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Bryozoans, Hermit Crabs, and Gastropods: Life Strategies Can 
Affect the Fossil Record 

Penny A. Morris,! Dorothy F. Soule,” and John D. Soule? 

‘Natural History Division, North Harris County College, Houston, Texas 77073 

?Allan Hancock Foundation, University of Southern California, 

Los Angeles, California 90089-0371 

Abstract. —Epizootic associations among bryozoans, hermit crabs, and gastropod 

shells are not chance occurrences, but constitute a relationship that may benefit 

the bryozoan, and possibly the hermit crab. Gastropod shells from Recent Texas 

gulf coast localities and fossil and Recent Pacific coast localities were examined. 

Texas gastropod shells occupied by hermit crabs and their bryozoan epifauna were 

compared with unoccupied shells. In summer all available shells were occupied 

by hermit crabs, and all occupied shells found were encrusted by bryozoans. 

In winter in Texas no bryozoans encrusted intact Polinices shells unoccupied 

by hermit crabs; 33% of Thais shell fragments contained bryozoans and all Busycon 

spp. shells or fragments contained bryozoans. 

Distinctive differences were found in encrusting patterns of hermit crab occupied 

and unoccupied shells. Similar bryozoan encrusting patterns were found on shells 

occupied by hermit crabs from California and Texas. These data can be used for 

interpreting the incidence of hermit crab occupation in both fossil and Recent 

gastropod shells. 

Epizootic associations among bryozoans, hermit crabs, and gastropods or gas- 

tropod shells, represent a relationship that has existed since Jurassic times (Glaess- 

ner 1969; Palmer and Hancock 1973; Taylor 1976). Such fossil associations have 

also been described in more recent periods; e.g., by Roger and Buge (1947), Walter 

(1969), Buge and Fischer (1970), Taylor and Cook, (1981) and Walker (1988). 

Modern occurrences have been noted, for example, by Kirkpatrick and Metzelaar 

(1922), Cook (1968), Gordon (1972), Taylor and Cook (1981), Baluk and Rad- 

wanski (1984), and Bishop (1987). In west Africa, Cook (1968, p. 127) found that 

one species of encrusting bryozoan, Membranipora commensale, was primarily 

found on gastropod shells occupied by hermit crabs. 

The preference of bryozoans for specific substrates has been well documented 

(Pinter 1969; Rogick and Croasdale 1949; Ryland 1976; Winston and Eiseman 

1980). In selecting substrates, larvae may explore and inspect sites before attach- 

ment and metamorphosis (Woollacott and Zimmer 1971; Crisp 1974), and some 

species exhibit preferential settling to the extent of selecting concave surfaces as 

opposed to convex surfaces (Ryland 1959; Ryland and Gordon 1976; Bishop 

1988). Walker (1988) found that bionts would not settle on tethered Olivella shells 

that were not occupied by hermit crabs. 

The purpose of the following study was to document whether bryozoans en- 

crusting gastropod shells occupied by hermit crabs more frequently select one part 
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of the shell over another, and to provide further documentation on whether hermit 

crab occupation can be determined in fossil gastropod assemblages. Interpretation 

may then be made as to whether gastropod shells are in their original habitat, or 

have been moved to other locations by hermit crabs (Frey 1987). 

Materials and Methods 

Modern gastropod shells inhabited by hermit crabs were collected in the spring 

from California and summer from Texas coasts. Gastropod shells, unoccupied 

by hermit crabs in winter, were collected from Texas. The assemblages of shells 

were analyzed for the following: 

(1) Identification of gastropod shells, epizootic bryozoans, and presence or 

absence of associated hermit crabs. 

(2) Encrusting sites of bryozoans. 

(3) The presence of other epizootic species on shells occupied by hermit crabs. 

The broken shells that were collected in December 1988 from Texas were 

restricted to shells and fragments similar to those occupied by hermit crabs in the 

summer months. 

Pliocene and Pleistocene fossils from the Pacific coast of North American were 

examined in collections of the University of California, Museum of Paleontology, 

Berkeley (UCP). 

Results 

Fifteen trochid gastropod shells (Tegula funebralis) occupied by hermit crabs 

were collected in the spring from Rockaway Beach, California (Fig. 1). The hermit 

crab was Pagurus samuelis, a species which prefers rocky shores lacking sand, 

mainly in upper and middle intertidal zones, from Vancouver to Baja California 

(Reese 1969; Haig and Abbott 1980). The encrusting bryozoan was Hippothoa 

hyalina (Table 1). 

Sixty gastropod shells inhabited by the hermit crab Jsocheles wurdmanni, a 

filter feeder living along exposed coasts (Fotheringham 1976), were collected in 

the summer from the Texas coast (Figs. 2A, 2B). Of these, 15 were from the gulf 

side of the Bolivar Peninsula, 20 were from the entrance to the Galveston Ship 

Channel, and 25 were from the gulf side of San Luis Pass. The number and 

identity of each gastropod species is listed in Table 2. 

Fifty one gastropod shells were collected in the winter months from the gulf 

side of Galveston Island. All of the shells lacked hermit crab occupants and were 

trapped among the rocks composing the jetties. No hermit crab occupied shells 

were found. The number and identity of each gastropod species is listed in Table 3. 

Hippothon hyalina was found on all hermit crab occupied Tegul/a shells collected 

in California in April 1972. Membranipora arborescens was found on all hermit 

crab occupied shells collected in Texas in August 1985. In addition, the gastropod 

Crepidula plana was found attached to the gastropod Polinices. Crepidula is fre- 

quently found in association with hermit crabs (Abbott and Haderlie 1980). 

In comparison, some of the broken and entire shells collected from Galveston 

Island in the winter months in 1988 lacked encrustations of either bryozoans or 

other epibionts. None of the Polinices shells were encrusted with, or had indi- 

cations of the past presence, of bryozoans or any other encrusting organism. The 
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ere 
Fig. 1. Map of California. Region of Rockaway Beach is circled. 

Fig. 2. Map of Texas. A. Region of Galveston and Bolivar Peninsula is circled. B. Galveston Island 

(g), and Bolivar Peninsula (b) are indicated in respect to the mainland (m). 

other shells or shell fragments collected did not yield the same concise results 

(Table 3), but none contained burrowing bryozoans or the green alga Entero- 

morpha, nor were they entirely covered on the exterio by Membranipora arbo- 

rescens. 

Burrowing bryozoans were found on two species of gastropod shells inhabited 

by hermit crabs (Table 2). Others have found similar results: for example Gordon 

(1972, Goat Island, New Zealand); J. D. Soule (unpubl., southern California tidal 

pools); and Smyth (1988, Guam). Burrowers have also been found on the aperture 

of the living infaunal gastropod Olivella biplicata at Bodega Bay, California (Walk- 

er 1985, 1988). Therefore, burrowers apparently cannot offer conclusive evidence 

that gastropods were dead and occupied by hermit crabs. 

All Recent material has been deposited at Allan Hancock Foundation, Uni- 

versity of Southern California, Los Angeles. 

Ecology 

California. —Rockaway Beach (Fig. 1) is a rocky intertidal environment char- 

acterized by high energy waves. In the summer months the hermit crab Pagurus 

samuelis, carrying the Tegula shell, can be seen among populations of living 7. 

funebralis in the upper tidal pools which are isolated during low tide. Shell material 

that is not utilized by hermit crabs seasonally is either trapped in rock crevices, 

broken up in the surf, or carried into deeper water and buried. The availability 

of gastropod shells is the single most important factor limiting hermit crab pop- 

ulation size (Kellogg 1976). 

Texas.—The sampled localities are on the gulf side of the Bolivar Peninsula 

(an elongated extension of the coast forming a sand spit), and the gulf side of the 

west and east end of Galveston Island, an offshore barrier island (Figs. 2A, 2B). 

Prevailing longshore currents are east to west. The localities are high energy 
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Table 1. Encrusting sites on hermit crab occupied shells for California specimens. 

Encrusting sites 

Num- Her- Inner Inner 

Gastropoda ber mit sur-_ lip: 

species (total speci- crab face colu- Cover- Other 

number of mens pres- Bryozoan_ outer mella ing Hum- — encrusting 

specimens) (%) ent species lip area Apex shell mock species 

Tegula funebralis 5 4 Hippothoa 

(12) (42) hyalina x 

2 x H. hyalina xX 

(17) 

2 xX H. hyalina 4 x x 

(17) 

| Xx H. hyalina x spirorbid 

(8) encrusting 
on colony 

1 x H. hyalina xX x 

(8) 
1] Xx H. hyalina xX XxX x Balanus sp. 

(8) on colony 

X = Present. 

environments with sediments varying from well sorted sand and silty sand to 

shelly sand. Like the Rockaway Beach locality, shell material is rapidly broken 

up. The absence of empty shells, and the occupation of broken shells by hermit 

crabs in the summer months, is indicative of a limited supply (Back et al. 1976). 

All of the shells occupied by hermit crabs were found in approximately the 

same ecological zone as the living snail. Of the shells collected, Thais haemostoma 

is found in shallow water on rocks and oyster reefs, Polinices duplicatus is found 

from low tide to 15 meters and both Busycon spiratum and B. contrarium are 

found intertidally. 

Encrusting Bryozoans 

The two species of bryozoans involved in the hermit crab association were 

Hippothoa hyalina (Pinter 1973; Morris 1980) on the Pacific coast, and Mem- 

branipora arborescens on the gulf coast (Lagaaij 1963, as Conopeum commensale: 

fide Cook 1968). Hippothoa hyalina (Fig. 3) is found in shallow waters distributed 

from Arctic to temperate waters in the northern hemisphere and in temperate 

waters in the southern hemisphere (Morris 1980). Geologically the species has 

been found as early as the Eocene. Along the Pacific Coast of North America the 

species can easily be separated from other multiseriel species belonging to this 

genus as it has a pleurilaminar growth form with both male and female zooids 

produced on secondary and subsequent layers, never the primary layer (Pinter 

1973). Membranipora arborescens (Fig. 4), also found in shallow water, ranges 

from Morocco to the Gulf of Mexico. Cook (1968) stated that there had been a 

great deal of confusion separating the encrusting stage of M. arborescens from M. 

commensale. She also stated (1968, p. 123) that the encrusting stage of Mem- 

branipora arborescens has cryptocystal denticles, abundant chitinous spinules on 
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Fig. 3. Hipothoa hyalina (L). A multilaminar portion of the colony. 

Fig. 4. Membranipora arborescens (Canu & Bassler). Opesial membrane is removed, showing thick 

cryptocyst with small spines, and fused block-like tubercles. 

the frontal wall, and a brown line generally separating the zooids. The gulf coast 

colonies of Membranipora arborescens that were encrusted on hermit crab oc- 

cupied shells in this study were pleurilaminar, never arborescent, had small cryp- 

tocystal denticles and chitinous spinules, and the brown line separating the zooids 

was irregularly present. The cryptocyst was thick, fused, and block-like tubercles 

were present. A few kenozooids were produced where growing edges meet, and 

sheets of zooids were large and regular. Occasionally the shell surface was etched. 

Bryozoan Encrusting Patterns 

Gulf Coast, Recent.—The initial sites of encrustation by the bryozoans are 

oriented in relation to the position of the crab in the shell. On the shells from the 

Gulf of Mexico (Fig. 5), the inner surface of the outer lip of the gastropod shell 

was above the anterior end of the crab and the inner lip (base of the columella) 

was below the anterior end (See Carleton and Roth 1975, for terminology). These 

two areas are usually colonized initially; subsequently colonies expand outward 

and over the gastropod shell surface (Fig. 6A, B). Analysis of colony edges indicates 

that fusion may take place, due either to recognition of sibling colonies or to 

fusing of single colony segments after growing apart (Chaney 1983). There were 

also scattered indications of redirected growth between nonsibling zooids (Chaney 

1983). The data on the bryozoan encrusting sites are listed in Table 2. 

California, Recent.—The hermit crab Pagurus samuelis occupies Tegula fu- 

nebralis shells. Initia! points of bryozoan encrustation are above and/or below 

the anterior end of the crab, as indicated by the cheliped in Fig. 7B, C, after which 

colonies may expand and coalesce (Chaney 1983), eventually covering the exterior 

shell surface. Following the establishment of the bryozoan colonies, barnacles and 

spirorbid worms may settle on the bryozoans. As in the Texas specimens, there 

was either colony fusion of siblings or indications of redirected growth between 

nonsibling zooids (Chaney 1983). Data on the bryozoan encrusting sites are listed 

in Table 2. 
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10mm 

Fig. 5. Thais haemostoma, Galveston Island, Texas showing position of the crab in the shell. 

Fig. 6. Encrusting Bryozoan sites on gastropods from Galveston Island area. 6A. Initial encrusting 

sites (coarse stippling) can be in either one or both places indicated. 6B. Subsequent colony expansion 

indicated (coarse stippling) on shell surface. 

Fig. 7. Shell and encrusting sites on gatropod from Rockaway Beach. Side view of Tegula funebralis 

with apertural region (light stippling) indicated. 7B. Bryozoan encrusting (coarse stippling) near aperture 

(light stippling). 7C. Bryozoan nearly covering apertural region (coarse stippling). Aperture is lightly 

stippled. Anterior end of hermit crab indicated by chelipeds. 
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Oregon, California, fossil.—Pliocene and Pleistocene bryozoan material from 

the Pacific Coast of North America was examined from the following localities: 

Elk River, Cape Blanco, Oregon (Pleistocene, Baldwin 1945); Moonstone Beach, 

near Arcata, California (Pliocene, Faustman 1964); Cape Blanco, (Pleistocene, 

Addicott 1964). All localities contained some shallow water elements and were, 

at least in part, characterized by an open coastline. 

The Elk River sandstone (UCP-B7371) contained gastropod shells of Fusitriton 

oregonensis and Nucella canaliculata; both had evidence of probable hermit crab 

occupation. The bryozoan Hippothoa hyalina encrusted either on the apertural 

region and/or the inside upper lip. In several specimens bryozoan etchings were 

found on the interior upper lip as well as on the shell surface, indicating the 

existence of a hippothoid (Morris 1975). Fusitriton oregonensis, as well as other 

gastropods identified from this site but lacking bryozoans (Epitonium indianorum, 

Olivella biplicata), are found in Recent environments living on sandy bottom 

offshore, in shallow water, or on beaches. Nucella canaliculata prefers crawling 

on rocks (Abbott 1974). The presence of these gastropods in the fossil environment 

indicates that, before they were inhabited by hermit crabs and encrusted by H. 

hyalina, at least some shells were transported from other areas. 

Moonstone Beach (UCP-B5525) specimens Nucella canaliculata and N. la- 

mellosa are both shallow water gastropods which in modern environments are 

frequently found on rocks. In the area of Moonstone Beach that each was collected, 

no evidence of rocks was found. The deposit was composed of poorly lithified 

sandstone. The encrusting pattern of Hippothoa hyalina (inner upper lip, columella 

region) indicates the probable presence of hermit crabs occupying a sandy beach. 

Therefore it is reasonable to assume that there was some transportation of the 

shells after death of the living gastropod before occupation by hermit crabs oc- 

curred. Where parts of some colonies had been rubbed off, typical hippothoid 

etchings were visible. 

A poorly consolidated conglomerate south of the lighthouse at Cape Blanco is 

primarily composed of the pelecypod Tresus (UCP-A8712). At this site the bryo- 

zoan Hippothoa hyalina was found encrusting the gastropods Calyptraea fastigiata 

and Cerithiopsis sp. The shells represent two different configurations; the former 

is hat-shaped and the latter is spiral-shaped. The bryozoan encrusting pattern for 

Calyptraea is similar to that of Tegu/a and the pattern for Cerithiopsis is similar 

to Thais and Busycon. The presence of the aforementioned gastropods as well as 

the pelecypods Tresus sp., Saxidomus giganteus and Macoma sp. indicates a low 

intertidal to subtidal environment. The bivalves, particularly Tresus, were artic- 

ulated and indicate the absence of sediment reworking. The presence of these 

gastropods, as well as their probable hermit crab occupation, indicates that death 

and burial occurred at the site of the living components. 

Ideally in order to test a null hypothesis that there is no difference between 

inhabited and non-inhabited shells, all shells would need to be collected at the 

same time of year. This was not possible because there are no unoccupied shells 

in Summer, as indicated by the occupation of broken shells, whereas only empty 

shells were found in winter. 

To test the hypothesis, a 2 x 2 contingency table was set up to measure the 

significance using chi-square with N as | degree of freedom. A chi-square value 

of 3.84 (1 degree of freedom or higher) indicates a 95% chance that the measured 
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association was not random, thereby nullifying the hypothesis (Simpson et al. 

1960). 

In comparing winter and summer collections of Polinices duplicatus, the chi- 

square was 4.7; Thais haemostoma collections had a chi-square of 13.3; results 

of Busycon spiratum and B. contrarium yielded no significant differences. In the 

case of the first two, the null hypothesis that there 1s no difference must be rejected 

as there is a difference between inhabited and non-inhabited shells. As the latter 

two do not yield the same results, it might be postulated that more robust shells 

or shells with thicker walls (i.e., Polinices duplicatus, Thais haemostoma) could 

survive in a relatively intact condition from summer to winter months while more 

delicate shells Gi.e., Busycon spiratum, B. contrarium) would probably be lost. 

Therefore the shells Polinices duplicatus, Thais haemostoma were probably avail- 

able for habitation late in the hermit crab season while both species of Busycon 

were available after the hermit crabs left the intertidal environment in winter. 

The second null hypothesis to be tested is that there are no preferred settling 

areas on the hermit crab occupied shell. Tables 1 and 2 list five potential encrusting 

sites. Again a 2 x 2 contingency table was set up to measure the significance using 

chi-square with N as | degree of freedom with a correction for small sample size. 

In all the samples tested, there was no significant difference in selection of the 

inner surface, outer lip or inner lip (columella area). The values for the outer lip 

and bryozoan colony covering the shell varied from chi-square values of 2.194 

to 2.4, or less than 75% but greater than 50% chance that the association was not 

random. In one instance (Tegut/a funebralis, Busycon spiratum) there was less than 

50% chance. The chi-square values for the inner lip (columella) and bryozoan 

colony covering the shell were 2.5 to 5.5, or greater than 75% but less than 99% 

chance. 

The second null hypothesis figures are not as convincing in regards to prefer- 

ential settling sites, but still indicate a greater than 50% chance that settling is not 

random with the hypothesis not well supported. It may be that all we can state 

is that there is a strong tendency for one site to be selected over another for 

encrustation. } 

Discussion 

Results of the present study offer insights on several aspects of the biotic as- 

sociations: crab and bryozoan behavior in selecting a shell or other substrate; 

factors possibly influencing bryozoan encrusting sites; and identification of hermit 

crab occupied shells in the fossil record. 

Shell Availability 

Hermit crab require a shell for protection from predation and environmental 

stress, as well as a place to brood their eggs (Back et al. 1976). If a hermit crab 

does not have a shell, it will not feed (Allee and Douglis 1945) and will subse- 

quently die. In most environments suitable for hermit crabs, shells available for 

occupation are limited (Bertness 1981) because empty shells are rapidly broken 

up in the high energy environment. Hermit crabs will either occupy broken shells 

(Fotheringham 1976) or shells that are too small (Conover 1976, 1978). Polinices 

and Thais shells may survive into the winter but the more fragile Busycon shells 

would not. 
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Shell Alternatives 

Some hermit crab species have found an alternative to occupying a suboptimal 

shell. The European species Pagurus prideauxii is found in association with the 

cloak anemone Adamsia palliata, and as the crab grows the anemone spreads 

itself like a cloak over the crab. In a west African association, the edge of the 

bryozoan colony extends over the aperture (Cook 1964) and thus serves to cover 

the crab as the crab grows. 

Shell Preference 

Hermit crabs were shown to prefer a clean shell over an encrusted shell if it is 

available (Grant and Ullmer 1974). Clean shells would be lighter in weight than 

heavily encrusted shells, but an eroded “‘second hand” shell, could be weakened 

by burrowing invertebrates or algae, or by abrasion. 

Bryozoan larval Settlement 

Bryozoans do not haphazardly select a substrate (Rogick and Croasdale 1949; 

Crisp 1973, 1974; Crisp and Ryland 1960; Ryland 1959, 1962, 1976; Pinter 1969; 

J. D. and D. F. Soule 1977; Cancino 1986). Clean substrate is first conditioned 

by the appearance of microflora (J. D. and D. F. Soule 1977); then if the substrate 

is unusually slippery or rough, the bryozoan can alter the substrate to a limited 

extent. Stebbing (1972) stated that a microbial surface flora could determine zones 

of favorability, at least on algal fronds. In species such as Macrocytis (giant brown 

kelp) which produce large amounts of mucus, it was noted that the area in front 

of the growing colony is altered with apparent mucus removal (Morris 1975). 

Bryozoans that encrust shells may etch the surface (Morris 1975) in an identifiable 

manner. Although J. Soule (1973) analyzed the bryozoan adhesive of several 

species, no worker has determined how the bryozoan cleans or etches the substrate. 

Nutrient Availability: Particulate and Dissolved Organic Matter 

If microbial surface flora could determine favorable encrusting zones in shells, 

then what factors would attract the microflora, at least on the inner surface of the 

upper lip of the gastropod shell occupied by a hermit crab? As the crab is tearing 

prey apart and feeding, or filtering out particulate matter, food debris could be 

lodged inside the shell along with fecal material, and amino acids would also be 

present (Ferguson 1982; Manahan 1983; Jaeckle 1985). These materials would 

offer nutrition to various microbial groups and to bryozoans. In studies on bryo- 

zoan nutrition (Summarized by Ryland 1976; Best and Thorpe 1986a, b), it has 

been shown that bryozoans are capable of feeding on a variety of organic material. 

Net accumulation of amino acids by gymnolaemate bryozoans has been dem- 

onstrated by Stephens (1981). 

It seems plausible then that bryozoans encrusting shells occupied by hermit 

crabs would tend to settle where an optimal concentration of food is available. 

As indicated in Tables 1, 2 and 3, as well as by the chi-square values discussed 

above, this is very likely to be on the inner surface of the outer lip or on the inner 

lip. A few bryozoans will settle elsewhere, although the variables which influence 

site selection are not entirely understood. 
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The Fossil Record 

Hyden and Forest (1980) stated that hermit crabs are seldom preserved as 

fossils due to poor calcification as well as the delicate skeletal structure and the 

high energy environment in which they live. Although hermit crabs, as fossils, 

are known to exist at least from the Jurassic (Glaessner 1969), the record is sparse. 

Indications of hermit crab occupation by a bryozoan encrusted shell are as follows: 

development of hummocks or monticules on the bryozoan colony surface; mul- 

tialaminar growth that surrounds the shell, but does not completely cover the 

aperture; and growth into the shell aperture [P. L. Cook formerly British Mus. 

(Nat. Hist.), pers. comm. and P. Taylor, British Mus. (Nat. Hist.), pers. comm.]. 

Palmer and Hancock (1973) noted characteristic flat areas on the shell and dis- 

continuities in the bryozoan colonies due to the hermit crab dragging the shell. 

To this we add another factor, the position of the initial encrusting site, as an 

indication of hermit crab occupation. 

Fossil shells that have been inhabited by hermit crabs may also serve in inter- 

pretation of paleoecology and stratigraphy. A fossil assemblage is not an intact 

community, due either to nonpreservation (Lawrence 1968) or transport. Hermit 

crabs modify shell assemblages by affecting the physical transport of the shell 

(Frey 1987). Identification of a shell as having been occupied by a hermit crab 

indicates a previously shallow water environment. Thus, even though the shell 

may have been transported to or from deeper waters, its final resting place could 

be considered shallow water if other associated fossil specimens also indicated 

the same conditions. 

Symbiosis? 

Are there, then, mutually beneficial effects of the association between bryozoans 

and hermit crabs? The bryozoan colonies, as they expand over the gastropod shell 

surface, might serve as camouflage. The preferential selection by hermit crabs of 

clean shells over shells containing epibiota mentioned above tends to negate the 

concept of a symbiotic relationship (Palmer and Hancock 1973) in which the 

bryozoans benefit the hermit crab by providing camouflage. The advantages for 

the bryozoans are more compelling; the sessile colonies become mobile, thereby 

providing them with protection from environmental changes in temperature, 

dissolved oxygen, and salinity, or from siltation. The association offers a suitable 

substrate with opportunities to reach new substrates for colonization. Bryozoans 

may feed on organic debris produced by the hermit crab in the form of fecal 

pellets, particles of food, microbiota, or dissolved organic matter. However, the 

limited number of bryozoan species found on hermit crab occupied shells indicates 

that they are restricted to those that can tolerate intermittent exposure to the air 

by the intertidal movements of the hermit crabs in exchange for the benefits 

provided. 

Conclusions 

There are distinctive differences in bryozoan settling patterns in hermit crab 

occupied shells and non-occupied shells. Results were statistically significant for 

Polinices duplicatus and Thais haemostoma, but not for the more fragile Busycon 

Spp. 
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The hermit crab occupied shells of Tegula funebralis in California were colo- 

nized exclusively by Hippothoa hyalina whereas Texas shells of Polinices dupli- 

cata, Thais haemostoma and Busycon spp. were inhibited exclusively by Mem- 

branipora arborescens, regardless of the presence of other epibiota. This further 

confirms the ability of certain bryozoan species to select preferred substrates. 

Pattern of encrustation can be used to determine whether fossil or Recent shells 

were once inhabited by hermit crabs, indicating their shallow water habitat. 

The benefits to the bryozoan species able to survive in the intertidal environ- 

ment include access to a food supply, and mobility to protect from siltation or 

poor environmental conditions. The relationship is probably not symbiotic since 

predators are probably attracted to motion of the crabs rather than to the surface 

appearance. As discussed, the hermit crab will provide organic detritus and amino 

acids within the micro-habitat of the bryozoan in the apertural area of shell. These 

factors can be helpful to paleontologists in interpreting the fossil records. 
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Abstract. — A total of 213 macrophyte taxa was identified from 21 rocky intertidal 

sites in southern California, with 194 identified to the level of species, 14 to genus, 

and 5 to family. Eight southern California taxa were added to distributional records 

reported in the Marine Algae of California. The number of taxa ranged from 107 

at Government Point, Santa Barbara County, to 51 at West Point, San Nicolas 

Island. No significant differences (Mann-Whitney two-sample test) in number of 

taxa were obtained between island and mainland or between sand-influenced and 

sand-free intertidal sites. Similarly, no significant difference (Kruskal-Wallis non- 

parametric ANOVA by ranks) was found in the numbers of taxa collected among 

sites exposed to warm, intermediate and cold water masses. It appears that site- 

specific combinations of environmental conditions determine species richness at 

southern California intertidal sites rather than large-scale patterns in abiotic en- 

vironmental parameters. 

Southern California coastal waters are characterized by a rich flora of benthic 

marine macroalgae and seagrasses. The relatively large coastal area, which includes 

a total of ca. 917 km of shoreline distributed over a latitudinal range of only ca. 

212 km, exhibits much variation in exposure to wave action, ocean water masses, 

thermal regimes, and in substratum composition. This high degree of habitat 

heterogeneity 1s believed (Murray et al. 1980; see also Abbott and Hollenberg 

1976) to contribute strongly to the high diversity of macrophytes known to occur 

in southern California waters. 

Despite its taxonomic richness, knowledge of the southern California marine 

macrophyte flora is still best described as being in the early stages of exploration 

(see Murray 1974). Marine macroalgal floristics of southern California were ad- 

vanced dramatically by Abbott and Hollenberg (1976) who provided taxonomic 

descriptions, distributional data and taxonomic keys for 669 species of California 

seaweeds. Unfortunately, little additional progress has been made in our taxo- 

nomic understanding of southern California seaweeds since Abbott and Hollen- 

berg’s (1976) classic work, and today floristic knowledge is poorly developed for 

most of the southern California region. This is particularly true for the seaweeds 

occurring on the relatively pristine and biogeographically 1mportant Southern 

California Islands where taxonomic contributions during the last 12 years have 

been limited to species lists provided with ecological (Littler 1979) and geograph- 

ical (Apt et al. 1988) surveys. This situation contrasts greatly, for example, with 
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the considerable progress that has been made (e.g., Scagel et al. 1986; Gabrielson 

et al. 1987) in advancing our understanding of the systematics of the seaweeds of 

northern Washington, British Columbia and southeast Alaska. 

This paper provides lists of marine macroalgae and seagrasses collected from 

21 southern California intertidal sites during the 1975-1979 ecological sampling 

program sponsored by the U.S. Department of Interior, Bureau of Land Man- 

agement (now referred to as Minerals Management Services). Previous versions 

of these records have been used for distributional analyses of macrophytes oc- 

curring in southern California waters (Murray et al. 1980; Murray and Littler 

1981). However, the species lists generated for these sites are currently available 

only in unpublished governmental reports. These distributional data for intertidal 

seaweeds and seagrasses are of particular value considering the paucity of recent 

floristic information on southern California macrophytes. 

Methods 

Marine macroalgae and seagrasses were collected from 21 rocky intertidal sites 

located in southern California between Point Conception and the United States- 

Mexico border (Fig. 1; Table 1). Seven stations were located on the mainland and 

14 were established on the eight Southern California Islands or Channel Islands 

which have been divided (Philbrick 1967) into Northern (San Miguel, Santa Rosa, 

Santa Cruz, and Anacapa) and Southern (San Nicolas, Santa Barbara, Santa Cat- 

alina, and San Clemente) groups. A minimum of one station was established on 

each island, with seven stations located on members of the Northern and seven 

on members of the Southern Channel Island groups. 

Study sites encompassed the geographic extent of the southern California region 

and consisted of areas representative of protected or semi-protected rocky shore- 

line. Collections were not made at sites that received consistently heavy wave 

action, such as characterizes much of the central and northern California coast 

(see Ricketts et al. 1985) which receives direct exposure to ocean swells. Similarly, 

sites varied as to the composition and stability of the substratum, and exposure 

to ocean currents and seawater temperature regimes. 

The study sites (Fig. 1; Table 1) were visited from one to several times between 

July 1975 and July 1979. Macrophyte collections at each site were made over a 

period of at least three days and included not only taxa found in ecological samples, 

but also specimens of conspicuous forms observed in the vicinity of the study 

areas. Details of the ecological sampling program including the visitation dates 

for each site are provided elsewhere (Littler 1977, 1978, 1979, 1980a, b; Littler 

and Littler 1985) and, hence, will not be described here. 

Because only 12 of the 21 study sites were sampled throughout the year (Summer, 

fall, winter, spring), seasonally-occurring macrophyte taxa were likely missed at 

the sites subjected to less intense seasonal sampling. Our observations at the 12 

sites where seasonal sampling occurred suggest that relatively few intertidal mac- 

rophytes are completely absent from the southern California shoreline during any 

particular season. However, we did record significantly fewer numbers of taxa at 

the 9 sites subjected to incomplete seasonal sampling (Crook Harbor, San Miguel 

Island; Prisoner’s Harbor, Santa Cruz Island; South Coast and North Coast, Ana- 

capa Island; West Point, San Nicolas Island; Catalina Harbor, Santa Catalina 

Island; Northwest Coast, San Clemente Island; Paradise Cove, Los Angeles Coun- 
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Fig. 1. Locations of the 21 rocky intertidal sites. Refer to Table 1 for numerical key to sites. 

ty; and, Dana Point, Orange County) compared with the 12 sites where collections 

were made throughout the year (65.0 + 9.4 vs. 84.8 + 13.8 S.D.; Mann-Whitney 

two-sample test, U = 94.0, n, = 12, n, = 9, P < .01). Analyses of taxa numbers 

using only data from the 12 sites where seasonal sampling was performed produced 

statistical results identical to those where all 21 sites were considered. Conse- 

quently, the numbers of taxa reported herein and employed in statistical com- 

parisons are the “raw” recorded values and have not been weighted to reflect 

sampling frequency. 

Macrophyte collections generally were preserved in 3—5% Formalin-seawater 

as suggested by Abbott and Tsuda (1985) and returned to the laboratory for 

identification and processing. Specimens were identified by the authors; most 

identifications were confirmed by Dr. Isabella A. Abbott, currently of the Uni- 

versity of Hawaii. For selected macrophytes such as crustose algae and members 

of taxonomically difficult genera (e.g., Cladophora, Ceramium, and Polysiphonia), 

identification to the species level usually was not performed due to time con- 

straints. Instead these specimens have been categorized under higher taxonomic 

units, i.e., genus or family. Herbarium specimens of most taxa were prepared and 

deposited in the U.S. National Herbarium, National Museum of Natural History, 

Smithsonian Institution. 

Results 

A total of 213 taxa was identified from the 21 rocky intertidal sites, with 194 

identified to the species level, 14 to the level of genus and 5 to the level of family. 

A list of the taxa and the sites at which they were collected is presented in Table 2. 
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Table 1. Names, locations, characteristics, and numbers of taxa for the 21 rocky intertidal sites. 

Floristic affinities are derived from Murray and Littler (1981). 

Sand or Number 

Site Latitude and cobble of 

number Site location longitude Floristic affinity influence taxa 

Island sites 

1 San Miguel Island, 34°02'55"N cold yes 85 

Cuyler Harbor 120°20'08”W 

2 San Miguel Island, 34°01'28"N cold no 62 

Crook Point 120°22'43”W 

3 Santa Rosa Island, 33°53 3,12N cold yes 78 

South Point 120°06'3 1” W 

4 Santa Cruz Island, 33°57'43"N intermediate no 89 

Willows Anchorage 119°45'16”"W 

5 Santa Cruz Island, 34°01'14"N intermediate no 61 

Prisoners Cove 119°41'14"W 

6 Anacapa Island, 34°00'19"N warm no 77 

South Coast 119°25'05”"W 

and 

34°00'24"N 

119°24’38"W 

7 Anacapa Island, 34°00'31"N warm no 58 

North Coast 119°24'21"W 

8 San Nicolas Island, 33°12'54’"N cold yes 98 

Dutch Harbor 119°28'22”"W 

9 San Nicolas Island, 33°16'43'"N cold no Sil 

West Point 119°34'41"W 

10 Santa Barbara Island, 33°28'43'N intermediate no 92 

Cave Canyon 119°01'36"W 

11 Santa Catalina Island, 33°26'47'"N warm no 91 

Fisherman Cove 118°29'04”"W 

12 Santa Catalina Island, 33°25'42"N warm no 69 

Catalina Harbor 118°30'42”W 

13 San Clemente Island, 33°00'06"N warm no 79 

Wilson Cove 118°33'03"W 

14 San Clemente Island, 33°58'06"N warm no 80 

Northwest Coast 118°34'18"W 

Mainland sites 

15 Government Point, 34°26'35’N cold yes 107 

Santa Barbara County 120°27'06"W 

16 Coal Oil Point, 34°24'27"N intermediate yes 95 

Santa Barbara County 119°52’40”"W 

17 Paradise Cove (Malibu), 34°00'42"N intermediate yes 68 

Los Angeles County 118°47'30"W 

18 Whites Point, 33°43'11"N warm yes 58 

Los Angeles County 118°19'39"W 

19 Corona Del Mar, 33°35'14"N warm yes 65 

Orange County 117°51'54”"W 

20 Dana Point, 33235) 250N warm yes 59 

Orange County 117°42'44"W 

21 Ocean Beach, 32°44'35’N warm no 80 

San Diego County ESHA SE AW 
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The number of taxa identified for each station varied from 107 (Government 

Point, Santa Barbara County) to 51 (West Point, San Nicolas Island) and averaged 

76.3 + 15.5 S.D.: no particular relationship between the number of species col- 

lected and the main abiotic features of the sites were apparent. Statistically sig- 

nificant differences were not obtained either between island and mainland (76.4 

+ 14.3 vs. 76.0 + 18.9; Mann-Whitney two-sample test, U = 51.0, n, = 14, 

n, = 7, P > .05) or between sites characterized (see Murray et al. 1980; Murray 

and Littler 1981) as exposed to water masses of warm (71.6 + 11.5), cold (80.2 

+ 21.2) and intermediate (81.0 + 15.4) seawater temperatures (Kruskal-Wallis 

nonparametric ANOVA by ranks, H = 1.85, df = 2, P = 0.60). Similarly, no 

significant difference in numbers of taxa was obtained (Mann-Whitney two-sample 

test, U = 62.5, n, = 9, n, = 12, P > .05) when comparisons were made between 

sites identified (Littler et al. 1989) as mostly receiving exposure to seasonal sand 

inundation or cobble movements (79.2 + 18.0) and those essentially free of sand 

or cobble influence (74.1 + 13.7). 

Discussion 

The results of this study significantly augment existing distributional records 

of southern California macrophytes by providing lists of intertidal floras for 14 

island and 7 mainland sites. Although floral lists for numerous southern California 

mainland sites exist (e.g.. Dawson 1959, 1965; Widdowson 1971; Nicholson and 

Cimberg 1971; Thom and Widdowson 1978; Thom 1980), prior to our study 

intertidal floras of island stations were known for only San Clemente (Sims 1974; 

Littler and Murray 1975; Murray and Littler 1977), Santa Cruz (Seapy and Littler 

1982: Apt et al. 1988) and San Nicolas (Caplan and Boolootian 1967; Littler et 

al. 1983) Islands. Additionally, this study adds eight new taxa (specimens are on 

file at the National Herbarium) to the list of algae known to occur in southern 

California waters based on distributional data provided by Abbott and Hollenberg 

(1976). Two of these (Ceramium viscainoense and Carpopeltis divaricata) are not 

listed for the California flora by Abbott and Hollenberg (1976), but appear in a 

list of algae collected from Santa Cruz Island (Apt et al. 1988). They represent 

species that appear to have more southerly distributions. Each of the remaining 

six taxa (Besa papillaeformis, Hymenena flabelligera, Mastocarpus jardinii, Mi- 

crocladia borealis, Monostroma zostericola, and Porphyra lanceolata) are species 

with more northerly, cold water distributional centers. These species appear in 

southern California waters at sites most proximal to the colder waters of the 

California Current, i.e., on San Miguel and San Nicolas Islands or at Government 

Point. With the exception of Porphyra lanceolata, which was found in southern 

California waters by Nicholson and Cimberg (1971), none of these taxa has ap- 

peared in recent species lists (e.g., Widdowson 1971; Thom and Widdowson 1978; 

Thom 1980; Apt et al. 1988) of southern California intertidal seaweeds. 

Prior to our research, few studies of intertidal algae on the relatively isolated 

offshore islands had been performed (see Murray 1974). Consequently, we antic- 

ipated that our study, besides providing new, site-specific lists, would result in 

numerous additions to the southern California flora and perhaps, several new 

species. Although we generated new distributional records for individual islands, 

our sampling program produced only eight additions to Abbott and Hollenberg’s 

(1976) list of species occurring in southern California waters. This suggests that 
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the list of intertidal macrophytes comprising the southern California flora likely 

will expand only after careful biosystematic study. However, it is probable that 

many species as yet unreported for southern California waters, particularly those 

with distributional centers north of Point Conception, eventually will be identified 

from subtidal habitats in southern California. Stewart (1984) has observed that 

several species common in the low intertidal zone along central California shores 

occur in deep subtidal sites in southern California, indicating that colder water 

seaweeds can survive at more southerly latitudes by occupying deeper water 

habitats. Her observations are supported by Lewbel et al. (1981) who found that 

the shallow subtidal (ca. 20 m) fauna and flora of Cortes and Tanner Banks, two 

seamounts located ca. 180 km west of San Diego, had close affinity with the cold 

water, central California biota. 

In examining the distributions provided in Table 2, in conjuction with our own 

observations and information provided by Abbott and Hollenberg (1976) and 

Abbott and North (1972), it is possible to identify seaweeds that serve as potential 

indicators of cold or warm water intertidal habitats in southern California. Cold 

water sites, such as those at Government Point and on San Nicolas and San 

Miguel Islands, appear to support populations of seaweeds such as Analipus ja- 

ponica, Fucus gardneri, Laminaria setchellii, Callithamnion pikeanum, Iridaea 

cordata var. cordata, Neorhodomela larix, and Laurencia spectabilis. In contrast, 

intertidal habitats of sites characterized by exposure to warm water masses, such 

as occur for much of Santa Catalina and San Clemente Island, are often uniquely 

characterized by populations of Colpomenia sinuosa, Dictyopteris undulata, Ei- 

senia arborea, Endarachne binghamiae, Halidrys dioica, Sargassum agardhi- 

anum, Zonaria farlowii, Chondria californica, Jania tenella, Laurencia snyderiae, 

and Pterocladia capillacea. 

The abiotic environmental features of greatest importance in determining the 

abundances of macrophyte populations and the structure of macrophyte com- 

munities in southern California intertidal habitats appear to be the frequency and 

extent of sand scouring and accumulation on the rocky substratum, and the 

thermal characteristics of the water masses to which a site is exposed (Littler, et 

al. 1989). However, our analyses indicate that there is no relationship between 

species richness and the thermal regime or the degree of sand influence for in- 

tertidal sites in southern California. Additionally, species richness does not vary 

significantly between island and mainland sites. These findings suggest that the 

richness of rocky intertidal macrophyte floras in southern California is controlled 

by site-specific factors and does not conform to patterns based on large-scale 

gradients of abiotic environmental features or insular geographical position. 
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Abstract. — Fossil cotton rats, genus Sigmodon, were recovered from the super- 

posed Vallecito-Fish Creek beds of the Palm Spring Fm. in Anza-Borrego State 

Park, California. Sigmodon minor is the common cotton rat species throughout 

the late Pliocene Layer Cake and Arroyo Seco faunal intervals. A new species, S. 

lindsayi, characterized by large size and a suite of features of the first lower molar, 

appears first in the early Pleistocene Vallecito Creek faunal interval, extending 

from collecting zone 53.8 to zone 58.8, from approximately 610 to 305 meters 

from the top of the sequence. Sigmodon lindsayi is replaced in zone 57.8, at about 

the 366 meter level, by Sigmodon minor, but appears once again in zone 58.8, at 

approximately the 305 meter level, above which it is not recorded. There is no 

evidence that the two species were sympatric in the Anza-Borrego sequence, but 

it is likely. The replacement pattern is interpreted as either 1) incorrect strati- 

graphic assignment of some specimens or 2) the result of competition and possibly 

habitat modification. 

Cotton rats are by far the most commonly recovered small mammals in many 

deposits of late Pliocene and Pleistocene age throughout the southern United 

States. Because there are often enough specimens for statistical treatment, and 

additionally because there is a large body of neontological data from extant species 

for consultation, cotton rats make ideal subjects for evolutionary and paleoeco- 

logical study (Martin 1979, 1984, 1986). The occurrence of cotton rats in the 

Palm Spring Formation of the Anza-Borrego Desert is important, as this is one 

of the few rock sequences in the United States where cotton rat remains have 

been recovered in stratigraphically superposed beds that span a considerable amount 

of time. Consequently, macroevolutionary and macroecological patterns can be 

documented. This paper represents the results of an initial taxonomic study of 

the Palm Spring Fm. cotton rat remains, and reports the presence of a new species 

from the upper, early Pleistocene Vallecito Creek faunal zone. The geology, col- 

lecting horizon information, and magnetostratigraphy of the Vallecito-Fish Creek 

sequence was described by Downs and White (1968) and Opdyke et al. (1977). 

The planed and prismatic dentition of cotton rats is more akin in function to 

that of their northern ecological analogues, the arvicolines, and rather than use 

the cumbersome cricetine dental terminology of Hershkovitz (1962), we have 

chosen to use instead the arvicoline terminology of Van der Meulen (1978) for 

the first lower molar. Homologies are given in Fig. 1. Measurement methods 

(ollow Martin (1979) and Czaplewski (1987). Both occlusal and basal lengths are 

80 
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Fig. 1. Topography of a Sigmodon hispidus \eft first lower molar. BRA = buccal reentrant angle, 

LRA = lingual reentrant angle, acd = anteroconid, pro = protoconid, met = metaconid, hyp = 

hypoconid, ent = entoconid, post = posterior cingulum or posterolophid. Homologies of reentrant 

angles to folds, as published by. Hershkovitz (1962) and others, are as follows: BRAI = major fold, 

BRA2 = first minor fold, LRA1 = second primary fold, LRA2 = first primary fold, LRA3 = first 

secondary fold. 

provided for consistency (see Tomida 1987:103). Abbreviations are as follows: 

LACM = Los Angeles County Museum, MSU = Michigan State University, L = 

left, R = right, upper and lower molars (M) indicated by super- and subscript 

numbers, respectively. The term “zone” as used throughout this paper refers to 

a specific collecting horizon (level) of Downs and White (1968) in the Vallecito- 

Fish Creek sediments. 

Systematic Paleontology 

Order Rodentia Bowdich, 1821 

Family Cricetidae Rochebrune, 1883 

Sigmodon Say and Ord, 1825 

Sigmodon lindsayi, new species 

Holotype. —LACM 124161, LM,, from zone 57.6 (Locality LACM 1114). 

Paratypes.— Zone 57.6 (Locality LACM 1114): LACM 124276, LM?; 124136, 

RM,; 124117, RM,; 3402, LM,; 124154, RM!; 124144, RM!; 124122, LM,; 

124146, RM!; 124139, LM?; 124123, LM,; 124132, LM,; 124278, LM?; 124280, 

LM?; 124260, RM?; 124270, RM’; 124266, LM,; 124263, RM?; 124261, RM7?; 

124166, RM,; 124282, RM; 124268, RM’; 124168, RM; 124283, LM’; 124169, 
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LM?; 124272, LM?; 124265, RM?; 124264, RM?; 124129, RM?; 124148, RM;; 

124187, LM’; 124130, RM?; 124190, LM?; 3400, RM; 3397, LM,; 124126, LM,; 

124120, LM,; 124135, RM?; 124111, RM,; 124140, LM?; 124188, RM!; 124138, 

LM?; 124191, RM,; 124134, RM3?; 124193, LM,; 124192, LM,; 124152, LM!; 

124157, LM!; 124162, RM;; 124153, LM!; 124143, RM’; 124133, RM3?; 124124, 

LM,; 124155, LM!; 124131, RM>. 

Horizon and type locality.—Collecting zone 57.6 (Locality LACM 1114) of 

Downs and White (1968), approximately 366-305 meters from top of the Val- 

lecito-Fish Creek sequence, Palm Spring Formation, Anza-Borrego Desert State 

Park, San Diego Co., California; early Pleistocene (early Irvingtonian land mam- 

mal age). 

Referred specimens.—The following specimens were also recovered from the 
Vallecito Creek-Fish Creek sequence of the Palm Spring Formation. 

Zone 53.8 (Locality LACM 4963): LACM 122964, RM,. 

Zone 55.5 (Locality LACM 1615): LACM 124242, RM!; 124238, LM,; 124251, 

LM!-M?; 124257, LM;; 124258, LM?; 124248, part R mandible with M,-M,; 

124252, L maxillary fragment with M!-M?-M?; 124233, RM?; 124249, part L 

mandible with M,-M,-M;; 124234, LM,; 124259, LM,; 124235, RM?; 124236, 

LM?; 124241, LM!; 124240, RM,. 

Zone 55.9 (Locality LACM 1297): LACM 6940, part R mandible with M,-M3. 

Zone 57.7 (Locality LACM 1461): LACM 124197, part R mandible with M,- 

M,-M,. 

Zone 58.8 (Locality LACM 1114): LACM 3396, RM!; 7037, RM,; 3399, LM;; 

3401, RM. 

Diagnosis. —Size large, teeth hypsodont (Table 1, Fig. 2): anteroconid of M, 

wide, anteroposteriorly flattened, symmetrically extended both labially and lin- 

gually, and with an occasional enamel atoll in teeth with little wear; metaconid 

often bulbous and posteriorly directed; protoconid often triangular; lingual reen- 

trant angle (LRA) 2 deep and anteriorly directed; first lower molar with either 

three or four well-developed roots. 

Etymology.—Named in honor of Everett H. Lindsay, whose research on the 

correlation of upper Pliocene and Pleistocene North American sediments provides 

a modern framework for evolutionary studies. 

Description. — The following description applies to both the holotype and para- 

type material. Measurements of the dentition are presented in Table 1. 

M,: The anteroconid is large and, in teeth with moderate wear, anteroposteriorly 

flattened (Fig. 3). It has both labial and lingual extensions. Reentrant angles are 

narrow and similar to most other cotton rat species except modern Sigmodon 

leucotis, in which the reentrant angles are wide and the M, appears long and 

narrow. In teeth with little or moderate wear, LRA3 and BRA2 directly abut, 

with only a thin isthmus of dentine connecting the anteroconid and protoconid. 

This isthmus may widen in heavily worn teeth. Lingual reentrant angle 2 is often 

deep and anteriorly extended, where it may nearly touch the enamel wall of BRA2. 

In specimens from Zone 57.6, the metaconid is bulbous and posteriorly directed, 

and the protoconid may appear triangular in outline. An enamel atoll is present 

in the anteroconid of two of eight specimens, lying just above the junction of 

BRA2 and LRA3. The atoll is lost with moderate wear. In one specimen, LACM 

124111, the anteroconid is isolated from the protoconid-metaconid complex (Fig. 
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Fig. 2. Crown height (mm) of the first lower molar as a function of occlusal area (mm?) in Sigmodon 

and Prosigmodon species (modified from Martin 1979 and Czaplewski 1987). Inset shows method of 

taking measurements: | = occlusal length, ll = occlusal width, lll = crown height at metaconid. V = 

S. minor medius (Verde Formation), A = S. minor medius, Rexroad Loc. 3, B = S. curtisi, Inglis IA, 

C = S. libitinus, Haile XVIA, D = S. bakeri, Coleman IIA, E = S. ochrognathus (extant), F = S. 

leucotis (extant), G = S. hispidus, (Reddick IA), H = S. lindsayi, Vallecito Creek. Horizontal and 

vertical lines represent the observed ranges of both measures as they pass through the grand mean. 

Open circles = Prosigmodon holocuspis, x = P. chihuahuensis. 

3). This is unusual, but it 1s also occasionally expressed in teeth of extant cotton 

rat species. 

The first lower molar of S. /indsayi has either three or four roots. The labial 

root is well developed, but the lingual root may be absent. Five of eight specimens 

in which the root pattern could be determined had three roots, the others four. 

The single first lower molar from zone 53.8 (LACM 122964) is similar to S. 

lindsayi in size and overall morphology, but two features set this particular spec- 

imen apart from those typical for the species. First, the anteroconid, although 

large and somewhat laterally expanded, is not developed in this regard to the 

extent as in those from zone 57.6. Secondly, the tooth has only a tiny third (labial) 

accessory root. This is in contrast to the teeth in zones above 53.8, in which at 

least three, and occasionally four roots are well developed. It is only provisionally 

referred to S. lindsayi. 

Additionally, in one very lightly worn M, from zone 55.5 (LACM 124238) 
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Fig. 3. First lower molars of Sigmodon lindsayi, new species, and S. mascotensis. S. lindsayi: A, 

LACM 124161, holotype LM,, 19.2; B, LACM 124124, unworn, possibly embryonic LM,, x 16.9; 

C, LACM 124111, RM, with slightly eroded anteroconid-notice separation of metaconid from an- 

teroconid, x 17.0; D, LACM 124117 RM,, <18.6; E, LACM 124123 LM,, heavily worn, x 18.6. S. 

mascotensis: F, MSU 12531, LM,, from a female, collected 6 mi. W Autlan, 4400 ft, Jalisco, Mexico, 

x 15.0. 

LRA2 is more perpendicular to the midline of the tooth and the tip of the meta- 

conid does not, as a result, appear to extend posteriorly. This may be a function 

of wear or it could represent a slight morphological change within S. lindsayi 

populations through time. 

M,-M;: These teeth do not differ in any appreciable way from those of most 

cotton rats, such as S. curtisi nd S. hispidus. Reentrant folds are relatively deep 

and narrow, and the anterior cingulum is moderately to well developed on both 

teeth, as it is in all cotton rats except S. bakeri and S. peruanus (Martin 1979). 

M!-M?-M?: Likewise, the upper dentition is not diagnostic. These teeth are 

relatively large (Table 1), but demonstrate no specific characters which would 

allow separation from other middle Pleistocene species, such as S. curtisi or S. 

hudspethensis. 

Comparisons. —Sigmodon lindsayi was approximately the size of S. curtisi (Mar- 

tin 1979, 1986). Utilizing Martin’s (1984) formula for estimating body mass in 

cricetine rodents from M, length, S. /indsayi averaged 76.6 g, with a range of 

55.9-116.2 g. Occlusal length was used for these calculations. 

The enlarged, symmetrically flattened and laterally extended anteroconid on 

M, is a feature that we have seen only on one specimen of the extant Sigmodon 

mascotensis, the Jaliscan cotton rat. The M, of MSU 12531, from Jalisco, Mexico, 

shows a great deal of similarity to the holotype of S. lindsayi (Fig. 3). However, 

the anteroconid is not as greatly extended laterally in two other specimens available 

for study. A fourth specimen of S. mascotensis, with the anterior portion of M, 

broken off, could be added to the analysis for a study of root count. Four well- 

developed roots are present on all specimens. This is in contrast to the condition 

in S. lindsayi, in which three roots are present in more than half the specimens. 
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An enamel atoll appears on the anteroconid of other cotton rat species, but is 

generally rare. We have not, in any case, seen it developed to the same extent in 

any other species as it was in the two specimens of S. /indsayi. 

Discussion 

Sigmodon lindsayi is an extinct member, along with S. curtisi, S. hudspethensis 

and S. /ibitinus, of the /eucotis species group of cotton rats (see Martin 1979, 1986 

for details of taxonomy), characterized by only three or a combination of three 

and four roots on the first lower molar. All extant cotton rats in North America 

except S. /eucotis have four well-developed roots on M, and are members of the 

hispidus species group. Species exclusively with four roots on M, are first seen in 

the fossil record during the late middle Pleistocene. The evidence suggests that 

the four-rooted M, evolved from the three-rooted form. 

The teeth of S. /indsayi are more high crowned than other extinct members of 

the /eucotis species group (Table 1; Fig. 2). Coupled with the high percentage of 

first lower molars having four roots, it is conceivable that S. /indsayi was close 

to the hispidus species grade of dental evolution. 

One of the more interesting questions is whether or not the hispidus species 

group evolved from a single common ancestor of the /eucotis group, or if hispidus 

species group members evolved independently from two or more /eucotis group 

species. If the latter, then it may be that S. /indsayi is ancestral to S. mascotensis. 

Specimen LACM 122964, a lower right M, from zone 53.8, which we have 

tentatively referred to S. /indsayi, deserves further comment. It is, unfortunately, 

the only cotton rat specimen recovered from zone 53.8. Zone 53.8 occurs at 

approximately the 610 meter level in the Vallecito-Fish Creek sequence, well 

within the Vallecito Creek faunal zone. Zone 55.5, the next overlying interval 

which contains S. /indsayi, is at about the 427 meter level. We do not know how 

much time occurred during those 183 meters of sedimentation, because there 1s 

some doubt about the entire duration of the Vallecito Creek interval (Opdyke et 

al. 1977). However, if further collecting confirms the dental characters of the 

cotton rat at zone 53.8, then it may be that this zone represents the transition 

from a smaller, more generalized species such as S. minor to a member of the 

leucotis species group. In size and hypsodonty, LACM 122964 is similar to small 

specimens of S. /indsayi from higher zones. It is for this reason that we provisonally 

refer the specimen to the latter species. However, accessory roots are minimally 

developed on M,, as in S. minor, and the anteroconid of M, is also not as 

exaggerated as it is in typical S. /indsayi first lower molars. 

We will present a detailed analysis of morphometric change in cotton rat den- 

titions from the Anza-Borrego sequence elsewhere, but it is interesting to note 

that Sigmodon minor, which is ubiquitous through more than 3048 meters of 

sediment representing 2.0 million years prior to the first appearance of S. lindsayi, 

is not simply replaced by the latter species during the time represented by the 

Vallecito Creek sediments. Sigmodon lindsayi appears at zone 55.5 (or 53.8), and 

persists through zone 57.7, but it then is absent from zone 57.8, at which level 

only S. minor is encountered (14 isolated teeth and one mandibular fragment with 

M.-M,). At the next highest level, zone 58.8, S. /indsayi occurs once again, without 

S. minor. 

Although we have no inherent reason to doubt the stratigraphic data associated 
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with the specimens that we have studied, the pattern above has not been recorded 

from other depositional basins in North America, and we are suspicious that the 

S. minor specimens at zone 57.8 may belong to a lower unit. However, if this is 

not the case, then the pattern can be explained easily by a combination of com- 

petition and climatic modification. Martin (1986) summarized the research on 

competition among living cotton rats and their arvicolid analogues, and noted 

that one species of cotton rat rarely tolerates the presence of another Sigmodon 

or Microtus species, especially if it is small. Those small cotton rats that have 

evolved are now extinct, including S. minor. Therefore, it seems likely that as 

populations of S. /indsayi became established in the Anza-Borrego area, those of 

S. minor diminished. Zone 57.8 could represent a limited area in which S. lindsayi 

became locally extinct due to an unknown climatic event, allowing S. minor to 

return temporarily. At the periphery of their ranges in Kansas, an interplay of 

this sort occurs between Sigmodon hispidus and Microtus ochrogaster (Martin 

1986). When winters are cold, populations of S. hispidus die off, allowing M. 

ochrogaster to repopulate the area. However, because S. hispidus is the more 

dominant species, wherever they are sympatric, S. hispidus generally replaces M. 

ochrogaster. 
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Research Note 

Collective Vigilance Enhances Feeding Rates of The Opaleye 
Girella Nigricans (Girellidae) 

The benefits of schooling for both predator and prey fish have been well doc- 

umented. Fish in schools are preyed upon less frequently than solitary individuals, 

and schools of predatory fish feed more efficiently (Neill and Cullen 1974; Bertram 

1978; Major 1978; Pitcher 1986). The benefits of collective vigilance in schooling 

fish have been that their members are able to feed, clean, and conduct other 

behaviors in relative safety (Pitcher 1986). Collective vigilance in birds has been 

studied extensively (Vine 1971; Powell 1974; Siegfried and Underhill 1975; Laz- 

arus 1979). These studies indicate that individuals in groups are preyed upon less 

frequently than solitary individuals. These findings are similar to those of anal- 

ogous fish studies (e.g., Neill and Cullen 1974; Major 1978). Additionally, Sullivan 

(1984) found that Downy woodpeckers feed at higher rates in flocks than while 

solitary. It follows that schooling prey fish would also benefit from the survival 

value of collective vigilance to enhance feeding rates. 

Girella nigricans, a facultative schooling fish (as defined by Breder 1967 and 

Shaw 1970), was studied in the field to determine if collective vigilance of aggre- 

gated conspecifics enhanced the feeding rates of facultative schools when compared 

to solitary fish. G. nigricans is an abundant herbivorous fish (Mitchell 1953) found 

in the intertidal zone and kelp beds from Baja California to San Francisco (Miller 

and Lea 1972). G. nigricans is a natural prey item for such predators as the sea 

lion, Callorhinus ursinus (Smith et al. 1980, 1981) and the cormorant, Phalocro- 

corax pelagicus (Ainley et al. 1981 and personal observation). 

To test the hypothesis of enhanced feeding rates, I observed individual Girella 

nigricans in groups of various compositions: solitary, small groups (2—6 members), 

and facultative schools (more than 6 members). G. nigricans of 6 to 9 cm total 

length (TL) were observed because they consistently maintained a smaller home 

range than the larger conspecifics (pers. obs.). The observations were made while 

snorkeling at depths of | to 3 m at the rock jetty in Big Fisherman’s Cove, Santa 

Catalina Island. Data were collected in the morning and afternoon during two 

weeks in November 1985, and one week in May 1986. A solitary individual G. 

nigricans or an individual within a facultative school was chosen for observation, 

approached slowly, with a minimum of surface disturbance, and followed. Feeding 

rates were measured in bites per minute (bpm) and collected during 3 to 5 minute 

periods. Data were recorded at pre-measured distances of 1.0, 1.5 and 3.0 m to 

determine diver-induced feeding interference. I speculated that a diver in a dark 

wet suit would imitate the appearance ofa predator which could inhibit the feeding 

rates of the fish. 

To confirm dietary composition and food abundance, foregut analysis was 

performed on 15 G. nigricans. Foregut contents were preserved in a 10% formalin 

solution within one hour of capture, and analyzed under Baush and Lomb dis- 
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Table 1. Feeding rates of solitary Girella nigricans at different distances from a diver. DISTANCE 

= the distance from observer to G. nigricans, AVG. BPM = the average bites per minute for an 

individual, S.D. = standard deviation, N = number of observations. 

DISTANCE (m) AVG. BPM S.D. N 

1.0 12.60 5.25 9 

1.5 17.10 3.37 9 

3.0 21.10 6.09 9 

secting microscopes. Algae were identified with the use of Abbot and Hollenberg 

(1982). 

Correlation analysis was employed to analyze feeding rates of aggregated G. 

nigricans. Two way analysis of variance without replication, was used for deter- 

mining diver-induced effects on feeding rates of solitary individuals and facultative 

schools at specific distances. Additionally, unpaired t-tests were employed to 

compare feeding rates of solitary and aggregated fish. 

Solitary Girella nigricans were wary, easily alarmed, and difficult to observe. 

Some were quick to join small groups or nearby facultative schools. Solitary G. 

nigricans fed at the fastest rate (21.1 bpm) when diver distance was 3.0 m (Table 

1). As observation distance decreased, the feeding rate decreased significantly (two 

way analysis of variance, P < 0.05., Table 2). Solitary fish would flee or hide 

among the rocks when approached to 1.0 m. Therefore, subsequent data were 

collected at 3.0 m. 

Small groups (2-6 members) of G. nigricans formed when one or two individuals 

separated from a facultative school, frequently attracting one or two others. Group 

size varied constantly. Small groups were usually joined by a facultative school, 

another small group, or an individual. The small groups would remain distant 

from the original school for one to two minutes. Accurate data could not be 

recorded because group size was never consistent for the length of time required 

to adequately collect data. 

Facultative schools of G. nigricans (7 to 37 members) were less wary than 

solitary individuals or small groups and could be approached to approximately 

0.6 m before diver-induced interference disrupted feeding behavior. All subse- 

quent data were collected at 3.0 m, to be consistent with solitary data. There were 

no significant difference between feeding rates of individuals within facultative 

schools at varying distances; i1.e., two way analysis of variance, 1.0 m, 1.5 m, and 

3.0 ma, JP SOLOS! 
Individual members of facultative schools fed at significantly higher rates than 

Table 2. Two way analysis of variance, without replication, for solitary Girella nigricans. Distances 

were 1.0, 1.5 and 3.0 m. F-tests were calculated at the 0.05 level. 

Source df SS MS F P. 

Fish 8 265.0 33.1 1.46 >0.05 

Distances D) 321.2 160.6 7.A1 <0.05 

Error 16 360.8 22.6 

Total 26 947.0 
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Fig. 1. Group size or numbers of individual Gire//a nigricans per group and bites per minute. Each 

dot represents an average bites per minute for individual within the group. 

solitary individuals (t-test, P < 0.05, N = 30, Table 3). As facultative schools 

increased in size, the average bpm for individuals within the school increased 

(Fig. 1). Group size significantly affected individual feeding rates within the school 

(r = 0.475, P < 0.05, N = 18, Fig. 1). 

The analysis of foregut contents determined that the food source for G. nigricans 

was readily abundant during the study. The diet of G. nigricans consisted of algae 

within the following genera: Ralphsia, Pseudolithoderma, Giffordia, Gelidium, 

Enteromorpha, and Ulothrix. Due to the semi-digested nature of the algae, iden- 

tification to species was impossible. These algae were consistent with the seasons 

and location of the study. 

The data in this study clearly demonstrated that feeding rates increased signif- 

icantly as group size increased in facultative schools of Girella nigricans. Addi- 

tionally, the feeding rates of solitary G. nigricans were significantly lower than 

those within facultative schools (Table 3). These results imply that the collective 

vigilance of facultative schools of G. nigricans allowed individual members to 

spend more time feeding as compared to solitary fish. These findings are consistent 

with those of Pitcher (1986), who found that members of a group reduced their 

vigilance level and allocated more time to feeding, and Sullivan (1984), who found 

Downy woodpeckers fed at higher rates in flocks. In addition, Godin et al. (1988) 

found that, in the laboratory, individual vigilance decreased as group size in- 

creased. Previous studies performed to determine the benefits of schooling in fish 

focused on: The preventing of territoriality (Robertson et al. 1976); the deflection 

of predation (Neill and Cullen 1974; Bertram 1978; Major 1978; Pitcher 1986); 

and collective vigilance (Godin et al. 1988). The study of enhanced feeding rates 



RESEARCH NOTE 91 

Table 3. Feeding rates for Girella nigricans, observed at a distance of 3 m. FISH # = the fish 

number, #/GROUP = the number of fish in a group, either | or more, AVG. BPM = average bites 

per minute, S.D. = the standard deviation, N = the number of observations per fish. 

#/GROUP AVG. BPM S.D. N 

Solitary 

1 11.30 D5 4 

1 11.50 1.00 4 

1 9.30 5.50 3 

1 16.80 3.59 4 

1 13.30 4.57 4 

1 8.00 1.73 3 

l 23.80 4.21 5 

1 12.70 6.25 6 

1 13.70 1.89 ff 

1 15.80 3.49 5 

l 17.20 4.87 5 

1 11.50 5.97 4 

Grouped 

Dy 29.30 3 

20 27.30 6.65 3 

15 31.00 6.02 2 

25 26.00 2.83 1 

30 35.50 — 4 

7 25.50 4.79 4 

37 34.60 1.29 5 

17 13.00 9.02 2 

8 24.00 6.00 3 

9 19.00 6.70 2 

34 29.50 3.87 2 

15 27.00 7.65 2 

35 20.80 2.50 4 

30 29.20 4.29 9 

10 . 25.40 D2} 8 

23 22.60 4.88 5 

13 26.00 _ 1 

7 19.20 1.79 5 

as an additional benefit of schooling in prey fish is a relatively new concept; 

paralleled, however, by those studies performed on birds (Vine 1971; Sullivan 

1984) which draw similar conclusions of enhanced feeding rates as a direct benefit 

of collective vigilance. Therefore, the results of those studies support the hypoth- 

esis and results of this study indicating that the collective vigilance of a facultative 

school of G. nigricans significantly enhanced the feeding rates of individuals within 

the school. 
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COVER: Hippothoa hyalina, a cheilostome bryozoan which encrusts gastropod shells of Tegula 
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