12
Ashes，Removal of ..... 46
Assignment ..... 10
Assistants ..... 12
Assistant Director ..... 11
Assistant Director＇s Office ..... 17
Assistant Superintendents，Duties of ..... 46
Assistant Superintendent of Buildinga，Office of ..... 17
Attaching labels ..... 10
Attendants． ..... 12
Audit ..... 10
Automatic Ennmerators ..... 47
Batrachians ..... 2
Bell－Signala ..... 51
Bids ..... 9
Billa ..... 40
Bills，Payment of ..... 4
Birds ..... 景
Bird Laboratory ..... 17
Blackemith ..... 46
Blanks ..... 10,43
Blank forms，Making of ..... 50
Blanks，Requisitions for ..... 41
Blanks，Samples of ..... 26
Botany，Division of ..... 2
Bottles ..... 42
Bottle Deposit ..... 81
Buttle Depuait，No．1－2 ..... 17
Bottles，Plans for ..... 36
Bottles，Specitication for ..... 36
Buttles，Samples of ..... 36
Books ..... 37
Books，Entries of ..... 87
Hooks，Insue of ..... 38
Broken furniture ..... 12
Buildinga ..... 10， 14
Buildings，Decoration of ..... 48
Buildinge，Department of ..... 45
Burglar－alarma ..... 46
Barglar－alarm service ..... 10
Business otlices open ..... 25
Carpenter，Dutien of ..... 42
Савед ..... 2
Cases，Arrangement of ..... 18， 50
Cases，Construction of ..... 11， 18
Cases，Installation of ..... 50
Cases，Making of ..... 50
Cases，Plans fur ..... 30
Cases，Purchase of ..... 18
Cuses，Specitication for ..... 36
Cataloguen ..... 10，10， 36
Central Libraries ..... 87
Chief Clerk＇s Ottice ..... 17
Cbemistry ..... 2
Chemical Laboratory ..... 17
Circulars ..... 4
Circulars，Requisitions for ..... 细
Cleanera ..... 12

|  | Page． |  | Page． |
| :---: | :---: | :---: | :---: |
| （leaning ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10 ， | 10，41 | Exchanges | 10 |
| Cleaners，Dut | 18 | Exchanges，Applications for | 10 |
| Clerks | 13 | Exchanges，Department of | 40 |
| Clerks，Services | 41 | Exchanges，Proposals for | 10 |
| Closing Museum | 48 | Exhibition Cases | 夈 |
| Conal，Storage of | 41 | Exhibition Cases，Uso | 星 |
| Collectors．Report | 36 | Experiment，Division of | 2 |
| Collections，Installation of | 50 | Exhilition Halls | ${ }^{4}$ |
| Collections，Routine administration of | 25 | Expenditures，Certificates | 4 |
| Communications | 23 | Experiniental Physiology | ， |
| Complaints ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $9^{\text {g }}$ | 9，22 | Exploration | ， |
| Condemned Property，Disposal | 42 | Exploration，Division of | ？ |
| Conferencen | 23 | Extras，Applications for | 1 |
| Construction | 10 | Fees． | 4 |
| Cuntrnota ．．．．．．．．．．．．．．．．．．．．．．．．．． ， $10^{10}$ | 103 | Fishes | 1 |
| Contributions ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． ， 8 ， | 28，29 | Fish Laboratorics | 17 |
| Copyiat | 12 | Field－work | － 2 |
| Copyist，Services of | 41 | Firemen，Duties of | 4 |
| Correaponderce ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 12 ， | 12，22 | Fire－plugs | E |
| Curreapoudence Filea | 33 | Floor space，Assigument of | 18 |
| Correapondence File，Management of ．．．．．． | 36 | Food Laboratory | L |
| Courte | 14 | Fossil Plants | ， |
| Crustaceans | 2 | Fossil Plant Laboratory | 18 |
| Curators | 12 | Found Record | 46 |
| Curators，Reports of | 12 | Furniture | 2.18 |
| Curators＇Supply Deporit | 17 | Furniture，Purchase of | 16 |
| Curionities，National Cabinet of | 5 | Furniture，Use of |  |
| Departments，Claseification of | 2 | Gas－ixtures，Repairs of | 4 |
| Deporitoriew．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．14，17． | 17． 31 | Gas－meters | 4 |
| Director． | 6 | Gns－pipes． | 4 |
| Dirsctor＇s Oflice | 17 | Gae－pipes，Examination of | 4 |
| Director monthly，Statement to be made to． | 44 | General Correspondenc | 2 |
| Direetion，Department of | 18 | Genoral Rules | 各他 |
| Disbursement | 10 | General Storage | 3 |
| Discharges | 52 | Geology，Division of | ， |
| Disorderly Conduot | 47 | Gifts，Letters in acknowledgment of | z |
| Disorderly persous，Refuse | 47 | Guide－book manuals． | 21 |
| District Telegraph | 5 | Gutters，Examination of | 4 |
| Distribation | 27 | Heating | 1 |
| Distribution File ．．．．．．．．．．．．．．．．．．．．．．．．．．．33，${ }^{\text {3，}}$ | 33，34 | Heating Apparatus | 4 |
| Distribution File，Manager | 36 | Historical File． | ［1 |
| Distribation Record | 32 | Historical Filc，Management of | 3 |
| Distribution，Recerd of | $3{ }^{3}$ | Hoze，Examination of | 4 |
| Distribution Recond，Managem | 34 | Hotel Buls | 4 |
| Dogs ． | 42 | Industry | 1 |
| Draaghting | 10 | Induatry Laboratory | 10 |
| Drawings | 32 | Insects | ！ |
| Duplicate Deposit | 31 | Insect Laboratory | 1 |
| Duphicate Depository | 17 | Innpeotion | 3 |
| Duplicate Material． | 21 | Inspectors，Duties | 6 |
| Duplicato Specimens，Distribution of | 8 | Installation | 2.18 |
| Daplicates | 10 | Installation，Plana for | 3 |
| Duplicates，Application for | 40 | Interior Fituinga． | 18 |
| Duplicates，Department of | 40 | ＂Introduced by＂ | 4 |
| Duplicates，Distribution of | 10 | Inventory | c |
| Duplicates，Preparation of | 10 | Invertebrate Fonsila | 1 |
| Economic Geology | 9 | Invertebrate Laboratory | 12 |
| Educational Museum | 8 | Invertigations． | \％ |
| Electrician，Duties of | 48 | Janitors，Duties of | ： |
| Electric Clocks． | 46 | Jars． | 42 |
| Electric Servico | 10 | Journals． | 8 |
| Electric Service，Department | 50 | Keys | 1 |
| Employes，Classification of | 10 | Keys，Ianue of | 11 |
| Engineer，Dutiea of ． | 46 | Keys，Lons of． | ${ }^{1}$ |
| Estimates |  | Keye not in use． | 19 |

ALPHABETICAL INDEX.57
Page. Page.
Keys to doors, National Museum Offers ..... 2
Keys to doors, Smithsonian Building
Keys to doors, Smithsonian Building ..... 19 ..... 19
Office Hours, Access to Building after
Office Hours, Access to Building after ..... 49 ..... 49
Keys to Exhibition Cases ..... 19
Keys Use of ..... 19
Label. ..... 21
Labels ..... 10
Labels, Making of ..... 50
Label Room ..... 17, 21
Labels, Samples of ..... 30
Labels, Sizes of ..... 20
Labela, Styles of ..... 18
Labeling ..... 9,11
Labeling exhilition series ..... 20
Laboratories ..... 14, 27
Laborers ..... 12,45
Laborers, Dutics of ..... 48
Laborers, Survices of ..... 41
Labor ..... 10
Labor, Department of ..... 45
Labor or other norvice, Requisitions for ..... 41
Lapidary's work ..... 10
Letters-Information, Requesis fur ..... 23
Lettera referred ..... 23
Librarian, Daties of ..... 38
Library ..... $10,17,31$
Library, Department of .....  37
Library, Limitations to the use of ..... 37
Library, Objects of ..... 37
Library, Scope of ..... 37
Lighting ..... 10
Locks, Examination of ..... 41
Locks, Repairs of ..... 40
Locks, Samples of ..... 30
Lost Record ..... 4n
Mail ..... 22
Main Hall ..... 14
Mammals ..... 0
Manufacturers, Price-lists of ..... 30
Maps ..... 37
Mark, Signatures by ..... 45
Materia Medica Laboratory ..... 12
Material, Loans of ..... 21
Material, Requisitions for ..... 11
Material for investigation, Use of ..... 21
Memoranda ..... 30
Memoranda, Importance of ..... 51
Men, Races of0
Messengers ..... 12
Messengers, Duties of ..... 48
Metal ..... 42 ..... 12
Metallurgy
Minerals ..... 0
Mineral Laboratory ..... 17
Modeling ..... 10
Modeler's Deposit ..... 31
Modelet's Depository ..... 17
Mollusks. ..... 0
Mounting labels ..... 10
Mounting Specimens ..... 18
Muscum Building ..... 14
Muscum Catalogues ..... 34
Musoum work, Ink to be used in ..... 25
Museum, Publications relating to work of. . ..... 33
Musoum Registers ..... 34
Museum, Routine of ..... 11
Officers Clasaificatiun of ..... 10
Officers, Duties of ..... $山$
Officers, Reports of ..... 36
Offices ..... 14, 17
Opening Museum ..... 48
Order-book ..... 40
Orilers ..... 10
Orders, Issue of ..... 40
Other departments in division of adminis. tration, Superviaion of ..... 9
Uutside Workmen ..... 18
Packing ..... 10,29
Packing-boxes ..... 42
Packing, Requisitions for ..... 11
Packages to the Museum, Shipment of ..... 30
Painting ..... 10
Palcontological Laboratory ..... 12
Pamphlets ..... 37
Pass. ..... 49
Passes ..... 22
Pass-keys ..... 48
Pavilions. ..... 15
Pedentals, Making of ..... 60
Permits ..... 22
Photographing ..... 10
Photographer, Duties of ..... 51
Photographic Laboratory ..... 17
Physical Gcology ..... 2
Plana ..... 80
Platee ..... 39
Pluge, Examination of ..... 41
Polsoning ..... 10
Police ..... 10
Prefaces ..... 29
Preparators ..... 12
Preparators, Instructions to ..... 61
Preparator's Iocorde ..... 61
Preparators, Services of ..... 41
Preparation ..... 10
Preaervatives ..... 12
Price-liats ..... 10
Private Storage ..... 17
Promotione ..... 52
Property ..... 10
Property recelpts ..... 21
Property Record ..... 41, 42
Property, Removal of ..... 49
Property removed ..... 42
Proposala ..... 36
Proposal File ..... 33,34
Proposal File, Management of. ..... 35
Proposed investigations, Annonncement of. ..... 21
Protozoans ..... 9
Proofs. ..... 30
Publications ..... 10, 29
Publications, Department of ..... 38
Publications, Deacription of ..... 38
Publications, List of ..... 79
Publications, litules for administration of ..... 28
Publication Storage ..... 39
Public Comfort ..... 10
Public Comfort Rooms ..... 14,18

| Radiates ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }_{0}^{\text {Page }}$ |  |  | Pago |
| :---: | :---: | :---: | :---: |
|  |  | Storago | 10 |
| Ranges | 15 | Storage Department of | 8 |
| Recent Plant | 9 | Store－Rooms | 31 |
| Reception | 10，26 | Subvouchers | 45 |
| Recording | 11 | Sundays． | 4 |
| Records | 10，36 | Superintendent．Duties | 15 |
| Record of Applicat | 34 | Superintendect of Buildings，Ofi | 17 |
| Record，Museum of | 8 | Superintendent＇s Deposit | 21 |
| Record Routine | 26 | Superintendent＇s Depository | 11 |
| Reference of letters，Albreviations for | 24 | Supplica | 2， 10 |
| Regents，Boand of | 0 | Supplies，Department of | 4 |
| Registrar．Ottic | 17 | Snpplies，Preservation of | 11 |
| 1：cgisters | 10 | Supplies，Purchase of． | 1 |
| Registry | 10 | Supplics，Storage of | 40 |
| Registry，Department of | 29 | Supplies，Vouchers for | 星 |
| Registry Rooms | 17 | Supply Deposit． | 23 |
| Repairs | 10， 11 | Symbols used in business，Explanation of ．． | \％ |
| Reports | 9 | Taxidermy． | 10 |
| Reptiles | 9 | Telephones． | 等 |
| Reptile Laboratory | 17 | Telephone calls | Ii |
| Requisitions | 10，40 | Tulephone Clerk，Dutie | 50 |
| Lesearch，Museum | 8 | Telephone Service | 12 |
| Rucks． | 0 | Temporary Storage | 11 |
| Rotunda | 15 | Time－book | 48 |
| Rontine work，Supervision of | 2 | Time－record | 4 |
| Hoofs，Examination of | 41 | Timoservice | 10 |
| Rooms，Assignment of | 40 | Title Pages | $\pm$ |
| ILooms，Dexignation of | 14 | Towers | 15 |
| Salarics，Payment of | 4 | Tools． | 4 |
| Sanuples | 10 | Tradesmen，Circular | 运 |
| Sample Deposit | 31 | Tradeamen，Price－lists of | 3 |
| Sample Depository | 17 | Transportation． | 3 |
| Secretary，Office of | 17 | Traveling expenses，Accounts for | 45 |
| Sectional | 37 | Trays，Making of | 50 |
| Sectional Librarien，Regu | 38 | Unpacking | 10 |
| Semi－annual inventory | 42 | Urinals，Examination of | 4 |
| Service，Accounts for | 45 | Vivaria | 9 |
| Shipment | 1029 | Vouchers，Preparation of | 4 |
| Shipment，Requisitions for | 41 | Watch－clocks ．．．．．．．．． | 4 |
| Shop open． | 25 | Wutch－clock Service | 18 |
| Siznals． | 51. | Watchman in Telephone Room， | 50 |
| Sinks，Examination of | 11 | Watchman on Patrol，Duties of | 51 |
| Skeleton preparatiou． | 10 | Watchtuen，Dutien of． | a |
| Smithsonian Buildiag | 16 | Washstanda，Examination of | 41 |
| Smitheonian Building，A partm | 19 | Waste Paper | E |
| Smithsonian Institution，Agents or | 30 | Water，Examination of | 1 |
| Smithsonian Institution，Establisho | 5 | Water－closets，Examination of | 41 |
| Smoking | 25，47 | Water－fixtures，Repairs of． | 46 |
| Sorting． | 27 | Water－pipes ．．．．．．． | 16 |
| Space，Assignment of | 11 | Whistle Signals | 51 |
| Specimens，Entry of | 12 | Window fasteninga，Examinati | 41 |
| Specimens，Installation of | 11 | Work，Assignments of．．．．．． | ， |
| Specimen Registers | 32 | Work，Hours of ．． | 43 |
| Specimen Register，Management of | 34 | Work Rooms |  |
| Stands | 18 | Work－moms open | \＄ |
| Stationery | 17 | Workmen，Details of | 46 |
| Stationery，Samples of | 36 | Worms | $\bigcirc$ |
| Stereotype Plates | 39 | Woor－cuts | 9 |
| Stonecutting Work． | 10 | Wood，Storage of． | － |
| Stop－cocks，Examination of | 41 | Zoology，Division of． |  |

Storago ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10
Storage，Department of．．．．．．．．．．．．．．．．．．．．．．．．．．．ะ
Store－Rooms ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Is
Subvouchers ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Superintendent．Duties of ．．．．．．．．．．．．．．．．．．．．．
Superintendect of Buildings，Ofice of ．．．．．． 17
Superintendent＇s Deposit ．．．．．．．．．．．．．．．．．．．．．．． 21
Supplic D，
Supplies，Department of ．．．．．．．．．．．．．．．．．．．．．．．．
Snpplies，Preservation of．．．．．．．．．．．．．．．．．．．．．．．． 11
pples，Purchase of
Supplie，Vonchera for
Supply Deposit．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{28}$
Symbols used in business，Explanation of ．．E
Thin
Telephone calls ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Tulephone Clerk，Dutien of ．．．．．．．．．．．．．．．．．．．．．So
elephone Service
Temporary Storage ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 12．$^{\text {n }}$

Thertice ．．．．．
Title Pagen ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Towera ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{13}$
Tools．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

radeamen，Price－lists of

Traveling expenaes A cocout for ．．．．．．．．．．．．．．．
Trays，Making of ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＄0
Cnpacking ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10
，Lxamination of

Vouchers，Preparation of．．．．．．．．．．．．．．．．．．．．．．．．． 4
Watch－clocks ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．蝹
ch－clock Servic
Whe 1
Watchtnen，Duties of ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＆
Washstands，Examination of ．．．．．．．．．．．．．．．．．． 41

Water－closets，Examination of
Water－fixtures，Repairs of．．．．．．．．．．．．．．．．．．．．．． 40 是
ter－pipes
Whistle Signals ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 1$
Window fasteninga，Examination of．．．．．．．il

Work Rooms ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．14． 18
Work－roms open ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＄
Workmen，Details of ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 45

Woor－cuts ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

Zoology，Division of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．I

# [Proceedlings C̈nited States National Musenm, 1881. Appendix.] 

SMITHSONIAN INSTITUTION.
UNITEDSTATESNATIONAIMUSEUM.

No. 2.

## 

The new Museum building is now finished, and the installation of the collections within its walls is being carried on as fast as exhibition cases can be built. The large additional space now available for the display of specimens renders it practicable for the officers of the Museum to carry out the long cherished plan of making it an educational exhibition of the most useful kind.

Few persons realize what a wealth of material is stored away in the vaults and attics of the Smithsonian building and the "Armory," which has been used as a deposit since 1876 , in addition to the exhibits of the thirty or more foreign governments, given to the United States at the end of the Philadelphia Exposition, there is a still greater bulk of valuable material obtained then and since from private and State exhibitions made upon the same occasion.

Still more important are the collections made for that occasion by the Fish Commission and the Smithsonian Institution, and by the various agencies of the latter during the past twenty years, and which, for lack of room, have never been publicly exhibited.

In the new building will be concentrated all the industrial collections, and all the ethnological specimens, except the reserve series of pre-historic stone ituplements. In the old builling will be kept those collections which are most important as material for purely scientific investigation, such as the main collection of birds, the fishes, and reptiles in alcohol, the marine invertebrates, \&c. The new building will, however, contain the collections in economic natural history.

The collections in the new building are intended to form an Anthropological Museum, organized upon the broadest and most liberal interpretation of the term "anthropology," and illustrating the characteristics of civilized as well as savage races of mankind and their attainments in civilization aud culture. The central idea will be man, and the manner in which he adapts the products of the earth to his needs. All useful and noxions animals, plants, and miuerals will be shown, industries by means of which they are utilized-by both method and finished product-and finally, the varions objects which men nse for any purpose whatever. A place is prorided for every object uhich has a name.

A thorough system of descriptive labels and guide-book manua's is provided for. No specimen will be exhibited which is not so thoroughly explained by its label that its significance may be understood by any intelligent visitor.

With this scope and this method of exhibition, the Museum will be of (537)
greater educational value than any similar museum heretofore organized, since a single series of selected objects will replace the numerons partial series such as are seen in every industrial fair. The arrangement of these in a philosophical manner will add greatly to their significance.

In displaying and labeling the objects in the Museum its officers are striving to profit by the experience of all the best museums of Europe, which have been visited and carefully studied with this end in riew.

In certain departments the National Museum is already richer than any other, notably in the ethnology of the native races of America, the zoology of the United States, the department of animal products, the department of fisheries, that of building stones, and that of North American ores.

In other sections, by the cooperation of prominent experts and basiness houses, collections are being made with mach thoronghness. For instance, the materia medica collection is in charge of Schieffelin \& Co., of New York, who are sparing no pains or expense in making it complete; F. W. Devoe \& Co. are doing the same thing for paints and pig. ments; H. K. and F. B. Thurber for food products; Powers \& Weightman, of Philadelphia, for chemical products used in the arts, \&e. Mr. Edward Atkinson, in connection with his census investigations on the cotton industries, has gathered for the Museum a complete series of the cotton fabrics made in the United States, and the Department of State has deposited the large collection of cotton fabrics of foreign countrics, gathered by its agents for the Atlanta Cotton Exposition.

It is the policy of the Museum to enlist the aid of some prominent ex. pert, or some leading business house, in making up the display for each special industry. It has been very gratifying to find that all who have as yet been invited to help have willingly and enthnsiastically complied.

It is hoped that the possessors of valuable private collections may find it to their interest to deposit them in the National Museum, and to bring about this result the authorities of the Museum have an additional incentive to make the display of articles in their cnstody as attractise as possible.

In arranging for the reception of collections, the Museum agrees to furnish exhibition cases, and also bottles and such other accessories for mounting as are necessary for the most effective display.

Each individual object will have a conspicuously printed label, upon which will be placed the name of the donor, which will also be published in all catalogues and other publications of the Museum in which they are referred to.

The Museum will pay transportation charges on collections sent.
Contributors are requested to supply all available information regarding specimens which they may send.

SPENCER F. BAIRD,<br>Secretary Smithsonian Institution, and Director U. S. National Museum. January 1, 1882.

# [Proceedings United States National Museum, 1881. Appendix.] <br> SMITHSONIAN INSTITUTION. 

UNITEDSTATESNATIONAI MUSEUM.

No. 3.

CIRCULARIN REPERENOE TO PRTROLEUM COLLECTIONA.
My Dear Sir: Prof. S. F. Peckham, of Providence, R. I., has been requested by myself to collect and arrange for exhibition a suite of specimens of petroleum which will illustrate the occurrence of that important substance in the United States. Will you render him such assistance as you may be able, and oblige,

Very truly yours,

> S. F. BAIRD,
> Secretary Smithsonian Institution, and Director United States National Museum.

Washington, D. C., January 1, 1882.

My Dear Sir: Will you please send me a sample of petroleam by express from $\qquad$

Please send at least a quart. Will you also fll out and sign the certificate hereto attached as fully as you may be able.

Very respectfully,

The accompanying specimen of petroleum, furnished the National Museum at Washington, occurs as follows:

State,
County,
Township,
Farm,
Lease,
Number or name of well,
Depth of well,
When drilled (completed),
Oil in sand,
Oil in crevice,
First, second, or third sand
Thickness of sand,
Pebble or fine sand,
Yield of well on first day of flow, bbls.,
Yield of well on first day of pumping, bbls.,
Was the well torpedoed?
Sp. gr. of oil,
Geological formation from which the oil came,
Address of donor.

SMITHSONIAN INSTITUTION.

# UNITED STATESNATIONAL MUSEUM. 

No. 4.

## CRECULAR CONCERNING THE DEPARTMENT OF INSECTE.

Prof. C. V. Riley has deposited in this Museum his extensive private collection of insects. The collection comprises some 30,000 species and upward of 150,000 specimens of all orders, and is contained in some 300 double folding-boxes in large book form and in two cabinets of 80 glasscovered drawers. The specimens are all in admirable condition, and the determined species duly labeled and classified. The collection is chiefly valuable, however, for the large amount of material illustrating the life-histories, habits, and economy of species, 3,000 of which are represented in one or all of the preparatory states, either in liquid in separate boxes, or blown and mounted dry with the imagines. Fifteen blank books are filled with notes and descriptions of these species, most of them yet unpublished. Though several special collections surpass it in a single order, few, if any, general collections of North American insects equal it, and perhaps none from the biological point of view.

The Museum is now prepared to properly care for such collections, nnder direction of Professor Riles, who has been appointed honorary curator of insects, and it is hoped that in time, with so good a beginning, a truly national exposition of the insect fauna of the conntry will be brought together. The Museum building is entirely fire-proof, and there is every facility for the safe preservation of specimens or collections that may be donated. I would especially request that correspondents send the alolescent states in connection with mature forms whenever possible, together with all material exemplifying the transformations, architecture, and economy of species. I would also invite those engaged in descriptive entomology to deposit in the Museum types or duplicates of their described species, it being my intention not only to build up a systematic national collection that students may profitably consult, and which will be kept in secure cabinets to be used only by such students, but to have in connection therewith a more popular exhibit for the instruction and edification of the public.

> SPENCER F. BAIRD, Secretary Smithsonian Institution, and Director United States National Muscum.

# [Proceedings United States National Museum, 1881. Appendix.] <br> SMITHSONIAN INSTITUTION. 

UNITEDSTATESNATIONAIMUSEUM.

No. 5.

## ESTABLIGHMENT AND OFEICERE.

## MEMBERS (EX-OFFICIO) OF THE SMITHSONIAN INSTITUTION.



## REGENTS OF THE INSTITUTION.



## OFFICERS OF THE INSTITUTION.

[^168]
# OFEICERS OF THE NATIONAL MUSEUM. 

Spencer F. Baird, Secretary of the Smithsonian Instilution: Director of the Musewn.

G. Brown Goode.......dssistant Director: Curator, Department of Arts and Industries.
 William H. Dall................................ Honorary Curalor, Department of Mollaska Frederick P. Dewey.........Assistant, Department of Minerals and Economic Geology. James M. Flint............................. Honorary Curator, Section of Materia Median.
 George W. Hawes.............Curator, Department of Minerals and Economic Geology. Richard Rathbun............................. Curator, Department of Marine Inrertebrates. Charles Rau................................................Curator, Department of Antiquitice Robert Ridgway...................................................Curator, Department of Binis. Charles V. Riley................................................
 Robert E. C. Stbarns...............................................stant, Department of Molluaks.
 Frederick W. True.........................Librarian: Curator, Department of Mamals. Lester F. Ward............................ Honovary Curator, Department of Fossil Plants. Charles A. White ..............................Curator, Department of Fossil Inrerlebrata Henby C. Yahrow ................................ Honorary Curator, Depariment of Reptiles.

| Stephen C. Brown | Regintrar. |
| :---: | :---: |
| Henry Horan | Superintendent of Buildixgs. |
| Joseph Palmer | ......... Chief Modeler. |
| Whlliam T. Hornaday | ... Chief Taxidemist. |
| January 1, 1882. |  |

## SMITHSONIAN INSTITUTION.

## 

No. 6.

## CLASEIPICATION AND AREANGENENT OH TEIG MATEREA MEDIOA COLLECTION.

By JAMES M. FLINT, Surgeon, U. S. Navy.

$\qquad$
-

## PRIMARY DIVIGIONB.

I. Inorganic Materia Medica.
II. Organic Materia Medica, $\left\{\begin{array}{l}\text { 1. Vegetable products. } \\ \text { 2. Products of fermentation and dis- } \\ \text { tillation. } \\ \text { 3. Animal products. }\end{array}\right.$

## I.

Medicines of the Inorganic Division to be classified according to their fundamental elementary constituents, following the order of the elements, given in Roscoe and Schorlemmer's Treatise on Chemistry.

With each elementary substance, to be arranged-

1. The chemical compounds of that element used in medicine and pharmacy.
2. The preparations of which that element, or any of its compounds, constitutes the fundamental ingredient.

These preparations to include-
a. The official preparations of the United States Pharmacopeia.
b. The official preparations of foreign Pharmacopœias which are not recognized by the United States Pharmacopcia.
c. Unofficial preparations which are considered to be of sufficient importance or interest to be worthy a place in the collection.

Poisonous salts, liable to be mistaken, on account of similarity of appearance, for those less active, should be shown with the latter also.

## II.

1. Vegetable products to be classified according to the botanical affinities of the plant from which derived, following the sequence given in Bentham and Hooker's Genera Plantarum, beginning with the lowest order.

Under each natural order to be arranged-
Proc. Nat. Mus. $81-35$ (545)
A. The official drugs derived from each plant of that order.
B. Drugs not official in any Pharmacopœia, but which are or have been used in medicine.

With each crude drug to be displa yed-
a. A colored plate of the plant from which it is derived, with figures illustrating its botanical characters.
b. A specimen of the flowering plant, pressed and dried, in the usual manner of an herbarium.
c. The drug in all its variet ies, commercial and botanical. These specimens primarily should be fair commercial samples, such as will honestly represent the article as found in the market. They may be supplemented by carefully selected, or rare samples, or by those adalterated or possessing interesting peculiarities of any kind. The commercial and botanical sources of each should be authenticated. The practical ralue of the collection will largely depend upon the complete ness and accuracy of this portion of the exhibit.
d. Sections of roots, stems, barks, etc., to show structure, fracture, ot other physical characters that may assist in their identification, with drawings of the same, magnified, if necessary.
e. Preparations, official and other, of which the drug or any prodnct of the drug constitutes the fundamental ingre dient.
2. Products of fermentation and distillation will include the products of the acetous and rinous fermentations, and the derivatives, chloroform, ether, etc., as well as distillates, such as carbolic acid, pyroligneous acid, etc.
3. Medicines of animal origin to follow the usual classification of the animals from which the crude drug is obtained.

Each group of specimens, arranged under one head, to have a descriptive card, giving in brief terms the most important facts relating to general character, source, commercial varicties, etc.

Each specimen to have its label, giving scientific and vernaculas names, and such special information as can be condensed within the prescribed limits.

No. 7.
 CINES AEPEAR, AND AIEE ADMINISTEREB.

By JAMES M. FLiNT, Surgeon, U. S. Navy.

The following classification has been prepared as the basis of a special exhibit in the Materia Medica section of the National Museum, illustrittive of the forms in which medicinal substances appear in commerce, or are prepared for adminstration by the pharmacist.

The exhibit is intended to illustrate this classification by actual specimens, which shall be, as nearly as possible, representatives of their respective classes. The list of examples is provisional only, and subject to such modifications as a larger experience may suggest.

The effort has been made so to condense each definition that it may be conspicuously printed on the label of the jar or bottle containing the specimen, together with the name of the latter.

CLASSIFICATION OF MEDICINAL FORMS.
I.-Crude vegetable drugs.


Examples.
Senega.
Ipecac.

Galangal.
Spigela.
Solomon's Seal.

Jalap.

Garlic.
Onion.

Colohricum.

Guiacum.

## Classification of medicinal forms-Continued.

I.-Crude vbgetable drugs-Continued.

| Cortices. (Barks.) | The covering of the stems and roots of exogenous plants, outside of the wood. | Examples. <br> Oak. <br> Cinuamon. |
| :---: | :---: | :---: |
| Medula. (Piths.) | The cellular central portion of exogenous stems. | Sassafras pith. |
| Herbæ. <br> (Herbs.) | Plants which die, to the ground at least, after ripening the seed or on the approach of wiuter. In commerce comprises those drugs which consist of the whole herb, or of the stems, leaves, and flowering tops of herbs. | Absinthe. |
| Stipites. <br> (Stems.) | The stalks and branches of herbs deprived of leaves, tlowers, and fruit. | Dulcamara. |
| Summitates vel Cacumina. (Tops.) | The small terminal branches of plants. | Savin. |
| Gemmat vel Turiones. <br> (Buds.) | Branches or leaves in their carliest or undeveloped state. | Balm of Gilead Buds Poplar Buds. |
| Folia. <br> (Leaven.) | The green deciduous organe of plants formed by expansion of the bark at the nodes of the stem. | Buchu. <br> Jaborandi. |
| Flores. <br> (Flower8.) | The organs of reproduction of phenogamous plants. | Santonica. Orange. Aruica. |
| Petala. <br> (Petals.) | The leaves of the corolla; flower-leaves. | Rose. |
| Stigmata. <br> (Stiguas.) | The tops of the pistils of flowers, being that part which receives the pollen. | Crocus. |
| Fructus. <br> (Fruits.) | The matured ovaries of plants, with their contents. | Anise. <br> Juniper. <br> Hips. <br> Colocynth. |
| Capsula. (C'apsules.) | Seed vessels which burst open at maturity, allowing the seeds to fall out. | Poppy. |
| Semina (Sceds.) | Those parts of the fruit which contain the embrjos (or undeveloped piantlets), and by means of which the higher plants are chiefly propagated. | White Mustard. Castor. Nux vomica. |
| Trichomes. <br> (Haire.) | Hair-like appendages to the surfaces of plants. | Mucuna. |
| Glandula. <br> (Giands.) | Small cellular organs which secrete oily, aromatic, and other product. | Lupnlin. |
| Pulpa. <br> (Yulps.) | The soft and parenchymatous parts of vegetablea, reduced to a paste by the operation of pulping. | Tamarind Pulp. |
| Succl. (Juices.) | The fllid obtained hy bruising or pressing plants, or parts of planks. <br> Rob, or Roob, is a juice ovaporated to the consistency of honey. | Coniurn Juice. |

Examples
Oak. mon.

## Sassafras pith.

Absinthe.

Balm of Gilead Buds Poplar Buds.

Buchu.
Jaborandi.

Santonica.
Orange.
Arnica.
Rose.

Crocus.

Anise.
Hips.
Colocynth.
Рорру.

White Mustard. Castor.
Nux vomica.

Mucuna.

Lupnlin.

Tamarind Pulp.

Coning Juice.

## Classification of medicinal forms-Continued.

I.-Crude vegetable drugs-Continued.

|  |  | Examples. |
| :---: | :---: | :---: |
| Gummata. (Gums.) | Solid, uncrystallizable vegetable exudations, insoluble in alcohol, but wholly or partially soluble in water, forming macilage. | Acacia. |
| Balsama. <br> (Balsams.) | Natural vegetable products which contain resin, volatile oil, and benzoic or cinnamic acid. | Balsam Copaiba. |
| Resinae. <br> (Resins.) | Solid, brittle, inflammable, translucent vegetable products, insoluble in water, but soluble in alcohol, ether, and essential oils. | Rosin, common yellow. |
| Gummi-resinæ. (Ginm resins.) | Compounds of gum, resin, and other vegetnble products, exuding from incinions made in certain plants. | Ammoniac. |
| Fecula. (Starche8.) | Abundant vegetable principles having the composition $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$; of definite form, tasteless, inodorous, insoluble in cold water, alcohol, and ether. | Wheat Starch. |
| Sacchara. (Sugars.) | Neutral substances, mostly of vegetable origin, having a sweet taste, soluble in water and dilute alcohol; insoluble in ether. | Cane Sugar. |

## II.-Chemical products.

Metals.
Mineral acids.
Vegetable alka-
Lies.
Vegetable acids.

| Balts of vegetable |
| :---: |
| acids. |

Elementary bodies having a metallic luater, good conductors of heat and electricity, and capable of combination with oxygen to form bases.

Products of the chemical nuion of metals with oxygen.

Compounds in which one or more of the equivalents of hydrogen in an acid are replaced by a metal.

Acids of inorganic origin.
Substances derived by chemical processes from vegetable products, capable of union with acids to form salta.

Acids of vegetable origin.
Products of the combination of vegetable acids with bases, either organic or inorganic.

Products of the combination of vegetable bases with acids, either mineral or vegetable.

Substances obtained by chemical processes from vegetable or animal products, not forming salta with acids or bases.

## Iron Filings.

Red Oxide of Mercary.

Sulphate of Copper.

Sulphuric Acid.
Cinchonia.

Tartaric Acid.
Citrate of Iron and Quinine.

Sulphate of Strych. nia.

Digitalin.

## Classification of medicinal forms-Continued.

## iII. - Pharmaceutical preparations.

A.-Solids.

|  |  | Examplea |
| :---: | :---: | :---: |
| Species. <br> (species.) | Mixtures of several plants or parts of plants, dried and cut into small fragments. Used for making decoctions, infusions, etc. | Species Pectorales (Ph. G.) |
| Pulveres. <br> (Powders.) | Substances reduced into small particles by trituration, precipitation, grauulation, or sublimation. | Powder of Ipecac. |
| Pilulae. <br> (Pills.) | Senall globular masaes of a size that may be swallowed without mastication. | Not coated. <br> Sugar coated. Gelatine coated. Silver-leaf coated. Gold-leaf coated. Compressed. Printed. Granules. Boluses, etc. Capsules: Gelatine. Pearls. Folding, etc. |
| Extracta <br> (Extracts.) | Solid preparations resulting from the evaporation of solutions of vegetable principles. | Extract of Gentian. |
| Resinæ. <br> (Resins.) | Medicines prepared by exhansting the substances from which they are obtained by alcohol, and precipitating the resinous matter with water. | Resin of Jalap. |
| Confectiones. (Confections.) | Soft solid medicines, in which the mediciual substances are incorporated with sugar or honey. The term includes Electuaries and Conserves. |  |
| Electuaria. <br> (Electuaries.) | Medicinal substances, generally in the form of dry powders, combined with sirup or honey. | Confection of Senna. (U.S. Ph.) |
| Conserva. (Conserves.) | Consist of recent vegetable substances and refined sugar beaten into a uniform mass. | Confection of Rose. (Br. Ph.) |
| Chocolatae. <br> (Chocolates.) | Medicines of which the vehicle is a mixture of chocolate and sugar. | $\begin{aligned} & \text { Chocolat Fertngi- } \\ & \text { neux. } \\ & \text { (Codex. } \end{aligned}$ |
| Pastze. <br> (Pastes.) | Compounds of medicinal substances with sugar and gum. Tbeir soft solid consistence distinguishes them from troches. | Marshmallow paste. |
| Saccharureta. (Saccharures.) | Medicines in the form of powder, composed of sugar mixed with medicinal substances. | Saccharure de Lio chen. (Codex.) |
| Oleosaccharureta. (Oleosaccharures.) | Medicines composed of essential oil and sugar. | Oleosacolarare d'anis. (Codex.) |

(550)

Classification of medicinal forms-Continued.

## III. - Pharmaceutical preparationg-Continued.

A.-Solids-Continued.

|  |  | Examples. |
| :---: | :---: | :---: |
| Troohisci. <br> (Lozeuges; Troches; Tablettes, Codex.) | Compounds of sugar with medicinal substances, made into paste with mucilage, cut into various shapes and dried. | Troches of Potas. sium Chlorate. |
| Rotula. <br> (Sugardrops; Pastilles, Codex. ) | Compounds of medicinal substances with sugar, differing from troches in being prepared with the aid of heat. | Peppermint Drops. |
| Gelatinae. <br> (Jollies.) | Soft solid compounds of medicinal substances, with gelatinous or gummy matters, having the well-known trembling consistence of jelly. | Gelée de Carragaheen. (Codex.) |
| Sapones. (Soaps.) | Products obtained by treating fatty bodics, with alkalies dissolved in water. | White Castile Soap. |
| Unguenta. <br> (Ointments.) | Topical applications of such consistence that they may be easily rubbed on the akin, becoming gradually liquefied. | Ointment of Rosewater. |
| Cerata. (Cerates.) | Unctuons preparations of such consistence that they may be spread at ordinary temperatures, but do not meit when applied to the skin. | Goulard'a Cerate. |
| Emplastra. <br> (Plasters.) | Solid preparations which are spread by heat, and which are adhesive at the temperature of the body. | Lead Plaster. |
| Sparadrapa. (Sparadraps.) | Plastery spread npon leather, linen, muslin, or silk. | Adhesive Plaster on cloth. <br> Adhesive Plaster on leather. <br> Isinglass Plaster. Court Plaster. |
| Chartae. <br> (Med. papers.) | Paper impregnated with medicinal substances or upon which preparations resembling plasters have been spread. | Cantharidea Paper. |
| Suppositoria. <br> (Suppositories.) | Solid medicinal preparations intended to be introduced into the rectum or vagina. | Suppositories of Tanuin. |
| Cataplasmata. (Cataplasme; Poultices.) | Topical applications of the consistence of soft paste, composed of powders mixed with water, various solutions or fixed oils. |  |
| Cigarettes. | Dried medicinal plants cut fine and rolled in papers for smoking. | Cigarettes of Stramonium. (Codex.) |
| Pastill. <br> (Pastilles.) | Compounds of aromatic substances used in fumigation. | Fumigating Pas. tilles. |

## Classification of medicinal forms-Continued.

III.-Pharmaceltical preparationg-Continned.

> B.-Liquids.

## Decocta.

(Decoctions.)
Infusa.
(Infusions.)
Ptisance.
(Tisanes.)
Liquores.
(Solutions.)
Aquae medicata.
(Medicated wa. ters.)

Mucilagines.
(Mucilages.)
Misturee.
(Mixtures.)

Emulatones.
(Emulsions.)

Linctus.
(Linctures.)
Byrupi.
(Syrups.)
Mellita.
(Honeys.)
Oxymellita.
(Oxymels.)

## Aceta.

(Vinegans.)

Tincturee.
(Tinctures.)

## Alcoolatures.

(Alcoolatures.)
(Codex.)
Tinctura aethereae.
(Ethereal tinctures.)

Solutions of regetable principles obtained by boiling in water.

Solutions of vegefable principles, made with hot or cold water without boiling.

Very dilute infusions intended for use as habitual drinks by the sick.

Aqueons solutions in which the substance acted upon is wholly soluble in water.

Aqueous solutions of volatile oils or gases.

Aqueous solutions of gum or allied substances.

Preparations containing medicinal substances in suspension in watery fluids. In a more general sense, liquid preparations composed of several ingredients, and not otherwise classified.

Mixtures in which the suspended substance in of an oleaginous or resinous nature, suspension being aided by gum or yolk of egg.

Medicines of sirupy consistence, formerly sucked from end of a liquorice stick.

Concentrated solutions of sugar in watery fluids, either with or without medicinal impregaation.

Preparations in which boney is used as the vehicle of the medicinal subatance.

Medicated honeys containing acetic acid.

Includes distilled vinegar and infusions and solutions of medicinal substances in vinegar or acetic acid.

Solutions of medicinal substances in alcohol, prepared by maceration, digestion, or percolation. Elixirs are compound tinctures, generally highly tlavored and sweetened.

Tinctures prepared with fresh plants.

Liquid preparations in which the menstrumm is a mixture of alcohol and ether.

Examples
Decoction of Senega.

Infusion of Wild Cherry.

Tisane de Gentiane. (Codex.)

Solution of the Are nite of Potassium.

Cinnamon Water.

Mucilage of Sassafras Pith.

Compound Mixture of Iron.

Ammoniac Mixture.

Looch Blanc. (Co dex.)

Syrup of Rhubarb.

Honey of Rose.

Oxymel of Squill.

Vinegar of Lobelia

Tincture of Guaiac.

Tincture of Fresh Orange Peel. (Br. Ph.)

Ethereal Tincture of Lobelia.

Classification of medicinal forms-Continued.
III.-Pharmaceutical preparations-Continued.
B.-Liquids-Continued.


SMITHSONIAN INSTITUTION.

```
UNINHDE'NA'HESNATIONAIMMUSEUM.
```

No. 8.

MEIORANDA TOE COLIAETORE OF DRUGS ROR TEIS MATEREA


## Ey JAMES M. FLINT, Surgeon U. S. Navy.

To carry out the plan adopted for the Materia Medica Section of the National Musenm, it will be necessary to obtain specimens of all substances used as medicines by the people of all countries. That these specimens may be more than mere museum curiosities, it is important that information be furnished regarding the source and mode of production of each drug. Much doubt still remains as to the exact source of many of the standard articles of the materia medica, and a reinvestigation of any or all of them is to be desired.

The following suggestions are made for those more or less unacquainted with the subject who may have opportunities for making collections, and as aids to memory for the expert:
I. Obtain specimens of all substances used as medicines, and all drugs which are cultivated, or collected for export, in the region visited.
II. Gather as much information as possible concerning each specimen, under the following heads:

## If of vegetable origin-

1. Name, commercial, vernacular, and scientific.
2. Botanical and common name of the plant from which the drag is derived.
3. Character of the region in which produced. (Mountain or valley, dry or wet ground, \&c.)
4. Mode of cultivation or collection, and preparation for use or the market.
5. Commercial importance (quantity, value, \&c.).
6. Supposed medical properties and uses.
7. History of the individual specimen.

It is of the greatest importance to obtain pressed specimens of the flowering plant from which each drug is derived for botanical identiffcation. If a large plant, a single branch, bearing leaves and Howers, may be pressed, or even leaves and flowers separated from the stem. Get seeds also, especially if the flowering plant cannot be had, so that the plant may be propagated in the hot house.

Plants are easily pressed by arranging them while fresh on sheets of absorbent paper, and putting them between boards, under moderately (555)
heavy weights. The papers shonld be changed every day until the specimens are dry.

If of animal origin-

1. Name of drug.
2. Name and description of animal from which obtained.
3. How obtained and prepared.
4. How used.

If of miveral origin-

1. Name.
2. Source.
3. Composition.
4. Mode of preparation.
5. Medical uses.
III. Bear always in mind that the value of every specimen in each of these divisions will be directly proportionate to the amount of accurate information which accompanies it, especially such as relates to source and mode of production. Everything which will help to illustrate and substantiate this information will be worth diligent search and carefol preservation.

## SMITHSONIAN INSTITUTION.

UNITED STATES NATIONALMUSE:UM.
No. 9.

## CIECTLARIN REFERENCE TOTHE BUELDING-NTONECOLIECTION.

The special investigation of the building-stone industry of the United States made by the Tenth Census is now nearly completed, as far as field work is concerned. It has been a part of the work of this investigation to forward to the National Museum samples of all stones quarried for purposes of construction. These specimens were mostly of such size that they could be dressed into four-inch cubes. Over 3,000 such specimens have been received at the National Museum, and nearly one. half of the number have already been dressed in the following manner: Polished in frout; drafted and pointed on the left-hand side; drafted rock face upon the right-hand side; entirely rough behind, and rubbed or chiselled upon the top and bottom. As soon as dressed, the samples are placed in suitable cases, where they may be examined by all who are interested in building stones.

All the building stones of the country are thus brought together for stady and comparison. Stones which have not been quarried until recently may be compared with stones of the same kind which have long been in use, and the qualifications of which are well known.

There is also quite a large collection of foreign stones with which comparisons may be made. Nearly every foreign quarry, the product of which is in the markets of this country, is represented by a specimen. There are also quite a number of specinens from foreign quarries, the products of which have been but little or not at all in the markets of the United States.

This collection is now perhaps the largest, most complete, and sys tematic of any of its kind in the world.

Thin sections tor microscopic examination are being prepared from all the different specimens. The purposes of the investigation demand a determination of the compositions and structures of the various rocks, as these in combination with the location and geological features determine the applicability of the stones to varions uses, and explain their peculiar properties, and the desired results are most directly obtained by the microscopic examination of thin sections.

This metherl of study in the bands of the microscopic lithologists has been most fruitful in developing valuable and interesting knowle lge of a scientific character. By its means the nature and composition of almost all of the commonly occurring rocks have been determined, and exactly those same features which are of importance in scientific study
(557)
are the ones which determine the value and appearance of building stones, and there is no distinction between the scientific and the practical.

The microscopic study of these stones is supplemented by chemical analysis, which is often necessary to determine important points.

In the older and more developed States there are perhaps quarrios worked in all the different kinds of rock suitable for building and ornamental stones, and, since the special agents of the Tenth Census, who were engaged on the building-stone investigation, formarded to the National Museum specimens representing all working quarries, it is probable that the building stones of these States are quite fully represented.

In the newer portions of the country, however, the best building stones are not always worked, and since these special agents were instructed to incur no extra expense for collecting information concerning undeveloped material, many of the best stones in these portions of the country are not represented by specimens in the National Museum.

The following table shows the localities from which samples of bnilding stone have been received in those States and Territories in which there are probably other localities which might furnish excellent building stone.

It often happens in a new country that, when a costly building is to be constructed, stone is brought from a great distance at great expense, even if in the immediate vicinity there is an abundance of stone equally good. The home product is not rejected because of prejudice, but becanse it has not been tried, and because there are no adequate means at hand for examining the material and comparing it with the stones that have been tried.

The collection of specimens of all regularly quarried stones has been most complete and successful. Quite a large number of specimens of stones, but little or not at all quarried, have also been obtained through the special agents of the Census, or through parties interested in the development of the resources of their respective neighborhoods; but there are undoubtedly a very large number of localities which have excellent building stones, and from which no specimens have been sent to the National Museum, and concerning which we possess no information.

That a thorough knowledge of the building stones of any country is of great economic value is unquestionable, and in a rapidly growing country like ours such knowledge is of incalculable valne.

It is the purpose of this circular to bring to the attention of those interested in the development of the building-stone resources of their own districts the work that is being done in this connection by the Tenth Census in co-operation with the National Museum, and it is hoped that specimens and information may be received from most, if not all, the localities having valuable undeveloped building stones, in time, that this
information, together with the results of the examination of the specimens may be embodied in the Ceusus Report upon the building-stone industry of the United States.

Auy parties who may be interested in furnishing such information, and in formarding specimens will be furnished with schedules to indicate the nature of the information desired, and with franked labels with which to forward specimens throngh the mails.

> SPENCER F. BAIRD,
> Secretary Smithsonian Institution, and Director Cnited States National Museum.

Statement showing localitics from which samplex of building stone have been received, in states and Territories from which a more complete collection of specimens of building stones is desired.
[No specimens have been received from the Iudian Turritory and Arizona.]

Virginia.
North Carolina.
Georgia.
Florida.
Alabama.
Kentucky.

Texas.
Dakota.
Mortana.
Colorado.
New Mexico.
Utah.

Nevada.
Idaho.
Washington Territory. Oregon.
Wyoming.
California.

Arkansas.
Localities from which specimens of building stone have heen receired at the National Museum. VIRGINIA

( (5:19)

Localities from which specimens of building stones hare been receired, $f c$.-Continued. north carolina.

| No. | Name of stone. | Town. | County. | Quarry. |
| :---: | :---: | :---: | :---: | :---: |
| 3 1 | Leopardite. Soapstone | Near Charlo Nantahalah | Mecklenbur Swain | W. Y. Yaten. Quarty on Nantahalah Rivec. |

GEORGIA.

| 2 | Gneisa | Atlanta <br> Stone Mountain Station, Atlanta (Ga.) Railiroad. <br> 12 milen from Chattanooga on W. \& R. Railromel. <br> D milea from Washington | Fulto | Patrick Lyneh. |
| :---: | :---: | :---: | :---: | :---: |
| 2 | mentone |  |  |  |
| 1 | Pagodite |  |  | rom Charles W. Shepa |

FLORIDA.

| 5 | Sandstone | Hawthors | Alachua | C. A. Simmons. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ALABAMA. |  |  |  |  |
| 1 | Limentone | Near Dickson. Alabama se Gt. Southern E. . E . | Colbert <br> DeKalb | F. I. Fossick \& Co. Collinaville Quarry. | - |

## KENTUCKY.

| 2 | Limentone .... Bowling Green ....do .......... Lonisville | Warren .........' Jeffermen ....... City Quarry. |
| :---: | :---: | :---: |

ARKANSAS.

| $\begin{aligned} & 2 \\ & 1 \\ & 1 \end{aligned}$ | Sandstone Limestone .... do $\qquad$ | Bald Knob.Blansett | WEite Marion. ${ }^{\text {a }}$ Benton | Bald Knob Quarry. <br> Quarry not stated (small). <br> From rallroad cut. |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |

*This in probably Scott Cbunty.
TEXAS.

(560)

Localities from which specimens of building stone have been received, fo. -Continued.
DAKOTA.

| No. | Name of atone. | Town. | County. | Quarry. |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Quartzite..... | Sioux Falls ................... | Minnehaha ...... | Phillipn Quarry. |

MONTANA.

| $\mathbf{3}$ | Rhodochroeite | Walkersville ................... | Deer Lodge..... | Quarry of Allice Gold and Silver <br> Mining Company Win. K. <br> Hall nuperintendent. |
| :--- | :--- | :--- | :--- | :--- | :--- |

COLORADO.

| 2 | Sandstone | Fort Collins | Larimer | Fort Collins Quarry. |
| :---: | :---: | :---: | :---: | :---: |
| 2 | Granite. | Platte C'añon | Jefferson and Donglas. | Quarry of the government. |
| 2 | Sandstone | Near Cafion City | Fremont. | Berlin Qnarty. |
| 2 | Khyolito. | Cantle Rock | Douglas | Girardalr's Quarry. |
| 2 | Sandstone | Fort Collins | Larimer | Fort Collins SandstoneQuarry |
| 2 | ...do | Trinidal. | Las Anima | Trinidad Quarty. |
| 2 | . do | Coal Creek | Frumont | Coal Creull Quarty. |
| 2 |  | Arkanmas Kiver .............. | do | Brandford Quarty. |
| 2 | Samintone, red and white. | Sections 3 and 4, range 70 weut | Jefferson | Welch Quarty. |
| 1 | Granite....... | Sections 19 and 20 , townhhip 3 mouth. range 70 west. | . . .do | Pulcher'a Gulch. |

## NEW MEXICO.

| 3 | Sandstone | Near Santa F6. | Santa F6. | Santa Fe Quarty. Quarry not mtated.Do. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Rhyolite...... | Cienago, 15 milen southwent of Mesa, Santa Fé. | ....do |  |
| 1 | Pruice-stone. | 3 miles south of Santa F6... | do |  |

All collected by Major Stevenson.

UTAH.


IDAHO.


Localities from which specimens of building stone have been received, f c.-Continued. WASHINGTON TERRITORY.

| No. | Name of stone. | Town. | County. | Quarry. |
| :---: | :---: | :---: | :---: | :---: |
| 2 | Sandstone .... | Chackanut Bay. | Whatcom... | C. Seidel \& Cos |

OREGON.


CALIFORNIA.

| 2 | Sandstone | Haywards | Alameda | Excelalor Guarry. |
| :---: | :---: | :---: | :---: | :---: |
| 2 | Tufl | Near Cordelia | Solano | Thomanon Quarty. |
| 6 | Sandistone | Eight mille south of San Jose. | Santa Clara | Goulrich Quarrs. |
| 2 | Limentone | Tehichipa | Kern | Small plocere: quarry not statel |
| 2 | Sandstone | Livermore | Alameda | Livermore Quarty. |
| 2 | Hasalt | Petaluma | Sonoma | Petaluma Quarry. ${ }^{\text {do }}$ |
| 2 | $\cdots$ do | Bridgeport | Solano | Thomason's Quatty. |
| 1 | Liferaton | Sainan City | do | Suiamu Quarty. |
| 2 | do | Colfax | Placer | Colfax Quarry. |
| 2 | Marble | Twenty mile mouth of San Luis Obiapo. | San Luis Obispo | San Luis Obispo Quarry. |
| 2 | Sandstone | Angel Itand................. | Marin | Angel Inland Quarty. |
| 2 | Granit | In range east of Almmeda | Alamed | Quarry not stated. 8 youlo |
| $\begin{aligned} & 4 \\ & 2 \end{aligned}$ | Granit | Near Penryn Near Rocklín | Placer do | G. Grithth. <br> Do. |
| 3 | Marble yellow | Town not ntated | Kern | Mr. Lave (small). wrym? |
| 2 | ...do .......... | Indian Digxing*............... | El Dorado | Quarry not stated. |

SMITHSONIAN INSTITU'TION.
UNITED STATES NATIONAL MUSEUM.

No. 10.

# TWO LETTERS ON THE WORE OF THE NATEONA MUAEUM. 

## By BARNET PHILLIPS.

[Reprinted, by permisalon, from the New York Timen.]
Washington, February 3, 1882.
As early as 1846, with the establishing of the Smithsonian Institution, Congress placed under its charge all objects of natural history, mineralogy, geology, and antiquities belonging to the United States. At that time, some thirty-six yearsago, such collections as belonged to the country consisted almost entirely of objects gathered during the Wilkes explorations. While the Smithsonian Institution was in the act of crystallization, before it had taken definite shape, the Commissioner of Patents took care of such objects. When, in 1856 , the ceutral portion of the Smithsonian building was erected, the Wilkes collection and some few other objects were placed in its charge. The Wilkes collection may, however, be considered as having been that nucleus, around which other objects belonging to the United States have been grouped when in their preservation the idea was sustained of presenting them for educational purposes. But with the increase of such collections which accompanied that great desire for information which has been one of the marked characteristics of a period included within the last twenty years, this augmentation has been marvelous. Those results of explorations, which the best brains in the country may have condensed in a page or a volume, have only been studied by means of tangible things, collected over vast areas, and finally brought to Washington. But more than this. In the industrial exhibitions in which this country has taken part, on some special occasions the goverument has been to large expense in the collecting of objects, as such exhibits were the very best representative ones of the day. These have been too valuable to be lost sight of, and have been preserved in their unity. At the same time, the United States has had presented to it a great accumulation of objects, both natural and manufactured, and among these gifts at the close of the Centennial Exhibition not less than twenty-five countries contributed their quota.

What to do with all this material became an important question. To hide all this light under a bushel would be to deprive the country of a fund of information obtainable nowhere else. The question of room space to exhibit them was a secondary one to that method, a philosophical one, which should govern the classification of such a museum. Immediately after the Centennial, when the public mind became more (563)
familiar with the great advantages derivable from a collective exhibition, the work of building up a national museum was actively taken up by Prof. Spencer F. Baird, at that time assistant-secretary of the Smithsonian Institution, by whose tireless energy the great natural history collections of the Institution had already been accumulated. There was an abundance of material already on hand, an accumulation of riches, but what was wanting was room to put it in.

Now, museums to day differ in conception as much as does the writing of history from the plans in vogue fifty years ago. If Macaulay was among the first to draw the history of a people, with but slight allusions to kings and queens, and Green compiled the story of England, giring sovereigns but a passing notice, museums to-day, though they include in them such objects as are rare and precious which may have deched kings and queens, no longer seek for such matter exclusively. They no louger care for an andience which will simply gape and stare. It has grown as rapidly in the minds of those who establish museums and those who visit them that, although the pleasure to be derived from seeing a beautiful or a rare object is not to be made light of, the emotional instinct is not alone to be awakened. Imitative or inventive faculties must be stimulated. It is the fostering of one element, the practical one, that of positive object teaching, which all museums must strive for. The leaven must work in the most sluggish mind, and the instruction of the masses must be constantly undertaken. The South Kensington Museum has its highly æsthetic side, but it must be at one and the same time not only the school of the artist but of the artisan.

The National Museum in Washington, known perhaps for the first time as the locality where the late President's inauguration ball took place, is now open to the public. In its conception may be found one of the grandest of all schemes for instruction. Such a plan may be comprehended in a certain way when it is stated that it takes man for its central pivot, and around this is to revolve everything that man has done in the past or in the present in the world he lives in. Those depths which he has plumbed in the seas will contribute their quota, and where he has sought for light in the realms of heavenly space such slight informatiou as he has gleaned will all be presented bere. Not a science is there which man has studied which will not find its representative objects. This museum, besides, is to enter into every detail of human life, not ouly of the present but of the past, and is to be the custodian of its future. Its mission is to keep going on collecting for ever and ever. It will show to our great-great-grandehildren how their forefathers dressed, how they lived, cooked and ate their food, how they amused themselves, and 1992 will learn of the toys the children of 1882 plased with. There is nothing, ever so trivial, which is thought caworthy of notice. The study of the evolution of anything is supposed to impart its lesson, and the spinning-wheel of a past time is to lead up by many stages to the more perfected mechanisms of to day. Such a grand work as is prospected will, of course, take years to perfect. The
(564)
originators of such a comprehensive scheme are perfectly conscious how short is life, and they know that the conclusion of their work is as far off as is eternity. Yet, for this task there are many men who are ready to labor on for years, conscious of the enormous advantages such a museum will present-not only in the next decade, but in the future. They are sanguine that in a comparatively short period this National Museum can be made attractive, and that the interest in it will increase in exact proportion with the instruction it imparts.

In describing the sources from whence already a large proportion of the collection has been derived, that coming in now from the census plays an important part. This census in some of its labors gave for results more than a dry catalogue, to be summed up by a row of figures. Tangible evidences of the resources of the country were required, and in some instances crude or mauufactured objects were obtained. The mineral wealth of this country has been better understood by the last census than ever before. Thousands on thousands of specimens of building stone, collected all orer the United States by the Census Burean, are now deposited in this museum. Now, if these stones be followed out even briefly, they will explain the rationale, the thorough character, of an exhibition of this kind, which precise method is to be applied to every other substance.

Fragments of each stone lie alongside of the square block, the sides of which has been polished in various styles. $\Lambda$ visitor at once sees how the stone works. If he is a builler of houses, a contractor who undertakes work to cost a million, or his workman, a certain quota of positive information is received. He who pays his money or is to receive it-both are taught. But this lot of stone is just on the commencement of its investigations. Fragments of it have been subjected to chemical analysis, and its exact chemical constituents are learned. The geologist has studied it. Then the microscopist has put it under his lens and has found out its structure. Finally, it has been subjected to the mechanician, who tried its strength and learned how much strain it would stand. Now we begin to appreciate how thorough and exhaustive is the method to which this specimen has been subjected. The visitor knows from the label, if he can read, localits, composition, and absolute value.

Simply looking at these objects to be exposed only as things, irrespective of natural characteristics, the process of study is to be the same throughout. Here are endless bottles of pharmacentical preparations. Every one of these is being subjected to analysis. Each one will tell its own story, as where found, method of preparation, where derived, consumption, and, what is more, the cost will be indicated.

Now, it often happens that, in the multifarious business of the government, exact information is required in regard to substances on which duties are to be levied. It has heretofore been the habit to subject these substances to special experts. Today, for already the working
departments of the museum are in full blast, all these analyses can be, and are, actually being carried on.

As to that method of instruction, which must, however, be paramount to everything else, many new methods will be observed. If a certain product is to be exhibited as complete in itself, a requisite of such an exhibit will be that all the stages of such a manafactured article will be shown. Every step which can illustrate the perfected progress will be forthcoming. In the same case will be shown the very books which contain information on this particular substance, or, if not the books themselves, references to the volume and the page. A series, then, of iabels, exhaustive in character, are to accompany all objects.

Materials as they are gathered serve at the same time as a basis for scientitic research. It is not ouly for those who are satisfied with the commercial aspect of things in general that the museum serves a great purpose, but its collections react on the man of pure science. It is, then, in addition to being a museum of deposit or record, one of most active research. It can never be languid or wanting in interest, for the elements of life must exist from both without and within.

With such a scheme comes in the practical working of it. How, having to-day such a vast assemblage of objects, with an avalanche coming, how shall all these be exposed so "as to enable visitors to make their examinations with the least possible fatigue of eye and limb ! How are objects to be labeled in the most concise and instructive way, so as to make the museum, as a whole, as beautiful and attractive as possible ${ }^{97}$

Prof. G. Brown Goode, under whose care the practical work of the museum is being carried out, and who has given a great deal of attention to the classification, writes as follows: "The new building more than meets expectation. The illumination is perfect, the amount of space available for exhibition purposes is undoubtedly the maximum for a building of the size, and the disposition of the exhibition hall on a single level, directly upon the surface of the earth, proves to be of great importance to visitors and to those who have in hand the work of arranging the collections."

None but those thoroughly acquainted with the exigencies of a collection can appreciate the amount of thought necessary to construct such an apparently simple thing as a case. If it is to be substantial it must not be too bulky or overornamented, as one does not visit a museum to admire cabinet-work, but the objects it contains. It must be so arranged as to take in all the light. It must be quite air-light, so as not to admit dust or moisture. With such a vast hall as that of the National Museum, where there are no partitions, the roof being held by square supports, the cases will mark the divisions. These cases must be so arranged as to be movable. In size they should bear a definite proportion to that of the hall. As there are to be lecture spaces left in the museum, these cases must be so built as to be readily transporisble or interchangeable. In this way a lecturer may treat a sub-
(566)
ject, and at an hour's notice have himself surrounded by all the objects he may require for the demonstration of his lesson.

In the analysis of the plan of classification, the importance of which should never be forgotten, commencing with man, he is considered (1) as a zoological unit or species, (2) as grouped in tribes and races, (3) as an individuak as a representative man; aud (4) in his vocations. Sup. pose, in his vocations, we take what are called the exploitative industries. The primary would be quarrying, mining, the ice industry, engineering, collection of tield and fruit products, lumbering, hunting, fishing, and the batchers' industry. Now, in the secondary branches of vocations more complex would be agriculture, horticulture, forestry, landscape gardening, pecadiculture, domesticated animals, and acclimation. When we come to what are designated as elaborative industries and the arts, the list is very great. In studying the social relations of man enters telegraphy, government, laws, punishments, and with it war, with all the implements, offensive and defensive. With the intellectual and moral conditions of man come his superstitions, his crimes, errors, religious organizations and systems, his benevolent enterprises, charities, reformatory institutions, his amusements and sports, pictorial and plastic art, music, the drama, folk-lore, proverbs, traditions, literature, and science.

Endeavoring to show the enormity of this work only by its subdivisions, as illustrative of man's amusements, there are his toys and playthings. A philosophical analysis takes place. There are toys which attract one's senses-that of the eye, others the ear. A toy may combine both. Then there are mimetic toys, as dolls, miniatures of implements or useful objects. Now, fancy a series of toys extending back a century, or a row of cases filled with the dolls of both hemispheres. Smile as one may, still, to those who will study such things, wonderful are the lessons to be learned. Questions of kindred habit are often to be found in these minor topics, which tell the story of a race.

What a wonderful collection that would be illustrative of the drama, and how anazing would be the splendor of it. Think of the blaze of costumes and the leer of innumerable masks, for it would have to start, as a foundation, with the copies of those masks the Greeks used when CEdipns Tyrannus strode the stage. It has been said that nothing is to escape this vast collecting vortex. Here in situ, just as one enters the museum, is a case filled with Japanese masks, such as are used by Japanese actors for a religious drama of the fourteenth century. Away up stairs in one of the side storage-rooms littering the fiom are a number of wooden masks yet unclassed. These come from the northwest coast of America. The veriest smatterer in archeological matters can at once see how striking is the resemblance between the contour and the grimace of the Japanese masks and those of the American Indian. The parallelism is complete. Are we to determine, then, at once from these indications that these two races are of one common origin 9 Was
(567)

America peopled from the east, or was Asia made populous from the west Such a deduction from one single class of objects would be a most unsafe conclusion; but when in such a museam, at some future date, a great stock of material will be furnished, and a series of things brought in close juxtaposition, when the labors of thousands of collectors are fused, as it were, into one whole, then the anthropologist, ethnologist, and archæologist can apply their individual tests conjointly or separately, and much of the turbidity which exists to day will be fined out, and a clearer and more limpid solution must come from it.

The building is a square one, with sides of 327 feet. It is surmounted by a cross and dome. Within there is a net area of 102,200 square feet, or 2.35 acres, the whole building being under one roof. On the main floor there are 17 halls, which communicate with wide and lofty archways, and there are 80,300 square feet of floor space. No less than $13 j$ rooms are available for administrative functions, such as offices, \&c. At present occupying these offices are those engaged in work on the geological survey, materia medica, analysis of foods, mineralogy, economic geology, entomology, chemistry, mammalogy, paleontology, herpetology, and photography. There are many more oftices not yet ocenpied, but which will soon be filled with workers. The material is so vast that the task of studying it will never cease.
Taking up once more the cousiderations which have induced the gorernment to undertake so great a task, those who have been its scientific advisers have fully brought to its notice the rast accumulation of material existing in Washington and throughout the country, and how, hidden away as it was, aside from the question of loss or dispersion, in its present condition it was utterly unavailable. When once such a work was undertaken, the exhibition of all the government collections, those which must necessarily be made in the future, it was shown, would find in this museum their natural resting place. It is by the power of generalization necessarily cosmical in its character that the great advance this nation is making will be then recorded. It is in a national museum that all specialists will come to study, and, as the attraction of the greater mass will be irresistible, this museum must in time absorb many lesser ones. Either by purchase or bequest, before long, minor collections will come to it, of all possible kinds, just as happens today to the British Museum.

It may take some years before some of those special branches of human work such as France, England, Germany, Spain, Russia, or Italy glories in will find their way to our National Museum, but it is simply a question of time. Save in this respect, it seems that in ten years this museum will have no rival. Its present is assured. For its future its plans are so intelligently conceived that it must increase in proportion with the growth of the country. Always remembering that there is no scientific fact discoverable, no matter how abstruse it seems, or to what field of study it belongs, which does not directly tend toward man's welfare,
the vast practical benefits to be derived from this museum of research will be at once appreciated by our people. It is to be the living, tangible encyclopedia of all things and the great public instructor. Its purpose is to shape men's minds for vast projects and to keep pace with the rapid strides we are making. Washington may be a half a day's journey from the largest center in the United States, but in a few years students from all this coutinent will come to it to work out their tasks in the National Museum.
B. P.

## 'Washington, February 15, 1882.

Such interest as may have been awakened by the announcement that the country had established a great National Museum, which was now open to the public, was naturally accompanied by some curiosity as to the manner in which such a huge building shall be filled. It has been already stated that the government possesses a vast amount of superb material. There is not a special department in Washington which does not have hidden away collections which, though of great value, have never yet seen the light. Every year the museums abroad send over to this country photographic copies of what is finest in their collections, and, unfortunately, such excellent material has never been available because, before this, there never has been any way of showing it. Take, for instance, a case just now at point, those wonderful discoveries lately made at Thebes. Undoubtedly, before long, accurate pictures of these mummies, their coffins, the various objects surrounding them, will be made by the Egyptian Government, and will be distributed. Should any such come to us, at once they will find a place awaiting them in this museum. If only the desire was evinced by our government to have copies of the best antiques taken from the Louvre, the British, or the Berlin Museum, such plasters would be sent to us. An interchange of gifts between two governments is but an act of simple courtesy.

If we cannot exchange in return art subjects, at least we possess an endless number of objects which any museum in Europe would be glad to have. A duplicate of some antediluvian form which paleontologists like a Leidy, a Cope, or a Marsh had found and studied, is the equivalent in value of a cast of even the gods struggling with the giants. This possession of duplicates on the part of the museum will always be the means of increasing the collection with the choicest of foreign objects. But all these, the factors of a collective power, will be secondary to the action of the government itself. We have commercial agents all over the world, and, familiar as they must be with the countries they live in, if the objects of such a museum as the one at Washington were fully understood by those powers with whom our consuls are in relationship, products both of an industrial and artistic character could be turned into our museum. For many a jear to come industrial exhibitions will
(569)
be held not only at home, but abroad, and at the conclusion of such exhibitions there is always a large number of objects which could be collected without cost.

It should be remembered that the British Museum, magnificent as it is to-day, is not of so very old a date, and that the choicest portions of its collections have been presented to it. In the United States the era of collecting has only commenced. Thirty or forty years ago there was not enough wealth or leisure to permit of it. Men who for the sheer lore of a thing devote a great deal of money and many years of their lives to the gathering together of the specimens belonging to a subject they have studied, are loth to lose even by death such associations as may have coupled their names with their collections. If such men know that the United States possessed a safe storchouse, where their collections would be forever preserved, this National Museum will in time fall heir to a great many objects of intrinsic value.

Our National Museum, as has been stated before, has but one object in view, and that is of an educational character, and it insists that there is nothing in this world which cannot instruct man, from a spade to a Greek bronze. It intends to undertake object lesson in its most extended manner. It offers no restrictions as to entrance. It even proposes, should ever the want become manifest, to open its vast arcades at night and to illuminate all its cases. Such vast conceptions as this museum entertains are not in the least impossible. They are not a step in advance of the times we live in, but are rather the corollary of our progress.

In describing as far as construction goes the physical characteristics of this museum, its spacious halls, its innumerable cases, its many workshops, these details are really secondary to that intangible thing the spirit which is to guide this institution, not only for to-day, but forever. It is, in a certain measure, an offishoot of the Smithsonian, thongh distinct from it. That small fund which a generous Englishman gave ns a half-century ago has, under the management of the late Prof. Henry and the present Secretary, Prof. Spencer F. Baird, resulted in more good than any similar amount of money that ever was left as a bequest.

Commencing in a modest way, the Smithsonian Institution, founded for active research and the distribution of knowledge among mankind, has been forced to become in a certain way a collector. Its overcrowded rooms to-day show how rapid has been its accumulative power. One of the requisites of research being the ability to make comparisons, it would have been a waste of its powers had the Smithsonian shown any indifference to creating a museum within itself. In studying the earlier legislation directed toward the Smithsonian lustitution, in which a variety of plans were proposed, just such a prestut museum was foreshadowed. But, most fortunately, there were wise heads at work when the Smithsonian was in its infancy. Such a load as that of a musenm would have swamped it in its earlier days. The public men of fifty years ago foresaw that with time a vast museum might be developed; they were too intelligent to expect it to be forthcoming at once.
(570)

It does not, of course, behoove a great national enterprise of the character I have tried to describe to play the part of a solicitor, nor can it go from collector to collector and beg for contributions for its cases. Still, without directly asking such an enlightened mass of people as our own, it counts a great deal on private support. It believes that there are many people in this country-men of means, of intelligence-who, if they understood what is the ain of this museum-that of national education-they would gladly send to it their collections, or, knowing what particular class of objects the institution was desitous of securing, would come forward spontaneously and give it their aid.

That this is absolutely the case, and that such praiseworthy generosity does exist, I can myself testify to. Already some of the leading manufacturers of the country are sending forward collections of the objects they produce. The museum authorities exercise a choice in their selection, and deprecate anything that might assimilate the muscum to an industrial exhibition, or, in other words, that one class of olyects should be received in competition with another. What is to be taken by the museum is to be the best, and only one particular class of objects illustrative of a class of industry is to be accepted.

In the innumerable details necessary to render this museum effective and at the same time uniform, a type of case made under its direction is provided, and all the bottles, \&c., or mountings, are provided by the museum. The work of arrangement and classification is already going on with great rapidity, and the publicity given to the museum is already bringing many visitors to it. Before long, in a series of cases will be arranged the musical instruments, the United States having fallen heir to a very curious collection coming from the East. The labor which is entailed on the officers of the museum is very heavy. Just as rapidly as possible new centers illustrating a particular subject are made, and with one case filled, others group theinselves around it. The curators are amazed at the riches which have been stowed away in the vaults and lumber-rooms of the various departments in Washington, and there is every reason to suppose that when, in time, they can push their explorations other mines of wealth will be discovered. Many of these things have existed for the last twenty years, nailed up in boxes or tied up in portfolios, and not a human soul has been the wiser for then.

I have been obliged to repeat how immense is this plan, how wide is the ground it covers, how different are the subjects it includes, and, in order to make myself better nuderstood, I give the list of the officers of the National Museum, with the various departments under their charge:

Spencer F. Baird, Secretary of the Smithsonian Institution, Director of the Museum; G. Brown Goode, Assistant Director, Curator, Department of Arts and Industries; Tarleton H. Bean, Curator, Depaytment of Fishes; William II. Dall, Honorary Curator, Department of Mollusks; Frederick P. Dewey, Assistant, Department of Minerals and Economic Geology ; James M. Flint, Honorary Curator; Section of Ma-
teria Medica; J. Howard Gore, Honorary Curator, Section of Foods; George W. Hawes, Curator, Department of Minerals and Economic Geology; Richard Rathbun, Curator, Department of Marine Invertebrates; Charles Rau, Curator, Department of Antiquities; Robert Ridgwas, Curator, Departınent of Birds; Charles V. Rilev, Honorary Curator, Department of Insects; R. W. Shufeldt, Honorary Curator, Section of Bird Skeletons; Robert E. C. Stearns, Assistant, Departınent of Mollusks; Frederick W. Taylor, Chemist; Frederick W. True, Librarian, Curator, Department of Mammals; Lester F. Ward, Honorary Curator, Department of Fossil Plants; Charles A. White, Curator, Department of Fossil Invertebrates; Henry C. Yarrow, Honorary Curator, Department of Reptiles; Stephen C. Brown, Registrar; Henry Horan, Superintendent of Buildings; Joseph Palmer, chief modeler; William T. Hornaday, chief tasidermist.

B. P.

## SMITHSONIAN INSTITUTION.

UNITED STATES NATIONAL MUSEUM.

No. 11.

## A PROVISIONAL CLABRERICATION OR THE TOOD COILECTIONA.

## By G. RROWN GOODE.

This list of foods here presented is known to be imperfect, both as regards form and completeness. It was prepared to aid in the formation and preliminary arrangement of the food collections in the National Museum, and to serve as a check-list for use in gathering material for the Museum. It is not based upon structural characters or even upon modes of preparation, convenience only having been sought. It is intended to include only such articles of food as are used by European nations. Criticism is requested.

Since the completion of this classification the curatorship of the food collections has been assumed by Prof. J. Howard Gore.

Smithsonian Institution, October 1, 1881.

## ANALYSIS.

## FOOD SUBSTANCES.

## SYNOPSIS.

I.-MEATS. Fresh; Dried; Smoked; Pickled; Potted; Canned; In extract; Condensed. [Eggs and milk included.]
II.-FRUITS AND VEGETABLES. Fresh; Dried; Pickled [in vinegar or aalt]. Preserved in sugar-[jams, marmalades, jellies, conserves, candied]; Canned; Condensed; In extract.
III. -NUTS AND NUT-LIKE PRODUCTS.
IV.-SPICES, CONDIMENTS, AND FLAVORING MATERIALS. Fresh; Dried [gronnd]; Pickled; Conserved; In extract.
V.-FARINACEOUS SUBSTANCES AND STARCHES. Cereals, pulse and starch tissues. Fresh; Dry; Crushed; Gronnd [meal, flour, brau]. Starch.
VI.-SUGARS. Raw materials; Molasses and sirups; Melados; Crystallized sugnrs; Refined sugars [ crushed, pulverized, \&c.].
VII.-BEVERAGES AND MATERIALS FOR BEVERAGES.

Of animal origin, Milk. Preparation of honey.
Of vegetable origin, Non-spirituous. Infusions. Tea. Coffee. Cocon, \&c. Spirituous. Fermented.

Malt liqnors.
Wines.
Distilled. $\bullet$
Vinegars.
Of mineral origin. Spring waters. Artificial water. VIII.-NARCOTICS.
IX.-OILS AND FATS. Vegetable oils. Butter. Lard. X.--CHEESE.
I.-MEATS.

Domesticated Animals:
$\begin{cases}\text { Beef. } & \text { Pickled. } \\ \text { Veal. } & \begin{array}{l}\text { Corned beef. } \\ \text { Corned tongues. }\end{array}\end{cases}$

Smoked beef.
Smoked tongue.
Beef hams.
Bologna sansage.
Dried beef.
Chipped beef.
Pemmican.
Canned.
"Roast beef."
"Beef à la mode."
Canned corned beef.
"Deviled tongue."
"Bouillon."
"Ox-tail soup."
Mock turtle soup.
Special preparations.
"Extract of beef."
"Meat juice."
"Extractum carnis."
Desiccated beef.
Gelatine.
Calves' foot jelly.
Rennet.
Pepsin and its preparations.
Preparations of the brain.
Pickled tongues.
\{ Mutton. Canned. "Roast inutton."
Lamb.
Pork. Pickled.
Salt pork.
Corned hams and shoulders.
Dried or smoked.
Hams.
Bacon.
Sausage.
Canned.
Ham.
"Deviled ham."
"Potted ham."
"Potted sausage."
"Boneless ham."
I.-MEATS.

Domesticated Animals:
Horse.
f Goat.
\{ Kid.
Game:
Venison.
Hare.
Rabbit.
Bear.
Poultry:
Fowl. Canned. "Cocks' combs."
Capon.
Turkey. Canned. "Roast turkey."
"Boneless turkey."
Goose. Canned. "Pâté de Foie Gras."
Duck.
Pea-fowl.
Guinea fowl.
Pheasant.
Game birds. It is not thought necessary to specify these in this place.
Fish and shell-fisin. Treated with the Fishery Collection.
Turtle sonp, canned.
EgGs:
Fowl.
Turkey.
Duck.
Goose.
Guinea fowl.
Plover.
Gull.
Murre (California).
Turtle.
Shad-roe.
Mullet-roe, " Botargo."
Axayacat $=$ Insect eggs.-Mexico.
II.-FRUITS AND VEGETABLES.

Fruits. Fresh. Canned. Conserved. Dried. (Jams.)
(Marmalades.)
Apples.
Jelly. Butter.

Fruits. Fresh. Canned. Conversed. Dried.
Apples, Crab.
Apricots.
Avocado pear.
Bananas,
Barberries.

Blackberries. Nee Muskmelons
Cherries. * * *
"Birambi".

Citrons.
Cocoanuts. (Green.)*
Cranberries.
Currants.
" Black. *

Damsons. See Plums.
Dates.
Elderberries.
Figs.
Ginger root.
Gooseberries.
Grape-Fruit. See Shaddocks. Grapes.

Green gages. Nee Plums.
Guavas.
Huckleberries. See Whortleberries.
Jujube.
Lemons.
Loquats, or Japanese plums.
Limes.
Mandrake, or May-apple, fresh.
Mulberties.
Muskmelons. *
Nectarines. *
Olives.
Oranges. *
Pampaws (American).*
Peaches. * * *
Peach-blossoms.
Pears.
Persimmons.

1I.-FRUITS AND VEGETABLES.
Fruits. Fresh. Canued. Conserved. Dried.
Pine-apples.
Plantains.
Plums.
Beach-plums.
Green gages.
Damsons.
Prunes.
Prunellos.
Pomegranates.
Pumpkins.
-

Prickly pears (cactus).*
Quinces. *
Raspberries. *
Rose-leaves.
Strawberries.
Service-berries.
Shaddocks.
Tamarinds. *
Tomatoes. (Canned as *
" Cherry, or * vegetables).
"C'ape Gooseberries."
Watermelons.
*
Whortleberries. *
Vegetables :
Preliminary classification.
A. Fruits and Nuts.
R. Pulse and Cereals.
C. Sprouts and Leaves.
D. Iuds and Flowers.
E. Koots and Tubers.
F. Cryptogamic Plants.

Note.-The group to which each vegetable belongs is indicated by one of the above letters.

Fresh. Canned. Pickled. Dried.
Achias v. Bamboo.
Apples. (A). -
Artichokes. (D). *
Asparagus. (C). * *
6. (French). *

Badelerlocks. (C).
Bamboo. (C).


## II.-FRUITS AND VEGETABLES.

 Vegetables:Haricots=string-beans=snap-beans=bush-beans=kiduey beans.
Horse-beans.
Lentils.
Beets. (E).
Beet-spronts. - (C).
Broccoli. (C).
Brussels sprouts. (C).
Bore cole. See Kale.
Cabbage. (C). "Sauerkraut."
Cassava. (C).
Capers. (D).
Carrots. (E).
Cauliflower. (D).
\{ Celery. (C).
Celeriat. (C).
Cardon. (C).
Chervil (Cherophyllum bullosum). (C and E). Cepes.
Chives. (E).
Corn (green). (B).
Corn salad. (C).
Cresses (C). See Water-cresses.
Cucumbers. (A).
Gherkins.
Cymblings. See Symblims and Squash.
Dandelion sprouts.

- (C).

Dulse. (C).
Egg-plant. (E).
Elder shoots (pickled to imitate bamboo).
Endive. (C).
Flageolets. See Beans.
Gherkius. See Cucumbers.
Gumbo. See Ochra.
Haricots. See Beans.
Hops. See Yeast.
Kale. (C).
Kohl Rabbi. (C)
Lamb-lettuce. See Corn-salad.
Laver. (C).
Jerusalem artichokes. (E).
Lettnce. (C).
Lentils. See Beans.
Mangold-warzel. (E). *

## II.-FRUITS AND VEGETABLES.

Vegetables.
Martynia. (A).
Milkweed sprouts. (C).
Mushrooms. (F). * *
Mustard leaves. (C).
Nasturtiums. (C,D).


Okra, or Ochra. (A).
Olives. (A).
Onions. (B).
Orache $=$ Mountain spinach (C), fresh.
Parsley. (C).
Parsnips. (E).
Pawpaw-Tropical (A), fresh.
Peas (green). (B).
French peas.
Pepper-grass. (C).
Peppers. (A). *
Plantains. (A). *
Poke stalks. (C). *
Potatoes. (E). *
Sweet. (E). *
Yams.
Chinese.
Purslane or pusley. (C).
Pumpkins. (A).
Radish-pods. (A).
Radishes. (E).
Rape. (C).
Rhubarb. (C). * *
Ruta-baga. (E). *
Scorzonera. (E).
Salsify. (E).
Samphire. (C).
Sorrel. (C).
Spinach. (C).
Savoy Cabbage. See Cabbage.
Scolymus=Spanish Oyster-plant (E), fresh.
Squashes. (A).
Symblims.
Sea kale. (C).
Skirret (Sium sisarum) (E), fresh.
Sprouts. (C).
Symblims. See Squash.
Tomatoes. (A). * * *
II.-FRUITS AND VEGETABLES.

Vegetables.
Tuckahoe. (F). *
Turnips. (E).
Truffles. (F).
Vegetable marrow (A), fresh.
Vegetable oyster. See Salsify.
Water-cresses.
Walnuts.
Yams.
Catsup.
Mixed.
Succotash. * *
Chow-chow, Piccalilli, \&c.
III.-NUTS AND NUT-LIKE SUBSTANCES.

Preliminary classification.
A. True Nuts.
R. Pits.
C. Cone-seeds.
D. Tubers.

Almonds, sweet. (B). "Jordan." Valentia." " bitter. (B).
Beech-nuts. (A).
"Belotes." A. [Acorns of Quercus gramuntta and Q. castagnara], eaten in Spain and Italy.
Black walnuts. (A).
Brazil nuts. (A).
Butter-nuts. (A).
Cashew-nuts.
Chestnuts. (A).
" American.
" French.
" Italian.
Chinquapins. (A).
Cocoanuts. (A).
Filberts. See Hazel-nuts.
Gouba peas. See Peanuts.
Ground-nuts. See Peanuts.
Hazel-nuts. (A).
Filberts.
Hickory-nuts. (A).
Peanuts. (D).
Pecans. (A).
Pine-nuts, (Piñons). (C).
Pistachio nuts. (B).
Walnuts. (A).

```
IV.-SPICES, CONDIMENTS, AND FLAVORING MATERIALS.
 Preliminary classification.
 A. Berries and Fruits, and Seeds.
 B. Buds.
 C. Leaves.
 D. Barks and Rinds.
 E. Roots.
 F. Minerals.
 G. Gum.
 H. "Fish."
```

    Allspice. (A).
    Anchovies. (H.)
    Almonds. (A). (Burnt).
    Alum. (F).
    Anatto. Coloring substance.
    Angelica.
    Anise seed. (A).
    Asafoetida. (G).
    Basil. (C).
    Bicarbonate of Soda. (F). (Baking powder.)
    Borage. (C).
    Burnet.
    Calamus root. (E).
    Capers. (B).
    Capsicum. (A). Cayenne pepper.
    Caraway seeds. (A).
    Cardamum seeds. (A).
    Cassia buds. (B).
    Celery seeds. (A). Celery salt.
    Cassia bark, (D), or bastard cinnamon.
    Cayenne pepper. See Chillies.
    Chicory. (E).
    Chillies. (A).
    Chocolate. See Cocoa.
    Cinnamon. (D).
    Citron rind. (D).
    Cloves. (B).
    Cocoa. (A).
    Coffee. (A).
    Coriander seed. (A).
    Cream of Tartar. (F). (Baking powder.)
    Dill.
    Fennel seeds. (A).
    Garlic. (E).
    Ginger. (E). Calcutta.
                                African.
    
## IV.-SPICES, CONDIMENTS, AND FLAVORING MATERIALS. Preliminary classification.

Horseradish. (E).
Leeks. (E).
Long pepper. (A).
Liquorice. (E).
Lemon rind. (D).
Mace. (D). See Nutmeg.
Mustard. (A).
Nasturtium seeds. (A).
Nutmegs. (A).
Onions. (B).
Orange rind. (D).
Pepper, white. (A). " black. (A).
Peppermint. (C).
Pimento. See Allspice.
Rocambole. (E).
Saffron. (Coloring material.)
Sage. (C).
Salt. (F).
Sarsaparilla. (E).
Shallot. (E).
Sassafras. (D).
Sodium bicarbonate v. Bicarb. soda.
Star Anise seeds. (A). "Curry powder."
Summer savory. (C).
Sweet marjoram. (C).
Tarragon. (C).
Tartaric acid. (Baking powder.)
Thyme. (C).
Turmeric. (E.)
Vanilla. (A).
Wintergreen. (C). Checkerberry.
Yeast. (F). Compressed yeast, \&c.
"Snails" (Medecago orbicularis).
"Caterpillars" (Spupiorus sp). $\quad\left\{\begin{array}{c}\text { Pods used for garnishing } \\ \text { salads "to excite surprise } \\ \text { or curiosity among the } \\ \text { guests at a table." }\end{array}\right.$

MINERAL SUBSTANCES USED IN ADULTERATION.
Barytes.
Felspar.
Steatite.
Silex.
V.-FARINACEOUS AND STARCHY SUBSTANCES.

Preliminary classification.
A. Cereals.
E. Nuts.
C. Pulse.
D. Leaves.
E. Roots.
F. Stem and Pith.

Achira E. (Spec. of Canna). Achira Starch.
Arrowroot (E). Arrowroot starch.
Barley (A). Pearl barley. Barley meal. Crushed barley. Barley flour.
Beans (C). Dried beans.
Split beans.
Bean meal.
Buckwheat.
Buckwheat flour.
Birds'-nests.
Carrigeen. See Irish moss.
Carob, or St. John's bread. (C).
Cassava. See Tapioca.
Chestnut. (A).
Chestnut meal.
"Apilada" = Dry and peeled chest nuts. Chestnut Starch.

Coontie starch.
Dry coru.
Hulled corn, (prepared with lye).
Hominy, or cracked corn.
Grits.
Sump, or fine homing.
Corn meal.
Pop-corn flour, "Snow-flake." Coru-starch.
Pop-corn.
Corn bread of all kinds.
Haricots. (C).
Iceland moss.
Irish moss. (D).
Lentils. (C).
Millet. (A).
V.-FARINACEOUS AND STARCHY SUBSTANCES.

Oats. (A). Dry oats.
Oaten grits.
Oatmeal. (Fine and coarse.)
Oatmeal bread, crackers, etc.
Dry pease.
Split pease.
Pease. (C).
Plantain meal.
Portland Sago. (E).
Potatoes. (E).
Rice. "American." (A). "Paddy."
"Arracan."
"Akyab." Rice.
"Bassein."
"Brazil."
"Ballam." Rice starch.
"Java."
"Madras."
"Moulmain."
"Patna."
"Rangoon."
"Sargon."
"Siam."

Rye. (A).

Sago. (F).
Sorghum. (A).
Tapioca. (E). "Cassava."
"Rio"
"Bahia."
Tous le Mois (E).
Wheat. (A).

Rye meal. Rye flour. Rye bran. Rye bread. Sago starch. Sorghum flour. "Flake tapioca."
"Pearl tapioca."
"Mandioca."
Tous le Mois starch.
Pearl wheat.
Wheat grits.
Steam-cooked wheat grits.
Meal. Flour.
Bran. Middlings.

Pollard.
Graham flour.
New process flour.
Whole wheat flour.
Starch.

```
V.-FARINACEOUS AND STARCHY SUBSTANCES.
 "Corn starch."
 Farina.
 "Manioca."
 Diabetic flour. (Bran.)
 Dyspeptic flour. (Gluten.)
 Infants' food.
 "Imperial granum," etc.
 "Ridges food."
 Bread, leavened and unleavened.
 Pastry.
 Crackers. Milk. Butter.
 Water. Soda.
 Maccaroni and vermicelli.
```


## VI.-SUGARS.

Cane sugar. Muscovado. Melado.
Molasses. "Porto Rico." "New Orleans." "Santa Cruz."
Sirup. "Sugar-house," etc.
Brown sugar.
Loaf sugar. [Crushed, grauulated, cubes, powdered.]
Confectioner's sugar. Barley sugar.
Rock candy. Caramels.
Confectionery and candy of all kinds.
Colorings for candy.
Corn sugar.
Sorghum sugar.
Beet sugar. Mangold-warzel sugar.
Birch, poplar, oak and ash sugars.
"Jaggary," or palm sugar.
Date sugar.
Maple sugar. Sirup. Molasses.
Grape sagar. "Confectioners'." "Brewers."
Glucose.
Honey.
Liquorice.
Sarcocoll.
VII.-BEVERAGES AND MATERIALS FOR BEVERAGES.

Of animal origin. Milk. Whey. Buttermilk. Konmiss. Preparations of honey. "Meall." "Metheglin." [Bouillons and soups.]

## VII.-BEVERAGES AND MATERIALS FOR BEVERAGES.

Of vegetable origin. Infusions and materials for infusions.
Tea. Green. Imperial.
Gunpowder. Ping Suey Gunpowder.
Hyson. Young Hyson.
Twankay.
Japan.
Black. Pekoe. Orange-flower Pekoe. Flowery Pekoe.
Pekoe.
Broken Pekoe.
Pekoe dust. Pekoe Souchong.
"Caper."
Oolong.
Pouchong.
Souchong.
Congou.
Bohea.
American.
Leaves used in adulterating tea, or as substitutes:
"Swiss tea."
Arabian tea.
"Bosjes or Boer tea."
"Hottentot tea."
Bencoolen tea.
"Mountaiu tea."
"Lime tea."
"Labrador tea."
"Kola tea."
"Corossal tea."
"Sumatra tea."
Maté, or Paraguay tea (llex paraguayensis).
Yupon, or American tea (Ilex cassini).
Appalachian tea (leaves of Viburnum cassinoides).
Sweet fern.
Abyssinian tea (leaves of Catha edulis), used by Arabs.
Coffee. Arabian. "Mocha."
"Bourbon."
"Cazengo." "Aconge." African.
Liberian.

## Vil.-beverages and materials for beverages.

Of vegetable origin.
East Indian. "Java." "Nilghery."
"Ceylon." "Mysore."
"Bombay."
"East Indian." "Madras."
"Singapore." "Cochin."
"Macassar."
American. "Laguayra." (Trillado and Deszerado).
"Puerto Cabello."
"Maracaibo."
"Savanilla."
"Curaçao."
"Costa Rica."
"Guatemala."
"Nicaragua."
"Mexican."
"Ecuador."
"Porto Rico."
"Jamaica."
"Cuba."
"Santo Domingo."
"Rio."
"Bahia."
"Ceara."
"Peaberry."
"Bedagosa" - Brazilian substitute for coffee.
Chicory.
Amande de Terre.
Guarana bread.
Date-stone coffee - "Melilotine coffee."
Cocoa. Cocoa.
Cocoa shells. "Cocoa tea."
Chocolate.
"Broma."
Juices of frults and other nubstances:
Angostura bitters.
Lime-juice.
Fruit sirups and vinegars.
Root beer. Sarsaparilla. Spruce beer.
Spirituous liquors:
Malt liquors.
White beer.
Lager beer.
Bock beer.

Ale. Bitter beer.
Stout.
Porter.
Yeast. Hops.
Wines.
Rhine wines, \&c.
Mosel wines, \&c.
Austrian wines.
Hungarian wines.
Bordeaux wines.
Burgundy wines.
Champagnes.
Muscat wines.
Spanish wines. Sherry. Adelantadillo. Malaga.
Portuguese wines. Port. Madeira.
Italian wines. Marsala, etc.
Greek wines.
American wines, \&c.
Fruit wines.
Blackberry wine.
Currant wine.
Orange wine.
Aurantra wine-Sardinia and India.
Raspberry wine.
Elderberry wine.
Cider.
Crab-apple cider. Pear cider. Perry.
Birch wine.
"Toddy."
Distilled liquors.
Alcohol.
Whisky. Corn whisky. Pulque, Mexican agave liquor. Rye whisky. Potato whisky.
"Hoochenoo."
Rum.
Brandy. Cognac.
Arrack ("Toddy").
Gin.
Apple-jack.
VII.-BEVERAGES AND MATERIALS FOR BEVERAGES.

Spirituous liquors.
Liqueurs and cordials.
Maraschimo. Avisette.
Curaçao. Chartreuse.
Rosoglio.
Aquavita.
Absinthe.
Angostura.
Vinegar.
Cider vinegar.
Wine vinegar.
Tarragon vinegar.
Sulphuric acid vinegar.
Acetic acid vinegar.
Mineral beverages (Natural and artiticial):
Sulphur waters.
Aerated waters.
Soda water. Ginger beer.
Iron waters (Chalybeate).
Cathartic waters.
Lithia water.
VIII.-NARCOTICS AND MASTICATORIES.

Opium.
Chloral.
Tobacco. Leaves. Fine-cut. Powdered. Plug tobacco. Snuff. Cigars. Cigarettes. Tobacco to be shown by localities.
"Asarabacca"-a Cephalic snuff.
Hascheesch. Hyoscyamus.
Coca-"Acnelico."
Betel nuts and betel leaves, used with shell lime.
"Akarakarum"-India.
Chewing gums.
[X.-OILS AND FATS.
Olive oil.
Cotton-seed oil.
Butter.
Lard.
Oleomargarine.

## IX.-OILS AND FATS.

Beech-nut oil, used in France as a substitute for butter. Cocoa-butter.
Turtle oil.
X.-CHEESE.

American.
"Parmesan." "Strachino."
"Stilton."
"Cheshire."
"Edam." "Rahmkase." "Texelkase."
"Gruyere." "Schweitzer," or Swiss. "Krauterkase."
"Neufchatel." Cream cheese. "Sage cheese."
"Pine-apple."
"Fromage de Brie."
"Gouda."
"Leyden."
"Limburger."
"Muenstar."
"Roquefort."
"Cheddar."
"Menauta" ="Camembert," canned.
"Cottage cheese" $=$ "Schmierkase."
"Pot-cheese."
Rennet. Liqnid rennet. PepsiL.

## ALPHABETICAL INDEX.

|  | Page. |  | Page. |
| :---: | :---: | :---: | :---: |
| Absinthe | 17 | Beets. | 6 |
| Alcohol | 16 | Beet sprouta | 6 |
| Ale | 15 | Betel nuta. | 17 |
| Almonds | 8.2 | Beverages | 14 |
| Bitter | 8 | Bier, bock | 15 |
| Burnt | 8 | Lager | 15 |
| Jordan | - 8 | Bitters, Angostura | 15 |
| Sweet | . 8 | Black berries | 4 |
| Valentia | - | Bouillon. | 2 |
| Allspice. | 2 | Bran | 12 |
| Alum | 9 | Brandy. | 16 |
| Anatto | - 9 | Braxil nuta | 8 |
| Anise seed | -9 | Bread, leavened | 13 |
| Star . | 10 | Unleavened | 13 |
| Apple-jack | 16 | Broma. | 15 |
| Applee, Pyrus. | 3,5 | Butter | 3,17 |
| Crab | 1 | Buttermilk | 14 |
| Apricots | - 4 | Butternuts | 8 |
| Aquavita | 17 | Cabbage | 6 |
| Arrack | 16 | Cnctus. | 5 |
| Arrowroot | 11 | Calamus root | - |
| Starch | 11 | Candy. | 13 |
| Artichoke. | - | Cane sugar | 13 |
| Asparagus | 1 | Canteloupea | 4 |
| French | 5 | Cape gooseberries | 5 |
| A vena | 12 | Capers | 6,9 |
| Bacon. | 2 | Caraway meeds | , |
| Dried | 2 | Carbonate of soda | 9 |
| smoked | 2 | Cardamom seeds | 9 |
| Baking powder. | 2 | Carob | 11 |
| Bananas. | - 4 | Carrigeen | 11 |
| Barley . | 11 | Carrots | 6 |
| Crushed | 11 | Cassava. | 11 |
| Pearl. | 11 | Cassia bark | 0 |
| Barley flour | 11 | Buds | 9 |
| Meal | 11 | Cathartic watera | 17 |
| Barytes. | 10 | Catsup | 8 |
| Bean meal | 11 | Cauliflowern. | 6 |
| Beana .. | . 511 | Cayenne pepper | 9 |
| Butter | 5 | Cepes | 6 |
| Dried | 11 | Cereals. | 11 |
| Horse | 6 | Chalybeate waters. | 17 |
| Lima | 5 | Champagnea | 16 |
| Split. | 11 | Cherries. | 4 |
| String | 6 | Cberry. | 5 |
| Bear | 3 | Chentnute. | 8 |
| Beech-nuta | 8 | American | - 8 |
| Beef. . | .. 2 | French. | - 8 |
| A la mode | - ${ }^{2}$ | Italian | * |
| Canned. | . 2 | Meal | 11 |
| Canned corned | 2 | Starch | 11 |
| Chipped. | .. 2 | Cheese | 18 |
| Desiccated | 2 | Cbicken.. | 3 |
| Roast | 2 | Canned | 3 |
| Smoked | ... 2 | Roasted | 3 |
| Beef hams | - 2 | Chick-pea | 11 |
| Beer, bitter. | - 15 | Chicory | 9 |
| White | 15 | Chillien | . |


|  | Page. |  | Page. |
| :---: | :---: | :---: | :---: |
| Cbinquapins |  | Eggs- |  |
| Chocolate | 2. 15 | Turkey | 3 |
| Cbow-chow | 8 | Turtle | 3 |
| Cider. | 16 | Egg-plants | , |
| Crab-apple | 16 | Endives. | c |
| Pear | 10 | Extract of beef . | : |
| Cigara. | 12 | Extractum carnis |  |
| Cigarettes | 17 | Farina | 15 |
| Cinnamon | 9 | Farinaceous substances. | 11 |
| Citron.. | 4 | Felspar | 10 |
| Rind | 9 | Fennel seeds | , |
| Cloves | $\underline{1}$ | Figs. | 4 |
| Cocks' combs, canned | $a$ | Filberta. | 8 |
| Cocoa | 2 | Fibh. | 3 |
| Butter | 17 | Shell | 3 |
| Shells | 15 | Flageolets. | 6 |
| Nuts | 4.8 | Flavoring materials | - |
| Tea | 15 | 1 lour | 12 |
| Coffee | $\underline{0} 14$ | Diabetic | 13 |
| A merican | 15 | Graham | 12 |
| Arabian | 14 | New process | 13 |
| East Indlan | 15 | Wheat | 13 |
| Cognac. | 16 | Fowl. | 2 |
| Coloring material | 10 | Pea | ; |
| Coman root |  | Guinea | 3 |
| Condiments | . 910 | Fruit | * |
| Coontio | 11 | Juices. | 15 |
| Starch | 11 | Syrups | 15 |
| Cordials. | 17 | Fruits and vegetabled | 3 |
| Coriander seeds | 9 | Fruit vinegars | 15 |
| Corn | 11 | Wines | 16 |
| Cracked | 11 | Game | 3 |
| Dry . | 11 | Birds | 3 |
| Green | 6 | Garlic.. | , |
| Hulled | 11 | Gelatine | - |
| Pop | 11 | Gherkins | 6 |
| Sugar | 11 | Gin | 16 |
| White | 11 | Ginger | 9 |
| Yellow | 11 | African and Calcutta. | , |
| Corn bread. | 11 | Glucose | 13 |
| Meal | 11 | Gouba peas | 8 |
| Starch | 11 | Guat | 3 |
| Cottonseed oil | 12 | Goose | 3 |
| Crackers. | 13 | Gooseberriea | 4 |
| Butter, milk, soda | 13 | Grapes | 4 |
| Water. | 12 | Grape fruit | 4 |
| Cranberries | 1 | Green gages. | 4,5 |
| Cream of tartar | 2 | Grita | 11 |
| Cacumbers | 6 | Groundnute | 8 |
| Currants ..... | 4 | Guavas | 4 |
| Black, and dried | 1 | Guinea fowl | 1 |
| Curry powder. | 10 | Gambo | 6 |
| Damsons . . | 4.5 | Hams ... | - |
| Dandelion sprouts | 6 | Hams, boneless, canned, de | 2 |
| Dates | 4 | Hare | 3 |
| Sugar | 13 | Haricota | C. 11 |
| Distilled liquora. | 15, 16 | Dry. | 11 |
| Duck. | 3 | Haecheesch | 18 |
| Egga.. | - 3 | Hazel-nuts | . 8 |
| Duck's | 3 | Hickory nutn. | . 8 |
| Goose | $a$ | Hominy . | 11 |
| Gninea fowl | 2 | Honey | 13 |
| Gull. | 3 | Horse | 3 |
| Murre | 3 | Horse-radish | 10 |
| Plover | . | Hoochenoo | 16 |


| Huckleberries................................ Page. $^{\text {4 }}$ |  |  | Page. |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Roe, shad. |  |  |
| Hyoscyamus | 17 | Ram |  | 16 |
| Imperial granym | 13 | Rse |  | 12 |
| Infants' food. | 13 | Bran |  | 12 |
| Infusions. | 14 | Bread |  | 18 |
| Irish moss | $\underline{11}$ | Flour |  | 12 |
| Iron water. | 17 | Saffron |  | 0 |
| Japanese plams | . 4 | Sare |  | 10 |
| Jelly, calves' foot | - 2 | Sago. |  | 12 |
| Kid. | . 3 | Starch |  | 12 |
| Kohl Rabbi | 6 | Salsify |  | 7 |
| Koumiss. | 14 | Salt ... |  | 10 |
| Lamb | 2 | Samp. |  | 11 |
| Lard | 17 | Sarsaparilla |  | 10 |
| Leeks | 10 | Sansafras |  | 10 |
| Lemon rind | 10 | Sausage . |  | 2 |
| Lemons | 1 | Potted |  | 2 |
| Lentilea | 6, 11 | Sea moss |  | 1 |
| Lettuce | - 6 | Shaddocks |  | 5 |
| Lime juice | . 15 | Shad-roe |  | 3 |
| Limes. | 4 | Shell-flsh. |  | 3 |
| Liquorice | 10, 13 | Shoulders |  | 2 |
| Liqueurs and corlials | 17 | Silex |  | 10 |
| Liguors, distilled. | 16 | Soda water |  | 1 |
| Malt | 15, 16 | Sorghum |  | 12 |
| Lithia water | 17 | Flour. |  | 12 |
| Long peppers | 10 | Soup, ox-tail. |  | 2 |
| Loquata | - 1 | Soupa |  | 14 |
| Mace. | 10 | Special preparations |  | 2 |
| Maccaroni. | 13 | Spices, condiments, eto |  | 9 |
| Malt Liquors | $\underline{16}$ | Spinach.. |  | 1 |
| Mandrake | 4 | Sprouta |  | 7 |
| Mangold-wurzel | 2 | Squashee |  | I |
| Manioca. | 13 | St. Juhn's bread |  | 11 |
| Martynia | 2 | Star suise aced |  | 10 |
| May apple. | 4 | Starches |  | 1. |
| Mead. | 14 | Steatite |  | 10 |
| Meal | 12 | Stort. |  | 16 |
| Meat juices |  | Strawberriea |  | 5 |
| Meats | 2 | Succotash |  | - |
| Netheglin | 14 | Sugars. |  | 13 |
| Middlings | 12 | beet. |  | 13 |
| Milk | 14 | Cane |  | 16 |
| Milkweed spronts | 2 | Corn |  | 13 |
| Mineral beverages, natar | 17 | Mangold-wurzel |  | 13 |
| Artificial.... | 17 | Sorghum |  | 13 |
| Mineral substances | 10 | Snlphur water |  | 17 |
| Molasses . | 13 | Summer savory |  | 10 |
| Mulberries | 4 | Sweet fern .... |  | 14 |
| Mallet roe | 3 | Sweet marjoram |  | 10 |
| Mushrooms | 7 | Symblims .....et |  | 7 |
| Muskmelons | 4 | Synopsis ......... |  |  |
| Mustard | 10 | Syrups ... |  | 13 |
| Mutton | 2 | Tamarinds |  | 5 |
| Canned and roast | 2 | Tapioca.. |  | 12 |
| Narcotics. | 17 | Flake |  | 12 |
| Nasturtiums | 7 | Pearl. |  | 12 |
| Nectarines | 4 | Tarragon |  | 10 |
| Nutmegs | 10 | Tea, A merican |  | 14 |
| Nuts, etc | 8 | Black |  | 14 |
| Oats.. | 12 | Green |  | 14 |
| Dry | 12 | Thyme... |  | 10 |
| Oat meal | 12 | Tobacco |  | 17 |
| Bread | 12 | Snuff |  | 17 |
| Crackers |  | Tomatoes |  | 8 |
| Proc. Nat. M |  |  |  |  |



## [Proceedings United States National Museum. Appendix.]

SMITHSONIAN INSTITUTION.
UNITED BTATES NATIONAI MUSEUM.

No. 12.

## CLASHIRICATION OR THE COLEECTION TO IELUETRATE TBE

 ART OE TAXIDERMY. (38, B. 1.)*
## By WILLIAM T. HORNADAY.

Tools, Materials, and accessories.
A. Tools used by taxidermists.
(1) For skinning animals.
(2) For cleaning skins.
(3) For carving wooden skulls, bones, etc.
(4) For drilling and boring.
(5) In building manikins.
(6) For inserting fibrons flling-materials.
(7) In setting eyes and modeling generally.
B. Materials used.
(1) Preservatives and protectives for skins.
(2) Iron supports.
(3) Fibrous filling-materials.
(4) Plastic filling-materials.
(5) Materials for repairing and restoring.
(6) Specimens of repairing work.
(7) Coloring-materials and appliances.
(8) Materials for removing grease, dirt, and blood from feathers and hair.
C. Accessories.
(1) Glass eyes.
(2) Artificial leaves.
(3) Artificial ground-work: water, ice, snow, rock, and wood.
(4) Artificial perches, trees, and pedestals.

[^169]
## Processes in Taxidermy.

D. Dry skins of animals not mounted.
(1) Mammals.
(2) Birds.
(3) Róptiles.
(4) Fishes.
E. Models to show the processes of relaxing dry skins.
F. Sets of models illustrating the processes of mounting.
(1) Small mammals.
(2) Large mammals.
(3) Small birds.
(4) Large birds.
(5) Serpents.
(6) Fishes, entire and in medallion.
(7) Heads of mammals.

Examples of Taxidermic Woremanship.
G. Mammals, small, medium, and large.
H. Birds, small, medium, and largé.
I. Reptiles, small, medium, and large. * von:
J. Fishes, small, medium, and large.
K. Artistic groups of the above, in variety.
L. Grotesque groups, in variety.
M. Animals grotesquely mounted.
N. Ornamental or decorative taxidermy.
(1) Heads on shields and in cases.
(2) Screens (with head and neck of bird, or entire subject).
(3) Medallions, large and small.
(4) Panel-pieces on shields and in cases.
(5) Rugs, with head mounted.
(6) Hat-birds and birds' heads.
(7) Other ornamental or decorative work.
o. Photographs of first-class work of all kinds, by representative taridermists.

SMITHSONIAN INSTITUTION.

## UNITED STATES NATIONAL MUBEUM.

No. 13.

## OUTGINE OP A!MCHEME OF DUSEUD CLABSERICATYON.

## By G. BROWN GOODE.

Washington, April 10, 1882.
Sir: I submit herewith the outline of a plan of classification for use in the arrangement of specimens and other materials in this Museum. Should the form of this outline stand the test of criticism, I purpose at an early date to submit a more detailed scheme of classification, sufficiently minute in its subdivisions to be made useful in the assorting and distribution of the immense quantities of objects now stored in the Museum buildings.

In explanation of the wide scope of this effort, I have only to remark that it has been my ambition to frame a classification so broad that a place shall be provided for every object which has a name, so that should the limits of our work, in future, be extended in any direction whatever, this may be done in accordance with a uniform plan.

I think I may safely say that the Museum has already in its possession considerable collections in every class named in the schedule, particnlarly among the materials obtained from the aborigines of America.

I am, sir, yours respectfully,
G. BROWN GOODE.

## Professor Spencer F. Baird, Director United States National Museum.

ODTLINE OF A SCHEME OF MUSEUM CLASSIFICATION.
ANALYSIS.
Divisions. Clasees.
I. Mankind ..... 1-3
II. The Earth as Man's Abode ..... 4-10
III. Natural Resources ..... 11-15
IV. The Exploitative Industries ..... 16-20
V. The Elaborative Industries ..... 21-38
VI. Ultimate Products and their Utilization ..... 39-47
VII. Social Relations of Mankind ..... 48-54
VIII. Intellectual Occupations of Mankind ..... 55-64
outline.
I.-MANKind. ANTHROPOLOGY.

1. Man as a zoological unit Somatology and psychol- ogy.
2. Man, grouped in peoples or races. (a) Races of men, physicalcharacters; (b) linguis-tic characters; (c) artand industrial charac.ters; (d) ethnogeny; (e)geographical distriba.tion of races; $(f)$ his-tory, prehistoric and re-cent, etc.
3. Man, in individual manifesta Representative men: Bi- tions. ography.
II.-The Earth as Man's Abode. Hexiology.
4. The earth, in the solar system ..Cosmology.
5. The earth's structure Geology.
6. The features of the earth's sur- Physiography. face.
7. The atmosphere and its phe- Meteorology. nomena.
8. Effects of man upon the earth's Man and nature. surface, and of climate, phy- sical features, \&c., on man.
9. Apportionment and nomencla- ..... Geography. ture of the earth's surface.
10. Exploration of the earth Voyages and travels.
III.-Natural Resources. Force and Matter.
11. Force in its manifestations Physics, mechanics, and physiology.
12. The elements and their com. Chemical collections. binations.
13. Inorganic matter Mineralogical collections.
14. The regetable kingdom Botauical collections.
15. The animal kingdom Zoological collections.
IV.-The Exploitative Industries. Exploitative Technol. OGY.
Primary.
16. Exploitation of inorganic ma- Mining and quarrying.terials.

## 17. Exploitation of vegetable pro- Lumbering and field-gleanducts of spontaneous growth. ing.

18. Capture of animals .............. Hunting, fishing, \&c.

Secondary.
19. Culture of plants

Agriculture, horticulture and forestry.
20. Culture of animals: domestic Pecudiculture. animals and their uses.
V.-The Elaborative Industries.-Elaborative Technology.
21. Preparation of food-stuffs, narcotics, \&c.
22. Distillation, manufacture of perfumeries, \&c.
23. Uils, fats, soaps, and waxes; their preparation and use.
24. Gums, resins, glues, and cements.
25. Pigments and dyes; painting, staining, polishing, bleaching, \&c.
26. The chemical manufactures and their products.
27. Feathers, hair, bristles, and their use.
23. Furs and leathers; tanning and currying.
29. Fibers, cordage, textile fabrics, needlework, basket-work.
30. Paper and its manufacture; book-making; stationery.
31. Hard and flexible organic tissues and their use.
32. Woods, and the wood-working industries.
33. Stones, and the stone-working industries; masonry.
34. Metals, metallargy, and the metal industries.
35. Glass and enamel and their fabrication.
36. Pottery, and the ceramic industry.
37. Tools, machinery, and motors, their manufacture and use.
38. Construction, architecture, and civil engineering.
Vi.-Ultimate Products and their Utilization.
39. Foods and drinks: preparation, cookery, \&c.
40. Narcoties and masticatories; pipes, \&c.
41. Dress, and personal adornment.
42. Buildings, villages, and cities.
43. Furniture, house interiors, domestic economy, \&c.
44. Heating and illumination.
45. Medicine, surgery, pharmacology, hygiene, \&c.
46. Public comfort, recreation, protection and rescue.
47. Trausportation by land and water: appliances and accessories.
VII.-Social Relations of Mankind. Sociology and its accessories.
48. The vocations of men.
49. Communication of ideas and their record: writing and printing, telegraphy, signals, \&c.
(599)
50. Trade and commerce.
51. Societies and federations, social, beneficial, religious, and political.
52. Government and law.
53. War (including armor and weapons).
54. Festivals, ceremouies, usages, memorials, \&c.
ViII.-Intellectual Occupations of Mankind. Art, Science, and Philosophy.
55. Games and amusements.
56. Music and musical instruments.
57. The drama and the stage.
58. The pictorial, plastic, and decorative arts.
59. Literature (from the intellectual standpoint only).
60. Folk lore, traditions, and superstitions.
61. Science: (Research and record.) Scientific instruments.
62. Philosophy, religious, metaphysical, and cosmical.
63. Education and reform; schools, museums, libraries, \&c.
64. Climaxes of human achievement.

# [Proceedings United States National Mnseum, 1881, Appendix.] <br> SMITHSONIAN INSTITUTION. 

UNITEDSTATESNATIONAI MUSEUM.

No. 14.

## CIECELAE REQUEATING MATEREAE TOR TEB LIBRABE.

The Smithsonian Institution solicits for the library of the United States National Museum, under its charge, copies of publications relating to all departments of anthropology, art, technology, zoology, botany, geology, mineralogy and lithology, geography and explorations, the reports and catalogues of societies, museums, and zoological gardens, as well as copies of plans and labels and other accessories of work in museums, and the catalogues of colleges and schools containing reference to courses of instruction or collections in natural history.

Anthors' editions, or "separates" of communications published in periodicals, or proceedings of societies, are especially desired; and it is hoped that anthors will furnish, as far as possible, sets of their publications complete to date.

The Smithsonian Institution offers in exchange an equivalent in copies of the proceedings and bulletins of the National Museum, a catalogue of which, complete to date, accompanies this circular; also such of its reports and other publications as can be supplied at the time of application.

The Smithsonian Institution is pleased to receive from investigators in special departments, and from public museums and institutions of learning, applications for such specimens of natural history as are found in North America.

SPENCER F. BAIRD,<br>Secretary of Smithsonian Institution and Director U. S. National Museum.<br>City of Washington, United States of America, April 15, 1882.

Packages of small size may be sent by express, charges to be collected on delivery, and larger packages by freight.

Packages may also be sent from points in the vicinity of military posts by addressing them to "U.S. National Museum, care of Depot Quartermaster (stating name of post)," the quartermaster having instructions to forward all such packages.

On the Pacific slope, packages may also be sent in care of the Alaska Commercial Company, San Francisco.

Foreign packages intended for the Maseum may be sent by mail, addressed to the Smithsonian Institution, Washington, D. C., or, if of large size, through the following agents of the Smithsonian Institution:

Algeria: Commission Française des Echanges Internationaux, Paris.
Anstralia: See New Sonth Wales, New Zealand, Queensland, Sonth Australia, Tasmania, and Victoria.
Austro-Hungary: Dr. Felix Flitgel, 49 Sidonien Strasse, Leipzig.
Belgium: Commission Belge d'Echange Internationaux, Brussels.
Brazil: Instituto Historico, Geographico y Ethnographico, Rio Janeiro.
Chile: Universidad, Santiago.
Cbina: U. B. Consul-General, Shanghai.
Cuba: Prof. F. Poey (R. University), Calle San Nicolas 96, Havana.
Denmark: Kongelige Danske Videnskabernes Selscab, Copenhagen.
France: Commission Française des Echanges Internationanx, Paris, or Leopold Bassange, Rue.
Germany: I)r. Felix Flugel, 49 Sidonien Strasse, Leipzig.
Great Britain: William Wesley, 28 Essex street, Strand, London.
Greece: By mail direct.
Hayti: Sécrétaire de l'Etat des Relations Extérieures, Port-au-Prince.
Itolland: See Netherlands.
India: William Wesley, London.
Italy: Biblioteca Nazionale Vittorio Emanuele, Rome.

Java: Genootschap ran Kunsten en Wetenschappen, Batavia.
Mauritius: William Wesley, London.
Mexico, Museo Nacional, Mexico.
Netherlands: Bureau Scientifique, Professor von Baumhauer, Harlem.
New South Wales: Royal Society of New South Wales, Sydney.
New Zealand: Parliamentary Library, Wellington.
Norway: Kongelige Norske Frederils L゙niversitet, Christiania.
Portugal: Escola Polytechnica, Lisbon.
Queensland: Government Meteorological Observatory, Brisbane.
Russia: Commission Russe des Echanges Internationaux, St. Petersburg.
South Australia: Antronomical Obeervatory, Adelaide.
Spain: Real Academia de Ciencias,Madrid.
Sweden: Kongliga Svenska Vetenskaps Akademien, Stockholm.
Switzerland: Bundes Canzlei, Berne.
Syria: By mail direct.
Tasmania: Royal Society of Tasmania, Hobarton.
Turkey: By mail direct.
Veneznela: Universidad [Dr. A. Ernst], Caracas.
Victoria: Public Library, Melbourne. West Indies: By mail direct.

If sent from seaport towns by vessel to New York, packages may be directed to Smithsonian Institution, care of Collector of Customs, port of New York.

Institution Smithsonienne. Musée National des Etats-Unis.
L'Institution Smithsonienne désire avoir en sa possession pour la Bibliothèque du Musée National des Etats-Unis, placée sous sa direction, des copies de pablications relatives à tous les départements anthropologie, art, technologie, zoologie, botanique, géologie, minéralogie et lithologie, géographie et explorations; des rapports et catalogues de sociétés, mnsées et jardins zoologiques; comme aussi des plans, étiquettes et autres accessoires dont on se sert dans les musées; enflo, les catalogues de colléges et d'écoles, contenant les programmes des cours relatifs à l'enseignement des sciences naturelles ou aux collections qui s'y rapportent.

Des tirages séparés de publications dajs des ouvrages périodiques ou des procès-verbaux de sociétés sont particulièrement désirables; et il est à espérer que, autant que la chose est possible, les auteurs présenteront des séries de leurs publications au complet.

En échange ou comme équivalent, l'Institution Smithsonienne offre des copies des procès-verbaux et bulletins du Musée National, dont un catalogue complet jusqu'a cette date accompagne cette circulaire; de même que ceux de ses rapports et autres publications qui pourront être fournies a l'époque de la demande.

L'Institution Smithsonienne recevera de la part d'investigateurs dans les départements spéciaux, de musées et d'institutions scientifiques, les demandes qu'ils pourront avoir à lui adresser afin d'obtenir des specimens d'histoire naturelle qui se trouvent dans l'Amérique du Nord.

SPENCER F. BAIRD, Secrétaire de l'Institution Smithsonienne et Directeur du Musée National des Etats-Unis.
Washington, District de Colombie, Etats-Unis D'Amerique, 15 Avril, 1882.
3.2

## SMITHSONIAN INSTITUTION.

UNITEDSTATES NATIONALMUSEUM.

No. 15.

## THE ORGANIEATION AND OBJECTB OF TER NATIONAL MUAEEM.

## I.

pouxdatiox The National Museum was organized in 1846 by the and atus. act of Congress transferring to the Smithionian Institurion the custody of the "National Cabinet of Curiosities," at that time deposited in the Patent-Office Building.* These collections were, in 1857, placed in the Smithsonian building, the Regents of the Institution having accepted the trust on condition that the necessary appropriations for their maintenance should be continued by Congress.

The act above referred to provides that "all objects of art and of foreign and curious research, and all objects of natural history, plants, and geological and mineralogical specimens belonging or hereafter to belong to the United States, which mas be in the city of Washington," shall be delivered to the Regents of the Simithsonian Institution, and, together with new specimens obtained by exchange, donation, or otherwise, shall be so arranged and classiffed as best to facilitate their examination and study.t

The National Museum is the authorized place of deposit for all objects of natural history, mineralogy, geology, archæology, ethnology, \&c., belonging to the United States or collected by the Coast and Interior Survey, the Geological Survey, or by any other parties for the Government of the United States, when no longer needed for investigations in -progress. $\ddagger$

## II.


The establishment of the Smithsonian Institution, to which, govknмикт. in addition to the carrying out of the other requirements of the beguest of Smithson, is intrusted the control of the National Museum, is composed of the President of the United States and his Cabinet, the Commlssioner of Patents, and a Board of Regents, which has for its members the Vice-President and Chief Justice of the United States,

[^170](605)
three members of the Senate, three nembers of the House of Representatives, and six other persons, not members of Congress, two of whom are residents of the city of Washington.§

The management of the National Muscum is intrusted to the Secretary of the Smithsonian Institution, who is, ex-officio, its director. He is aided by a staff of assistants, who are chosen by him, and for whose action he is responsible to the Regents.

This staff is at the present time composed of an assistant director, six curators, six honorary curators, serving without pay, a number of assistants and aids, acting in various capacities, a registrar, chief taxidermist and chief modeler, besides a considerable force of preparators, mechanics, watchmen, clerks, laborers, \&c.

The staff is constantly changing with the varying needs of the Maseam.
The operations of the Maseum are carried on by means of an appropriation annually made by Congress "for the care and preservation of the collections."

The collections are stored and exhibited in the building erected for the use of the Smithsonian Institution between 1847 and 1857, and in the new building, just finished, known as the "National Museum."

## III.

compormox The Museum is made up, in large part, of the following ор THK

1. The natural-history and anthropological collections accumulated since 1850 by the efforts of the officers and correspondents of the Smithsonian Iustitution.
2. The collections of the Wilkes Exploring Expedition, the Perry Expedition to Japan, and other naval expeditions.
3. The collections of the scientific officers of the Pacific Railroad Surrey, the Mexican Boundary Surves, and of the surveys carried on by the Engineer Corps of the Army.
4. The collections of the United States Geological Surveys nnder the direction of the United States Geologists Hayden, King, and Powell.
5. The collections of the United States Fish Commission.
6. The gifts by foreign governments to the Museum or to the President and other public officers of the United States, who are forb dden by law to receive them personally.
7. The collections made by the United States to illustrate the animal and mineral resources, the fisheries, and the ethnology of the native races of the country; on the occasion of the International Exhibition at Philadelphia in $\mathbf{1 8 7 6}$, and the fishery collections displayed by the United States in the International Fishery Exhibition at Berlin in 1880.
8. The collections given by the governments of the several foreign nations, thirty in number, which participated in the exhibition at Philadelphia.

[^171]9. The industrial collections given by numerous manufacturing and commercial houses of Europe and America, at the time of the Philadelphia Exhibition and subsequently.
10. The material received, in exchange for duplicate specimens, from the museums of Europe, Asia, and Australasia, and from numerous institutions and collectors in North and South America.

## IV.

ADJUKCTB
As necessary adjuncts to the work of the Museum, a admisisteatrox. working library, a chemical laboratory, a photographic establishment, a workshop for taxidermy, modeling, and the preparation of skeletons, and several smaller workshops are carried on as a part of the general work of administration.

> V.
pealcatoss The scientific results of the labors of the officers of the
 to it, are to be found for the most part in the following works:

Bulletin of the United States National Museum;
Proceedings of the United States National Museum;
Reports of the Smithsonian Institution;
Smithsonian Miscellaneous Collections ;
Smithsonian Contributions to Knowledge;
Reports of the Bureau of Ethnology of the Smithsonian Institution;
Reports of the United States Commissioner of Fisheries;
Bulletin of the United States Fish Commission;
also occasionally in other scientific reports of other scientific departments of the government.

## VI.

obrets The collections in the National Museum are intended metrons or work. to exhibit the natural and industrial resources, primarily of the United States, and secondarily of those of the remainder of the world, for purposes of comparison.

The activity of the Museum is exerted in three directions :
(a) The permanent preservation of objects already in its possession.
(b) The acquisition of new material.
(c) The utilization of material already in its possession, by its exhibition in the most instructive manner, and by the prosecution of and puhlication of scientific researches for which it forms the basis; by the distribution of properly-labeled duplicates of materials to colleges and other elucational institutions.

The preservation of material is accomplished by means of the vigilance of the curators and the skill of the preparators.

New material is acquired (a) in accordance with law, from the various government surveys and expeditions; (b) by gift from individuals, from
(607)
other institutions, and from foreign governments; (c) by exchange for its duplicate specimens or publications; (d) by the efforts of officers of the Museum, who make collections in connection with their regular duties, or are detailed for special service of this nature; (e) by purchase when appropriations are made by Congress for that purpose.

The treasures in the custody of the Maseum are utilized to the world by exhibiting them to the public, and by encouraging investigations on the part of the officers of the Museum and other suitable persons, and facilitating the publication of the results; also by the distribution to other museums and educational institutions of duplicate specimens, which have formed the basis of scientific investigation, these being identified and labeled by the best authorities.

## VII.

The Museum by these means fulfills a threefold function:

1. It is a Museum of liecord, in which are preserved the material foundations of an enormous amount of scientific knowledge-the types of numerons past investigations. This is especially the case with those materials which have served as a foundation for the reports upon the resources of the United States. Types of investigations made outside of the Museum are also incorporated.
2. It is a Museum of Research, by reason of the policy which aims to make its contents serve as fully as possible as a stimulus to and a foundation for the studies of scientific investigators. Research is necessary in order to identify and group the objects in the most philosophical and instructive relations. Its ofticers are selected for their ability as investigators, as well as for their trustworthiness and abilities as custodians, and its treasures are open to the use of any honest student.
3. It is an Educational Museum of the broadest type, by reason of its policy of illustrating by specimens every kind of natural object and every manifestation of human thought and activity, by displaying descriptive labels adapted to the popular mind, and by its policy of distributing its publications and its named series of duplicates.

# [Proceedings United States National Museum, 1881. Appendix.] 

SMITHSONIAN INSTITUTION.
UNITEDSTATES NATIONAI MUSEUM.

No. 16.

## PLANE TOR THE INSTALLATION OE COLLECTHONA.

The collections in the National Museum are now being assorted and rearranged, for the purpose of placing on exhibition a selected series of objects which shall be of interest to visitors, and of making the remainder serviceable for purposes of scientific and technological investigation. A large portion of the most interesting material has never yet been exhibited on account of lack of space.

The following general principles have been adopted in this work:

1. No object will be placed on exhibition which is not of evident educational value, and likely to interest and instruct a considerable percentage of the persons visiting the Museum.
2. The exhibition of duplicate material is to be avoided, except in instances where similar objects can be shown to advantage in different divisions of the Museum.
3. Each object will be placed in a case of the form best suited for its effective display, and the light, color of the background, \&c., will be so adjusted as to show it to best possible advantage, and with the least possible fatigue to the eyes of the visitor.
4. Each object, or group of objects, will be accompanied by a large plainly printed label, which will give a concise description of what is shown, an account of its origin and uses, a synopsis of its history, and the name of the person or organization contributing it to the Museum. The character of the Museum is such that auy labels which might suggest advertising for business purposes must be excluded. It will be the policy of the Muscum, however, to give prominence on each label to the name of the person or business house from whom it has been received, provided that the object is a gift to the Museum.
5. The objects will be grouped together in systematic order, and each case will be provided with a general descriptive label. In the case of collective exhibits, the general label may also give the name of the contributor.

Proc. Nat. Mus. $81-39$ (609)
6. The specimens will be illustrated and supplemented by pictares, diagrams, books, and maps, in such manner that the Musenm may form an encyclopedia, the illustrations for which are in the exhibition cases, the text in the labels.
7. Gaide-book manuals of the different departments will be published, which will embody in concise and systematic form the information given by the specimen labels, together with such illustrative material as may seem necessary to present in addition.

## [Proceedings United States National Mnsenm, 1881. Appendix.]

SMITHSONIAN INSTITUTION.
UNITEDSTATER NATIONAIMUSEUM.

No. 17.

## CONTRIBUTIONM AND TBEIR ACENOWLEDGMENT,

No money having at any time been specially appropriated for increasing the collections by purchase, the growth of the Museum has ever been and still is dependent solely upon the exertions of its officers and those of other branches of the public service and upon the public spirit and liberality of its frieuds.

The friends of the Smithsonian Institution and the National Musenm are earnestly invited to take part in the work of building up the collections and in particular to respond to special requests for advice or other aid which may reach them by letter.

The following rules for the acknowledgment of specimens will be adhered to:

1. Each contribution will be recognized by a formal written acknowledgment from the Director.
2. Each contribution will be published in the annual reports of the Smithsonian Institution and the National Musenm; and in the catalognes and other publications of these establishments in which the objects contributed may be alluded to, the name of the contributor will always be given.
3. On the label, which is invariably attached to every object, the name of the contributor will be conspicuously printed. In the case of donations the form will be "Gift of ___, "_ and where the objects have been obtained by special exertions of a friend of the Museum, who, however, is not their donor, the form will be "Obtained by _ ," or "Collected by ___
4. Objects which may have been bought by special appropriations, suci as those for the Philadelphia and Berlin exhibitions, will not be labeled with the name of the persons from whom purchased, except by special agreement in cases where these persons have been only in part paid for their exertions.
5. The Museum will make every possible return for aid rendered, by offering in exchange its publications and its duplicate specimens.

## [Proceedings of U. S. National Museum, 1881. Appendix.]

## SMITHSONIAN INSTITUTION.

## UNITED STATES NATIONAL MUSEUM.

No. 18.

## LIST OE PUBLICATIONS OF TEE UNITED STATES NATIONAL MUSEUM.

## A.-BULLETINS IN SEPARATE FORM.

Bulletin 1.-Check-List of North American Batrachia and Reptilia; with a systematic list of the Higher Groups, and an Essay on Geographical Distribution based on the specimens contained in the United States National Museum. By Edward D. Cope. 1875. 8ro, pp. 4, 104.

Bulletin 2.-Contributions to the Natural History of Kerguelen Island, made in connection with the American Transit of Venus Expedition, 1874-75. By J. H. Kidder, M. D., Passed Assistant Surgeon, United States Navy. I. Ornithology. Edited by Dr. Elliott Coues, United States Army. 1876. 8vo, pp. ix, 1, 51.

Bulletin 3.-Contribations to the Natural History of Kerguelen Island, made in connection with the American Transit of Venus Expedition, 1874-75. By J. H. Kidder, M. D., Passed Assistant Surgeon, United States Navy. II. 1876. 8vo, pp. 2, 122.

CONTENTS.
Oology-By J. H. Kidder and Elliott Conet.
Botany:
A. Phonogamia, Filices, et Lycopodiacea.
Revised by Aas Gray.
B. Musci. By Thomas P. Jamea.
C. Lichenea. By Fdward Tucherman.
Alga. By W. G. Farlow.
Crozet Flon.
Geology. By F. M. Endlich.
Mammala. By J. H. Kidder.
Fish. By Theodore N. Gill.

Mollnsk. By W. H. Dall.
Insects:
Diptera. By C. C. Osten Sacken.
Pseudo-Neuroptera. By H. A. Hagen.
Crustaceane. By S. I. Smith.
Annelida, Echinoderms, and Anthozon. By A. E. Verrill.
Surgeon E. Kerahner's collection.
A Study of Chionia minor. By J. H. Kidder and Elliott Couea.

Bulletin 4.-Birds of Southwestern Mexico. Collected by Francis E. Sumichrast for the United States National Museum. Prepared by George N. Lawrence. 1875. 8vo, pp. 56.

Bulletin 5.-Catalogue of the Fiskes of the Bermudas. Based chiefly upon the collections of the Tnited States National Museum. By G. Brown Goode, Curator United States National Museum. 1576. Sro, pp. 2, 2 unnumbered, 3-82.

Bulletin 6.-Classification of the collection to illustrate the animal resources of the United States. A list of substances derived from the animal kingdom, with synopsis of the useful ind injurious animals and a classification of the methods of capture and utilization. By G. Brown Goode, M. A., Assistant Curator Cnited States National Museum. 1876. 8ro, pp. xiii, 126.

Bulletin 7.-Contributions to the Nataral History of the Hawaiian and Fanning Islands and Lower California, made in connection with the Cnited States North Pacific Surveying Expedition, 1873-i5. By Thos. H. Streets, M. D., Passed Assistant Surgeon United States Navy. 1877. 8vo, pp. 172.

CONTENTS.


Bulletin 8.-Index to the names which have been applied to the subdivisions of the class Brachiopoda, excluding the Rudistes previons to the year 1877. By W. H. Dall, United States Coast Survey. 187̈. 8vo, pp. 88.

Bulletin 9.-Contributions to North American Ichthyology, based primarily on the collections of the United States National Museum. I. Review of Rafinesque's Memoirs on North American Fishes. By David S. Jordan. 1877. Svo, pp. iii, 4-53.

Bulletin 10.-Contributions to North American Ichtbyology, based primarily on the collections of the United States National Museum. II. A.-Notes on Cottida, Etheostomatida, Percida, Centrarchila, Aphododerida, Dorysomatida, Cyprinida, with revisions of the genera and descriptions of new or little known species. B.-Synopsis of the Silurida of the fresh waters of North America. By David S. Jordaa. 1877. 8vo, pp. 4, 120, pl. 45.

Bulletin 11.-Bibliography of the Fishes of the Pacific coast of the United States. By Theodore Gill. 1882. 8vo, pp. 4, 73. (11)


#### Abstract

Bulletin 12.-Contributions to North American Ichthyology, based primarily on the collections of the United States National Museum. III. A.-On the distribation of the fishes of the Alleghany region of South Carolina, Georgia, and Tennessee, with descriptions of new or little known species. By David S. Jordan and Alembert W. Brayton. B.-A synopsis of the family Catostomidæ. By David S. Jordan. 1878. 8vo, pp. 237.

Bulletin 13.-The Flora of St. Croix and the Virgin Islands. By Baron H. F. A. Eggers. 1879. 8 vo, pp. 6, 133.

Bulletin 14.-Catalogne of the collection to illustrate the Animal Resources and the Fisheries of the United States, exhibited at Philadelphia in 1876, by the Smithsonian Institution and the United States Fish Commission, and forming a part of the United States National Museum. Prepared nnder the direction of G. Brown Goode. 1879. 8vo, pp. xvi, 351 .

Bulletin 15.-Contributions to the Natural History of Arctic America, made in counection with the Howgate Polar Expedition, 1877-78. By Ludwig Kumlien, Naturalist of the Expedition. 1879. 8vo, pp. 179.


CONTENTS.

|  | Page. |
| :---: | :---: |
| Introduction. By Ludwig Kumlien | 5 |
| Ethnology. By Ludwig Kumiten | 11 |
| Mammals. By Ludwig Kumlien | 47 |
| Birda. By Ludwig Kumlien | 50 |
| Fishos. By Tarleton H. Bean | 108 |
| Crustacear By S. I. Smith | 139 |
| Annelides. By A. K. Ferrill | 141 |
| Molluska, By W. H. Dall. | 145 |
| Molluscoide. By A. E. Verrill | 147 |
| Radiates. By A. E. Verrill | 151 |
| Insects: Diurnal Lepidoptera, By W. H. Edwards | 155 |
| Hymenoptera, Nocturnal Lepidoptera, Diptera, By S. II. Scudder and others. | 159 |
| Planta. By Ama Gray | 163 |
| Lichens. By Edward Tuckerman | 107 |
| Algw. By W. G. Farlow. | 169 |
| Minerals. By F. M. Endich | 171 |

Bulletin 16.-Contributions to North American Ichthyology, based primarily on the collections of the United States National Museum. IV. A Synopsis of the Fishes of North America. By David S. Jordan and Charles H. Gilbert. -. 8vo, pp. -. (In press.) (16)

Bulletin 17.-On the Zoological position of Texas. By Edward D. Cope. 1880. 8vo, pp. 4, 51.

|  | CORIET3. | Page |
| :---: | :---: | :---: |
| Geology, topography, |  | 1 |
| Mammalia.... |  | 8 |
| Aves |  | 12 |
| Reptilia. |  | 13 |
| Batrachia. |  | 21 |
| Pisces ....... |  | 30 |
| Sapplementary notes |  | 5 |
| General obeervations |  | 42 |

Bulletin 18.-Exhibit of the fisheries and fish cultare of the United States of America, at the Internationale Fischerei-Ausstellang, held at Berlin, April 20, 1880, and forming a part of the collections of the National Museum, made by the United States Fish Comarission. Prepared under the direction of G. Brown Goode, Deputy Commissioner. 1880. 8vo, pp. xp, 1, 263.

Bulletin 19.-Nomenclator Zoologicus. An alphabetical list of all generic names that have been employed by naturalists for recent and fossil animals from the earliest times to the close of the year 1879. In two parts. I. Supplemental list. By Samuel H. Scudder. Washington: Government Printing Office, 1882. 8vo, pp. xxi, 1, 376.

Bulletin 20.-The writings of American Zoologists. Index Bibliography, No. I. Publications of Spencer Fullerton Baird. By G. Brown Goode. -. 8vo, pp. -. (In press.)

Bulletin 21.-Nomenclature of North American Birds chiefly contained in the United States National Museum. By Robert Ridgway. 1831. 8 ro, pp. 94.

Bulletin 22.-Guide to the Flora of Washington and vicinity. By Lester F. Ward, A. M. 1881. 8vo, pp. 264+1, one folded map.

## B.-BULLETINS COMBINED IN VOLUMES.

Volume I.-(consisting of Bulletins 1 to 10, each retaining its own pagination). Bulletin of the Uuited States National Museum. Volnme I, (Nos. 1-10). Published under the direction of the Smithsonian Institution. Washington: Government Printing Office, 187\%. 8vo, pp. 1010.

Volume II.-(consisting of numbers 11 to 15 , each retaining its own pagination).-Bulletins of the United States National Museum. Volume II, (Nos. 11-15). Published under the direction of the Smithsonian Institution. Washington: Government Printing Office, 1882. 8 vo, pp. 999.
C.-PROCEEDINGS.Department of the Interior: | U. S. National Museum. | - 17- | Pro-ceedings | of the | United States National Museum. | Vol. I. | 1878.- | Published under the direction of the Smithsonian Institution. |- | Washington: | Government Printing Office. | 1879.(17)$8 v o, p p$. iv, 520, 8 figs., 8 plates.CONTENTS OF VOL. I.
Page.
Beax, Tabletox H. Deacription of a New Sparoid Fish, Sargue Holbrookii, from Savannah Bank ..... 108

- On the occurrence of Stichaus punctatus (Fabr.) Kröyer, at St. Michael's, Alaska ..... 279
On the Identity of Euchelarodus Putnami Gill, with Pleuroncete: glaber (Storer) Gill, with Notes on the Habits of the Species ..... 345
Description of a Species of Lycodes (L. Turneri) from Alaska, believed to be unde- scribed. ..... 469
See also under Goode and Bean.
Beldina, L. A Partial List of the Birds of Central California. ..... 388
Cook, Caleb. The Manufacture of Porpoise-On ..... 16
Dali, W. H. Deacriptions of New Forms of Molluske from Alaska contained in the Collec- tions of the National Musenm ..... 1
Postpliocene Fosails in the Coast Range of Callfornia. ..... 3
Fossil Mollusks from Later Tertiaries of California. ..... 10
Note on Shells from Conta Rica Kitchenmidden, collected by Dra. Flint and Bransford. ..... 23
Distribution of California Tertiary Fonails ..... 26
- Deacriptions of New Species of Shella from Callfornia in the Collections of the Na. tional Museum ..... 46
—— Report on the Limpets and Chitons of the Alaskan and Arctio Regiona, with Deacrip- tions of Genera and Species believed to be new ..... 281
Edwards, Vinal N. On the Occurrence of the Oceanic Bonito, Orcynus pelamye (Linne) Poey, in Vineyard Sousd, Mass ..... 263
Gill Theodone. Synopsis of the Pediculate Fishes of the Eatern Coast of Extratropical North America ..... 215
- Note on the Antennaridde ..... 221
On the Proper Specific Name of the Common Pelagic Antennariid Pterophrme. ..... 223
Note on the Ceratide ..... 227
Note on the Maltheide ..... 231
Goode, G. Browx. The Clupea tyrannue of Latrobe. ..... 5
——The Occurrence of Belone latimanus in Buzzard's Bay, Maseachusetts.
6
6
The Voices of Crustaceans. ..... 7
- A Revision of the American Specioa of the Genus Brevoortia, with a Description of a New Species from the Gulf of Mexico ..... 30
- The Occurrence of Hippocampue antiquorum, or an Allied Form, on Saint George's Banks. ..... 45
The Occurrence of the Canada Porcupine in Weat Virginia. ..... 204
On Two Fisbes from the Bermudas miatakenly described as new by Dr. Gúnther ..... 462
Goodr, G. Bhowx, and Tahletox II. Bran. The Craig Flonnder of Europe, Glyptocephalue cynogloseus, on the Coast of North America. ..... 19
- The Ocennie Bonito on the Coast of the United States. ..... 24
- Deacription of Caulolatilus micrope, a New Species of Fish from tho Gulf Coast of Florida ..... 42
On a New Sermaoid Fish, Epinephelus Drummond-Hayi, from the Bermudas and Florida ..... 173
- Descriptions of Two New Species of Fishes, Lutjanus Blackfordif and Lutjanue Stearnsii, from the Const of Florida ..... 176
- A Note upon the Black Grouper (Epinephelus aigritus (Holbrook) Gill) of the Southern Coast ..... 183
- Descriptions of Two Gadoid Fishes, Phycis Ohesteri und Haloporphyrus viola, from the Deep-Sea Fauna of the Nortbweatern Atlantio. ..... 256
——Dencription of Argentina syrtensium, a New Deep-Sea Fish from Sable Island Bank ..... 201
The Identity of Rhinonemus caudacuta (8tover) Gill with Gadus cimbrius Linn ..... 348
(617)
Note on Platessa ferruginea D. H. Storer, and Platessa mostrata H. R. Storer ..... 301
On the Identity of Brommius americanus Gill, with Bromnius brome (Muller) White.. ..... se
Jackson, J. B. S., M. D. Arsenic Acld for protecting A natomical Preparations from Insects. ..... 2
Jeffensox, Liect. J. P., U. S. A. On the Mortality of Fishes in the Gulf of Mexico in $1878 .$. ..... 20 ..... 20
Jepferson, Lirut. J. P., Dr. Jobeph Y. Portre, axd Thomab Moore. On the Deatruction of Fish in the Vicinity of the Tortugas during the monthe of September and October, 1878. ..... 24
Jondax, David S., M. D. Notes on a Collection of Fishes from Clackamas River, Oregon.... ..... 0
Jordan, David S., and Charles H. Gilbert. Notes on the Fishes of Beaufort Harbor, North Caroliua ..... 305
Lawresce, Georgi N. Catalogne of the Birds of Dominica, from Collectiona made for the Smithanian Inatitution by Frederick A. Ober, together with his Notes and Observations. ..... 4
——Catalozue of the Birds of St. Vincent, from Collections made by Mr. Fred. A. Ober, un- der the Directions of the Smithsonian Iastitution, with his Notes thereon ..... 188
——Catalogue of the Birds of Antigna and Barbuda, from Collections made for the Smith sonian Institution, by Mr. Fred. A. Ober, with hia Observationa ..... 22
——Catalogue of the Birds of Grenada, from a Collection made by Mr. Fred. A. Ober, ior the Smithmonian Institation, including othera aeen by him, but not obtained ..... 23
__ Catalogue of the Birds collected in Martinique by Mr. Fred. A. Ober for the Smithmonian Inatitution ..... 3
- Catalozue of a Coll ection of Birds obtained in Guadeloupe for the Smithsouian Institu- tion, by Mr. Fred. A. Ober ..... 41
- A General Catalogue of the Birda noted from the Ialands of the Leeser Aniflles vieitedby Mr. Fred. A. Ober ; witha Table abowing their Distribution, and those found in the CnitedStates4
Lctron, Prof. N. T. On the Breeding Habits of the Sea-Catish (Ariopsis Milbertin) ..... 273
Marmin Dr. James C., U. S. A. Notes on the Ornithology of Southern Texan, being a Liat of Birds observed in the Vicinity of Fort Brown, Texax, from February, 1870, to June, 1878. ..... 118
Pory, Felipr. Notes on the American Specien of the Genus Cybium. ..... 2
Pratt, Capt. R. H., U. 8. A. Catalogue of Casta taken by Clark Mills. Eaq., of the Beads of Sisty four Indian Prisoners of Various Western Tribes, and held at Fort Marion, Saint A ugug- tine, Fla., in Charge of Capt. R. H. Pratt, U. S. A ..... 31
Rideway, Robert. On a Now Humming Bird. (Atthis Ellioti) from Guatemala. ..... 8
-- A Review of the American Speciea of the Genus Scopes, Sarigny ..... 8
Descriptions of Several New Species and Geographical Racea of Biriac contained in the Collection of the United States National Musenm ..... 247
- Description of Two New Species of Birds from Costa Rica, and Notee on other hare Species from that Country ..... 25
——Descriptions of New Species and Races of American Birda, including a Synopsis of the Genus Tyrannus, Cuvier ..... 40
Stearis, Silas, A Note on the Gulf Menhaden. Brevoortia patronus, Goode ..... 18:
Sthindachner, Dr. Fhanz. Note on Perca flavencene. ..... 343
Wilsot, Samuki, Notes on the Weatern Gizzard Shad, Dorosoma cepedianem heterurum (Raf.) Jordan ..... 20
Department of the Interior: | U. S. Nationad Musuem. | - 19-| Pro- ceedings | of the | United States National Museum. | Vol. II. | 1879.  | - | Washington: | Government Printing Office. | 1880. (19) とro, pp. ir, 490, 2 figs., 7 plates.
CONTENTS OF VOL. II.
Bean, Tanletor H. A liat of European Fighes in the collection of the United Statee National Museam ..... 11 ..... $5:$
On the occurrence of Hippoglossus culgaris, Flem., at Unalashka and Saint Michael's,
Alaeka ..... ๗
Description of an apparently New Species of Gasterosteus ( $G$. Atkinvii) from the Schoolic Lakes, Maine ..... 6
Doacription of a New Fiah from Alaska (Anarrhicas lepturus), with Notes upon otherSpecies of the Genua Anarrhicas.218
- Notes on a Collection of Fishea from Eabtera Georgia ..... 58
-Description of a New Epecics of 4 miurue (A. ponderorus) from the Missisesppi River ..... 200
Descriptions of Two Speciea of Fishes, collected by Prof. A. Dugès in Central Mexico. ..... 302
Deacription of some Genera and Species of Alaskan Fishes363
See also under Goode and Bean.
Bexwer, T. M. Notes on the Nests and Eggs of the Eight North American Species of Empi- donaces ..... 1
Coopren, J. G., M. D. On the Nesting Habita of Went Const Birda ..... 241
Cours, Da. Elliott, U. S. A. Fourth inatalment of Ornithological Bibliography, being a List of Faunal Publications relating to British Birds ..... 350
Gäter. H. On the Birde of Heligoland ..... 51
Goodr. G. Browx. A Study of the Trunk-Fishem (Oatraciontide), with Notes upon the American Species of the Family ..... 201
- A prelimisary Catalogun of the Fishes of the Saint John's River and the East Coast of Forida, with deacriptions of a New Goans and Three New Species ..... 108
-Description of a New Species of Amber Finh (Seriola Btearnsii) obtainod near Pensacola, Fla., by Mr. Silas Stearns ..... 48
Goode, G. Browx, and Tabletor H. Beax. Deseription of Alepocephalus Bairdib, a New Species of Fish from the Deep Sea Fauna of the Weatern Atlantio ..... 55
——Deacription of a Species of Lycodes (L. paxillus) obtained by the United States Fish Commisaion ..... 44
- Description of a New Species of Liparie (L. ranula) obtained by the United States Fish Commistion off Halifax, Nora Scotia ..... 40
Catalugue of a Collection of Fishes nent from Penaacola, Fla, and vicinity, by Mr. Silas Stearne, with Descriptions of Six New Species ..... 121
Description of a New Genus and Species of Fish, Lopholatilus chamoleonticeps, from the South Coast of New England ..... 205
On the Occurrence of Lycodes vahili, Reinhardt, on La Have and Grand Banks. ..... 200
Catalogue of a Collection of Fishes Obtained in the Gulf of Mexico, by Dr. J. W. Velie, with Descriptions of Seven New Speriea ..... 833
Hatoera, Oscar. Notes on New England Isopoda ..... 157
Jordan, Danid S., M. D. Notea on Certain Typical Specimenn of american Fishes in the British Museum and in the Museum d'Histoire Naturelle at Paris ..... 218
- Descriptions of New Species of North American Fishes ..... 235
- Notes on a Collection of Fishes obtained in the Streams of Guanyuato and in Chapala Lake, Mesico, by Prof. A. Dugès. ..... 808
Kroder, J. H., U. S. N. Report of Experimenta upon the Aaimal Heat of Fiahem made at Provincetown, Mass., during the Summer of 1879 , in connection with operations of the United States Fish Commission. ..... 306
Lockivgton, W. N. Review of the Pleuronectide of San Franciaco, Cal ..... 69
- Descriptions of New Genera and Species of Fishes from the Coast of California. ..... 83
Merrilk, Dh. James C., U. S. A. On the Habite of the Rocky Monntain Goat ..... 28
Pratt, Lifet. R. II. U. S. A. List of Names, Agea, Tribe, \&c., of Indian Boys and Girls st Hampton Normal and Agricultural Inatitute, Virginin, Plaster Casts of whose Heals were taken by Clark Mills, caq. March, 1870 ..... 211
Smith, Suкey I. Occurrence of Ohelura terebrana, a Crustacean Deatructive to the Timber of Submarine Structures, on the Coast of the United States. ..... 232
—— Notice of a New Species of the 'Willemosesia Group of Crustacea ' (recent Eryontidae). . ..... 345
Vermilh A. R. Notice of Recent Additions to the Marine Invertebrata of the Northeastern Coast of America, with Deecriptions of New Genera and Species and Critical Remarks on Others ..... 165
Ventile A. E. and Richand Ratubux. Liat of Marine Invertebrata from the New England Coast, Distributed by the Cuited States Commisaion of Fish and Fiaberies ..... 227
Whits, C. A. Deacriptions of New Speries of Carboniferous Invertebrate Fonaila. ..... 232
-Descriptions of New Crustaceoua Invertebrate Fosails from Kansas and Texas ..... 292
- Note on Endothyra ornata ..... 291
- Note on Oriocardium and Ethmocardium ..... 291
proceedings of the national museum.
Department of the Interior: | U. S. National Museum. |-20-| Pro- ceedings | of the | United States National Museum. | Vol.III. | 18s0. | - | Published under the direction of the Smithsonian Institution. | - | Washington : | Government Printing Office. | 1881. (25) 8vo., pp. v, 1, 589, 5 jig8., 2 plates.


## CONTENTS OF YOL. III.

## beax, Tarletox H. Deacription of a New Hake (Phycis Earlii), from South Carolina, and a

 Note on the Occarrence of Phycis regius in North Carolina
## - Check-List of Duplicatee of North American Fishes distributed by the Smithsonian

 Institution In behalf of the United States National Museam, 1877-'80Catrie, S. TH. On the Genitalia of Male Eela and their Sexual Characters
Exdlich, Furd. M. Llat of Specien and Varietiea of Miderals in the National Musenw of the United 8tates in 1870 ..... 29
Garmax, Sasulel Synopais and Descriptions of the American Rhinobatide ..... 56
Onl. Thsodokr. On the Identity of the Gebne Leurynnis Lorkington, with Lyoodopsis Collett ..... $2 \pi$
Goodr, G. Brows. Descriptions of Seven New Specien of Fisbes from Deep Soundings on the Southern New Eugland Coast, with Diagnoses of Two Undracribed Genera of Floundera and a Genus related to Merlucius ..... 2
United States Fish Commisaton in the Summer of 1880 ..... * 5
The Frigate Mackerel (Auris Rochei) on the Now England Coast ..... 32
Notacanthus phaeganorus, a New Specice of Notacanthide from the Grand Bashe of Newfonndland ..... 5
Hay, O. P. On a Cellection of Fishes from Eastern Mississippi. ..... 4
Heilpist, Avorlo. On Sume New Specios of Eocene Molluaca from the Southern Cnited States. ..... 30
Jordax, Danid S. Notes on a Collection of Fisheo from Rast Floriden obtained by Dr. J. A. Henshall ..... 18
Notes on a Collection of Fisbes from Saint John's River, Florida, obtainod by Mr. A. H. Curtiss ..... 23

- Note on a Forgotten Paper of Dr. Ayres, and its Bearing on the Nomenclature of the Cyprinoid Fishes of the San Francisco Markets ..... 日
_—_Note on "Sema" and "Dacentrus" ..... 27
Description of a New Species of Caranx (Caranx Beani), from Beaufort, North Carolina ..... 46
Jondax, David S., and Gilbrikt, Chailes H. Notee on a Collection of Fiahee from Sas Diego, Callfornia ..... 3
- Deacription of a New Flounder (Xystreurys liolepis), from Santa Catalina Island, Cali fornia ..... 3
Description of a New Ray (Platyrhina triseriata), from the Coast of California ..... $x$
Deacription of a New Species of "Rock Cod " (Sebastichthys serriceps), from the Cuast of Callfornia ..... 3
On the Occurrence of Cephaloncyllium laticeps (Duméril) Gill on the Coast of Californis ..... 4
On the Oil Shark of Southern California (Galeorhinus galeus) ..... 42
with Notee on Other Species ..... 4
Notes on Sharks from the Conat of California ..... 3
On the Generic Relations of Platyrhina exasperata ..... 53
Dencription of a New Species of Scbastichthys (Sebastichthys miniatus) from Monterey Bay, Callfornia ..... $\pi$
Description of a New Species of "Rock•flsh " (Sebastichehys carnatur), from the Coast of California ..... 3
Deacription of a Now Species of Ray (Raia atellulata), from Monteres, California ..... 13
Deacription of New Spectes of Xiphister and Apodichthys, from Monterey, Califarnia. ..... 13
thye rhodochloris), from Monterey Bay. Callfornia ..... 14
- Description of a New Agonold Fiah (Brachiopsis xyostcrnus), from Monterey Bay, California ..... $15 \%$
—_Deacription of a New Flounder (Hippogloseotes exilis), from the Coant of Callforaia ..... 134
Dencription of a New Specien of Ray (Raia rhina) frotn the Cosst of Calffornia ..... 537
- Description of Two New Species of Fisbes (Ascalichthys rhodorus and Scytalina cerdsie) from Neah Bay, Washington Territory ..... 20
——Description of Two New Species of Scopelaid Fisbes (Sudis ringene and Mystophem crentare), from Santa Barbara Channel, California ..... $-3$
——Description of Two New Speciea of Flounders (Parophrys ischyurus and Hippagles soides elassudon), from Puget Suand ..... 5
Description of Seven New Species of Selostoid Fishea, from the Const of California ..... 281
Deacription of a New Embiotocold (Aleona aurora), from Monteres, Californis, with Noter on a Related Species ..... 28
——Deacription of a Now Flounder (Platyoomatichthys stomiat), from the Coast of Califur. nia ..... 30
Description of a Now Embiotocold Fish (Cymatogaster rosaceus), from the Coast of Cali- forala. ..... 305
- Deecription of a New Species of Deep-Water Fish (Icichthys Lockingtoni), from the Coast of Callfornia ..... 905
Deacription of a Now Embiotocoid Fish (Ditrema atripes), from the Coat of California. . ..... 320
Description of a New Scorpwnold Fish (Sebastichthye maliger), from the Coast of Call- fornia. ..... 922
- Decription of a New Bcorptenold Fish (Sebastichthys proriger), from Monterey Bay, Californía. ..... 327
Deacription of a New Agonoid (Agonus vulsue), from the Coast of California ..... 330
Description of a New Species of Hemirhamphus (Hemirhamphu: rosa), from the Coast of California ..... 335
- Deacription of a New Species of Notidanoid Sbark (Hexanchus corinus), from the Pacific Coast of the United States ..... 352
- Deacription of a Now Speciea of Nemichthye (Nemichthy avocetta), from Puget Sound. . ..... 400
Description of a Now Species of Paralepis (Paralepis coruscans), from the Straits of Juan de Fuca ..... 411
—_ List of the Fishes of the Pacific Coast of tho United States, with a Table showing the
Distribution of the Species ..... 452
- On the Generic Relations of Belone exilis Girard ..... 459
- Notex on a Collection of Fishes from Utah Lake ..... 450
- Deacription of a Now Species of Rock-fah (Sebastichthys chrysomelas), from the Coast of California ..... 465
Lawrexcr, Geobor N. Description of a Now Specien of Bird of the Family Turdida, from the Island of Dominica, W. I ..... 10
- Deecription of a New Speciea of Parrot of the Genus Chryootis, from the Island of Do- minica ..... 254
-Deecription of a New Speclen of Icterus, from the West Indiea. ..... 251
Locknetox, W. N. Remarks on the Specien of the Genus Chirue found in San Francisco Market, including one hithorto undeacribed ..... 52
Description of a New Fish from Alaska (Cranidea microstoma) ..... 58
Deacription of a New Species of Agonide (Brachyopsis verrucosus), from the Coast of Callfornia ..... 60
- Deacription of a New Genus and Some New Species of California Fishes (Icosteus anig- matious and Osmerus attenuatus) ..... 63
Description of a New-Chiroid Fish (Myriolepis zonuer) from Monterey Bay, Callfornia. ..... 248
Debcription of a New-Sparoid Fish (Sparus brachysomus), from Lower Californta. ..... 284
Note on a New Flat-Fieh (Lepidopsetta ieclepis), found in the Marketa of San Francisco ..... $3 \approx 5$
California ..... 529
Rathbux, Richard. The Littoral Marine Fanna of Provincetown, Cape Cod, Masachusetts. ..... 116
Ridewar, Robert. Revisions of Nomenclature of Certain North American Birds ..... 1
- A Catalogue of the Birds of North America ..... 163
- Catalogre of Trochilides in the Collection of the United States National Museum ..... 308
Rroer, Johe A. On Camaraphysema, a New Type of Sponge ..... 260
-_ Liat of the North American Species of Myriapods belonging to the Family of the Lyeio- petalida, with a Deacription of a Blind Form from Luray Cave, Virginia ..... 824
Smith, Rosa. On the Occurrence of a Species of Cremnobates at San Diego, California ..... 147
Smrti, S. I. Preliminary Notice of the Crustacea dredged in 64 to 325 fathoms off the South Coast of New England, by the United States Fish Commission, in 1880 ..... 413
Swan, Jamms G. The Surf Smelt of the Northwest Coast, and the Method of Taking Them by the Quillehute Indiana, Weat Coast of Washington Territory ..... 43
- The Eulachon or Candle-fish of the Northwest Coant. ..... 257
Veminl. A. E. Notice of Recent Additions to the Marine Invertebrata of the NortheasternCoast of America, with Deacriptions of New Genera and Speciea, and Critical Remarks onOthersPart II.-Mollusca, with Notes on Annelida, Echinodermata, etc., collected by the CnitedStatee Fish Commisaion356
Part III.-Catalogue of Mcllusea recently added to the Fauna of Southern New Evgland.... ..... 465
White, C. A. Note on the Oceurrence of Productus giganteus in California. ..... 46
-_Note on Acrothela ..... 47
Deacription of a New Cretaceong Pinna from Now Mexico. ..... 47
Note on the Occurrence of Stricklandia Salteri and S. Davidsoni in Georgia ..... 48
Description of a very large Fossil Gasteropod, from the State of Puebla, Mexico. ..... 140
- Descriptions of Now Invertebrate Fosails from the Mesozoio and Cenozoic Rocks of Arkanase, W yoming, Colorado, and Utah ..... 157


## PROCEEDINGS OF THE NATIONAL MUSEUM.

Department of the Interior: | U.S. National Museum. | 27 Proceedings | of the | United States National Museum. | Vol. IV. | | 1881. | - | Published under the direction of the Smithsonian Institution. | - | Washington: | Government Printing Office.| 1882.

8vo, pp. 616 and alphabetical index; 13 figs., 2 plates.

## CONTENTS OF VOL. IV.

Asormmous. The Comparative action of Dry Heat and Sulpbarous Acid upon Putrefactive Bacteria
Bamd, 8. F. Noten on certain Aboriginal Shell Monnils on the Coast of New Brunswick and of New England ..... 2e-s?
Beax, Tabletox H. Descriptione of New Species of Fishes (Uranidea marginata, Potamo- cottus Bendirci), and of Myctophum crenulare, J. and G ..... 205
_ـ_ Notes on some Fishea from Hudson's Bay ..... 120-159
Descriptions of New Fishes from Alaska and Siberia ..... $144-15$
Directions for Collecting and Preaerving Fiah ..... 23-200
A Preliminary Catalogue of the Fishes of Alaskan and Adjacent Watera ..... 20-51
A Partial Bibliography of the Fishes of the Pacific Coast of the United States and of Alaska, for the year 1880 ..... $312-217$

- Notes on a Collection of Fisbes made by Capt. Henry E. Nichola, U. S. N., in British Columbia and Southern Alaeka, with Deactiptions of New Speciee and New Geaus (De- Zolepis) ..... 400-74
(See also under Goole and Bean.)
Bexdine, Caft. Chanles, U. S. A Notes on Salmonide of the Upper Columbia ..... 817
Bord, C. H. Remains of the Walrue (1) in Maine ..... 23425
Canlis, William E. Observations of Siredon lichenoides ..... 132.121
Dall, W. H. On the Genera of Ohitone ..... 200-29
- On certain Limpets and Chitons from the Deep Waters of the Eastern Coant of the United States ..... 400-114
Endlich, F. M. An Analyaia of Water destructive to Fiah in the Gulf of Mexico ..... 121
Farlow, Dit. W. G. Report on the Contente of two bottles of Water from the Gulf of Gilnert, Charles F. (See under Jordan and Gilbert.) Mexico, forwarded by the Suithsonian Institution ..... 334
Gill, Thiodonk. Note on the Latiloid Genera ..... 163-164
Glazikr, W. C. W., Assistant Surgeon, M. H. S. On the Dentruction of Fish by Polluted Waters in the Gulf of Mexico ..... 13, 15
Gooon, G. Bnows. The Taxonomic Relations and Geographical Distribution of the Mem- bers of the Swordilsh Family (Xiphida) ..... 413-13
Goovk, G. Bnowy, and Taneetox H. Bean. Description of a New Specics of Fish (Apogon pandionis), from the Deep Water off the Mouth of Chesapeake Bay. ..... 160: 61
- Benthodesmus, a New Genus of Dewp-sea Fishes, allied to Lepidopus ..... 370-35
Hawrs, Georne W. Ph. D. On the Mineralogical Composition of the Normal Meazoic Dia- base apon the Atantic Border ..... 152-14
- On the Determination of Feldspar in Thin Sections of Rocka ..... 134-130
Ixorreoll Ererest. On the Fibb Mortality in the Gulf of Mesico. ..... THO
Jaranrae Labatiox. Catalogne of a Collection of Japaneme Cotion Fiber presented to the United States National Museum by the Govermment of Japan, together with the Amount of the Annual Crop of Japan, and the Price of Cotton ..... 449-458
Jousson, S. F. Notes on the Mortality among Fishen of the Gulf of Mexico ..... 206
Joudak, Davin S., and Pusure L. Joux. Check-list of Duplicaten of Fishen from the Pacife Coast of North America, distribated by the Smithsonian Institution in behalf of the United States National Museum, 1881 ..... 1-18
Jobdar, David S., and Cbables H. Ghaert. Notes on the Fishen of the Pacific Coast of the Cnited States ..... 29-7
-Deacription of Sebastichthys mystinus ..... 70-72
Jobdan, David S., and Charler H. Gllbert Description of a New Species of Ptychochilus (Ptychoehilus Harfordi), trom Sacramento River
Page. ..... 72,73
- Notes on Raia inornata ..... -73, 7
- Notes on a Collection of Fishes, made by Lieut. Heary E. Nichols, U.S. N., on the West Coast of Mexico, with Descriptions of New Species ..... 225-239
-_ List of Fishes collected by Lieut, Henry E. Nichols, U. S. N., in the Gulf of California, and on the West Coast of Lower California, with Descriptions of Four New Species. ..... 273-279
- Descriptions of Thirty.Three New Species of Fishes from Mazatlan, Mexico ..... 338-365
Description of a New Species of Pomadasys from Mazatlan, with a Koy to the Species383-388
known to Inhabit the Pacific Coasts of Tropical America
——Description of a Now Species of Xenichthys (Xenichthys zenurus), from the West Coast of Ceutral America ..... 45
- Description of Five New Species of Fishes from Mazatlan, Mexico ..... 458-463
Jour, Puaky L. Description of a New Species of Squaliue (Squaliue aliciar), from Utah Lake ..... 10
Lawarnck, Grorge N. Deseription of a New sub-Species of Loxigilla, from the Island of St. Christopher, West Indies ..... 204,205
Lockingtox, W. N. Description of a New Genus and Species of Cottide ..... 141-144
Lugger, Otto. The Occurrence of the Canada Porcupine in Maryland ..... 161, 162
McKay, Chables L. $\triangle$ Review of the Genera and Species of the Family Oentrarchide, with a description of One New Specier ..... 87-93
Moore, M. A. Fibh Mortality in the Gulf of Mexico ..... 125, 126
Pirz, Axthoxy. Methods of Making and Preserving Plaster Casta ..... 272, 273
Platrac, M. Frlix. The Rapid Preparntion of Large Myological Specimens ..... 288-391
Poater, Joskpr Y., Assistant Surgeon, U. S. A. On the Destruction of Fish by Poisonous Water in the Gulf of Mexico ..... 121-123
Rathuex, Richard. Liat of Marine Invertebrates, mainly from the New England Coast, dia- tributed by the United States National Muneum. (Series II.) ..... 298-303
_L List of Marine Invertebrates from the New England Coast, Distributed by the United Statex National Museam. (Series III.) ..... 304-307
Rav, Charles List of Anthropological Publications (of Charles Rau) ..... 455-458
Ridqway, Robert. On a Dack new to the North American Fanna ..... 22-24
- On Amazilia yucatanensis (Cabot), and A, cerviniventris, Gould ..... 25, 26
A Review of the Genus Centurus, Swainson ..... 23-119
List of Species of Middle and South American Birds not Contained in the United Statee National Museum ..... 165-203
- List of special Desiderata among North American Birds ..... 201-223
Catalogue of Old World Biris in the United States National Museum ..... 317-333
-_ Notes on Some Costa Rican Birds ..... 332-332
—— Description of a New Flycatcher and a Supposed New Petrel, from the Sandwich Islands ..... 337, 338
Description of a Now Owl from Porto Rico ..... 366-371
—— Descriptions of Two New Thrushes from the United States ..... 374-390
- On Two Recent Additions to the North American Bird Fauna, by L. Belding ..... 414, 415
Ryder, Jons A. On Semper's Method of Making Dry Preparations ..... 224, 225
Shcfrldt, R. W., U.S. A. Remarks upon the Oateology of Opheosaurus ventralis ..... 393-400
Smith, Rosa. Deacription of a New Gobioid Fish (Othonops eos), from San Diego, Cal ..... 10-21
——Description of a New Species of Gobiesox (Gobievox rhessodon), from San Diego, Cal. ..... 140, 141
Smith, Silas B. On the Chinnook Names of the Salmon in the Columbia River ..... 391, 392
Stejneger. Leonhand. Description of Two New Races of Myadestes obscurue, Lafr ..... 371-974
Translation Metallic Castinge of Dellcate Nataral Objecta ..... 161
True, Frbdrate W, On the North American Land Tortoises of tho Genus Xerobates. ..... 434-449
- On the Rare Rodent. Cricetodipus pareus (Baird), Coues ..... 474, 475
Ward, L. F. Catalogue of a Collection of Japanese Woods, presented to the United Statea National Museum by the University of Tokio, Japan ..... 308-311
Whitr, C. A. On certain Cretaceous Fossils from Arkansas and Colorado ..... 136-139
N M 1881- 10
12 PROCEEDINGS ..... of UNITED STATES National mCSEUM.
LIST OF CIRCULARS, VOL. IV.
No. 1. Man of organization and regulations. Pages. ..... 58
No. 2. Circular addressed to friends of the muneum Pages. ..... 2
No. 2. Circular in reference to petroleum collections .Pagea. ..... 2
No. 4. Circular concerning the department of insects ..... Pages.. 1
No. E. Establishment and officers Pages.. ..... 2
No. 6. Clasaification and arrangement of the materia medica collections By James M. Flint, surgeon, United States Navy Pages.. ..... 2
No. 2. A clasaification of the forms in which druga and medicines appear and are administered. By James M. Flint, surgeon, United States Navy .Pages.. ..... 1
No. 8. Memoranda for collectorsof drugs for the materia medica section of the National Maseum. By James M. Flint, surgeon, United States Navy Pages.. :
No. 2. Circular in reference to the building-ptone collection Pagen. ..... 2
No. 10. Two letters on the work of the National Museum. By Barnet Phillips .....  Pages.. 10
No. 11. A proviaional classification of the food collections. By G. Brown Goode ..... Pages.. 末
No. 12. Clasaification of the collection to illustrate the art of taxidermy ..... Pages.. 2
No. 13. Ontline of a acheme of museum classification. By G. Brown Goode. ..... Pages.. 1
No. 14. Circular requeating material for the library. ..... Pages..
No. 15. The organization and oljects of the National Museam ..... Pages..
No. 16. Plans for the installation of collections ..... Pages. 2
No. 17 Contribution and their acknowledgment ..... Pages.. 1
No. 18. List of publications of the United States National Museum Pages ..... 12


## INDEX.




Page．
Anabazenops cabanisi．．．．．．．．．．．．．．．．．．．．．．．．．． 18 guttulatns．．．．．．．．．．．．．．．．．．．．．． 162 subalaris．．．．．．．．．．．．．．．．．．．．．．．． 182 temporalis ．．．．．．．．．．．．．．．．．．．． 182
Anacardiacea．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 309
Anachlas avara ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 300
Anerctes agilis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 176
fernandezianus ．．．．．．．．．．．．．．．．．．．． 176
flavirostris ．．．．．．．．．．．．．．．．．．．．．．．．．． 176
Anarhynchus frontalis ．．．．．．．．．．．．．．．．．．．．．． 330
Anarthichadidse ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 246 263
Anarrhichas ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 312
latifrons ．．．．．．．．．．．．．．．．．．．．．．．．．． 312
lepturus．．．．．．．．．．．．．．．240，268，271， 312
lupus．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 312
orientalis ．．．．．．．．．．．．．．．．．．．．．．． 263
Anarthichthys ocellatus．．．．．．．．．．．．．．．．．．．4，65，263
＂Anas＂chalcoptera．．．．．．．．．．．．．．．．．．．．．．．．．．．． 198
Anaa chlorotis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 339
fulvigula ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 220
luzonica．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 332
rufna．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．22，23
superciliosa ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 332
Anatidx ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 198,331
Anatinx ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 逄
Ancharius ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 315
Anchory．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 18
Norsk．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {is }}$
Ancburn ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 132
americana．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 127
Ancistromesas ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 413
Ancylocheilus subarquata ．．．．．．．．．．．．．．．．．．． 331
Anderson，Dr．C．L．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $32,{ }^{52}$
Anderson，President．．．．．．．．．．．．．．．．．．．．．．．．．．．． 32
Andigena cucullatua ．．．．．．．．．．．．．．．．．．．．．．．．．．199
hypoglaucus ．．．．．．．．．．．．．．．．．．．．．． 194
laminirostris ．．．．．．．．．．．．．．．．．．．．．． 19 ．
Androdon requatorialis ．．．．．．．．．．．．．．．．．．．．．．．．． 186
Anellobia lunulata ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 320
mellirora ．．．．．．．．．．．．．．．．．．．．．．．．．．． 220
Angasia．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 289
tetrica ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．2s8
Angel－fish．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．逄
Angelo．
Anguidx
33
Anguila blanca．
Anguia blanca－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 48
pinta．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 346
pintita ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．这
Anguilla．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Anguillidæ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 32 ．
Anisotremus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 ．
tæniatus．．．．．．．．．．．．．．．．．．．．．．．．．． 285
Annelida．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 290,205
A nomalocorax splendens．．．．．．．．．．．．．．．．．．．．．．a2s
A nomia glabra ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 301,306
Anoplarchus alectrolophus．．．．．．．．．．4， $64, \overline{245}, 263$ atropurpurens ．．．．．．．．．．． $245,271,468$ crista－galli．．．．．．．．．．．．．．．．．．．．．． 243
Anoplopoma firubria ．．．．．．．．．$\frac{2}{54}, \underline{254}, 269,271,473$
Anorthinus galeritus． 2． $24,254,260 \underline{271,473}$
malayanus．．．．．．．．．．．．．．．．．．．．．．．． $32 n$
Anorthara troglodytes ．．．．．．．．．．．．．．．．．34，335
roglodytes byemalis．
troglodytes paciffeus． 208
roglodytes pacificus．．．．．．．．．．．．． 208
Anous stolidus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 222

Anser albifrons ．．．．．．．．．．．．．．．．．．．．．．．．．． 23 ，220， 332 albifrons gambell．．．．．．．．．．．．．．．．．．．．．． 220
bernicla．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 23
cinerens ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 331
gracilis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 332
moschata．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 23
segetam．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 331
torrita．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．23
Anseranas melanoleuca ．．．．．．．．．．．．．．．．．．．．．．． 331
Anserella albipennis ．．．．．．．．．．．．．．．．．．．．．．．．．． 332
Anserin＊．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 331
Antedon dentatum ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 303 ， 307
sarsii ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 303 ， 307
Antenor unicinctus harrisi ．．．．．．．．．．．．．．．．．．． 215
Authinx ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 322
Anthobaphes violacea ．．．．．．．．．．．．．．．．．．．．．．． 319
Anthocephala floriceps．．．．．．．．．．．．．．．．．．．．．．．． 18 ．
Anthochiera carunculata ．．．．．．．．．．．．．．．．．．．．．． 320
Anthornis melanura．．．．．．．．．．．．．．．．．．．．．．．．．．． 320
Anthozoa ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．303， 307
Anthreptes longuemarii．．．．．．．．．．．．．．．．．．．．．．．． 319
Anthropoides virgo ．．．．．．．．．．．．．．．．．．．．．．．．．．． 330
Anthropological Congress at Paris ．．．．．．．．．45
subjects，articles on ．．．．．．． 45
Antbns brevirostris ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 106
calcaratus ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 166
chii．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 166
nattereri．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 166

peruvianus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．168
pratensis ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 208
spinoletta．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 322
Antrostomus maculicaudus ．．．．．．．．．．．．．．．．．． 191
nigreacens ．．．．．．．．．．．．．．．．．．．．． 191
sericea－caudatos ．．．．．．．．．．．．．． 191
Aphananthe aapera ．．．．．．．．．．．．．．．．．．．．．．．．．．． 310
Aphantochroa gularis．．．．．．．．．．．．．．．．．．．．．．．． 188
hyposticta．．．．．．．．．．．．．．．．．．．． 188
Aphelocoma floridana ．．．．．．．．．．．．．．．．．．．．．．．．．$\quad 212$
sordida arizonve ．．．．．．．．．．．．．．．．． 212
nltramarina ．．．．．．．．．．．．．．．．．．．．．． 174
ultramarina couchi ．．．．．．．．．．．．． 212
Aphoristia atricauda ．．．．．．．．．．．．．．．．．．．．．．．．．． $1,60,313$
Aphriza virgata．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 217
Aphrodita aculeata．．．．．．．．．．．．．．．．．．．．．．．．．．．． 200
Aplonis atronitens ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 325
brevirostris ．．．．．．．．．．．．．．．．．．．．．．．．． 3 ． 3 5
caledonicus．．．．．．．．．．．．．．．．．．．．．．．．．．．． 325
cassini．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 325
tabuensis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 325
Apocope vulnerata．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15
Apodichthys ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 214
flavidus ．．．．．．．．．．．．．．．．．．．．．． 4 64，263
fucorum．．．．．．．．．．．．．．．．．4，64，203， 314
Apogon
160
pandionis，new species．．．．．．．．．．．．．． 160
from off Chesapeake
Bay．．．．．．．．．．．．．．．．．．．．． $1 \ell ⿱$
Apomotis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＆s
Apterygidw．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 329
Apteryx australis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 2沓
oweni．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 229
Aquila chrysaêtos．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 317
chrysactus canadensis．．．．．．．．．．．．．．． 216
clauga．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 317


Proc. Nat. Mus. $81-31$


|  | Page. |
| :---: | :---: |
| Brady, Mr. John, jr. | 75 |
| Branchiontoma lanc | 29 |
| Branchiontomatidae. | 29 |
| Brant | 220 |
| black | 220 |
| Branta ...................................... 22, 23 |  |
| rufl | 23 |

Briefe an Dr. A. von Frantzins, Auszng aus cinern ..... 450
Brim ..... 76
Brosmophycis marginatus ..... 3, 65
Brotogerys ctrysosema ..... 195
ferrugineifrons ..... 18
jugularis ..... 105
subcartulea ..... 105
tui ..... 106
tuipara ..... 195
virescens ..... 105
Brotulide ..... 3.65
Broussonet, M ..... 426
Brush, Prof ..... 129, 125
Bryttus ..... 88
Buarremon albifrenatu* ..... 170
castaneiceps ..... 170castaneifrons
castaneivontris. ..... 171170
comptus. ..... 170
elsoprorus ..... 170
fulviceps ..... 170
inornatus ..... 171
leucopis ..... 171
leucopterns ..... 170
melanocephalus ..... 170, 171
melanops ..... 170
meridae ..... 170
phacopleurus ..... 170
rufinuchus ..... 170
schistaceus ..... 170
semirufus ..... 170
specularis ..... 170
npodionotus ..... 120
taczanowsk! ..... 160
torquatus ..... 10
tricolor ..... 170
Bube maximus ..... 318
virginianue ..... 214
rirginianus arcticus ..... 214
virginianus saturatus ..... 214
virginianus aubarcticus ..... 214
Buboninso ..... 318
Bubulcus coromanda ..... 320
ibis ..... 330
Bucanites githagineus ..... 325
Buccinum plicosum ..... 239
undatum ..... 300, 305
Bucco lanceolatus ..... 127
macrorhynchua napensis ..... 103
ordi ..... 192
pertoralis ..... 193
palmentum ..... 103
striolatus ..... 192
tectus ..... 198
Bucennilun ..... 108
Jucvros ihinoceros ..... 328
Bucerotida ..... 320

Page.
Bucia athertoni ..... 310
Budytew cinereocapilla ..... 322
citreola. ..... 322
flaveola ..... 32
flavus ..... 328
melanocephala ..... 322
rayi ..... 222
viridis. ..... 322
Buffalo cod ..... 5
Bufflehead ..... 29
Bugara. ..... 50
Bugula Murrayana. ..... 392
turrita ..... 302, 306
Bulaca indranee. ..... 216
Bulestes torquatus ..... 324
Bull-head ..... 11
shark ..... 30
Bull tront ..... 38,80
Bunting, blue ..... 212
Townsend's ..... 212
varied ..... 212
Buphaga africana ..... 325
Buphagina ..... 225
Burhinue grallarius ..... 329
Bush coral ..... 207
jointed. ..... 308
Butcher, H. B ..... 105
Butco albicaudatus ..... 214
abbreviatus ..... 216
borealis ..... 215
berealis calurus ..... 216
borealis kritleri ..... 215
borealis lucasanus ..... 215
borealis socurroensis ..... 215
cooperi ..... 215
galapagensis ..... 196
harlani. ..... 215
bypospodía ..... 106
lineat us ..... 215
lineatus elegans ..... 215
penasylvanicus ..... 216
plumipee ..... 317
pacilochrons ..... 106
awainsoni ..... 216
unicolor ..... 194
vulgaris ..... 317
Buteonina ..... 317
Buthraupis edwardsl. ..... 169
montana ..... 169
Butorides Javanica. ..... 330
patruelis ..... 339
plumbeus ..... 128
Butreron capellei. ..... 228
Butterball ..... 220
Buzzari, turkey. ..... 216
C.
Cabanis ..... 9
Cabezon. ..... 60
Cabot, Dr ..... 25
Cabrilla ..... 46, 14
Cacatua galerita ..... 321
haematuropygia ..... 397
Cacatuida ..... 381
Cacatuinas ..... 327

| Page． |  |  | Page |
| :---: | :---: | :---: | :---: |
| Caccabinina | 329 | Callinrus murinus． | \％ |
| Caceabis chnkar | 329 | Cnllocephalon galeatus． | 2 |
| greca | 329 | Callochiton | ．258， 286 |
| rufa | 329 | Calobates boarula． | 2 |
| saxatilis | 322 | Calodromas elegans | $\underline{30}$ |
| Cocomantia pallidus | 388 | Calcenas nicobarica | 8 |
| Cacopitta lepidopleurus | 3⿺辶 | Calopsitta nove－hollandim | 2 |
| Cactornie abingdoni | 172 | Calorhamphus lathami． | 5 |
| assımilis | 172 | Calornis atrifuaca | 23 |
| pallidi | 172 | metallica | 23 |
| Cexiun | $3 \times 5$ | Calothorax lucifer | 213 |
| Caica leucogastra | 108 | pulchra | 18 |
| pyrilia | 106 | Calyptomena viridis | 212 |
| vultarina | 198 | Caly ptomeninx | 212 |
| Calamdus scheenobenn | 321 | Calyptorhynchinx | 2 z |
| Calamodyta arundiuacea | 320 | Calyptorhynchus bankei | 3 |
| cantans | 221 | funerens | 运 |
| orientalis | 320 | aolandri | 22 |
| paluatris． | 320 | Camarhynchus cinereus ． | 12 |
| Calamodytina． | 320 | crassirostris | 12 |
| Calamoherpe arundinacea | 221 | habeli | 12 |
| Calandrella brachydactyla | 326 | prosthemelas | 12 |
| Calialcyon coromandeliana | 319 | paitraculus | 12 |
| Cahidris arenaria | 218 | variegatus． | 12 |
| California brook trout | 38 | Camellia japonica | 30 |
| cod． | 54 | sanagna | 28 |
| Gulf of，list of fishee from | 273 | Campephaginae | 34 |
| Lower，fighee from．． | 273 | Campephilus imperialis | 121 |
| Cahfornian Peninsula，aboriginal inhabit． ants of | 455 | principalis <br> sclateri． | 1218 |
| Calloses cinerem | 321 | trachelopyrus | 12 |
| Callestinne． | 324 | Catmptolsmus labradorius | 21 |
| Callianansa ulrichi | 137 | Campslopterus cavieri． | 118 |
| Callichen | 22 | hyperythrus | 14 |
| micropus | 23 | phainopeplus | 18 |
| rufescens | 23 | Campylorhynchas bicolor | 108 |
| ruftceps | 23 | gularis | 退 |
| rufinus | 23 | hypostictus | 16 |
| subrufinas | 23 | nuchalis． | 10 |
| Callinectes bastatus | 304 | variegatus | $1{ }^{1}$ |
| Callope camtschatkensis | 321 | Canace canadensis | 215 |
| Callipepla aquamata | 217 | canadensis frankliní | 216 |
| Calliphlox mitchelli | 188 | obscura fuliginosa． | 216 |
| Callinta convexa | 301 | obscura richardsoni | 216 |
| Calliste albertine | 169 | Canada porcupine in Maryland | 161 |
| albiventris | 169 | Cancer irroratus． | 20839 |
| argentea | 109 | Candle－fish | 41，54，313 |
| argrrofenges | 169 | Contharinus． | $3 \times 8$ |
| atrocarulea | 169 | Cantharus ！juleshurgensis | $18 \%$ |
| cabanisi | 169 | juleaburgensis new | 12 |
| cucullata | 169 | Canvas－back | 28 |
| cyanoptera | 109 | Capisone ．．．．． | $\omega$ |
| fastuosa． | 169 | Capito aurantiticollis | 194 |
| florida． | 109 | quinticolor | 194 |
| fulvicervi | 109 | equamatus | 19 |
| graminea | 109 | versicolor． | 12 |
| hartlaubi | 169 | Capitonids． | 194，310 |
| lavinia | 109 | Caprifoliacea | 310 |
| melanotia | 169 | Caprimulgide． | 190，318 |
| punctulata | 169 | Caprimulgine． | 318 |
| rufigenis | 169 | Caprimulgus albonotatus | 318 |
| xanthocephala | 169 | europ®us | 48 |
| Calliatochiton | 288 | macrurus | 316 |
| Callistoplax | 283 | ruficollis | 318 |
| Calliurus floridensis． | 88 | Capulacmea | ．444，407 |


Page.
Centurve dubius .............................. . $03,98,107$clegans ........... $09,94, \underline{95}, \underline{06}, \underline{98}, \underline{104} 114$flaviventris .......................... 104grateloupensis ....................... 100hoffmanil.... ..... $03, \underline{05}, 96,103,107,110$hypopolius $01,04,05,00,03,112,113,118,192$ornatus ................................. 144polygrammus ................... .05, 100, 107
pucherani pucherani
$93,94,95,96,18,10811$ radiolatus $\frac{93,94,92, ~ 96, ~ 88, ~ 106, ~ 11 ~}{93}$
rubriventris
rubriventris
103,192
santacruzi.93, 06, 104, 100, 107, 109, 110.112striatua............. $93, \underline{04}, \underline{05}, \underline{90}, \underline{98}, 117$subelegans............................ . . 101,104snlfurelventer......................... 112superciliaria . $03,94,95,96,98,112,115,116$terriculur ...........03, 94,96, $07,104,102$tricolor ....994, $95,96,97,101,102,103,104$uropygialis........03, 94, 93, 96, 98, 112, 114
Cephalopoda ..... 300,305
Cephalopterida ..... 30
Cephalopterus penduliger ..... 180
Cephaloscyllium laticepa ..... 313
Ceratichthys cumingi ..... 312
Ceratocotrus diceraus ..... 249, 271
Ceratophorus ..... 286
Ceratoptera vampyrus ..... aa
Cerator hina monocerata ..... 223
Ceratotriccus furcatus ..... 176
Ceratozona ..... 228
Cercibls oxycerca ..... 198
Cercomacra approximans ..... 184,185
ceruleacens ..... 184
carbonaria ..... 185
cinerascens ..... 184
melanaria ..... 185
napensis ..... 184
nigricana ..... 18.
Cercotrichas macrourus ..... 323
Ceriornis satyrus ..... 329
Certhia albifrous ..... 208
familiaris ..... 320
familiaris mexicana ..... 208
Certhidea fusca ..... 168
Certhidde ..... 320
Certhinas ..... 320
Certhiola bahamensis ..... 210
caboti ..... 108
magnirostris ..... 168
Ceryle americana cabanisi ..... 218
rudis ..... 819
stellata ..... 102
Cestraciontida ..... 18
Cetorhinida $18,33,267$
Cetorhinus maximus ..... $18,33,207$
Cettia sericen ..... 321
Chachalaca ..... 210
Cbsenobryttas ..... B8
antistins ..... 88
gulosus ..... 88
viridis ..... 88
Chsoptila angustipluma ..... 320
Chatetidas ..... 169
Chetocercus bombus. ..... 188


| Page． |  |  | Page． |
| :---: | :---: | :---: | :---: |
| Chrysoptilus atricollis | 192 | Cirthisomas | 2 |
| cristatus | 192 | Cirripedia | 2093 |
| feteromelas | 192 | Cissolopha germana | 1 is |
| speciosus | 102 | Cisticola schonicola | 330 |
| Chrysotis bodini | 125 | Cistothorus requatorialis | 106 |
| caeligena | 109 | branneicepa | 108 |
| canipalliata | 196 | graminicola | 12 |
| cyanopais | 195 | Cistudo carolina | 438 |
| dufrenniana | 195 | clausa | 43 |
| erythrura | 105 | Citharichthys sordidus |  |
| festiva | 105 | Citrus trifoliata | 逪 |
| lactifrons | 196 | vulgaris（i） | 䢒 |
| natterer | 195 | Cladorbynchus pectoralis | 371 |
| ochroptera | 105 | Clam，long | 20 |
| panamensis | 190 | round | 3130 |
| pretrei． | 105 | worm | 23 |
| viridigenalis | 195 | Clangula albeola | 2 |
| xanthope | 125 | islandica | 220 |
| Chthonicola sagittata | 320 | Clarke，F．E | 20 |
| Chub | 43 | Cleburn，Mr．W．W | 137．138 12 |
| Charch | 136 | Clerodendron trichotomum | 310 |
| Ciccaba albigularis | 196 | Clibanornis dendrocolaptoides | 10 |
| cayennensis | 196 | Clidiophora trilineata | 206 |
| huhula | 196 | Clidophora trilineata | 201 |
| melanonota | 126 | Climacteris leucophat | 32 |
| nigro－lineata spilonota | 106 | scandens | 33 |
| polygrammica | 196 | Clinus． | 29 |
| suinda | 196 | delalandi | 311 |
| Cichloides atrogularis | 322 | phillipi． | 3 |
| chrysolans | 322 | zonipher | 磊运 |
| bortulorum | 322 | zonipher，new species | 261 |
| olivacen | 322 | Cliona salphurea | ． 203 |
| pallidus | 320 | Clupea harengus． | 30 |
| rafulus． | 322 | lile． | 33 |
| Cichlopsis lencogonys | 165 | mirabilis | 250.27234 |
| Cichloselys cardis | 32 | sagax． | －15，37，314 |
| Cicinnurus regius | 224 | stolifera | 338，32 |
| Ciconia alba． | 330 | stolifera，new speoiea | 359 |
| Ciconide | 330 | Clupeidx | 13，37， 300 |
| Ciconiline | 330 | Clapeilarus fuscus | 33 |
| Cinclus | 378 | Clymenella torquata | 300 |
| Cinclodes antarcticua | 180 | Clypeicterus oseryi | 173 |
| bifasciatus | 180 | Clytoctantes alixii | 144 |
| rivularis | 180 | Cnipolegus anthracinus | 173 |
| Cinclorhamphus cantillans | 320 | aterrimus | $\underline{173}$ |
| cruralis | 220 | hadsoni | 153 |
| Cinclosoma castaneothorax | 222 | nigerrimns | 173 |
| castanotum | 322 | pasillus | 135 |
| cinnamomeum | 322 | unicolor | 1iis |
| panctatum． | 322 | Coale II．K． | 近 |
| Cingula Jan－Mayeni． | 301 | Coccolarynx bullocki． | 319 |
| Cinnamomum Loureirii | 310 | Cocculina Beanii，new specien | ． 4684 |
| Cinnicerthia peruana． | 166 | Dall | 402 |
| Cinnyris chalybea． | 319 | Rathbuni | 3， 404 |
| оsea | 319 | Rathbuni，new spec | $4{ }^{4}$ |
| Ciona ocellata | 302 | Cocculinida | ． $401,40{ }^{\circ}$ |
| Circaëtus gallicus | 317 | Coccygus enleri． | 19419 |
| Circine | 318 | furraginens | 14 |
| Circus reruginonum | 318 | lindeni | 124 |
| assimilis | 318 | Coccsstes coromandus | 28 |
| jardinii． | 318 | glandarius | 388 |
| Cirratulus grandis | 300 | Coccyzus seniculus． | 23 |
| Cirrepideamus geoffroyi． | 330 | Cocothraustinne | 5 |
| mongolicus | 330 | Cocothraustes japonicus | 通 |
| pyrrhothorax | 330 | valgaris | 23 |






Dromalus novan-holandim ..... 329
Drummer ..... 05
Didanculida206
Didymocarpua japonicus ..... 310
Digton rock inscriptioa.168
glanca16 c
major ..... 163
mystacalis .....
 ..... 163Dinoplax24
Dindon maculatus
20
Diomedea exulans
melanophry:an
Diomotine310
lotas.
303, 307
Diphasia tailax187
iria ..... 1.
Diphyllodes speciosa392
Diplopterns naevius (f) chochi ..... 123
Discopora nitida ..... 
Discura longicauda3
Dissodectes concolor-
3.611,50
Jack soni $11,50,265$
Diver, black throated ..... 222
Pacińo227
Ducoglossa27
Dog shark ..... 1
rumuya falla180
Dolly Varden trout完
Dominicanus vociferus ..... 332Honarola cantancothorax233
Double-decker216
Key Weat ..... 216
Socurto ..... 216
zenaida ..... 元
Dovekie319
Drepanis coccinea20
Proc. Nat. Mus. $81-41$

| Eider，Americas ．．．．．．．．．．．．．．．．．．．．．．．．．．Page． 221 |  | Enneacanthus obesus． | Page | |
|---|---|---|---|---|
|  |  | 20 |
| common | 220 |  | pinniger |  |
| king | 221 | simulans |  |
| spectacled | 220 | Enneoctonus collurio | 24 |
| Eisen，Guetav | 474 | minor | 3d |
| Ekewan | 32 | Enniskellen，Lord | 皆 |
| Ek－ul－ba | 392 | Enoplochiton | 86， 2 ？ |
| Elseagnacese | 310 | Entomiza eyanotis | 20 |
| Elaagnus pungens | 310 | Eintomobia gnlaris． | 119 |
| Elainea aflinis | 172 | pileata | 39 |
| arenaram | 127 | smyrnenais | 32 |
| caniceps | 177 | Entomostraca | 2293超 |
| clegans | 171 | Entosphenas tridentata | 3030 |
| fallax | 177 | Eolophus roseicapillus | 新 |
| gigae | 177 | Eophona melanura | 通 |
| leucospodia | 177 | Eopsaltria anstralis． | S |
| mesoleaca | 177 | caledonica | 18 |
| obacura | 177 | tiarigastra | 2 |
| pallatanga | 177 | Epeiche on Pic raye de la |  |
| ruficeps | 177 | Ephippida |  |
| Elanoides forficatus | 215 | Ephippus zonatun． | 2 |
| Elanus axillaris | 318 | Ephtbianara albifrons | 323 |
| glaucus． | 215 | aurifrons | \％ |
| melanopter | 318 | tricolor | 톤 |
| acriptus | 318 | Epilais hortensia |  |
| Electra pilosa． | 302300 | Epimachinx．． | 1319 |
| Elliot，D．G | 23 | Epinephelns analogns | 2 |
| Elliot，Mr | 26 | ciliatus． | 70.71 |
| Elliot，Henry W | 147，148，151， 239 | sellicauda | 29 |
| Emberiza cia | 326 | Epizoanthus americanus． | $3 \mathrm{mas} 30 \%$ |
| ciopsis | $3{ }^{2}$ | paguriphia | 308.305 |
| cirlus | 326 | E－quinna． | 遇 |
| citrinella | 320 | Erethizou dorsatus | 161 |
| hortulana | 326 | Ergaticus ruber | 200 |
| milliaria | 326 | Eriocnemisansimilis |  |
| personata | 320 | chrysorama |  |
| pithyornus | 326 | dyaelins． |  |
| pyrrhuloidea | 336 | glancopoides |  |
| rustica | 328 | godini．． |  |
| echornicla | 328 | mosquera． |  |
| spodocephala | 326 | nigrivestis | 120 |
| Emberizinue． | 326 | supphiropys | 16 |
| Emberizoides melanotis | 173 | smangdinipe |  |
| Embernagra olivascens | 173 | smamata |  |
| rufivirgata | 211 | Erismatura leucocephala． | 运 |
| superciliosa | 173 | Erismaturine． | 32 |
| Embiotocida．．．．．．．．．． | 10，49，51，265， 315 | Erythacus rubecula | 21 |
| Empidochanea fringillaris | ……．．． 175 | Erytbrauchena humeralis | 8 |
| pecilarıs | 171 | Erythrodryas rosea．．．． |  |
| Empidonax andinus．．．．． | 172 | Erythropitia erythrogastr | 23 |
| atriceps | 177 | Erythropus amurensis． | 318 |
| dittrilis | 213 | veapertinus |  |
| fulvifrone | 213 | Erythroscelus fuscus． | 3 |
| fulvifrous pal | 213 | Erythrosterna parva． | c |
| griseigularis． | 171 | Esacus maguirostria． | 3 |
| pectoralis．．． | ． 178 | Esocide． | 23 |
| Emys polyphemus． | ．． 448 | Entulucius | 299， 253 |
| Endlich，E M．．．． | 124 | Espada． | \＃ |
| Engraulide | 143 37.268 | Estrelda amandav |  |
| Engraulis browni | 341 | antrild． |  |
| Enveacanthue．．． | 420 | bengalus |  |
|  | 93 | modesta． |  |
| glorios | $\underline{93}$ | phaêton |  |
| margarotic |  | ruficauda |  |


Finch，black roay ..... 210Page
brown－cappel rosy ..... 210
Cassin＇s purple ..... 10
gray－crowned rosy ..... 
Guadalupe house ..... 210
Hepburn＇s rosy ..... 210
Netson＇s sharp－tailed ..... 211
Finger－aponge ..... 3.02
Fiona nobilio ..... 301
Fiscus collaris ..... 324
Fish，deatruction of，in Gulf of Mexico．． ..... 121， 12
directions for collecting and preserv
ing． ..... 235
hand－saw ..... 41
mortality in Gulf of Mexico ..... 74，125 205
Fisher，William J ..... 239
Fishes of Alaska，bibliography of ..... 112catalogue of239
Paciff United Statee，bibliography of ..... 312
Tisaurellids ..... 402， 406
Fistularia sertata ..... 27
Flamingo，American ..... 212
Fleuvian de Bellevae ..... 136
Fliaume ..... 57
Flicker，Guadalupe ..... 213
＂Hybrid＂ ..... 213
Malherbe＇s ..... 213
Fint implements in Southern Ulinois ..... 655
Floricola albicrissa ..... 187
Florida，gold ornament from a mound in ..... 157
Flounder ..... 66． 68
Flavicola atripennis ..... 175
climacura ..... 175
pica5
Fly－catcher，a new species of ..... 37 ..... 
buff breasted ..... 213
fork－tailed ..... 212
fulvous ..... 213
Girand＇s ..... 212
Lawrence＇s ..... 212
rome－throated ..... 213
mall－headed ..... 209
thick－billed ..... 213
weatera yellow－bellied ..... 213
Fly－fish ..... 57
Flying－lish ..... 42
do tly 1 ..... ．315， 317
Forbes，John M ..... 227
Formicarida ..... 18
Formicarius analis ..... 18
rudpectus ..... 85
Formicivora consobrina ..... 184
bicolor ..... 184
erythrocerca ..... 184
malura ..... 184
sресіова． ..... 184
strigilata ..... 184
Fossils，cretaccous，from Arkansas and Col orado ..... 136
Foulehaio carunculata ..... 320
procerior ..... 320
Foaque ..... 233
Francis，Dr ..... 287
Francisia ..... 284
Paga
Francollinus chinensis ..... 22
valgaris ..... 3
Fratercula arctica ..... 23
aretica glacialis ..... 2
Frazer，Mr．${ }^{\text {P }}$ ..... 120
Frogetta grallaria ..... 32
melanogastra ..... 28
Fremblya ..... 24
Colle ..... 28
Fresh water Perch ..... 51
Fringilla cellebs ..... 昶
montifringilla． ..... 㟫
＂texensis＂ ..... 219
Fringillaria cersia ..... 这
capensia ..... 盖
striolata．
1
Fringillida ..... 171，3\％
Fringillina ..... 3
Frye，Henry ..... 20
Fucus ..... 4
Fulgur carica ..... 3
Fulica alai ..... 21
ardesiaca ..... 21
armillata ..... 21
atra ..... 31
australis ..... 331
cornata ..... 201
leucoptera ..... 321
leucopygia ..... 201
Fulicine ..... 331
Fuligula ..... 2 ..... 22，23， 320
＂
＂
＂Fuligula＂nationl ..... 198
Fuligulinw ..... 38
Fulix ..... 23
affinis ..... 2
collaris． ..... 22
cristata ..... 39
marila． ..... 2320
Fulmar，glant ..... 료표
pacitle ..... 29
Fulmarus glacialis pacificns ..... ＝
Fundulus parvipinnis． ..... 13.42
Furnarius agnatus． ..... 180
assimilis． ..... 130
commersoni ..... 120
minor ..... 13
pileatua ..... 130
Furth ..... 39
G．
Gadide 3．65， 242302
Gadus ohalcegrammus ..... 24
fimbria ..... 24
gracilis ..... 24
macrocephalus ..... 24
morthua ..... 16
navaga． ..... 28
periscopas ..... 遑
psgmaeus ..... 24
wachna ..... 24
Gadwall ..... 20
Galapagoan short－eared owl ..... 371
Galapagos ..... 31




Heibachi, Tanaka ..... 450Heiyemon, Akita450
Helcion ..... 14
Heleothreptus anomalus ..... 121
mavora ..... 18dichroura187isaacsoni18violifera.187
Helicina.18
Meliocharis ..... 400
12Helioperea
Heliotryyba barral ..... 181viola16
Hecix alternata ..... 2
grimhi ..... a
4chrseoptera
46eucobronchialis
200pinus.205
rulcapila ..... 
Helodromas ochrophus ..... 51
Helotarsus ecaudatus ..... 316
IRemiarthrum ..... 
Hemicuath ..... 310
Hemilepidotus Gibsii ..... 530
Joxdani, new species ..... 153trachurus $\underline{6} 60,154,250,260,271,47:$$\mathfrak{x}$
simulans造
Homiprocne biscutata ..... 180
r0s20.216
Ilemistopher enphrosis. ..... 35
Hemitripterida ..... 24
Swainson's ..... 216
whictall216
Haydea, Walon23113



Lacedo polchella．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $\begin{array}{r}\text { Page } \\ 312\end{array}$
Lacertilia ..... 322
La Chonette ..... 370
Latmatonice armata ..... 209， 805
Lagopus leucurue ..... 217
mutus． ..... 329
rupestris ..... 217
scoticus ..... 329
Lake trout ..... 39
Lalage humeralls． ..... $32 d$
montrosieri ..... 324
pacifica ..... $2: 24$
Lamellibranchiata ..... 301， 306
Lamna cornubica ..... 32,317
Lamnida ..... 32
Lamperina ..... 29， 30
Lamprey ..... 30
Lampornis calosoma ..... 187
veraguensis ..... 187
Lamprater branickii ..... 187
Lamprococcyx lucidus． ..... 3.8
Lamprocollus auratus ..... 325
splendidue． ..... 325
Lampronetta facherí ..... 220
Lampropsar gulanensis ..... 173
warstewlezi ..... 173
Lamprospiza melanoleuca ..... 121
Lamprotes allocristatus ..... 169
Lamprotreron superbas ..... 328
Land tortoise，Agussiz＇s． ..... 437
Land tortoises of the genus Xerobates ..... 43
Laniarius barbarus ..... 34
Laniellus erythronotus ..... 324
abach ..... 324
Lanidax ..... 324
laniina ..... 34
Lanio versicolor ..... 169
Lanius borealis ..... 210
luclonenais ..... 34
Judovicianus robustus ..... 210
magnirostris ..... 324
supercilliosus ..... 324
Lanivireo flavifrons ..... 210
solitariun ..... 210
Lapidary；stock－in－trado of an aboriginal． ..... 457
Lapwing ..... 217
Laridxe ..... 202， 332
Larina ..... 332
Lark，Mexicau meadow ..... 212
sky ..... 222
Lavoides cachinnans ..... 332
michahelleail ..... 332
Larue affinis ..... 221
brachyrhynchus ..... 221
cachinnans． ..... 221
canus． ..... 221， 332
delawareneia ..... 221
franklini ..... 221
fuliginosus ..... 202
glaucercens ..... 221
heermanni ..... 221
lencopterus ..... 221
philadelphix ..... 221
serranus ..... 202
Lathria cryptolopha ..... 129
Latbria plambea
Page ..... 12
Latilidx ..... 2，53，162
Latiloid genera，note on the ..... 0，16，165
argentatus ..... 16216
chrysops ..... 164
simus ..... 16
Laurinea． ..... 310
Lawrence，George N．． $102,103,105,109,204,233,360$ Le front blanc ..... 11
Le Grande Chouette ..... 造
Leguminosse ..... 30
Leimonites temmincki ..... 33
Leiothrix lutea ..... 32
Lejotrichinxe ..... 35
Lo Kal ..... 40
Leopard shark ..... 30， 81
Lepas anatifera ..... 209295
fascienlaris ..... $29039{ }^{\circ}$
Lepeta ..... 408411,412
сеса ..... 41
Lepetella． ..... 408，411，41：
tubicola
$41^{\circ}$
Lepetellinz408
Lepetidre
new sub－family ．．．．．．．．．．．．．．．．． 40 ．
401，407，408，411， 412
Lepetinac
Le petit Pic raye de St．Dominigue． ..... Hir
Le Pic a plaque noire ..... Ue
Carolin． ..... 5
de Grateloup ..... 10
gris ..... 99
raye． ..... 110
raté de St．llomingue ..... L
subelegant ..... 10
Le Piezèbre á front dor ..... $1 \times$
a uete dorée． ..... 112
de Gérin ..... 14
de kaup ..... 112
de la Caroline ..... 99
de la Jamaique ..... 111
Santa－Cruz ..... 106
sourcil noir ou superciliare ..... 116
tricolore． ..... 10.
Lepidogobius gracilis ..... 2．
Lepldonotus squamatus． ..... 2093
Lopidopus． ..... 380 造
Lepidopus，a deep－sea fish allied to ..... 378
caudatus ..... 381，3x
elongatus ..... 80，3ad
Lepidopsetta ..... 315
bilineata．．．．．．．．．． 208 241，269， 270 isolepis． ..... 316
Lepidopleurus ..... 28
Lepidoradaia ..... 20
Lepomis． ..... ${ }^{8}$
albulus ..... 8
anagallinus ..... 遇
apiatne ..... 82
auritus ..... 89,4
auritus var solie ..... e
bombifrons ..... 80
oyancllus ..... 8


Pago．
Lurocalie semitorquatus ..... 101
Luscinia philomela ..... 321， 378
vera ..... 2ㅗㄴ
Luscinide ..... 320
Luecininue ..... 
Lusciniola melanopogon ..... 莩
Lutjanus ..... 353
Lutjanus aratua ..... $3{ }^{3}$
argentivittatus． ..... 353， 354
caxis ..... 33234
colorado． ..... 338 356
colorado，new species ..... 331
guttatus． ..... 34
novemfasclatus ..... 333
prieto ..... $232,338,351,355$
prieto，new species ..... 35
synagris． ..... 36
Lutken，Dr．Chr ..... 415， 438
Lycodes coccinens ..... 244． 201
соссіреив，new specie ..... 14
macosus ..... 144． 45
Turneri ..... 244， 21
Vablii ..... 145
Lycodide． ..... 244．35：
Ly codopais． ..... ． 312.313
pacificus． ..... 465,315
paucidens ..... 46315
Lycos monedula ..... 34
Lycusa ruricola ..... 9
Lyrurus tetrix ..... 52
m．
Macandrellus ..... 24
Macandrellus plumeus ..... 288
Machaera velifera ..... 迫
Macharopterus pyrocephalua ..... 178
Machetes pugnax ..... 212
Mackerel，Eanter ..... 逪
eastern ..... 4
little ..... 45
Spanish ..... 45
tinker ..... 45
MacLean，W．S ..... 42
Macracantus． ..... 28
Macrochelys lacertina ..... 445
Macronus ptilosus ..... 32
Macronyx copensis ..... c
Macropygia phasianella ..... 2
tenuiroatris（1） ..... 3
Macrorhamphus griseus ..... 218
grisens scolopacens ..... 218
Mactra solidissima ..... 5
Magnolia hypolenca ..... 3
Magnollacea． ..... 3
Mappie，yellow－billed ..... 212
Maine，remains of walrus（1）in ..... 23
Majaqueus æquinoctialis ..... 32
Makaira nigricans ..... 4
Malacanthins ..... 16
Malacocircus griseus． ..... 3
Malaconotina ..... 34
Malacoptila aspera ..... 128
castanea． ..... 188
fulvogularis ..... 18
funca ..... 18
INDEX.
Page.
Malacoptila rufa ..... 183
substriata ..... 183
Malacopteron magnum ..... 323
Malacorhynchus membranaceus ..... 392
Malacothranpis deutata ..... 171
Malherbe 4, 102, 103, 112, 116, 118
Mallotus villosus .255, 208, 200, 271, 473
Malthe elater ..... 338
elater, new species ..... 365
notata ..... 365
Malurina ..... 320
Malurus callainus ..... 320
cyaneus ..... 320
dorsalis. ..... 320
lamberti ..... 320
Malvacez ..... 308
Man, early, in Europe ..... 4.57
Man-eater shark ..... 32,33
Manorina melanophrys ..... 320
Manta biroetris ..... 36
Mantell, Mr ..... 433
Manucodia gouldi. ..... 305
Manucodiinse ..... 825
Marcgrave ..... 420
Mareca penelope ..... 220. 332
punctata ..... 332
Margarops sanctue-lucis ..... 165
Margaroruis stellata ..... 182
Marilochen erythropus. ..... 332
Marmonetta angusticostris ..... 332
Marmock, $\mathbf{M r}$ ..... 441
Marsh, Profeseor ..... 121
Martin, Cuban. ..... 210
Martin, R. ..... 273
Martius, C. F. P. von, memoir of. ..... 450
MAstacembelidal ..... 157, 260
Mangerella ..... $2 \times 2$
Mazatlan, fire new species of flshes from. ..... 408
thirty-three new species of fishes from ..... 338
McKay, Charles L ..... 67
Media-luna ..... 47
Megaceryle guttata. ..... 312
Megalaima armillaris. ..... 327
chrysopogon ..... 327
henrici ..... 827
mystacophanos. ..... 327
veraicolor ..... 327
virens. ..... 527
Megalaimine ..... 327
Megalestris chilensis. ..... 202
skua ..... 202
Megalocottus platycephalus ..... 264
Megalophonus apiatus ..... 326
Megaloprepia assimilis ..... 328
magnifica. ..... 328
Megaluras palustris ..... 320
Megaporlida. ..... 829
Megapodinx. ..... 329
Megapodius tumulus. ..... 392
Meiglyptee grammithorax ..... 327
tristis (l) ..... 827
Melanornis edolioides ..... 324
Melampus lineatus ..... 301, 306
Melancrpes ..... 66Melia Azedarich .16Meliacea.1
Meliornis nove-hollandis. ..... 320
sericea ..... 320
Meliphaga phrygia. ..... 320
Meliphagidx ..... 320
Meliphagine ..... 320
Molithreptina ..... 320
Melithreptus albogularis ..... 320
brevirontris. ..... 320
lunulatus. ..... 320
Melittophas biculor ..... 312
Melizophilus sarda ..... 321
undatus ..... 321
Melletes papilio ..... 251, 267, 271, 312
Mrlopelia plumbercens ..... 198
Melophus melanictera. ..... 82
Melopsitacus undulatus ..... 326
Melospiza faeciata rufina ..... 211
fasciata samuelis ..... 211
Menhaden feed ..... 305
Monticirrus ..... 49. $2 \pi 7$
Menticirris undulatus ..... 11, 48
Menura superba ..... 320
Menurida ..... 320
Menurinas. ..... 320
Merganetta leucogenys ..... 198
tarmeri ..... 198
Mergellus albellus ..... 332
Merginas ..... 332
Mergoides ..... 22
rufinus ..... 23
"Mergus" brasiliensis ..... 198
merganser americanus ..... 221
Merlin, black ..... 215
Eumpean ..... 215
Richardson's ..... 215
Merluccio ..... 66
Merlucius ..... 41
Meron55
Meropida ..... 312
Meropiscus gularis. ..... 319
Merops apiaster ..... 812
Merostomata ..... 290, 305
Merula confinia ..... 207
pritzboueri ..... 822
simillima. ..... 322
Page.
Merula sinenais ..... 322
vanikorensif ..... 322
vulgaris ..... 322
xantbopus ..... 322
Merulaxis rhinolophas ..... 186
Mesogonistias. ..... 92
chatodon. ..... 22
Mesopicus menstruua ..... 327
Mesoprion aratua ..... 355
argentivtatus ..... 354
guttatus. ..... 34
ghiseus ..... 354
inermis ..... 355
uninotatus ..... 254
Mesozolo diabase, mineralogical composl. tion of ..... 129
Mesaenger, Mr ..... 81,80
Metallic castings of natural objects ..... 161
Metallura aneicauda ..... 189
cbloropogon ..... 189
eupogon ..... 189
jeloki ..... 189
opaca ..... 189
primolina ..... 189
smaragdinicollin ..... 189
williami ..... 189
Metopodias albinncha ..... 331
indica. ..... 331
Metopothrix aurantiaca ..... 178
Metoptoma ..... 414
Metridiun marginatum ..... 303
Metriopelia aymara ..... 198
Moxico, finhes from weat coant of. ..... 225
Gulf of, examination of water from. ..... 234
thirty-three new species of fishea from ..... 338
Micriator amanrus. ..... 107
concentricus. ..... 197
pelzelni ..... 197
zonothorax ..... 197
Micrathene whitneyl ..... 214
Microbates torquatua ..... 184
Microcarbo blevirostria ..... 339
melanognathos (i) ..... 333
pygmazus ..... 333
sulcirostris. ..... 233
Mierocerculus albigularis ..... 106
bambla ..... 160
marginatua ..... 106
squamatulus. ..... 106
teniatus ..... 166
Mlicrochelidon hirundinaceum ..... 320
Mlerochera alboooronata ..... 188
Microciona prollfera ..... 303
Microca fascicans ..... 323
Microgadus proximus ..... 3, 65, 243, 269, 271
Microglaux perlata ..... 318
Microlepidotus ..... 887
inornatus ..... 388
1 Microlepidotus inoruatus ..... 274
Micrometras ..... 51
aggregatus ..... 49. 51, 265
frenatus ..... 205
Micronisns badius ..... 818
gabar ..... 318

Page
Momotun nattereri .............................. 192
Monachus atricapilla ..... 321
rūppellii ..... 321
Monarcha "carinata Vig. \& Horsf." ..... 323
melanopsia ..... 333
Monasa morpbeus ..... 123
Monographio des Picidees ..... 94, 118
Monticola rupestria ..... 322
saxatilis ..... 322
Montifringilla nivalia ..... 325
Moore, Charles, jr ..... 76.77
Moore, M. A ..... 120
Moore, Mr ..... 72
Mopalia ..... 28
Mopaloidea ..... 284, 288
Morina ..... 6
Morphnus treniatus ..... 102
Morrison, Capt. Roderick ..... 370. 382
Morme ..... 29
Morus alba ..... 310
Motacilla alba 208, 321, 414
capensis ..... 321
dukhunensis ..... 321
japonica ..... 321
luzoniensis ..... 801
maderanpatana. ..... 221
ocularis. ..... 321,414
yarrelli. ..... 32
Motacillida ..... 160321
Motacillias ..... 321
Notmot, blue-capped ..... 213
Monntain troat ..... 85
Mud-fish ..... 53, 65
Mud-snail, black ..... 305
Mugil albula. ..... 43
brasilienais ..................222, 233, 274, 272
lineatus. ..... 125
mesicanas 13, 43, 274
Mugilida13.43
Mulinia lateralis ..... 301, 306
Müller, Dr. Karl ..... 105
Mullet ..... 43
Muneca
436, 448
Mangofa
Munia jagori ..... 325
malabarica ..... 325
topela ..... 925
Munida ..... 299
Munida, np ..... 304
Murama conger ..... 204
dovii. ..... 346
lentiginosa ..... 345
mordax. ..... 16, 36, 272
pinta ..... 277, 338
pinta, new species ..... 4.5
pintita ..... 338
pintita, new specien ..... 346
Murzencsox conicepa. ..... 338
coniceps, now species. ..... 34
Muranida. ..... 16, 36
Murzenoides ..... 0
Murenoides, dolichogaster 239. 245, 271
fasciatus 147, 148, 203, 268
latus. ..... 4,63
maxillaris 148, 246, 200, 271
Muranoidee, maxillaris, new 1 species ..... Page ..... 147 ..... 147
nebuloans
nebuloans
ornatua. ..... 147
quinquemaculatue ..... 203
tenia ..... 269
Muscarinus polychlorns ( $\dagger$ ) ..... 227
Muschelbetten, künsiliche, in Amerika ..... 45
'Muscicapa brasieri ${ }^{\text {' }}$ ..... 209
"Muacicapa derhami" ..... 200
Muscicapa grineola ..... $3 \times 3$
hypogrammica ..... 223
Muacicapida ..... 323, 397
Muscicapine ..... 323
Muacinapicola albifrona ..... 175
duviatilis ..... 175
ruflemnis. ..... 175
Muecitodus rufiventris. ..... 323
Muscirora castelnaudi ..... 177
swainsoni. ..... 177
Muscylva lessoni ..... 823
Musophagidno ..... 326
Mussel, common ..... 306
horae ..... 206
ribbed ..... 306
Mustela ..... 6
Mustelus callfornicus ..... 31
hinnulus. ..... 18, 31
Mya. ..... 297
Mya arenaria ..... 306
Myadeater. ..... 371
elisabeth ..... 373
obacarus ..... 373
obscuras, two new races of...... 371
obacurun var. insularia ..... 372
obscurus var. occidentalis . $371,372,374$
Mycteria americana ..... 217
Myctophum ..... 26
crenulare ..... 315
Myiadeates ardeslacens ..... 165
griseiventer ..... 165
montanus ..... 165
obscurus ..... 33
towneendi ..... 208
Myiagra azurea ..... 323
caledonica ..... 323
latirostris. ..... 22
rubecula ..... 323
viridinitens ..... 323
Myiagrine ..... 329
Myiarchus apicalis ..... 178
cepbalotes. ..... 178
lawrencel ..... 212
magnirostris ..... 178
semirufus ..... 178
Myiobius aureiventris ..... 172
capitalis ..... 172
pulcher ..... 172
rufescens ..... 177
stellatus. ..... 177
superciliosus ..... 17
vieillotides ..... 172
Myiochanes cinereus ..... 178
nigrescens ..... 178
Myiodioctes canadensis ..... 209
minutus ..... 209

Proc. Nat. Mus. 81 - 42

INDEX.
Page. Nismella madagascariensis ..... 318
Noctua major ..... 160
minor. ..... 309
Nolan, Dr. Edward J ..... 02
Nomenclator Avium Neotropicalium ..... 9
Nomonyx dominicus ..... 291
Nonnula rubecula ..... 103
ruficapilla ..... 109
Norsk anchovy ..... 38
North American birds, desiderata among ..... 207
Nothocercus julins ..... 203
nigricapillus ..... 203
Nothocrax urumutum ..... 100
Nothoprocta branickii ..... 203
curvirustris ..... 208
doringi ..... 203
ornata ..... 209
pentlandi ..... 203
perdicaria ..... 203
panctulata ..... 203
taczanowskii ..... 903
Nothura boraquira ..... 203
marmorata ..... 203
media ..... 203
Notidanida ..... 18, 30, 267
Notidnnoid shark ..... 317
Notistiam ..... 127
Notogrammus, new genns. ..... $14 i$
Notoplax ..... 284, 288
Notorhynchus maculatus ..... 18,30
Nucifraga caryocatactes. ..... 324
Nucula proxima ..... 301, 300
Numenius arquata ..... 330
borealis ..... 219
femoralis ..... 330
budsonicns ..... 210
luzoniensis ..... 330
minor ..... 330
phaeopus ..... 219, 330
tahitiensis ..... 219. 330
tenuirostris ..... 330
Namida meleagris ..... 129
Numidina ..... 329
Nuttallipa ..... 284. 287
Nyctala "fonerea" ..... 318
tengmalmi ..... 318
Nyotale acadcia ..... 214
tengmalmi richardsoni ..... 214
Nyctalitinus harrisi ..... 106
Nyctea scandiaca ..... 214
Nyctherodius pauper. ..... 198
Nyctiardea caledonica ..... 330
nycticorax ..... 830
Nyctibius bracteatus ..... 191
leucopterus ..... 190
longicaudatua ..... 100
Nyctibus jumaicensis. ..... 330
Nyctiornis amictus ..... 319
Nyctiprogne leucopygia ..... 101
Nyroca australis ..... 332
leucophthalma ..... 332
0.
Ober, Mr. F. A ..... 204, 205
Obelia geniculata ..... 303, 302
Oceanitea lineata ..... 312PazeOcenpodroma hornby
byi ..... 222
Ochthodiseta fumigata ..... 174
fuscorufne ..... 174
signatus ..... 174
Ochthodromus bicinctus ..... 330
Ochthaca albidiema ..... 175
arenacea ..... 185
cinnamomeiventris ..... 176
diadema ..... 175
fumicolor ..... 174
grationa ..... 175
leucometopa ..... 175
leucophrys ..... 174
murina ..... 175
nigrita ..... 175
cenanthoidea ..... 174
poliogastra ..... 175
polionota ..... 174
pulchella ..... 175
rufimarginata ..... 175
rufipectoralis ..... 175
nalvini ..... 175
superciliosa ..... 174
tanioptera ..... 175
thoracica ..... 175
Octopus Bairdi ..... 300
Ocydrominae ..... 331
Ocydromus australis ..... 331
earlul. ..... 33
Ocyphaps luphotea ..... 328
Odontanter hispidus ..... 302
Odontophorus ballivianl ..... 200
cinctus ..... 200
columbianns ..... 200
dentatua ..... 200
erythrops ..... 200
byperythrus ..... 200
hypospodius ..... 200
melanonotus ..... 200
pachyrbynchus ..... 200
specioaus. ..... 200
spodiostethus ..... 200
stellatus ..... 200
strophium ..... 200
thoracicus ..... 200
Odontopyxis ..... 312
trispinosna ..... 312
CEdemia americana ..... 221
CEdicnemida ..... 201
Odicnemis crepitans ..... $3: 2$
superciliaris ..... 201
Cetrelata arminjoniana ..... 202
bulwert ..... 222
deflippiana ..... 202
externa. ..... 202
fuliginosa ..... 202
hasitata. ..... 220
incerta ..... 332
kidderi ..... 332
lessoni ..... 332
magents ..... 202
parvirontris ..... 332
pheopygia ..... 202
rontrata ..... 332


Ossifraga gigantea
atrovirens
Ostrea.virginiana
Othonops
Otidida ..... 29
Otis tarda
pyrrhotis
Otocorys alpestris
226
longirostris.
Otogyps auricularis
magdalens
brachyotus
brachyotus $\beta$, cassini.
(Brachyotus) galapagoensiscassini
microcephalas ..... an
" ..... 300
vulgaris ..... 318
Outils agricoles en Sifex du Sud de l'Illinoi
American hawk
a new species of, from Porto Rico ..... 366barred
California plgmy ..... 214dusky hormed
pean hawk ..... ,
flammulated screech ..... 214
Toria barted.
Florida sereech ..... 214
Galapagoan short eared ..... 37
great horned ..... 214
Loplan
Mexican acreech ..... 214
Proc. Nat. Mus. 81-33
Owl, nortlwestern screech ..... 214Richardson's214
Hy ..... 1
short-eared214
spotted ..... 214
western borned214
anOxyjulis modestus737330619. 53,1403222232048-$3-0$a367,371213214214214214214

Page.

Oxylebius pictus............................................. 9,8
Oxypogon cyanolsmus............................ 188
lindeni................................. 188
Oxyrhamphidx ...................................... 1 .
Oxyrhamphus flammiceps...................... 174
Oxyurus masafuers. ............................... 180

Oystercatcher, black ............................. 217
European........................ 217
P.

flavifron .
gutturalis ......................... $\frac{224}{}$
ficteroides ........................ 324
littayel ............................ 924
melanига............................ 224
ruflventrí......................... 224
Pachycephalinae ........... ....................... 324
Pachyrhamphus intermedius .................. 179
mpjor ........................... 213
niger............................... 179
por
Pndda oryzivora......................................... 395
Pagudromn nivea.................................... 332
Pagophila eburnea ................................. 221
Palamonetes vulgaria.......................... . 209, 304
Palseornis colnmboides.......................... 326
pигригеив.............................. 326
schinticepa.............................. 226
torquatus............................... $\underline{820}$
Palamedea cornuta ............................... 198
Palamedeidx ........................................... 188
Palenqué, In stèle de ............................ $4 \pi 7$
le Bas-relief de la Croix de........ $\quad 488$
tablet..................................... 457
Paleorhynchus ...................................... 433
Pallochiton............................................ 289
lanuginosus .......................... 287
Palmaces ................................................... 211
Palmer, Dr. E .................................................... 13
Palumbus torquatus......................................
Panamn, dle graber von ......................... 435
Panamensix, Pseudopristipoma................. 287
Pandalus leptocerus...... . ........... . . . . . 209, 304
Pandion hallaètus ..................................... 317
haliaetua carolinensis ................ 215
Panopeus Sayi........................................... 298
Panulirus interruptas.............................. 31
Pивигие biarmicus ................................ 321
Panychlora alicis .................................. 100


|  | INDEX. |  | 663 |
| :---: | :---: | :---: | :---: |
| Page. |  |  | Paga |
| Periasoglossa carbonata | 200 | Phaethornis pygmeens | $1 \times 7$ |
| tigrina | 209 | Phaêton rubricaudus. | 339 |
| Peristera cyanopis | 199 | Phaĕtontide | 333 |
| geoffroyi | 199 | Phalacrocorncida | $\underline{1}$ |
| Periwinkle . | 305 | Phalacrocorax bougainvillei | 197 |
| small | 305 | mexicanus | 221 |
| Pernis apivorus | 318 | perapicillatus | 221 |
| Perophora viridis | 302 | Phalangistes fusifornis | 264 |
| Perrico. | 358 | Pbalnrope, red | 212 |
| Prsca Rey. | 52 | Phalaropun folicarius | 219 |
| Peace Vermiglia | 51 | Phaleris paittacula | 223 |
| Petasophora corruscans | 187 | Phanerodon | 316 |
| rubrigularia | 187 | Phapitreron leucotis | 328 |
| Petrel, ashy | 222 | Phaps chalcoptera | 308 |
| a supposed new | 337 | elegans... | 228 |
| black | 222 | Pharomacrus fulgidus. | 102 |
| black-capped | 222 | heliactin | 192 |
| Bulwer's | 222 | pavoninus. | 122 |
| Hornby's | 222 | santhoganter | 192 |
| leant. | 222 | Phascolonoma Gouldii | 300305 |
| white-bellied | 202 | Phancolion Strombi | .300,305 |
| Petrochrlidon pyrrhonota | 167 | Phasianenae (Phasianinx) | 329 |
| Petrocincla cyanea. | 322 | Pbasianide | 329 |
| pandos. | 3.2 | Phasianus colchicus. | 229 |
| solitaria | 22 | torquatus | 329 |
| Petrocyclus cachinnans | 322 | versicolor | 329 |
| Petroica goodenovii | 321 | Phasmoptynx capensis. | 318 |
| leggi. | 321 | Phegornis mitchell | 208 |
| multicolor | 921 | Pbeucticus chrysogaster | 171 |
| "multicolor" | 321 | crissalis | 171 |
| phonicea | 321 | uropygialis | 171 |
| pnuilla. | 321 | Phigys solitarias. | 32 |
| Petromyzon astori | 30 | Philacte canagica | 20 |
| Petromyzon borealis | 150 | Philacantha nisoria | 32 |
| Petromyzon branchialis | 267 | Philemon lessoni | 329 |
| ciliatus | 30 | Philibert, Prof. Jos | 48 |
| PPetromyzon Flurialia | 159 | Philomachus pugnax | 331 |
| Petromyzon lampetra | 207 | Philydor anaaurotis | 182 |
| lividus | 30 | columbianus. | 182 |
| marinus | 267 | consobrinus | 182 |
| tridentatus | 30 | erythrocercus | 189 |
| Petromyzontide | 261, 267 | erythronotua | 182 |
| Petronia diadema | 325 | erythronterus | 182 |
| Peucsea aentivalis. | 211 | fuscipenis. | 182 |
| restivalis illinoensis. | 24 | panery thrus | 182 |
| arizona | 211 | ruffeaudatus | 162 |
| carpalis. | 211 | striaticollis | 182 |
| cassini | 211 | subflaveacens | 188 |
| notosticta | 172 | subfulvas | 182 |
| ruficeps. | 211 | Philypnus lateralis | 272 |
| ruticeps boucardi | 211 | Phloncryptes aclónobenus | 180 |
| Pencedramus olivaceus | 209 | Phlogenas ers throptera. | 328 |
| Pezoporina ..... | 326 | luzonica.... | 328 |
| Pezoporus formosus | 326 | Phlogophilus bemileucurus. | 129 |
| Phacellopl-ura. | 24 | Phlogopsis erythroptera. | 185 |
| Phenicophaine | 327 | nigromaculata | 189 |
| Phenicoplilus dominicensis | 171 | trivituata | 185 |
| Pheolema zequatorialin. | 182 | Phlothras viridia. | 319 |
| Pheornis obscura. | 324 | Phobetria fuliginosa. | 222 |
| Phaëthornis bourcieri | 188 | Phenicoclebla granatina. | 323 |
| episcopas | 187 | Phenicopterida.... | 198, 331 |
| gayl. | 186 | Pheenicopterus andinus | 198 |
| idalise. | 186 | nntiquorum | 331 |
| migricintua | 187 | glyphorhynch | 198 |
| philippii. | 188 | ruber. | 210 |


| Page． |  |  | Page |
| :---: | :---: | :---: | :---: |
| Phenicothranpis gutturalis | 160 | Picamines minutus． | 121 |
| Phone na senator． | 324 | rafiventris | 191 |
| Phodipara fumona | 172 | sclateri． | 19 |
| zena | 212 | squamatulus | 191 |
| Pliotinia glabra | 309 | Picus | 15 |
| Japonica． | 309 | （1）Picus albifrons | 111 |
| Pbrygilus atriceps | 172 | Picus alhifrons | 遈105 |
| erythronotus | 172 | uarifrons | 05，102， 104 |
| melanoderus | 172 | aurcocapillus | 119 |
| ocular is | 172 | aurocapillus． | ．．04，119 |
| plebelua | 172 | capistratus | 108 |
| Phylidonytin australasiana | 220 | carolinus．．．．．．．．．．．．．．．． 93 | 108111.118 |
| Phyllomy ias brevirontns | 176 | chrysogenys | 106 |
| burmeisteri | 128 | dominicensis striatus | 117 |
| rinereicapilla | 176 | dominicensis striatus minor | 13 |
| platerry ${ }^{\text {acha }}$ | 126 | dubius | 108109 |
| semifueca | 176 | elegans | ．${ }^{3} 114$ |
| tumbezana | 176 | ersthrauchen | ． 29 |
| Phyllopseuste brunnea | 321 | erythrophthalmus | 108 |
| polyglotta． | 321 | Havifrons | 8 |
| sylricultrix | 321 | gerint． | ． $94,95,118$ |
| Phyllornis cyanopogon | 322 | grateloupensis | 100 |
| icterocephala． | 222 | grisens | 20 |
| javensis | 52 | hoffmanni | 93， 110 |
| malabarica | 32： | hypoplins | ．95，113 |
| Phylomithina． | 322 | jamaicensis． | 111 |
| Phylloncopus brorealis | 208 | larratue． | 111 |
| Phytotoma angustirostris | 180 | major | 220 |
| Playa cayana nigricrinsa | 19 | ornatus | 104 |
| Pic à sourvils noirs | 116 | polygrammus | 曾 |
| a tete dorco． | 119 | querulus | 213 |
| grim ray 6 | 09 | radiolatus | ．35， 11 |
| rayéà téte noir de St．Doming | 117 | scalaris lucasanus | $\underline{213}$ |
| rayéde la Louiniane． | 09 | atriatus | 95， 117 |
| rayé deSt．Domingue． | 117 | stricklandi | 213 |
| raye gais | 易 | subulegans． | 106 |
| sourcil noir | 116 | subocularis． | 山 |
| varie Ternelle，de la Jamaique | 111 |  | 111115118 |
| Piea caudata | 224 | tricolor | （e） 101 |
| media | 324 | umpyulalis | 鱼 |
| nuttalli | 212 | varius indicus． | 118 |
| Pici allofasciati | 95 | varius jamaicensis | 111 |
| Pieidue | 191， 327 | varius mediun． | 111 |
| Picing | 3.7 | varius modius jamaicennis | 111 |
| Picoides arcticus | 213 | ventre rubro | 20 |
| crissoleucus（1） | 29 | zebar | 12 |
| tridactylus | 297 | Piczèbre a Front d＇or | 14 |
| tridactylus americanus | 213 | alezan cendré | 11 |
| Picolaptes albolineatus | 183 | aux yeux rouges | 108 |
| fftcinellus | 183 | à rentre sanguin | 10 |
| fuscicapillus | 183 | carolin | 䊗 |
| layardi | $1 \times 3$ | elégrant | $\underline{L 14}$ |
| puncticeps | 188 | rayé on de Saint－Domingue | 117 |
| souleyetí． | 187 | tricolor | 101 |
| squamatus | 1R3 | Pic－zèbre superciliaro． | 116 |
| Picrasma ailanthoides． | 308 | Pike，Col，Nicholas． | 419 |
| Picumnus albo－squamatus | 191 | Pile－lwellings | 455 |
| aurifrons | 191 | Pilidium ．．． | －407，412 |
| castelnaudi | 191 | Pilidium fulvam | ． 411 |
| cinnamomens | 191 | Pimelepterida． | 12 |
| cirrbatus． | 191 | Pimelepterus analogus | ． 2 |
| lawrencel | 191 | busci．． | ．229， 330,238 |
| lepidotus． | 101 | Jutescens，new sperice． | ． 22 |
| leucogaster | 101 | Pimolometopon．． | 10 |
| micromegas | 191 | pulcher |  |

Page.
Pinguipes ..... 114
brasilianus ..... 164
Pínicola enucleator ..... 325
Pinus densiflora ..... 311
koraiensis ..... 311
parviflora. ..... 31
Thunbergif ..... 311
Pionus corallinus. ..... 180
sordidus ..... 120
violaceus. ..... 100
Pionopsitta melanotis ..... 104
pyrrhopa. ..... 106
Pipastea plumatus ..... 822
Pipe-fish ..... 69
Pipile crububi ..... 109
Pipilo erythrophthalmus alleni ..... 211
fuscus albigula ..... 212
maculatus arcticus ..... 212
maculatus carmani. ..... 212
maculatus consobrinus ..... 212
maculatus oregonus ..... 212
mystacalis ..... 173
Pipra caruleocapilla ..... 188
cornuta ..... 178
fasciata ..... 178
favicollis ..... 178
"galericulata" ..... 210
heterocerca ..... 178
nattereri. ..... 18
vireacens ..... 178
Pipreola aureipectus ..... 179
chlorolepidota ..... 129
elegrans ..... 179
formosa ..... 179
frontalis ..... 179
lubomirakii. ..... 109
melanolama ..... 179
selateri ..... 19
viridis. ..... 179
Pipritax ..... 18
Pipridea castaneiventris ..... 169
Piprites chlorion ..... 18
chloris. ..... 178
griselceps ..... 188
pileatus ..... 178
tachulii ..... 18
Pirus Chinensis ..... 309
communis [rar. sinensis ?] ..... 009
Pirz, Anthony ..... 273
Pisodontophis ..... 341
Pitangus gabbi ..... 177
Pithys lunulata ..... 185
melanosticta ..... 185
Pitta coronata ..... 823
moluccensis ..... 320
aimillima ..... 323
strepitans ..... 823
Pittida ..... 323
Pitylus celano ..... 171
fuliginosus ..... 171
bumeralia ..... 17
Placellodomns sibilator ..... 181
striaticeps ..... 181
Placellodromus ..... 335, 331
Placenticeras placenta ..... 137

| Plusianma Page |  | Pomadasys chalcens． | Paga | |
|---|---|---|---|---|
|  |  | 3 x |
| Pochard，red－reated．． | 23 |  | Davidsoni | 25 |
| Pocket－mouse，yellow | 4.5 | dovii | 84， 3 |
| Polargine | 318 | Fürthil | 232，38， 25 |
| Podargus megacephalus | 318 | humilis．． | 这 |
| strigoides ．．．．．．．．．．．．．．．．．．．．．．．．． | 318 | fnornatua． | 288 |
| Podicepedida | 202 | $l$ inornatus | 294 |
| Podiceps australis | 332 | leuciscus | 23238 |
| cristatus | 332 | macracanthus | 运 |
| holtë．li． | 228 | nitidas | 38 |
| Podicipidx | 332 | nobilis | － |
| Polothecus．． | 312 | pacifici． | 380，384，3＊5 |
| acipenserinus ．．．．．．．．．．．．5，62，248， 2 |  | panamensis | 2 |
| triapinosus．．．．．．．．．．．．．．．．．61，248，2 |  | virginicus | 384．35 |
| vulsus | c2 | Pomarea nigra | 5 |
| Parile berealis | 121 | Pomatorbinus erythrocnemis | 29 |
| cinctus | 321 | musicus | 5 |
| lugubris | 321 | Pomatorhynchus cucullatus | 21 |
| palustris | 321 | Pomatostomus temporalis． | 5 |
| Pecilothraupis ignicrissm | 169 | Pomotis breviceps | 5 |
| igniventris | 109 | fallax | 8 |
| lacry mosa | 169 | inscriptus | 这 |
| melanogenys | 169 | nitídus | 2 |
| Poey． | 427 | notatus． | － 8 |
| Pogonichthys macrolepidotus ．．．．．．．．．．．．．．16， 3 | 316 | pallidus． | ¢\％ |
| Pogonorhy nehine ．．．．．．．．．．．．．．．．．．．． | 327 | popeif | ce |
| Pogonorbynchus dubine | 327 | sanguinolentus | c2 |
| dencomelas． | 202 | speciosus． | 2 |
| torquatus．．．．．．．．．．．．．．．．． 2 | 327 | Pomoxys ． | 62 |
| Pogonotriceus eximius ．．．．．．．．．．．．．．．．．．．．． 1 | 176 | annularis | 8 |
| ophthalmicus | 176 | sparoides | E |
| Polioptila califurnica ．．．．．．．．．．．．．．．．．．．．．．． 2 | 208 | Pompano． | 66．${ }^{\text {c }}$ |
| plumbea．．．．．．．．．．．．．．．．．．．．．．．． 2 | 208 | Pontophilus brevirostris． | 39 |
| plumbeiceps ．．．．．．．．．．．．．．．．．．．．． 1 | 165 | Poospiza bonapartei | 15 |
| Poliornis poliogenym．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {a }}$ | 317 | casar | 12 |
| Polstotrema | 20 | cinerea | 12 |
| dombeyi ．．．．．．．．．．．．．．．．．．．．．． 18 ， |  | hypochondriaca | 122 |
| Pollachíua chalcogrammus．．．． $3,66,242,260,270$ |  | melanoleuca | 12 |
| Polophilus macrourus ．．．．．．．．．．．．．．．．．．．．．．． 3 | 328 | ornata． | 15 |
| phasianus．．．．．．．．．．．．．．．．．．．．．．． 3 | 328 | torguata | 172 |
| Polumbænа ¢пая ．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 | 328 | Popelaria laetitiv． | 120 |
| Polumbus elphinstonei ．．．．．．．．．．．．．．．．．．．．．． 3 | 328 | Porcupine，Canada，in Maryland | 161 |
| Polyplaciphora ．．．．．．．．．．．．．．．．．．．．．．．．．． 283 ， 4 |  | Porichthys porosissimus | 65.383 |
| Polyplectron biralcaratum ．．．．．．．．．．．．．．．．．． 3 | 329 | Porifera | 303， 308 |
| Polysticta stelleri ．．．．．．．．．．．．．．．．．．．．．．．．．． 2 | 220 | Porocottus quadritilis | 2 CH |
| Polstelis barrabandi．．．．．．．．．．．．．．．．．．．．．．．． | 220 | tentaculatus． | 24 |
| melanura ．．．．．．．．．．．．．．．．．．．．．．．．． 3 ． | 326 | Poronotus． | 42 |
| Polytmus leucorrhous ．．．．．．．．．．．．．．．．．．．．．．． 1 | 190 | Porphyrio indicns． | 331 |
| Polyzoa ．．．．．．．．．．．．．．．．．．．．．．．．．．．302，30 |  | melanotus | 31 |
| Pomacanthodes．．．．．．．．．．．．．．．．．．．．．．．．．．．．． | 358 | veterum | 331 |
| Pomacanthus arcuatus ．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {a }}$ | 358 | vitiensts | 831 |
| creacentalis．．．．．．．．．．．．．．．．．． 3 | 338 | Porphyrionina． | 331 |
| creacentalis，new species．．．．． 3 | 358 | Porphyrospiza cyanella | 12 |
| zonipectus ．．．．．．．．．．．．．．．．．．． 3 | 358 | Porter，Joseph Y | 121， 182 |
| Pomacentridx ．．．．．．．．．．．．．．．．．．．．．． 0.52 2 |  | Porto Rico，a new owl from | 36 |
| Pom sdasys ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．284， 2 $^{\text {a }}$ |  | Porzana albicollis ． | 20 |
| a key to the tropical Pacific |  | albigularis | 201 |
| American sppcies of．．．．．．．．． 8 | 383 | castaneicepa | 201 |
| a new species of，from Mazatlan 38 | 3＠ | cayennensia | 200 |
| axillaris．．．．．．．．．．．．．．．．．．．．．．．．ast | 347 | cinerea． | 201 |
| bilineatus ．．．．．．．．．．．．．．．．． 38 as，as |  | concolor | 29 |
| Branicki ．．．．．．．．．．．．．．．．．．．．．．．． 3 ． | 380 | erytbrops | 201 |
| савіия．．．．．．．．．．．．．．．．．．．．．．．．．．碞 | 385 | flariventris | 201 |
| cassius，new species．．．．．．．．．．．．．as | as3 | hauxwelh | 201 |
| cantharinus ．．．．．．．．．．．．．．．．．．．．${ }^{\text {as }}$ | 388 | јаmaiceneis | 212 |

Porzana jamaicensis coturniculus ..... 212
leucopyrrba ..... 120
levraudi ..... 200
maruetta. ..... 210, 331
melanophaa ..... 201
notata. ..... 201
nove-hollandia ..... 831
noveboracenais ..... 219
cenops ..... 201
spilonota ..... 201
Potamilla reniformia ..... 300
Potamocottus Bendirel ..... 27
Potato, sea ..... 306
Pottery, Indian ..... 405
Powell (Powel), Samuel ..... 427
Powell, J. W ..... 458
Pratincolarubetra ..... 321
rubicola ..... 321
torquata ..... 321
Prawn, common ..... 304
deep-water ..... 304
Primnoa reseda ..... 307
Priocella antarctica ..... 232
melanurus ..... 222
tenuirostria ..... 222
Prioflnua antarcticus ..... 202
Prion vittatus ..... 202
Prionotus stephanophrys. ..... 62
Priscochiton ..... 281, 283
canadensla ..... 281
Priatigaster dovil ..... 340
lutipinnis ..... 238
lutipinnis, new apeciea ..... 340
macrops ..... 340
Pristipoma ..... 386
axillare ..... 287
bilineatum. ..... 385
branickii ..... 288
brevipinne ..... 274,388
cantharinum ..... $3 \times 8$
chnlceum ..... 387
davidsoni ..... $12,47,385$
dovil ..... 386
firthi ..... 385
humile ..... $0 \times 6$
kneri. ..... 287
leuciscus ..... 387
macracanthum ..... 386
melanopterum ..... 385
nitidum ..... 387
Pristipoma notatum ..... 348
Pristipoma panamense ..... 387
Pristipomatida ..... 12, 47
Pristocnntharna ..... 387
Probolarum ..... 281, 282, 283
Procellaria nereis ..... 332
pelagica ..... 337
tethys ..... 202
Procellarida ..... 332
Procellarifda ..... 202
Procellarinae ..... 332
Procelloaterni cinerea ..... 333
Proctopus nigricollis ..... 332
Progne nubis cryptoleuca ..... 210
Prolatllue ..... 164
Page.
Page.

Prolatilus jugularis ................................... Prze. 164
Promeropida............................................. 319
Promeropins............................................. 319
Promerops cafer. .................................... 319
Propasser roseия. ...................................... 325
Propilidium ........................................ 102
Prosthemadera nova-scelandiw ............. 220
Proteobranchiata. . . . . . . . . . . . . . . . . . . . . . . . . . 400.112
Protozoa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305, 307
Prunus Japonica....................................... 309
Mume ......................................... 309
Persica.................................... 200
pseudo-cernsus ......................... 309
ssiori (1)................................ . 309
subhirtella (1) ......................... 309
Panltriparus melanotis .................... ... 203
Psephotus hamatonotus .............................. $3: 6$
multicolor............................. 326
pulcherrimus......................... 326
xanthorrhous ........................ 328
Psettichthys melanostictus ..................2, 6, 464
Pseudaètus bonelli . ............................... 317
Preudogryphus californinnus.................. 216
Pseudojulis modestus ............................. 10, 225
Pacudoluscinia luscinioides ..................... 321
Pseudoprion turtur............................ . 202, 332
Pneudopristipoma...................................... 386
Pspudoscarus ............................................ 357
Psilopogon pyrolophus ............................... 827
Psilorhamphus guttatus.......................... 184
Pailorhinun cyanogenys ............................ $1 / 4$
morio ................................... 212
Paittacidso ............................................ . . 194, 3:6
Psittacinue ................................................. 327
Paittacula sclateri.................................. 108
Psittinus incertun................................... 327
Psittirostra psittacea................................. 320
Paittorpiza elegans................................... 171
Psophia crepitans .................................. 201
leucoptera. ................................ 201
napenais ............................... 201
obscura .................................. 201
ochroptera............................ 201
viridis .................................... 201
Psophilda................................................ 201
Psophodes crepitans ................................ 322
Pbychrolntes paradoxus ............. 61, 239, 2555, 271
Pbychrolutidre ...................................... 255
Ptarmigan, rock........................................ 217
white-talled.......................... 217
Pteria (Oxytoma) erecta ........................ 139
Pternistes afer...................................... 829
nudicollis........................... 329
Pterocnrya rhoifolia................................. 311
Pterochiton .............. . . . . . . . . . . . . . . . . . . . . 281, 283
oburonicus ............................. 281
gemmatus ............................ 281
legiacus ............................. 281
Sandbergianus (1) ................ 281
१ Pterochiton Sluseanus......................... 281
Pterochiton Thomondiensis ..................... 281
Pterocles arenarina ................................ $\$ 38$
Pteroclidse ................................................ 228
Pteroclinæ ............................................ 328
Pteroclurus alchata................................ 329



\begin{tabular}{|c|c|c|}
\hline \& Page． \& Page． <br>
\hline \multirow[t]{2}{*}{Rhodopis atacamensis． veqper．．．．．．} \& 188 \& Sadina ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 ． 3 <br>
\hline \& 188 \& Sagartia abyesicola ．．．．．．．．．．．．．．．．．．．． 203 <br>
\hline Rhodontethia rosea． \& 221 \& Sagitta elegans．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．300． 305 <br>
\hline Rhus semialata． \& 309 \& Sagra ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 48 ． 4 年 <br>
\hline succedanea \& 309 \&  <br>
\hline vernicifera \& 309 \& Brazilian ．．．．．．．．．．．．．．．．．．．．．．．．．．six <br>
\hline \multirow[t]{3}{*}{Rhyacophilun glareo} \& 331 \& descriptive notes on the American．． 425 <br>
\hline \& 212 \& Salarias chiostictus ．．．．．．．．．．．．．．．．．．．．．．．． 338 <br>
\hline \& 210 \& chiostictus，new species．．．．．．．．．．． 363 <br>
\hline Rbynchaxa australis． \& 331 \& Sallicinean．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 311 <br>
\hline bengalensis \& 331 \& Salix Bürgeriana（1）．．．．．．．．．．．．．．．．．．．．．．．．． 311 <br>
\hline capensis \& 331 \& Salmo bairdi．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 38 <br>
\hline \multirow[t]{5}{*}{Rhynchocy clus

fulvip
mega
oliva
peruv
viridi} \& 177 \& callarias ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．逄 <br>
\hline \& 177 \& campbelli．．．．．．．．．．．．．．．．．．．．．．．．．．．．． <br>
\hline \& 172 \& clarki．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14.39 <br>
\hline \& 177 \& clupeoidet ．．．．．．．．．．．．．．．．．．．．．．．．．．． 25 ． <br>
\hline \& 177 \& S Salmo curilus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5 ． 53 <br>
\hline Rhynchofalco fusco－cerulescens． \& 215 \& Salmo curilus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 268 <br>
\hline \multicolumn{2}{|l|}{Rhynchopsitta pachyrhyncha ．．．．．．．．．．．．．194， 213} \& gairdneri．．．．．14，38，39，87，258，270， 272,292 <br>
\hline Rhynchotus maculicollis．．．．． \& 203 \&  <br>
\hline \multicolumn{2}{|l|}{Ridgway，Hobert．．．22， $25,93,165,207,317,333,337$ ，} \& japonensis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．206 <br>
\hline \multicolumn{2}{|r|}{366，374， 414} \& kenverlyi．．．．．．．．．．．．．．．．．．．．．．．．．．．． 81,84 <br>
\hline Riohel，Ishi \& 451 \& lagocephalus ．．．．．．．．．．．．．．．．．．．．．．．． 286 <br>
\hline Rubalo． \& 463 \& levigatus．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 26. <br>
\hline Robalito． \& 463 \& lencomanis．．．．．．．．．．．．．．．．．．．．．．．．．．． 26. <br>
\hline Robin，Saint Lacas \& 207 \& lordi．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {3 }}$ <br>
\hline Rock Bans． \& 46，47 \& lycaodon ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2䢒 <br>
\hline \multirow[t]{2}{*}{Cod} \& 46， 58 \& olidus．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 256 <br>
\hline \& 57 \& orientalis．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {2x }}$ <br>
\hline Rock fith． \& 57，58 \& proteus．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 26.6 <br>
\hline blac \& 56 \& purpuratus．．．．．．．14，39，85，87，258，270， 278 <br>
\hline grass \& 58 \& subsp．henehawi．．．．．．．．． 14 <br>
\hline green \& 56 \& var．Bouvieri ．．．．．．．．．．．． <br>
\hline Rock Sole ．． \& 68 \& quinnat．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14.84 <br>
\hline Trout \& 8 \& eanguinolentus ．．．．．．．．．．．．．．．．．．．．．．${ }^{268}$ <br>
\hline Rollulina \& 829 \& spectabilis．．．．．．．．．．．．．．．．．．．．．．．．．． b $^{\text {g }}$ <br>
\hline Rollulas roulroul． \& － 322 \& thymallus ．．．．．．．．．．．．．．．．．．．．．．．．．．． 20 er <br>
\hline \multicolumn{2}{|l|}{Romer，Prof．F．F．，on prehistoric antiqui－} \& truncatus ．．．．．．．．．．．．．．．．．．．．．．．．．．．．哏 <br>
\hline \multicolumn{2}{|l|}{ties of Hungary ．．．．．．．．．． 457} \& tudes ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{38}$ <br>
\hline Inoncador．．．．．．．．．．．．．．．．．．．．．．．．． \& ．49，313 \& Salmon，Black．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． <br>
\hline black \& 49 \& Chinnook．．．．．．．．．．．．．．．．．．30，84，85， 221 <br>
\hline little \& 49 \& Coho ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．迷 <br>
\hline red \& 49 \& Columbia River．．．．．．．．．．．．．．．．．．． 39 <br>
\hline ntearnsi \& ．11， 49 \& dog ．．．．．．．．．．．．．．．．．．．．．．．．．．40，291，390 <br>
\hline yellow－finned \& 48，278 \& Frazer＇s River．．．．．．．．．．．．．．．．．．．．．． 89 <br>
\hline yellow－tail \& 48 \& Haddo ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 40 <br>
\hline Ronchil \& 52 \& Holia ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 40 <br>
\hline Rosacere．．． \& 309 \& Houe ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 40. ． 40 <br>
\hline （1）Lostrhamus lencopygus \& 197 \& kelp ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 47 <br>
\hline Rostrhamne socinbilis plumbeus． \& 215 \& King ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 新 <br>
\hline （1）Rostrbamus teniurus．． \& 297 \& Quinnat ．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {2 }}$ <br>
\hline Notbrock，Dr．J．T \& 117 \& Sacramento．．．．．．．．．．．．．．．．．．．．．．． ， <br>
\hline Rotlera Japonica． \& 310 \& silver．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 39,8 <br>
\hline Rough－leg，ferrnginous． \& 216 \& spotted fall．．．．．．．．．．．．．．．．．．．．．．．．． 392 <br>
\hline Round Sting Ray．． \& － 35 \& Spring．．．．．．．．．．．．．．．．．．．．．．．．．．．． 39 <br>
\hline Ruff．．．．．．．．．．．．． \& 210 \& white．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．e 29， 46 <br>
\hline Rupornis magnirostus saturatus． \& 126 \& Winter ．．．．．．．．．．．．．．．．．．．．．．．．．．．． <br>
\hline Rutaces ．．．．．．．．．．．．．．．．．．．．．．．．．． \& 308 \& Salmon Killer．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． E $^{\text {e }}$ <br>
\hline Ruticilla aurorea \& 321 \& trout ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 38.3 39，85 <br>
\hline \multirow[t]{2}{*}{phoenicura
tithys．．．．} \& 321 \& Salmonids ．．．．．．．．．．．．．．．．．．．．．14， $38,252,260,314$ <br>
\hline \& 221 \& of the Upper Colum bia，notes on．\＆ <br>
\hline \multirow[t]{2}{*}{Ryder，Ј̄．A．．．．．．．．．．．．．．．} \& 224 \& Salpa．．．．．．．．．．．．．．．．．．．．．．．．．．．60，61， 302 <br>
\hline \& \&  <br>
\hline Saburobere， Na \& 450 \& Saltator cueruleacens ．．．．．．．．．．．．．．．．．．．．．．．．． 171 <br>
\hline Saccomyidx． \& 474 \& maxillosus ．．．．．．．．．．．．．．．．．．．．．．．．． 181 <br>
\hline
\end{tabular}

INDEX.

Scarus chlorodon ..... 357
perico ..... 338
rufiventris
Salvelinus m.ina. $14,38,80,878$ 207, $208,210,272,475$Salvin, Mr$105,108,415$
rасешова304
Sand-dollar ..... 3
Fra, large ..... a
I44
,218
Bonaparto's ..... 218Cooper's218219218
red-backed ..... 218
sharp-tailed ..... 18|ary................................ 218petrel from337
Sapindace:
309
Sappho caroli ..... 88
phan88
Sarcidiornis melanonota ..... 2
Sarcorhamphus wquatorialis ..... 197
Sarta42
SardineI
Sarkilliornis melanonota, 1
Sara, G. O107
Sattors, Drum Majorang
tricolor319
sancta ..... 310312
Sauvage, M444
Sawkwey1
leucornela20832
stapazina22
Saxilauda calandra .....
175Sayornis latirostris
Scaphander puncto-striatus01
Scaphites conradi ..... 137


|  | Page. |
| :---: | :---: |
| Shark, white | 32 |
| Sharpe, Mr | 369 |
| Mr. R. B | 368 |
| Shearwater, black-tailed | 22 |
| black-vented | 222 |
| cinereous | 222 |
| dark bodied | 222 |
| maux | 222 |
| pink-footed | 222 |
| slender-billed | 222 |
| Sheldrake, American | 221 |
| Shell-deposite, artificial | 455 |
| artificial, in New J | 455 |
| Shell, lamp | 306 |
| Shell mounds of New Brunswick | 292 |
| of New Eugland | 292 |
| Shiner. | 51 |
| Sbiners | 83 |
| Shodayu, Narita. | 451 |
| Shajiro, Konishi | 449 |
| Shovel-nozed Shark | 30, 34 |
| Shrike, great northern | 210 |
| large-billed | 210 |
| Strimp, brine | 305 |
| common | 304 |
| surface | 305 |
| Shnfeldt, Dr. R. W | 392 |
| Siberia, descriptions of new fiah | 144 |
| Sibilatrix aylvicola | 321 |
| Siboma crassicauda | 13 |
| Sierrita | 459 |
| Sijpabee. | 407 |
| Silicea. | 303, 307 |
| Silaridae. | 16 |
| Silver implements of North Am dians. | - 455 |
| Sllver salmon | 31, 81 |
| Silver-sbell. | 309 |
| Silver-side | 391 |
| Simarubex | 308 |
| Simorhynchus eristatellus | 223 |
| pygmeus | 223 |
| Simpson, Josiah. | 202 |
| Singing-tish | 超 |
| Siphagonus barbatus | 248,271 |
| Siphostoma callforniense | 1.69 |
| leptorhynchus | 1,69 |
| punctipinue | 69 |
| Siredon | 121 |
| lichenoides | 120 |
| lichenoides, observation | 120 |
| mexicanus. | 121 |
| Sirystes albocinercua | 177 |
| albogriseus | 177 |
| nibilator. | 171 |
| Sitta ceria | 320 |
| syriaca. | 320 |
| Sittasomus stictolemus | 182 |
| Sittella chrymoptera. | 320 |
| pileata... | 320 |
| Sittina | 320 |
| Siurus nmvius notabilis. | 209 |
| Skate | 34, 3¢ |
| Skeponopodus. | 427 |
| gnebucu | 424,427 |
| Proc. Nat. Mus. $81-43$ |  |




|  | Page. |
| :---: | :---: |
| Sternoclyta cyaneipectus. | 187 |
| Sternula minuta. | 333 |
| Sterparola cinerea | 321 |
| curruca | 321 |
| Stevens, E. T. | 105 |
| Sticheidx............................ | 146. 244, 202 |
| Sticharopsis nana | 262 |
| Stichaus. | 146 |
| enneagrammus | 262 |
| hexagratmmus. | 262 |
| punctatus...... ....146, 244, | 268, 200, 271 |
| (1) Rothrockil | .146, 244, 271 |
| Rothrockil, new species. | 146 |
| Stickleback. | 69 |
| Stictocarbo punctatus | 333 |
| Stictonetta nevosa. | 332 |
| Stictopeleia cuncata. | 328 |
| Stictoptera bichenovi. | 325 |
| Stigmatura flavo-cinerea | 170 |
| Stiltia grallaria.. | 330 |
| Stingaree. | 3 |
| Stinger. | 76 |
| Sting Ray. | 35 |
| Stipiturus malachurus | 320 |
| Stizostedium vitrenm | 285 |
| Stizostethium vitreum. | 127. 128 |
| Stolephorus | 339 |
| browni. | 340.341 |
| compressus | 14, 37 |
| curtum | .338, 342,348 |
| delicatissimn | 14, 33 |
| exiguns | 338 |
| exiguas, new species | 342 |
| ischanus. | .338, 344 |
| ischanus, new speci | 340 |
| Jucidus. | 338 |
| lucidus, new specien | 341 |
| macrolepidotus. | 275, 276 |
| miarchus. | 338 |
| miarchus, new species | 34 |
| opercularis, new specie | 275 |
| ringens.... | $.14,38,266$ |
| Stoliczka, Dr. | 138 |
| Stone age, remarks on. | 45 |
| age, the, in Kurope. | 457 |
| drilling in, without metal. | 455 |
| implements, North American | 456 |
| Sculpin............. | 00 |
| Stone-drilling, aboriginal | 458 |
| Stoporala albicuudata. | 323 |
| Strauch. | 451 |
| Strepera anaphonensis | 324 |
| graculina. | 324 |
| Streperinue. | 324 |
| Strepsilas interpres. | 217 |
| melanocephala | 215 |
| Streptochiton... | 288 |
| Streptophelia bumilis. | 328 |
| risoria. | 328 |
| semitorquata | 128 |
| Strigiceps cyaneus.. | 318 |
| cinereus. | 318 |
| Strigidm.. | 196, 118 |
| Strigina. | 318 |
| Strigopis | 327 |

Strigops habroptiluaPage
Strix occipitrina ..... 327 ..... 327
mgolina ..... 372
arctica ..... 369
brachiotus ..... 370
brachyotus ..... 369
brachyura ..... 370
caspia. ..... 370
delicatula ..... 318
flammea ..... 318
hylophilum ..... 196
lulu ..... 318
nebulosa ..... 214
nebulosa alleni ..... 214
occidentalis ..... 214
palustrie ..... 320
passerina ..... 320
ruflpea ..... 196
sand wichensis ..... 370
tripennis ..... 370
"Strix ulula" ..... 370
Stromateida ..... 12, 46, 205
Stromateus simillimun ..... 12, 46, 265
Strongylocentrotus dröbachlensis ..... 302306
Struthidea cinerea ..... 324
Stuartia monadelpha ..... 308
Sturgeon, common ..... 38
green ..... 3
white ..... 36
Sturnella magna mexicana ..... 212
Sturnia pyrrhogenys ..... 325
sinensis ..... 325
Sturnida ..... 325
Sturninas ..... 325
Sturnus ciberaceus ..... 325
unicolor ..... 325
vulgaris ..... 212,325
Styraces ..... 310
Styrax Japonicam ..... 310
Suberitea compacta ..... 303,307
Sublegatus glaber. ..... 177
murinus ..... 177
Sucker ..... 48
Sucker Bans ..... 48
Surking-figh ..... 筑
Sudia ringena ..... 41, 315
Sukkeye ..... 39
Sulcochiton Grayl ..... 289
Sumichrast, $\mathbf{F}$ ..... 107. 114
Sundevall ..... 9
Sum-fish ..... 70
surf.fish ..... 49, 50
Surf smolt ..... 40
Surnia funerea ..... 214
funerea vlula. ..... 214
vlula ..... 318
Surnine ..... 318
Swainson ..... 103, 111
Swan, Bewick's. ..... 219
European ..... 219
trumperter ..... 210
Swan, Jaunea G ..... 315
Swift, black ..... 213
Vanx's ..... 212
white-throated ..... 213

descriptive notes on the ..... 432
family, geographical distribution of the. ..... 415
geographical range of the ..... 432
taxonomic relations of the ..... 415
Sycalis chrymops ..... 173
columbiana ..... 173
flareola. ..... 173
lutea ..... 173
luteocephala ..... 178
luteola ..... 172
raimondi ..... 173
uropy wialis ..... 133
Sycotypus canaliculatns ..... 300
Sylbeveyclus minor ..... 332
norie-hollandiat ..... 332
Sslvia melanocephala ..... 321
Sylviana ..... 321
Sylvidas ..... 165
Sylviorthorhynchus desmursi ..... 180
Syma flaviroatris ..... 319
torotoro ..... 318
Srmphemia semipalmata ..... 219
Synallaxis ..... 39
albicapilla ..... 181
albiceps ..... 181
albilora ..... 180
antiaiensis. ..... 181
arequipre ..... 181
brunneicaudulis ..... 181
castanea ..... 181
cinerascens ..... 180
curtata ..... 181
flammulata ..... 181
fructicicola ..... 181
fuliginosa ..... 181
gramínicola ..... 181
guianensis ..... 180
cularis ..... 181
humicola ..... 181
humilis. ..... 181
hypospodia ..... 180
hy posticta ..... 181
kollari. ..... 181
lemosticta ..... 181
maxta ..... 180
moranonica ..... 181
maximiliabi ..... 181
mustelina ..... 161
orbigny i ..... 181
pallida ..... 181
palpebralis ..... 181
patagonica ..... 181
propínqua ..... 180
prulibunda ..... 181
rufigenis ..... 181
rufipunnis ..... 181
ruticilla ..... 181
rut!lans ..... 181
scutata ..... 18
semicinerea ..... 180
stictothorax ..... 180
subcristata ..... 181
subpudica ..... 180
Page.
Synallaxis terrestris ..... 161
tithys ..... 18
torquata ..... 181
unirufa. ..... 181
virgata ..... 181
vulpina ..... 182
voyatti ..... 181
Syngnathide ..... 1,
Sypgnathus dimidiatus ..... 42 344, 345
lucioceps ..... 13, 12
scituliceps ..... 338, 345
scituliceps, new species ..... 344
Synoicus australis ..... 0
Synthiborhamphus antiquus. ..... 2
Syrniline ..... 318
Syrniam aluco. ..... 312
lapponicum ..... 218
Syrrhapten paradoxus ..... 83
Syrrhaptinw ..... 3
Syrrhina exasperata ..... 4
T.
Tablero de Palenque. ..... 457
Tachycineta andecola ..... 167
lencopygia ..... 163
Tachyphonus intercedens ..... 179
phaniceus ..... 169
rufiventris ..... 169
Tadorna cornuts ..... 832
Tanloglaux whitelii ..... 318
Trenioglossa ..... 408, 411
Tienioptera australis ..... 174
murina ..... 174
rubetra. ..... 14
velata ..... 174
Talegallins ..... 23
Talegallus lathami ..... 329
Talorchestia longicornis ..... 290, 305
Tamber ..... 57
Tanager, Cooper's. ..... 219
hepatic. ..... 210
Tanagra olivina ..... 16
Tanagrella calophrys. ..... 26
Tanagride ..... 16
Tanner, Capt. Z. L ..... 160
Tantalila ..... 389
Tantalina ..... 273
Tantalua ibis ..... 310
loculator ..... 217
Trayenathus lucionedsis (1) ..... 327
Tanysiptera doris. ..... 319
bylvia ..... 319
Taoniscus nanus ..... 203
Tatare longirostris ..... 22
Tatarina ..... 32
Tattler, wandering ..... 212
Tauschrerhalituisee der Eingebornen Nor- damerikas ..... 456
Taylor, Mr. F. W ..... 135
Tchitrea ferreti ..... 323
melanogastra ..... 83
Teal, blue-winged ..... 22
English ..... 220
INDEX. ..... 677
Teal, green-winged

Page. ..... 2.0
Telestes giobosa ..... 316
Telltale ..... 218
Telophorus gutturalis. ..... 324
Temneuchus malabaricus ..... 325
pagodarum ..... 205
Temnistia rentricosa
Temnistia rentricosa
Temora lougicornis ..... 200,305
Terebratulina septentrionalis ..... 302306
Teredo megotara ..... 101
Tereuura callinota ..... 184
caloptera ..... 181
bumeralis ..... 81
apodioptila ..... 18
Tern, Aleatian ..... 221
bridled ..... 21
Cabot's ..... 21
caspian ..... 21
elegant ..... 21
noudly. ..... 22
roneate ..... 221
royal ..... 21
sooty ..... 21
Trudeau's. ..... 21
white-winged black ..... 221
Ternstroemiaces. ..... 308
Terrapen ..... 435
Testudinide ..... 36
Teatudo Agassizii ..... 49
Berlandieri ..... 447, 449
carolina ..... $434,435,436,448,449$
depressa436, 448, 449
Testudo grexa .....  45
polyphemus ..... $436,44,449$
tuberculata ..... 441
Tethya gravata ..... 303
Tetruo hybridus ..... 329
urogallus ..... 329
Tetraogallus himalayensis ..... 329
Tetraonide ..... 329
Tetraonine ..... 329
Tetrapturinæ ..... 416,417
Tetrapturus.albidus ...................410, 417, $418,419,423,423,427,433$
amplus .......................... 419
b-lone. ..... 417,419
brevirostria. ..... 419
Georgif ..... 419
Herachelii 418, 419, 420
Imperator ..... 417,418
indicus 418, 419, 420, 433 ..... 419, 420
Lessonil
Lessonil
minor ..... 433
Tetrastes betulinus ..... 433 ..... 329
Tetrax campestris
Tetrodon. ..... 3:9 ..... 3:9 ..... al
polítus ..... 274
Tetrodontida ..... 70
Thalasearche melanophrys. ..... 332
Thalasseus bergil ..... 39
nove-bollandise
Thalassipora infurcata (1) ..... 33
Thalassoxtus pelagicus. ..... 817
Thale!chthys pacificus
Page.
Thalurania hypochlora ..... 27
jelskii. ..... 18
refulgens ..... 188
watertoni ..... 188
Thamnistes sequatorialis. ..... 183
rufescens ..... 183
Thamnobia corypheus ..... 321
fulicata ..... 32
Thamnophilus rethiops ..... 183
albicans ..... 18
werbe ..... 183
capistratus ..... $1 \times 3$
capitalis ..... $1 \times 3$
cineroiceps ..... 183
einereinucha ..... 183
cinereo-niger ..... 183
cristatus ..... 183
fuliginosus ..... 183
guttatun ..... 183
iminaculatus ..... 183
lenconotus ..... 183
melanochrous ..... 183
melanarus. ..... 183
multistriatus ..... 183
murinus ..... 183
nigriceps ..... 183
nigrocinereus ..... 183
plambeus. ..... 189
simplex ..... 18
stellaris ..... 183
subfasciatus ..... 18
tenuipunctatus ..... 183
tristis ..... 183
tachudii ..... 183
undulatus ..... 18
Tharrhalens modularis ..... 891
Thanmastura cora ..... 188
Thelepus cincinnatus ..... 300
Themisto binpinosa ..... 249
Therekia cinerea ..... 331
Thinucoridas ..... 201
Thinocorus orbignyanus ..... 201
Thoracocincla torquata ..... 322
Thoulet, Dr ..... 131, 136
Thranaetus harpyia ..... 216
Thrasher, Bendire's. ..... 207
Leconte's ..... 207
Mexican brown. ..... 207
Palmer's ..... 207
Rufous.vented ..... 207
Saint Lucas ..... 207
Socorro. ..... 207
Threaher ..... 32
Threskiornis athiopicus ..... 230
strictipennis ..... 330
Thripadectea flammulatus ..... 181
scrutator ..... 181
Thriponax javenais ..... 327
Thripophaga guttuligera. ..... 181
Thrush, Bicknell's ..... 377
dwarf ..... 207
gray-cheeked. ..... 207
Grinnell's water ..... 209
olive-backed ..... 207

Todidae ..... 19
tawny ..... 2072
Thryomanes brevicaudaThryophilus fulvus160mior16010coraya.,
,hyperythrus
an berlandier ..... ,
mystacalis. ..... 166orientalis31
Thuyopsis squartora (1) ..... 31signifer257, 272Thynnus pacificua2306
Thyrortina achombargki${ }^{299} 3$
Tharis ornata ..... 122tichodroma muraria320
Tichornis cenchris19
Tigrisoma fasciatum179
Tilesia gracilis308
Tulacee
293
nigricollis10
Tinamidx ..... 203
Tinamotis pentlandi203
majoran
solitarius ..... 203
subcristatus. ..... 203
( 1 ) ferrugineus ..... 197215215
black208
Luropean ..... 170
129Todd, Dr294
Todirhamphus recurvirostris19
tuta ..... 312
175calora
chryoc175
ba ..... 175
pulchellum ..... 135175
Todus pulcherrimus ..... 128
U. 8. National Museum by ..... 308
Tom Cod283
Tonicia18
Torpedinida ..... 1i, 32Torreya nuelfera311
Turtoise, Agassiz'e. ..... 1644
Tortoises, Amertcan land, of the genus Xero- bates. ..... 
Totanine ..... 331glottie.218
c ..... T21
Totenia gemma211
Guadalupe ..... 2
Oregon ..... 212
Saint Lucas brown.212

plumier ..... 12 ..... 16


rachurus46
Trachycomus ochrocephalas ..... 3.2
Trachydermon ..... 11
Trachynotus fasciatus ..... 33Trachypterus altivelis ?32 25
Trachyradsia. ..... 283
Tree-fish618, 31
Tribolonotus ..... 
Trichiuride ..... 39
Trichodontida ..... 29


Page.
Turdus fumigatus ..... 105(Hylocichla) fuscescens374
ihacus ..... 201
luridus ..... 165
nigriceps165
anviscivorn
Turkey, Mexican ..... 216
wild ..... 216Turner, Maj. W. I125
Turnicine ..... 20
varia ..... 829
black217
( ..... Turris (Sercula) contortus137
Turtur auritus ..... 828
anchispmais.
rupicolus ..... 328

- Mnlous ..... an
Tylosurus exilis ..... 459
fodiator, new species ..... 40
longirostri ..... ad
Typhlogolius californiensis ..... 140Ty174
Tyranniacus chrysops ..... 170
gracilion176
grisciceps ..... 176

..... 176
viridissimus ..... 176
Tyrannula barbirostris ..... 111
apolites ..... 178
arminatroeristatn ..... 178
dominicensis ..... 212
Coucb ..... 12
Tyson, S T ..... 130
Cle, Dr. Otto ..... 435

- ..... 10
cinerea ..... 214
Ulva
Umbrina ..... 49
analis278
soncador, new species ..... 277
undula11, 48, 277, 278
Umbride ..... 255

|  | Page |  | Page． |
| :---: | :---: | :---: | :---: |
| Uneiola irrorata | 299 | Vireo vicinior | 210 |
| United States Fish Commission ．．403，404，405，407， |  | Vireo，black－capped | 210 |
|  | 0，415 | black．whinkered | 210 |
| United States National Maseum，archeoologi－ cal collection of $\qquad$ |  | bl e－headed | 210 |
| United Staton National Museum，inverte－ brates distributed by $\qquad$ |  | Hutton＇s． | 210 |
|  | 304 | Philadelphia． | 210 |
| Upucerthia jelskii． | 180 | red－eyed． | 210 |
| luacinia | 180 | white－eged | 210 |
| ruflcauda．．．．．．．．．．．．．．．．．．．．．．．． | 180 | yellow．green． | 210 |
| serrana | 180 | yellow－throated | 210 |
| Upupa epops ． | 319 | Vireolanius chlorogaster | 17 |
| Upupidas． | 319 | eximius | 167 |
| Upaptax | 312 | Vireonida．．．．． | 167 |
| Cragus sibiricus． | 325 | Vireosylvia agilis flavo－viridis | 210 |
|  | 26 | calidris barbatala． | 210 |
| microntoma ．．．．．．．．．．．．．．．249，267， | 313 | olivace | 210 |
| spilota | 127 | philadelphica | 210 |
| Uranomitra cyanico | 189 | Vitex cannabifolia． | 310 |
| microrhyncha | 189 | Volador | 42 |
| Uraptera binoculata | 73 | Vultur monachus | 317 |
| Uria carbo | 229 | Vulture，black | 216 |
| Urocentrus pictus． | 315 | Vulturida． | 317 |
| Urochroa bougueri | 187 | Vulturine | 317 |
| Urochroma dilectinsima $\qquad$ <br> melanonota | 126 | W． |  |
|  | 196 | W． |  |
| purpurata．．．．．．．．．．．．．．．．．．．．．． | 106 | Wagtail，white． | 208 |
| stictoptera．．．．．．．．．．．．．．．．．．．．．． | 106 | Walleye | 50 |
|  | 196 | Walrus（1）remains in Maine | 24 |
| Urodiscus discurus（i） | 326 | Warbler，Bachman＇s | 208 |
| Urogalba amazonam．．．．．．．．．．．．．．．．．．．．．．．．． 1 |  | bay－breasted | 200 |
| Urolophus balleri ．．．．．．．．．．．．．．．．．．．．．．．．． 17 通 |  | Bell＇s． | 210 |
| Uropnetta californ | 通 | black and yellow | 209 |
| Uropsila． | 335 | black－throated blue | 200 |
| leucogastra ．．．．．．．．．．．．．．．．．．．．．． 334,Urosalpinx cinerea．．．．．．．．．．．．．．．．．．．．． | 4，295 | blue mountain | 209 |
|  | 300 | blae－throated | 298 |
| Urospiza approximans | 318 | blue－winged yellow | 208 |
| cirrhocephalus ．．．．．．．．．．．．．．．．．．．．． | 318 | Brasher＇s． | 208 |
| rufitorques <br> torquata | 318 | Caurdian fly catchin | 209 |
|  | 318 | Cape May．．．．．．．． | 209 |
| Erosticle ruficrissa | 187 | carbonated | 209 |
| Crticaceso．．．．． | 310 | chestnut－sided | 209 |
| Urticina nodosa ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 303 30， 3 | 308 | Connecticut | 209 |
| Urubitinga anthracina gundlachí． | 216 | golden－cheeked | 209 |
|  | 197 | Keanicott＇o ．． | 208 |
| Otamania torda ．．．．．．．．．． | 223 | Kirtland＇s． | 209 |
|  |  | Law rence＇s | 208 |
|  |  | Lucy＇s． | 208 |
| Vagabunda rufa． | 324 | Macgilivray＇s | 209 |
| Vanellus cristatus 217， | 1299 | mourning | 509 |
| $\text { Vabey, } \mathrm{Dr} . .$ | 400 | Nashville． | 208 |
| Velvet star． | 207 | olise－heade | 209 |
| Venericardia borealis | 301 | prairie | 209 |
| Venus． | 296 |  | 209 |
| morcenaria．．．．．．．．．．．．．．．．．．．．． 290.298 297， | ， 306 | red poll | 209 |
| Verbenarea．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． | 310 | Sennett＇s | 209 |
| Verrill，Prof．A．E．．．．．298，400，401，404，405，408， 411 |  | Socorro． | 208 |
| Videstrelda paradisea ．．．．．．．．．．．．．．．．．．．．．．． | 325 | Swaineon＇s | 208 |
| Viduine | 325 | Tennessee． | 208 |
| Vini fringillaceus | 227 | Townsend＇s | 20 |
|  | 326 | Virginia＇s． | 208 |
| Vinva． | 56 | white－browed sell | 200 |
| Vireo atricapillus | 210 | white－throated | 208 |
| huttoni | 210 | yellow－throated | 200 |
| noveboracensis． | 210 | yellow－winged | 208 |

Uneiola irrorata．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 299
United States Fish Commission ．．403，404，405， 407 ，
410，415
United States National Museum，archeologi cal collection of
＝
brates distributed by18
luacinia ..... 180serrana180
Upupa epops319
Upapine5
Uranidea marginata ..... 26
microntoma ..... 127
Uranomitra cyanicollis昭
binoculata． ..... \％315
Urochroa bouguerí196
melanonota10
stictoptera .....
Orodiscua discarua（方 ..... 20
Troploll17.35
Uropsetta californica335
leucogastra
300
Urospiza approximana318
rufitorques
Erosticle ruficrissa ..... 187Urticina nodosa303， 307
Urubitinga anthracina107
Ctamania torda324
Vancllus cristatus．
Velvet star ..... 307
Fenericardia borealis296
morcenaria310
Verrill，Prof．A．E．．．．．298， $\mathbf{4 0 0} \mathbf{4 0 1}, \mathbf{4 0 4}, 405,408,411$
 ..... 22
Vini fringillaceus ..... 822Vinva8
Vireo atricapillus ..... 10
noseboracensia ..... 210

## 210

Vireo ricinior210
black．whinkered210
gray210
Philadelphia ..... 210white－ered210
yellow throat210
gaster ..... IT
reonida ..... 10
calidris barbatula ..... 210philadelphica210
ex cannabifolia ..... 10
Vultur monachus． ..... 317Vulturidae317
Vulturina ..... 317
Wagtail，white ..... 20a
Walrus（1）remains in Maine ..... 24
bay－breasted ..... 20020
bek ..... 0
blue－throated ..... 29
Prahero2M
Canadian fly－catching ..... 0
carbonated ..... 209
209
golden－cheekedan
Kirtland＇s． ..... 209Lucy＇s208
Macgilivray＇s ..... 209
Nashville ..... 208prairie209red poll0008
Swaineon＇s
Townsend＇s ..... 20whit－browed yellow－throated200
yellow－throated ..... 20
yellow－winged ..... 208

Page.
Ward, Mr. Lester F........................... 308

Ward, Mr. Lester F
Waring, Lieut. John K 308
Water destructive to fish, analysis of ..... 12486Wax-wing, northern
Weinmiller, J ..... 210 ..... 45
Wermeh, Dr ..... 200
Whelk ..... 305
Whimbrel ..... 210
Whipper ray ..... 76
White, C. A ..... 136
White-fish ..... 53
White Perch. ..... 49, 50
Sea Bass ..... 48
shark ..... 32
sturgeon ..... 36
Whitely, G. M ..... 108
Whiting. ..... 65
Whitman, C. 0 ..... 315,317
Widgeon ..... 220
Willet ..... 212
Willughby, Capt. Charles ..... 4
Wolf Eel. ..... 65
Woolcock. European ..... 218
Woodpecker, banded-backed three-toed ..... 213
black-backed three-toed ..... 213
Carolina. ..... 09
Gila. ..... 112
golden-fronted ..... 104
ivory-billed. ..... 213
narrow-fronted. ..... 213
of Jamaica ..... 111
red-bellied ..... 90
red-breasted ..... 213
red-cockaded ..... 213
Saint Lucas. ..... 212
Strickland's ..... 213
yellow-bellied ..... 104
Worm, deep sea tubedwelling ..... 303
sipunculoid ..... 305
Wren, Berlandier's ..... 208
Florida ..... 208
Guadalupe ..... 208
Socorro ..... 208
weatern winter ..... 208
white-throated Mexican ..... 208
winter ..... 208
Würdemann, $G$ ..... 100
Wyman, Professor ..... 207, 433
x.
Xantholema duvancellii ..... 327
hamacephala ..... 327
rosea. ..... 327
Xanthoxylum piperitum ..... 308
Xanthura luxuosa ..... 212
yncas caeruleocephala ..... 173
Xantus, J ..... 115
Xaptery $x$ ..... 313
Xema sabinel ..... 221
Xenichthys, a new Central American ..... 45
agaesizil ..... 45
californicasia ..... 47, 278, 454
xanti ..... 454
xenurus, new npecies. ..... 454
Xenodacnis parina ..... 168
Xenoplpo atronitens
Pagr. ..... 1.8
Xevops heterurus.. ..... 182
Xenospingus concolor ..... 172
Xenotis ..... 88
aureolus ..... 8
lythrochloris ..... 82
solis ..... 82
Xeocephalus rufus ..... 323
Xerobates ..... 437, 443, 444, 446, 447
Agassizil $434,437,438,432440$.$443,446,447,448,449$
Berlandieri 
$443,448,442$
carolina ..... 434,449
carolinus. ..... 437,441
cyclopygius ..... 44
gopher ..... 449
orthopygius. ..... 444
polyphemus .. 434, 437, 438, 439, 440, 441, 443, 445, 446, 447, 448
Xipheini ..... 427
Xiphias
description of the genus ..... 427
gladius $44,428,429,432$
imperator ..... 417,418
maknira ..... 425
Rondeletii ..... 429
velifer ..... 423, 425, 428
Xipbidion ..... 312
Xiphidam ..... 44, 415, 416
Xiphinne
Xiphinne ..... 416, 427 ..... 416, 427
description of the subfamily ..... 427
Xiphioidea ..... 416
Xiphister 64, 312,934
chirus ..... $4,64,245,271,314$
mucosus .....  $4,64,263,464,408$
rupestris $4,64,245,271,314,468$
Xiphisteridx245, 263
Xiphocolaptes procerus ..... 12
promeropirhynchus ..... 182
Xipholeza lamellipennis ..... 179
Xiphorhynchus lafresnayanus. ..... 189
pucherani ..... 189
pusillus ..... 183
Xiphyine ..... 427
X locopus minor. ..... 327
Xyatreurys liolepis ..... 3, 66, 313
Xyatroplites ..... 8,80
gill ..... 89
heros ..... 胞
Yarrow, H. C ..... 52, 388
Yellow-bellied Woodpecker ..... 104
Yelןow-finned Roncador ..... 48
Yellow-legs. ..... 218
greater ..... 218
Yellow.tall
Roncador ..... 46. 53.15 ..... 46. 53.15 ..... 48
Yoldia limatula. ..... 301
sapotilla ..... 301
thraciformis ..... 301
Yukon (schooner) ..... 144, 156
Yungina ..... 397
Yungipicus moluccensis. ..... 327
acintillicep ..... 327
Yunx torquilla ..... 327

Page.
327

## Zanclostomus javanicus

 32
## Zaniolepis latipinnis

9, 54Zanthopygia narcissina ..... 323
Zapornia minuta ..... 331
pygmaa ..... 331
quadristrigata ..... 331
tabuensis ..... 331
Zapteryx exasperatus ..... 17
Zebrapicus$94,95,118$
aurifrons ..... 94, 104
aurocapillus 94, 118, 119
carolinus 4, 99, 118, 119
elegans ..... 94, 114
erythrophthalmus ..... 94, 108
gerinil ..... 94, 118
hypopolins ..... 94, 113
kaupii ..... 94, 112
pucherani ..... $94,96,119$
radiolatus ..... 9, 111
rubriventris ..... 94, 102
santa-cruzi ..... 94, 106
striatus. ..... 94,117
superciliaris ..... 94, 116
swainsonii ..... 102
tricolor ..... 94, 101
Zeledon, Don José C ..... 333
Page.

Page.

Zelkova acuminata .............................. 310
Zelkowa Keaki (1)................................ 310
Zenaida amabilis .............................. . . 216
ruficauda .............................. 198
Zenaidura graysoni............................ 216
Zizyphus vulgaris ............................... 309
Zoarces elongatus ................................ 202
Zoarcidx ......................................... 4,65
Zodalia glyceria ................................. 188
ortoni .................................... 188
Zonseginthus bellus ........................... 325
Zonotrichia canicapilla ......................... 172
gambeli............................ 211
querula ............................ 211
quinquistriata..................... 172
strigiceps .......................... 172
Zostera marina ................................. 292
Zosterops albogularis............................ 320
cerulescens........................... 320
flaviceps............................. 320
griseonota ........................... 320
japonica ................................... 320
madagascariensis .................. 320
minuta............................... 320
simplex.............................. 330
xanthochroa ......................... . 320
$s$

3204


Digitized by Google



[^0]:    * A Cbeck List of North American Birds. By Elliot Cones. Salem. Naturalists' Agency. 1×73. 8vo, pp. 135. (635 specios.)
    +Catalogue of North American Birds contained chietly iu the Museum of the Smithsonian Institution. By Spencer F. Baird. [First octavo edition.] Washington: Smithsonian Institation. 1859. ["Smithsonian Miscellaneous Collections, 108." Not paged; 738 species, including varieties, all consecutively numbered.]
    $\$$ Small capitals indicate the name which is changed or emended.
    Proc. Nat. Mus. 80-1 March 27, 1880.

[^1]:    * A Classification and Synopsis of the Trochilide. By Daniel Giraud Elliot, F. R. S. E., etc. Washington City: Published by the Smithsonian Institution ["Smithsonian Contributions to Knowledge," No. 317.] [March, 1879.]

[^2]:    *Cf. Yarrell's Brit. Birds, ed. 4, vol. i, p. 150 , and The Ibis, ser. iii, vol. vi, pp. 94-105.
    t Since these pages were put in type, I have discovered that the name stands as above given in the "Cbeck List." The notice of the species here was therefore an oversight.

[^3]:    *Cf. Bull. Nutt. Orn. Club, Jan., 1880, p. 37.

[^4]:    *Am. Nat., VIII, Feb., 1874, p. 109.

[^5]:    * Cf. Bull. Nutt. Orn. Club, Jan., 1878, p. 37.
    +"I do not . . . hesitate to decide that Tyrannula mexioana of Kaup is identical with Myiarchus cooperi of Baird."-SCL., P. Z. S. 1871, p. 84."
    f"What Tyrannula cooperi, Kanp, is . . . does not now much aignify.
    But it is not to be supposed that Professor Kaup would make two species of the same bird in the same paper. Therefore, Tyrannula cooperi of Kaup is probably not Myiarchus cooperi of Baird."-SCL., l. c.

[^6]:    * In Hist. N. Am. Birds, Vol. II, p. 331, we predicated the intergradation of these two species on the characters of an individual from Nicaragua, which, however, Dr. Coues (Pr. Philad. Acad. 1872, p. 68) says, and which I also now believe, is not dittinguishable from M. crinitus.

[^7]:    - It seems proper to offer here a word of explanation in reference to the second paragraph on page 403 of Mr. Sennett's paper, which sayd (referring to my remarks on this species in Dr. Merrill's list): "There is no notice whatever of my specimen from Hidalgo, Tex., . . . which is in the National Museum, and which is the first record of its existence within our limits, and which Mr. Ridgway no doubt examined when he coincided with Dr. Cones as to its identification." The explanation I have to make is, that at the time my paper was written and printed the specimen in question was not in the National Museum collection, but, with other birds, hal been returned to Mr. Sennett, at his request, for examination.

[^8]:    * Expl. and Sur. West of the 100th Merid., Vol. IV, p. 34, pl. I, fig. 3, a, b, c, aul d.
    $\dagger$ Bihang till k. Svenska Vet. Akad Handlingar, Band 3, No. 12, p. \&0, pl. IV, figs. 44-52.
    \$ Sveriges Geologiska Undersökning; Ser. C. Afhand. och Upps. No. 35, p. 25, pl. iii, figs. 40-44.

[^9]:    * Dorsal in beginning on the level of the lower lip, abont ten- of ita anterior rays being on the left side; ocular regiou with four or more blunt prominences or tubercles, arranged as follows: one in front of uppereye, another at each end of the interorbital ridge, the posterior largest, but not spine-like, one behind the latter, and one or two more behind the upper eye; upper part of opercle ungren; lower jaws with a band of teeth on the right side similar to that on the left side, but narrower; fins high, D. 72, A. 46....QUadrituberculatus.
    * Dorsal fins beginning on the level of the upper lip, only fouror five of its rays being on the left side of the median line.
    $\dagger$ Posterior prominence of interocular ridge developed as a strong backwarddirected spine; tubercular prominences present about the uppereye; no teeth on right side of lower jaw; fins rather low, D. 65, A. 45. $\qquad$ Verticallo.
    $\$$ Posterior prominence of interocular ridge acarcely elevated; other ocular tubercles obsolete; teeth 1 ; fins high, D. 68, A. 48
    .Cenosus.

[^10]:    19877. Potomno River.
    19878. 
    19879. Fastern const of the United Statee.
    19880. Nowport, Rhode Ialand.
    20750.4
    19881. Potomac River.
    19882. Chesapeake Bay.
    19883. Providence, Bhode Ialaud.
[^11]:    32. Phycis chuss (Walb.) Gill.
    33. Gloucestor. Maseachusette.
[^12]:    10517. Wood's Holl, Massaohusetts.
[^13]:    20087. Lat, $44^{\circ} 18^{\prime}$ K., Lon, $68024^{\prime}$ W., 150 fathoms. 23088. Grand Banks.
    20088. Lat. $44^{\circ} 17^{\prime}$ N., Lon. $58^{\circ} 10^{\circ}$ W., 120 fathome 23090. 4 4
    20089. Grand Banks.
    20090. Bauquerean.
    20091. Lat. $44^{\circ} 30^{\prime} \mathrm{N}_{\mathrm{o}}$, Lon. $58^{\circ} 97^{\prime}$ W., 200 fithoms.
[^14]:    * Abont six species of Ihabdocala were collected, but they have not been determined.

[^15]:    S. paucispinis Meron, Tom-cod, Jack-fish.
    S. Havidus Yellow tail.
    S. simulans
    S. melanops. . . . . . . . . . . . . . . . Pesce Pretre (Priest-fish, from its color).
    S. entomelas Buda.
    S. ovalis . . . . . . . . . . . . . . . . . . . Vinva (Widow).

[^16]:    * Two catalogues of North American birds have been issued by the Smithsonian Institution, as follows:
    (1) Catalogue of North American Birds, chiefly in the Musenm of the Smithsonian Institution. By Spencer F. Baird, Assistant Secretary of the Smithsouian Iustitution. Washington: Smithsoniau Institution. October, 18j8. 4to, paper. 1 p. 1., pp. xviilvi. [Reissue, with new title-page, of pp. xvii-lvi of Vol. IX, Pacific R. R. Reports ("Birds of North America"). Includes, besides the list of 7iks species, with habitate, tables of the higher groups, and lists of extralimital species ( 23 in number) trated in the general report, and of others (31) claimed, on apparently insufficient grounds. as North American; also a summary of the number of species given in the works of Wilson, Bonaparte, and Audubon.]
    (2) Catalogue of North American Birds, chicfly in the Mfusentm of the Smithsonian Institution. By Spencer F. Baird. First octavo edition. Wuahington: Smithsonian Institution. [Smithsonian Miscellancous Collections, No. 108.] 1859. 8vo. 2 p. 11., pp. $19+2$. [Essentially the same as the quarto list, but without habitats, and the matter relating to classification, etc. The two additional pages are an alphabetical index of the North American gevera. As in the quarto list, there are, ostensibly, 7is species, but 22 numbers are duplicated, making a total of 760 names in the list.]

    TA full analysis of the changes made in this catalogne is given on pages 213-234.

[^17]:    - A Description of Sixteen New Species of North American Birds, by Jacob P. Giraud, jr. New York. George F. Nesbitt, printer, Toutine Building, corner of Wall and Water strects. 1841. Folio, not paged, 8 plates. [For species given in this work, which have not since been obtained within the limits of the United States, see p. 209.]
    \& A History of North American Birds, by S. F. Baird, T. M. Brewer, and R. Ridgmar. Land Bleds. Illustrated by 64 colored plates aud 593 woodcuts. 3 vols., royal 4 to Buston. Little, Brown, \& Co.

[^18]:    * There appears to be but a ringle race inhabiting North America.

    TWhile there is undoubtedly a very appreciable diference between apecimens of M. raria from the Weat Indies and those from the interior of Eastern North Americn in the length of the bill, it is the small-billed form which ahuld receive a new name, aince Linneusis name varia was basel upon the bird of the South Atlantic States and Weat Indies. If to be regarded as separable, the name borealia Natt., way be applied to the weatern birds.

[^19]:    - Tho new forms are in amall capitale, the other additions in italica. In order to reduce the number of referencea to a minimum, only the original deacription, or the firat North American record of a species is given. In aome cases wo have not been able to quote the tirst reference, but have done so whenever practicable.

[^20]:    *The Natioual Museum posaessea an example of what Ls apparcntly this speciea from the coast of Louisiana.

[^21]:    *There is a male of this specien in my collection said to have been obtnined in Florida. It wan found with a collection of Fiorida birds, forming part of a dealer's atock, and wan evidently the bame "make" of wkin as the rest of the lot.

[^22]:    - We cannot cite the page of the "Iroceedings", but the record appeare on p .44 of separate pamphlet catitied "A Comparative List of Birda fout in Europe and North America. By Percy Evans Freke."

[^23]:    - It is exceodingly donbtful whether Wilsonia, Bp., whould displace Myiodioctes, Aud. Bonaparte's name occurs finst in a mere list, is usel only as a hending for a auhgeneric gronp, and is unacoompanied either by a diagnonim or an Indication of type. Audulwn, however, ouly a year later, in deaignating the same group of birdn by the new gencric torm Myiodiocten, gavean excellent diagnonis of the grneric charnctors. It appears to us that the anght diflerence of date in favor of Bonaparte's name is groatly overhalanced by the paina which Audubon took to duly characterize his genus, thas conformfing to the requirements of nomenclatural laws, which Bonaparte failed to do.

[^24]:    *G. Coces, Bull. Nutt. Orn. Club, April, 1880, p. 100, sp. 437, Machetes pugnax.

[^25]:    *Probably neen by me in Auguat, 1868, in the East Humboldt Mta, Nevada. (Of. Orn. 40th Parallel Exp. 1877, p. 416.)

[^26]:    * These apecimens are now in the collection of the United States National Museam.
    t Strictly pelagio biris, which are more or less numerous of the coast, are excluded from this and the following lista.

[^27]:    *Excluding apecies peenliar to Florida.

[^28]:    * Accidental in Southern Illinois (only once observed).

[^29]:    *"Somewhat smaller than L. leucoptera, but with about the same length of wing, the tail at least $10^{\mathrm{mm}}$ shorter. Diatiuguished by its coloration. The red in ground tone is neareat that of the "Hakengimpel" [Pinicola enucleator] but overywhere darker, and saturated, as it were, with black, this color extending indefinitely both on the back as well as on the middle of the belly to the breast, an also on the lower tail-coverta. The feet are even darker colored than in leucoptera. The wing-bande are unaffected for the mont part, although not quite ao broad. This is eapecially seen in the first or terminal band, which begins, scarcely visible, at the edge of the wing, and remaina very finconsiderable to the middle, then quickly expands to a great rounded spot. The extent of the second band is everywhere much more limited than in leucoptera."
    "Thin in decidedly not a melanism, as is shown, not alone by the character of the coloration, but by the ocurrence of two old males exactly alike."
    "My two biris came from North America."-[Translation.]
    f"The dark Linnet in nearest to this apecies in size, but it is easily distinguiabed by many fenturez The whole upper parts are blackish brown, with very narrow margins to the feathers of whitish and rusty yellow. wbich, on the rump. return to the gronnd color; on the sides of the head the feathers also have very fine, ruaty white margins; the thront-apot is very large; the entire under parts to the middle of the belly are denaely cosered with many large, dark brown longitudinal atreake. Two birde killed in Lapland, June-July (aexea not determined), ahow a tender red on the side of the head. The

[^30]:    ming-bandm are merely indicated. The bill if very characteriatic. It is somewhat weaker at the base than in $L$. hornemanní, but longer and remarkably darker in all eeven specimens.
    "The bird fagured ly Dreaser on the accond plate (lower figure) belongs here, and in by no meana the young of L. hornemanni, as aupposed by Dremser."
    [This description accords well in every particular with the dark aummer atage of Egiothue linaria holbolli, deceribed in 1861 by Dr. Coues as $\mathcal{E}$. rostratue, the type of which came from Greenland.-R. R.]

[^31]:    *Thia list does not luclude American apecies wrongly anpposed by anthors to be the same as Eurapean apecies, and so named, e.g. Circus "cyancus" for C. hudsonius, Regulus "cristatus" for R. satrapa Troglodytes "parvulus" or T. "europaus" for T. hyemalis, etc., etc., bnt only thone which were throngh actual error (as it appears) wrougly attributed to North America. Species which are moat likely to have occurred in North America are printed in amall eapitals; those whone occurrence would in any ease be purely accidental are printed in italien.

[^32]:    *This list does not include domesticated birds.
    TThin list in, of course, very incomplete; it incladen merely a few species, the records of whose capture I happen to have at hand. A more complete list would be deairable, but want of time forbids its compilation in the preaent connection.

[^33]:    -Families peculiar to America in small capitals; peculiar to North America in italics. Pabearetic families not represented by a peculiar npecies in Asmerica are placed in brackets.
    $\dagger$ The figures following the nign + denote the number of recognized races not diatinguished by a eeparate number in the catalogue; those in the latt column the total of species and racen.

[^34]:    * Ueber die Genitalien der männlichen Aale und ihre Sexualunterschiede, von S. Th. Cattie, Phil. nat. Cand., Docent an der Realschule zu Arnheim (Holland). Extracted from the Zoologischer Anzeiger, 7th June, 1880, pp. 275-279. Translated by J. A. Ryder.
    †Ch. Darwin, Descent of Man, translated into German by Carns, part ii, p. 5 et seq.
    ; Abhandl. d. kais, Akad. d. Wissensch., Wien, April Heft, 1874.

[^35]:    * Compt. Rendus, 1875. t. $1 \times x \times 1$ p. 159.
    + Sitzungsber. d. kais. Akad. d. Wissensch., Wien, 1877, März Heft,

[^36]:    * Dr. L. Jacoby, Der Fischfnag in der Lagune von Commachio.

[^37]:    * In a paper written later, bnt by accident printed earlier (Proc. U. 8. Nat. Mus., 1880,51 ), we have recognized this species as the type of a distinct genus, Atheresthes.

[^38]:    "1. Eutoxeres aquila (Boure.) Reich. Veragra.
    4. Rhamphodon naevius (1)umomt) Revich. IBrazil.
    (i. Glaucis hirsuta (6imnl.) Jobic.

    Costa Ricat; Trinidad; (irenala, W. I.; K. I'eru (I'chas); I'anama;
    " l3razil".
    10. Glaucis cervinicauda ( (iunld) salv. \& Ellioh.
    Li. Fíchatlor (Rio Nitpo); Brazil?
    11. Glaucis ruckeri (Bonr.) (imuld.
    fananna; Costal licaa.
    
    EIst of Dearribed species of llumming Birds. By Danivl Girand Elliof. Keprinted from a synopsis of the 'Ivehilida in tho smithansian Conrilutions to Knowledge. Wishington: Smithsuntian Institution, 1=9!!. (simithsunian Miscellancous Collections, No. 334. )
    ${ }^{3}$ Inclualing the spe of ${ }^{\circ}$. anea lawr.

[^39]:    ${ }^{1}$ Types of $P$ ．etrsaini Lawr．
    © A specimen（No． $553 \% 4$ ）from Pelas，labeled in Mr．Lawrence＇s hamdwriting＂$P$ ． monrei Lawr．，＂is not distinguishable from northern sufcimens of $P$ ．longirostris．It does not，howerer，agree with Mr．Lawrence＇s description of $P$ ．moorei，so that Mr． Elliot may be right in referring the latter to $P$ ．mperciliosus．

[^40]:    ${ }^{1}$ Types of Audnbon's works

[^41]:    ${ }^{1}$ Type of T. lucice Lawr.

[^42]:    ${ }^{1}$ Name Souldia preocenpied in Conchology (C. B. Abams, Cat. (ien. \& Sp. recent Shells, Jan. 1847, p. 29; cf. Dall, P. Z. 8. 1879, pp. 131, 132),

[^43]:    ${ }^{1}$ Type of Thamatian riridicundus Lawr. :Type of Orthorhynchus emigrens Lawr.

[^44]:    ${ }^{2}$ Type of $A$. alirncocumite lawa.

[^45]:    "Type of 6 inanlaria Lawt,

[^46]:    *See also Steindachner (Ichthyol. Beitrage, ix. p. 1*), where the same opinion is ex. pressed. In this article ("Leber zwei neue Agonus-Arten aus California") Brachyopais verrucosus Lockiugton is described as Agonus (Brachyopsie) Barkani, and Brachyopsis дyosternus Jur. © Gilh. gas Agonus (Brachyopsia) Annce. The date of publication of 1. rerrucosus is Miy \%.t, of Ih. ayosternus, July 2, while A. Darkeni and A. dnna were "Vorgelegt in der sitzung am 15 Juli 1-00." It is certain, therefore, that the Amerfam uames are entitled to the right of priority.-D. s. J.

[^47]:    * Etymology : $\mu \dot{o} \nu o s=$ single $; \dot{\omega} \lambda \downarrow \eta=$ an arm.
    $t$ No. 26004.

[^48]:    - No. 25908, Nat. Mus.

[^49]:    *Etymology: ૭ิpis=a window.

[^50]:    - Entimatcd from partial coqnt.

[^51]:    * Etymology: $i \psi s=$ in dsep water; $\kappa \omega \mu ; / \pi \eta s=a n$ inhabitant, a dweller.

[^52]:    * Cat. Fish. Brit. Mus. ii, 1860, p. 218.

[^53]:    Indiana State University, Bloomington, October 11, 1880.

[^54]:    * In this article 115 species of Mollusca are recorded as recent additious to the fauna of New England. Of these, 48 species are appareutly undeacribed (including 23 species just published in the American Journal of Scieuce, for November). The number of species included in this article that are not contained in the last edition of Gould's Invertebrata of Massachusetts is 125. Many other species, not here included, have previonsly been alded by me to those contained in Gould's work. Many of these are enumerated in the author's Preliminary Check List of the Marine Invertebrata of Northern New England, 1879. Many will be found in various articles in the American Journal of Science; others are contained in the Report on Invertebrates of Vineyard Sound, in Part I of the Reports of the United States Fish Commission, 1873.

[^55]:    * These stones, which were common in nearly every hanl of the third trip, are of all sizes, from small pebbles up to bowlders 6 inches or more in diameter. They are of various kinds of rocks, like those found in the drift formation along the opposite shores of the mainland and on the shores of Block Islaud and the eastern end of Long Island. Their presence, so far from land and beneath the edge of the Gulf Stream, can easily be explained by supposing that they have been carried ont to sea by the shore ice that forms along these coasts in winter in vast quantities and of considerable thickness. This ice, when it breaks up in spring, is carried out to sea, with its inclosed stones and gravel, by the tides and currents, till it comes in contact with the warner waters of the Gulf Stream, where its loads of stones drop to the bottom. We have often met with large, loose, and fresh bowlders, sometimes of large size, in various localities, far from land, on muddy bottoms, off the consts of Maine and Nova Scotia, where they have doubtless been recently dropped from shore ice.
    $\dagger$ Hyalinacia arlifese Verrill, sp. nov. Closely related to $H$. tubicola of Europe, but much larger, with the buccal segment as long as the three or four following segments; anterior antenus small, short, rounded, ovate; three median ones subequal, very long, reaching the 15 th segment ; eyes rudimentary; branchis slender, commencing at about the 28 th to 30 th segment; bidentate setw with the hook terminal and less curved. Surface opalescent.

[^56]:    * Leodice polybranchia Verrill, sp. nov. A stont species, resembling L. vivida (St.) = L. Norvegica (L.), but the branchise commence on the seventh or eighth segment, and continue to near the end of the body, on at least $1: 20$ negments; they have four to six branches; eyes large, round; three median antenuw, long, the middle one longest; tentacles long, reaching beyond the edge of the buccal segment, which is as long as the three following ones; ventral cirri at first conical, those beyond the fourth, short, with large swollen bases.

[^57]:    * A brief account of the Echinoderms obtained by us, with descriptions of several of the new species discovered, has been published by me in the Amcrican Journal of Science for November, 1880.

    It is only necessary to say here that several of the star-tlshes, Ophiuruns, and Crinoids occurred in snch large numbers as to constitute one of the most conspicuous features of the fauna. The most abundant species were Archastcr Americanus V., A. Agassizii V., A. Flora V., Luidia clegans Perriér, Ophiocnida olinacea Lym., Ophioscolex glacialis M. \& Tr., Ophioylypha Sarsii Lym., Antedon Sarsii (D. \& Koren).

    All these species, except the last two, are orange-colored, varying to orange-red. The same is true of Aconella Sormani, of most of the Actinians, and of the majority of the crabs and shrimps, as well as of some of the fishes. It seems probable that the prevalence of orange and red colors among the deep-water animaly is due to the fact that the lnminous rays of those colors are completely absorbed by the thiok, overlying stratum of sea-water, and consequently these animals, not being capable of reflecting such bluish and greenish rays as do reach them, wonld be nearly invisible at those depths beyond which white light penetrates. If this be true, such colors, being protective, may be due to the operation of natural selection, according to the principle so often exemplified in shallow-water animals having colors like their surroundings.

[^58]:    *Amer. Naturalist, xi, p. 243, 1877.
    $\dagger$ In Binney's edition of Gould's Invert. of Mass. there are included seven northern species of Bela. Of these the figures are mostly inadequate, and some are entirely erroneous. Fig. 620, given for B. burricula; Fig. 621, intended for B. harpularia; and Fig. 624, for B. cancellata, do not really represent those species. Fig. 620 represents B. harpularia better than "B. turricula", for which it was intended.

[^59]:    * This change was probably first made in the edition of 1834 , which I am unable to consult.

[^60]:    Amphisphyra pellucida (Brown) Loven, 1846.
    Diaphana pellucida Brown, Ill. Recent Conch., pl. 19, fige. 10, 11, 1827.
    Bulla hyalina Turton, Mag. Nat. Hist., vii, p. 353, 1834 (non Gmelin).
    Bulla debilis Gould, Invert. Mass., ed. i, p. 164, fig. 95, 1841.
    Etriculus hyalinus Jeffreys, Brit. Conch., iv, p. 427; v, pl. 94, fig. 7.
    Diaphana hyalina G. O. Sars, op. cit., p. 289, pl. 18 , figs. 1 a, b; pl. xi, fig. 10 (dentition).
    Diaphana debilis Gould, Invert. Mass., ed. ii, p. 216, fig. 507.
    This species occurred at stations 876 and 894 , in 120 and 365 fathoms.

[^61]:    Coryphella Stimpsoni Verrill.
    Cuthona Stimproni Verrill, Amer. Journ. Sci., xvii, p. 314; Trans. Conn. Acad., $\mathrm{v}, \mathrm{pl} .42$, fig. 14.

[^62]:    * The species described by Bergh (Anat. Bid. til Kundskab. om Colidieme, p. 102, pl. 5 a, 1864) onder the name of Coryphella Bostoniensis is entirely distinct. It has three rows of teeth, and is closcly related to Coryphella Mananensis Verrill (Stimpson sp.), common on our northern coasts.

[^63]:    * In the excellent work of G. O. Sars this generic name has been, by some overaight, misapplied, in place of Cuthona, to include C.nana, which was the original type of Cuthona Alder \& Hancock.

[^64]:    * It is very distinct from $S$. retroversus, to which Jeffreys has formerly referred it. Both the figure and description give it spiral lines, while the latter is very smooth. G. O. Sars identifies it with S. balea.

[^65]:    [Onc asterisk signifies that the species is an addition to the Now England or North American fanmas two, that it is a newly discovered species: $\mathrm{E}=$ European: $\mathrm{G}=$ Greenlandic; $\mathrm{m}=$ middle regton of New England, or both north and south of Cape Cod; $x=$ northern cooste of America (Cape Cod to Labrador) ; $B=$ southern ; $O=$ oceanic ; $\mathbf{P}=$ North Pacific.

    * Heteroteuthis tenera V.
    * G. F." Gonatus amanus (Müll.) Gray.
    * Calliteuthis reversa V.
    * Alloposus mollin V.
    * O. e. Argonauta Argo Linné.
    * G. e. Bela Pingelii (Möller).
    - N. e. Bela Sarsii Verrill.
    * E. N. Bela tenuicostata Sars.
    N. E. Bela Trevelyana (Turton).
    x. Bela cancellata (Migh.) St.
    * n. E. Bela impressa Mürch.
    - N. G. E. Bela exarata (Müller).
    - G. E. Bela rugulata (Möller).
    - P. E. Bela simplex (Middend.).
    * Bela hebce Verrill.
    * Pleurotoma Agassizii V. \& S.
    * P Plcurotoma Pandionis V. \& S.
    * Pleurotoma Carpenteri V. \& 8.
    * Taranis pulchella V.
    * E. Taranis Mörchii (Malm) Jeff.
    - 8. Marginella roscida 1 Rav.
    * G. E. Thitonofusus latericeus (Müll.) Morch.
    Noptunoa (Sipho) calata Verrill.

[^66]:    * Some of the species here included were discovered in 1875 and 1876 , and have been recorded in the American Journal of Science. Those with an asterisk prefixed were first discovered on our coast this season, or else have not been previously recorded. For additional species, not included in my Report on Invertebrates of Vineyard Sound, \&c., 1873, see American Journal of Science, x, pp. 40, 41, July, 1876.

[^67]:    * I restrict, as Husley has done, the term ohela to the two terminal segments of a chelate appendage.

[^68]:    
    Brealth of carapax just back of lateral spines . . . . . . . . . ............................ 22. . . 0
    Breadth of carapax between tips of lateral spincs.....................................................5. 5
    
    Length of rostrum................................................................................................ 4.
    

[^69]:    - In many of the best preserved and most perfect females of Hemipagnrus socialis examined I can find no trace whatever of this appendage of the fifth somite, while in others it is very easily seen.

[^70]:    *The proportions of tho segments and the segmentation of the carpus in the unequal second pair of legs in the genus Pandalus appear to be usually very constant and to afford very good specitic characters, but they occasionally present very remarkable rariations. In carefully examining several hundred specimens of this species, only abont half a dozen were found which varied from the above description in the segmentation of the left carpus; two or three specimens hal an additional bnt less distinctly indicated segment back of the four distal oues, waking six in all. Two specimens had three additional segments inserted in the same way, making eight in all; but in both these specimens the segmentation was more or less irregular, and the additional segments may have resulted from some injury. One large fernale, quite normal in other respects, has the right carpus multiarticulate throughont and composed of about eighteen segments, nearly as in $P$. Montagui; the whole leg, however, is shorter than in other specimens of the same size, and may have been reproduced, though I caunot sec how this would explain its abnormal structnre. Detailed measurements of both chelate legs in most of these abnormal specimens are giveu begond in the tables of measurements.

    Ono female, $70^{m u s}$ long, stations 290 to 291,30 to 31 fathoms, off Cape Cod, has the chelate legs reversed, just as in the specimen of $P$. propinquus already refurred to.

[^71]:    * In the report on the dredgings in the region of George's Bauks (Smith and Harger, Trans. Conn. Acad., iii, pp. 1-5\%, pls. 1-8, 1874), "Pandalus annulicornis" is reported from the following stations: $b, 30$ fathoms ; $c, 28$ fathoms; $d$, 50 fathoms; $c$, 60 fathoms ; $g, 430$ fathous; and $q, 45$ fathoms; but on re-examining the specimens I find all those preserved from $b, a$, and $g$ are $P$. leptocerus, tho single specimen from $c$ is $P$. Montagui, while from $d$ and $q$ there are specimens of both specics.

[^72]:    *Forhand. Scandinav. Naturforskeres Kiøbenhaven, 1860, p. 669, 1861 ; Christiania Videnskabs-Selskabs Forhandlinger, 1870, p. 261 (181); Scandinay. Arktiske Amphipoder, p. 643, pl. 32, fig. 1, 1876.

[^73]:    - The Isopoda have been placed in Mr. Harger's hatuds for determinntion, bnt he has very kindly identified for me the few epecies here enumerated, which, however, are nuly a part of the whole number obtained.

[^74]:    * Ghalan perincopras Cope.

    Galus auratue Cope: Gadua morrhua L. (Ade Bean.)=G. macrocephalus Tiles.
    Xiphidium cruoreum Cope.
    fopidiam atropurpureum $K i t t l i t z=$ Anoplarchus crista-galli $\mathbf{G t h r}$.

[^75]:    * Nom. ap. nor. $=$ Selanatodea melanops Ayrea, non Sebastes melanops Grd.
    $\dagger$ S-bastomomus simulane Gill.
    :Chirus trigramuna Cope.
    Chirus pictus Gri. Chirus halias Cope.
    Chirua guttatun (irl. (8): Chirue constellatus Gri. (8); Chirne macnloseriatue Lock. (8).
    8 Taken at Santa C'rux by Dr, C. L. Anlereon, and at Cape Flattery by Jamee G. Swan.

[^76]:    We are informed by Dr. Giuntlect that the pharsageals in Ditrema temminchi are of the normal tipe an in Embidoen. Initrema in thenfore iclentical with Phanerodon lirel, ame nocharacter of importapun alisifintimhen "1'haneradon" from Embiotuca. Embiotoca argyromoma Gid, in identical with Danalichthys eneca.
    t.jtioippus zotutue Goll
    $\therefore$ Imis ins umhlulata Steind.. non Grd.
    \& V mlorina elonzata Githr

    1) Otelithus californiensin Steind.

    * Utolirlues mavelalenir Stesind.
    * Surtiela mazat lana Steiml.
    \#Ory yun paciticns Cooper.
    : I'clamyn lineolata firot.

    8. Chrionitra concolor Look.; Chriomitra Lock. $=$ Cyblum C. $\&$ V. $=$ Scomberomoras Lac.
    iif Scomber diego Ayres.
[^77]:    * Salmo spectabilis Grl. S Salmo bairdi, otcn, Suckloy; Salmo callarias Pallas.
    + Silmo seouleri Miohn, non Suck?
    ; Salmo sanguivolestus Pallas; Sahme tsuppitch Rich. Salmo scouleri Suckl.
    SHamo Lycaodon Pallas, non Gthr: ; Sumn paturichene Nich.
    - Salmo Lagocophalum Pallas; Salmo canis Suckl.

    If Acipenser brubhrriynchus ot aucirustris Ayres.

    - Aclpenser montirostria (ithr.
    " Kaia birostris Walh.; Manta americana Bancroft; Ceratoptura vranpyrus Auct.
    if Raia binoculata Gru = Yg. of Raia cooperi Gril.

[^78]:    -Cephaloncıllium laticepa J. \&G., probably not of Duméril.
    t Carcharmion rondeleti M. \& H.
    ; Bdellostoma poly trema Grd.; Bdellontoma stouti Lock.
    Indiana State University, Bloomington, November 30, 1880.

[^79]:    *We are unable to perceive any distinction between the Psychrolutida aud the Cotfida. Psychrolutes has a rudimentary spinous dorsal, hidden in the loose skin.
    $\dagger$ In Cotius granlandious, polyacanthocephalus, and scorpius a small pore is present behind the last gill. In other species (octodecimspinosus aneus, scorpioides), the slit appears to be wholly obliterated. In a specimen of C. polyacanthocephalus of about two feet in length there is visible a minute pore representing the usual last slit.

[^80]:    *Halieutichthys aculeatus (Mitchill) Goode.

[^81]:    * 1846.-Lowe, Rev. R. T. On a New Genus of the Family Lophide (Les Pectoralea, Pediculees, Cuv.), discovered in Madeira. < Trans. Zool. Soc. London, iii, pp. 335 344, pl. li. Read Sept. $22,1846$.

[^82]:    *Proc. Zool. Soc. London, 186iz, 1. 177; Setarchee Güntheri, 1. в. Madeira, 1. 1io, pl. xxiii.

[^83]:    *Etymology: ionan= under the sea $+i v e d p o s=a$ dweller.

[^84]:    * Proc. Acad. Nat. Sci. Phila. 1862, p. $1 \overline{5}$.

[^85]:    *A full series of these has been presented to the National Museum.

[^86]:    * Since the above lines were penued I have received the October number of the American Naturalist, from which I learn that Prof. S. A. Forbes, of the Illinois State Laboratory of Natural History, in his interesting article on "The Food of the Darters", regards the two so-called epecies as identical. Professor Jordan also informs me that he now considers the two forms as merely "subspecies".

[^87]:    * Since this paper has gone to press, Professor Jordan writes me that he fs now satisfied that $C$. macropterus and $C$. irideus are identical, and that as the term macropterus has the priority, it must be accepted as the name of the species. He had already, in his "Catalogue of the Fishes of Illinois," published in Bull. No. 2, Ill. Lab. Nat. Hiat., expressed the opinion that they might have to be merged into one.

[^88]:    * Professor Jorlan informs me that he has additional specimens of his N. leptacawthus, in all of which the spiues are short, less than one-third the length of the head. The wkin, however, is said to be dark, ay in my specimen.

[^89]:    - Including Syngnathus dimidiatus Gill.
    $\dagger$ Gasterastcus serratue Ayrea.

[^90]:    - Perhaps a form of the preceding.
    t Most of the specimens distributed belong to the form called Muranoides latus (Cope).
    : Probably identical with Oremnobates monophthalmu Gthr.

[^91]:    * Hemilepidotus gibbri Gilli Temnistia ventricasa Rich.

[^92]:    * "Chirus guttatus" Gnd.
    f"Ohirus constellatus" Grd.
    "Probably identical with Latilue prineepe Jenyne.

[^93]:    * Noa. 566, 567, 572, $17028,17029,17030,17031,17032,17033$, and 20340 ent out in previous distriba. tions under the name of "Holconotus rhodoterus $\Delta \mathrm{g}$." belong to Cymatogaster aggregatus.
    iSce nute under Cymatogaster aggregatus.

[^94]:    *Some recent authorities have, with apparently a not very particular regard for structural characters, used the generic term Fuligula for the entire group of lobehalluxed river-ducks, or those which have usually been assigned to the genera Fuligula, Fulix, and Ethyia. But Anas rufina, Pall., upou which the genus Fuligula of Stephens

[^95]:    was based, is quite a different type from Fulix (formally restricted to $F$. marila and its allies by Professor Baird, in $1 \times 58$ ) and Ethyia, and should, in my opinion, be separated generically. The first nse of the term Branta in a generic sense was by Scopoli in 1769 (for Anser bernicla, L., A. moschata, L., A. torrita, L., A. allifrons, L. a very heterogeneous assemblage, which invalidates its subsequent employment unless restricted to one or another of the species named by Scopoli not alrealy been supplied with a generic name, of which, however, there appears to be none not thus provided.

[^96]:    * Length of body hore means length without caudal.

[^97]:    * Conlolatilne lilll: numuvn nulam.

[^98]:    "I failed to find any other instance in which this thickening or begnmming of the gills had been observed. The dead fish were elsuwhere roported as healthy in appearance, and in one case, at least, wore eaten without harm, or oven indigestion occurring. - E. .

[^99]:    Professor Spencer F. Baird,
    United States Commissioner of Fish and Fisheries, Washington, D. C.

[^100]:    * One female less than a foot long was found in the lot. The eggs were well developed, though few in number.-D. S. J.

[^101]:    *No doubt of it.-D. S. J.

[^102]:    - Oncorhynchus chouicha; O.nerka; Salmo purpuratus ; Salrelinus malma. Salmo irideus does not rauge so far to the northward, and Salmo gairdneri and the three other species of Oncorhynchu* (kefa kisutch, gorbuscha), do not ascend so far from the sea.-D. S. J.

[^103]:    *"Above blackish, transversely marked with white lines, beneath olivaceous; front, chin, and sides of the head white; crown and neck red.
    "Table land; rare.
    "Total length, $10 \frac{1}{2}$; bill, $1 \frac{10}{10}$; wings, 5 ; tail, 4."
    This bird has nsnally been referred to one or another of the forms of C. aurifrons. Judging from the above description, however, and especially by Bonaparte's comments in P. Z. S. 1837, p. 116, it seems more probable that the present species was the one Swainson had in view, there being at least one other Weat Indian bird in the same collection erroncously ascribed a Mexican babitat (Tyrannula barbirostris, also from Jamaica).

[^104]:    * Malberbe claims (Jon. Pic. $\mathrm{ii}, \mathrm{p}, 245$, foot-note) 1803 as the date of his specific name "kanpii", on the ground that Bonaparte instituted the name "en effet" by declicating it, in the Revue et Magazin de Zoologie for that year, to "au savant directear de Muséc de Darmstalt". Inasmuch, however, as not eren Dr. Kaup's name tras givea in the passage quoted as evidence, it will readily appear that Professor Baird's specifio term uropygialis was really the first proposed.

[^105]:    Picus elegans, Swains. Philos. Mag. 1827, 439 ( $\%$ ad.; "maritime land" of Mexico).Less. Compl. Buff. ix, 18:37, 318.-Finsch, Abh. Nat. Brem. 1870, 350 (Mazatlan). Centurus clegans, Gray, Gen. B. ii, 1849, 442.-Bonap. Consp. i, 1850, 119; Consp. Z.igod. 1854, no. 219.-Reicif. Handu. 1854, 411.-Scl. Catal. 1862, 342, no. 2043 (Mexico) ; P. Z. S. 186t, 177 (city of Mexico).-Scle \& Salv. Nom. Neotr. 1873, 101 (Mexico).-Lawr. Mem. Boston Soc. iit, pt. 1ii, no. ii, 1874, 294 (Mazatlan, Gnadalajara, Tepic, and Sonora; habits).
    Zebrapicus elegans, Malif. Mon. Pic. ii, 1862, 225; iv, 1832, pl. 102, figs. 5, 6 ( ( \% , \& ad.). Piczèbre élégant, Malin. 11. c.

[^106]:    * In some examples the lower tail-coverts have indistinct dusky shaft-streaks.

[^107]:    ' See Dana's Geology, page 20.
    ${ }^{2}$ American Journal of Science, serics iii, vol. vi, page 104.

[^108]:    ${ }^{1}$ Philosophical Magazine, February, 1876.
    ${ }^{2}$ Geological Report, Now Jersey, page 215.
    ${ }^{3}$ American Journal of Science, iii, vol. vi, page 105.
    A:d Geological Survey of Peuna. report of progreas in York and Adams countier page 1:0.
    ${ }^{5}$ American Journal of Science, 1875, vol. ix, page 185.
    ${ }^{6}$ Proc. Am. Association Adv. Sci., Aug., 1874.

    - Credner, Géologic, page 532. With his ill-defined definition of melaphyr, to which he refers a part of these rocks, they certainly have nothingto do. These rocks bad iong been demonstrated to be augitic when the last edition of his work appeared, which still states the palisales to be of diorite.
    ${ }^{8} 2 \mathrm{~d}$ Geological Survey of Penua., vol. C, report of progress in the district of York and Adams counties.
    ${ }^{y}$ I speak now only of its essential origial constituents. Biotite and he rublende

[^109]:    ${ }^{1}$ Am. Jour. Sci. 18j5, vol. ix, p. 189. I concluded that a minute change in the comgrasition of the rock would be suflicient to allow of the formation of anorthite, which on account of its infusibility would first crystallize from the rock mass, as was evidently the case.

    * Fouqué has demonstrated the complexity of the feldspar in Srintorin andesites, Sabtorin et sex Eruptions, page 366 .

    I have examiad the basic recks at Peekskill, on the Hudson, recently described by Professor Dana, American Journal of Science, vol. $x x$, page 194. The feldspathic element was casily separated into two parts, one of which was a pink varicty of andeiste and the other white orthoclase.

[^110]:    *This volume, page 129.

[^111]:    * Geology of New Hampshire, by Prof. C. H. Hitchcock, vol. III.

[^112]:    *This volume, page - . The method of separating constituents of rocks by means of a heavy solution was first proposed, according to von Lasaulx, ly Fleuvian de Bellevue and Cordier, at the beginning of thiscentury. Church suggested the use of the solution of the iodide of potassium in iodide of mercury, in the Mineralogical Magazine in November, 1877.

    Thoulet bettered the method and introduced improved apparatus. (Bulletin de la Soc. Mineral. de France, 1879, No. 1.) Victor Goldschmidt succeeded in increasing the special grarity of the fluid to 3.2. (Inaugural Dissertation, Stuttgart, 1880.)

[^113]:    - Typhlogobius californicnsis Steindachner, Ichthyol. Beitrige VIII, Eitzgber. Wien. Akad. 1819, $142=$ Othonops cos $m$. Proc. U. S. Nat. Mus. 1881, 19.

[^114]:    * Abstract, with remarks by J. A. Ryder.
    $\dagger$ Verhandl. Phys.-Med. Gesell., Würzburg, XV, 1881, S. B. IX.

[^115]:    - Caranx ascensionis Giinther, Fische der Sudsee ii, 1:22, taf. $85=$ Caranx asoensionis Cuv. \& Val. ix, 102: evidently not Scomber ascensionis Osbeck, which is pale in color, and with D. VIII-25; A. 25.

[^116]:    *aduveos, unwashed.

[^117]:    *This water was collected where the fish mortality, referred to in preceding pages, was the greatest.

[^118]:    97951. Port Mnlgravi, Yakutat Bay, June 24, 1880. Dall \& Bean.
    97952. Port Mulgrave, Yakntat Bay, June 24, 1820. Dall \& Bean.
    97953. Chugachik Bay, Cook's Inlet, July 1, 1880. Dall \& Bean.

    44077 (1211). Port Levasheff, Unalashka, September 18, 1874. W. H. Dall.
    27525. Iliulink, Unalashka, July ${ }^{88}$, 1880. Dall \& Bean.
    28009. Chernoffsky, Unalashka, October 1, 1880. Dall \& Bean.
    :27554 (Juv.). Point Belcher, Aretic Ocean, Angust 27, 1880. Dall \& Bean.
    27544. Plover Bay, Siberia, August 13, 1880. T. H. Bean.
    28575. Plover Bay, Siberia, August 13, 1880. E. P. Herendeen.

    2it621. Plover Bay, Siberia, September 15, 1880. Dall \& Bean.

[^119]:    24114. Sitka. L. A. Beardslee.
    24115. Port Mulgrare, Yakutat Bay, June 24, 1880. Dall \& Bean.
    24116. Iliuliak, U'nalashka. W. H. Dall.
    24117. Ilinliuk, Unalashka, July 24,1880 . Dall \& Bean.
    24118. Iliulink, Unalashka, July 31, 1880. Dall \& Bean.
    24119. Lliuliuk, Únalashka, July 31, 1830. Dall \& Bean.
    24120. Chernoffsky, Unalashka, October 2, 1880. Dall \& Bean.

    24106 (1055) (Juv.). Bay of Islands, Adakb, August, 1873. W. II. Dall.
    24088 (1003) (Juv.). Kyska, June 23, 1873. W. H. Dall.
    24087 (1035) (Juv.). Kyska, 10 fins. in Pass, July 15, 1873. W. H. Dall.
    24030 (Juv.). St. Paul Island, 9 fathoms. W. H. Dall.

[^120]:    *Vol. i, pp. 281-344, 188.
    +Ball, Acad. Roy. des 8ciences de Belgique, 1857.

[^121]:    * The fignres are wrongly named C. Sluseanus on the plate.
    $\dagger$ Koninck does not escape this error also.

[^122]:    * Doubt attaches to the molluscan nature of these two minute species, which have nome crustacean features.

[^123]:    - Hand-list of the Genera and Species of Birds, distingnishing those contained in tite British Museum. By G. R. Gray, F. R. S., etc., Assistant Keeper of the Zoülogical Cullections. 3 vols. 8vo. London: 1869-1871.

[^124]:    *The male is the example mentioned by Mr. Lawrence (Ann. Lyc. N. Y., ix, p. 90) as having been compared with Lafreanaye's type of the species, and fonnd to differ in having the "centre of the breast and abdomen pale yellowish fulvous instead of white", and the bill mainly bright orange instead of yellowish white. Now, however, after a lapse of thirteen years, I find the same specimen with the abdomen white and the bill pale yellowish, showing that the difference was the result of fading of the older type specimen, as Mr. Lawrence himself suggested.

[^125]:    - Mesoprion guttatus Stemdachuer, Ichthyol. Nofiz. $\mathrm{jx}_{\mathrm{N}}, 18,186^{6}$, taf. viii. Mazatlan (Steind.; (iilb.); l'anama ( (ilb.). This specties han beeru etroncously contounded with the West Indian L. synagris (L) J. d. ( $\mathrm{F} .(=$ Mesoprion minotatus C. \& V.), a species not yet known from the Pacific.
    \$ Mesoprion argentivithatus P'etery, Berlins. Mouatsber. 1869, 704. Mazatlan (l'ciers; Gilb.) : Acapaleo (liilb.), Panama (Gilb.). This specirs has heen confonuded with the closely-related L. casis (M. grisen* C. \& V.) of the Atlantic. The latter is best distinguished by the direction of the rows of scales above the lateral line, which are not throughout parallel with the latter.

[^126]:    "Mesoprion aratus (iiintler, Proc. Zool. suc. Lond. 186t, 145. Mazatlan (Gilb.); Punta Arenas (Gillb.), Chiapam (Cithr.); Panama (Githr., Gilb.).
    t Lutjama nocemfarciatue (iill, Proc. dic. Nat. Sci. Hila. 1862: Mcroprion inermis Berlin. Monatsber. 1869,705. Cape San Lncas(Gill); Mazatlan (Petcrs). Not obtained by Mr. Gilbert.

[^127]:    

[^128]:    * A single specimen of a shortetared Owl from sironges Ishand, West Indics (No. 6623 , U. S. Nat. Mns.), appears at first glance to be quite peculiar in coloration, by reason of the general prevalence of ochraceous above, the nearly uniform reddish ochraceous of the rump and upper tail-coverts, and more nearly uniform brownish of the wing-coverts, especially the smaller ones. There are also other slight differences, appreciable to the eye but difticult to define, and it may be that the specimen in question merely represents one of the many individual variations of the common species. I therefore, for the present at least, refer it to $A$. accipitrinus, since it would be unsafe to predicate a local race upon a single specimen. The measurements are as follows: Wing, 11.50 ; tail, 5.55 ; culmen, .80; tarsus, 1.80 ; middle toe, 1.15 .

[^129]:    Noctua major Briss. Orn. i, 1760, 511 (excl. syn. pt.). (Le Grande Chouetle.)
    Stric accipitrina Pall. Reise Russ. Reichs. i. 1771-'76, 455.
    dsio accipitrinus Newt. ed Yarrell's Brit. B. i, 1872, 163.—Snarpe, Cat. Striges Brit. Mus. 1875, 234 (excl. syn. galapagoensis Goulh.)-Ridgw. Nom. N. Am. B. 1881, 36, No. 396.
    Brachyotus accipitrinus Gurney Ibis, 1872, 328 (Formosa).
    Noctua minor S. G. Gmel. N. Comm. Petrop. xv, 1771, 447, pl. 12.
    Strie arctica Sparrm. Mus. Carls 1786-89, pl. 51.-Daud. Tr. Orn. ii, 1800, 197.
    Strix brachyotus J. R. Forst. Phil, Trans. Ixii, 1772, 384 (Severn R., Arctic, Am.!),Gmes. S. N. i, pt. 1, 1788, 249.-Wils. Am. Ord. iv, 1812, 64, pl. 33, dig. 3.Naum. Vög. Deutschl. i, 18*0, 459, pl. 4in, fig. 1 ("brachyoto:").-Nutt. Proc. Nat. Mus. $81-24$

    April 6, 1882.

[^130]:    * Extreme and average measurements of 11 adulta.

[^131]:    *Sparus rirginicu* L. Syst. Nat. x, 1, 281, $1358=$ Anisotremus taniatus Gill, Proc. Ac. Nat. Sci. Phila. 1861, 107, etc. Habitat: West Indies; Caribbean Sea; Brazil; both coasts of Mexico and Central America; Magdalena Bay (Steind.); Mazatlan (Gilb.); Pánama (Gill; Gilb.).
    $\dagger$ Pristipoma davidsoni Steind. Ichthyol. Beitr. iii, 6, 1875. Habitat: Sonthern California; Santa Catalina Island (Jordan fo (Gilbert); San Diego (Steind.; Jor. f Gilb.).
    $\ddagger$ Pristipoma bilincatum Cuv. \& Val. v, $271,1830=$ Pristipoma melanopterum C. \&V.v, 1830, ${ }^{973}$ = Genytremus interruptus Giil, Proc. Ac. Nat. Sci. Phila. 1861, 256. Habifat: Both coasts of Mexico and Central America; West Indies; Peru; Brazil; San Diego (Steind.); Magdalena Bay (Steind.); Cape Sun Lucas (Gill); Gulf of California (Lo.kington); Panama (Steind.); Galapagos Islauds (Stcind.). Not obtained by Mr. Gilbert.
    ©Pristipoma fürthi Steindachner, Ichthyol. Beitr. v, 4, 1876. Mabitat: Mazatlan (Gilbert); Panama (Steind.; Gilb.).
    |l Conodon pacifici Giínther, Proc. Zool. Soc. Lond. 1864, 147. Habitat: Chiapam (Gthr.); Panama (Steind.; Gilbo).

[^132]:    *Pristipoma dorii Gtiuther, Proc. Zool. Soc. Lond. 1464, 23. Habitat: Mazatlan (Gilb.); Panama (Gthr. ; Gilb.).
    $\dagger$ Perca nobilis Linn. Syst. Nat. x, $1,291=$ Conodon plumieri Gthr. $\mathbf{i}, 304,18: 9=$ Cono-
     156, 1830. Habitat : Coast of Texrs, West Iuties, to Brazil. Recorleal by Streets from Buca Soledad, Pacific coast of Lower Califomia; not observed by other collectors.
    $\ddagger=$ Pristipoma Cuv. \& Vnl.
    §Pristipoma humile Kner \& Steindachner, Sitzsber. Akad. Wiss. Minch. 1863, 22. Habitat: Rio Bayano, Panama (Kiner \&-Steinel.); not seen by other collectors.
    $\|$ Pristipoma macracanthum Giinther, Proc. Zool. Soc. Lond. 1864, 146. Habitat: Mazatlan (S'eind.; Gilb.); Punta Arenas (Gilb.): Chiapam (Giunther); Panama (Gilb.).

    I Pristipona branickii Steindachner, Denkschr. Kaiserl. Akad. Wissen. Wein. sli, 24, 1879. Habitat: Tumbez (Steind.); Panama (Gilbert); Mazatlan (Gilbert).

[^133]:    *Pristipoma cantharinum Jenyns, Zool. Voy. Beagle, Fishes, 49, 1842. Habitat: Gayymas (Lieut. Nichols) ; Galaparos Islands (Jenyna; (ithr.).
    $\dagger$ Microlcpidotus inornatus Gill, Proc. Ac. Nat. Sci. Phila. 1852, $256=$ Pristipoma brevipinne Steind. Ichthyol. Notiz. viii, 1869, $10=1$ Pristipoma notatum Peters, Beslin. Monatsber. 1839, 706. Hahitat: Cape San Lucas (Gill); Mazatlan (Steind.: Petern). Not obtained by Mr. Gilbert.
    $\ddagger$ The collections at Gaud actually contain more than 3,0c0 preparations belonging properly to comparative anatomy, and more than 1,600 specimuns are preserved in alcohol.

[^134]:    * Our scholars are generally deceived up to the very moment when we explain to them the mode of preparation.
    $\dagger$ Note on a process for giving or imparting the red color to muscles preserved in alcohol.-(Bulletin de l'Academis Royale de Belgique, ze série, tome XXXVIII, Nos. 9 et $10,1844$.

[^135]:    "Oncorhynchus chouicha (Walb.) J. \& G. This word "E-quinna" is evidently the "quinnat" of Richardson.
    † Oncorhynchus nerka (Walb.) G. \& J.
    § Oncorhynchus kisutch (Walb.) J. \& G.

[^136]:    * Oncorhynchus keta (Walb.) G. \& J.
    + Sulmo gairdneri Rich.
    t Uncorhynchus chouicha (Walb.) J. \& G. (Fall run: "Ekeman" of Richardson.)

[^137]:    *Sci. Results of the Expl. of Alaska, I, art. II, pp. 41-43, 1876.

[^138]:    - Mucb as in Sculus as figured by Gray, Guide, p. 163.

[^139]:    "This is, perhaps, the shell referred to under the name of "Acmaxa rubella! Fabr." Verrill, Proc. U. S. Nat. Mus., 1II, p. 391, dredged (dead) at station 894, United States Fish Commission, 1880 , off the S. E. coast of New England, in $39^{\circ} 53^{\prime \prime}$ N., $70^{\circ} 58^{\circ} 30^{\prime \prime}$ W., in 365 fathoms.

[^140]:    *In honor of Prof. Addison E. Verrill, of Yale College and the United States Fish Commission, whose surname has already been applied to more than one group of invertebrates.

[^141]:    - I have, however, no doubt of their existence. A Jetter from Dr. J. Gwrn Jeffers states that a stuall limpet like Lepeta, but with eyes, has been dredged off the coast of Norway by Prof. G. O. Sars, which may probably prove to be Lepetella.

[^142]:    * I should be most thankful for a dried or alcoholic specimen of the soft parts of the typical species of Scutellina (S. crenulata Broderip).

[^143]:    * Moll. Reg. Arct. Norveg. tab. II, fig. 12.

[^144]:    * 1875, LUtKEn, CHR.

    Om rundnebides Svaerdfiske, saerligt om Histiophorus orientalis, Schl. <Vidensk. Meddel. Naturlist. Foren. Kjübenhavn, 1875, pp. 1-21 $+1-5$.

[^145]:    * Hist. de l'Acad. des Sciences, Paris, 1786, pp. 450-455. †Guinther, l. c. p. 513, sub. Histiophorus Herschelii.

[^146]:    ＊To vertical froin upper caudal lobe．
    IAt origis of dorsal．

[^147]:    * Catalogne of the fishes in the British Museum, ii, 1860, p. 513.
    $\dagger 1648$, Piso and Marcgrave.
    Historia Naturalis | Brazilie, | Anspicio et Beneficio | Illustrisa| Manrittii Com. Nassan | illius Provincise et Maris summi Prefecti Adornata: | In qua|Non tantum Plantse et Animalia, sed et In- | digenarnm morbi, ingenia et mores describuntur et | Iconibus qungentus illustrantur | (Elaborate engraved title-page, upon which the preceding iuscription is inserted upon a scroll, the following upon a shell:) Lvgrn Batauorum, | Apud Franciscum Hackium | et | Amstelodami, | Apud Lnd. Elzevirium 1648 | pp. (12) 122 (2) (8) 293 (\%).

[^148]:    * Isis, 1833, Heft iv, pp. 415-419.
    $\dagger$ The specimens in the British Museum are catalogued as follows:
    a. Eight feet long; stutied. Indian Ocean. Type of the species.
    b. Seven feet long; stuffed. Cape of Good Hope.
    c. Dorsal fin. N. S. Wales (\%). Presented by Dr. G. Bennett.
    d. Snout ; dried.

[^149]:    - From end of carina.

[^150]:    *Transactions New Zealand Institute, viii, 1875, p. 219.

[^151]:    "Scha, Albert. Locupletissimi rerum naturalium thesanri accuma descriptio et iconihus artificiosissimis expressio, per universam physices historiam. Amsterdam, 1:31-1765, i, pl. co, fig. 1.
    $\dagger$ Linné, Syst. Nat., 12th ed., 1766 , vol. i, p. 353.
    !Gıelin, Linn. Syst. Nat., xiii ed., i, pt. 3, 1788, p. 1041.

[^152]:    *Linn. Syst. Nat., 10th ed., 1758, p. 198.
    4 Holbrook, N. A. Herpetology, lst ed., i, 1836, p. 45.
    § Edwards, G. A natural history of uncommon birds, and of some other rare and nondescribed animals ( $=$ Liune's "Edw. Au."). London, 1743-'51, p. 205.
    $\oint$ Cope, Bull. U. S. Nat. Mnseum, No. 1, 1875, p. 53.

    - Muller, P. L. 8. Des Linné Vollstindiges Natursystem, Third Part, 1774, pp. 44-45.

[^153]:    * Bartram, W. Travels through North and South Carolina, \&c. Philadelphia, 1:91, Pp. 18:2-1>3.
    + Daulin. Histoire Naturelle des Reptiles, Paris, ii, 1803 (X), pp. 256-259.
    $\ddagger$ Bosc. Nouv. Dict. d'Hist. Nat., xxii, 1803, p. 269.-Gray, Synopsis Reptilum, Pt. I, p. 11 (T. polyphemus); Gray, Tort. British Musenm, 1844, p. 4 (T.gopher); Gray, Shield Reptiles, Pt. I, 1855, p. 5 (T.gopher).
    \$Regue Auimal, ii, p. 10.
    \|Holbrook, N. A. Herpetology, 1st ed., i, 1536,p. 41.
    II Say, Jour. Acad. Nat. Sci. iv, pl. ii, 1825, pp. 207-208.
    ** Le Conte, Annals Lye. Nat. Hist., New York, iii, 1828-1836, pp. 97-100. HHarlan, Jour. Acad. Nat. Sci. Phila., vi, pt. i, 1829, pp. 21, 22.
    \#\# Holbrook, N. A. Herpetology, 1st ed., i, 1836, pp. 41-46; 2d ed., 1842, pp. 25-30.

[^154]:    ${ }^{*}$ Cope, Bull. U. S. G. \& G. Survey, iv, 1878, p. 393.

[^155]:    *Proc. Cal. Acad. Sci., ii, 1863, pp. 120, 121.
    $\dagger$ Cronise, The Natural Wealth of California, San Francisco, 1868, p. 480.
    $\ddagger$ Proc. Acad. Cal. Sci., iv, 1873, p. 67.
    \& Cope, Check-list N. A. Bat. \& Rept., Washington, 1875, p. 54.

[^156]:    *Agassiz, Cont. Nat. Hist. U. S., i, 1857, p. 447.
    †Strauch, Mem. Acad. Imp. Sci. St. Peterbonrg, vil series, viii, 1865, article 13, p. 28.
    $\ddagger$ Gray, J. E., Proc. Zool, Soc. London, 1873, p. 723.
    § Baird, Herpetology Mex. Bound. Survey, 1859, p. 4.
    $\|$ Cope, Bull. U. S. N. Museum, No. 17, 18*0, pp. 13 and 47.

[^157]:    ${ }^{*}$ Cope, Bull. U. S. G. \& G. Survey, iv, 187\%, pp. 393-395.
    1Dr. Th. Savage in Louis Agassiz's Cont. Nat. Hist. U. S., i, 1857, p. 447.

[^158]:    *Proc. Boston Soc. Nat. Hist., xiv, 18i2, p. 16.
    $\dagger$ Th. Savage, loc. cit.

[^159]:    - Wailes, Geology of Mississippi.
    +Regarding this matter I may have somewhat to say at a later date.-F. W. T.
    † Amer. Nat., xv, 1881, p. 1003.

[^160]:    * Holbrook, N. A. Herp., 1st ed., i, 1836, p. 44.
    $\dagger$ Ann. and Mag. Nat. History, 1st scries, v, 1840, p. 115.

[^161]:    * Note to the catalogef of the collection of cotton.-Of the biffixes to the words signtiying the localities of producers, "mura" means village and "gori"township, and in the catalogue is mentioned next to the township the name of a geographical division or province, and then follows a political division.

    Note to the accolnt of cotton husbandiy.-The district of Kinai, strictly speaking, comprises the provinces of Yamashiro, Vinmato, Kawachi, Idsumi, and Settsu, but in the sense used in the account that district may also comprise sume other neighboring provinces. The district of Kanto comprises the province of Jusashi and other seven adjacent provinces. The district of Chiugoku consists of all the provinces lying south of those of Harima and Tamban and north of Nagato and Suwo. The district of Kinshiu is the whole of the island of that name. The district of To-oku comprises the northeastern part of the proviuce of O-shiu, which is now divided into five provinces. And the district of Hokuroku includes seven provincesWakasa, Techizen, Kaga, Noto, Tetchiu, Techigo, and Sado.

[^162]:    *Bull. Sco. Philom., Paris, 1879, 16 (reprint).

[^163]:    * Coues. Report, U. S. Geol. Surv. of the Territoriea, xi, 1877. Monograph VIII, pp. 481-542.
    + Coues, 1. c., p. 518.

[^164]:    * An act to establish the "Smithsonian Iustitution" for the increase and diffusion of naeful knowledge among men. (Approved August 10, 1846; Revised Statutes, title lxxiii, sections 5579-5594.)
    $\dagger$ Revised Statntes, eection 5586.
    \& Statutes Forty-fifth Congrees, third seesion, chap. 182, p. 394.

[^165]:    *Revised Statutes, 5580.
    (484)

[^166]:    - This classification is founded solely upon considerations of present ecnvenience in Musenm administration.

[^167]:    *To this must be atded the fullowing certificate: "This account is correct and just, and the items of expenses are veritied from memoranda kept by myself, and no part of said travel was under a pass."

[^168]:    Cinester A. Arthur, President of the United Statea .......Ex-officio Presiding Offiorr. Morrisox R. Waite, Chief Justice of the United States. Chancellor of the Institution.
    Spencer F. Baird.... ............................................... Secretary of the Institution.
    William J. Rhees .................................................. Chief Clerk of the Institution.

[^169]:    * Division VIII. Intellectual Occupations of Mankind.

    Class 58. The Graphic, Plastic, and Decorative Arts.
    Section B. Taxidarmy, and animal modeling.
    Subaection 1. Taxideruy.

[^170]:    *As act to establish the "Smithsonian Institution" for the increase and diffusion of usefalknowledte imong men. (Approved August 10, 1846; Revised Statutes, title lxxiii, sectionis $552-5504$.)
    | Revised Statutes, section 5586.
    I Statutes Forty-fifth Congreas, third session, ohap. 182, p. 394.

[^171]:    - Ruvised Statutes, 5580.

