Sr araictn an a inahe pee men pe te Pep che rtonggione am tae : A SE ~~ HANDBOUND AT THE wk. w UNIVERSITY OF TORONTO PRESS Digitized by the Internet Archive in 2010 with funding from University of Toronto http://www.archive.org/details/bulletinofmuseu21harv y BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY AT HARVARD COLLEGE, IN CAMBRIDGE. VOL. XXI. CAMBRIDGE, MASS., U.S. A. 1891. UNIVERSITY PRESS: Joun Witson AND Son, CAMBRIDGE, U.S. A. 613334 a Se CONTENTS. No. 1.— Contributions from the Zodlogical Laboratory. XXIV. Contribu- tions to the Morphology of the Turbellaria.—I. On the Structure of Phagocata gracilis, Leidy. By W. M. Woopworrn. (4 Plates.) April, Soe: No. 2. — Contributions from the Zoélogical Laboratory. XXV. The Com- pound Eyes in Crustaceans. By G. H. Parker. (10 Plates.) May,1891 . No. 38. —Contributions from the Zodlogical Laboratory. XXVI. On Some Points in the Anatomy and Histology of Sipunculus nudus, L. By H. B. Warp. (3 Plates.) May, 1891 . No. 4.— Three Letters from ALtpxanpER AGassiz on the Dredging Opera- tions off the West Coast of Central America to the Galapagos, to the West Coast of Mexico, and in the Gulf of California, carried on by the U.S. Fish Commission Steamer “ Albatross.” June, 1891 No. 6. — Contributions from the Zodlogical Laboratory. XXVIII. The De- velopment of the Pronephros and Segmental Duct in Amphibia. By H. H. Fierp. (8 Plates.) June [August], 1891 . PAGE 185 201 No. 1. — Contributions to the Morphology of the Turbellaria. — I. On the Structure of Phagocata gracilis, Leidy. By W. M. Woopwortu.? In the fall of 1887, Mr. HE. Valentine of West Somerville, Mass., brought to the Embryological Laboratory of Harvard College some planarians, with the suggestion that they might be infested with para- sites. The planarian proved to be the interesting Phagocata gracilis of Leidy, and the supposed parasites were the pharynges of the complicated digestive apparatus. At the suggestion of my instructor, Dr. E. L. Mark, I undertook the study of this curious Triclad. The animal, which was afterwards named by Leidy Phagocata gracilis, was first described by S. S. Haldeman (’40, p. 3) in 1840, under the name of Planaria gracilis: “ Body oblong, suddenly tapering to a point posteriorly : sides nearly parallel ; head square in front, with a project- ing appendage on each side: neck narrowed; eyes (two) situated on each side of the narrower part; these are oblong and white, with a black dot at their internal side: ventral opening less than one third the entire length from the posterior extremity, and from this open- ing an intestine is sometimes protruded. General color fuliginous, veined with black. Length, ? in., breadth, 5. Hab. springs in Eastern Pennsylvania.” In 1848, Leidy published a further description of the species, giving to it the name of Phagocata (48, p. 248), because, as he says, “‘ I detected such a remarkable peculiarity in the digestive apparatus as led me to investigate its anatomy in detail, and to form for it a separate sub-genus, characterized as follows : — “ Phagocata, oblonga, plano-convexa, nuda, contractilis, mucosa, an- tica auricularia. Aperture due, ventrales, ad os et ad generationem pertinens. Proboscides multe. 1 Contributions from the Zodlogical Laboratory of the Museum of Comparative . Zoology, under the direction of E. L. Mark, No. XXIV. No. XXIII. of these Contributions appeared in the Proceedings of the American Academy of Arts and Sciences, Vol. XXV., under the title, “‘ Preliminary Notice on Budding in Bryozoa.” By C. B. Davenport. VOL. XxI.— No. l. 1 2 * BULLETIN OF THE “ P, gracilis, nigricans, lateribus parallelis, postero acuto abrupte, plerumque antico recto; oculis duobus, Long. 9 lin., lat. 1 lin, Habitat in fontis Pennsylvanie. “ Description. Oblong, limaceform, naked, convex superiorly, flat inferiorly, very contractile ; sides ordinarily parallel, convex when the animal is in a contracted state, convergent anteriorly when elongated ; anterior extremity with a lateral triangular auricular appendage, straight in front, by contraction becoming convex or concave ; posterior extremity abruptly pointed ; ocelli two, anterior, composed of an oblong, semi- transparent (nervous !) mass with an intensely black dot of pigmentum at the internal posterior part ; ventral apertures two ; oral aperture a little less than one third the length of the body from the posterior extremity. Color black or iron gray, and in some younger specimens latericeous.” ; I have quoted Leidy’s description in full, because it seems to me that the first description of so striking and aberrant a species is of uncommon interest. It is noteworthy, that, notwithstanding the faithfulness of the descrip- tion, and the remarkable peculiarities of the worm, no mention of the species has been made for over forty years. It is also strange that Girard should have been ignorant of the existence of Leidy’s paper, for in his list of North American fresh-water Planariz (’51, p. 264) he uses the name proposed by Haldeman, “ Planaria gracilis,” and says that it is “common about Cambridge in pools and rivulets.” He adds, in a note, “ Planaria gracilis and very likely Planaria tigrina will not remain in the genus Planaria as soon as we shall know their internal structure.” In a subsequent paper (’51%, p. 2), “ Die Plana- rien und Nemertinen Nord-Amerikas,” the species is described under the name given to it by Leidy, but no mention is made of the most striking characteristic discovered by that observer, — the multiplicity — of the pharynges. The structural peculiarities of Phagocata were not simply ignored, they were even denied by no less an authority than von Siebold, who explained the ‘ proboscides” of Leidy as so many processes from the lip of one normal pharynx. After quoting the description, he says (50, p. 389): “Das erwachsene Thier soll 23 Riissel haben, die es beim Fressen alle hervorstreckt ; Ref. vermuthet, dass der Riissel eine trich- terférmige ausgezackte Miindung besitzt, und dass die beweglichen Fort- sitze des Riisselrandes fiir ebenso viele einzelne Riissel gehalten worden sind.” ~ MUSEUM OF COMPARATIVE ZOOLOGY. 3 Diesing, like von Siebold, was incredulous ; in his ‘‘ System,” he says (750, p. 207), “(Esophagus protractilis multi partitus (proboscides multz Leidy).” Twelve years later, in the “ Revision der Turbellarien,” he writes (’62, p. 506), “ esophago multipartito.” Stimpson (758, p. 23) in his Prodromus apparently followed Diesing, for he says “cesophago protractili multipartito.” Recently, Professor Leidy (’85, p. 49) has figured Phagocata gracilis ina popular account of “ Planarians.” These are the only descriptions of Phagocata I have been able to find. Phagocata gracilis, Lerpy. When viewed from above, the general form of the animal is elongated ; its lateral margins are nearly parallel, being slightly convex posteriorly ; the widest part of the body is in the pharyngeal region. The largest specimens measure 30 mm. in length by 44 mm. in breadth. Anteriorly the sides converge slightly up to about the region of the eyes, where the diameter increases, thus forming the so called head. This bears the lateral auriculate appendages. The lateral appendages are rounded, rather than triangular as described by Leidy; they are continuous with, and in fact form part of, the anterior extremity ; posteriorly, the sides converge to a point (Fig. 20a). The eyes appear as two elongated oval white spots, with black pigment on the internal edge. They are situated on the narrow part or “ neck.” Haldeman and Leidy have described the head as being “straight in front.”” This appearance is seen only when the animal is at rest. It is then much contracted in the direction of its antero-posterior axis, and is usually much distorted ; at such times it often appears as a shapeless black lump, this condition probably being a means of protection (Figs. 20 6and 20c¢). When in motion the anterior extremity is usually convex, but not always, for it may be straight, sinuous, or concave ; these shapes are only temporary, following each other in quick succession. The head changes its form especially when the animal approaches some object ; for this part of the body is functional as an organ of touch; that it is suited structurally to be a kind of feeler will be evident from the description of the nervous system which follows. Phagocata gracilis has a shiny black appearance when viewed by reflected light, but by transmitted light it is of a greenish gray color. The color may vary from black to a reddish brown on the one hand, or to a light gray on the other. I have seen small specimens which were 4 BULLETIN OF THE almost milky white. The ventral surface is of lighter color than the dorsal, and there are light areas about the ventral apertures. The pigment is densest in the dorsal median line, where it forms a dark band ; it diminishes toward the sides of the animal, the edges of which are quite destitute of it. The distribution of the pigment in the head region presents many variations. In most cases the posterior borders of the auriculate appendages show two light spots, and there is a third one, somewhat triangular in shape, at the anterior end in the middle line. The marginal area of the head, like that of the body, is _ free from pigment. Sometimes the whole head region is light with the exception of the middle line between the eye spots, where there is an extension of the dark median band previously referred to. Light non- pigmented areas occur wherever there has been a reparation of the tissues resulting from injury. By an examination of the animal in the natural condition, only a few of the internal structures can be identified, because of the large amount of pigment present. When viewed from above, the most striking feature is a large oblong light region, the pharyngeal cavity with its contained pharynges. Immediately behind this a similar but smaller spot marks. the position of the penis. From the ventral side the nervous system may be dimly seen as two long whitish bands united by transverse commissures and coming together in the head region in a bilobed en- largement, the brain. Leidy apparently confused these structures with the excretory organs, no trace of which can be seen on the living animal. He says (’48, p. 250): “There appears to be nothing peculiar about the arrangement of the blood-vessels, if such they be: the term being applied to two semi-transparent lines passing along each side of the ventral surface, and a third along the middle of the dorsal surface, the three freely communicating with each other by transverse lines and numerous smaller branches, the whole forming an extensive reticulation upon the surface of the body. At the anterior part of each ventral line, I distinctly observed a dilatation to exist.” And again: “I could detect no traces of a nervous system.” The two “semi-transparent lines” are without doubt the longitudinal nerve trunks, and the “ dilatations at the anterior part of each,” the lateral enlargements of the brain. What he means by the “ third ” line “along the dorsal surface,” I cannot say. When sexually mature individuals are subjected to pressure, parts of the vasa deferentia and oviducts can also be made out. Phagocata differs from all other Triclads in possessing many pharyn- geal tubes instead of one. All the pharynges lie in a common chamber, MUSEUM OF COMPARATIVE ZOOLOGY. 5 and when protruded reach the exterior through a single orifice, but they open into the intestinal cavity separately. One of these pharynges, like the single pharynx of other Triclads, joins the intestine at the junction of its main trunks; the others are connected with the ‘inferior median surface of the lateral trunks (Plate II. Fig. 20). The odd median pharynx is largest, and therefore most prominent of all. The others, which arise from the intestine farther back, are successively shorter, as well as narrower, the more remote they are from the median proboscis. The attachment of the smallest ones is about as far from the posterior end of the animal as the attachment of the chief one is from its anterior end, so that the chamber which they all occupy em- braces the middle half of the body. Although there are about as many pharynges attached to one of the lateral trunks of the intestine as to the other, they are not arranged in pairs, nor have their positions any definite relation to the side branches of the intestine which open into the lateral trunks. The pharynges are rather less numerous than the side branches ; they sometimes arise opposite to a branch, sometimes oppo- site to a space midway between two branches, or at other intermediate points. The foremost of the lateral pharynges is often considerably in advance of the corresponding proboscis of the opposite side of the body (Fig. 20). Leidy (48, p. 249) has well described the appearance and action of the pharynges in the living animal. He says: “They are considerably longer, but narrower, than in P. /actea, and when not in use are packed together within the animal, so that, when the latter is placed beneath the microscope and slightly compressed, they will be seen pressing upon one another in such a manner that, if one changes its position, it will be instantly occupied by another. Those which are formed last are smallest, but they soon gain their full size. If one of these animals be punctured or cut, one or more of the pro- boscides will be instantly protruded as if they existed under pressure, and will move about in all directions, appearing as if entirely without the control of the animal; or if one of the animals be crushed between two slips of glass so that the proboscides will be torn from their attach- ment, they move about involuntarily, always in a line forwards or towards the mouth. . . . In this progressive course they constantly contract and dilate ; the mouth opens, and any matter in its vicinity rushes in, when it is closed and the matter passes onwards, and by the alternate contraction and dilatation of different parts of the same tube it is thrown backwards and forwards several times, and finally violently expelled at the torn extremity. When they have escaped from the 6 BULLETIN OF THE ruptures of the tegument produced by crushing, or when snipped off with a pair of scissors whilst the animal is feeding, they will present the same curious phenomena. In fact, these curious independent move- ments caused me at first to mistake the organs for viviparous young, and it was not until I had frequently observed the animal feeding, and examined its structure beneath the microscope, after having fed them upon colored food, that I was convinced of their true nature.” It was these automatic movements of the detached pharynges that at first led me also to believe that they were parasites. They appear as long, white worm-like bodies, one end being truncated, the other ragged and uneven, where it was torn from its attachment. They move about quite rapidly by means of the cilia with which they are covered, and waves of contraction continually pass along the length of the tube from the truncated to the ragged end. The mouth end may be greatly expanded so as to form a funnel-like structure, or it may be so con- tracted as to obliterate the lumen. I did not succeed in satisfying myself of the real nature of these structures until I examined one of the animals while it was feeding. I placed one of the Lumbriculide in a watch-glass with a Phagocata, which soon attached itself to the annelid by throwing out its many pharynges, some of which were wrapped about the victim, while others were thrust into its body (Plate LI. Fig. 13). The soft parts of the prey were rapidly sucked up and swallowed by means of the peristaltic motions of the pharynges, so that in a short time there was left nothing but the empty and shrivelled integument. By far the best reagent for killing is hot corrosive sublimate. An ex- cess of the salt is added to the saturated aqueous solution and the whole is heated to the boiling point. A very strong solution can be prepared in this way, as the salt is more soluble in hot water than in cold. Kennel (88, p. 455) has recommended the use of 500 nitric acid. I have used with entire success a modification of his method, viz. a cold saturated solu- tion of corrosive sublimate in 500 nitric acid. The worm is placed on a plate in as little water as possible, and when properly extended the fluid is quickly poured over it. After a few minutes’ immersion the fluid is replaced by a saturated aqueous solution of corrosive sublimate, in which the worms remain for half an hour and are then washed. I know of nothing else that will kill so quickly, and at the same time leave the tis- sues uninjured. For the study of the intestinal tract, unstained speci- mens were cleared in clove oil. The amount of pigment so obscures the organs lying beneath, that the ramifications of the intestine could be MUSEUM OF COMPARATIVE ZOOLOGY. 7 traced only on cleared specimens in which the intestine contained dark- colored food matter. For staining, Grenacher’s alcoholic borax carmine followed by differentiation with acid alcohol proved to be the most use- ful and reliable method. I have stairied both zn toto and on the slide. Good sections for topographical study were obtained by staming in alcoholic borax carmine for 24 hours and cutting in the horizontal plane sections 30 in thickness. By thus lightly staining, the nerve tissue takes none of the color, and in such comparatively thick sections the finer branches show as white lines against a red background. Orth’s picrocarminate of lithium is a valuable reagent on account of the select- ive action of the picric acid for all glandular tissue, which it brings out in sharp contrast to the red color of the other tissues. I have used this reagent also with excellent results for macerating. The affinity of hematoxylin stains for formed substances renders them of little use ; their intense reaction with the great number of glandular structures tends to obscure results. For isolation preparations, the best results were obtained by macerating directly in the stain. I also used successfully the osmic-acetic method of maceration on fresh material. The isolated living pharynges were killed in hot 14% silver nitrate for the purpose of demonstrating the epithelium, Depigmenting was accomplished by the use of a 1% solution of potassic hydrate which was allowed to act for a few minutes on sections fixed to the slide with Schallibaum’s clove-oil collodion fixative. Cilia are present over the whole surface .of the animal. In material that had been prepared in hot corrosive sublimate, the middle region of the ventral surface, where the hypodermis is thinnest, was often desti- tute of cilia. Likewise at the lateral edges they may be wanting. These conditions are, however, due to the action of the reagent, since in the living animal cilia are always present in these places. At the ante- ricr end of the body on either side of the head, the cilia are somewhat longer than elsewhere. They attain their greatest length at that por- tion of the margin of the head which forms the auriculate projections. From the middle of each projection they gradually diminish in length until, at the anterior tip of the body and at an equally distant point behind the auricles, they are reduced to the normal length. These two areas covered by the longer cilia probably correspond to the “Tastor- gane” of lijima (’84, p. 366), and are directly related to local modifi- cations of the hypodermis. I cannot find either the short immovable hairs or the long “ Geissel- 8 BULLETIN OF THE haare” seen by Iijima in other Triclads at the anterior margin midway between the areas of the ‘‘ Tastorgane ”; nor have I found in Phagocata that the cilia in the head region move in different directions, as Minot (77, p. 407) has observed in the case of other fresh-water planarians. There has been a difference of opinion among writers as to the possi- bility of certain regions of the body being normally destitute of cilia. Metschnikow (’66, p. 436) and Kennel (’79, p. 125) found cilia covering the whole surface in Rhynchodesmus and Geodesmus, but Zacharias (’88, p. 542) states that the dorsal surface of a variety of Geodesmus is bare, and Vejdovsky (’90, p. 132) maintains the same for Microplana, the cilia in the latter cases being confined to the ventral surface or sole. It seems to me, however, that Moseley (’74, p. 118) long ago offered a satisfactory explanation of the condition, by saying that in Bipalium the cilia on the dorsal surface of land planarians, being weaker through com- parative lack of function, are consequently more easily destroyed by the action of the reagents used in the preparation of the material. Consid- ering the habits of land planarians, and especially the dissimilar condi- tions to which the dorsal and ventral surfaces are subjected in regard to moisture, exposure, contact, etc., it is not strange that the conditions of the cilia of the different surfaces should be unlike. Iijima (’84, p. 366) states that it is the exception for the edges of Dendroccelum lac- teum to be ciliated, and that the almost constant absence of cilia is due to certain parasites (Trichodina). He also speaks of a species of Geo- plana from South America in which the cilia of the dorsum are replaced by a granular crust. I believe that in planarians there is primarily no localization of the cilia, and that all non-ciliate conditions are “secondary. I could nowhere find a cuticula. The superficial portion of the cells of the hypodermis takes a somewhat deeper stain than the body of the cells, but there is no sharp line of demarcation between the two; the color of the superficial portion fades gradually into that of the body of the cell. A trne cuticula such as that described by Minot (’77, p. 407) and Loman (’87, p. 69) for Triclads, and by Keferstein (’68, p. 16) for Eurylepta, is wanting, and there is only a thickening, a condensation, of the superficial plasma of the hypodermal cells. The hypodermis has proved to be the most difficult of the tissues to study, because of the minuteness of its elements, and the enormous number of dermal rods, or rhabditi, which so obscure the true condi- tions that it is only after long and patient study of thin sections and of MUSEUM OF COMPARATIVE ZOOLOGY. 9 macerated material that one can learn what the true characters of this tissue are. The hypodermis is thickest on the dorsal surface ; it becomes thinner toward the edges of the body?and in passing around to the ventral sur- face it still continues to become thinner as far as the middle line, where, forming part of the floor of the pharyngeal cavity, it reaches its greatest attenuation. There are hypodermal thickenings around the oral and genital openings, and also over two sensory areas on the ventral surface of the head region, which will be described in another place. It is almost impossible to find a region where the cells of the hypo- dermis are not modified by the presence of the dermal rods. In order to get at the natural appearance of the cells, it is necessary therefore to study them in young specimens, and in the region where the rods are fewest; this region I have found to be near the margin, on the dorsal side. Very thin cross sections of young individuals are the most favorable ones for this purpose. The cells are columnar, the height necessarily varying with the thick- ness of the hypodermis. The nuclei are large, have an irregular or sinuous outline, and are situated, as a rule, near the bases of the cells (Figs. 1 and 2). This position is not constant, and depends upon the number and influence of the rhabditi that are present. There is no nucleolus proper, the chromatin being scattered through the nucleus in many large granules. The size of the nucleus does not appear to depend upon the size of the cells; for while the cells in different regions vary to a great extent, the nuclei remain of nearly uniform size. The cells are finely striated; the striations are most prominent at the basal ends of the cells, and cannot be traced to their free ends. Such radial striations have been described by Bohmig (’86, p. 294) in the hypodermis of Graffilla, and more recently by Lippitsch (’90, p. 328) in the epidermal cells of Derostomum. Iijima (’84, p. 369) also alludes to fine striations in the epidermal cells of Planaria polychroa. The cells do not ‘‘ etwa flach auf die Basalmembran aufsitzen,’ but are con- nected with it by fine processes “‘ welche etwa kammférmig ziemlich dicht neben einander stehen.” These processes he believes to be directly con- tinuous with the’striations of the cells, and to be protoplasmic prolon- gations of the cells. He traces them through the basement membrane into the muscles below, thus establishing “eine organische Verbindung zwischen dem Epithel und den Koérperinnern.” His figure (Taf. XX. Fig. 4) is confusing, and in addition was drawn, as he admits, from a specimen in which the basement membrane exhibited pathological con- 10 BULLETIN OF THE ditions. Besides the striations in the cells, there appear creases or folds resulting from the pressure of the rhabditi. In thick sections through regions where the rhabditi are numerous, the epidermal cells have the appearance of’ being joined to the basement membrane by foot-like processes. This appearance at first led me to believe in a condition like that described by Iijima, and it was only after studying sections of material in which the rhabditi had been removed (Fig. 3) that I understood their relations to the cells. The rhabditi do not lie zz the hypodermal cells, but between them. Kennel (79, p: 126) and Braun (’81, p. 305) are the only observers who have described them as having an zntercellular position. It will be seen from the following description of their development in Phagocata, that such a position is the only natural one. The presence of these rods between the cells produces a crowding, and the pressure is so great that it causes the cells to become displaced and much modified in shape. The nuclei may be pushed out to the free ends of the cells, or crowded down to their bases, and the cells themselves may be so reduced as to appear like mere filaments (Fig. 3). Kennel (’79, p. 126) describes the epidermal cells of Rhynchodesmus after the removal of the rhabditi, as “feine Fidchen ... so lang als die Epidermis dick ist.” Regarding their intercellular position, Braun (’81, p. 305) states for Bothrioplana that the rhabditi “nicht allein zwischen den Zellen stehen, sondern auch das Protoplasma der Zellen durchbohren.” In Phagocata, as in Rhyn- chodesmus, the rhabditi are so numerous that the hypodermis appears at first to be entirely composed of them. As Kennel expresses it, “ ausser den feinen, fadenformigen Zellen kaum etwas anderes Platz zwischen ihnen hat.” It is in thick sections, where the epidermis is many layers deep, that the bases of these compressed cells present an appearance as if the hypodermis were connected with the basement membrane by fine foot-like processes. This appearance is only seen where the rhabditi are most numerous. At the lateral edges of the body, where there are few, and where consequently the cells retain their primitive cylindrical form (Fig. 2), the latter are applied to the membrane by their broad bases. It is in these regions also that the striations previously spoken of are most distinctly seen. ; Moseley (’74, p. 118) says, “The epidermis here [land planarians] is seen to be made up of large gland-cells and cells containing rod-like bodies and a certain amount of vertical filaments.” ‘The irregular fila- ments which fill up the interspaces between the gland-cells and rod-like bodies appear to be the remains of the cell-walls and rod-like bodies.” . MUSEUM OF COMPARATIVE ZOOLOGY. 11 He further says, ‘‘ The substance of the epidermis is probably made up, in the living condition, of cells resembling the gland-cells described, but of various dimensions, and of cells containing rod-like bodies.” Since the “rod-like bodies,’ or rhabditi, are really modified glands, Moseley’s statement amounts to saying that the epidermis is composed entirely of gland cells, a conclusion which it is not easy to adopt. More- over, I believe that Moseley’s ‘gland-cells” are only rhabditi that have been modified by the action of the reagent which he used for their demonstration. Kennel (’79, p. 126) obtained similar conditions by the action of chromic and acetic acids on the rhabditi of land planarians. I have found that in Phagocata by the use of picric acid the dermal rods become swollen and granular, resembling the “ gland-cells” described and figured by Moseley. ‘The vertical filaments” were undoubtedly the true epidermal cells, reduced to a filamentous condition by the influence of the many rhabditi lying between them. I cannot find any organic connection between the cells of the hypo- dermis and the deeper tissues, such as has been described by Iijima. Although appearances like those described by him do occur, they are secondary conditions, dependent on the presence of the rhabditi and the development of their mother cells. The basement membrane is every- where traversed by fine tubular processes of the mother cells of the rhabditi, which lie imbedded in the body parenchyma. This fact, together with striations of the cells of the hypodermis and the ultimate reduction of these cells to filaments, might easily lead to conclusions such as those of Iijima. His sections were thick (10-20 ») both abso- lutely and in proportion to the length of his largest specimens (20 mm.), whereas my sections were eat 5-10 » in thickness, although the worm attains the length of 35 mm.; moreover, isolation preparations were studied in connection with these sections. The hypodermis consists of the hypodermal cells aia the rhabditi that lie between them. There are no unicellular glands in it. Lang (784, p. 49) described in Polyclads a granular “interstitial tissue” con- taining nuclei and pigment which arises, according to his conjecture, from a coalescence of indifferent epithelial cells. Such conditions I cannot find, nor can I detect any cement (“ Kittsubstance”), such as that described by Graff (’82, p. 44) for Rhabdocceles. The dermal rods or rhabditi are defined by Graff (’82, p. 49) as “die stark lichtbrechende glasartige homogenen Stibchen, welche weder einen Faden noch einen Nadel einschliessen und durch ihre glatte Ober- fliche, regelmassige Gestalt und ihren Glanz auffallen.” 12 BULLETIN OF THE In Phagocata the rhabditi are found in almost every portion of the hypodermis, there being only one region from which they are altogether absent, viz. around the gonopore, where they are gradually replaced by many subcutaneous glands, which open to the exterior in a broad circular area surrounding that orifice. They are present around the oral opening, even up to the aperture, where they abruptly cease. They are most abundant in the middle line on the back, becoming gradually fewer toward the sides and anterior end, but they are again abundant on the ventral surface. They are found over the eyes, and in the epithelium of the two anterior sense organs, where they are well developed but few in number. Iijima (’84, p. 371) has stated that they are wanting in this region in the case of D. lacteum, but are present in Planocera polychroa and Polycelis tenuis. He has also shown that in the case of D, lacteum they are unusually abundant in the region of the genital orifice, both in the epithelium and in the parenchyma, and sup- poses that they have a sexual significance as urticating organs, the ‘“ Liebesfeile ” of Schneider ; but their absence in this region in Phago- cata precludes the assumption that they have in this species any such function. The rhabditi are all of one kind, but they vary in size. The varia- tions are not local, different sizes occurring wherever rhabditi are found. Some are as long as the hypodermis cells, while others are comparatively short ; they vary from 1.5 » to 164 in length. There is an interesting correlation between the thickness of the hypodermal layer and the size of the largest rhabditi; those of the thin hypodermis of the ventral surface are invariably smaller than those of the dorsal side. Each is spindle- shaped, and the outer end is slightly more pointed than the deep end. They stain intensely in the carmine dyes, and then appear perfectly homogeneous; but when stained in Orth’s picrocarminate of lithium with an excess of the picric acid, they take on a bright yellow color, and appear more or less swollen and distorted, according to the length of time the dye is allowed to act. Often they have the appearance of hollow capsules filled with granules, or containing a few irregular re- fractive lumps (Fig. 9). It was probably the swollen and altered rhab- diti that Moseley mistook for gland cells. The peripheral portion of the substance of the rhabditi is not affected by the reagent as the contents are. This outward unaltered portion presents the appearance of a cap- sule, or thick membrane, with a double contour. Moseley says of his glandcells, “The cell appears to have a double wall, for an irregular crumpled membrane is seen often within it.” ) MUSEUM OF COMPARATIVE ZOOLOGY. 13 The rhabditi which lie between the hypodermal cells are not parallel, but are somewhat inclined toward each other, the outer ends generally converging about centres so as to form groups or packets. The small ones lie out near the free surface of the hypodermis; and the largest may reach the basement membrane (Fig. 1). Usually the long axes of the rhabditi are approximately perpendicular to the surface of the epi- dermis, but they may assume almost any angle with each other; small rods are sometimes seen lying at right angles to neighboring ones. It was first shown by Oscar Schmidt (’48, p. 6), in 1848, that in the case of Rhabdoceeles the rhabditi are developed in subcutaneous flask- shaped cells. Since that time similar conditions have been discovered in all the Triclads. Up to the present time, the development of these cells, “‘ Stabchenbildungszellen,” has not been traced. My studies seem to throw some light on their genesis, and also to show how the rods find their way out between the cells of the epidermis. I first rec- ognized the parent cells in isolation preparations, and saw them in sections only after depigmenting and staining the sections on the slide. Later, I obtained a fresh supply of material, and was able to demonstrate them in abundance, and in all stages of development. They are more easily to be seen on the ventral side of the animal, where they are less obscured by pigment. In their fully developed condition they lie in the body parenchyma immediately beneath the longitudinal muscles. On the ventral side, where the muscle layer is very thick, they may be found in between the strands of the muscles as well as below them. The parent cells have the form of flasks with greatly elongated narrow necks tapering off into long tubular processes, which are traceable out- ward through the muscles to the basement membrane, and, traversing this, are seen to open out between the cells of the hypodermis. Thus the deep-lying parent cells are in direct communication with the outer world (Figs. 1, 6, and 10). It is by means of these tubular processes that the rhabditi find their way to the exterior, and at length come to occupy positions between the hypodermal cells. I have previously pointed out that the rhabditi in the epidermis lie in groups or packets ; presumably each of these groups was at one time contained in a single parent cell. The connection of the parent cells with the epidermis is a primitive one, for they are only modified cells of the hypodermis, which never cease to retain their connection with that layer. In the earliest stages of development that I have found, they appear like small sacs im- bedded in the superficial portion of the longitudinal muscle band, close 14 BULLETIN OF THE to the basement membrane, with which they are connected by short necks or tubes (Fig. 4). The cell at this stage contains a single very large nucleus, in which there is no nucleolus, since the chromatin exists, as in the other cells of the hypodermis, in the form of fine particles scattered uniformly through the nucleus. Later, the cell begins to sink deeper into the tissue below the hypodermis, and the tubular neck increases correspondingly in length. The cell contents become finely granular, and appear to grow at the expense of the nucleus, which no longer fills so completely the sac, but becomes smaller and occupies the bottom of the cell (Fig. 7). In the protoplasm surrounding the nucleus, there appear small, round, highly refractive particles that stain deeply. These increase in number and in size, and soon become elon- gated, taking on the spindle shape so characteristic of the rhabditi (Fig. 6, rhb.). During these stages of formation the cell comes to lie in the body parenchyma below the muscle bands, but still retains a connection with the hypodermis by means of its long tubular process. The cells are at length filled with rods, and the nucleus is crowded to the bottom of the cell (Figs. 1, 5, and 10). The fully developed rods are guided to the exterior by means of the tubular prolongations of the parent cell, and finally make their way through the basement membrane and come to lie between the cells of the hypodermis. The rhabditi, so long as they are contained in the parent cell, are not hard and rigid, but possess a certain amount of plasticity, as can be seen by the manner in which they are bent when many are packed in one cell. This plastic condition of the rods facili- tates their passage through the basement membrane. I have been able to find a number of cases such as that represented in Figure 8, where I have shown one of the rods in the act of passing through the membrane. The rods possess this pliability until they leave the deeper tissues, and they attain their definite shape only after they reach the hypodermis, _where they become hard and inflexible. After the discharge of the rhabditi, the parent cells become absorbed and disappear. Anton Schneider (’73, p. 87) says concerning the parent cells, “Sie haben mehrere nach der Haut gehende Ausliufer, deren Epithelzellen reichlich damit gefiillt sind.” According to Moseley (774, p. 119), “The parent cells of the rod-like bodies are arranged beneath the exter- nal longitudinal muscular layer at a tolerably even depth; they are, in spirit specimens, of an elongated oval form, with the upper extremity drawn out in a point or long filament, which in some cases may be seen to reach up to the basement membrane.” In another place (74, p. 120) MUSEUM OF COMPARATIVE ZOOLOGY. 15 he says, “On treatment with potash, the cells of Bipalium swell up, are seen to contain rod-like bodies, and the fine filament at the upper extremity appears like a duct leading to the surface of the basement membrane.” Hallez and Iijima do not make mention of any processes of the sub- hypodermal parent cells, but believe that the cells are ruptured, and that the rhabditi make their way to the epidermis through the tissues of the body. Hallez (’79, p.6) says: “Jai eté temoin une seule fois de Ja rup- ture d’une cellule productrice chez Mesostomum tetragonum ; il m’a été impossible de retrouver dans cette cellule rompue la moindre trace du noyau.” Tijima (84, p. 371) writes as follows: “Die Bildungszellen sind rundlich und mit einem ausserordentlich feinkérnigen Inhalt ver- sehen.” And again: ‘‘ Haben die Rhabditen ihre definitive Grésse er- reicht, so durchbrechen sie die Zellenwand, welche schlieslich absorbirt zu werden scheint und wandern durch den Bindgewebe und die Basal- membran entweder einzeln oder in Gruppen nach aussen in die Epidermis- zellen, in denen sie definitiv verbleiben.” Not all of the rhabditi that are developed in the parent cells of the sub-hypodermal tissue find their way to the exterior. Many of the cells apparently lose their connection with the hypodermis, and their rhab- diti are discharged into the body parenchyma; only on this assumption can one explain the presence of the numerous rhabditi that are found scattered in the sub-hypodermal tissues. This condition is not the normal, or at least not the original one. These often occur in large numbers in the zone immediately inside of the longitudinal muscle bands, which is occupied by the mother cells, where they lie in no definite positions, and with their axes directed at all angles. Rhabditi of all sizes may be developed in the same parent cell. Those of different sizes are not confined to special cells, as found by Schneider (’73, p. 83) and Graff (74, p. 128) for Mesostomum. Be- sides the fully developed rhabditi there are in the cells particles that have no constant form, but have the same optical appearance and stain the same as the rhabditi (Figs. 6, 10). These bodies may be either residual matter, disintegrating rhabditi, or incipient rods. They never occur in the epidermis, but are left behind after the discharge of the rhabditi, and by the absorption of the wall of the parent cell they find their way into the body parenchyma, where, with the rods previously referred to, they lie scattered about. Lang (’84, p. 52) found similar bodies along with the rhabditi in Polyclads, and speaks of them as «‘junge kugelige Stabchen.” Iam inclined to regard them as residual secretions. 16 BULLETIN OF THE To my mind it is unquestionable that the parent cells of the rhabditi are of ectodermic origin, as first suggested by Hallez (79, p. 7). It is only in Triclads and in Rhabdoceels that the mother cells lie in the deeper tissues, and we know so little about the-embryology of these groups that we cannot tell just how the passage from the exterior takes place. I have endeavored to show that the cells have a connection with the hypodermis in the earliest stages of their development, long before they show any traces of rhabditi, but whether the cells pass from the hypodermis through the basement membrane, or are separated from the hypodermis before the formation of such a structure, I cannot say. The epidermis of embryos of Mesostomum was found by Graff (’82, p. 56) to be filled with rhabditi, while he could find no traces of the sub-hypo- dermal parent cells so prominent and abundant in the adult. In Poly- clads, the development of the rhabditi is in my opinion identical with that in Triclads ; but in the former the parent cells lie permanently in the hypodermis, whereas in the latter they sink down below that layer, where greater opportunity for growth is afforded. The condition found in Polyclads, therefore, I believe to be the primitive one. Another mode of origin of the parent cells of the rhabditi has been proposed by Loman (’87, p. 69), who considers them to be modified connective-tissue cells that migrate from their original positions in the mesenchyma and pass bodily through the basement membrane, and come to lie eventually between the cells of the hypodermis; or, in the words of the author, ‘‘ Nach meiner Meinung sind die Stabchenzellen mesenchymatése Gebilde, die eine factische Wanderung durch dass sie umgebende Bindgewebe unternehmen, wihrend ihr Inhalt sich zu den fadenférmigen Stiibchen ausbildet. Endlich treten sie durch die Basal- membran (wovon spiter die Rede sein wird), driingen sich zwischen die Zellen der Oberhaut,” etc. Thus according to Loman the parent cells form a part of the hypodermis, and only differ from the conditions found in Polyclads in that their epidermal position is a secondary one. Loman presents no evidence, and in the face of the facts here presented his position is untenable. Rhabditi are being constantly discharged from the epidermis during the life of the individual, and provision must be made for their renewal. Parent cells are therefore being continually produced to supply the steady demand of the epidermis for rhabditi. The evidence of this lies in the fact that in individuals of all ages these cells are found in all stages of development. Iijima (84, p. 373) says ‘‘es sicher scheint, dass die Rhabditen nicht ausgestossen werden.” If the rods are not dis- MUSEUM OF COMPARATIVE ZOOLOGY. 17 charged from the hypodermis, why are they being continually devel- oped throughout the lifetime of the individual? Something must be- come of them, or there would be an accumulation too great to find room in the hypodermis. Kennel (’88, p. 474) says, relative to this subject: “ Lasst man sie [planarians] aber in Uhrschalchen mit Wasser langere Zeit unbehelligt, so dass sie sich festsetzen, und stért sie dann plitzlich, so ziehen sie sich stark zusammen, machen heftige Bewegungen und suchen zu entfliehen. An der betr. Stelle aber findet man bei schneller Untersuchung Massen von Rhabditen in allen Stadien der Auflésung, und wenn man das Wasser schnell ausgiesst, findet man dort ein Kliimpchen zahen Schleim, — die Stiibchen ldsen sich in Schleim auf.” I have often repeated the experi- ment of Kennel, and have always found rhabditi in large numbers in the slime secreted by the worm when placed on a glass plate. We may now consider the question of the morphological and physiologi- cal meaning of the rhabditi. Two interpretations of the morphological value of the dermal rods have been given by naturalists. The larger number of observers consider them homologous with the nematocysts? of Celenterates ; whereas the more recent investigators believe them to be the morphological equivalents of gland secretions. I coincide with the latter explanation, and offer the following arguments in its support. The parent cells are unicellular glands, and the rhabditi, their secretions, like the secretions of other dertmal glands, are voided from the body of the individual. The rods cannot function as organs of touch in lending resistance to the epidermis, as suggested by Max Schultze and main- tained by many others, for they do not-lie in the epidermis cells, but between them. The insensible gradations that exist between rhabditi and the secretions of glands, as exemplified in the so called “ Pseudo- rhabditen,” ‘Schleimstibchen,” ‘ Schleimbléckchen,” and “ Korner- driisen,” have been to me one of the most striking evidences of the glandular significance of the rhabditi. The dermal rods of Phagocata, when acted on by reagents, present conditions resembling all the varie- ties of dermal bodies figured by Lang, and, as I have said elsewhere, I believe that the epidermal “ gland-cells ” of Moseley were only rhabditi modified by acids. Sub-hypodermal glands and the mother cells of the rods never occur together. Where rhabditi are absent, their place is taken by glands, and vice versa. This is illustrated in the region of the 1 According to Camillo Schneider (’90, p 375) even the nematocysts are to be considered only as highly specialized secretory cells derived from simple gland cells. VOL XxI,.—wno 1. 2 18 BULLETIN OF THE gonopore and at the edges of the body. Another proof consists in the fact that the reaction with stains is always the same for both glands and rhabditi. With picrocarmine the effect is most striking. All the tissues of the body take the carmine except the rhabditi and the glands, both of which, owing to their yellow color, stand out in contrast to the rest of the body. Keferstein (68, p. 15) was the first to speak of the rhabditi as gland- ular secretions, and he called the parent cells ‘“ Stabchendriisen,” and the rods “ geformte Schleimmassen.” More recently this view has been confirmed by Lang (84, p. 52) and Kennel (’88, p. 474). The secre- tions both of the slime glands and of the accessory sexual glands often appear as rod-shaped bodies, and it was evidently this appearance of the secretions occurring around the sexual organs that led Jensen (’78, p- 11) to consider them rhabditi, and to speak of them as urticating organs functional during copulation, —the theory first suggested by Anton Schneider. Similar rod-shaped secretions are figured by Graff, who calls them ‘‘ Schleimprépfchen.” If we are to consider the parent cells as glands, what part do the rhabditi play in the economy of the worm? I must agree with Kennel, that the rhabditi are of use to the worm in securing food, and, I may add, serve also for protection. Phagocata, like all planarians, is car- nivorous, and observation of its feeding habits has shown me that rhab- diti are cast out of the body in large numbers, and that this condensed secretion helps to entangle and disable the prey. If one of the worms be placed on a glass plate with a very little water, it soon becomes hopelessly entangled in its own secretions, and when in this condition placed in abundant water, some minutes elapse before it can free itself and regain its activity. If some of the slime be examined with high powers of the microscope, it will be seen to contain many rhabditi, in all stages of dissolution. The rhabditi dissolve slowly in water, and it is by reason of this slow disintegration that the slime retains a thickness and tenacity that impedes the movements of an organism in contact with it long enough for the worm to lay hold of it with its many pharynges. The conditions found in parasitic Turbellarians may be mentioned as evidence that this is the function of the rhabditi. Only four parasitic species have been studied histologically, three of which belong to the Rhabdoceeles and one to the Triclads. In all of these forms rhabditi are absent, but in their stead are found sub-hypodermal glands which resemble the parent cells of rhabditi, and like them open to the exte- rior, — another illustration of the complementary occurrence of rhabditi and glands. MUSEUM OF COMPARATIVE ZOOLOGY. 19 Von Ihering (’80, p. 149) states that in the case of Graffilla murici- cola, from the kidneys of Murex, concretions and rhabditi are altogether wanting in the epidermis. Their function, he says, is one of protection, and hence they are not needed in a parasite. Lang (’80, p. 108) says of Graffilla tethydicola, from the foot of Tethys, that there are no rhabditi, but “ Unmittelbar unter den Haut liegt eine grosse Anzahl eizelliger, birnférmiger, sich hauptsachlich mit Picrocarmine intensiv farbender Drisen.” Graff (’82, p. 375) says, concerning the same species, ‘‘ Ueber- dies finden sich hier unter der Haut zahlreiche einzellige birnformige Drii- sen.” Anoplodium parasitica, a parasite in the body cavity of Holothuria tubulosa, also possesses no rhabditi : ‘‘ Ich habe weder an frischen noch an conservirten Exemplaren von stabchenformigen Korpern oder von irgend einem Pigmente etwas wahrnehmen konnen.” (Graff, ’82, p. 376.) In Planaria limuli, a Triclad ectoparasitic on Limulus polyphemus, I have been unable to find any trace of rhabditi, but have found in abundance sub-hypodermal glands that resemble the parent cells of rhabditi, and like them send long ducts to the epidermis. Graff (79, p- 203) states regarding this species that there are no true rhabditi ; but he speaks of certain “ Haftorgane,” which he compares to rosettes of rod-like bodies, and then adds: “ Die dieselben zusammensetzenden Stabchen (Haftstabchen) bilden sich im Innern des Kérpers in beson- deren Driisen und farben sich dusserst intensiv in Carmine und Hama- toxylin,” — but I could not find these organs. Thus we see that in parasitic Turbellarians there are no rhabditi, their place being taken by many sub-hypodermal glands. Assuming that the rhabditi are condensed secretions used in securing prey and for protection, the conditions present in parasitic forms are in every way consistent with our conclusions. The only other possible function for the rhabditi is that assumed by Graff (’82, p. 58) and stated by him as follows: ‘“ Die plausibelste Anschauung ist auch heute noch die von Schultze gegebene und von Stein auch fur die Stiibchen der Infusorien adoptirte, wonach die Stabchen indem sie dem dussern Drucke einen Widerstand entgegensetzen, in uhnlicher Weise befordernd auf der feinere Tastgefiihl der Haut einwirken, wie der Nagel auf Tastver- mégen der Fingerspitze.” I have shown that on account of their inter- cellular position the rods probably cannot have such a function ; but even if this evidence were considered insufficient to disprove their sup- posed office, one would have to encounter the objection that so important a function would not be likely to be entirely lost in parasites, particu- larly in such active ectoparasites as P. limuli, where the parasitism is of 20 BULLETIN OF THE such a nature that sensory organs would still be of great importance in the animal’s economy. To summarize, then, the dermal rods are to be considered as condensed secretions arising in sub-hypodermal unicellular glands of ectodermic origin. All gradations exist between rhabditi and the secretions of normal glands. The rhabditi are being continually cast out of the body, and replaced by new ones developed in new parent cells within the body parenchyma. The con- nection of the parent cells with the epidermis is a primitive one, and the rods pass to the exterior by means of the tubular ducts formed by the neck of the elongated cells. The rods lie between the cells of the epidermis; they are slowly soluble in water, and are used by the animal in securing food and for protection. The basement membrane is a homogeneous layer immediately under the hypodermis, the cells of which are directly connected with it. It varies in thickness in different individuals and in different parts of the same individual; 1p and 6.5m are the extremes that I have found. It stains deeply in all of the carmine dyes, and always takes a darker color than the underlying muscles. A granular condition, such as is men- tioned by Iijima (’84, p. 375), does not exist, nor is there any appear- ance of the fibrous structure described by Lang (84, p. 63) for Polyclads. Minot (77, p. 408) states that the basement membrane is composed of circular fibres. The only appearance in Phagocata approaching that described by Minot ‘is seen in surface views of bits of the membrane — occurring in isolation preparations, where on one surface there appear parallel markings ; but these are no doubt due to the intimate contact of the membrane with the circular muscle fibres. The membrane is closely applied to the muscle fibres, and in longitudinal sections, where the circular muscles are cut across, the inner contour appears uneven, owing to the projecting ridges which it sends into the intermuscular spaces (Figs. 4, 6, 7, and 10); stated in another way, the circular mus- cles may be said to indent the basement membrane, leaving their impression in the form of parallel grooves on its under surface. In cross sections of the worm, the inner border of the membrane appears perfectly smooth, and parallel to the circular muscles (Fig. 2). The only departure from homogeneity is caused by the fine channels occupied by the processes of the parent cells of the rhabditi (Figs. 1, 4, 6, 7, and 10), and these are only transitory, soon becoming obliterated. Occa- sionally pigment granules find their way through these openings, and may become caught in the basement membrane. MUSEUM OF COMPARATIVE ZOOLOGY. 21 There can be little doubt that the basement membrane is a product of the hypodermis. There is a direct relation between its thickness and that of the latter; hence it is thickest on the dorsal, and thinnest on the ventral surface of the animal. It is true that the hypodermis is easily separated from the membrane, but on the other hand the intimate relation between the two structures is evident from the manner in which the cells of the former remain attached to the latter after the rhabditi have been removed by partial maceration (Fig. 3); and even when the hypodermis has been entirely removed, the outer contour of the membrane in regions where, in consequence of the presence of many rhabditi, the hypodermal cells have become much compressed, appears irregular, the uneven projections representing the points of attachment of the hypodermal cells. In those regions where the rhabditi are few or absent, the basement membrane presents a comparatively smooth surface. There is no evidence in Phagocata that the membrane is an independent cellular tissue, as in Polyclads, since no traces of structure could be demonstrated, the membrane appearing homogeneous with all of the stains that were employed. In my opinion, therefore, the base- ment membrane is of hypodermal origin. The pigment in Phagocata occurs in the form of fine granules, of an irregular outline and of a dirty greenish color. It lies principally in the longitudinal bands of muscles between the fibres, so that, when a worm is put under pressure and viewed with moderate powers, the pigment appears as if arranged in parallel rows running lengthwise of the animal. In the deeper tissues, below the muscle bands, the pigment occurs in patches and streaks (Fig. 1). No pigment occurs normally in the hypodermis. There are no special pigment cells ; the pigment occurs in the form of distinct separate granules, which are intercellu- lar in position, never intracellular. The origin of pigment as isolated granules might be explained by some such theory as that of Eisig (’87, p. 765), by which it is to be considered as a product of the excretory system, —a kind of utilized excreta. There are only three systems of muscles: the circular, the longitudinal, and the sagittal or dorso-ventral. As compared with the complicated musculature of other fresh-water planarians, that of Phagocata is much simplified, and in this respect it agrees with Gunda sementata (Lang, ’814, p. 193) and Planaria abscissa (Lijima, ’87, p. 344). The circular muscles form a single layer immediately under the basement membrane, to which, as we have seen, they are closely applied. The longitudinal muscles form a thick band inside of the circular layer, and are much 22 BULLETIN OF THE thicker on the ventral side (Fig. 10) than on the dorsal (Fig. 1). In cross sections the longitudinal muscles appear separated into bundles, between which the ends of the dorso-ventral fibres are seen passing to the basement membrane, into which they are inserted. I have not been able to find a nucleus in or on either the circular or longitudinal mus- cle fibres. The nucleus of the dorso-ventral fibres is eccentric, as in the muscles of Planaria torva, figured by Ratzel (’69, p. 275, Taf. XXIII. Fig. 26). In cross sections both circular and longitudinal fibres have an irregular outline and show a differentiation into an outer highly re- fractive contractile portion and an inner feebly refractive axis (Plate 1). Branching ends were observed only in the sagittal fibres. A reticulate mesenchyma constitutes the greater portion of the sub- stance of the body, occupying all the spaces between the organs. The spaces left by the irregular network formed by the branching cells (Plate II. Fig. 18) are connected with one another, and are to be con- sidered as a kind of pseudoccele; they are filled with a granular peri- visceral fluid. The sagittal muscle fibres in some places appear to be directly continuous with branches of the mesenchyma cells (Plate II. Fig. 18, mw. sag.), so that by contraction of the muscles the sizes of the spaces would be altered, and thereby the perivisceral fluid would be set in motion, thus establishing an irregular circulation in the pseudoceele. Lang (’84, p. 83) maintains that in the case of Polyclads these spaces are intracellular in their origin, and that the so called perivisceral fluid is the result of a liquefaction of the plasma of the connective-tissue cells, which thus become vesicular, and finally, by the breaking through of their thin walls, form a network. But if the psendoccelar spaces were intracellular in their origin, as claimed by Lang, it would be more diffi- cult to understand the intimate relation between the muscles and the processes of the reticulated parenchyma cells; it would not, however, be in any way an exceptional condition for muscle fibres to be attached to the prolongations of ste//ate connective-tissue cells, more especially when we consider that the muscle fibres and mesenchyma cells have a common origin. As is well known, the Hertwigs have produced evidence to show that the mesenchymatous muscles of the Pseudoccelous animals are “besonders differenzirte Zellen der Bindesubstanz” (’81, p. 98). Moreover, the mode of origin maintained by Lang is not founded, as far as I understand it, on evidences from embryonic conditions. Graff (’82, p- 72) was unable, from the evidence found in Rhabdoceeles, to estab- lish “a distinction between muscle fibres and connective-tissue fibres ”’ ; and Hamann (’85, p. 96) has shown that in Echinoderms the connective- MUSEUM OF COMPARATIVE ZOOLOGY. 23 tissue cells are in direct continuation with the muscle fibres of mesen- chymatous origin. From the study that I have made of the conditions in Phagocata I am convinced that they are like those found in Rhabdoceeles. Imbedded in the mesenchyma are the parent cells of the rhabditi and also the glands that open at the surface in different regions. There are two large accumulations of glands that open to the exterior, one around the gonopore, the other on the ventral surface of the head region. A smaller accumulation exists near the posterior end of the body. The glands that occur in the head region afford important evidence of the morphological equivalence of rhabditi-producing cells and ordinary dermal glands. The deep ends of these glands are located behind the brain, between it and the ovaries, and in passing over the brain they run downward and forward till they open out on the ventral surface of the head close to its anterior margin. They are numerous, and occur in two bundles or groups, one on either side of the median plane of the body. They appear as long sinuous tubes with enlargements or swellings. occurring at intervals (Plate II. Fig. 17), but without any evidence of branching, and it has not been possible to distinguish between the gland proper and its duct. Not being uniformly distributed, the finely gran- ular contents of the tubes cause the irregular enlargements referred to. Nuclei could not be detected in any portions of the ducts. The two bundles of glands begin immediately in front of the ovaries, and as they pass forward converge, so that when they pass over the commis- sure of the brain they are in contact with each other; but they soon diverge again, and make their way to the surface as already described. These two bundles of glands I believe to be the homologues of the “‘ Stabchenstrassen ”’ found in Rhabdoccles, and most prominently in the Mesostomide. Both the position and the course of the glands in Phagocata are identical with those of the “Stabchenstrassen”’ in Rhabdo- coeles, and the “‘ wiederholte Anschwellungen” (A. Schneider, ’73, p. 83) in the latter correspond to the repeated enlargements in the former. The glandular organs of Rhabdoceles differ from them only in the nature of their contents. Furthermore, the almost complete absence of rhabditi in the head region of Phagocata strengthens this conclusion. One has only to compare Leuckart’s (’52, p. 23) description of Mesosto- mum and the figures given in Graff’s great monograph with the condi- tions present in Phagocata, at once to recognize the probable equivalence of these structures. A similar but smaller accumulation of glands is found at the posterior extremity of the body in Phagocata, and it is worthy of note that there is likewise in Rhabdoceeles an accumulation 24. BULLETIN OF THE of rhabditi-secreting organs in the same region. The slime-secreting glands at the extremities of the body are used in Phagocata as a means of attachment, for it is principally by its extremities: that the worm fastens itself to objects, as can be seen when one attempts to remove it from the side of the aquarium. The other glands that are imbedded in the mesenchyma are those which open around the genital orifice. Together with their ducts they resemble in form the parent cells of the rhabditi; they also react like the glands of the head region with all stains. A portion of one of these glands from an isolation preparation is represented in Plate IV. Figure 41. The digestive apparatus of Phagocata is like that of other Triclads, except in regard to the number and arrangement of the pharynges, which form such a striking feature of this species. The form, position, relations, etc. of these pharynges have already (p. 4) been described, and it has also been stated that at the junction of the three main tracts of the intestine there is one pharynx which is larger and more promi- nent than the rest (Plate IL. Fig. 20, phy. m.), and that this is the homo- logue of the single pharynx of other Triclads. There is no difference in histological structure between this median pharynx and those which con- nect with the lateral tracts. In a cross section of a pharynx (Plate II. Fig. 12) the following layers can be distinguished, beginning from the outside: (1) the fine cilia covering the external surface, (2) the external epithelium, (3) a single layer of longitudinal muscle fibres, (4) a single layer of circular muscles, (5) a wide zone occupied by con- nective-tissue cells and salivary ducts and traversed by radial muscle fibres, (6) a single layer of longitudinal muscle fibres, (7) a broad band of circular muscle fibres, (8) the internal epithelium, and (9) the cilia lining the lumen (compare also the longitudinal section shown in Fig. 16). The external covering of cilia disappears at a region about two thirds of the distance from the free end of the pharynx toward its insertion on the intestine, and the epithelium there loses its smooth appear- ance, becoming wrinkled and creased. The cilia that line the lumen of the pharynx are more restricted in their distribution, and are lost at about one third of the way from the extremity, where the internal epithelium also becomes longitudinally folded, many of the folds pro- jecting far into the lumen of the pharynx (Plate II. Fig. 12, eth. 7.). In this portion of the epithelium there are many nuclei, whereas in the cili- ated region nuclei cannot be seen. Compare Figures 12 and 16, Figure 12 being a cross section which passes through the non-ciliated portion of MUSEUM OF COMPARATIVE ZOOLOGY. 25 the internal epithelium. There are no nuclei anywhere in the external epithelium of the fully developed pharynx, except near its proximal end. By the use of silver nitrate, however, I have been able to demonstrate that the layer is a true epithelium. Isolated pharynges were killed with hot 14% silver nitrate. By using the solution hot, the pharynges were killed in an extended condition. A tangential section through material treated in this way is represented on Plate IV. Fig. 47. I have been unable by any method of staining to demonstrate the presence of nuclei in these cells, the boundaries of which are so plainly brought _out by impregnation with silver. In young pharynges (Plate II. Fig. 14), where the tissues are not fully differentiated, nuclei are to be seen in both the external and inter- nal epithelial coverings, although no trace of them can be found later on. It is not difficult to find pharynges in different stages of develop- ment, since the number increases with the age of the individual. The young pharynx begins as a solid bud of tissue projecting into a cavity hollowed out of the mesenchyma. The cavity is lined with a layer ot flattened cells, which is continuous with the cell layer covering the young pharynx (Plate II. Fig. 11). The cavity is at first closed on all sides, but eventually communicates with the common pharyngeal chamber. The lumen of the pharynx is formed by an infolding of its free end, which projects into the cavity. Although I have not been able to trace directly all the steps in the invagination, I have seen specimens where the lumen was lined throughout with an epithelium, and where there was as yet no connection with the intestine. The epithelium lining the lumen is continuous with that covering the outer surface of the young pharynx, and hence with that lining the pharyngeal cavity, and it pre- sents the same histological conditions as the latter (Plate IL. Fig. 11). Figure 14 represents a cross section of a young pharynx somewhat advanced in development, where the cellular structure of both the inner and outer epithelium is still evident; there are as yet no cilia, and no traces of the longitudinal muscles. I expect to describe in another paper the changes by which the mass of indifferent cells composing the young pharynx is converted into the ultimate histological structures of the mature pharynx. The outer layer of the pharynx has never been described as possessing a distinctly cellular structure. Moseley (’74, p. 151), in speaking of land planarians, describes “an epithelium in which no definite cell structures could be observed ; but it appeared transparent, and marked by vertical lines which might represent separation into cellular ele- 26 BULLETIN OF THE ments.” Iijima (’84, p. 389) also saw “eine senkrechte Streifung.” Lang (’81, p. 196, and ’84, p. 109) speaks of it as a ‘ cuticuladnliches Epithel” with flattened nuclei which it was difficult to see, and Minot (77, p. 426) gives to it a well defined basement’ membrane. It is obvious from the description that I have given of the young pharynx that the outer layer, though ultimately much modified in appearance, is nevertheless an epithelial layer. I could not demonstrate the presence of a cuticula with pore canals such as has been described by Iijima (84, p. 390); neither could I dis- cover anything answering to the nerve plexus described for other forms, nor could I detect any nerve tissue. From the automatic movements of the isolated pharynges, one would expect to find a complicated system of nerves, and perhaps one or more ganglionic centres. In the mature pharynges the radial muscle fibres run from the outer to the inner epithelium, to both of which they are attached by their finely branched ends (Figs. 12 and 16). These muscles no doubt act antago- nistically to the broad band of circular muscles in dilating the lumen of the pharynx, and by means of these two systems the peristaltic motions displayed by the pharynges are accomplished. Between the radial fibres there is a network of connective-tissue cells, and in the outer half of this middle zone occur the salivary ducts (Figs. 12 and 16, dt. sal.), which run the whole length of the pharynx and open at the edge of its lip. In the meshes of the connective-tissue network are seen fine granulations ; these spaces are undoubtedly in communication with the pseudoccele of the body mesenchyma, and it is to the coagulation of the perivisceral fluid which has made its way out into the tissues of the pharynges that is due the granular appearance seen. ” I have little to add to what has been written concerning the histology of the intestine, my observations agreeing in the main with those of lijima. The structure is the same in the principal tracts and in the smaller branches; there are no differentiated gland cells. During the periods of most active digestion the intestinal cells are filled with highly refractive oil-like globules, of different sizes (Plate 1V. Fig. 43),— the food matter absorbed by the cells. In this condition the cells are large, and protrude into the lumen, so that in the smaller branches of the intestine the latter has entirely disappeared. The contents of the cells are eventually absorbed by the neighboring tissues, and the intestinal cells themselves then appear vacuolated. I have not been able to trace out the course of the excretory canals. Although I have endeavored many times to study them, I have never MUSEUM OF COMPARATIVE ZOOLOGY. 27 seen more than a few loops in the head region, and these were seen only when the animal was put under great pressure, resulting in disintegra- tion of the tissues. The nervous system of Phagocata agrees in the main with the descrip- tions given by Lang (’81, p. 53) and Iijima (87, p. 349) for other plana- rians. The longitudinal nerve trunks unite near the anterior end of the body in a well developed brain mass (Plate III. Figs. 25 and 33), and posteriorly are connected with one another by fine commissures. Larger commissures unite the trunks to one another throughout their whole length, either running straight from trunk to trunk, or branching in their passage (Plate IV. Fig. 38). The latter condition may be regarded as closely related to one in which two commissures are united to each other by means of a connective, a condition that often occurs. There is no fixed relation between the number of transverse commissures and the lateral diverticule of the intestine, but lateral nerves are usually given off from the main stems at points opposite to the union of the latter with transverse commissures (Plate IV. Fig. 38). The main nerve trunks are prolonged anterior to the brain. They diminish rapidly in size, and give off several lateral branches, which are directed obliquely forwards and outwards (Plate III. Figs. 25 and 36), and they finally break up into minute branches which form a network. The lateral nerves from the main trunks run, sometimes with, sometimes without branching, to the margins, where they unite with a second pair of finer longitudinal nerves, —the marginal or peripheral nerves (Plate IV. Fig. 37, 2. pi’ph.). The marginal nerves form the lateral edges of a great nervous network, which lies near the ventral surface just inside the sheet of longitudinal muscles. Figures 57 and 38 represent portions of two successive horizontal sections close to the ventral surface. The sections are 30 thick, and pass through the floor of the pharyngeal chamber ; the light areas show where the knife has cut through the wall into the pharyngeal cavity. The animal having been sectioned from the ventral side, Figure 38 is the deeper (i. e. more dorsal) section. The position of the oral opening (0) indicates that the portions of the sections shown are from the same region of the body. In Figure 38 are seen the main nerve trunks (a. /.’p.) together with transverse commis- sures (com. t.) and lateral nerves (n./.). It may be seen from Figure 37 how the median branches from the peripheral nerves (2. p7i’ph.) break up into a network or plexus, which is distributed to the muscles (plz. mu.). This network covers the whole of the ventral surface, and at the extreme anterior end of the body is continuous with finer ramifications of the 28 BULLETIN OF THE anterior longitudinal trunks. I could find no trace ofa similar plexus in connection with the less developed muscles of the dorsal side. The nervous system of planarians may be readily understood, it seems to me, if we regard it as composed of two more or less distinct a deep-seated and a more superficial portion. The deep-seated and more central part is present in all planarians hitherto investigated, and consists of the brain, longitudinal nerve trunks, their commissures, and the lateral nerves given off from them. The superficial portion consists of a nerve plexus which lies just underneath the longitudinal muscles, and may be confined to one or the other of the two surfaces, or may be wholly wanting. A conspicuous part of this superficial system, whenever it exists, is the marginal nerve. The connection between the parts, deep and superficial portions of the nervous system is effected by means of vertical nerves running between the two, and, as I have found in Phagocata, the marginal nerve also serves in an indirect way the same purpose ; for on the one hand it is connected with the lateral nerves of the central system, and on the other it forms the marginal terminus of the superficial system. Lang (’81, p. 72) has described in Gunda a marginal nerve directly connected with the lateral nerves given off from the main trunks, but has been unable to find any other evidence of a plexus. In Rhyncho- desmus, according to the same author (’81, p. 62), there are both dorsal and ventral plexuses, which are in contact with the deep surfaces of the longitudinal muscles, and are connected with the central system by vertical branches from the main trunks, from the lateral nerves, and from the transverse commissures, but there is no peripheral nerve. Lang (81, p. 57) also finds a plexus in connection with the deeper longitu- dinal muscles in Planaria torva. Iijima (’84, p. 426) has likewise found a dorsal plexus in a similar position in Pl. polychroa and in D. lacteum, and Loman (’87, p. 76) has found the same conditions in Bipalium suma- trense and B. javanum. In Gunda ulvee and Pl. abscissa there exists, according to Tijima (’87, p. 349), a second, dorsal pair of longitudinal stems, giving off branches that break up into a plexus and unite with the plexus from the lateral branches of the main trunks, the whole form- ing a ‘“ Nervenschlauch.” He says that a “ Randnerv” is present, but he does not state what are its relations to the plexuses, From this brief survey it is obvious that Gunda represents one extreme, and Rhynchodesmus the other ; since in the former there are no superficial plexuses, and in the latter there is a superficial plexus on both dorsal and ventral surfaces in addition to the parts found in Gunda, MUSEUM OF COMPARATIVE ZOOLOGY. 29 except that Rhynchodesmus has no marginal nerve. Both Phagocata and Planaria abscissa are intermediate between these extremes, PI. abscissa possessing only the dorsal portion of the superficial system (in which a special dorsal longitudinal nerve has arisen), and Phagocata having only the ventral portion of that system. Both possess, however, the marginal nerve found in Gunda, and I believe that it probably sus- tains in Pl. abscissa the same relations to the deep portion of the ner- vous system that I have found to exist in Phagocata. It is evident, I think, from what I have shown in Phagocata, that the marginal nerve is to be regarded as one of the means of communication between the central and superficial parts of the nervous system ; or per- haps rather as a differentiation of that portion of the superficial system which is put in connection with the deep system by means of the lateral branches from the main trunks. It may perhaps be reasonable to suppose that the more concentrated condition in Gunda has been brought about by a process of centraliza- tion from the more diffuse and more primitive (?) condition shown in Rhynchodesmus. The brain is formed on the same plan as that of Gunda (Lang, ’81, p- 67; ’81*, p. 213). I find two commissures, a larger anterior commis- sure which Lang calls in Gunda the sensory, and a smaller posterior one which he calls motor (Plate III. Figs. 23, 33, and Plate IV. Figs. 39, 46). The posterior commissure lies somewhat behind and below the anterior one. It directly connects the longitudinal nerve trunks, since it lies in the same ventral plane with them, while the anterior commissure, occu- pying a higher plane, is only indirectly united to these ; viz. by means of the lateral masses of the brain from which vertical commissural fibres ‘ (the motor-sensory commissures of Lang) extend to the nerve trunks. Lang describes four pairs of nerves as arising from the lateral sensory masses of the brain. I cannot discover that there is any fixed number in Phagocata. The only well defined one is the optic nerve (Plate IV. Fig. 40, n. opt.). A great sheet of fine nerves is given off from the lateral surface of the brain, and, spreading out fan-like, runs forward to the anterior margin of the body (Plate III Figs. 25 and 34, n.). It is from these nerves that the “ Tastorgane” of this highly sensitive portion of the body receive their nerve supply. A comparison of the figures will make clear the relation of the differ- ent parts of the brain. Figures 26 to 31 are from cross sections through the region of the brain taken at intervals of 60 4. Figures 32 to 36 are consecutive sections in the horizontal plane, Figure 32 being the most dorsal of the series. 30 BULLETIN OF THE Lang (81, p. 79) speaks of a “ Zellenbeleg von wirklichen Ganglien- zellen” around the brain of Triclads. Iijima (’87, p. 353) describes these cells as being unipolar with extremely delicate processes. I also find a layer of closely packed cells with large nuclei around the brain, more especially about the so called sensory portions (Plate II]. Figs. 26-31, Plate IV. Figs. 39 and 40), but I cannot say that these are ganglionic cells. They resemble in every way connective-tissue cells; they react like them with stains, and are more prominent only on account of their compact arrangement. The nuclei of the two large ‘‘ Substanzinseln” in the lateral masses of the brain (Plate III. Figs. 28, 33, Plate IV. Fig. 39, con’t. tis.) are both identical and continuous with the nuclei surrounding the brain, and those found in the main nerve trunks cannot be distin- guished from them. The ganglionic cells occurring a the nerve tissue are not as large, nor do their nuclei stain as deeply, as those occurring around the brain mass. I therefore believe that the latter belong to the mesenchyma, and that the “Substanzinseln” are only intrusive con- nective tissue. Aside from this, I can add nothing to the observations of Iijima on the finer structure of the nervous tissue. The longitudinal nerve trunks in some places appear to be double for a considerable dis- tance, being split, as it were, by the ingrowth of mesenchymatous tissue (Plate III. Figs. 33 to 36, and Plate IV. Fig. 38). All such openings, as pointed out by Lang (’81, p. 56), occur between the points of origin of the lateral nerves. The testes are numerous, and are found lying close together through- out the whole length of the animal. Their development takes place before that of the yolk glands. While the latter are stiil in an early stage of development, spermatogenesis has been completed, the testes have disappeared, and the spermatozoa are found filling the vasa def. erentia. The testes first appear as spherical clusters of cells, which by division increase in number and arrange themselves in the form of hollow spheres. Some of the peripheral cells divide rapidly into small spherical cells, that come to lie in the cavity of the testis. These cells become elongated or pear-shaped, and are then differentiated into two portions, a deeply stainable thickened end, and a tapering tail por- tion (Plate II. Fig. 24). Further elongation takes place, until the form 1 Since I came to these conclusions in regard to the mesenchymatous character of the so called “Substanzinseln,” I have been gratified to learn that my conclusions agree with those of Loman (’87, p. 77). In Bipalium, then, as well as in Phago- cata, the “Substanzinseln” present in all particulars the same differences from ganglionic cells. MUSEUM OF COMPARATIVE ZOOLOGY. 31 of the adult spermatozoon is reached. Many stages of development can be seen in the same testis. The different stages occur in distinct groups, each group probably being the product of one of the parent cells. ‘The wall of the testis, when the spermatozoa first begin to develop, is com- posed of many cells, most of which by division go to form spermatozoa ; a few of the cells, however, are differentiated into flattened epithelium, which constitutes the wall of the capsular testis (Plate II. Fig. 24, e’th.). I have not succeeded in ascertaining the exact manner in which the spermatozoa find their way into the vasa deferentia, but Iijima’s state- ment (’84, p. 408) that they do not wander through the spaces of the mesenchyma is certainly incorrect. The testes give rise to tubular prolongations, but whether these are directly connected with the vas deferens or first unite into one or more vasa efferentia, I cannot say. The testicular canals appear to be direct outgrowths of the wall of the testis. Their walls and those of the vasa deferentia have the same simple structure (compare Plate II. Figs. 23 and 24), being composed of a single layer of thin epithelium. ‘The nuclei in the walls of the tubes often occur in pairs, and thus suggest that the cells to which they belong have recently undergone division (Fig. 24). According to Moseley (’74, p. 139), the testes in land planarians open directly into the vasa deferentia ; Minot (’77, p. 482), on the contrary, speaks of fine testicular canals that unite to form larger tubes. Kennel (79, p. 137) states that the testes, arranged in rows, fuse to form the vasa deferentia. The anterior ends of the vasa deferentia in Phagocata lie on either side of the pharyngeal chamber in the region of the mouth opening. They have the form of large elongated sacs (Plate IV. Fig. 42, x) which open into comparatively narrow tubes (va. df.), which are of an even calibre, and much convoluted and twisted. They run backward parallel to each other until near the base of the penis ; they then turn at right angles toward the middle plane, where they unite to form a single tube which terminates at the apex of the penis. The spermatozoa when ripe leave the testes by the testicular canals previously described, and pass into the vasa deferentia, which become filled from their enlarged blind ends up to a point beyond that where they unite to enter the penis. Here the spermatozoa remain stored until arranged into spermatophores, in which form they pass into the vagina of another individual. After the spermatozoa have found their way to the vasa deferentia, all traces of the testes disappear. Physiologically considered, the vasa deferentia of Triclads are to be 32 BULLETIN OF THE considered as vesiculee seminales. In Polyclads and in Rhabdoceles a vesicula seminalis is present. This organ has been described for land planarians by Moseley (’77, p. 278) and Loman (’87, p. 81), and Kennel (88, p. 460) speaks of “mehrfach gewundenen Samenblasen” in Pla- naria alpina. There can be no doubt that the terminal enlargements found in Phagocata are a provision for the storage of a great number of spermatozoa, as their size is found to vary in different individuals and on different sides of the same individual according as the number of spermatozoa is large or small. ; The pends or.intromittent organ is a highly muscular plug-like structure (Plate IV. Fig. 42, pe.) that lies in the genital atrium or penis sheath. It is covered with a flattened epithelium, under which there are alter- nating layers of circular and longitudinal muscles, five of each, form-. ing a thick zone. Immediately outside the epithelial lining of the tube there is a band of circular muscles, and between these and the outer muscles there is a broad zone occupied by a meshwork of muscular fibres, prominent among which are those having a radial direction. The lumen of the penis is not of an even calibre, but consists of a succession of chambers, or dilatations, lined with a granular epithelium, which is probably glandular. It is within the lumen of the penis, no doubt, that the spermatophores are formed. The sheath of the penis is lined with an epithelium of cylindrical cells, the nuclei of which lie close to the bases of the cells, and are stained deeply, while the glandular cell substance is stained only slightly. These cells also may be glandular, but if so, I can find no explanation for their faint reaction with staining reagents. In that respect they differ from all other glandular tissue. The female sexual organs consist of a pair of ovaries with their oviducts, the vitellarium or yolk gland, the uterus, and the vagina. The single pair of ovaries is situated in the anterior part of the body a little behind the brain mass. They are symmetrically placed on the ventral side of ‘the body just dorsad of the main nerve trunks, one on either side. They appear as rounded sacs filled with ova (Plate II. Fig. 21). The wall of the ovary is a delicate membrane, in which I could detect no sign of cell structure, such as Moseley (’74, p- 137) found in the ovary of land planarians. Scattered in between the ova are the nuclei of a connective-tissue network that fills the spaces between the ova (Plate II. Fig. 21, nl. con’t. tis.). Tijima (84, p. 412) considers the branching cells between the ova as rudimentary egg cells, at_ whose expense the ova develop. I have not yet seen different stages in the development of the ova. MUSEUM OF COMPARATIVE ZOOLOGY. 35 Intimately associated with the ovaries are two prominent compact cell masses with deeply stained nuclei, which may provisionally be called parovaria (Plate II. Fig. 21, vt’m.). They are larger than the ovaries, and envelop them above, in front, and on the outside ; that is to say, the ovaries are surrounded on three sides, being partially imbedded, so to speak, in these cell masses. The latter are present in every indi- vidual, and their size relative to that of the ovaries varies only with the condition of the sexual organs. They are smallest during the develop- ment of the spermatozoa, and are most prominent at the time when the yolk glands have reached their full development. For a long time these cell masses puzzled me. I believed them to correspond to the second pair of rndimentary ovaries described by Iijima (’84, p. 412) for Poly- celis tenuis, and I at first accepted his interpretation of their significance ; but sections through additional material, where the female organs were not so advanced, served to show their true meaning ; they are the organs which give rise to the yolk glands. At an early stage in the development of the testes no yolk glands are present, but they begin to appear at the time when the spermatozoa are ripening. The first traces of the yolk glands are seen in branching chains of cells, which arise as outgrowths from the parovaria. Each cell has a large nucleus that is stained deeply in carmine. In these chains the cells lie either in a single row, or it may be in several rows (Plate II. Figs. 19 and 19a). The nuclei are large and granular, and occupy the greater part of the cell. It is to be inferred that the cells are dividing rapidly, since nuclei are found in all stages of division, and two nuclei are frequently seen in the same cell; the division appears to be direct, or amitotic (Plate II. Figs. 19 and 22). The rudimentary yolk glands oc- cupy at first the ventral regions around the oviducts, but afterwards they send branches from there dorsad, until there is formed a dendritic system of rapidly dividing cells, which ramify through the tissues. From each of the cell masses around the ovaries is derived one half of the yolk system, that belonging to its own side of the body. The cell chains of the young yolk glands are seen to be directly connected with the parovarial cell masses, and histologically the structure of the two is identical (compare Fig. 19 with Fig. 22, Plate II.). Furthermore, at the time of development of the yolk glands there is a very active division of the cells of the parovarial masses, a condition that does not exist when the yolk glands have matured. A similarity in the condition of the cells of the yolk glands and those of the parovarial masses is evident at all stages of development. The young cells of the yolk voL xxI —wno. 1. 3 34 BULLETIN OF THE glands increase in size, but do not grow as rapidly as the surrounding protoplasm, and therefore the nucleus becomes smaller in proportion to the size of the cells. Many highly refractive granules appear in the protoplasm, and increase in number with the growth of the cells, till eventually, when the cells have attained their full size, they form a relatively large proportion of the cell mass (Plate IV. Fig. 45). Cor- responding to the changes that take place in the yolk cells, there is a slight increase in the size of the parovarial cells, in which there is also an accumulation of highly refractive granules (Plate IV. Fig. 44), but the nuclei retain more nearly their original proportions to the cells than in the case of the yolk cells. In addition to the identity of histological structure, a most striking evidence of the derivation of the yolk glands from the parovarial cell masses is found in the reaction of both kinds of cells with staining fluids, more especially with picrocar- minate of lithium. Figures 44 and 45, Plate IV., represent respectively sections through parovarial cells and mature yolk-gland cells of the same individual. Figures 19 and 22, Plate II., are sections from another individual; Figure 22 is a section of young parovarial cells, and Fig- ure 19 of incipient yolk-gland cells. Upon comparison of Figures 19 and 22 with Figures 45 and 44, it will be noticed that, in addition to the appearance of the granules in the protoplasm of the older cells, there has been an increase in the size both of the yolk cells and of the cells of the parovarium. It is my belief, then, that the two large dendritic yolk glands arise by cell proliferation from the parovarial organs which exist in intimate relation with the ovaries. lijima (’84, p. 412) describes a pair of structures lying in front of the ovaries in Polycelis tenuis as being composed of a solid mass of cells, and as resembling young ovaries, so that this species possesses, in his opinion, two pairs of ovaries, one of which is rudimentary. On account of their terminal position, he considers these rudimentary structures, although not the functional ovaries, as the homologues of the single pair of ovaries present in other species. His account of the growth of the yolk glands, as given at p. 417, coincides with my observations, but concerning the source of the chains of young yolk cells he says (p. 455): “Wir diirfen sagen, dass die Dotterstrange durch Vermehrung einzelner Zellen, welche in dem Mesenchym sich befinden, ihren Ursprung nehmen.” But his evidence that the “ Dotterstrange”’ arise i situ is not satisfac- tory. It is to be regretted that he has not given a fuller account of the so called rudimentary ovaries of Polycelis, which, I am almost certain, are the equivalents of the. parovarial cell masses of Phagocata. MUSEUM OF COMPARATIVE ZOOLOGY. 35 The absence of yolk glands in Moseley’s land planarians can be accounted for by assuming that in his material they were not yet ripe, as was probably the case. He states (’74, p. 137), however, that there is occasionally present in Bipalium, “just externally to the lower ex- tremities of the ovaries, a small mass of large nucleated cells connected by a pedicle with the ovary itself.” He considers that “it may repre- sent a yolk-gland in a rudimentary condition.” With this I fully agree, and further believe that this rudimentary yolk gland is the homologue of the structure which in Phagocata I have called parovarium. The presence of a vitellogenous organ in Phagocata, together with the condition found in Polycelis by [Iijima and in Bipalium by Moseley, suggests a discussion of the relations of the ovaries and vitellaria. Yolk glands have long been considered as resulting from the differentiation of the ovaries. Gegenbaur, as stated in his text-book (’70, p. 281), con- siders the yolk glands to be “ Theile eines ansehnliches Ovars.” Hallez (79, p. 63) maintains that “ le vitellogéne n’est autre chose qu’une partie différenciée de l’ovaire,” and according to Lang (’814, p. 228), “ Die Keimstécke und Dotterstécke der Tricladen sind einander gleichwerthig. Sie entstehen aus Zellen, die anfangs nicht von einander unterscheiden lassen.” Among Rhabdoceeles all gradations are found, from an undif- ferentiated “ Keimdotterstock,” where ova and yolk cells are developed in different portions of the same organ, to conditions in which the ova and yolk cells are produced in distinct and separate organs.. The yolk glands, then, have arisen by a divison of labor from a simple germ gland, as has already been formulated by Graff (’82, p. 130) in the following words : “ Die Keimdotterstécke miissen wir uns aus Ovarien durch einfache Arbeitstheilung hervorgegangen denken; durch raumliche Trennung der verschieden functionirenden Abschnitte des Keimdotterstockes ent- standen schlieslich die Keim- und Dotterstocke.” I consider the condi- tion found. in Phagocata to be less differentiated than that exhibited by Pl. tenuis (Iijima), inasmuch as the cells which form it still retain a more intimate relation to the true ovary than they do in the latter case. The union of the yolk glands with the oviducts is a secondary one ; it takes place at intervals throughout their length. I have not studied this in detail, but, as far as I have learned, the conditions agree with the careful description given by Iijima (84, p. 415). The oviducts open into the vagina just above the point where it enters the genital atrium (Plate IV. Fig. 42). The uterus (Plate IV. Fig. 42, wt.) is a sac-like organ lying just anterior to the penis, and has thick walls that are thrown into many 36 BULLETIN OF THE folds. It is lined with an epithelium of elongated cylindrical or pyriform cells of a glandular nature. The appearance of the cells varies with the activity of their secretion; the protoplasm may be either homogeneous, or filled with oil-like globules, or it may be vacuolated. The cells rest upon a fine basement membrane. There is no musculature, and there are no cilia. The mouth of the uterus is prolonged into a tube with thick muscular walls, the vagina (Plate IV. Fig. 42, vag.), which runs backward, pass- ing above and to the left of the penis and then dipping down toward the ventral side of the body, where it opens into the genital atrium. Where the vagina arises from the uterus it is lined with a ciliated epithelium of low cubical cells, and possesses a musculature of circular and longitu- dinal fibres. As it passes backward, the cells of the lining epithelium become taller and cylindrical (Plate IL. Fig. 15, e’th.), and the nuclei are elongated. The outer ends of the cells show distinct granulations, and the contour of the lumen becomes uneven ; the glandular nature of the cells now becomes apparent. Along with the change in the appearance of the cells of the lining epithelium there is an increase in the thickness of the musculature, which now consists of alternating layers of circular and longitudinal fibres. The musculature of the vagina reaches its great- est development at the point where it bends toward the ventral side of the body ; from this point onward the cells lose their glandular char- acter, and the musculature diminishes in thickness, till, at the point where the vagina receives the oviducts, it again consists of only a single layer each of circular and longitudinal fibres. Moseley (’74, p. 141) and Iijima (’84, p. 420) speak of radial fibres in the walls of the vagina ; but T could not find any. The accessory female organs of Triclads have been the subject of much discussion. There are no other structures about which so many opinions at variance with each other have been advanced. The organ which I have called the uterus is regarded by lijima (84, p. 419) asa simple gland whose secretions go to form the cocoon. In his opinion, it has no function in connection with the union of the sexual elements; he considers it homologous with the shell gland of Cestodes and Trematodes. According to Kennel (’88, p. 458), it is to be considered as a receptacu- lum seminis, and its secretions serve to preserve the spermatozoa. Hallez (87, p. 24) maintains that fecundation takes place in the uterus, and that in it the yolk cells join the egg cells. According to Hallez, there is a division of labor among the cells lining the uterus. The majority of them secrete the substance of the cocoon, others secrete “un liquide MUSEUM OF COMPARATIVE ZOOLOGY. ob spécial” to support the vitality of the male elements, and possibly to aid in fecundation. He states that in Pl. polychroa the cocoon is pro- duced in the uterus, but as regards Dendrocelum lacteum he agrees with lijima in maintaining that the cocoon is formed in the genital cloaca or atrium. In Phagocata I have found ova as well as spermatozoa in the uterus, and believe that fecundation takes place there. The spermatophores are deposited in the vagina and from there the sperma- tozoa make their way into the uterus. I believe also that a portion of the contents of the cocoon are secreted by the uterus, but that the substance of its wall, the shell, is produced from the glandular lining of the vagina, so that in Phagocata at least the “uterus” cannot be re- garded as homologous with the shell gland of Cestodes. It is my pur- pose to discuss at length these questions, together with that of the formation of the spermatophore, in a subsequent paper on the embryology of this species. No organ comparable with the “ muskulésen Driisenorgan” of Iijima (84, p. 422), or the “ vésicule (bourse) copulatrice” of Hallez (’79, p. 57, and ’87, p. 20), is present. Summary. Phagocata differs from all known Triclads in possessing, besides a pharnyx which opens into the intestine at the junction of its three main trunks, many additional pharynges which are joined to the two lateral trunks of the intestine. The lateral pharynges are histologically identical with the median one ; they differ from the latter only in size ; the more remote they are from it, the smaller they are. The rhabditi or dermal rods lie between the cells of the hypodermis, not in them. They are developed in cells lying in the sub-hypodermal mesenchyma; the cells are connected with the hypodermis by fine tubular prolongations. The connection of the parent cells of the rhabditi with the exterior is a primitive one, and the rods enter the hypodermis by emergence along these prolongations. The rhabditi are ultimately discharged from the hypodermis, and new ones are constantly being developed in new parent cells. They are slowly soluble in water, and are used for securing prey and for protection. The parent cells of the rhabditi are unicellular glands, and the rods are their condensed secretions. The “Stibchenstrassen ” of Rhabdocceles are homologous with the slime glands in Phagocata. 38 BULLETIN OF THE The basement membrane is a product of the hypodermis. It is struc- tureless. The pigment is intercellular, occurring in the form of scattered granules. The pseudoccelar spaces of the mesenchyma are intercellular in ori- gin, and sagittal muscles are directly continuous with processes of the mesenchyma cells. The nervous system consists of a deeper and a superficial portion; a marginal nerve indirectly connects the two. The condition in Phagocata may be intermediate between that of Gunda and Rhynchodesmus. The brain presents two commissures, an anterior and a posterior one, uniting the longitudinal nerve trunks. The so called ‘“ Substanzinseln ” are intrusive connective tissue. The testes give rise to tubular outgrowths, the vasa efferentia. The vasa deferentia have terminal enlargements and function as vesicule seminales, The yolk glands arise by cell proliferation from two cell masses, the parovaria, which are in immediate contact with the ovaries. The intimate connection of the parovaria with the ovaries indicates the differentiation of the ovary and vitellarium from a common gland. The so called uterus is not only a gland ; it is a place in which the sex- ual elements are brought together, and where fertilization consequently takes place. CamBRIDGE, August, 1890. It was not until this paper had gone to press that I had access to the recent work of Bohmig (91) on Rhabdocceles. It was then too late for any detailed review. I am gratified to observe, however, that he has arrived at conclusions from his studies of Rhabdocceles which agree in many points with those which I have expressed in the foregoing paper, especially in his statements as to the fate and significance of rhabditi. MUSEUM OF COMPARATIVE ZOOLOGY. . 39 BIBLIOGRAPHY. Béhmig, L. ’86. Untersuchungen iiber rhabdocdle Turbellarien. I. Das Genus Grafiilla vy. Jhering. Arbeiten a. d. zoolog. Inst. z. Graz, Bd. I. No. 1, 1886. Also in Zeitschr. f. wiss. Zool., Bd. XXXIV. Heft 2, pp. 291-328, Taf. XI., XII. 14 May, 1886. 90. Untersuchungen iiber rhabdocéle Turbellarien. II. Plagiostomum und Cylindrostomina Graff. Zeitschr. f. wiss. Zool., Bd. LI. Heft 2, 3, pp. 160-479, Taf. XII.-XXI. 31 Dec., 1890. Braun, M. ; ’81. Beitrage zur Kenntniss der Fauna haltica. I. Ueber Dorpater Brunnen- planarien. Arch. f. d. Naturk. Liv-, Ehst- und Kurlands, [2.] Bd. IX. Lief. 4, pp. 289-341, 1 Taf. Dorpat, 1881. Diesing, K. M. ’87. Systema Helminthum. Vindobone apud Wilhelmum Braunmiiller. Vol. I., xiii-+ 379 pp. 1850. 62. Revision der Turbellarien. Abtheilung: Dendrocoelen. Sitzungsb. d. k. Akad. Wien, math.-naturw. Cl., Bd. XLIV. Abth. I., 1861, pp. 485- 578. 1862. Eisig, H. ’87. Monographie der Capitelliden des Golfes von Neapel und der angren- zenden Meeresabschnittes. Fauna und Flora d. Golfes v. Neapel, XVI. xxvi-++ 906 pp., 20 Holzschn., 37 Taf. 1887. Gegenbaur, C. ‘70. Grundziige der vergleichenden Anatomie. Zweite Aufl. Leipzig, 1870. Girard, C. ‘51. A brief Account of the Fresh-water Planarie of the United States. Proc. Boston Soc. Nat. Hist., Vol. III. 1848-1851, pp. 264, 265. Pre- sented 20 March, 1850. Cambridge, 1851. 51. Die Planarien und Nemertinen Nord-Amerika’s. Nord-amerik. Monatsb. f. Natur- u. Heilkunde, Bd. II. No.1, p.1. Philadelphia, January, 1851. Graff, L. "74 Zur Kenntniss der Turbellarien. Zeitschr. f. wiss. Zool., Bd. XXIV. Heft. 2, pp. 123-160, Taf. XIV.-XIX. 13 April, 1874. 82. Monographie der Turbellarien. I. Rhabdocoelida. Leipzig, Engel- mann, 1882. xii 441 pp, 12 Holzschn., Atlas, 20 Taf., fol. Haldemann, S. S. 40. Supplement to Number One of “A Monograph of the Limniades, or 40 BULLETIN OF THE Freshwater Univalve Shells of North America,” containing Descriptions of apparently new Animals in different Classes, etc. 3 pp. Philadelphia, October 18, 1840. Fiallez; P: . '79. Contributions a l’histoire naturelle des Turbellariés. Travaux d. ]’Instit. zool. d. Lille, Fase. II., vii-+ 213 pp., 9 pl. 1879. ’'87. Embryogénie des Dendroceeles d’eau douce. Paris, Octave Doin, 1887. 107 pp., 15 photogravures, 5 pl., 8vo. Hamann, O. ’'85. Beitrage zur Histologie der Echinodermen. Heft 2. Die Asteriden anatomisch und histologisch untersucht. Jena, Fischer, 1885. iv + 125 pp-, 3 Holzschn., 7 Taf., 8vo. Hertwig, O. and R. ’81. Die Coelomtheorie. Versuch einer Erklarung des mittleren Keim- blattes. Jenaische Zeitschr., Bd. XV. Heft 1, pp. 1-150, Taf. I-III. 25 Jan., 1881. . lijima, Isao. ’84. Untersuchungen tiber den Bau und die Entwicklungsgeschichte der Siisswasser-Dendrocoelen (Tricladen). Zeitschr. f. wiss. Zool., Bd. XL. Heft. 3, pp. 359-464, Taf. XX.-XXIII. 27 June, 1884. ’87. Ueber einige Tricladen Europa’s. . Jour. College of Science Imp. Univ. Japan, Vol. I. pp. 337-858, Pl. XXV. Tokyo, 1887. i Jensen, O. S. ; '78. Turbellaria ad Litora Norvegie occidentalia. Turbellarier ved Norges Vestkyst. Bergen, J. W. Hides, 1878. vi-+97 pp., 8 pl., fol. Jhering, H. von. ’80. Graffilla muricicola, eine parasitische Rhabdocoele. Zeitschr. f. wiss. Zool., Bd. XXXIV. Heft 1, pp. 147-174, Taf. VII. 1 March, 1880. Keferstein, W. ’°89. Beitrage zur Anatomie und Entwicklungsgeschichte einiger Seeplana- rien von St. Malo. Abhandl. d. k. Gesellsch. d. Wissensch. z. Gottingen, Bd. XIV. pp. 3-38, Taf. I-III. 1869. Kennel, J. "79. Die in Deutschland gefundenen Landplanarien Rhynchodemus terres- tris O. F. Miller und Geodesmus bilineatus Mecznikoff. Arbeit. a. d. zool.-zoot. Inst. Wiirzburg, Bd. V. Heft 2, pp. 120-159, Taf. VII. 15 Dec., 1879. ’88. Untersuchungen an neuen Turbellarien. Zool. Jahrbiicher, Abth. f. Anat. u. Ontog. d. Thiere, Bd. I1I. Heft 3, pp. 447-486, Taf. XVIII., XIX. 30 Nov., 1888. Lang, A. ’80. Notiz iber einen neuen Parasiten der Tethys aus der Abtheilung der rhabdocoelen Turbellarien. Mittheil. a. d. zool. Stat. z. Neapel, Bd. II. Heft 1, pp. 107-112, Taf. VII. 1880. MUSEUM OF COMPARATIVE ZOOLOGY. 41 781. Untersuchungen zur vergleichenden Anatomie und Histologie des Ner- vensystems der Plathelminthen. IV. Das Nervensystem der Tricladen. V. Vergleichende Anatomie des Nervensystems der Plathelminthen. Mittheil. a. d. zool. Stat. z. Neapel, Bd. III. Heft 1, 2, pp. 53-95, Taf. V., VI. 2 Dec., 1881. . ’*81*. Der Bau von Gunda segmentata und die Verwandtschaft der Plathel- minthen mit Coelenteraten und Hirudineen. Mittheil. a. d. zool. Stat. z. Neapel, Bd. III. Heft 1, 2, pp. 187-250, Taf. XII., XIII. 9 Dec., 1881. 84. Die Polycladen (Seeplanarien) des Golfes von Neapel und der angre- zenden Meeresabschnitte. Eine Monographie. Fauna u. Flora d. Golfes v. Neapel, XL, ix-+ 688 pp., 54 Holzschn., Atlas 39 Taf. Leipzig, 1884. Leidy, J. 48. Description and Anatomy of a new and curious Sub-genus of Planaria. Proc. Acad. Nat. Sci. Philadelphia, Vol. III. 1846-1847, pp. 248-251. 1848. Presented 31 Aug., 1847. 785. Planarians. The Museum, Vol. I. No. 4, pp. 49-52, 1 woodcut. Philadelphia, Aug., 1885. Lippitsch, K. 89. Beitrage zur Anatomie des Derostoma unipunctatum Oe. Arbeit. a. d. zool. Inst. z. Graz, Bd. II. No. 6, 1889. Also in Zeitschr. f. wiss. Zool., Bd. XLIX. Heft 1, pp. 325-345, Taf. VIII. 13 Dec., 1889. Loman, J.C C. 87. Ueber den Bau von Bipalium, Stimpson, nebst Beschreibung neuer Arten aus dem indischen Archipel. Bijdragen tot de Dierkunde. Uitge- geven d. h. Genootschap Natura Artis Magistra, te Amsterdam. Afi. 14, pp. 63-88, Pl. L., II. 1887. Mecznikow, E1, 66. Ueber Geodesmus bilineatus Nob. (Fasciola terrestris O. Fr. Miiller ?), eine europaische Landplanarie. Bull. d. ?Acad. Imp. d. Sci. d. St. Péters- bourg, Tom. IX. No. 4, pp. 433-447, 1 pl. 28 Feb., 1866. Also in Mélanges Biologiques, Tom. V. pp. 544-565, 1 pl. 1865. Minot, C. S. °77. Studien an Turbellarien. Beitrage zur Kenntniss der Plathelminthen. Arbeit. a. d. zool.-zoot Inst. Wiirzburg, Bd. III. Heft 3, pp. 405-471, Taf. XVI.-XX. 20 Feb., 1877. Moseley, H. N. °74. On the Anatomy and Histology of the Land-Planarians of Ceylon, with some Account of their Habits, and a Description of two new Species, and with Notes on the Anatomy of some European Aquatic Species. Philos. Trans. Roy. Soc. London, Vol. CLXIV. pp. 105-171, Pl. X.-XV. 1874. "77. Notes on the Structure of several Forms of Land Planarians, with a Description of two new Genera and several new Species, and a List of all the Species at present known. Quart. Jour. Mier. Sci., Vol. XVII. N. S., No. 67, pp. 273-292, Pl. XX. July, 1887. 42 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. Schmidt, E. O. 48.’ Die rhabdocoelen Strudelwiirmer (Turbellaria rhabdocoela) des siissen Wassers. Jena, Fr. Mauke, 1848. 65 pp. 6 Taf., 8vo. Schneider, Anton. ; ; °73. Untersuchungen iiber Plathelminthen. Vierzelnter Bericht d. Ober- hessischen Gesellsch. f. Natur- u. Heilkunde, pp. 69-140, Taf. I11.-VIL. Giessen, 1873. Schneider, Camillo. °90. Histologie von Hydra fusca mit besonderer Beriicksichtigung des Ner- vensystems der Hydropolypen. Arch. f. mikr. Anat., Bd. XXXV. Heft 3, pp. 321-379, Taf. XVII.—XIX. 9 June, 1890. Siebold, Th. von. 50. Bericht uber die Leistungen in der Naturgeschichte der Wiirmer, Zoo- phyten und Protozoen wahrend der Jahre 1845, 1846 und 1847. Arch. f. Naturg., Jahrg. XVI. Bd. II. pp. 851-468. 1850. Stimpson, W. °58. Prodromus Descriptioni Animalium Evertebratorum que in Expeditione ad Oceanum Pacificum Septentrionalem a Republica Federata missa, Johanne Rodgers Duce, observavit et descripsit. Pars I. Turbellaria Dendrocela. Proc. Acad. Nat. Sei. Philadelphia, Vol. 1X., 1857, pp. 19-31. 1858. Presented 24 Feb., 1857. Vejdovsky, F. ; °90. Note sur une nouvelle Planaire terrestre (Microplane humicola nov. gen., nov. sp.) suivi d’une liste des Dendrocceles observées jusqu’a présent en Bohéme. Revue Biolog. d. Nord d. 1. France, Ann. 2, No. 4, pp. 129- 148, Pl. IL., III. 1 Jan., 1890. EXPLANATION OF FIGURES. All the figures are from camera drawings of Phagocata gracilis, Leidy. atr. cu. cl. rhb. cl. sp’2. com. a. com. p. com. t. con't. tis. dt..sal. eth. eth. ex. eth. i. e’th. phy. go’ po. drm. Wdrm! in. mb. ba. ms’chy. Mu. cre. MU. Cre. ex. MU. CFC. i. mu. l. mu. 1. ex. (he mu. ABBREVIATIONS. Genital atrium. Cilia. Parent cells of the rhabditi. Parent cells of the sperma- tozoa. Anterior commissure of the brain. Posterior commissure of the brain. Transverse commissure. Connective tissue. Salivary duct. Epithelium. External epithelium. Internal epithelium. Epithelium of pharynx. Gonopore. Hypodermis. Aborted cells of hypoder- mis. Intestine. Basement membrane. Mesenchyma. Circular muscles. External circular muscles. Internal circular muscles. Longitudinal muscles. External longitudinal mus- cles. Internal longitudinal mus- cles. mu. T. Mu. SAg. n. n I. n, la. nl. con’t. tis. nl. e’th. n. l.’p. nl. rhb. n. opt. n. pi’ph. Radial muscles. Sagittal muscles. Sensory nerve. Lateral nerve. Anterior longitudinal nerve. Nucleus of connective tissue. Nucleus of epithelium. Posterior longitudinal nerve. Nucleus of parent cells of the rhabditi. Optic nerve. Peripheral (marginal) nerve. Mouth opening. Eye. Oviduct. Penis. Median pharynx. Lateral pharynx. Nerves to muscular plexus. Rhabditi. Secretions which do not form rhabditi. Spermatozoa. Anterior trunk of intestine. Lateral trunk of intestine. Uterus. Vasa deferentia. Vagina. Parovarium (vitellarium). Enlarged ends of vasa def- erentia. pati pains Hfetyige? ie rt huey ; pibslale e? ip: i SOS. -atety Teuteatr cave By ee (fred WoopwortTu. — Phagocata, Fig. 1. x 10. PLATE I. Portion of a longitudinal section of the dorsal wall of the body, showing the parent cells of the rhabditi and the position of the rhabditi in the hypodermis. X 900. Cross section near the lateral maggin of the dorsal side, in a region where there were no rhabditi, showing the hypodermis in its primitive condition. X 900. In Figures 1 and 2 the basement membrane did not take the stain. Longitudinal section through a region where there were many rhabditi which have been removed by partial maceration, showing the modi- fied condition of the hypodermal cells due to the crowding of the rhabditi. X 900. Longitudinal section of ventral wall of body, showing a young parent cell of the rhabditi, the nucleus almost filling the cell. The hypodermis removed. X 900. Two parent cells of the rhabditi, from macerated material. X 960. Longitudinal section of ventral wall showing two stages in the develop- ment of the parent cells of the rhabditi. Two small rhabditi have already been secreted in the larger cell. The hypodermis removed. x 900. Stage in the development of the parent cells of the rhabditi next older than that shown in Figure 4. The cell has sunk deeper into the tissues, and the nucleus is smaller in relation to the size of the cell. Ventral wall of body, the hypodermis being removed. X 900. Longitudinal section of ventral wall showing one of the rhabditi in the act of passing through the basement membrane. The hypodermis re- moved. XX 900. Showing the appearance of the rhabditi after having been acted upon by pieric acid. X 900. Longitudinal section of the ventral wall showing one of the parent cells of the rhabditi filled with the rods. The remnants of another cell represented by the nucleus and three rhabditi are seen close by. The hypodermis has been removed. X 900. Owing to a mistake of the lithographer, the nuclei of the parent cell (n/. rhb.) in Figure 10 are not represented as being granular, as they should be. WooDWORTH-PHAGOCATA Py B Meise] lith Boston. Woopworts. — Phagocata, PLATE II. Fig. 11. Cross section of an individual in the region of a young budding pharynx. Its connection with the intestine has not yet been established. X 300. 12. Portion of a cross section through one of the lateral pharynges. X 320. 13. A worm feeding on an Annelid ; five of the pharynges are visible. Killed with hot corrosive sublimate while feeding. X 10. 14. Portion of a cross section through young pharynx, showing the nucleated epithelia. The other tissues are not yet differentiated. > 300. 15. Portion of a cross section through the vagina in the region where the musculature reaches its greatest development. X 120. 16. Longitudinal section of the wall of one of the smaller pharynges. X 500. 17. Portion of a longitudinal section through the slime glands in the head region, where they pass over the brain. X 300. 18. Portion of a cross section of the body to show the reticulated mesenchyma and its relation to sagittal muscles. X 500. 19 and 19a. Portions of the incipient yolk glands; in Figure 19 the nuclei are seen in process of division. X< 820. 20. about 20. 20a. Outline to show the appearance of the living worm while in progres- sions |) <2: 20) and 20c. Outlines showing forms assumed by the worm when at rest. X 6. 21. Longitudinal section through the ovary and parovarium showing their relation to each other. X 300. 22. Section through a parovarium at the time when the yolk glands are beginning to develop. From the same individual as Figures 19 and 19a. XX 820. 23. Cross section through the vas deferens, X 300. 24. Portion of a section which passes through one of the testicular sacs, showing its tubular outgrowth, —vas efferens X 300. e = = a 2 5 =: f fi 4 ¥ ; ; i 7 wre (|) re ‘| ‘ - pes A r ‘ia WoopwortTH. — Phagocata. PLATE III. Fig. 25. Horizontal section through the head region showing the brain and sensory nerves, and the relation of the anterior longitudinal nerve to the mar- ginal nerve (x. pi’ph.). The right-hand side of the section is a little more dorsal than the left. X 52. “ 96-31. Froma series of cross sections through the brain region. The sections are taken at intervals of 604. Figure 26 is the most anterior. 52. “ 99-36. From a series of horizontal sections through the brain region, cut from the dorsal side. The sections are consecutive, and 30m in thickness. X 52. B Meisel lth. Boston ~~ a® 5 a a or ere Wows io - - a ee s = Woopworta. — Phagocata. i=] PLATE IV. Figs. 57 and 88. ‘Two consecutive horizontal sections (80 in thickness) from the ventral side passing through the floor of the pharyngeal chamber. Figure 57 is the more ventral, and shows the marginal nerve; the re- lation of the latter to the longitudinal trunks is evident upon comparing Figures 387 and 38. X 27. “39 and 40. Two longitudinal sections, parallel with the sagittal plane, through the brain region. 52. “41. From an isolation preparation, showing one of the sub-hypodermal glands from the region of the gonopore. > 700. “42. A view of the sexual organs showing their relations to one another. The figure was accidentally inverted by the lithographer, thus bringing the posterior end uppermost. Partially diagrammatic, X 35. “ 43. Portion of a cross section of one of the lateral branches of the intestine. x 450. “44. Portion of a section through a parovarium of an individual in which the yolk glands were fully developed. X 680. “ 45. Section through a portion of a yolk gland from the same individual as Fig. 44. x 260. * 46. Sagittal section through the brain, showing the two commissures. 60. “47. Portion of a tangential section of one of the pharynges, to show the cell boundaries of the external epithelium. From an isolated pharynx killed in hot silver nitrate. 380. WooDWORTH-PHAGOCATA ‘ x8. zs BRO a) > com.t WEE. A a 40 I vag go po. : ag atx. pe. mrp — y coma. conp a Lp. ap 7 nopt Trae ( ~ 7 ut 74 vaaf. r PAULI OL = TULSA = munsag. corp. muler WM W. del Rata) aa 2V) @ ities eiatys ; | Be a6, a .- mie: a nt WL an mi , Senge malty, Lc ee ne “aoe e No. 2.— Zhe Compound Eyes in Crustaceans. By G. H. ParKer.! TABLE OF CONTENTS. PAGE PAGE Ii Introduction . . . 1... & GolniCumacer: 1 221: cs = 99 BieGieBetinaky ii Jeih aj pet @.toiSehizopoda,). ....,.-, « .99 III. Arrangement of the Ommatidia 60 8. In Stomatopoda .. . . 104 IV. Structure of the Ommatidia. . 66) 9Sin Decapoda. ./. = ~« - 108 iinvAmphipoda <.., . = .) 68 V. Ommatidial Formule . . . 115 2. In Phyllopoda . . . . . 73} VI. Innervation of the Retina. . 116 8. In Copepoda. . . . . . 77| VII. Theoretic Conclusions . . . 118 4.InIsopoda .... . . 84| VIII. Bibliography . . . .. .« 181 5. In Leptostraca . . . . . 98| IX. Explanation of Figures. . . 141 INTRODUCTION. Some four years ago, at the suggestion of my instructor, Dr. E. L. Mark, I began the investigation of the compound eyes in Crustaceans. In order to familiarize myself with the subject, I determined to study at first in detail the structure of the eyes in a single species, and for this purpose I turned my attention to our common lobster, Homarus americanus. My results were published in a paper entitled “The His- tology and Development of the Eye in the Lobster.” Since the publica- tion of that paper, I have had the opportunity of examining the eyes in a number of other Crustaceans, and my observations and conclusions concerning these eyes are contained in the following pages. The material which I have used in the present study was in part sup- plied to me through the kindness of several friends, and in part collected by myself. Of that which I obtained myself, some was gathered in the immediate vicinity of Cambridge, but much of it came either from Wood’s Holl, Mass., or from Newport, R. I. The material which I obtained at Newport was collected at the Newport Marine Laboratory during the summer of 1890, and consisted of specimens of Idotea, Evadue, and Pontella; that which I got at Wood’s Holl was collected at the United States Fish Commission Station during a brief period 1 Contributions from the Zodlogical Laboratory of the Museum of Comparative Zodlogy, under the direction of E. L. Mark, No. XXV. VOL. XXI.— NO. 2. 46 BULLETIN OF THE which I spent there in the summer of 1889, and included much of the material which I used in studying the eyes of Decapods. For the opportunities of collecting, both at Newport and Wood’s Holl, I am indebted to Dr. Alexander Agassiz. I also desire to express my thanks to Prof. M. McDonald, the United States Commissioner of Fish and Fisheries, for many courtesies shown me while at the government station at Wood’s Holl. Essentially the same methods as those which I used in investigating the eyes in the lobster were employed in studying the eyes in other Crustaceans. - As these methods have been described at some length in my paper on the lobster’s eye (Parker, 790°, pp. 3, 4), further mention of them in this connection is unnecessary. Before proceeding to an account of the eyes in Crustaceans, a few statements should be made concerning the use of terms. In the fol- lowing anatomical descriptions, I have very generally adhered to the older and more established terms. It must be admitted that some of these, on account of their derivation, are not entirely satisfactory, but because of their general acceptance I have chosen to retain them rather than to attempt to replace them by new ones. The term retinula, the use of which varies with different writers, was introduced by Grenacher (’77, p. 17), who employed it to designate the rhabdome and the group of cells by which this structure is surrounded. Subsequently, Patten (’86, p. 544) used the same term as a name for a single cell of the group to which Grenacher gave the name retinula, In my paper on the eyes of the lobster I followed Patten’s usage, but in the present paper I have decided to employ the term as originally defined by Grenacher, and to designate the individual cells in the retinula as retinular cells, —a translation of the term already used for’ this purpose in many German publications. The greater part of the present paper is taken up with descriptions of the eyes in different Crustaceans. The amount of detail thus col- lected is considerable, and might appear at first sight to include many unimportant particulars; but the number of observations recorded is justifiable, I believe, on the ground that the majority of them bear more or less directly upon the solution of the principal question dealt with in the paper. The following statements will make clear the character of this ques- tion. It is now well recognized that the retina in compound eyes is composed of a number of similar units or ommatidia, and that each ommatidium consists of a cluster of cells regularly arranged around a MUSEUM OF COMPARATIVE ZOOLOGY. 47 central axis. With very few exceptions, the different ommaitidia in the retina of any given Crustacean agree with one another in the number and arrangement of their cells ; in other words, in a given retina any ommatidium is the structural duplicate of any other. This uniformity suggests the idea of a structural type, and already a number of such types have been described. Some of these find representatives appar- ently only in the ommatidia of a single species, but more frequently the type characterizes a genus, family, or even a sub-order. Types differ from one another, either in the number of their cells or in the arrange- ment of these cells. Of these differences, the one which involves a variation in the number of cells is the more fundamental. This dif- ference, however, has probably arisen by the gradual modification of an ancestral type, and, granting this, it follows that the ommatidia of one type are genetically connected with those of other types. This leads directly to the statement of the principal question, namely, What are the means by which ommatidial types are modified, and what is the significance of the changes through which these types pass ? This question, although easily stated, is not so easily answered ; the facts presented in the following pages cannot be said to settle it, and yet they seem to me to increase materially the possibilities of its solution. A partial answer to at least the first portion of the question has al- ready been suggested (Parker, ’90*, pp. 56-58) ; it can be briefly stated as follows. There is reason for believing that those ommatidia which are composed of a small number of cells more closely resemble the ancestral type than those composed of many cells. Granting this statement, one would naturally expect that the more complex ommatidia had been de- rived from the simpler ones by an increase in the number of their ele- ments. Perhaps the most natural method by which this increase could be accomplished would be by the further division of the cells already forming the ommatidium. Consequently, cell division in this sense seemed to me to afford a sufficient means for the modification of om- matidial types. In the present paper it is in part my purpose to show precisely to what extent cell division can be said to have modified om- matidia, and to determine whether any other factors have been involved in this process. Tue RetTINa. The retina in those Crustaceans in which its development has been studied originates as a thickening in the superficial ectoderm. At least 48 BULLETIN OF THE three types of retinal structure can be distinguished, depending upon the ultimate form which this thickening assumes. The First Type which will be described is in several particulars the simplest, and probably represents a primitive form from which the other two are derived. This type is characteristic of the eyes in Decapods, Schizopods, Stomatopods, Isopods, the Nebaliz, and the Branchiopodide, and is represented by a simple thickening in the super- ficial ectoderm. Branchiopodide. —In the eye of adult specimens of Branchipus the retina is a lenticular thickening occupying the inner concavity of the distal end of the optic stalk. Near its edges the retina is directly con- tinuous with the adjoining hypodermis. Its proximal face is bounded by a basement membrane which is also continuous with the corre- sponding membrane of the hypodermis, and its distal face is closely applied to the inner surface of the superficial cuticula. Thus the retina in the adult has in every respect the appearance of a simple thickening in the hypodermis. The way in which the retina originates in Branchipus confirms the opinion that this organ has the simple structure suggested in the fore- going paragraph. The development of the retina in this genus has been studied by Claus (’86, p. 309), whose account can be summarized as follows. In that part of the head from which the optic stalks eventu- ally arise, the ectoderm becomes considerably thickened ; this thickening is subsequently divided into a superficial and a deep portion ; the latter sinks into the head and becomes a part of the central nervous system ; the former retains its external position and is converted into the retina. In Branchipus, therefore, the retina originates as a simple ectodermic thickening which retains its superficial position throughout the life of the individual. This method of origin, and the position permanently retained by the retina, are the two principal characteristics of the first retinal type. Tsopoda. —In adult specimens of Idotea irrorata, as sections perpen- dicular to the external surface of the eye show (Plate V. Fig. 49), the retina bears the same relation to the hypodermis as it does in Branchi- ‘pus. Similar structural relations occur also in the eyes of Idotea ro- busta and of young specimens of Serolis Schythei. The development of the retina in Isopods has been observed by Dohrn and Bullar. As early as 1867, Dohrn (’67, p. 256) described the eye in Asellus as originating in connection with a thickening in the lateral wall of the head, presumably in the ectoderm of that region. The de- MUSEUM OF COMPARATIVE ZOOLOGY. 49 tails of the development of this organ were not followed on account of the continual increase of pigment. Bullar (79, pp. 513, 514) in a paper on parasitic Isopods described the development of the retina in Cymothoa. His account is substantially as follows. In the course of the develop- ment of the cerebral ganglion, when this structure is separated from the superficial ectoderm, the latter remains on the exterior of the embryo as a layer of considerable thickness. From this superficial layer is devel- oped the retina, i. e. all parts of the eye which in the adult lie between the basement membrane and the corneal cuticula. ‘ _ Lhave studied a few stages in the development of the eyes in Idotea robusta. The retina in this species originates as a simple thickening in the superficial ectoderm, in essentially the same manner as Bullar has observed in Cymothoa. The retina in Isopods, both in respect to its method of development and its general structure in the adult, is unquestionably a representative of what I have called the first type of retinal structure. Nebalig. — In Nebalia, as the figures given by Claus (’88, Taf. X. Figs. 8 and 17) show, the retina and adjoming hypodermis are directly continuous, and the former presents all the characteristics of a simple thickening in the hypodermis. Stomatopoda. — In an adult specimen of Gonodactylus which I ex- amined, the relation between retina and hypodermis was the same as in Nebalia. Nothing is known, I believe, of the development of the retina in either the Nebaliz or the Stomatopods. The structure of the eyes in the adults of both groups, however, shows very conclusively that their retinas belong to the same structural type as those of Branchipus. Schizopoda. — In describing the development of Mysis chamelio, Nus- baum (’87, pp. 171-185) states that the retina arises from a thickening in the superficial ectoderm, and adds that its formation, so far as his observations extended, was not complicated by an involution. In Mysis stenolepis, a Schizopod whose eyes I have studied, the retina and hypodermis in the adult are directly continuous, as in Bran- chipus. This relation is what would be expected from the method of development described by Nusbaum. Decapoda, — Carriére (’85, p. 169), in his account of the eyes in Asta- cus, showed very clearly that in the adult the retina and hypodermis formed a continuous layer. This relation was subsequently observed by me in Homarus (Parker, ’90*, p. 5), and I have since seen the same con- dition in Gelasimus, Cardisoma, Cancer, Hippa, Palinurus, Pagurus, VOL. XXI.—No 2, 4 50 BULLETIN OF THE Cambarus, Crangon, and Palemonetes. There is, therefore, considera- ble ground for the support of Carriére’s generalization, that the relation of the retina to the hypodermis as shown in Astacus is characteristic of all Decapods. The development of the retina has been more fully studied in Deca- pods, perhaps, than in any other group of Crustaceans. Nevertheless, the accounts given by various writers are by no means in agreement, but differ in several important particulars. In a former paper (Parker, ’90*, pp. 31-43), I devoted considerable space to the discussion of these . accounts, and I shall therefore not reopen the subject here. Suffice it to say, that since the publication of the paper referred to nothing has transpired to alter my belief that the retina in Decapods originates as a simple thickening in the superficial ectoderm. In a recent preliminary communication by Lebedinski (90) on the development of a marine crab, Eriphya, a brief description of the origin of the eye is given. This description, however, is so very much con- densed that it is not easily understood, and since the author himself confesses that, on account of the complexity of the subject, a descrip- tion without figures must be almost unintelligible, it would be unwise to hazard a presentation of his views. I shall therefore pass over this paper without further comment. The evidence advanced in the course of the preceding paragraphs leaves no doubt in my mind that the retinas in the Branchipodide, the Nebaliz, the Isopods, Stomatopods, Schizopods, and Decapods, belong to the same structural type, and that this type is represented by a thick- ening in the external ectoderm (hypodermis), which retains permanently its superficial position. The SECOND RETINAL TYPE is more complicated than the first, and differs from it in that the retina does not retain its position at the surface of the body, but becomes buried beneath a fold of integument. Our knowledge of this type is largely due to the researches of Grobben (79). The type is represented in the eyes of the Apuside, the Estheride, and the Cladocera. Estheride.—In adult specimens of Limnadia Agassizii the two lat- eral eyes are rather closely approximated, and occupy a position in the ventral anterior portion of the animal’s body (Plate IV. Fig. 33). The relation of the eye to the surface of the body can be seen most satisfactorily in sagittal sections. In such a section (Fig. 35) the eye has the appearance of a stalked structure which projects anteriorly into a cavity, the optic pocket (brs. oc.); this pocket communicates with the MUSEUM OF COMPARATIVE ZOOLOGY. 51 exterior by means of a small opening (po. brs.), the optic pore. The free surface of the stalked portion of the eye is covered with a delicate cuticula, which, after being reflected from the base of the stalk over the inner surface of the wall of the pocket, becomes continuous at the pore of the pocket with the superficial cuticula. The retina (Fig. 35, r.) occupies the greater portion of the optic stalk. Its distal face is bounded by the delicate cuticula already mentioned, and its proximal face is lim- ited by a basement membrane (mb. ba.). This membrane becomes indis- tinct as the base of the stalk is approached, but the retina itself is apparently continuous in this region with the layer of cells which rests on the cuticular wall of the optic pocket, and which finally unites at the pore of the pocket with the superficial hypodermis. Thus the retina may be said to be continuous with the hypodermis. The structure of the eyes in Limnadia Agassizii is such that they can be described as stalked eyes which have been surrounded by a fold of the integument, so as to become enclosed within a space, the optic pocket, which communicates with the exterior only by means of the optic pore. An eye of essentially this structure has been described by Grobben (79, p. 255) in Limnadia Hermanni, Limnetis brachyurus, and Estheria ticinensis, and in the last genus enough of the development of the eye was observed to indicate that the optic pocket was formed by the growth of a fold of integument over the optic stalk. Apuside, — In-Apus, according to Grobben (’79, p. 256), the plan of the eye is essentially similar to that in the Estheride. The eyes pro- ject into an open pocket, the cavity of which permanently communi- cates with the exterior. Judging from the figure given by Claus (’86, Taf. VII. Fig. 11, compare p. 366), the right and left retinas in Apus are not so close to one another as in the Estheride (compare Plate IV. Fig. 34). Cladocera. —The structure and development of the retina in the Cladocera has been carefully studied by Grobben. My own observa- tions on this group have been limited to a single genus, Evadne, and as this genus is not very favorable for the determination of the general relations of the retina I must rely almost entirely upon Grobben’s descriptions. In the development of Moina, according to Grobben (’79, p. 253), the retinal thickening is covered by a fold of the integument in such a manner that an open optic pocket is produced, as in Limnadia. By the closure of what corresponds to the optic pore, this pocket eventually 52 BULLETIN OF THE loses its connection with the exterior, and becomes reduced to a closed sac on the distal face of the retina. With the closure of the sac, the continuity of the retina with the superficial hypodermis becomes in- terrupted, In other Cladocera, especially the genera Sida and Daphnia, Grobben has found evidence to believe that the eyes are of essentially the same structure as in Moina. In a majority of the Cladocera the two com- pound eyes coalesce even more completely than in Limnadia. In the development of Moina, as the preceding description indicates, the eye passes through a phase which closely resembles the permanent condition in Limnadia. ‘The eye in the latter may therefore be inter- preted as representing a stage in the phylogeny of the eye in Moina. In accordance with the facts presented in the foregoing account, the second retinal type can be described as one in which the retina does not retain its primitive external position, but sinks below the surface of the animal and becomes covered by a fold of the integument. The optic pocket thus formed may remain permanently open, as in the Apuside and Estheride, or may become closed and partially obliterated, as in the Cladocera. The right and left retinas either remain separated, as in the Apuside, or become closely approximated, as in the Estheride, or fused, as in the Cladocera. The minor modifications which this retinal type presents are not with- out importance. Bearing in mind the general statement that the com- pound eyes in Crustaceans are separate, paired, superficial structures, it is evident that the eyes in the Apuside, in which the retinas are sepa- rate and the optic pocket permanently open, depart only slightly from the primitive condition. In the Estheridz, in which the two retinas are closely approximated, the eye is farther removed from the original type; but not so far as in the Cladocera, in which not only the two retinas are fused, but the optic pocket is closed and partially obliterated, thus entirely disconnecting the retina from the hypodermis. The three groups —the Apuside, the Estheridz, and the Cladocera— may con- sequently be taken to represent a series in the differentiation of the second retinal type. That this series is a natural one, and that it cul- minates in the Cladocera, is shown from the fact that in the develop- ment of Moina, and perhaps many other Cladocera, the eyes pass through stages which reproduce the essential features of the perma- nent condition in the Apuside and Estheride. In the THIRD RETINAL TYPE, as in the more differentiated form of the second, the retina is completely separated from the hypodermis. MUSEUM OF COMPARATIVE ZOOLOGY. 53 The method by which the separation is here accomplished is not by the closure of an involution, as in the second type, but by a process the nature of which will be described in the following pages. The third type is represented by the eyes in Amphipods, and possibly in Copepods. Amphipoda. — The peculiar relation which the retina bears to the hypodermis in Amphipods can be easily seen in Gammarus. In this genus, as Carriére (’85, pp. 156-160) has clearly demonstrated, the retina lies immediately below the hypodermis, and is separated from the latter by a well defined structure, the corneo-conal membrane (Fig. 1, mb. crn’con.), This membrane, although visible with perfect clearness, is nevertheless extremely delicate, and has the appearance of a single lamella. I believe, however, that its structure is more complex, and that it is composed of two very intimately united membranes, one of which is produced by the retina, the other by the corneal hypodermis. This belief is based upon the fact that at the edge of the retina the apparently single membrane separates into what may be considered its two constituents. One of these becomes the basement membrane of the general hypodermis, and the other, which I have called the cap- sular membrane, passes over the edge and proximal face of the retina, and is finally reflected over the optic nerve (Fig. 1, mb. x. opt.). In addition to the capsular membrane, the eye in Gammarus possesses still another membrane (Fig. 1, mé.ba.). This is a delicate lamella, which is approximately parallel to the deep face of the eye at a level between the rhabdomes and retinular nuclei (compare Fig. 2), and which consequently divides the space within the capsular membrane into two chambers, a larger distal and a smaller proximal one. At its periphery this intercepting membrane unites with the capsular membrane. The corneo-conal and capsular membranes in Gammarus show no evi- dence of being perforated, but together constitute a closed capsule, which separates the retina from all adjoining tissues except the optic nerve. Both membranes are composed apparently of a homogeneous substance, in which I have never been able to distinguish any trace of cells. It is therefore probable that these membranes are cuticular. The intercepting membrane, unlike either the capsular or the corneo- conal membrane, is pierced by a great number of holes, through which the proximal ends of the retinular cells project. This membrane, there- fore, has the form of a meshwork. According to Carriére (’85, p. 158) it is composed of numerous connective-tissue cells, but this statement. is not confirmed by my own observations. In depigmented sections of 54 BULLETIN OF THE the retina the intercepting membrane had the appearance of a delicate lamella, in which I was unable to find any trace of cells. Not unfre- quently the nuclei of certain accessory pigment cells (Fig. 2, nl. ’drm.) appear to touch the membrane, and even at times to lie with their long axes parallel to it, but in no case could these nuclei be said to be in the membrane. In sections of the retina from which the natural pigment had not been removed, it was often diffivult to decide whether a given nucleus was zz the membrane or only next to it. Possibly appearances such as these have led Carriere to believe that the membrane was cel- lular. My own opinion is, that the intercepting membrane, like the other two membranes, is a cuticula, and does not contain cells. From the foregoing account, it will be seen that in an adult Gammarus the retina lies immediately under an undifferentiated corneal hypoder- mis, and is enclosed, excepting where the optic nerve emerges. from it, by a non-perforated cuticular capsule. The space within this capsule is divided by a perforated cuticular membrane into a large distal and a small proximal chamber, In Hyperia, judging from the figure given by Carriere (’85, p. 161, Fig. 125), the retina has essentially the same structure as in Gammarus. The intercepting membrane is in a position proximal to the rhabdomes and distal to the retinular nuclei. The layer of pigment cells, which Carriére (85, p. 161, Fig. 124) apparently considers the intercellular membrane itself, in my opinion marks only approximately the position of that membrane. Probably in Hyperia, as in Gammarus, these cells rest on the distal face of the intercepting membrane. In Phronima each side of the head is occupied by two eyes, instead of one, contrary to the condition in the more typical Amphipods. Of the two eyes, one is dorsal, the other lateral. This difference in position affords a convenient means of distinguishing them. The lateral eye pre- sents all the essential structural features of the single eye in Gammarus (compare Carriére, 785, Figs. 125 and 121). The dorsal eye, although differing considerably in shape from the lateral one, is nevertheless con- structed upon the same morphological plan. Its most important pecu- liarity is the shape of its intercepting membrane and the adjoining structures. In the dorsal eye the intercepting membrane, instead of lying in a plane nearly parallel with the external surface of the retina, as in the lateral eye, is cone-shaped. The axis of this cone corresponds to the axis of the eye; its apex is near the brain, and its base faces the external surface of the eye (compare Claus, ’79, Taf. III. Fig. 20, and Taf. VII. Fig. 58). The ommatidia are arranged approximately parallel ~ MUSEUM OF COMPARATIVE ZOOLOGY. 55 to its principal axis; distally, they terminate in the region of its base ; proximally, they end either at its apex or on its lateral walls near the apex. The rhabdomes lie within the cavity of the cone, i.e. they are distal to the intercepting membrane, as in other Amphipods. The retin- ular nuclei cover the apical portion of the external surface of the cone, i. e. they are proximal to this membrane. These nuclei are covered ex- ternally by a second cone-shaped membrane, which separates them from the surrounding tissue. This membrane occupies the position of the cap- sular membrane of other Amphipods, and is unquestionably homologous with it. The fact that both the lateral and dorsal eyes in Phronima are con- structed upon the same plan as the single eye in Gammarus, supports the view that these two eyes have arisen by the division of a primitively single retina into two parts, and the subsequent independent differentia- tion of each part. As the preceding account shows, in all Amphipods whose eyes have been studied carefully, the retinas conform to one structural type well exemplified by Gammarus. In this type the retina is characterized by two peculiarities: first, it is not continuous with the hypodermis, but lies immediately below that layer; and secondly, it possesses what appear to be two basement membranes, the capsular and the intercepting mem- branes. The significance of these peculiarities will be discussed in the following paragraphs. The separation of the retina from the hypodermis is characteristic of only the more mature conditions of the eye in Amphipods ; for as Pereyas- lawzewa (’88, p. 202) has shown in Gammarus, and Rossiiskaya (’89, p- 577, and 790, p. 89) has demonstrated in Orchestia and Sunamphitoé, the retina originates as a thickening in the superficial ectoderm, in the same manner as in the majority of Crustaceans. So far as I am aware, however, no one has observed the detachment of the retina from the hypodermis, a process which must take place before the adult condition is reached. In the figure of the developing eye in Gammarus given by Pereyaslawzewa (’88, Plate VI. Fig. 120), the distal portion of the retinal thickening contains almost nothing but developing cones. In sections of my own from a corresponding region in a young specimen of Gammarus, the distal portion of the retina contains not only developing cones, but also isolated nuclei, which occasionally lie between the cones, but more frequently occur in positions distal tothem. These nuclei are as numer- ous in the centre of the distal face of the retina as on its edges, and at this stage can always be easily distinguished from the nuclei of the cone 56 BULLETIN OF THE cells. I believe they represent the nuclei of the corneal hypodermis. The retina proper is probably separated from this hypodermis by delami- nation ; at least, the corneo-conal membrane is formed at a stage. slightly older than that last mentioned, and, judging from the appearances at this stage, its formation is not accompanied by any folding of the hypo- dermis or retina, but is the result of a differentiation in place. Unfor- tunately, none of the specimens which I studied showed any steps in the formation of the corneo-conal membrane, and I am therefore uncertain as to the exact method of its growth. Of the two membranes in the basal portion of the retina of Gammarus, presumably only one corresponds to the basement membrane of other Crustaceans. The position ocenpied by the two membranes, as well as their structure, serves to indicate which is the true basement membrane. At first sight one might suppose that the capsular membrane, at least in its proximal portion, corresponds to the basement membrane, but this interpretation is not probable, for the reason that the capsular mem- brane is not pierced by the fibres of the optic nerve, a characteristic of the true basement membrane of the eye. I therefore believe that the intercepting membrane, since it is perforated by these fibres, is the homo- logue of the basement membrane, and that that portion of the capsular membrane which might be regarded as a basement membrane is in reality merely the cuticular sheath of the optic nerve. So far as I can foresee, the only objection to be urged against this interpretation of the intercepting membrane is found in its relation to the retinular nuclei. These nuclei in the eyes of almost all other Crusta- ceans lie on the distal side of the basement membrane. Granting that the intercepting membrane is the basement membrane, one must admit that in Amphipods they lie on the proximal side of this membrane. This admission might at first sight appear to offer an obstacle to the homology which I have suggested ; but it can be made with consistency, I believe, provided one can show that the position of the retinular nuclei is not necessarily fixed. That such is the case is evident from the fol- lowing facts. In Decapods the retinular nuclei usually occupy a position in their cells distal to the rhabdome. In Porcellio, as Grenacher (’79, Taf. IX. Fig. 96) has shown, they have a more proximal position, lying in the same transverse plane as the rhabdome itself. In Serolis they are midway between the rhabdome and the basement membrane. These conditions show, I believe, that the retinular nuclei may occupy very different positions in their cells, and that the step from the condition shown in Decapods to that shown in Serolis is not greater than that MUSEUM OF COMPARATIVE ZOOLOGY. 57 from Serolis to the Amphipods. It seems to me, therefore, that the objection suggested at the beginning of this paragraph is almost without weight. This conclusion, moreover, is supported by the fact that in Idotea (Plate V. Fig. 49) the retinular nuclei lie proximal to the base- ment membrane, whereas in the majority of other Isopods they are distal to that membrane. From the preceding discussion, I conclude that the retina in Amphi- pods originates as a simple thickening in the superficial ectoderm, and that this thickening subsequently becomes separated, probably by a pro- cess of delamination, into a deeper portion, the retina proper, and a more superficial portion, the corneal hypodermis. The latter alone re- tains its original connection with the adjacent hypodermis. Of the two membranes present in the basal portion of the eye in Amphipods, that which I have called the intercepting membrane is homologous with the basement membrane: of the retina in other Crustaceans, and that which has been designated as the capsular membrane is in large part the cuticular sheath of the optic nerve. Copepoda. —The retinas in the Branchiura and Eucopepoda, the two divisions of the Copepods, present such different structural conditions that for purposes of description it is better to consider them separately. Branchiura. — In adult specimens of Argulus, the retina is completely separated from all surrounding tissue, excepting the optic nerve, by an intervening blood space (Plate II. Fig. 11, ce/.). This peculiar condi- tion was first clearly described by Leydig (’50, p. 331), although as early as 1806 Jurine (’06, p. 447) remarked that the eye in this genus was contained in a transparent membranous sac, which apparently contained a fluid, and Miiller (’31, p. 97) some twenty-five years later described the retina as separated’ from the “cornea” by an intervening space filled with fluid. It remained, however, for Leydig to determine the extent of this space, and to demonstrate that the fluid which it contained was blood. The more essential features of Leydig’s description have since been confirmed by Claus (’75, pp. 254-256). The development of the eye in Argulus has not been studied with sufficient fulness to allow one to determine the relation of its retina to the hypodermis. But from the strong resemblance which the eye in the adult bears to that in Amphipods, it is probable that the course of development in the two cases is not unlike. Probably the retina in Argulus originates as a thickening in the superficial ectoderm, and subse- quently not only suffers delamination, as in the Amphipods, but becomes actually withdrawn from the superficial layer (corneal hypodermis). 58 BULLETIN OF THE If this course of development really takes place, the various structures in the eye of an adult Argulus can be easily homologized with those in Amphipods. Thus the corneal hypodermis and corneal cuticula of Amphipods would probably be represented by the hypodermis and cu- ticula dorsal to the eye in Argulus (Fig. 11). The basement mem- brane of this hypodermis would correspond to the corneal component of the corneo-conal membrane of Amphipods, and the conal constituent would be represented by what is called the preconal membrane in Argu- lus (Fig. 11, mb. pr’con.). Proximally, the preconal membrane becomes continuous ‘with the sheath of the optic nerve (Fig. 11, mb. n. opt.), the equivalent of the capsular membrane of Amphipods. The basement membrane of the retina in Argulus, as in Amphipods, is the membrane pierced by the fibres of the optic nerve (Fig. 11, mb. ba.). Grobben (’79, p. 258) has suggested that possibly the eye in Argulus is of the same type of structure as in Phyllopods, but I do not share in this opinion for the following reasons. In Estheria, the delicate cuticula which covers the optic stalk is morphologically a portion of the outer surface of the body, and, as I hope to show subsequently, is subtended by a true corneal hypodermis. There is no corneal hypo- dermis beneath the preconal membrane of Argulus. Moreover, there is nothing in the eye of Argulus to correspond to the optic pocket of the Estheride, or to the optic sac of the Cladocera, except the circum- retinal blood space, and it seems to me very improbable that this space was once a cavity in communication with the exterior, and afterwards became converted into a blood space. I therefore believe that the plan of the eye in Argulus is not similar to that in the Phyllopods, but rather that it represents a modificdtion of the type presented by the Amphipods. The satisfactory determination of this question can be settled, however, only by embryological evidence. _ Eucopepoda. —In adult specimens of those true Copepods which possess rndiments of the lateral eyes, — the Pontellide and Coryceide, —the retina is apparently separated from the hypodermis. In the Coryewide it usually lies at some considerable distance from the hypo- dermis, and in Pontella the two structures, although near one another, are nevertheless not continuous. The development of the lateral eyes in the Corycxide and Pontel- lidee has not been studied, and consequently it cannot be stated with certainty whether the retinas in these Crustaceans originate from the hypodermis or not. In the metanauplius larva of Cetochilus, a Copepod which as an adult has no lateral eyes, Grobben (’80, p. 262) has de- MUSEUM OF COMPARATIVE ZOOLOGY. 59 scribed a pair of thickenings, which extend from the superficial ectoderm of the antero-lateral part of the head to the brain. These thickenings are present only in the early stages of development, and represent the unsevered connection between the brain and the superficial ectoderm. They closely resemble the developing lateral eyes of Branchipus, and Grobben has therefore very justly considered them rudiments of the lateral eyes. If the rudiments of the lateral eyes in Cetochilus de- velop from the superficial ectoderm, it is probable that the lateral eyes in other Copepods have a similar origin. To which of the three retinal types already described the eyes in Copepods belong is not easily decided. The absence of any indication of an optic pocket, either in the development of what Grobben con- siders the rudiments of the lateral eyes in Cetochilus, or in the fully formed eyes in other genera, seems to me to preclude the possibility of these eyes belonging to what I have described as the second type. The separation of the retina from the hypodermis prevents them from being classed with the first type, and, especially in the case of the Branchiura, brings them into close relation with the third type. It is my opinion, that, if the lateral eyes in Copepods are not representatives of a fourth type, essentially different from the three already described, they must be considered members of the third retinal type. Certain species of Cumacez, Ostracods, and Cirripeds possess optic organs which probably represent the compound eyes of other Crusta- ceans ; but so far as I am aware, the relation of these structures to the hypodermis is unknown. It is therefore impossible to state whether those eyes represent other retinal types, or belong to one of the three ‘already described. According to the preceding account, three retinal types can be dis- ‘tinguished in the compound eyes of Crustaceans. In the first of these the retina is a simple thickening in the superficial ectoderm (hypo- dermis). This type is characteristic of the eyes in Isopods, the Bran- chiopodide, the Nebaliz, Stomatopods, Schizopods, and Decapods. In the Isupods, the eyes are sessile ; in the other groups of the first type, they are borne on the distal ends of movable optic stalks. In the second type, although the retina, as in the first type, originates as a thickening in the superficial ectoderm, it ultimately becomes en- ‘closed within an optic pocket. This may remain permanently open, as in the Apusidze and Estheride, or it may become closed, as in the Cladocera. In the Apuside, so far as I am aware, the eyes are not 60 BULLETIN OF THE capable of motion, and in the Estheride they are, if at all, only slightly movable. In the Cladocera, where the second type probably reaches its sreatest differentiation, the retina is remarkable for the freedom of its motion. In the third type the retina originates from thickened hypodermis, which subsequently separates into two layers, the corneal hypodermis and the retina proper (a layer of cones and retinule). This separation is accomplished either by the formation of a corneo-conal membrane, as in Amphipods, or by what I believe to be an actual withdrawal of the retina proper from contact with the hypodermis, as in Copepods. Only in the representatives of the extreme modification of this type, the Cope- pods, are the eyes movable. The course of development taken by each of the three types very clearly indicates their mutual relations. Evidently the first type is a primitive one, and since the first steps in the development of the second and third reproduce the permanent condition of the first, these two may therefore be considered derivatives from the first. It is interesting to observe that in the simpler condition of each type the retina is fixed, whereas in the more differentiated form it has become movable. The sinking of the retina into the deeper parts of the body, as represented in the second and third types, may have been induced by the protection thus obtained for the eye. After the three types were differentiated, each one seems to have been modified in a special way to give rise to a movable retina. ARRANGEMENT OF THE OMMATIDIA. The ommatidia in the retinas of some Crustaceans are so few in num- ber that they can scarcely be said to be grouped according to any system. Where they are numerous, however, they are arranged upon one or the other of two plans. These may be designated the hexagonal and tetrago- nal plans of arrangement. In the hexagonal plan the imaginary outline of the transverse section of an ommatidium is a hexagon, and each ommatidium, excepting those on the edge of the retina, is surrounded by six others. In the tetragonal arrangement the ideal transverse section of an ommatidium is a square. Each of the four sides of this square is occupied by one of the four faces of an adjoining ommatidium. The arrangement of the ommatidia can usually be determined by a careful inspection of the external surface of the eye; this determina- tion is considerably facilitated by the presence of a facetted cuticula. Sometimes the form of a single facet is sufficient to indicate the plan of MUSEUM OF COMPARATIVE ZOOLOGY. 61 arrangement. Thus, hexagonal facets have never been observed except in connection with the hexagonal plan of arrangement. Circular facets are likewise known to occur only with this method of grouping. Square facets, on the other hand, may accompany either the hexagonal or te- tragonal arrangement of deeper parts. The hexagonal arrangement is apparently characteristic of the om- matidia in all Crustaceans,! except the Decapods. In the Decapods, as will be shown presently, the ommatidia are arranged either upon the hex- agonal or the tetragonal plan. Before proceeding, however, to a descrip- tion of the arrangement of the ommatidia in Decapods, it would be well perhaps to call attention to the rather peculiar grouping of these struc- tures in Gonodactylus, a Stomatopod. For a clear understanding of the arrangement of the ommatidia in this Crustacean, it is necessary to have some previous knowledge of the shape of its optic stalk. * In Gonodactylus the stalks are elongated cyl- inders, the distal ends of which are rounded. In alcoholic specimens the stalks in an undisturbed position rest with their longitudinal axes approximately parallel with the chief axis of the animal, and with their distal ends directed forward. The retina occupies the free end of the stalk. Dorsally it extends over the distal half, ventrally over only the distal third of the stalk. The ommatidia in Gonodactylus are of two kinds, large and small, which are always easily distinguishable from each other, although they differ in no essential respect except size. The large ommatidia are defi- nitely arranged in six rows, which extend as well defined bands from the dorsal posterior edge of the retina anteriorly over its rounded distal end, and posteriorly over its ventral surface to its ventral posterior edge. This band thus occupies both dorsally and ventrally the median portion 1 Judging from the figures as well as the statements made by the authors quoted, the hexagonal arrangement is characteristic of the ommatidia in the fol- lowing Crustaceans (exclusive of the Decapods) : Branchipus (Burmeister, ’35, p- 531, Spangenberg, ’75, p. 30), Nebalia (Claus, ’89, Taf. X. Fig. 10), Gammarus (Sars, ’67, p. 62), Orchestia (Frey und Leuckart, ’47, p- 204), Phronima (Claus, 779, Taf. VI. Fig. 48), Cymothoa (Miiller, ’29, Tab. IIT. Figs. 5, 6, Bullar, ’79, p. 514), Lygidium (Lereboullet, ’43, p. 107, Planche 4, Fig. 2°), Serolis (Owen, ’48, p. 174), Arcturus (Beddard, 90, Plate XXXI. Fig. 4), Anceus (Hesse, ’58, pp. 100 and 103, Dohrn, ’70, Taf. VIII. Figs. 33, 34), Sguilla (Milne-Edwards, ’34, p, 117, Will, 740, p- 7, Frey und Leuckart, *47, p. 204, Leydig, ’55, p. 411), and Mysis (Sars, ’67, Planche III. Fig. 7, Grenacher, ’79, Taf. X. Fig. 112). Ihave observed the hexag- onal arrangement in the following genera: Apus. Branchipus, Estheria, Evadne, Argulus, Gammarus, Caprella, Talorchestia, Idotea, Serolis, Porcellio, Spheroma, Mysis, and Gonodactylus. 62 BULLETIN OF THE of the retina, and separates the remaining retinal surface into two parts, one on either side of the stalk. In alcoholic specimens this median band is readily visible with the aid of a hand lens, and a little closer scrutiny shows that it is composed of six lines. These lines, of course, correspond to the six rows of ommatidia previously mentioned. The smaller om- matidia, on either side of the median band, are also arranged in lines parallel to those in the band; but, on account of their smaller size, the lines formed by them are not visible with an ordinary lens. The smaller ommatidia in Goniodactylus are arranged upon the typi- cal hexagonal plan (see the left half of Fig. 93, Plate VIII.). The larger ones have a somewhat similar grouping, although the fact that they are in six longitudinal rows rather obscures their hexagonal ar- rangement. (See the right half of Figure 93, in which three rows, and a part of a fourth, of large ommatidia are shown.) The hexagonal arrangement is not disturbed, as might be expected, on the line which separates the larger from the smaller ommatidia, but both kinds form parts ina common system. That this is true can be seen from Figure 93, where it will be observed that the centres of any two small ommatidia lying in the same vertical line are as far apart as the centres of the cor- responding larger ommatidia. Moreover, as I have demonstrated by actually counting the ommatidia of long parallel series, a vertical band which contains twenty-five large ommatidia has the same length as one composed of a corresponding number of small ones. The apparent differ- ence in numbers at first sight presented by lines of the two kinds of ommatidia is principally due to the fact that the larger ommatidia are arranged in distinct rows, whereas the smaller ommatidia are so grouped that the individuals in one row are slightly interpolated between those of the two adjoining rows (compare Fig. 93). In Decapods the ommatidia are arranged either upon the hexagonal or tetragonal plan. In the Brachyura,! as well as in three families of the Macrura, the Hippide, Paguride, and Thalassinide,? the arrangement 1 The presence of hexagonal facets has been recorded in the following genera of Brachyura: Portunns (Will, 40, p. 7); Zlia (Will, 40, p. 7, Leydig, 755, p. 411) ; Cancer ; Maja; Carpilius (Frey und Leuckart, “47, p. 204); Herbstia, Dorippe, and Lambrus (Leydig, ’55, pp. 407, 410, and 411, respectively). This form of facet is present only when the ommatidia are hexagonally arranged. Leydig ('55, p. 411) states that the outline of each facet in Dromia Rumphii is square, but, as his description clearly indicates, the facets are arranged upon the hexagonal plan. As my own observations show, the ommatidia in Cardisoma Guanhumi, Latr., Cancer irroratus, Say, and Gelasimus pugilator, Latr., are hexagonally grouped. 2 The outline of the corneal facets is stated to be hexagonal in the following genera: Pagurus (Swammerdam, ’52, p. 88, Cavolini, 92, p. 180, Milne-Edwards, MUSEUM OF COMPARATIVE ZOOLOGY. 63 of the ommatidia is invariably hexagonal. In the remaining macrurous Decapods? the ommatidia are grouped on the tetragonal plan. This last statement, however, is not without exceptions, for in Typton, and at times also in Galathea,? the hexagonal arrangement appears to prevail. An explanation of these exceptions will be offered in a subsequent paragraph. Before attempting this explanation, however, it will be well to gain a precise idea of the relation of the hexagonal and tetragonal methods of arrangement. At first sight, it might appear that these two methods had no definite relations, and were simply characteristic of different Decapods. Such, however, is not the case; for, as the development of the lobster shows, the ommatidia in a single animal can be arranged at first according to one plan, and afterward according to the other. In the lobster the hexagonal arrangement characterizes the earlier stages of development, and is replaced only subsequently by the tetragonal grouping. A similar change also occurs in the spiny lobster. Thus, in Phyllosoma, the larva of either Palinurus or Scyllarus, the hexagonal facets observed by Milne-Edwards (734, p. 115) afford unquestionable evidence of the hexagonal arrangement at this stage. In the adult con- dition, however, both of Palinurus and of Scyllarus, according to my own observations, the ommatidia are tetragonally grouped. In the common lobster and the spiny lobster, then, the hexagonal arrangement of the early stages is replaced by the tetragonal one in the adult. These ob- “04, p. 117, Will, ’40, p. 7, Frey und Leuckart, 47, p. 204, Chatin, ’78, p. 8); | Callianassa ; and Gebbia (Milne-Edwards, 54, p. 117). In Pagurus longicarpus, Say, and Appa talpoida, Say, I have observed a hexagonal arrangement of the ommatidia. 1 Judging from the figures given by various authors, the ommatidia of the fol- lowing genera are characterized by the tetragonal arrangement: Ga/athea (Will, "40, Fig. III. c.); Astacus (Miiller, 26, Tab. VIL Fig. 13, Leydig, ’57, p. 252, Fig. 134, Reichenbach, 786, Taf. XIV. Fig. 226, Huxley, ’57, p. 353); Homarus (Newton, 73, Plate XVI. Fig. 3, Parker, 7902, p. 8); Palemon (Grenacher, ’79, Taf. XI. Fig. 118 A, Patten, ’86, Plate 31, Fig. 115); Peneus (Patten, ’86, Plate 31, Fig. 75). As my present observations have shown, the tetragonal arrangement is characteristic of the ommatidia in Palinurus Argus, Gray, Cambarus Bartonii, and Palemonetes vulgaris, Say. 2 According to Chatin ('78, p. 13) the outline of the facet in Typton is hexagonal. Presumably the arrangement of the ommatidia in this genus is upon the hexagonal plan. In Galathea, according to the figures given by Patten (’86, Plate 31, Fig. 116), the ommatidia are hexagonally arranged, although it must be borne in mind that Will's (740, Fig. III. c.) figure of the facets in Galathea strigosa affords unmis- takable evidence of a tetragonal arrangement. 64 BULLETIN OF THE servations appear to me to afford considerable evidence in favor of the view that the hexagonal arrangement is phylogenetically more primitive than the tetragonal. Granting this conclusion, a number of otherwise exceptional observa- tions can be explained. Thus, as long ago as 1840, Will (’40, p. 7) called attention to the fact that in Astacus, where the ommatidia are normally arranged upon the tetragonal plan, facets near the edge of the retina are often irregularly hexagonal. The edge of the retina is well known to be the last part produced, and therefore it is probably the put least differentiated. Admitting the hexagonal arrangement to be a primitive one, it is only natural to expect that, if it persists at all, it will persist in the less modified portion of the retina. Hexagonal facets also occur on the periphery of the retina im Homarus, and are to be explained, I believe, in the same way. ‘ On the assumption that the hexagonal plan is primitive, the occur- rence of a few genera with ommatidia hexagonally arranged, in a group in which the tetragonal arrangement is the rule, can also be explained. In Typton, for instance, the hexagonal plan obtains, although in almost all Crustaceans closely related to it the tetragonal system prevails. This condition may be. explained, however, by the fact that the eyes in Typton show evident signs of degeneracy, due in all probability to the parasitic habits of the Crustacean. If the hexagonal arrangement represents an early ontogenetic phase in the development of Decapods related to Typ- ton, it would be natural to expect that in Typton itself, where the normal development of the eyes is interrupted by parasitism, this arrangement would persist permanently. In Galathea, as I have already mentioned in a note on page 63, the ommatidia according to Will are arranged tetragonally ; according to Patten, hexagonally. At first sight these observations might appear to be irreconcilable, but such is not necessarily the case. So far as I have been able to ascertain, Patten does not mention the name of the species which he studied. Possibly he may have examined some other than G. strigosa, the one from which Will’s figures were drawn. In such an event, a difference in the arrangement of the ommatidia may have been characteristic of the two species, although, if both possessed well developed eyes, this difference would be somewhat anomalous. IEf this is not the true explanation, it is still possible that the specimens studied by Patten were somewhat immature, in which case the hexagonal arrangement might very naturally be present. From what has been said, I think it must be evident that the apparent contradiction in Will’s and i MUSEUM OF COMPARATIVE ZOOLOGY. 65 Patten’s statements is not so serious as might at first be supposed, and that, admitting the relations already mentioned between the two plans of arrangement, the observations of these two writers can be explained without supposing either of them to be wrong. The probable method of rearrangement by which the hexagonal plan is converted into the tetragonal has been suggested in a previous paper (Parker, ’90°, p. 50). It involves two changes: the conversion of the hexagonal outline of the ommatidium, as seen in the corneal facet, into a square one, and the slipping of the rows of ommatidia one on the other, so that the lines which bound the four sides of each facet finally form parts of two series of lines which cross each other at right angles. A condition somewhat intermediate between the hexagonal and tetrag- onal arrangement is shown in the retina of Crangon (Plate X. Fig. 123). In this genus the outlines of the ommatidia as seen in the facets are square, although their arrangement suggests the hexagonal type. The permanent grouping of the ommatidia in Crangon represents a stage slightly in advance of the condition seen in some young lobsters (com- pare Parker, 90°, Plate IV. Fig. 55), and the particular features in which this advance is shown are two. First, the distal retinular nuclei in Crangon (Fig. 123) are grouped in pairs, more as they are in adult lobsters, and not in circles of six, as in young ones (compare Parker, 90%, Figs. 5 and 55). Secondly, the arrangement of the ommatidial centres in reference to the hexagonal plan is more symmetrical in the young lobster than in Crangon, where the rows of ommatidia have ap- parently slipped somewhat upon one another so as to resemble more nearly the condition in the adult lobster. I have been unable to determine with certainty what occasions the change from the hexagonal to the tetragonal arrangement. Apparently it accompanies an excessive growth on the part of the individual omma- tidia. In the lobster, for instance, the ommatidia rearrange themselves between the times when the young animal is one inch and eight inches long. During this period the ommatidia increase about ten times in length and about five times in breadth. The increase is especially noticeable at their distal ends, and particularly in the cone cells. In young lobsters of one inch in length (Parker, ’90?, Plate IV. Fig. 55), the space between the cones of adjoining ommatidia is considerable ;_ in adults, it is proportionally very much less (compare Parker, ’90*, Plate I. Fig. 5), and the cones are crowded against one another. Under these conditions, the hexagonal arrangement apparently gives way to the te- tragonal. So far as I am aware, the tetragonal arrangement occurs only VOL XXI.—no. 2. 5 66 BULLETIN OF THE in connection with this crowding of the cones, a condition found for the most part only in macrurous Decapods. In accounting for the rearrangement of the ommatidia, the eyes in the Stomatopod Gonodactylus afford some important evidence. As I have previously mentioned, the ommatidia in this genus are of two sizes. The larger ones have several of the peculiarities characterizing the tetrag- onal arrangement: their facets are generally square ; they are arranged in single lines, and these lines, so far as the relations of the individual ommatidia are concerned, show evidences of having slipped upon one another. ‘The smaller ommatidia have hexagonal facets, and are clearly arranged according to the hexagonal plan. The larger ommatidia are rather closely packed ; the smaller ones are arranged with more open space between them (compare Plate VIII. Fig. 93). In this genus, then, as in the lobster, the tetragonal arrangement occurs in connec- tion with the crowding of the ommatidia. How an increase in size, accompanied by a crowding of the retinal elements, can induce the change in arrangement which seems to follow it, I am at a loss to explain. Nevertheless, the two phenomena ap- pear to be in some way connected. From the preceding discussion concerning the arrangement of the ommatidia, the following conclusions can be drawn. The ommatidia, when numerous enough, present one of two plans of arrangement, the hexagonal or the tetragonal. The hexagonal plan is phylogeneti- cally the older, and is characteristic of the eyes of all Crustaceans except some families of the macrurous Decapods, especially the Gala- theids, Palinuride, Astacidee, and Carididz. In these the hexagonal arrangement is usually replaced by the tetragonal ; but in the adults of some species, especially those in which the eyes are partially rudi- mentary, the hexagonal arrangement persists. The change from the hexagonal to the tetragonal arrangement is connected apparently with an increase in size, and consequent crowding, of the ommatidia. Tur STRUCTURE OF THE OMMATIDIA. Each ommatidium, as I have previously mentioned, consists of a cluster of cells more or less regularly arranged about a central axis. The greatest number of kinds of cells which an ommatidium is known to contain is five. -These are the cells of the corneal hypodermis, the cone cells, the proximal and distal retinular cells, and the accessory cells. . — a) MUSEUM OF COMPARATIVE ZOOLOGY. 67 The cells of the corneal hypodermis are usually arranged in a very thin layer, and constitute the most superficial tissue in the retina. They either present no definite arrangement, as in Amphipods, or they are regularly grouped in pairs, one pair for each ommatidium, as in the majority of Crustaceans. On their external faces they produce the corneal cuticula. This is unfacetted in those Crustaceans in which the corneal cells are not regularly arranged and facetted when they are grouped in pairs. The cone cells in each ommatidium are united to form the cone, a transparent body which extends from the corneal hypodermis proximally through the ommatidium at least as far as the rhabdome. The cone occupies the axis of the distal portion of the ommatidium. The proximal retinular cells are usually limited to the proximal por- tion of the ommatidium. They are definitely arranged around the axial structure of that region, the rhabdome, and together with it form a single body, the retinula. The optic nerve fibres terminate in the proximal retinular cells. The distal retinular cells are present in only the more differentiated ommatidia. They are two in number, and invest the sides of the cone distal to the plane at which this structure emerges from the retinula. When distal cells are present, the remaining cells of the retinula will be distinguished as proximal cells; when the distal cells are wanting, the ‘other cells will be called simply retinular cells. The accessory cells fill the space between the elements of an omma- tidium, or between separate ommatidia. Their number is apparently inconstant, and they present a variety of forms. They may or may not contain pigment. Depending upon their source, two kinds can be distinguished, ectodermic and mesodermic. In describing the ommatidia, I shall consider them according to the groups of Crustaceans in which they occur. Under each group the elements comprising the ommatidium will be described in the order in which they have just been mentioned. My object in the following account is to determine, as far as possible, what the different kinds of ommatidial types are, and to define these types by a brief statement of the number and kinds of cells which char- acterize them. Compound eyes are known to occur in some Ostracods, and in the larvee of some Cirripeds, but their histological structure, I believe, has never been studied. I am therefore compelled to dismiss these two groups without further comment, and proceed with the description of 68 BULLETIN OF THE the ommatidia in other Crustaceans. The order in which the groups will be considered is one which is intended to emphasize their relations only in so far as the structure of their ommatidia is concerned. Natu- rally, this order will vary somewhat from the one usually given in sys- tematic treatises. I shall begin with the Amphipods. Amphipoda. Within recent years the more important types of eyes in the Amphi- pods have been studied with such care that the structure of their om- matidia is perhaps better known than that of any other large group of Crustaceans. My own observations do little more than confirm the accounts already published. The species of Amphipods whose eyes I have examined are Gammarus ornatus, M. Edw., Talorchestia longicornis, Say, and an undetermined species of Caprella. Of these the specimens of Gammarus and Caprella were collected at Nahant, Mass., where I also obtained several sets of eggs representing stages in the development of the former. Examples of Talorchestia were kindly supplied me from the collections in ,the Museum. The corneal hypodermis in Amphipods was first satisfactorily described by Claus (79, p. 131) in his account of the eyes in Phronima. It is represented in this genus by a layer of undifferentiated cells lying be- tween the corneal cuticula and the membrane which limits the distal ends of the cone cells. A corneal hypodermis similar to that in Phro- nima has likewise been described by Mayer (82, p. 122) in Caprella and Protella, by Carriére (’85, p. 156) in Gammarus, by Claus (’87, p. 15) in the Platyscelidze, by Della Valle (88, p. 94) in the Ampeliscide, and by Watase (’90, p. 295) in Talorchestia. I have also identified this struc- ture in Gammarus, Caprella, and Talorchestia. In Gammarus, as Carriére (’85, p. 156, Fig. 121) has clearly shown, - the corneal hypodermis at the edges of the retina is directly continuous with the general hypodermis. According to my own observations this condition is not only met with in Gammarus, but also in Caprella and Talorchestia. In Phronima, according to Claus’s figures ('79, Taf. VI. Figs. 48 and 49, Ma Z.), the arrangement of the cells in the corneal hypodermis bears no definite relation to the subjacent cones; the distal end of each cone presents an area which is covered by about a dozen hypodermal cells. In Gammarus I have observed (Plate I. Figs. 2 and 3) an essen- tially similar distribution of the hypodermal cells ; as in Phronima, the MUSEUM OF COMPARATIVE ZOOLOGY. 69 number of cells which cover the area of each cone is about twelve. A corneal hypodermis of this same character also occurs in Talorchestia, although in this instance the number of cells over a cone is only about nine. According to Watase (’90, p. 295), in the, species of Talorchestia which he studied there were only two cells in the corneal hypodermis opposite each cone, or, as he expresses it, under each facet. When com- pared with the results recorded in the preceding paragraph, this observa- tion appears somewhat striking, and the more so since two, the number of cells recorded, is the usual number found under each facet in other Crus- taceans. If Watase’s observation be correct, the relation which would thus be established between this Amphipod and other Crustaceans would be an interesting one. The desirability of confirming Watase’s observation must, ther@fore, be evident ; but unfortunately he has not given the name of the species of Talorchestia which he studied, and I have therefore not been able to verify his statement. In the only species of this ge- nus which I have examined, viz. T. longicornis, the arrangement of the cells in the corneal hypodermis is very different from that described by Watase. The conclusions which I draw from the preceding account are, that in the eyes of Amphipods a corneal hypodermis is present, and the cells composing it are usually not arranged with regularity. - The peculiar bodies observed by Schmidt (’78, p. 5) in the membrane between the corneal hypodermis and the retina proper in Phronima, and considered by Claus (’79, Taf. VI. Figs. 48, 49, B. nw.) as nuclei, are apparently not represented in other Amphipods. Their significance is still a matter of doubt. The corneal cuticula in Amphipods has been described by almost all observers as unfacetted.1 According to Della Valle (’88, p. 94), how- ever, in some of the Ampeliscidz this cuticula is facetted, and Watase ('90, p. 295) has also observed facets in Talorchestia. But with these two exceptions the corneal cuticula of Amphipods has been described 1 An unfacetted corneal cuticula has been recorded in the following genera of Amphipods : Amphithoe (Milne-Edwards, ’34, p. 116); Caprella (Frey und Leuck- art, 47%, p. 103) ; Cyamus (Miiller, ’29, p. 58, Frey und Leuckart, ’47, p. 205); Gam- marus (Miiller, 29, p. 57, Frey und Leuckart, ’47, p. 205, Pagenstecher, ’61, p: ol, Sars, 67, p. 61, Leydig, ’78, p. 235, Grenacher, ’79, p. 109); Hyperia (Gegenbaur, * 788, p. 82, Grenacher, ’79, p. 111, Carriere, ’85, p. 160) ; Phronima (Pagenstecher, 61, p. 31, Schmidt, 78, p. 5, Claus, ’79, p. 151); Talitrus (Grenacher, ’79, p. 109); and the Platyscelide (Claus, ’87, p. 15). I have observed an unfacetted corneal cuticula in Gammarus, Caprella, and Talorchestia longicornis. 70 BULLETIN OF THE as smooth. The absence of facets from Amphipods is naturally ac- counted for by the absence of a definite arrangement among the cells of the corneal hypodermis. In the genus Tenais, the systematic position of which is probably somewhere between the Amphipods and Isopods, the corneal cuticula is stated by Muller (’64, p. 2) to be facetted, at least in the males. Ac- cording to Blane’s (’83, p. 635) more recent observations, however, it is claimed to be unfacetted. The cones in Amphipods have long been known to be segmented. The number of segments of which each cone is composed has been dif- ferently stated, however, by different observers. According to Clapa- rede (60, p. 211), the cones in Hyperia are each composed of four seg- ments. This also is the number given by Sars (’67, p. 61) and by Leydig (79, p. 235) for Gammarus. Both Hyperia and Gammarus have since been carefully studied, and these observations are now known to be inaccurate. Claparede was perhaps influenced in his statement by his belief that all cones were composed of four cells. Sars was probably misled by the supposed fact that in Gammarus the cone is surrounded by four bands of pigment, which sometimes give it the appearance of being divided into four segments. The actual number of segments in the cone of Amphipods is two. This number was first recorded by Pagenstecher (61, p. 31) for the cones of Phronima. Pagenstecher believed, however, that the cones in this Crustacean increased in numbers by division, and that they showed no indication of being composed of two segments except when they were undergoing this process. I need scarcely add that subse- quent investigations have not confirmed Pagenstecher’s belief. Cones composed of two segments have been observed in some six or seven genera of Amphipods.? The retinula in Amphipods is stated by different observers to consist of either four or five cells. Five have been seen by Grenacher (74, p- 653) and Carriere (85, p. 160) in Hyperia; by Grenacher (’79, p- 112), Claus (°79, Taf. VIII. Fig. 65), and Carriere (85, p. 164) in Phronima ; and by Mayer (’82, p. 122) in Caprella. In Gammarus, Sars (’67, p. 61) observed that the cone had four 1 Jn Caprella (Mayer, ’82, p. 122), in Gammarus (Grenacher, 779, p. 110, Car- riere, 85, p. 156), in Hyperia (Grenacher, 74, p. 652), in Oxycephalus (Claus, ’71, p. 151), in Phronima (Schmidt, ’78, p. 5, Grenacher, ’79, p. 112, Claus, ’79, p. 130), in Talorchestia (Watase, ’90, p. 296), and in the Platyscclide (Claus, ’87, p. 15). In Gammarus ornatus, Talorchestia longicornis, and Caprella, each cone is composed of two cells. MUSEUM OF COMPARATIVE ZOOLOGY. 71 longitudinal bands of pigment on it. Grenacher (’79, p. 110) took this as an indication that there were at least four retinular cells in the ommatidium of this genus, but he was unable to satisfy himself as to whether there were a greater number or not. Carriere (’85, pp. 156, 157) easily identified the four cells first seen by Sars, aud in favor- able cases observed what he thought might be indications of a fifth cell. In Gammarus ornatus, as the present observations show, the retinula is certainly always composed of five cells, one of which, as Carriere observed, is usually much smaller than the other four (compare cl. rti.', Figs. 4-7). In Talorchestia, according to Watase (90, p. 296), the retinula is composed of only four cells. I have studied T. longicornis with the purpose of determining the number of retinular cells, and I find that, although there are four large retinular cells, there is also one small one, which is even more reduced than in Gammarus. Hence I conclude that the total number of retinular cells in an ommatidium of Talorchestia is five, not four. Claus’s statement (’71, p.151), that in Oxycephalus the retinula is usually composed of four cells, is probably inaccurate, as Grenacher (79, p. 114) suggests ; and the same is perhaps true of Della Valle’s (88, p. 94) observation, that in the Ampeliscide the retinule contain only four cells each. It is therefore probable that the retinula in all Amphipods is composed of five cells, although possibly in some excep- tional cases the number may be four. The retinular cells in Gammarus envelop the sides of the cone, as Carriere suspected, and extend distally as far as the corneal hypodermis (Plate I. Fig. 2). In Hyperia and Phronima, according to the descrip- tion and figures given by Carriere (’85, p. 161, and Fig. 128, p. 165), these cells appear to be limited to the proximal part of the retina. The rhabdome in Ampbipods, first described by Pagenstecher (’61, p- 30) as the cylindrical element in the eye of Phronima, presents a very simple structure. In Hyperia, according to Grenacher (’77, p. 31), it is a simple rod-like body, composed of five rhabdomeres, one for each retinular cell. In Phronima, as Claus (’79, p. 128) has shown, the rhabdome is a tubular structure with five sides. Each side of the tube, as can be seen in the figure given by Carriere (’85, p. 165, Fig. 128), corresponds to a rhabdomere. In Gammarus locusta, Grenacher (77, p- 111) has shown that, in transverse section, the distal end of the rhabdome is cross-shaped. In G. pulex, according to Carriere (’85, p- 157), the distal end of the rhabdome in section shows four rays, the ie BULLETIN OF THE proximal five. In Carriere’s opinion, these rays indicate the five rhab- domeres. In Gammarus ornatus, the species which I have studied, the- rhabdome (Plate I. Fig. 6, rib.) is cross-shaped in transverse section throughout its length. Each rhabdomere has the form of an elon- gated plate, which is folded on its longest axis, so that its halves are at right angles to each other. In the rhabdome, the four rhabdomeres lie so that their folded edges occupy the axis of the ommatidium. Each of the four large retinular cells rests in the furrow produced by the folding of a rhabdomere (compare Fig. 6). The fifth retinular cell always lies at the end of one arm of the cross-shaped rhabdome. The two rhabdomeric constituents of that arm usually separate slightly, so as to allow the small retinular cell to slip in between them. Possi- bly this cell produces a small rhabdomere, as the corresponding cell in G. pulex does; but if such is the case, the rhabdomere must be a very small one, for I have not been able to discover it. A rhabdome of essentially this structure occurs in Talorchestia. As the preceding account shows, the rhabdome in Amphipods always presents some indication of the number of rhabdomeres of which it is composed. This number is usually five, although it is possible that in Gammarus it may be only four. In addition to the cells which have thus far been described as entering into the composition of the retina in Amphipods, certain other cells may be present. These may be embraced under the one head of accessory pigment cells. In Gammarus, as Carriere (785, p. 159) has shown, the space between the ommatidia is filled with rather large cells, the nuclei of which are usually visible with ease (Fig. 2, nl. h’drm.). These cells extend from the basement membrane very nearly, if not quite, to the corneal hypo- dermis. In the fresh condition they contain a whitish opaque pigment. On account of their having no definite arrangement, it is difficult to esti- mate their number, but there are probably two or three for each omma- tidium. Cells similar in position to these have been described by Watase (90, p. 296) in Talorchestia. In Hyperia there are apparently three kinds of accessory pigment cells. One kind occurs in the region of the basement membrane (Car- riere, ’85, p. 161, Fig. 124, m.) ; another kind surrounds the proximal por- tion of the cones (Carriére, 785, p. 161); a third kind is applied to the retinule, and, according to Carriere, exactly equals in number the cells of the retinula itself. Possibly the cells which Grenacher (’79, p. 112) described as lying at the distal end of the retinula in Hyperia belong MUSEUM OF COMPARATIVE ZOOLOGY. 73 to this third kind, although, as must be remembered, Grenacher states that there are only two such cells for each ommatidium. These three kinds of accessory pigment cells, with the possible excep- tion of those which surround the retinula, occur in the lateral eyes of Phronima (Carriére, ’85, p. 164). Almost nothing is known about the source of the accessory pigment cells in Amphipods. Those in Gammarus have no resemblance to ‘the loose mesodermic tissue which lies in the neighborhood of the eye, and they are probably derived from the original ectodermic thickening which gave rise to the retina. Although some of the accessory pigment cells in Hyperia and Phronima have been called connective-tissue cells (Claus, ’79, p. 125, Carriere, ’85, p. 160), a uame which might be taken to im- ply that they have come from a mesodermic source, nothing is really known about them which would be inconsistent with an ectodermic origin. From the foregoing account of the ommatidia in Amphipods the follow- ing summary can be made: cells of the corneal hypodermis not detinitely arranged, from about nine to twelve, — possibly two to each ommatidium ; cone cells, two; retinular cells, five, — possibly in some cases four; ac- cessory pigment cells (ectodermic?) present. Of these last there may be only one kind, as in Gammarus and Talorchestia, or there may be three kinds, as in Hyperia. Phyllopoda. The ommatidia in the eyes of Phyllopods present at least two struc- tural types, one of which obtains in the Branchiopodide and Apuside, the other in the Estheridze and Cladocera. On account of the greater convenience, the eyes in the Apusidze and Branchiopodide will be con- sidered first, then the eyes in the Estheride, and finally those in the Cladocera. Branchiopodide and Apuside. — The ommatidia in these two families, and especially in the Branchiopodide, have been carefully studied by a number of competent investigators; their structure is consequently well known. The material which I used in studying these eyes consisted of speci- mens of Branchipus, probably B. vernalis, Verrill, which I had collected in the neighborhood of Philadelphia, and which had been preserved for some time in strong alcohol. Through the kindness of Dr. W. A. Setchell, I was also able to examine a specimen of Apus lucasanus, Packard. 74 BULLETIN OF THE A corneal hypodermis has been described by Claus (’86, pp. 321, 322) in Branchipus and Apus. In Branchipus torticornis, according to Claus, the nuclei of the hypodermal cells are arranged around the distal end of each cone in circles of six; each nucleus participates in three circles, so that there are in reality only twice as many hypodermal cells as there are ommatidia. The corneal hypodermis in the eye of Branchipus ver- nalis (Plate LV. Fig. 30, nd. h’drm.) is similar to that described by Claus in B. torticornis. According to Patten (86, p. 645), a corneal hypoder- mis is present in Branchipus Grubii, but the cells, instead of being regularly placed, as in either Branchipus torticornis or B. vernalis, are stated to be indefinitely arranged. The corneal cuticula in Apus is described as unfacetted by Miiller (29, p. 56), Burmeister (35, p. 533), Zaddach (’41, p. 46), and Frey und Leuckart (47, p. 205). In Branchipus stagnalis the cuticula is smooth according to Spangenberg (’75, p. 30), marked by concavo- convex facets according to Grenacher (79, p. 114), and smooth exter- nally but facetted internally according to Leydig (51, p. 295). This difference of opinion is probably due to the fact that in this species the facets are so poorly developed that their form can be determined only with difficulty. In Branchipus vernalis, although the corneal cuticula is facetted, the facet is not thickened in its centre, but has the form of a simple concavo-convex elevation, as described by Grenacher in B. stagnalis. In Branchipus paludosus according to Burmeister ('35, p. 531), in B. torticornis according to Claus (86, p. 320), and in B. Grubii according to Patten (86, p. 645), the corneal cuticula is unfacetted. The cone in Branchipus, as Spangenberg (’75, p. 30) first demon- strated, is composed of four segments. This observation has since been confirmed by Grenacher (79, p. 115), Claus (’86, p. 320), and Patten (86, p. 645). In Branchipus vernalis (Fig. 31, con.) the cone, according to my observation, consists of four segments. The cellular nature of each segment was first clearly stated by Grenacher. Each cone in Apus, according to both Grenacher (’79, p. 115) and Claus (’86, p. 321), is composed of four cells. The retinula in both Apus and Branchipus consists of five cells. This number has been seen in both genera by Grenacher (’74, p. 653) and by Claus (’86, p. 319). Spangenberg, however, (’75, p. 31) counted four nuclei in the retinula of Branchipus. Since these unquestionably rep- resent the nuclei of the retinular cells, and since these cells are usually five in number, Spangenberg’s enumeration is probably inaccurate, Pos- MUSEUM OF COMPARATIVE ZOOLOGY. 75 sibly he was influenced when counting the nuclei by his belief that the number four was characteristic of many structures in the ommatidium. In Branchipus vernalis (Plate LV. Fig. 32, cl. rtn.') the retinula contains five cells. The rhabdome in Apus is short; in Branchipus (Fig. 30, rhb.) it is relatively long. In transverse section (Fig. 32, rib.) it is circular, or at times squarish, but never pentagonal, as might be expected from the fact that it is surrounded by jive retinular cells. The retina in B. vernalis contains no other cells than the three kinds already described. According to Clans (86, p. 319), blood corpuscles may make their way into the base of the retina of B. torticornis. From the preceding account, the number of cells in the ommatidia of the Branchiopodide and Apusidz can be stated as follows: cells of the corneal hypodermis, usually two, possibly variable in number in some species ; cone cells, four; retinular cells, five. In Branchipus torticornis the interommatidial space may contain blood corpuscles. Estheride.— The species which I studied as a representative of this family was Limnadia Agassizii, Packard. This species can usually be obtained in great abundance during summer in small fresh-water pools in the neighborhood of Wood’s Holl, Mass., where my material was kindly collected for me by Mr. W. M. Woodworth. The external surface of the retina in Limnadia, as I have mentioned in my account of the general structure of the eye in this genus, is cov- ered with an extremely delicate corneal cuticula. This cuticula does not show the least trace of facets. Immediately below the corneal cuticula are numbers of small nuclei (Plate IV. Fig. 37, x. ern.). These, from their position, are probably to be regarded as the nuclei of the corneal hypodermis. They are not regularly arranged, and, although they sometimes lie between the cu- ticula and the distal end of a cone, they more freqnently occur next to the cuticula in the spaces between the cones. As a rule, each cone in Limnadia is composed of five cells (Plate IV. Figs. 37 and 38). In this respect it resembles the cones in Estheria californica and E. tetracera described by Lenz (’77, p. 30). In Lim- nadia Agassizii, however, cones composed of fowr cells are not infre- quently met with (compare Figs. 37 and 38). Grube’s (’65, p. 208) observation that the cone in Estheria is composed of two segments is probably erroneous, but Claus’s (’72, p. 360) statement that in Limnadia the cone consists of four segments may be accurate, contrary to the opinion of Lenz. 76 BULLETIN OF THE The retinular cells in Limnadia cover the greater part of the sides of the cones, and completely hide the rhabdome (Plate IV. Fig. 36). Their number can be determined in transverse sections in the region of the rhabdome. In such sections each rhabdome is surrounded by five retin- ular cells (Fig. 39, ed. rtn.!). Occasionally nuclei can be distinguished in the pigment about the base of the cone. These are probably the nuclei of the retinular cells. Besides the elements thus far enumerated, the retina in the Estheridee is not known to contain other kinds of cells. The cells in the omma- tidia of this family are, therefore, as follows: cells of the corneal hypo- dermis, not regularly arranged ; cone cells, usually five, sometimes four ; retinular cells, five. Cladocera. — The extreme minuteness of the ommatidia in the eyes of the Cladocera renders their study especially difficult. In an undeter- mined species of Evadne which I have studied, the ommatidia are comparatively large, and in this respect are especially favorable for in- vestigation. In the particular specimens which I used, however, I was entirely unsuccessful in all attempts to differentiate the nuclei. Al- though I tried a number of dyes and reagents, I was never able to make these structures visible. In consequence of this, there are several impor- tant questions concerning the eyes in the Cladocera which I have not been able to answer. It is reasonable to believe that a corneal hypodermis much like that in Limnadia is present in Evadne, but, probably on account of my inabil- ity to stain the nuclei, I have seen no traces of it. The cones in Evadne are very clearly composed of five segments (Plate IV. Figs. 41, 42). At their distal ends the cone cells are expanded so that their peripheral membranes (Fig. 41, mb. pr’ph.) are in contact with one another. At this level, however, the substance of the cone proper is collected about the axis of the ommatidium. Proximally the peripheral membranes of each cone contract, and under these circumstances the cavity of each cone cell is apparently filled completely with the differen- tiated material of the cone itself (Fig. 42). A cone composed of five segments has been observed in a considerable number of Cladocera. Thus it is known to occur in Bythotrephys (Leydig, ’60, p. 245, Claus, ’77, p. 144), Daphnia (Spangenberg, ’76, p- 522, Grenacher, ’79, p. 117), Polyphemus, Evadne (Claus, ’77, p. 144), Podon (Grenacher, ’79, p. 117), and Leptodora (Carriére, ’84, p. 678). Weismann’s assertion (’74, p. 364) that the cone in Leptodora is com- posed of four segments is disproved by Carriere’s later observations, and MUSEUM OF COMPARATIVE ZOOLOGY. Fa Claus’s statement (76, p. 372) that the same number of segments oc- curs in the cone of Sida is probably erroneous. There is, therefore, reason to believe that the cones in the Cladocera are always composed of five segments. The composition of the retinula in Cladocera, so far as I am aware, has never been fully worked out. In Evadne, on account of the relatively large size of the ommatidia, the number of cells in the retinula can be determined. At the proximal end of the cone, this structure is sur- rounded by four distinct masses (Fig. 43). The regularity with which these masses occur leaves no doubt as to their number. Each one prob- ably represents a retinular cell. In transverse sections made through the rhabdome (Plate IV. Fig. 45), this structure is surrounded by jive bodies, each one of which I take to be a retinular cell. It is therefore probable that the retinula of Evadne is composed of five cells, four of which approach nearer the surface of the eye than the fifth. In Evadne I have seen no evidence of the existence of other cells than those belonging to the cone and retinula. According to Carriere (’84, p- 678), the interommatidial space in Leptodora contains a number of cells which envelop the cones more or less completely. These are proba- bly to be regarded as accessory pigment cells. : From the foregoing account the following general statement can be made for the ommatidia in the Cladocera: corneal hypodermis, not observed ; cone cells, five; retinular cells, five (in Evadne) ; accessory pigment cells present (in Leptodora). Copepoda. I have studied the lateral eyes in Pontella and Argulus, as representa- tives of the Copepods. As is well known, the eyes in these two genera differ greatly in structure, and I shall therefore describe them separately,. beginning with the eyes in Pontella. Eucopepoda. — The species of Pontella which I studied was extremely abundant at Newport in August, 1890. This animal was so transparent when living, that the general structure of its eyes could be ascertained’ by a simple microscopic inspection of it. In addition to its median eye, which occupies a ventral position, it possesses a pair of lateral eyes (compare Claus, 63, Taf. III. Fig. 5) situated one on either side of the sagittal plane at the antero-dorsal angle of the head. ‘ Each lateral eye in Pontella, as Claus (’63, p. 47) has already stated, is provided with a spherical Jens (Plate IT. Fig. 18, Zvs.), which is usu- ally firmly attached to the superficial cuticula. Immediately behind 78 BULLETIN OF THE this lens, and in fact covering much of its proximal face, is a rather irregular mass of cells, the retina. In the living animal the cells of the retina contain a great quantity of black or reddish black pigment. This coloring matter, however, is so readily soluble in alcohol, that in speci- mens preserved in that fluid all traces of it disappear. The optic nerve (x. opt., Fig. 18), an imperfectly defined bundle of fibres, emerges from the retina near its posterior dorsal edge, and passes directly backward to the brain. The lenses of the two lateral eyes in Pontella are so near each other that their median faces are almost in contact (compare Plate III. Fig. 29). The retinas of the two eyes, as Claus (’63, p. 47) has observed, are united with one another on their median faces, and so intimately that they are apparently incapable of independent motion. The two retinas together may be rotated on their lenses through an angle of about forty-five degrees. The plane of this rotation corresponds to the sagittal plane of the body, and the rotation is accomplished by two pairs of muscles, one for each retina (compare Claus, *63, Taf. IIT. Fig. 6), One pair of these muscles is shown in Figure 18. They occupy a plane approximately parallel to the sagittal plane of the body, and the effects of their contractions must be apparent from their positions. When both muscles are relaxed, the retina occupies a position substantially as shown in Figure 18. By the contraction of the posterior muscle, the retina may be drawn upward and backward over the surface of the lens, till its axis, instead of pointing dorsally, is directed forward and upward at an angle of about forty-five degrees with its original position. The retina is not usually held for any great length of time in this position, but is soon returned by the contraction of the anterior muscle to its normal place. The backward motion of the retina is accomplished with such rapidity that the animal has the appearance of winking. The forward motion is rather slower. Each lens in Pontella is composed of concentric lamin (Plate III. Fig. 29, lvs.). A considerable portion of its distal surface is intimately connected with thé superficial cuticula (Plate II. Fig. 18), although a line of demarcation between lens and cuticula can always be distinguished. When the anterior half of the body of Pontella is boiled in a strong aqueous solution of potassic hydrate, and afterwards subjected to the action of concentrated nitric acid, all the soft parts are dissolved, and only the very resistant chitinous structures remain. In specimens treated in this way, the lenses retain their firm connection with the superficial cuticula, and differ in appearance from those in the living ani- 2 he MUSEUM OF COMPARATIVE ZOOLOGY. 79 mals only in that their concentric lamelle are somewhat more distinct. The fact that the lens is composed of concentric layers indicates that it is secreted, and the resistance which it offers to reagents is weighty evidence in favor of its chitinous nature. In my opinion, therefore, the lens in Pontella is a chitinous secretion. The development of the lens in Pontella is rather peculiar. Appar- ently a new lens is formed with each moulting of the general cuticula ; at least, in a rather large proportion of the number of individuals exam- ined, the lenses were abnormally small, having a diameter of one third or even one fourth of that shown in Figure 18. Moreover, in all such in- dividuals the superficial cuticula was correspondingly thin and delicate, and when the animal was subjected to boiling potash, the segments of its body and appendages separated with a readiness never observed in specimens with large lenses. There can be no doubt, I believe, that the small lenses are always accompanied by thin cuticula, a relation which is to be explained by the immature condition of both structures. The smaller lenses differ from the larger ones in only one important particular besides that of size. They are not in contact with the super- ficial cuticula. This relation can be determined better in optical sec- tions than in actual ones, for in the latter the position of the lens is usually somewhat changed by the resistance which it offers to the knife. The centre of the small lens occupies a position relatively the same as that of the large lens, the space between the surface of the small lens and the external cuticula being filled with a cellular mass. This mass, as seen in optical sections, apparently envelops the lens on all sides, and is undoubtedly composed of the cells which secrete that structure. As the lens increases in size, the cells are probably excluded from the region between it and the cuticula, and as they retreat cement the lens to the cuticula. Upon the completion of the lens, the cells which have shared in producing it probably withdraw slightly from it to form the hypodermal thickenings which occur beneath the adjoining cuticula (Plate II. Fig. 18, and Plate III. Fig. 29, h’drm.). These thickenings are rich in nuclei, and often have delicate strands of protoplasm stretch- ing to the surface of the lens (Fig. 18). I believe that these facts justify the opinion that the lenses in the lateral eyes of Pontella are composed of chitin, that they are produced unconnected with the superficial cuticula, and that they are secondarily cemented to it. Like the cuticula itself, they are products of the hy- podermis, a new lens being generated in all probability with each new formation of cuticula. 80 BULLETIN OF THE Lenses similar in position to those in Pontella have been identified in the lateral eyes of several other genera of Copepods. Gegenbaur (758, p. 71) described such lenses in Sapphirina, and Leuckart (59, p- 250) observed similar ones in the lateral eyes of Coryceus and Copilia. In all these genera the lenses, although biconvex, are not spherical, as in Pontella. Gegenbaur (58, p. 71), following Leydig’s generalization, believed that in Sapphirina the lenses were thickenings in the cuticular covering of the body, and Claus (’59, p. 271) considered them morphologically equivalent to a single corneal facet. Leuckart (59, p. 250), without definitely committing himself as to the nature of the lens, states that in Copilia and Coryceus the lens is implanted in the superficial cuticula, and further describes it in Corycus as com- posed of two parts, an outer and an inner. According to Grenacher (79, p. 67), both parts can be identified in the lens of Copilia; the outer part is a portion of the superficial cuticula; the inner part, both in its optical properties and its behavior toward reagents, is unlike the cuticula. The inner part, however, contains no traces of cells, but is composed of a homogeneous substance, probably secreted. This view of the duplicity of the lens contrasts with the older idea of its origin as a thickening in the superficial cuticula. It is possible that the lenses in the Pontellidee and Coryceide are not homologous structures, but on account of their similarity I am inclined to consider them as such. Since in Pontella both parts are derived from the cuticula, I believe that a similar origin will be demonstrated for these parts in the Coryceide. The differences which Grenacher has pointed out between the two parts of the lens in Copilia do not necessarily oppose this view. It is possible that the cuticular secretion which forms the proximal part of the lens may originate separately from the other cuticula, as in fact it does in Ponteila; and it may also be true, although this is not supported by the condition in Pontella, that the two parts, although both secretions of the hypodermis, may differ enough in their substance to account for all the peculiarities ob- served by Grenacher. The retina and lens in Pontella are not separated by an intervening space as in the Coryceide, but are in immediate contact. The retina is composed of a mass of cells, the number and arrangement of which can be seen in the figures on Plate III. These figures represent a series of consecutive sections cut in planes transverse to the axis of the eye, i. e. parallel to the horizontal plane of the animal (compare Fig. 18, Plate II.). The series is complete in that it represents all MUSEUM OF COMPARATIVE ZOOLOGY. 81 the sections which pass through the retina. The most ventral section is shown in Figure 20, the most dorsal in Figure 29. Immediately below the lens the central part of the retina is occupied by a roundish granular mass (Fig. 18, con.), which in the living animal is the only part without pigment. In transverse sections this mass is seen to consist of two bodies (cl. con. 1, and el. con. 2, Fig. 25), which extend as far as to the lens (compare Figs. 25-27). Each body con- tains a nucleus (v/. con., Figs. 25 and 27) and consequently represents acell. From the position which the mass occupies, and from the fact that it contains no pigment, it represents, I believe, a cone, and the two cells of which it is composed are its two segments. Claus (63, p. 47) states that in Pontella each retina is provided with Six or more small crystalline cones, but my own observations do not confirm this statement. The body which, on account of its position, I have described as the cone in Pontella, is probably homologous with what Dana (’50, p. 133) first described as the inner lens in Coryczus, and with what subsequent investigators have called the crystalline cones in Sapphirina (Gegenbaur, ’58, p. 71) and Copilia (Leuckart, ’59, p. 252). Nothing, I believe, is known of the cellular composition of the cone in these genera. The arrangement of the elements in that portion of the retina which surrounds the cone in Pontella is not easily made out. The most con- spicuous structures in this region are rod-like bodies, which probably represent rhabdomeres. Eight of these, arranged in three groups, are present in each retina. The largest group, composed of five rods, lies directly beneath the cone. The rods of this group have been numbered from one to five in the retina to the left in Figures 21, 22, and 23. Posterior to this group, in the same retina, is the sixth rod, seen in Figures 24, 25, and 26. Anterior to it are the seventh and eighth rods, seen in Figures 26, 27, 28, and 29. The outlines of the cells to which these rods belong cannot always be distinguished ; that there is a cell for each rod is evident from the fact that near each rod there is a large nucleus. The nucleus belonging to the cell from which the eighth rod was produced is shown in Figure 28 (nl. rtn.’) ; those belonging to the cells from which the sixth and seventh rods arose are indicated in Figure 26 (nl. rtn’.), and those belonging to the cells from which the central group of five rods came are seen, four in Figure 24 and one in Figure 25 (nl. rtn.’). In addition to these nuclei, which judging from their positions and number are unquestionably the nuclei of the cells to which the rhab- VOL. XXI.— NO. 2. 6 82 BULLETIN OF THE domeres belong, the retina contains a number of smaller nuclei (Fig. 21, nl. h’'drm.). ‘These nuclei have been drawn in the figures of the various sections in which they occur, and probably represent undifferentiated cells. To what extent the retina of Pontella can be resolved into omma- tidia may be seen from the foregoing account. Evidently the two cone cells, the subjacent groups of five retinular cells, and probably scme of the undifferentiated cells, are the equivalent of one omma- tidium. The-sixth cell, with its rod, is probably the representative of a second ommatidium, and the seventh and eighth cells are probably representatives of one, or perhaps two, more. If this interpretation be correct, the cells in the one complete omma- tidium in Ponvtella would be as follows: corneal hypodermis, undifferen- tiated ; cone cells, two; retinular cells, five; undifferentiated pigment cells (ectodermic?) present. Each retina in Sapphirina, according to Grenacher (79, pp. 69, 70), contains one group of three rhabdomeres. These are accompanied, as in Pontella, by an equal number of large nuclei. The body desig- nated at y, and perhaps some of those marked 2, in Grenacher’s figure of Sapphirina (Fig. 43), may also represent isolated rhabdomeres. In Co- pilia, Grenacher believes that the number of rhabdomeres in each retina is three. Possibly in this genus, as in Sapphirina, the body marked z by Grenacher (Taf. VI. Fig. 40) may represent an isolated rhabdomere. Grenacher’s observations, when coupled with what I have seen in Pon- tella, show that in Copepods the number of retinal elements is open to considerable variation, and that what would correspond to the retinula in Sapphirina, and perhaps in Copilia, consists of a cluster of only three cells, instead of five, as in Pontella. Branchiura, — The ommatidia in Argulus are rather small, and their structure is consequently imperfectly known. The specimens of this Crustacean which I studied were obtained from an aquarium in which the common Killifish, Fundulus heteroclitus, had been kept. I have not been able to determine the species to which these specimens belong. The corneal hypodermis in Argulus is separated from the retina proper by a space filled with blood (Plate II. Figs. 11, 12, ca/.), The cells in this layer (Fig. 12, /’drm.), as in the corneal hypodermis of Amphipods, are not arranged in groups, but are irregularly scattered. On their distal faces they produce the corneal cuticula (Fig. 12, cta.), which, as Miiller (31, p. 97) observed, is without facets. Proximally they are separated from the blood space by the delicate corneal membrane (Fig. 12, mb. crn.). MUSEUM OF COMPARATIVE ZOOLOGY. 83 The distal face of the retina proper in Argulus is bounded by a deli- cate preconal membrane (Figs. 11-13, mb. pr’con.) and its proximal face is limited by the basement membrane (Figs. 11-13, mb. ba.). The most conspicuous objects in the retina are the cones (Fig. 11, con.), which lie with their distal ends usually somewhat below the preconal membrane (Fig. 13). Each cone, as Claus (’75, p. 256) bas observed, is composed of four segments (Fig. 14). The segments corre- spond to cells, and although the cone itself terminates proximally before reaching the rhabdome, the cone cells form an axis free from pigment and extending from the cone to the rhabdome (compare Fig. 12). In depigmented sections the peripheral membranes of the cone cells (Fig. 13, mb. pr’ph.) can be distinguished as sharply marked lines which ex- tend from the sides of the cone to the sides of the rhabdome. The intercellular membranes of the cone cells in the region between the cone and rhabdome are apparently marked by thickenings which appear in both longitudinal and transverse sections (compare Figs. 13 and 15). At the distal end of the rhabdome the four cone cells separate, and, after passing partly around the rhabdome, become lost in the adjoining tissue (Fig. 16, cl. con.). I have not been able to discover the nuclei of the cone cells. . It is difficult to determine the number of cells in the retinula of Argu- lus. Slightly below the proximal end of the rhabdome, the retinula is divided into five distinct pigmented masses (Fig. 17, cl. rtn.!). Since the rhabdome (Fig. 16, rhb.) is composed of five rhabdomeres, it is highly probable that the retinula consists of five cells; but I have not been able to determine with precision the outline and extent of these cells. The nuclei which are visible in the retina of Argulus closely resemble one another. They are limited for the most part to two regions (Fig. 13), one near the level of the cones, the other near the basement mem- brane. Apparently there are no nuclei immediately below the preconal membrane. Those which are-near the cones (Figs. 13, 14, nl. h’drm.), judging from their arrangement and position, probably represent inter- ommatidial pigment cells. Those near the basement membrane (Fig. 13, nl. rtn.') may be the retinular nuclei, as their position seems to indi- cate. For some distance proximal to the basement membrane, nuclei (Fig. 13, nl. h’drm.') occur among the nerve fibres. Possibly they repre- sent scattered cells in this region, but the strong resemblance which they have to the nuclei on the distal side of the membrane induces me to believe that they too are retinular nuclei, which, as in the Amphi- pods, have migrated to a position below the basement membrane. 84 BULLETIN OF THE The cells in the ommatidium of Argulus are as follows: cells of the corneal hypodermis, not arranged in definite groups ; cone cells, four ; retinular cells, probably five; accessory pigment cells probably present. Isopoda, The material which I used in studying the eyes in Isopods came from several sources. I collected specimens of Asellus and Porcellio in the neighborhood of Cambridge, and the two species of Idotea which I studied were obtained at Newport. Specimens of Serolis Schythei, Liitken, and of an undetermined species of Sphzroma, were kindly fur- nished me from the collections in the Museum. The ommatidia in Isopods present two types of structure: one of these is characteristic of the eyes in a majority of the members of this group ; the other, so far as is known, is represented only in the genus Se- rolis. These two types will be considered separately, and the one which is common to the greater number of Isopods will be described first. The corneal hypodermis in the more common of these two ommatidial types was first identified by Grenacher. In Porcellio, according to this author (’79, p. 107), the proximal surface of each facet is covered with two comparatively thin cells. These are the cells of the corneal hypo- dermis. JBellonci (’81%, p. 98, Tav. II. Fig. 11 n.) figures similar cells in the ommatidium of Spheroma, and Beddard (’90, p. 368) concludes justly, I believe, that, of the four nuclei found near the distal end of the cone in Arcturus, two represent cone cells and two cells in the corneal hypodermis. In Idotea irrorata I have identified two cells in the corneal hypodermis for each ommatidium. The nuclei of these cells lie very near the nuclei of the cone cells (compare n/. con. and nl. crn. in Figs. 50 and 51, Plate V.).. Inan ommatidium of Porcellio, Grenacher (79, pp. 107, 108) observed that the plane which separates the two cone cells also separates the two cells in the corneal hpyodermis. In Idotea, also, both kinds of cells are separated by a single plane. The facetted condition of the corneal cuticula of Isopods was observed as early as 1816 by G. R. Treviranus (’16, p. 64), in wood-lice, and subsequently in the same animals by Lereboullet (43, p. 107, 753, p- 119). The shape of the facets in different Isopods has given rise to some difference of opinion. According to Miiller (29, p. 42), in Cymo- thoa each has the form of a biconvex lens. Leydig (64%, p. 40) states, however, that in Oniscus the facets are concavo-convex with their hollow faces innermost. In Asellus, according to the figure given by Sars_ (67, Planche VIII. Fig. 14), they are plano-convex with their flat faces MUSEUM OF COMPARATIVE ZOOLOGY. 85 innermost. These differences, although at first sight somewhat con- tradictory, are not matters of great importance, for it is probable that each time an Isopod sheds its cuticula and a new one is formed, the lens assumes, at successive stages of its growth, outlines which coincide very closely with those recorded by the different observers. Thus, an early stage would be represented by the concavo-convex lens described by Leydig, an intermediate stage by the plano-convex lens figured by Sars, and the final condition by the biconvex lens mentioned by Miller. Either this is the explanation of the differences, or the observations of Leydig and Sars are probably erroneous, for the results of the more recent investigations point to the conclusion that the facets in Isopods have the form of a biconvex lens. Facets of this shape have been seen by Grenacher (’77, p. 29) in Porcellio, and by Bellonci (’81*, p. 98) in Spheroma. According to my own observations, they also occur in Idotea, Asellus, Porcellio, and, as I shall show subsequently, in Serolis. In the four genera mentioned the inner face of each facet is distinctly convex ; this is also true of the outer face in Asellus and Porcellio. In Serolis and Idotea (Plate V. Fig. 50), however, the outer face is so slightly curved that it is difficult to decide whether its curvature is that of the general corneal cuticula or one peculiar to the facet itself. That the cone in Isopods is composed of two segments was first ob- served by Leydig (’64*, p. 41, and ’64, Taf. VI. Fig. 8) in Oniscus. Ac- cording to this author, each segment is spherical. Each ommatidium, therefore, contains two spheres, and these, as Leydig’s figure shows, are placed side by side immediately below the corneal facet. It is now well known that in many Isopods, especially in the wood- lice, the cone itself is nearly spherical, and its two segments would con- sequently be hemispheres, not spheres as figured by Leydig. How Ley- dig’s statement of the spherical shape of the segments can be accounted for, is not apparent. Since the two spheres described by him occupy the same relative positions as the hemispherical segments of a normal cone, there is not much question in my mind that they represent these segments, Possibly their separation and spherical form may have been due to the swelling action of some reagent which Leydig may have used to make the tissue transparent. A cone composed of two segments has been observed by Sars (’67, p. 110) in Asellus, by Leydig (’78, p. 256) in Ligidium, by Grenacher (’77, p. 29) in Porcellio, by Bellonci (’81%, p- 98) in Spheroma, by Sye (’87, p. 23) in Jeera, and by Beddard | (790, p. 368) in Arcturus. In the three genera which I have examined, Idotea, Asellus, and Spheroma, each cone consists of two segments. 86 BULLETIN OF THE These observations naturally lead to the conclusion that in all Isopods each cone is composed of two segments. ‘To this general statement, however, there are two noteworthy exceptions, one recorded by Sars, the other by Beddard. Sars (’67, p. 110) has shown that, of the four om- matidia in each eye of Asellus aquaticus, three have cones composed each of two segments; in the fourth, however, the cone is divided into three parts. This observation has been confirmed by Carriere (’85, p. 155). It is important to observe that in the figure given by Sars (67, Planche VIII. Fig. 12) the three parts of the cone are not of equal size; one is about as large as a single segment in the cones of the other three ommatidia, whereas the remaining two are each about half as large. In the eyes of the species of Asellus found about Cam- bridge, the ommatidia are usually twice as numerous as in the European species, A. aquaticus, and, so far as I could observe, the cones in the American species were always composed of only two segments. In Arcturus, according to the figures given by Beddard (’90, Plate XXXI. Figs. 1 and 4), cones of three segments are occasionally met with. The cellular composition of the retznula in Isopods was first made out by Grenacher (74, p. 653), who found that in Porcellio this structure consisted of seven cells. Distally these cells surround the cone; proxi- _mally they are continuous with the optic-nerve fibres. A retinula con- sisting of seven cells has also been demonstrated by Buller (’79, p. 513) in Cymothoa, and by Beddard (’88, p. 443) in Aiga and Ligia. As Beddard (’88, Plate XXX. Fig. 13) has shown, the seven cells in the retinula of Auga pass through the basement membrane and become con- tinuous with the nerve fibres. In Porcellio, as I have observed, the fibrous ends of the seven retinular cells not only can be identified as nerve fibres below the basement membrane, but each cell contains a well de- veloped fibrillar axis (Plate V. Fig. 46, ax. .), and I therefore conclude that in Porcellio all seven cells are functional as nervous elements. In Idotea robusta, transverse sections of the retinula in the region where the rhabdome is thickest present the outlines of what seem to be seven retinular cells (Plate V. Fig. 48). In positions either distal or proximal to this, however, only szz cells appear. These six cells pass through the basement membrane and taper into nerve fibres, and their nuclei, unlike the corresponding nuclei in other Isopods, occur in that part of the cell which is proximal to the basement membrane (Figs. 49 and 50, nl. rtn!.). The seventh body (Fig. 48, cl. rud.), in those sections in which it occurs, has in all essential respects the same appearance as any one of the adjoining six cells. It differs from these, however, in that MUSEUM OF COMPARATIVE ZOOLOGY. 87 it is usually somewhat smaller, and I therefore conclude that it is a rudimentary cell. It does not appear to contain a nucleus; granting, however, that it is a rudimentary retinular cell, one would look for its nucleus, not in the region about the rhabdome, but in the region of the nuclei of the other retinular cells, i. e. proximal to the basement membrane. Owing to the irregularity with which the fibrous ends of the retinular cells are arranged in this region, I have not been able to identify any nucleus with this rudimentary cell. Neither have I found any fibrous projections reaching from the rudiment of the cell toward the basement membrane such as might be expected provided the nucleus and a part of the rudimentary cell persisted below the membrane. Nevertheless, I believe, for the reasons already stated, that the retinula in Idotea robusta is composed of seven cells, one of which is extremely rudimentary. In Idotea irrorata (Plate V. Figs. 53, 55) the retinula consists of only six cells, all of which possess fibrillar axes, and are therefore probably funce- tional as nervous structures. In one retina of the several pairs of eyes which I examined, there was a single ommatidium with seven functional cells (Fig. 54). With this one exception, however, I have not been able to find any trace of the seventh cell in Idotea irrorata. In Arcturus, accord- ing to Beddard (’90, p. 368), the retinula is also composed of six cells. In Spheroma, Bellonci (81, p. 98, Tay. II. Fig. 12) has figured and described a retinula consisting of jive cells. These cells alternate with five other cells, which probably represent accessory pigment cells. If Bel- lonci’s statement is correct, it must be admitted that the number of cells in the retinulz of Isopods may be as few as five. My own observations, however, do not confirm Bellonci’s acgount. In the species of Spheroma which I have studied, there are seven cells in the retinula, four of which are large and three small (Plate V. Fig. 58). All these cells pass through the basement membrane ; all the large ones, and certainly some of the small ones, are also connected with nerve fibres. These observations indicate that in the Isopods the retinula is com- posed of either six or seven cells. If Bellonci’s statements prove to be correct, this structure may be composed in some cases of only five cells, but my own observations are opposed to this view. - The rhabdome in Isopods presents two types of structure, one of which has been well described by Grenacher (’77, p. 30) for Porcellio scaber. In this species the rhabdome is composed of seven rhabdomeres, each of which remains in connection with the retinular cell which pro- duced it. In transverse section the rhabdome has the form of a seven- 88 BULLETIN OF THE pointed star, a ray corresponding to a rhabdomere. Lach ray projects into its retinular cell, not between two cells. My own observations on Porcellio confirm Grenacher’s statements. A second representative of this type of rhabdome has been described by Bellonci (’81, p. 98) for Spheroma. Here, however, the rays, although they agree in number with the retinular cells, project between the cells, not into them. The second type of rhabdome is well represented in the eye of Arc- turus furcatus. In this species, according to Beddard (’90, pp. 368, 369), the distal portion of the rhabdome, although surrounded by six retinular cells, is bounded by four perpendicular sides. Each of the six cells appears from its position to contribute to the formation of the rhabdome, and yet in the greater part of this structure segments cor- responding to rhabdomeres are not visible. In its proximal portion, however, the rhabdome, according to Beddard, is divided into six rhab- domeres, each of which is applied to its proper retinular cell. In Idotea robusta the rhabdome (Plate V. Fig. 48, rhb.) is nearly square in trans- verse section. So far as I have been able to discover, it does not show at its proximal end any indication of rhabdomeres. Of these two types of rhabdome, the one in which the rhabdomeres are evident is probably more primitive than the one in which their in- dividuality is almost, if not completely lost. The retinas of Isopods may contain, in addition to those already mentioned, two other kinds of cells. Of these the one most frequently met with fills the space between ommatidia. Cells of this kind have been identified in Porcellio by Grenacher (79, p. 107), and it is probable that the pigment cells described by Bellonci (’81, p. 99) as intervening between the retinular cells in Spheroma belong to this class. I have observed interommatidial cells in Idotea; here they contain few or no pigment granules, but are easily recognized by means of their nuclei (Plate V. Fig. 54, nl. h’drm.). The source of these cells is not definitely known, but there appears to be no evidence in favor of their having been derived from outside the retina. Grenacher believed that those in Porcellio are undifferentiated hypodermal cells ; this interpretation probably holds good for those in Spheeroma and Idotea. The hyaline cells, the second kind of accessory cells, have been iden- tified by Beddard (’87, p. 235, ’88, Pl. XXX. Fig. 9, 2.) in Aga and Cirolana. Since these cells are best developed in the eyes of Serolis, a full description of their structure will be deferred until the account of the eyes in that genus is given. MUSEUM OF COMPARATIVE ZOOLOGY. 89 The cells which characterize the ommatidia in Isopods (except Serolis) are as follows: cells of the corneal hypodermis, two; cone cells, two ; retinular cells, seven, six, or possibly five. Unditferentiated hypodermal cells are sometimes present, and hyaline cells occur in a few genera. The structural peculiarities of the ommatidia in Serolis were first de- scribed by Beddard (’84, pp. 389-341) about seven years ago. Recently Beddard’s observations have for the most part been confirmed by Watase (90), and it must now be admitted withont question that the ommatidia in Serolis differ in several important respects from those of many other Isopods. The material which I used in studying the eyes in this Crustacean consisted of advanced embryos and matured individuals of Serolis Schythei, Liitken. This material was collected in Patagonia by the Hassler Expedition, and was preserved in strong alcohol. Fortunately, it was in good‘ histological condition, and sections prepared from it showed very clearly the finer structure of the eyes. My observations, as the following account will show, differ in no very important respects from those of Beddard and Watase. Although Patten’s generalization, that a corneal hypodermis was to be found in the compound eyes of all Crustaceans, led Beddard (’88, p. 447) to look for it in Serolis, he was not able to identify it. Watase (90, pp. 290 and 293) was more fortunate, and succeeded in finding under each facet two cells in the corneal hypodermis. I have not been as successful as Watase was in determining the exact number of hypo- dermal cells in an ommatidium, but I have seen enough to convince me that such cells are present. In sections approximately tangential to the external face of the adult retina, one occasionally finds nuclei (Plate VI. Fig. 60, n/. ern.) between the distal ends of the cone cells and the corneal cuticula. These represent unquestionably the cells of the cor- neal hypodermis, and are not to be confused with the nuclei of the cone cells, which lie in a deeper plane. In making sections, the corneal -euticula splintered so irregularly that the tissue immediately below it was completely disarranged. It was therefore possible to get only ir- regular fragments of the tissue in this region, such as Figure 60 shows, and these fragments were always too small to admit of an accurate determination of the number of hypodermal cells under a single facet. I have also been equally unsuccessful in my attempts either to isolate these cells or to study them i sit on the corneal cuticula. The eyes in the aduuw, owing to the thickness of the cuticula, are unfavorable for the study of the corneal hypodermis ; but in embryos of 90 BULLETIN OF THE even an advanced stage, the cuticula is so thin that the hypodermis can be studied with comparative ease. An ommatidium from the eye of an advanced embryo is seen in Figure 65; the ommatidium is viewed from the side. Distal to the cone (con.) four nuclei can be seen ; one (vl. crn. 1) is superficial in position, three are deep. ‘The relation of these nuclei to the ommatidium can be satisfactorily studied in sections transverse to the axis of the ommatidium. A series of three such sections is seen in Figures 66, 67, and 68. Of these, the most distal 1s that shown in Figure 66. This includes only the most superficial layer of the retina, and contains two nuclei (compare v/. crn. 1, in Figs. 65 and 66). These nuclei, as their position clearly indicates, represent cells of the corneal hypodermis. In the plane of the section which includes the three deeper nuclei of Figure 65, four nuclei are in reality present (Fig. 67) ; two of these (nl. con.) are large, and lie directly below the superficial ones in the corneal hypodermis ; two are small (nl. crn. 2) and lie between the _ ends of the deeper large nuclei. Of the deep nuclei, the two large ones (nl. con.) rest one above each segment of the cone; in fact, as a section in a slightly deeper plane shows (Fig. 68, nl. con.), these nuclei coincide so closely with the segments of the cone that they must be regarded as the nuclei of the cone cells. It is difficult to state what nuclei in the adult correspond to the smaller of the four deep ones in the embryo. The number of these nuclei (two) in the embryo equals the number of pigment cells which Watase (’90, p. 294) has described as surronnding the cone; but that these nuclei do not belong to such cells is evident from the fact that in the embryo, the nuclei of the pigment cells can be identified in a posi- tion somewhat proximal to that in which the smaller of the four nuclei occur (compare ni. dst. in Figs. 65 and 69.) Possibly the cells repre- sented by these small nuclei in the embryo become in the adult the small interommatidial pigment cells, or it may be that they retain their relatively superficial positions, and, while occupying the space be- tween the corneal facets, perhaps produce the cuticula of that region. In the fragments of the adult retina, from immediately below the cor- neal cuticula, small nuclei are not unfrequently met with in the spaces between the ommatidia. These are possibly derived from the smaller deep nuclei of the embryo. It will thus be seen that my conclusions concerning the corneal hypo- dermis agree in the main with those of Watase; namely, that for each ommatidium there are two cells in this layer. Besides these, however, it is possible that the hypodermis may contain an equal number of other MUSEUM OF COMPARATIVE ZOOLOGY. 91 cells, which occupy positions immediately under the cuticula and be- tween the ommatidia. The facets in the corneal cuticula of Serolis, when viewed from the exterior, are irregularly circular in outline, often approaching a six-sided form. As I have already observed, they are arranged on the plan of the hexagonal type. The distal face of each facet is flat, or only slightly convex ; the proximal face is decidedly convex. The curvatures of the two faces and the thickness of the cuticula in the facet of S. Schythei was about the same as that figured by Watase (’90, Plate XXIX. Fig. 1) for the species which he studied. The cone, as Beddard (’84, p. 340) first demonstrated, and as Watase (90, p. 290) afterwards confirmed, is composed of two nearly hemi- spherical segments, which correspond to the two cone cells. The proto- plasmic material of each cone cell covers the curved surface of the seg- ment to which it belongs, and contains a nucleus in its distal portion. These relations have been well shown by Watase (’90, Plate XXIX. Fig. 1). From the condition presented even in advanced embryos (Fig. 65) it is evident that the part of the cone earliest formed, is the one which is nearest the applied faces of the two cone cells, and that from this as a centre the cone has continued to increase outwards. Although at this stage the outline of the cone itself is sharply marked (Fig. 65), the ex- ternal limits of the cone cells are only approximately indicated by the distribution of the pigment granules, which have begun to form in the surrounding pigment cells. In Serolis, as in Porcellio and Idotea, the cone cells and the cells of the corneal hypodermis are separated by the same perpendicular plane. There are some complications in the structure of the cone cells which can be discussed subsequently with greater clearness. The retinula in Serolis, as Beddard (’84, p. 340) first observed, is peculiar in that it is composed of only four cells. My own observations add almost nothing that is new to the previous accounts of this structure. The figure which Watase has drawn (90, Plate XXIX. Fig. 1) of the characteristic form of the retinular cell when viewed from the side and its relation to its rhabdomere, reproduces very closely the structural conditions which I have observed in 8. Schythei. The rhabdome in Serolis has been carefully studied by Beddard (’88, pp. 448-450). Owing to the complexity of its structure, one meets with difficulties in attempting to interpret its parts in terms of the relatively simple rhabdome of many Crustaceans. The peculiarities of this struc- 92 BULLETIN OF THE ture can be approached most satisfactorily perhaps from the side of its adult anatomy. In a transverse section of the distal end of the rualbtivine five struc- tures can be observed (Fig. 61). Four of these (Fig. 61, rhb’m.) are squarish pieces confluent on one side with a retinular cell, and in contact with one another only at their angles The sides of these pieces which are directed towards the axis of the ommatidium are convex, and to- gether bound a central area which contains the fifth or axial structure (cl. con.). Each of the squarish pieces also exhibits a line slightly concave towards the axis of the ommatidium. This line, which might be taken for the separation between the axial and peripheral structures, is in real- ity entirely within the latter. That these are five separate structures is indicated by the fact, that in transverse section, when for any reason the elements have been broken apart, the separation almost always occurs on the lines which I have described as the limits of the different pieces. Evidently the squarish masses (72b’m.) on the axial faces of the retinu- lar cell correspond to the rhabdomeres of other Crustaceans, and like these structures are produced by the cells to which they are attached. It is more difficult to explain the axial element, for it shows no indication of | having been produced by the surrounding retinular cells, nor are there other cells in the neighborhood to which its production could be referred. When the longitudinal extent of these structures is considered, the difficulty of explaining the axial portion is increased. In 8. Schythei the rhabdomeres extend only a short distance distally and proximally, but throughout the whole of that distance they are closely applied to the axial face of the retinular cells. This condition has been well figured by Watase (’90, Plate XXIX. Fig. 1), and supports the statement already made that these bodies correspond to the rhabdomeres in other Crustaceans. I have never observed a rhabdomere, such as that figured by Beddard (’87, p. 234), in which the proximal half of the structure is not in contact with the retinular cell. The axial part has a much more considerable extent in a longitudinal direction than the rhab- domeres. Apparently it is continued proximally into a fibrous bundle which stretches towards the basement membrane, where according to Beddard (’88, p. 449) it may terminate as a single fibre. From what has just been stated it must be evident that the so called rhabdome of Serolis consists of two sets of structures, one of which includes the four rhabdomeres and the other the axial part with its prox- imal fibrous prolongation. MUSEUM OF COMPARATIVE ZOOLOGY. 93 The development of these structures has been studied by Beddard (788, p. 450). In the youngest embryos which he examined, the axial portion was already formed, and at that stage it was closely invested by the four retinular cells and two other cells, the hyaline cells. Judging from their positions, Beddard believes that both kinds of cells may con- tribute to the formation of the axial structure, although the fact that this body is squarish in transverse section leads him to conclude that the four retinular cells play the more important part in its formation. Bed- dard regards the axial body as the rhabdome of the immature eye. In his opinion, the rhabdome in the adult is produced by subsequent secretions from the retinular cells, and presents the form of the four rhabdomeres already described. Although these rhabdomeres form the principal part of the rhabdome in the adult eye, he believes that the rhabdome of the earlier stages persists as the axial fibrous structure in the later stages, and constitutes perhaps the greater part of its distal continuation between the rhabdomeres. Unless some such explanation of the origin of the axial part of the rhabdome as that proposed by Beddard be accepted, it is difficult to understand how the fibrous portion could arise as a secretion ; for in the adult the proximal portion of it is touched by neither retinular nor hyaline cells. Granting for the moment the adequacy of Beddard’s explanation of the origin of the axial part, we are still confronted by what appears to me to be unparalleled in the structure of the eyes in Arthropods, namely, an ommatidium which produces two distinct rhabdomes. This may not be an impossibility, but if it occurs at all, it is certainly exceptional. I believe, however, that the so called axial part of the rhabdome in Serolis is capable of another interpretation, against which the objections already suggested cannot be urged. That the axial portion terminates proximally on the basement membrane has been fairly well established by Beddard. The distal termination of it, however, has not been so clearly made out. It is my belief that the axial structure is directly continuous distally with the cone cells; in other words, that this strue- ture is to be regarded as a proximal extension of the cone cells, not as a part of the rhabdome. The termination at the basement mem- brane of this prolongation of the cone cells, as observed by Beddard, is perfectly consistent with the interpretation which I have suggested, and makes the condition in Serolis similar to that in Homarus, where the fibrous ends of the cone cells also terminate on the basement mem- brane. That the fibrous structure should be present in the embryo of 94 BULLETIN OF THE Serolis before the formation of the rhabdome proper is rather in favor of my interpretation than opposed to it. The direct evidence that the axial body is a proximal extension of the cone cells is not as conclusive as could be desired. The condition which most favors this view is as follows. In longitudinal and transverse sections of the ommatidia, both in adult and embryonic specimens, no line of separation has been observed between the protoplasm at the deep end of the cone and the substance which occupies the axial part of the ommatidium proximal to the cone (compare Fig. 65). In attempting to determine the true relation, it is important to keep clearly in mind the fact that the proximal end of the cone, usually bounded by a sharply marked line, is not the proximal end of the cone cells ; but, as Watase (’90, Plate XXIX. Fig. 1) has well shown, the cone is surrounded proximally as well as laterally by the protoplasmic material of its cells. It is this material, not that of the cone proper, which forms the proximal elongation. I had hoped that by isolating the elements of the retina I could ob- tain more conclusive evidence of the connection of these parts, but my efforts were of no avail. My ill success was due, I believe, not to any want of connection between the structures treated, but to the fact that the material at my disposal had been kept so long in strong alcohol that it had become unfit to serve for isolation. This conclusion seems to me to be confirmed by the fact that I was unable even to isolate satistac- torily the retinule, structures which are usually separable with ease in the fresh retinas of most Crustaceans. If the view which I have set forth in the foregoing paragraphs con- cerning the interpretation to be put upon the axial part of the so called rhabdome of Serolis be correct, it follows that the true rhabdome of this Crustacean must be considered as composed of four rhabdomeres, each of which is applied to the axial face of its appropriate retinular cell, and that these four rhabdomes are prevented from uniting with one another by a proximal extension of the cone cells which occupies the axis of the ommatidium from the cone to the basement membrane. Beddard (’84*, p. 21), in his account of the eye in S. Schythei, states that the cone is ‘enclosed in a sheath of deep black pigment cells,” and Watase (’90, p. 294) has observed that in this genus there are two such cells for each ommatidium. I believe that the number has been given correctly, for although I have not satisfactorily isolated the cells, I feel confident that I have identified their nuclei, and the number of these is twice that of the ommatidia. The nuclei of these pigment cells are most satisfactorily seen in ad- ~ MUSEUM OF COMPARATIVE ZOOLOGY. oa vanced embryos (compare nl. dst., in Figs. 65 and 69). In transverse sections at this stage (Fig. 69) each cone is surrounded by a circle of six nuclei. Each nucleus, however, participates in three adjoining cir- cles, consequently there are only twice as many nuclei as ommatidia. In the adult the nuclei of these pigment cells (Fig. 60, nl. dst.) occupy the same relative positions as in the embryo; in the latter, however, they are usually somewhat hidden by the pigment which surrounds them. In the embryo the nuclei of the pigment cells surrounding the cone resemble very closely, except in point of size, the nuclei of the retinular cells (compare n/. dst. and nl. px. in Fig. 65). In the nuclei of the retinular cells there is usually one distinct nucleolus, sometimes two, but as a rule no finer particles. This condition also obtains in the nuclei of the pigment cells. Not only are the nuclei of these two kinds of cells similar in the embryo, but they are also much alike in the adult (com- pare ni. dst. in Fig. 60 with nl. rtn.! in Fig. 63). Because of this resemblance, I believe that the pigment cells which surround the cone can be fairly considered to be modified retinular cells, which have lost their sensory function in precisely the same way as in the case of the distal retinular cells in Decapods (see Parker, '90*, p. 57). If this interpretation of the pigment cells be accepted, it follows that in ‘Serolis, as in Decapods, two kinds of retinular cells are present, proximal and distal, and that the primitive ommatidinm from which that of Serolis was derived probably contained six retinular cells functional as nervous structures. It need scarcely be added, that this number is characteristic for the ommatidia of many Isopods. The retinula in the species of Spheroma which I studied presents an appearance which suggests the differentiation of simple retinular cells into proximal and distal cells. In Sphzeroma there are seven retinular cells (Plate V. Fig. 58) ; three of these are considerably reduced ; the remaining four are large, and recall the four retinular cells of Serolis. In transverse sections it can be shown that the four large cells in Sphe- roma not only resemble in appearance the four proximal cells in Serolis, but that they occupy the same relative positions in the ommatidium. In Serolis the plane which separates the two cone cells of any given cone, when extended, separates the four proximal retinular cells into two groups of two cells each (compare Plate VI. Fig. 68 with Figs. 71 and 72). The plane of separation in the cone of Spheeroma divides the retin- ula by passing through the single small retinular cell shown in the lower part of Figure 58 (Plate V.) and between the two small cells on the oppo- site side, thus separating the four large retinular cells into two groups, as in Serolis. 96 BULLETIN OF THE The change which would convert an ommatidium like that in Sphe- roma into one like that in Serolis is easily imagined. It would consist in the complete abortion of one of the three small retinular cells, and the conversion of the other two into the pigment cells surrounding the cone. In addition to the elements which have already been described in the ommatidium of Serolis, there are certain small pigment cells which oc- cur for the most part in the region of the retinule. Beddard (’84%, p. 21) describes these as long branching ‘ connective-tissue cells,” a name which might imply that they originated from the mesoderm, and were therefore intrusive. Watase (’90, p. 293, Plate XXIX. Fig. 1) has also described and figured these cells, but distinctly states his belief that they are reduced ectodermic cells. In the adult I have observed in the region of the cones, as well as near the retinule, certain small nuclei which are usually surrounded with more or less black pigment. These, I believe, represent the cells described by Beddard and Watase. In the embryo certain scattered nuclei (ni. h’drm., Figs. 65 and 70) occur in the spaces between the ommatidia. It is probable that these nuclei are ectodermic in origin, and I am at a loss to know what has become of them in the adult, unless they form the pigment cells already men- tioned. Iam therefore inclined to believe, with Watase, that the small additional pigment cells are reduced ectodermic cells. The presence of the hyaline cells in the ommatidium of Serolis is, as Beddard has pointed out, almost a unique feature. These cells, usually two in each ommatidium, fill the space immediately below the rhabdome. They are bladder-like (Fig. 62, cl. hyl.) and contain each a large gran- ular nucleus. Although it is stated that there are usually two of these cells in each ommatidium, I never found more than one to an ommatid- ium in the several eyes of S. Schythei which I examined. This circum- stance, however, is not surprising; for, as Beddard (’84°, p. 22) has remarked, the number of these cells is subject to variation, there being sometimes one, sometimes two, for each ommatidium. In 8. Schythei the single hyaline cell envelops more or less completely the distal part of the fibrous portion of the cone cells, so that this part seems to pierce the hyaline cell. A closer inspection, however, will usually show two lines extending from the fibre to the periphery of the hyaline cell (com- pare Fig. 62), and these lines indicate, I believe, the two walls of the cell which have been infolded by the presence of the fibre during the growth of the hyaline cell. The source of the hyaline cells is not definitely known. Their nuclei (Fig. 65, nl. hyl.), as Beddard (’88, p. 450) has observed, are present MUSEUM OF COMPARATIVE ZOOLOGY. 97 in the retinas of embryos; and, although the cells may possibly be intrusive, the evidence on the whole favors the view that they are ectodermic in origin. Several functions have been attributed to the hyaline cells. Their close connection with what Beddard took to be the proximal extension of the rhabdome led him (’88, p. 450) to suspect that they might be rudimentary retinular cells, but, as he (p. 451) further remarks, the fact that no nerve fibres are connected with them opposes this view. Their transparency suggested to him (’84%, p. 22) that they might form a part of the dioptric apparatus; but it is difficult to understand, consider- ing their position, precisely what that function would be. I am inclined to believe, with Watase (’90, p. 293), that they are chiefly concerned with the support of the structures occupying the basal portion of the retina. In the retina of S. Schythei many of the open spaces between the cones and the basement membrane contain free non-pigmented cells (Fig. 61, cp. sng.). These have a distinct nucleus, finely granular pro- toplasm, and a sharply marked outline. On account of the extreme va- riations in form which the different cells present, it is probable that when living they exhibited ameeboid motion. In appearance they correspond exactly to the blood corpuscles of the body spaces, and as they occur not only in the retina, but also in the rather large openings through the basement membrane (compare Fig. 64), and in the space proximal to this membrane, I am of opinion that they are blood corpuscles. The peculiarities which have led me to consider the ommatidium in Serolis separately from that of other Isopods, are two: the posses- sion of one or more hyaline cells, and the presence of only four retinular cells. The latter peculiarity, as I have already shown, is not fully established ; for in this genus, as in many other Isopods, the om- matidium really contains six cells, although two of these, the distal ones, are probably no longer functional as nervous structures. The other peculiarity, the possession of hyaline cells, is not a very important char- acteristic, for, as Beddard (’87, p. 235) has shown, these cells also occur in Aiga; and it is probable, moreover, that they must be regarded as abnormally enlarged elements, specialized from among those cells which in other Isopods fill the spaces between the ommatidia. What dis- tinguishes the ommatidium in Serolis from that of other Isopods is, therefore, not so much the possession of hyaline cells as the fact that its retinular cells are differentiated into two sets, proximal and distal. VOL. XXI.— No. 2. 7 ; 98 BULLETIN OF THE In accordance with the facts already presented, the number of cells contained in the ommatidium of Serolis can be stated as follows: cells of the corneal hypodermis, two, with possibly two others interomma- tidial in position ; cone cells, two; retinular cells, six, two distal and four proximal ; hyaline cells, one or two; a variable number of small pigment cells of ectodermic (‘) origin. Leptostraca, The histological structure of the ommatidia in the Nebaliz has been investigated, so far as I am aware, only by Claus (’88, pp. 65-84). I have had no material for the study of the eyes in these Crustaceans, and I can therefore only present, in the form of a summary, the more important results of Claus’s exhaustive study. In Nebalia there is a corneal hypodermis (Claus, ’88, pp. 68 and 69), the cells of which are grouped in pairs. As in many of the higher Crustaceans, there is one pair of these cells for each ommatidium. The corneal cuticula is facetted ; the outlines of the facets are circular, and ad- joining facets are separated from one another by a small amount of inter- vening cuticula (Claus, ’88, Taf. X. Fig. 10). The cones are composed of four segments (Claus, ’88, p. 69). The structure of the retinula is somewhat complex. The greater part of the rhabdome is surrounded by seven retinular cells. Distal to these cells, however, are seven pig- ment cells, which enclose the proximal prolongation of the cone cells and the distal end of the rhabdome. Such a relation between pigment cells and retinular cells is not of common occurrence among Crustaceans, and it is possible that the bodies which Claus has taken for pigment cells are really the distal ends of the retinular cells. Claus describes and figures what he believes to be the nuclei of both kinds of cells, but I think his figures fail to show that these nuclei are within the limits of the cells to which they are said to belong. It seems to me quite possible that what he has described as two circles of seven cells each may be merely one circle seen at two different levels, as the correspondence in numbers suggests. This single circle would be of course composed of retinular cells, the nuclei of which are probably the distal ones of the two sets described by Claus. The proximal nuclei, which, accord- ing to Clans, belong to the retinular cells, occupy positions not unfre- qnently taken by the nuclei of accessory pigment cells, and I am inclined to think that such is their real nature. This interpretation would be - more in accordance with the conditions found in ommatidia which have seven retinular cells than is the one given by Claus; but as I have not MUSEUM OF COMPARATIVE ZOOLOGY. 99 had the opportunity of studying the eyes in Nebalia, I can offer it merely by way of suggestion. Probably two kinds of accessory cells are present in Nebalia ; one of these extends from the corneal cuticula to the basement membrane, the other, the presence of which is not so fully established, probably occurs near the basement membrane. Cumacee. Excepting what is contained in Burmester’s (83, pp. 35-37) account of the degenerate eyes in Diastylis (Cuma) Rathkii, nothing, I believe, is known of the finer structure of the eyes in the Cumacez. The speci- mens at my disposal for the study of these eyes proved upon examina- tion to be blind. At least, the optic plates of all the individuals which I examined, both when studied from the exterior and wheu examined in’ sections, showed no evidence of eyes. My material consisted of specimens of Diastylis quadrispinosa, G. O. Sars, and of three other un- determined species, two of which belonged to the genus Diastylis and one to Eudorella. These were kindly sent me by Prof. 8S. I. Smith. Schizopoda. The species of Schizopod the eyes of which I have studied is Mysis stenolepis, Smith. Specimens of this Crustacean were kindly collected for me at Wood’s Holl, Mass., by Mr. C. B. Davenport. I am also under obligations to Dr. H. V. Wilson, of the United States Fish Com- mission, who at my request sent me specimens of this species freshly preserved in Miiller’s fluid. In several of the previous accounts of the eye in Mysis the nuclei of the corneal hypodermis, although recognized, have been described as Semper’s nuclei, i. e. as nuclei of the cone cells. The differences between the hypodermal nuclei and those of the cone cells can be easily seen in Mysis stenolepis (Plate VII. Fig. 73). In this species the hypodermal nuclei (/. crn.) lie in a plane somewhat nearer the external surface of the eye than the nuclei of the cone cells (ni. con.). In transverse sec- tions at the proper levels, each ommatidium will be seen to contain two elongated nuclei (Fig. 75, nl. ern.) belonging to the corneal hypodermis, and two oval nuclei (Fig. 76, nl. con.) in the cone. The hypodermal nuclei occupy such positions that the plane of separation between their cells would be at right angles to that between the cone cells (compare Figs. 75 and 76). The group of four nuclei, two belonging to the corneal 100 BULLETIN OF THE hypodermis, and two to the cone cells, correspond without much doubt to the so called four Semper’s nuclei mentioned by Claparéde (’60, p. 194) in Mysis flexuosa, and described by Sars (67, p. 33) in M. ocu- lata. Nusbaum (’87, p. 179) also observed four similar nuclei in the developing eye of Mysis chameleo, and Grenacher (’79, p. 118) described the same number in Mysis vulgaris. In the last named species, accord- ing to Grenacher, the four nuclei are grouped in two pairs, one of which occupies a more distal plane in the ommatidium than the other. The more superficial pair undoubtedly belongs to the corneal hypodermis, the deeper pair to the cone cells. It must be evident, then, that the nuclei of the cone cells and corneal hypodermis have not always been carefully distinguished. In all cases where they have been separated, the corneal hypodermis has been shown to possess two nuclei for each ommatidium. The corneal cuticula in Mysis, as Frey and Leuckart (47%, p. 113) first pointed out, is facetted, and the outline of the facet is a circle. In Mysis stenolepis the circumference of the facet is tangential to the circumferences of six adjoining facets (Fig. 74). In Mysis vulgaris, Grenacher (’79, p. 118) has shown that the facet is not lens-like, but is of uniform thickness throughout. In M. stenolepis, however, the cuticula is often slightly thicker at the middle of the facet than at its edges (Fig. 73, cta.). In this respect, therefore, different species probably vary. The cones in Mysis vulgaris, according to Grenacher (’79, p. 118), are composed of two segments. The same number is also present in the cones of M. stenolepis (compare Figs. 76-78, con.). In longitudinal sec- tions the cone (Fig. 73, con.) appears to consist of a uniformly and finely granular substance enveloped in a delicate but distinct membrane. Near the distal end of the cone the material which composes it becomes more coarsely granular ; in this the nucleus of the cone cell is usually lodged. Cones (Fig. 92) which have been isolated in macerating fluids are plumper and apparently not so contracted as those which have been subjected to the process of cutting. The nuclei also are rounder and fuller. The cone proper (Fig. 92 con.) occupies a more central position in the cone cells, and is surrounded by a finely granular material, which is es- pecially abundant at the proximal end. The difference between the cone proper and this granular material was not generally observable in sections of the cones. In all of the many cones which I succeeded in isolating, the proximal ends invariably had a broken appearance. Consequently, I believe that I have never completely isolated a pair of cone cells. The question of the proximal extent of the cone I shall recur to later. MUSEUM OF COMPARATIVE ZOOLOGY. 101 The retinular cells in Mysis are of two kinds, proximal and distal. The proximal cells extend from the basement membrane distally to the level at which the cone rapidly contracts. The pigment which they contain is for the most part concentrated around the rhabdome, and their nuclei occupy a distal position in the cell (Fig. 73, mJ. pa.). In Mysis the number of cells comprising the retinula is at least seven (Figs. 85-87). Possibly, as I have elsewhere suggested (Parker, ’90*, p. 55), the total number of cells in this retinula, as in that of Homarus, may be eight. In order to determine this question, I have counted the number of nuclei in several retinulz of Mysis. The enumeration of these can be easily followed in Figures 79 to 82. These figures represent successive transverse sections through four ommatidia, in the region occupied by the proximal retinular nuclei. The axis of each ommatidium is marked by the fibrous portion of the cone cells (cl. con.), and the same omma- tidium is designated in different sections by the same Roman numeral. The nuclei in ommatidium II. can be counted the most readily. In ‘Figure 79, which represents the most distal section of the series, the cone in ommatidium II. is surrounded by a circle of six nuclei, which have been numbered from 1 to6. Each of these nuclei, however, par- ticipates in three circles (compare nucleus 5), and hence only two of the six can be referred to ommatidium II. Two similar circles occur, one in the sections shown in Figure 80, and one in that shown in Figure 81. As in the former instance, two nuclei in each circle belong to omma- tidium II. In these three circles, then, there are in all six nuclei to be allotted to ommatidium II. In addition to these nuclei, it will be no- ticed that to the right of the cone in Figure 80 there is one more nucleus (No. 7), and still another in a similar position in Figure 82. These two nuclei, when added to the six already summed up for om- matidium IJ., make a total of eight nuclei for this ommatidium. The same number of nuclei occurs in each of the other three omma- tidia, but their arrangement is not quite so regular as in the one just counted. From this I conclude that the number of nuclei in a retinula of Mysis is eight. The different nuclei in this retinula usually present a very uniform appearance. The most proximal one differs somewhat from the others in being more elongated (compare Figs. 73 and 82). The seven distal nuclei, on account of their general resemblance, belong, I believe, to the seven functional retinular cells. The single proximal nucleus probably represents an eighth rudimentary cell. The position of this nucleus, 102 BULLETIN OF THE proximal to the other retinular nuclei, is similar to that occupied by the nucleus of the rudimeutary retinular cell in Homarus (compare Parker, 790"; pp. 20,21). The riabdome in Mysis stenolepis lies in the proximal portion of the retina. It is rather stout, blunt at its distal end, but sharper proxi- mally (Fig. 90). Its surface is marked with coarse corrugations. In transverse section, its outline is a square; this is subdivided by two lines into four smaller squares, a condition already observed by Grena- cher (’79, p. 119) in M. flexuosa. The relation of the retinular cells to these divisions of the rhabdome can be clearly seen in Figure 87. According to Grenacher’s account (’79, p. 118), a rod-like structure extends, in Mysis vulgaris and M. flexuosa, through the axis of the ommatidium from the distal end of the rhabdome to the region of the proximal retinular nuclei. Whether this rod be a proximal continuation of the cone, or a distal extension of the rhabdome, Grenacher found it difficult to decide. He is inclined, however, to the former opinion. A similar structure occurs in the ommatidia of Mysis stenolepis. Although I have made repeated attempts, I have never succeeded in isolating the rod in connection with either the rhabdome or the cone cells. In transverse sections, the distal end of it appears in a position slightly proximal to the retinular nuclei (Figs. 73 and 83). The cone cells extend proximally as a transparent axis to this region, and the most distal indications of the rod are four fibres which lie on the periphery of what I take to be the proximal end of the cone cells (Fig. 83). Somewhat deeper than this, the four fibres thicken, and finally fuse (Fig. 84), producing a body which in transverse section has the outline of a four-pointed star. In a plane slightly more proximal, the outline changes to a squarish one (Fig. 85), and this is retained almost to the proximal end of the rod. Throughout its extent, this problematic rod is closely surrounded by the seven proximal retinular cells (Fig. 85). It is separated from the rhabdome by what appears to be an open space (Fig. 90, at the level of the dotted line 86). In trans- verse sections (Fig. 86), however, this space is seen to be divided by delicate membranes into four compartments. These facts, however, do not aid much in deciding the relationship of the rod. The fact that it shows indications of being composed of four parts suggests its connection with the rhabdome. The four parts of which it consists do not, however, correspond in position to the seg- ments of the rhabdome, but fall between them. (Compare Figs. 83 and. 87.) On the other hand, if it were an extension of the cone, one would MUSEUM OF COMPARATIVE ZOOLOGY. 103 expect it to be composed of two, instead of four parts. Its position, how- ever, is one which is more frequently occupied in other Crustaceans by a slender extension of the cone cells than by a process from the rhab- dome, and, notwithstanding its division into four parts, I am inclined to agree with Grenacher, and to regard it as belonging to the cone cells rather than the rhabdome. The distal retinular celis in Mysis surround the lateral faces of the cones (Fig. 73, cl. dst.). Apparently they reach the cuticula; their proximal ends are attenuated and become lost in the region of the nuclei of the proximal cells. Their pigment is limited to their proximal halves, and consists of a distal layer of brownish material, proximal to which is a much more extensive deposit of blackish granules. Hach cone is surrounded by six of these cells, as can be seen from their outlines (Fig. 78, cl. dst.), and still more satisfactorily from the arrangement of their nuclei (Fig. 75, ni. dst.). Each cell, however, participates in three circles ; consequently, there are only twice as many of these cells as ommatidia. The axis of each distal retinular cell is occupied by a transparent rod, which in transverse section has the appearance of a light spot (Fig. 77). In depigmented sections stained with Kleinenberg’s hama- toxylin, these rods are deeply colored (Fig. 78). I shall recur to their probable significance. The pigment which is found in the region of the rhabdomes in Mysis is of two kinds: blackish granules, and a fine flaky material, white by reflected light, yellowish by transmitted light. The black granules are for the most part contained in the retinular cells. The lighter pigment is always associated with certain nuclei, two of which are shown in Figure 90 (nl. ms’drm.). These nuclei are closely invested by the pig- ment, and probably belong to the cells in which the pigment is con- tained. The source of the yellowish pigment cells is not easily determined. Apparently they are not limited to the retina, but also occur in the spaces below it. At least these spaces contain masses of pigment and nuclei which in all essential respects are similar to those distal to the membrane (compare the two nuclei, nl. ms’drm., Fig. 90). In one case the nucleus of one of these cells was found apparently caught in its passage through an opening in the basement membrane (Fig. 91). For these reasons I believe that the yellowish pigment cells on the two sides of the membrane have had the same origin. The question as to the source of the yellowish pigment cells in the retina, therefore, appears 104 BULLETIN OF THE to me to involve that of the origin of the similar cells beneath the retina. If Iam right in this conclusion, all these cells must either have arisen in the retina, many of them migrating in a proximal direction out of it, or they must have had some extra-retinal origin, some of them migrating into it. On account of the considerable numbers in which they exist in the spaces below the retina, it seems to me much more probable that they have had an extra-retinal origin than that they have come from the retina itself. If this is their source, it is evident that those which are in the retina are intrusive. The nucleus which has already been mentioned as caught in an opening of the basement membrane (Fig. 91) has more the appearance of a body which is making its way into the retina than of one which is moving in the reverse direction, and may therefore be regarded as confirming to some extent the view of the extra-retinal origin of these cells. Their source, however, cannot be stated with certainty. Their power of migration implies ameeboid activity, and this might be taken as an indication of their mesodermic origin. The following cells characterize the ommatidium of Mysis: cells of the corneal hypodermis, two: cone cells, two; proximal retinular cells, eight, one of which is rudimentary ; distal retinular cells, two ; accessory pigment cells (mesodermic ?) present. Stomatopoda. The material which I have had for the study of the eyes in the Stoma- topods consisted of two specimens of Gonodactylus chirarga, Latr. These were kindly given me by Mr. W. S. Wadsworth, who had collected them in the Bermudas. One of them had been killed in hot water and pre- served in alcohol; the other was both killed and preserved in strong alcohol ; both were in excellent histological condition. In Gonodactylus, as I have previously mentioned, there are two kinds of ommatidia ; these differ in no important respect except size. Longitudinal sections of both kinds are represented on Plate VIII. ; the figure of the larger kind (Fig. 94) is taken from a depigmented sec- tion, that of the smaller one (Fig. 95) from a section containing the pigment in its natural condition. In the following description I shall give an account of the structure of the larger ommatidia, alluding to the condition of the smaller ones only when it differs in some important respect from that of the others. The corneal hypodermis is represented in the ommatidium of Go- nodactylus by two cells, the nuclei (Figs. 94-96, nd. ern.) of which can MUSEUM OF COMPARATIVE ZOOLOGY. 105 be recognized easily. Directly under the corneal cuticula each pair of hypodermal cells is in contact with similar pairs belonging to adjoining ommatidia, so that the layer here forms a continuous sheet. In a more proximal plane the neighboring pairs of hypodermal cells are not in con- tact (compare Fig. 93, a tangential section in which the extreme right- hand edge represents the condition immediately below the cuticula, while the parts to the left represent central portions successively more proxi- mal in position). The only indication of a separation between the two hy- podermal cells of each pair is seen in the distal projection of the cone between the two hypodermal nuclei (compare Figs. 94 and 96, con.). The corneal cuticula in Gonodactylus is facetted, but the proximal and distal faces of the facets are apparently plane. Over the smaller om- matidia the facets are hexagonal in outline, whereas over the larger ones they are rectangular, and their arrangement is often indicative of the tetragonal system. In Squilla mantis, according to Will (’40, p. 7), the facets are hexagonal. The cones in Gonodactylus are composed for the most part of a uni- formly granular substance. Distally, they are pointed and probably touch the corneal cuticula; proximally, they terminate at the rounded end of the rhabdome (Fig. 94). Each cone contains in its distal enlarge- ment four nuclei (Fig. 97, n/. con.), two of which lie directly proximal to the nuclei of the corneal hypodermis, while the remaining two alter- nate with them (compare Figs. 96 and 97). The proximal part of the cone is divided longitudinally into four segments (Fig. 98). Each seg- ment, if extended distally, would include one of the four nuclei, and corresponds to one of the four cells by which the cone was produced. In Squilla mantis, according to Steinlin (’68, p. 17), the cone is also composed of four segments. The retenular cells of Gonodactylus are of two kinds, proximal and distal. The proximal cells, constituting the retinula itself, surround the rhabdome completely, and extend distally only a short distance beyond it (Fig. 95). They contain only a small amount of pigment, which is concentrated in two regions, at their distal ends and near the basement membrane. The rhabdome is surrounded throughout its length by a thin but rather dense layer of pigment. This layer is more extensive in the smaller ommatidia (Fig. 102) than in the larger ones. The nuclei of the proximal retinular cells (Figs. 94 and 95, nl. px.) are located near their distal ends. The number of cells in the retinula of Squilla, as described by Grena- cher (77, p. 33) and by Hickson (’85, p: 341, Fig. 2), is seven. In 106 BULLETIN OF THE Gonodactylus (Fig. 101) the retinular cells are certainly as numerous as in Squilla; but seven obvious cells in the retinula, as [ have already shown in Mysis, may suggest the presence of eight in all, one of them being rudimentary. This condition is in fact characteristic of Gonodac- tylus also, as can be seen in the series of ommatidia shown in Fig. 100. These six ommatidia represent consecutive individuals in one of the bands of larger ommatidia previously mentioned. The band as a whole is cut obliquely, and in such a way that the ommatidia from 1 to 6 are cut successively in deeper or more proximal planes. In ommatidium 1 the rhabdome is surrounded by seven retinular cells, four of which are upon the right side and three upon the left. In addition to these, a large nucleus (nl. px.) lies close to the rhabdome. Ommatidium 2 has essentially the same structure as ommatidium 1. In ommatidium 3 the nucleus corresponding to the one seen in ommatidium | and 2 is no longer visible, but in its stead there is a small mass of granular protoplasm. A similar mass is also seen in ommatidia 5 and 6. It is usually pres- ent directly proximal to the nucleus figured in ommatidia 1 and 2, and is, I believe, the protoplasmic body of the cell to which this nucleus belongs. In ommatidium 4, the seven nuclei of the seven large (func- tional) retinular cells can be seen. These nuclei appear very large in transverse section compared with the cells in which they occur. It is probable that the cell wall is distended by them, although, owing to the indistinctness of the cell boundaries, I have not obtained positive evi- dence of this. In ommatidium 6 the seven retinular cells are seen in section at a plane proximal to that in which their nuclei lie. As in ommatidium 1, three of them are upon one side of the rhabdome and four upon the other. In a part of the ommatidium more proxi- mal than that shown in number 6 (Fig. 100), the transverse section of the retinula has the appearance seen in Figure 101. Here the retinular cells have the same relation to the rhabdome that they do in ommatidium 6 (Fig. 100), except in the case of the upper right-hand cell of that figure. This cell enlarges in its more proximal portion, and comes to occupy a position directly below the cell whose nucleus is shown in ommatidium 1 (Fig. 100). The gradual disappearance of this distal cell as one proceeds in a proximal direction from the plane of number 6, Figure 100, to that of Figure 101, and the gradual shifting in the position of the cell which replaces it proximally, can be followed so easily that there is not the least question as to the accuracy of the relations described. It is evident, then, that in Gonodactylus, as in Mysis, the retinula consists of eight cells, one of which is rudimentary, MUSEUM OF COMPARATIVE ZOOLOGY. 107 The rhabdome (Figs. 94 and 95, rhb.) in Gonodactylus is an elongated rod-like structure of uniform thickness, which extends from the region of the proximal retinular nuclei to the basement membrane. It shows a distinctly toothed edge (Fig. 94), especially in specimens which have been treated with potassic hydrate. In transverse section it is squarish, Owing to its small size, the exact relation of the seven surrounding cells to its four faces cannot be easily determined. The single unpaired cell (Fig. 101) certainly lies opposite a face, not an angle. In this respect it agrees with the unpaired cell in Squilla as figured by Grenacher (79, Taf. XI. Fig. 122). Probably in Gonodactylus the remaining six cells are related to the sides of the rhabdome as the corresponding ones are in Squilla (compare Grenacher’s Fig. 122). In Gonodactylus the retinu- lar cells and rhabdome are in close contact with one another. The separation of these elements as figured by Grenacher in Squilla is prob- ably artificial, as Grenacher himself suggests. In Squilla, according to both Steinlin (’68, p. 17) and Grenacher (’79, p. 125), the rhabdome in transverse sections is subdivided into four equal parts, somewhat as in Mysis. I have not observed this condition in Gonodactylus. The distal retinular cells in Gonodactylus occupy the usual position near the cones. They contain very little pigment, and their number can be determined only by that of their nuclei. These agree with the nuclei of the proximal cells in the possession of a single well defined nucleolus, which is most readily seen in depigmented sections (compare nl. dst. and nl. px. in Fig. 94). The distal nuclei, especially in the region of the larger ommatidia, are arranged in rows which alternate with the rows of cones (Fig. 99, x/. dst.). Although the nuclei are not very definitely arranged, they often show a tendency to be grouped in pairs, and these pairs are so placed that in each row there is evidently one for each adjacent ommatidium. Moreover, in equal lengths of ad- joining rows of nuclei and cones, the nuclei are always double the num- ber of cones. I am convinced by these facts that there are two distal retinular cells for each ommatidium. Besides the cells already described, certain others occur in the proxi- mal part of the retina in Gonodactylus. These are represented by a few small, elongated nuclei (Fig. 94, nl. ms’drm.), which are very similar in appearance to certain nuclei occurring in the spaces below the base- ment membrane. I therefore believe that in Gonodactylus, as in Mysis, the proximal portion of the retina is occupied by intrusive cells, which are probably mesodermic in origin. The kinds of cells found in the ommatidium of Stomatopods are as 108 BULLETIN OF THE follows : cells of the corneal hypodermis, two ; cone cells, four; proxi- mal retinular cells, eight, one of which is rudimentary ; distal retinular cells, two ; accessory cells (mesodermic ?) present. Decapoda. I have studied the eyes of the following species of Decapods: Gelasi- mus pugilator, Latr.; Cardisoma Guanhumi, Laty.; Cancer irroratus, Say ; Hippa talpoida, Say ; Palinurus Argus, Latr. ; Pagurus longicarpus, Say ; Homarus americanus, Edw. ; Cambarus Bartonii, Fabr ; Crangon vulgaris, Fabr.; and Palemonetes vulgaris, Say. I collected much of this material at the Station of the United States Fish Commission at Wood’s Holl, Mass. The specimens of Cambarus were obtained in the vicinity of Philadelphia. I am under obligations to Mr. Herbert M. Richards for specimens of Palemonetes collected by him at Newport, R. I. A number of eyes of two Crustaceans, Cardisoma and Palinurus, were kindly obtained for me by Mr. Isaac Holden; they were collected on the coast of Florida by Mr. Ralph Munroe, to whom I am indebted for the careful way in which they were preserved. The corneal hypodermis in Decapods was first recognized by Patten (86, pp. 626 and 642), who observed it in Penzeus, Palemon, Pagurus, and Galathea. Since Patten’s announcement of the presence of this layer in Decapods, it has been identified in a number of other genera: in Crangon by Kingsley (’86, p. 863), in Alpheus by Herrick (’86, p. 43), in Astacus by Carriere (’89, p. 225), in Cambarus and Callinectes by Watase (90, pp. 297 and 299), and in Homarus by myself (’90%, p. 6). More recently I have observed it also in Palzemonetes (Plate IX. Fig. 103, cl. ern.), Crangon, Cambarus, Palinurus, Pagurus, Hippa, Cancer, and Cardisoma. In almost all Decapods in which the arrangement of the cells in the corneal hypodermis has been observed, these elements have been found to be grouped in pairs, and so distributed that each pair occupies the distal end of an ommatidium (compare Figs. 103 and 106, Plate IX.). This arrangement has been observed, either by others or by myself, in the genera mentioned in the preceding paragraph, except Callinectes, in which the exact arrangement of the cells has not been recorded. Reichenbach’s statement (’86, p. 91), that in Astacus there are four hypodermal cells under each facet, is probably erroneous, as Carriére’s observations show. Although Patten was the first investigator who clearly demonstrated the presence of the corneal hypodermis in Decapods, Grenacher, in 1879, MUSEUM OF COMPARATIVE ZOOLOGY. 109 described, I believe, the nuclei of this layer, without however correctly interpreting them. In his account of the ommatidium in Palemon, Grenacher (’79, p. 123) mentions two kinds of bodies in what he takes to be the distal ends of the cone cells. Of these, the more distal ones (Taf. XI. Fig. 117, 2.) represent, in his opinion, the nuclei of the cone cells; the more proximal (Fig. 117, A x’.) he considers as differentiated parts of the cone itself. The positions occupied by these bodies in Palzemon, and by certain bodies which I have observed in Palemonetes (Plate IX. Fig. 103), are so similar that I believe the structures in the two genera to be homologous. In Palemonetes the distal bodies lie in the cells of the corneal hypodermis (Fig. 103 cl. ern.), and are the nuclei of these cells. They represent what Grenacher considered the nuclei of the cone cells in Palemon. The proximal bodies in Palemonetes (Fig. 103, nl. con.) are unquestionably the nuclei of the cone cells, yet they corre- spond to what Grenacher considered the four pieces of the distal segment ofthe cone. I therefore believe that what Grenacher has described as the nuclei of the cone cells are really the nuclei of the corneal hypodermis, and that what he considered distal segments of the cone are the nuclei of the cone cells. The corneal cuticula in Decapods, in correspondence with the differ- entiated condition of the corneal hypodermis, is facetted. The outline of the facets is either hexagonal or square. The particular genera in which these different kinds of facets occur have already been mentioned in dealing with the arrangement of the ommatidia in Decapods. The faces of the facets in Decapods are usually very nearly plane, but in Paleemon according to Grenacher (79, p. 123), and in Palemonetes (Plate IX. Fig. 103, crn.) according to my own observations, the facets are slightly biconvex. In Homarus, as Newton (’73, p. 327) has ob- served, and in Astacus according to Carriere (’85, p. 167), the distal surface of the facet is plane, the proximal slightly convex. In even the most extreme cases, however, the convexity of the facets in Decapods is not sufficient to make them very effective as lenses. The facets in Decapods are generally bisected by a fine straight line. This line, as Patten has suggested, probably represents the plane of separation between the two subjacent hypodermal cells, In the square facets this line either divides the facet diagonally, as in Homarus (Parker, 90°, Fig. 2), or transversely, as in Palemonetes (Plate IX. Fig. 105). In the hexagonal facets it either bisects opposite sides, as in Cancer (Plate X. Fig. 126), or unites opposite angles, as occasionally in Galathea (Patten, ’86, p. 644, Plate 31, Fig. 114). Leydig’s (’57, p. 252, 110 BULLETIN OF THE Fig. 134) figure of Astacus, in which each facet is subdivided by two diagonal lines into four areas, and Newton’s (’73, p. 327) statement that the same condition occurs in Homarus, are probably incorrect. The cones in Decapods are composed of four segments. This number was first observed by Will (’40, p. 13) in Paleemon, and has since been recorded in many other genera. So far as I am aware, there are no Decapods in which the number of segments is not four, As Claparede (’60, p. 194) first pointed out in Galathea and Pagurus, each segment contains a nucleus and represents a single cell. Although the signifi- cance of these nuclei was without doubt first fully appreciated by Claparede, it is probable that they were previously seen by Leydig (55, Taf. XVII. Fig. 31) in the crayfish. As a rule, the distal termination of the cone cells is on the proximal side of the corneal hypodermis. In the lobster, however, and in Pal- monetes (Plate IX. Fig. 104), the pointed ends of these cells pass between the two cells of the corneal hypodermis, and probably come in contact with the corneal cuticula near the middle of a facet. It is difficult to determine with accuracy the proximal termination of the cone cells. They can be easily traced to a region immediately distal to the distal end of the rhabdome. In this region, as Schultze (’68, Taf. I. Figs. 9 and 11) has clearly demonstrated in Astacus, the fibrous ends of the four cone cells separate, and pass partially around the rhab- dome. In Homarus, these fibres extend proximally, and finally ter- minate at the basement membrane. A similar method of termination also occurs in Palinurus. In the other genera which I have studied, the fibres, although visible near the distal end of the rhabdome, are lost in the adjacent tissue, and I do not know whether they terminate in this tissue without special attachment, or whether they make their way as excessively fine fibres to the basement membrane. The separation of the fibrous ends of the cone cells, near the distal end of the rhabdome, has been observed by Steinlin (’66, p. 93) in Palamon, and by Schultze (67 and ’68) in several other Decapods. The statement made by many of the older investigators, and recently reaffirmed by Patten, that the cone and rhabdome are parts of one continuous structure, is without doubt incorrect. The resolution of the rvetinula into its cellular constituents was first attempted in Decapods by Leydig (’55, p. 408), according to whom the retinula of Herbstia contains four cellular bodies, the nuclei of which can be distinguished in the distal part of the structure. A somewhat similar condition was described by Newton (’73, p. 333) for Homarus ; MUSEUM OF COMPARATIVE ZOOLOGY. Aaa in this genus, as in Herbstia, it was maintained that there were only four cells. Subsequent investigators have not confirmed this conclusion. In transverse sections of the retinula of Palemon, Grenacher (’77, p. 32) has demonstrated that the rhabdome is surrounded by seven retinular cells. He also (’77, p. 33, and ’79, p. 125) observed the same number in the retinule of Astacus and Portunus. Since the publication of Grenacher’s observations, a retinula containing seven cells has been seen in Astacus by Carriére (’85, p. 169), in Penzus, Palemon, Gala- thea, and Pagurus by Patten (86, pp. 630 and 643), and in Cambarus by Watase (’90, p. 299). In Homarus, as I (’90%, p. 21) have already shown, the retinula con- tains, in addition to the seven functional retinular cells, an eighth rudi- mentary one, which is little more than a nucleus. In order to ascertain the presence or absence of this eighth cell in other Decapods, I have been careful to record the number of retinular nuclei, as well as the number of functional retinular cells. In some genera, such as Cardisoma and Hippa, I have not been able, on account of the unfavorable condition of the tissue, to make this determination ; but in Palemonetes, Palinurus, Cambarus, Crangon, and Cancer, I have succeeded in ascertaining the number both of the functional cells and of the nuclei in the retinule. In Palemonetes each rhabdome is surrounded by at least seven re- tinular cells (Plate IX. Fig. 114, cl. pzx.). The nuclei of these cells usually lie slightly distal to the rhabdome (Fig. 104, nl. px.). Their arrangement is shown in Figures 110, 111, and 112, which represent a series of consecutive sections through the region occupied by the prox- imal retinular ‘nuclei of five ommatidia. The nuclei of the different ommatidia are arranged upon the same plan, and the corresponding nuclei in the different sets have been marked by the same number. In several instances, nuclei have been cut in two, and their parts are found in consecutive sections ; in such cases the separate portions have been marked with the same number. As can be seen in these figures, the number of nuclei in the distal portion of each retinula is seven. But in addition to these, there is also another one, which occupies a position near the rhabdome. This nucleus resembles the others in all respects except that it is somewhat longer and narrower. It is drawn in Figure 103 at the level marked 114, and in Figure 114 one can see the regularity with which it occurs. This nucleus is the eighth in the retinula of Paleemonetes, and since it differs somewhat in structure from the other seven, and occupies a more proximal position, I believe it rep- resents a rudimentary retinular cell. 112 BULLETIN OF THE In the distal portion of the retinula in Cambarus there are eight nuclei. The arrangement of these, as seen in successive transverse sections, is shown in Plate X. Figs. 118 to 122. In Figure 118, which represents the most distal section of the series, there are four nuclei, and these are so arranged that there is evidently one for each omma- tidium.! In the next section (Fig. 119) there are seven nuclei, none of which were seen in Figure 118; the place for an eighth is indicated by an open area, and the eighth nucleus itself is seen somewhat out of place in Figure 120 (x). Four of the eight nuclei belonging in Figure 119 are arranged in a manner similar to those in the preceding sec- tion, but are not to be confounded with them. The remaining four are so placed that there are two for each ommatidium. Hence in this plane there are, as a whole, three times as many nuclei as there are ommatidia. In the next section (Fig. 120), omitting the nucleus marked x, which has been recorded as belonging to the preceding section, there are four nuclei, so arranged that there is one for each ommatidium. In the following section (Fig. 121) the nuclei, omit- ting the one marked #, which will be considered as belonging to the next following section, are so arranged that there are two for each ommatidium. In the last section (Fig. 122), the nuclei are not so regularly grouped as in the previous section, but when taken with the nucleus marked x in Figure 121, they constitute a group of four, the arrangement in which is such that each nucleus is intermediate between four groups of cone cells rather than between two, and therefore in the plane of this section there is one nucleus for each ommatidium. From this enumeration it is evident that the total number of retinular nu- clei is eight ; namely, one in the first section, three in the second, one in the third, two in the fourth, and one in the fifth. The structure 1 The nuclei shown in Figures 118 to 122 are arranged upon either the plan shown in Figure 118 or that in Figure 121 (omitting nucleus z). Imagine the arrangement in Figure 118 extended over a large surface. The groups of four cone cells could then be regarded as forming lines in the direction of the length of the plate. These lines would alternate with lines of nuclei, and as the nuclei in any line would alternate with the groups of cone cells in an adjoining line, the ~number of nuclei must equal exactly the number of groups of cone cells; i. e. in this arrangement there is one nucleus for each ommatidium. In a similar way, alternating vertical lines may be constructed from the arrangement in Figure 121. One line would be composed entirely of nuclei situated one opposite each group of cone cells; the other, of alternating nuclei and groups of cone cells. In the former, as well as in the latter, there would be as many nuclei as groups of cone cells. Hence, in this arrangement the nuclei are twice as numerous as the groups of cone cells; i. e. there are two nuclei for each ommatidium. MUSEUM OF COMPARATIVE ZOOLOGY. 113 of these nuclei affords no clue as to which one belongs to the rudi- mentary cell. Tn Palinurus (Plate X. Fig. 125, nl. px.), the eighth nucleus is regu- larly present and easily seen. In Cancer (Fig. 129, xl. pz. 8) it occu- pies a position between the adjacent retinule. It can also be identified in Crangon. The retinule in Decapods, according to all recent observers, contain seven functional cells. In Homarus, Palinurus, Cambarus, Crangon, Paleemonetes, and Cancer, the retinule contain, in addition to the seven nuclei of the functional cells, an eighth nucleus, which repre- sents, I believe, a rudimentary cell. It is probable, therefore, that in all Decapods each retinula really contains eight cells, one of which is rudimentary. The rhabdome in Decapods presents a very uniform structure. It is usually an elongated body, pointed both at its distal and its proximal end, and completely covered, except at its distal tip, by the proximal retinular cells. In those Decapods in which it is large enough to be conveniently observed, its transverse section is squarish, and usually subdivided by two straight lines into four smaller squares (Plate IX. Fig. 113). As Grenacher (’77, pp. 31, 32) first demonstrated in Palemon, the retinular cells are rather peculiarly arranged around the rhabdome. One of its four sides is flanked by one cell, the other three by two cells each. This arrangement can be seen in Palzmonetes (Fig. 113), and probably obtains for all Decapods. In Palinurus Argus (Plate X. Fig. 124) there appears to be no rhab- dome, unless the translucent axial portion of each retinular cell can be said to represent segments of it. The fibrous ends of the cone cells (cl. con.) can be easily identified between the retinular cells, but the centre of the retinula is filled with pigment, and shows not the least trace of a rhabdome. This peculiarity of Palinurus was noticed as early as 1840 by Will (’40, p. 15), who described the ommatidium in this genus as being without a transparent mass (= rhabdome). Although the dista/ retinular cells in Decapods were collectively rec- ognized by Miiller (26, pp. 355, 356) some sixty years ago as a definite pigment band in the distal portion of the retina in the crayfish, they were not identified as separate cells until quite recently. The first in- vestigator to observe them was Carriére (’85, p. 169), who described them in Astacus as a pair of pigment cells flanking each cone. In Cam- barus, Crangon, and Homarus, they also cover the sides of the cone, and in the last named genus they are produced proximally into long fibres, VOL. XXI. — No. 2. 8 114 BULLETIN OF THE which perhaps pass through the basement membrane. In Paleemonetes (Plate IX. Fig. 108, cl. dst.) and in Cancer (Plate X. Fig. 127, el. dst.) they are reduced to pigmented threads, which, starting from comparatively large bases, twine around the lateral surfaces of the cones. The arrangement and number of the distal retinular cells can be most readily determined from their nuclei. In Cancer (Plate X. Fig. 128) the cells are arranged in circles of six around each group of cone cells ; each cell, however, participates in three circles, and consequently there are in reality only twice as many cells as ommatidia. This arrangement of the cells also occurs in Cardisoma, Hippa, and Pagurus. In Crangon (Fig. 123), as I have previously remarked, the nuclei of the distal retinu- lar cells are arranged in rows alternating with the rows of cones. There are twice as many nuclei as cones; hence I conclude that here also there are two distal cells for each ommatidium. In Homarus, Palinurus, Cambarus, and Palemonetes (Plate IX. Figs. 103 and 109, nl. dst.) the nuclei are grouped distinctly in pairs, one pair for each ommatidium, Each cone in Penseus, according to Patten (’86, p. 634), is surrounded by two pairs of pigment cells, and Watase (’90, p. 299) states that in Cambarus the dioptric part of the ommatidium is sheathed by four pig- ment cells. In Cambarus Bartonii I have been able to find only two such elements, the pair of distal retinular cells already described, and in the other Crustaceans which I have studied I have observed nothing which supports Patten’s statement concerning the four pigment cells in Penzus. I am therefore inclined to doubt the accuracy of these two observations. The interommatidial space in the basal part of the retina in Pale- monetes contains a light pigment similar to that described in the retina of Mysis. Like this the pigment in Palemonetes is white by reflected light, and yellowish by transmitted light (compare Plate IX. Fig. 115). It is apparently contained within cells (Fig. 103, cl. ms’drm.) whose out- lines are very irregular, and whose nuclei (Fig. 104, nl. ms’drm.) are small and somewhat variable in form. These cells occur on both sides of the basement membrane. As in Mysis, they have probably migrated into the retina, and are perhaps mesodermic in origin. They have been seen by Carriere (’85, p. 169) in Astacus, by Patten (’86, p. 636) in Penzeus, and by myself (90%, p. 25) in Homarus. I have also recently observed them in Crangon, Cambarus, Cardisoma, Pagurus, and Pali- nurus, as well as. in Palzmonetes. From what has preceded itsis evident that the ommatidium in Deca- pods contains the following elements: cells of the corneal hypodermis, MUSEUM OF COMPARATIVE ZOOLOGY. 115 two; cone cells, four; proximal retinular cells, eight, one of which is rudimentary ; distal retinular cells, two ; accessory cells, mesodermic (?) in origin, often present. TABLE OF OMMATIDIAL FoRMUL2. I have now concluded my account of the structure of the ommatidia in Crustaceans, and for the purpose of presenting in a condensed form its more important features I have devised the following table. This consists of a series of ommatidial formule constructed upon the plan which I have described in the Introduction. The figures indicate the numbers of particular kinds of cells present in the ommatidium of a given group. The abbreviation pr. (present) marks the presence of any kind of cell when the number of that kind is not constant for different ommatidia in the same individual. TABLE SHOWING THE CELLULAR COMPOSITION OF THE OMMATIDIAN CRUSTACEANS. Retinular Cells. Cells of 3 er Corneal Differentiated. Accessory Hypo- Cells. dermis. Proxi- mal. Groups of Crustaceans. Distal. Amphipoda, Branchiopodide and Apuside, Estheride, Cladocera, i pr. (ect. %) Copepoda: Pontella, , pr. (ect. ?) Sapphirina, g Argulus, i a Isopoda: Idotea, pr. (ect. 2) Porcellio, pr. (ect. 2) Serolis, d pr. (ect. #) pr. (ect. ?) pr. (mes. 2) pr. (mes. %) pr. (mes. ?) A few features in the table require explanation. Among the number of cells recorded for the Estheridz, the figure within the parenthesis 116 BULLETIN OF THE under the head of Cone Cells indicates the occasional occurrence of cones containing only four cells, although the usual number is five. In the line for Serolis, under the head of Corneal Hypodermis, the parenthesis and included signs are intended to indicate the possibility of there being : more than two cells in the corneal hypodermis for each ommatidium. In the Schizopods, Stomatopods, and Decapods, the number of prox- imal retinular cells is expressed in the form of 7 + 1 instead of 8, be- cause one of the cells is rudimentary. THE INNERVATION OF THE RETINA. The innervation of the retina in the compound eyes of Crustaceans is chiefly interesting, because of its importance in relation to physiological questions. As this paper deals with a morphological topic, it would be obviously irrelevant to enter upon any extended discussion of this sub- ject. Nevertheless, the innervation of the retina is not without some bearing on the general question which I have set for myself, and I shall therefore not pass it by, but put in as brief a form as possible what I have observed concerning it. In my account of the retina in the lobster, I described the optic- nerve fibres as terminating in the proximal retinular cells. Near the ganglion each fibre consists of a bundle of fibrils, simply enclosed within a sheath, but as it approaches the retina it becomes coated with pigment. The pigment increases in quantity and the fibre correspond- ingly enlarges till it finally becomes continuous with the deeply pig- mented retinular cell. The fibrillar axis can be distinguished in the pigmented portion of the fibre as a transparent axial structure, and it can also be traced distally through the pigment of each retinular cell till it breaks up into its ultimate fibrillee, which are spread over the dis- tal half of the rhabdome. This is the method of nerve termination in the lobster, and points very conclusively to the rhabdome as the termi- nal organ. What I have seen of the termination of the nerve fibres in other Crustaceans confirms the account which I have already given for the lobster. In some species which I have studied, owing to the small size of the retinal elements, I was unable to determine the cells with which the nerve fibres connected. The termination of the fibres in the cells of the retinula was observed, however, in the following genera: Bran- chipus, Limnadia, Pontella, Gammarus, Talorchestia, Idotea, Porcellio, Sphzroma, Serolis, Gonodactylus, Mysis, Palemonetes, Crangon, Cam- MUSEUM OF COMPARATIVE ZOOLOGY. 1 lig barus, Palinurus, Pagurus, Cancer, and Cardisoma. In the majority of these, a fibrillar axis could be distinguished. In Cambarus, as in Homa- rus, the nerve fibrillze spread over the distal portion of the rhabdome. In Serolis an exceptionally interesting condition is presented. At the level of the basement membrane each retinular cell contains a large fibril- lar axis (Plate VI. Fig. 64, az. n.). This becomes somewhat subdivided in the more distal portion of the cell, and in the region of the retinular nucleus it is represented by a cluster of several smaller axes (Fig. 63). At the level of the hyaline cell, these however cannot be distinguished (Fig. 62), but the scattered condition of the pigment granules in this plane is probably to be accounted for by the presence of many separate fibrils in the substance of the cell. In the region of the rhabdome an immense number of fine lines can be seen extending from the retinular cell into the substance of each rhabdomere (Fig. 61). These, I believe, represent the fibrils of the nervous axis. They have been previously observed in Serolis by Watase (’90, p. 291), and are so readily visible that there can be no question as to their presence. Each fibril is per- pendicular to the longitudinal axis of the ommatidium, and extends through the rhabdomere to its axial surface. Before reaching this, however, the fibril passes through what seems to be a delicate mem- brane. When closely examined, this membrane often has the appearance of a row of dots instead of a line, and in several cases I have been unable to discover any traces of it. What its significance is, I am at a loss to say. As I have previously observed, when the elements of the retinula are separated the rhabdomere shows no tendency to break along this line. Since the structure is pierced by the fibrils, and does not appear to be a natural plane of rupture, and since sometimes it is apparently absent, I believe it may be considered, from a morphological standpoint at least, as a secondary and rather unimportant modification within the rhabdo- mere itself. If I am correct in maintaining that the nerve fibrils in Serolis terminate in the rhabdomere, it is probable that they have a similar method of ending in all other Crustaceans, and in such instances as Homarus, where they have been traced only to the surface of the rhabdome, their actual termination has probably not been seen. 1 A definite fibrillar axis was traced from below the basement membrane to the region of the rhabdome in Gammarus (Plate I. Figs. 6-8), Porcellio (Plate V. Fig. 46), Idotea (Plate V. Figs. 53 and 55-57), Mysis (Plate VII. Figs. 87-89), Gono- dactylus (Plate VIII. Figs. 101, 102), Paleemonetes (Plate IX. Figs. 116, 117), Cam- barus, Pagurus, Cancer (Plate X. Figs. 130 and 131), and Cardisoma. 118 BULLETIN OF THE The termination of the fibrillee of the optic nerve in the rhabdome supports Miiller’s belief that the nerve fibres terminate in a region near the proximal ends of the cones, and Grenacher’s more specific view that they are connected with the retinular cells, and that the rhabdome is the terminal organ. This method of termination is not consistent with the opinion of Gottsche and Leydig, that the cone is the terminal organ, nor with Patten’s rather similar belief that the ultimate nerve fibrille are distributed to the cone. I am therefore compelled to think that these authors are mistaken in their conclusion, THEORETIC CONCLUSIONS. In attempting to account for the variation in the number of cells in different types of ommatidia, two courses naturally suggest themselves. Either the different kinds of ommatidia vary in the number of cells which they contain, because they have had separate origins, or they are different because in some or all of them the ancestral ommatidium has suffered modification, An examination of the table on page 115 shows conclusively, I think, that in Crustaceans even the most extreme types are so little removed from one another that it is much more probable that the different kinds of ommatidia are genetically connected, than that they have been produced independently. Granting this statement, the question naturally arises, What are the means by which the primi- tive ommatidium was modified? I believe that a close scrutiny of the cellular structure of the ommatidia in living Crustaceans will disclose some of the factors in this process. There are at least three of these to be distinguished: the differentiation of cells, the suppression of cells, and the increase in the number of cells by cell division. By the differentiation of cells, I do not mean the process by which hypodermal cells have become converted into retinular or cone cells, but that by which an element already differentiated in the ommatidium is secondarily modified to subserve another function. The only instance of this kind with which I am acquainted occurs among the retinular cells. In the majority of the simpler Crustaceans, the sides of the cones are covered with pigment, which is almost always contained in the distal ends of the retinular cells. In Serolis, among the Isopods, and apparently in all the genera of Stomatopods, Schizopods, and Decapods, the cones are surrounded by special pigment cells. These are always twice as numerous as the ommatidia, and represent, I believe, retinular cells which have become differentiated for the special purpose of sheathing MUSEUM OF COMPARATIVE ZOOLOGY. 119 the cones, The way in which this differentiation may have occurred has already been suggested in my paper on the lobster (’90", p. 57). Although I have expressed the opinion that these cells are to be re- garded as modified retinular cells, it might be maintained that they are merely enlarged accessory pigment cells, such as occur in the inter- ommatidial space of many Crustaceans. But I believe such an interpre- tation of these cells would be erroneous, for the following reason. In Serolis the nuclei of the pigment cells which surround the cone (Plate VI. Fig. 65, nl. dst.) possess one, and sometimes two, well marked nucleoli, but no fine chromatine granules. In this respect they closely reserable the nuclei of the proximal retinular cells (x/. px.), and differ consider- ably from those of the accessory pigment cells (nl. h’'drm.). The nu- clei of the last named cells contain only fine granules. So far, then, as their nuclei are concerned, the distal retinular cells bear a much closer resemblance to the proximal cells than to the accessory pigment cells. Each retinula in Serolis contains, moreover, only four cells, and in this respect differs considerably from other Isopods, where the number of retinular cells is either six or seven. On the supposition that the pigment cells surrounding the cone in Serolis are accessory pigment cells, one would be called upon to account for the exceptionally small number of cells in the retinula of this genus; whereas, if the cells around the cone are regarded as modified retinular cells, they may be taken to indicate for Serolis a primitive retinula composed of six cells, a number characteristic of the retinule in other Isopods. This inter- pretation of the condition of the retinula in Serolis is borne out by what is known of the retinula in Spheroma, where, it will be remem- bered, a transition between the condition in Serolis and that in other Isopods was distinctly indicated. In the Stomatopods, Schizopods, and Decapods, if my observations are correct, there are no ectodermic accessory pigment cells. Conse- quently, a comparison between these cells and what I have called the distal retinular cells cannot be drawn. In Mysis (Plate VII. Fig. 73), Gonodactylus (Plate VIII. Fig. 94), and Palemonetes (Plate IX. Fig. 103), as well as in all other Decapods which I have examined, the resem- blance between the nuclei of the retinular cells and those of the pigment cells which surround the cone is as striking as in Serolis, and suggests the origin of these cells from retinular cells rather than from any other source. In Homarus, the pigment cells around the cone present a con- dition of some interest in this connection. Each pigment cell is extended proximally as a long fibre, which certainly reaches nearly to the base- 120 BULLETIN OF THE ment membrane, and probably passes through it in company with the fibrous ends of the retinular cells (compare Parker, ’90*, pp. 17-19). Admitting that these cells are merely modified accessory pigment cells, such a condition as this is quite unintelligible to me; but granting them to be differentiated retinular cells, their fibrous extensions can be easily explained as the rudiments of the fibrous portion of the cell with. which the nerve fibre was once connected. A somewhat similar case occurs in Mysis, where the centre of each of the pigment cells which surround the cone contains a small transparent axis. This axis in every respect except that of connection with a nerve fibre corresponds to the fibrillar axes described in the functional retinular cells of this Crustacean (compare Plate VIL. Figs. 77, 78, and 87). Consequently, the axis in the distal cells either represents a rudimentary nervous axis, in which case the cell containing it must be regarded as a retinular cell, or it is something for which I can suggest no explanation. These facts lead me to conclude that the pigment cells which sur- round the cone in Serolis, the Stomatopods, Schizopods, and Decapods, are to be regarded as modified retinular cells, and I have therefore described them under the name of distal retinular cells, in contrast to proximal retinular cells, or those which retain their primitive position around the rhabdome. In the differentiation of a group of simple retinular cells into proximal and distal celis, the latter necessarily change their function from that of terminal nervous organs to that of screens chiefly concerned in excluding the light from the sides of the cones. Wherever the distal retinular cells occur, they afford evidence, I believe, that the structure of the ommatidium has undergone a modi- fication from the primitive ommatidial condition. The second method by which the structure of ommatidia may be changed, namely, the suppression of cells, is perhaps the one whose presence is most easily detected because of the frequent persistence of the partially reduced cells. These rudimentary cells can be identified most readily in the cases where they belong to groups in which the number of elements is constant for different ommatidia. I know of no evidence of suppression among the groups of cells in the corneal hypo- dermis or the cones. Among the retinul, however, it seems to be of rather common occurrence. The first indication of this process is natu- rally a diminution in the size of the cell to be suppressed. Such a step is perhaps shown in the retinula of Gammarus (Plate I. Fig. 6), where one of the five cells, although evidently functional, is nevertheless con- siderably reduced. Without much doubt, the body described in the MUSEUM OF COMPARATIVE ZOOLOGY. 121 retinula of Idotea robusta represents, for reasons already stated, the seventh cell present as a functional structure in Porcellio. In Idotea irrorata the retinulz, with very few exceptions (Plate V. Fig. 54), contain only six cells, showing no trace of the seventh cell. This condition, I believe, is to be interpreted as one in which a cell has been completely suppressed. In Stomatopods, Schizopods, and Decapods the retinule have been shown to contain, in addition to the nuclei of the seven func- tional cells, an eighth nucleus, which may represent a rudimentary cell. In all of the cases thus far cited, it might be maintained that what I have considered rudimentary cells are really cells newly acquired by the ommatidia, and not old cells gradually undergoing suppression. The con- dition in Idotea, however, where the body in question apparently contains no nucleus, would be difficult to explain on this assumption, whereas, if it be considered a cell undergoing reduction, its condition can be easily accounted for. In Stomatopods, Schizopods, and Decapods, the con- stancy in the number of cells and in the position of the eighth nucleus, the small amount of protoplasm which surrounds it, and the striking resemblance which it has to the other retinular nuclei, are facts difficult to explain on the assumption that it represents a newly acquired cell, but easily accounted for on the supposition that it is the remnant of a partially suppressed cell. For these reasons, I believe that the instances cited are valid cases of partial suppression, and that this must be regarded as one of the actual means employed in the modification of ommatidia. That ommatidia have been modified by an increase in the number of their cells by cell division, is a proposition not easily established. The difficulty of obtaining conclusive evidence on this point can be made clear by an example. Let it be assumed that cones composed of two cells are converted by the division of the cells into cones com- posed of four cells. This step, even when first taken, would probably be accomplished during the embryonic growth of an animal, and there- fore before the cones themselves had begun to be differentiated. What would actually happen would probably be this: the two cells, the homologues of which in all previous animals had given rise to two cone cells, would in this case each divide, thus producing a group of four cells, which ultimately would form a cone of four segments. If we could compare the adult animal in which such a process had occurred for the first time with its immediate ancestors, the only important difference that would be observed would be in the number of the cells in each cone, and if the genetic relations of the two individu- als were not known, it could not be stated with certainty whether in 1 ep BULLETIN OF THE one case we were dealing with an animal which had lost two cone cells or in the other, with one which had gained two; in other words, it would be impossible to determine which of the two conditions was the primitive one. The importance of embryological evidence in determin- ing this question must therefore be apparent. But evidence from even this source might not be conclusive. Thus in the development of the lobster I have traced in detail the steps by which the ommatidia are formed, and although in this Crustacean the considerable number of cells in each ommatidinm would warrant one in expecting some evidence of increase by division, the division of the cells in the retina is entirely accomplished some time before these elements show any grouping into ommatidia. Hence, the exact method of origin of the cells of the om- matidium cannot at present be given. I have observed that the same is also true in Gammarus; cell division is completed before the cells are grouped into ommatidia. Perhaps in the development of some other Crustaceans evidence of the kind which I have sought may be obtained, but in the few species which thus far have been studied the evidence has not been produced. Although the supposition that ommatidia may increase the number of their cells by the division of those which they already possess is not supported by any direct observations with which I am acquainted, there are some facts recorded which are indirectly confirmatory of it. Thus, in Phyllopods, an increase in the number of cone cells appears to accom- pany a progressive differentiation of the retina itself. In this group, as I have already pointed out, the simplest condition of the retina is found in Branchipus and Apus. From the retina of Apus that of the Estheride can be easily derived, and the retina in the Estheride represents a con- dition from which the retina of the Cladocera may have arisen. That this series of retinas, from Apus through the Estheride to the Cladocera, is a natural one is abundantly proved by the course taken in the develop- ment of the eye in these groups. If we regard the condition of the cones in these Crustaceans, we shall find that in the most primitive retina, that of either Branchipus or Apus, they consist of four cells ; that in the more complex retina of the Estheride they are usually com- posed of five cells, although cones of four cells are not unfrequent occur- rences; and finally, that in the Cladocera they are always composed of five cells. Apparently in this series the development of the retina is paralleled by a corresponding development in the cones, whereby one composed of four cells is ultimately converted into one with five cells. Since the resemblance between any two of the cells in a cone composed MUSEUM OF COMPARATIVE ZOOLOGY. 123 of five elements is quite as close as that between the cells in cones con- taining only four elements, I believe that the additional cell, which has increased the number of segments from four to five, has been derived by the division of one of the original four cone cells, and not from an extra- ommatidial source. Another instance of this kind occurs among the Isopods. The cones in this group, it will be remembered, are usually each composed of two segments. According to Beddard’s figures (’90, Plate XXXI. Figs. 1 and 4) in Arcturus, however, they occasionally consist of three segments, and in Asellus aquaticus, according to Sars (67, p. 110), although three of the four cones in each eye are composed of only two segments each, the fourth regularly contains three. The size of the segments in the fourth cone differs ; two are small, and together their bulk about equals that of the third, and the last is approximately of the size of a segment in one of the other cones. If we attempt to explain the condition of the cone composed of three segments by supposing it to have been produced by adding to the normal pair of cone cells a single cell from some source external to the ommatidium, we are met with the difficulty, that what is apparently the added cell — the larger one —resembles more closely a segment in the other cones than do either of the two remaining cells, although the latter must on this assumption represent the original seg- ments. If, however, we imagine the small segments to have arisen by the division of a single larger one similar to the large one which remains in the cone, the relation of the resulting segments both in size and num- ber is a perfectly natural one. This explanation, therefore, seems to me to be more probable than the former. For these reasons, I believe that -an increase in the number of cells in an ommatidium takes place by the division of the cells already forming a part of that ommatidium, rather than by the importation of new elements hitherto foreign to the om- matidium. The conclusion which I would draw from the preceding discussion is, that there are at least three means of modifying the numerical formule of ommatidia, all of which involve only the cells primitively belonging to the ommatidium, and therefore do not necessitate the introduction of new cells from extra-ommatidial sources. They are cell differentia- tion, cell suppression, and cell multiplication. Having now determined the means by which the cellular structure of the ommatidia in living Crustaceans is modified, we are prepared to ap- proach the question of the structure of the primitive ommatidium. If it could be shown that ommatidia were modified only by increasing the 124 BULLETIN OF THE number of their elements, it would naturally follow that those com- posed of the fewest cells would more nearly resemble the ancestral type than those which consist of many cells. On the other hand, if the sup- pression of cells were the only means employed in modifying structure, the ommatidia containing the greatest number of elements would most nearly approach the primitive type. Since, as I believe, both means are employed in the Crustacea, the determination of the structure of the ancestral ommatidium is evidently a difficult problem. Perhaps the most satisfactory way of attempting its solution is to consider sep- arately the different categories of cells which enter into the formation of an ommatidium, and, after reviewing the conditions presented by each in different Crustaceans, to determine, if possible, which of these condi- tions is the most primitive. The conclusions thus arrived at concerning each kind of cell will afford the necessary grounds for the construction of an hypothetical formula of the ancestral ommatidium. Although it is not necessary that this ommatidium should be represented in any liv- ing Crustacean, for the ommatidia in all these may have suffered modifi- cation, yet it is possible that a representative of it may still exist. Turning now to the consideration of the different groups of cells, we find that the corneal hypodermis presents two conditions ; one in which its cells are not regularly arranged, and another in which they are grouped in pairs, each pair lying at the distal end of an ommatidium. The latter condition is characteristic of the Decapods, Schizopods, Sto- matopods, Nebalise, Isopods, and some Branchiopods; the former, so far as is known, occurs in the Amphipods, the Branchiura, and ,in some Branchiopods (Limnadia and some species of Branchipus). In view of the fact that the corneal hypodermis is a part of the retina which re- tains the function of the general hypodermis but slightly modified, and that in the latter the cells do not present a regular arrangement, it is probable that a corneal hypodermis in which the cells are not regu- larly arranged is of a more primitive character than one in which they are definitely grouped. The number of cells in the individual cones of Crustaceans varies from two to five. Cones composed of two cells occur in Eucopepoda, Amphipods, Isopods, and Schizopods; cones of three cells are present only exceptionally in Isopods; cones of four cells are found in the Decapods, Stomatopods, Nebalize, Branchiura, and some Branchiopods ; cones of five ‘cells characterize the Cladocera and some Branchiopods. I have already given reasons for regarding the cones composed of three cells as having been derived from those containing two, and cones com- MUSEUM OF COMPARATIVE ZOOLOGY. 125 posed of five cells from those possessing four. Since there is no evidence of degenerate cells in any of the cones composed of two segments, I am convinced that cones with four cells are derived from those with two cells, and not the reverse. On these grounds, I conclude that the most primi- tive form of cone in living Crustacea is that consisting of two cells. The retinular cells in Crustaceans are subject to considerable varia- tion. As I have previously shown, an ommatidium may contain one or two kinds. When there is only one kind, all the cells are grouped around the rhabdome, and are known simply as retinular cells. When there are two kinds, one occupies a position around the rhabdome, and the other around the cone ; the former I have called proximal retinular cells, the latter distal retinular cells. Proximal and distal retinular cells occur in Serolis, the Stomatopods, Schizopods, and Decapods ; simple retinular cells apparently characterize the ommatidia of all other Crustaceans. I have already presented reasons for considering the distal retinular cells as modified simple retinular cells, which, in the separation of the cone from the rhabdome by the elongation of the ommatidium, have lost their connection with the nervous element, but ° have retained their place next the dioptric one. A group of retinular cells in which this differentiation has occurred is not so primitive in its structure, therefore, as one in which all the retinular cells retain their original position around the rhabdome, as in the groups of Crustacea which possess simple retinular cells. The number of simple retinular cells in Crustacean ommatidia varies from five to seven. In Nebalia, and some Isopods, the retinula con- tains seven cells ; in other Isopods it is composed of six cells, and in the Branchiopods, the Cladocera, some Copepods, and Amphipods it consists of five cells. It is difficult to state which of these numbers represents the primitive condition. In the Isopods, as I have previ- ously indicated (pp. 86 and 87), there is considerable evidence to show that a retinula composed of six cells has been produced from one containing seven by the suppression of one cell. Possibly in this way the retinula with five cells was derived from that with six, but I know of no observations which favor this supposition. A small amount of indirect evidence on this question is to be ob- tained from the other structural peculiarities of the ommatidia con- taining retinule with five, six, or seven cells. These retinule occur in connection with two kinds of rhabdomes, — one in which the rhab- domeric segments are easily distinguishable, and the other from which they are apparently absent. Of these two kinds, the one in which the 126 BULLETIN OF THE segments persist is evidently more primitive than the one in which their outlines are obliterated. Probably in Nebalia, in which the retinula is composed of seven cells, and certainly in Idotea, where it consists of six, the rhabdome shows no indication of being composed of rhabdomeres, but in Porcellio the seven retinular cells surround a rhabdome composed of a corresponding number of rhabdomeric segments. In Branchipus, the retinula consists of five cells, but the rhabdome is apparently not composed of separable rhabdomeres, whereas in Pontella, Argulus, Gammarus, Talorchestia, Hyperia, and Phronima the five retinular cells are each represented by arhabdomere. The more frequent occurrence of a primitive condition of rhabdome with the retinula having five cells than with that having seven, favors indirectly the idea that the retinula with the smaller number of cells is the more primitive of the two. The types of cones associated with the two kinds of retinule offer almost no evidence on the question in hand. Thus, a retinula of seven cells is associated with a cone of four cells in Nebalia, and with one of two cells in Porcellio, and a retinula of five cells is combined with a cone of four cells in Branchipus and Argulus, and with one of two cells in Amphipods. The relation of the two kinds of retinule to the corneal hypodermis affords some slight evidence in support of the opinion that the retinula of five cells represents the more primitive type ; for although the differentiated type of corneal hypodermis —the one in which the cells are regularly arranged — may occur with either type of retinula, the undifferen- tiated hypodermis—in which the cells are not regularly grouped — is known to be associated only with retinule containing five cells (some Branchiopods, Argulus, and Amphipods). The evidence drawn from these various sources is obviously very slight ; but such as it is, it indi- cates that the retinula with five cells, rather than that with a greater num- ber, represents the more primitive condition. This conclusion receives some additional support from the fact that the retinula composed of five cells characterizes the ommatidia in a number of not otherwise very closely related Crustaceans (Pontella, Argulus, the Branchiopods, and Amphipods), whereas the type possessing seven cells occurs only among certain Isopods and in the Nebaliw. I believe, therefore, that all the evidence at present deducible from the condition of the simpler retinule indicates that the one which contains five cells is more primitive than that composed of six or seven cells. In the present argument I have purposely omitted any mention of the condition of the retinula in the Coryceide, those Copepods in which the MUSEUM OF COMPARATIVE ZOOLOGY. 127 lateral eyes present a highly modified condition. I have done this be- cause I believe that the lateral eyes in many Copepods are degenerate, and that therefore the evidence to be drawn from them cannot be as trustworthy as that from other sources. ‘That the lateral eyes in Cope- pods are degenerate, is shown from the fact that in many members of the group the eyes are entirely absent, and that in those in which they do occur, their structure is subject to considerable variation. Thus in Pontella the retina contains, besides one group of five retinular cells, three isolated nervous cells, whereas in Sapphirina there is a group of three retinular cells, and at least one isolated nervous cell. In Pontella, Sap- phirina, Coryczeus, and Copilia each retina is provided with a single lens, but in Irenzus, according to Claus (’63, Taf. II. Fig. 1), there are two lenses in each eye. These variations, including the total disappearance of the organ in some members of the group, lead me to believe that the lateral eyes in the Copepods are degenerated, and therefore are organs in which the suppression of cells may have reduced them to even a simpler condition than that presented by the ancestral ommatidium. The conclusion which I draw from the preceding argument is, that the type from which the ommatidia in all living Crustaceans are probably derived would exhibit the following structures: a corneal hypodermis in which the cells are not regularly arranged, and consequently an un- facetted corneal cuticula ; a cone composed of two cells; a retinula com- posed of five retinular cells and having a rhabdome which consists of five rhabdomeres. The retina of the primitive eye, a simple thickening in the superficial ectoderm, would be composed of ommatidia of this type arranged upon the hexagonal plan. None of the Crustaceans with which I am acquainted possess an eye of exactly this structure. The one in which this condition is most nearly represented is perhaps Gammarus. In this animal all the requirements of the hypothetical eye are fulfilled, except that the form of the retina as a whole is some- what disturbed by the separation of the corneal hypodermis from the layer of the cones and retinule by a corneo-conal membrane, and by the partially disguised condition of the basement membrane. If my conclusions be correct concerning the structure of the primitive ommatidium and the means by which it has been modified, it follows that the principal types of ommatidia have been produced mainly by increasing the number of cells in the primitive type, and that, of the three means of modifying the structure of ommatidia, cell division has been the most influential. Although the hypothetical ommatidium which has been described in 128 BULLETIN OF THE the preceding paragraphs has been spoken of as ancestral, it is not to be supposed that the condition which it presents must be regarded as necessa- rily its simplest form. I feel tolerably confident, however, that the prim- itive ommatidium must have been at least as simple as I have assumed it to be. Possibly its retinula may have been composed of less than five cells, as is that seen in some Copepods ; although, as I have previously remarked, the condition of the lateral eyes in these Crustaceans is probably influenced by degeneration, and therefore may not represent a primitive stage. What might be regarded, however, as a more primitive form of ommatidium than that which I have described, may be seen in the eye of the Chetopod Nais (Carriere, ’85, pp. 28, 29). In this worm the eye lies in the hypodermis on the side of the head, and con- sists of a few relatively large transparent cells, the proximal faces of which are in part covered by pigment cells. It is probable that the transparent cells are merely dioptric in function, and that the pigment cells are nervous. The transparent cells may therefore be looked upon as the forerunners of cone cells, and the pigment cells at their bases as retinular cells not yet differentiated into a retinula. It is not difficult to imagine the origin of an ommatidium from a single one of the trans- parent cells and its accompanying pigment cells, and, by an increase in the number of such groups, the production of a retina like that of the compound eye of Arthropods. This view of the origin of the ommatidia in Arthropods is irreconcila- ble with that recently advanced by Watase (’90), according to whom each ommatidium is to be regarded as a pit formed by an involution of the hypodermis. The supposed cavity of this pit occupies nearly the whole length of the axial portion of the ommatidium, and is filled by the secretions of the cells constituting its wall. The secretion in the deeper part of the pit forms the rhabdome; that which is produced nearer its mouth, the cone. During the formation of the pit, the hypo- dermal cells are believed to retain such mutual relations that their mor- phologically distal ends lie next its cavity ; hence the secretions produced by these ends, the rhabdome and cone, are to be regarded as modifica- tions of the chitinous cuticula of the outer surface of the body. Ingenious as this theory is, I have not been able to convince myself of its tenability. It may be urged against the assumption that the retinu- lar cells occupy a proximal position and the cone cells a distal one on the wall of a hypodermal pocket, that in Gammarus the retinular cells extend from the distal to the proximal face of the retina, and that in Homarus the cone cells have a corresponding extent ; these conditions show that MUSEUM OF COMPARATIVE ZOOLOGY. 129 it is possible to interpret the cells in an ommatidium as elements in a thickened epithelium, all of which originally extended from one face of the layer to the other, and the grouping of which is not even now in- terfered with by any process of involution. But granting that the ret- inal cells are thus arranged, it must be admitted that the surface on which the rhabdomeres are produced corresponds to the sides of the cells rather than to their distal ends. This interpretation of the position of the rhabdome is not, so far as I am aware, contrary to any well estab- lished facts, and indeed it is rather more in accordance with the condi- tion seen in the eyes of some Arthropods than that implied in Watase’s theory. Thus, in the lateral eyes of scorpions the retinal cells are ar- ranged as in an ordinary epithelium, and the lateral wall of each cell is in part occupied by a rhabdomere. In this instance, then, it must be admitted either that the rhabdomeres are produced on the sides of the retinal cells, or that each cell has independently rotated upon itself, so as to bring its morphologically distal end into a position corresponding to the side of an ordinary epithelial cell. But there is neither direct evidence to show that this rotation of single cells has occurred, nor, in this case, can there be any motive assumed which might have induced the rotation of single elements. I therefore believe that in the lateral eyes of scorpions the rhabdomes are on the sides of the retinal cells in the strictest morphological sense 5 and if they can occnr in this position in the eyes of scorpions, I can see no reason why they might not occur in similar positions on the retinal cells of compound eyes. Hence it seems to me as reasonable to interpret the retina in compound eyes as a layer of modified epithelium unaffected by involutions, as it is to con- sider it a layer in which each ommatidium represents an infolding. When, moreover, an attempt is made to show how a particular omma- tidium has arisen by involution, some difficulties are encountered. Thus in Gammarus, in which the ommatidium is of a primitive type, each om- matidial pocket would involve seven cells, two of which, the cone cells, must be imagined as forming the neck of the involution, while the re- maining five, the retinular cells, would constitute the deeper portion of the pocket. The mechanical difficulty which would accompany the forma- tion of an involution involving so small a number of cells must be obvi- ous, and offers, I believe, an obstacle to the successful operation of the process assumed in Watase’s theory. The one instance in which Watase has described an actual involution to form the eyes in Arthropods is the lateral eye of Limulus. These eyes consist of a cluster of hypodermal pits, over each of which there is a cu- VOL. XXI —No 2. 9 130 BULLETIN OF THE ticular lens. Although there cannot be the least doubt that in this case each pit is a hypodermal involution, the belief that each one is homolo- gous with an ommatidium is by no means so well founded. In structure the wall of the pit differs considerably from that of an ommatidium ; it contains no cells which can be definitely denominated, either as cone cells or as cells of the corneal hypodermis, and it does contain a large ganglionic cell, which is only questionably homologous with any element in an ommatidium. In most respects in which these pits differ from ommatidia, they resemble simple eyes, and I therefore regard them as such, rather: than as representatives of an early condition in the forma- tion of an ommatidium. When to the objections raised in the preceding paragraphs the state- ment is added, that in both Homarus and Gammarus — representatives of the extremes of organization —the ommatidia are developed without showing any trace of infolding, Watase’s theory of the formation of om- matidia by means of involutions appears in a still less favorable light. I therefore regard ommatidia, not as the result of involutions, but as differentiated clusters of cells in a continuous unfolded epithelium. I have not observed anything that would lead to the conclusion re- cently expressed by Patten (90), that an ommatidium is a hair-bearing sense bud. I believe, on the contrary, that they have had a very differ- ent origin. In conclusion, I may add, that if my idea of the origin of ommatidia be correct, it supports Grenacher’s opinion, that compound eyes are not derived directly from aggregations of simple eyes, but from groups of optic organs which were even more primitive in their structure than simple eyes. Possibly such primitive organs were the antecedents of both the compound and simple eyes of Arthropods, as Grenacher sug- gests; but possibly the two kinds of eyes may have had totally different origins. MUSEUM OF COMPARATIVE ZOOLOGY. 131 ° BIBLIOGRAPHY. Beddard, F. E. ’84. Preliminary Notice of the Isopods collected during the Voyage of H. M. 8. “ Challenger.” — Part I. Serolis. Proceed. Zool. Soc. London, 1884. pp. 380-341. 1884. ’84*. Report on the Isopoda Collected by H. M. S. Challenger during the Years 1873-76. Part I. The Genus Serolis. Voyage of the Challenger, Zoology. Vol. XI. pp. 1-85, Pis. 1-X. 1884. ’87. Note on a new Type of Compound Eye. Ann. Mag. Nat. Hist., Ser. V., Vol. XX. pp. 233-236. Sept., 1887. ’88. On the Minute Structure of the Eye in certain Cymothoide. Trans. Roy. Soc. Edinburgh, Vol. XXXIII. Pt. II. pp. 4438-452, Pl. XXX. 1888. 790. On the Minute Structure of the Eye in some Shallow-Water and Deep- Sea Species of the Isopod Genus Arcturus. Proceed. Zool. Soc. London, 1890, Pt. II. pp. 365-375, PL XXXI. Oct., 1890. Bellonci, G, 78. Morfologia del Sistema Nervoso Centrale della Squilla mantis. Ann. Mus. Civ. Storia Nat. Genova, Vol. XII. pp. 518-545, Tav. 1V.-X. 1878. ’81. Sistema nervoso, ed organi dei sensi dello Spheroma serratum. Atti R. Accad. Lincei, Transunti, Ser. 3, Vol. V. pp. 228, 229. 1881. ’81*. Sistema nervoso e organi dei sensi dello Spheroma serratum. Atti R. Accad. Lincei, Memorie, Ser. 3, Vol. X. pp. 91-103, Tav. I-III. 1881. Blanc, H. ’83. Observations faites sur la Tanais Oerstedii Kréyer. Zool. Anzeiger, Jahrg. VI. No. 154, pp. 634-637. Nov., 1883. Bobretsky, N. '73. Development of Astacus and Palemon. Kiew, 1873. (The substance of this paper, so far as it refers to the eye, is known to me only through the abstract in Balfour’s Comparative Embryology, Vol. II. pp. 397, 398. London, 1881.) 74. Zur Embryologie des Oniscus murarius. Zeitschr. f. wiss. Zool., Bd. XXIV. pp. 179-203, Taf. XXI., XXII. 1874. Brongniart, A. ‘20. Mémoire sur le Limnadia, nouveau genre de Crustacés. Mém. Mus. Hist. Nat., Paris, Tom. VI. pp. 838-92, Pl. 18. 1820. 132 BULLETIN OF THE Bullar, J. F. "79. On the Development of the Parasitic Isopoda. Philos. Trans. Roy. Soc. London, Vol. 169, pp. 505-521, Pls. 45-47. 1879. Burmester, J. '83. Beitrage zur Anatomie und Histologie von Cuma Rathkii Kr. Inau- gural-Dissertation, Kiel. Kellinghausen, H. F. A. Liitje. 44 pp., 2 Taf. 1883. Burmeister, H. '35. Ueber den Bau der Augen bei Branchiopus paludosus (Chirocephalus Bén, Prévost). Arch. f. Anat., Physiol. u. wiss. Med., Jahrg. 1835, pp. 529-534, Taf. XIII. Figs. 1-4. 1835. 35°, Nachschrift zu Burmeister’s Bemerkungen iiber den Bau der Augen bei Branchipus (s. p. 529). Arch. f. Anat., Physiol. u. wiss. Med., J ahrg. 1835, p. 613. 1835. Carrieére, J. ‘84. On the Eyes of Some Invertebrata. Quart. Jour. Micr. Sci., Vol. XXIV., New Ser., pp. 673-681, Pl. XLV. 1884. '85, Die Schorgane der Thiere vergleichend-anatomisch dargestellt. Miin- chen und Leipzig, R. Oldenbourg. 6 + 205 pp-, 147 Abbildungen und 1 Tafel. 1885. ’g5*. Liniges iiber die Sehapparate von Arthropoden. Biologisches Cen- tralblatt, Bd. V. No. 19, pp. 589-597. 1 Dec., 1885. 89. Bau und Entwicklung des Auges der zehnfiissigen Crustaceen und der Arachnoiden. Biologisches Centralblatt, Bd. IX. No. 8, pp. 225-234. June, 1889. Cavolini, P. '92. Abhandlung iiber die Erzeugung der Fische und der Krebse. Aus dem Italidnischen tibersetzt von E. A. W. Zimmermann. Berlin, In der Vos- sischen Buchhandlung. 6 + 192 pp., 3 Taf. 1792. Chatin, J. '77-78. Recherches pour servir a Vhistoire du batonnet optique chez les crustacés et les vers. Ann. Sci. Nat., Sér. 6, Zool., Tom. V. Art. No. 9, pp- 1-45, 1877; Tom. VII. Art. No. 1, pp. 1-36, Pls. 1-3, 1878. Claparéde, E. '60. Zur Morphologie der zusammengesetzten Augen bei den Arthropoden. Zeitschr. f. wiss. Zool., Bd. X. pp. 191-214, Taf. XI.-XIV. 1860. Claus, C. '59. Ueber das Auge der Sapphirinen und Pontellen. Arch. f. Anat., Phy- siol. u. wiss. Med., Jahrg. 1859, pp. 269-274, Fig. 1-3, Taf. V. B. 1859. '62. Ueber Evadne mediterranea n. sp. und polyphemoides Lkt. Wirz- burger Naturwissenschaftliche Zeitschrift. Bad. III. pp. 238-246, Taf. VI. Figs. 1-5. 1862. '63. Die frei lebenden Copepoden mit besonderer Beriicksichtigung der Fauna Deutschlands, der Nordsee und des Mittelmeeres. Leipzig, Wil- helm Engelmann. 10 + 230 pp., 37 Taf. 1863. MUSEUM OF COMPARATIVE ZOOLOGY. 133 Claus, C. (continued). 65. Ueber die Organisation der Cypridinen. Zeitschr. f. wiss. Zool., bd. XV. pp. 143-154, Taf. X. 1865. 66. Die Copepoden-Fauna von Nizza. Marburg & Leipzig, N. G. El- wert’sche Buchhandlung. 34 pp., 5 Taf. 1866. 71. Untersuchungen iiber den Bau und die Verwandtschaft der Hyperiden. Géttingen Nachrichten, pp. 149-157. 1871. "72. Ueber den Korperbau einer australischen Limnadia und tber das Mannchen derselben. Zeitschr. f. wiss. Zool., Bd. XXII. pp. 355-364, Taf. XXIX., XXX. 1872. 75. Ueber die Entwickelung, Organisation und systematische Stellung der Arguliden. Zeitschr. f. wiss. Zool., Bd. XXV. pp. 217-284, Taf. X1V.- XVIII. 1875. 76. Zur Kenntniss der Organisation und des feinern Baues der Daphniden und verwandter Cladoceren. Zeitschr. f. wiss. Zool., Bd. XX VII. pp. 3862~- 402, Taf. XXV.-XXVIII. 1876. '77. Zur Kenntniss des Baues und der Organisation der Polyphemiden. Denkschr. K. Akad. Wissensch. Wien, Math.-Naturwiss. Cl., Bd. XXX VII. pp. 137-160, Taf. 1-VII. 1877. "79. Der Organismus der Phronimiden. Arbeit. Zool. Inst. Wien, Tom. IT. Heft 1, pp. 59-146, Taf. 1-VIII. 1879. ’86. Untersuchungen iiber die Organisation und Entwickelung von Branchi- pus und Artemia nebst vergleichenden Bemerkungen iiber andere Phyllo- poden. Arbeit. Zool. Inst. Wien, Tom. VI. Heft 3, pp. 267-370, Taf. I.-XII. 1886. ’86*. Ueber die Entwicklung und den feinern Baue der Stilaugen von Branchipus. Anzeiger K. Akad. Wissensch. Wien, Math.-Naturwiss. Cl., Jahrg. XXIII. Nr. VIII. pp. 60-63. 1886. "87 ~=Die Platysceliden. Wien, Alfred Holder. 77 pp., 26 Taf. 1887. ’88. Ueber den Organismus der Nebaliden und die systematische Stellung der Leptostraken. Arbeit. Zool. Inst. Wien, Tom. VIII. Heft 1, pp. 1- 148, 15 Taf. 1888. Dana, J. D. 50. yes of Sapphirina, Coryceus, ete. Amer. Jour. Sci. and Arts, Ser. 2, Vol. IX. p. 133. May, 1850. Della Valle, A. 88. Sopra le glandole glutinifere e sopra gli occhi degli Ampeliscidi del Golfo di Napoli. Atti Soc. Nat. Modena, Memorie, Ser. 3, Vol. VII. pp. 91-96. 1888. Dohrn, A. 67. Die embryonale Entwicklung des Asellus aquaticus. Zeitschr. f. wiss. Zool., Bd. XVII. pp. 221-278, Taf. XIV., XV. 1867. 70. Untersuchungen iiber Bau und Entwicklung der Arthropoden. 4. Ent- wicklung und Organisation von Praniza (Anceus) maxillaris. Zeitschr. f. wiss. Zool., Bd. XX. pp. 55-80, Taf. VI.-VIII. 1870. 134 BULLETIN OF THE Frey, H., und R. Leuckart. 49. Lehrbuch der Anatomie der wirbellosen Thiere. Leipzig, Leopold Voss. pp. 8 + 626. 1847. 479, Beitriage zur Kenntniss wirbelloser Thiere mit besonderer Beriicksichti- gung der Fauna des Norddeutschen Meeres. Braunschweig, F. Vieweg und Sohn. 170 pp., 2 Taf. 1847. Gegenbaur, C. '58. Mittheilungen iiber die Organisation von Phyllosoma und Sapphirina. Aych. f. Anat., Physiol. u. wiss. Med., Jahrg. 1858, pp. 43-81, Taf. IV., V. 1858. 588, Zur Kenntniss der Krystallstabchen im Krustenthierauge. Arch. f. Anat., Physiol. u. wiss. Med., Jahrg. 1858, pp. 82-84. 1858. "7g. Elements of Comparative Anatomy. Translated by F. J. Bell. Lon- don, Macmillan & Co. 26 -+ 645 pp. 1878. Gerstaecker, A. '66-79. Crustacea (Erste Halfte). Zn Klassen und Ordnungen des Thier- Reichs. Von Dr. H. G. Bronn. Leipzig und Heidelberg, C. F. Winter’sche Verlagshandlung, Bd. V. Abth. I. pp. 1-1820, Taf. I.- XLIX. 1866-79. ‘81-90. Crustacea (Zweite Halfte). Ibid. Bd. V. Abth. II. pp. 1-800, Taf, L.-LXVIII. [Incomplete.] 1881-90. Gottsche, C. M. 52. Beitrag zur Anatomie und Physiologie des Auges der Krebse und Fliegen. Arch. f. Anat-, Physiol. u. wiss. Med., Jahrg. 1852, pp. 483- 492, Taf. XI. Figs. 3--5. 1852. Grenacher, H. 74, Zur Morphologie und Physiologie des facettirten Arthropodenauges. Gottingen Nachrichten, pp. 645-656. 1874. 77, Untersuchungen iiber das Arthropoden-Auge. Beilageheft zu den Kli- nischen Monatsblattern fiir Augenheilkunde, Jahrg. XV. Mai-Heft, pp. 1-42 [Separate?] 1877. 79. Untersuchungen iiber das Sehorgan der Arthropoden, inbesondere der Spinnen, Insecten und Crustaceen. Gottingen, Vandenhoeck & Ruprecht, § +188 pp. 11 Taf. 1879. Grobben, C. "79. Die Entwickelungsgeschichte der Moina rectirostris. Arbeit. Zool. Inst. Wien, Tom. II. Heft 2, pp. 203-268, Taf. 1-VII. 1879. °81. Die Entwicklungsgeschichte von Cetochilus septentrionalis Goodsir. Arbeit. Zool. Inst. Wien, Tom. III. Heft 3, pp. 243-282, Taf. I-IV. 1881. Grube, E. °65. Ueber die Gattungen Estheria und Limnadia und einen neuen Apus. Arch. f. Naturg., Jahrg. XXXI. Bd. I. pp. 203-282. 1865. MUSEUM OF COMPARATIVE ZOOLOGY. 135 Hiackel, E. > ’64. Beitrage zur Kenntniss der Coryceiden. Jenaische Zeitschr., Bd. I. pp. 61-112, Taf. I-III. 1864. Herrick, F. H. ‘86. Notes on the Embryology of Alpheus and other Crustacea, and on the Development of the Compound Eye. Johns Hopkins Univ. Circulars, Vol. VI. No. 54, pp. 42-44. Dec., 1886. ’88. The Development of Alpheus. Johns Hopkins Univ. Circulars, Vol. VIL. No. 63, pp. 36, 37. Feb., 1888. ’89. The Development of the Compound Eye of Alpheus. Zool. Anzeiger, Jahrg. XII. No. 303, pp. 164-169. 1889. 90. The Development of the American Lobster, Homarus americanus. _ Johns Hopkins Univ. Circulars, Vol. IX. No. 80, pp. 67, 68. April, 1890. Hesse, M. E. ’58. Mémoire sur les Pranizes et les Ancées. Ann. Sci. Nat., Sér. 4, Zool., Tom. IX. pp. 98-119. 1858. Hickson, S. J. ’85. The Retina of Insects. Nature, Vol. XXXI. pp. 341, 342. 12 Feb., 1885. Huxley, T. H. ‘ '57. Lectures on General Natural History. Lecture X. Medical Times and Gazette, New Ser., Vol. XIV. pp. 853-355. 11 April, 1857. Jurine, L. 06. Mémoire sur l’Argule foliacé (Argulus foliaceus). Ann. Mus. Hist. Nat., Paris, Tom. VII. pp. 431-458, Pl. 26. 1806. Kingsley, J. S. ’86. The Development of Crangon vulgaris. Second Paper. Bull. Essex Inst., Salem, Vol. XVIII. Nos. 7-9, pp. 99-154. July, 1886. '86*. The Arthropod Eye. Amer. Naturalist, Vol. XX. pp. 862-867. Oct., 1886. ’86>. The Development of the Compound Eye of Crangon. Zool. Anzeiger, Jahrg. IX. No. 234, pp. 597-600. 11 Oct., 1886. ’87. The Development of the Compound Eye of Crangon. Jour. Morphol- ogy, Vol. I. No. 1, pp. 49-66, Pl. II. Sept., 1887. ’89. The Development of Crangon vulgaris. Third Paper. Bull. Essex Inst., Salem, Vol. XXI. Nos. 1-3, pp. 1-42, Pls. I-III. Jan., 1889. Klunzinger, C. B. 6%. Beitrage zur Kenntniss der Limnadiden. Zeitschr. f. wiss. Zool., Bd. XIV., pp. 139-164, Taf. XVIL-XIX. 1864. Lankester, E. R., and A. G. Bourne. ’'83. The minute Structure of the Lateral and Central Eyes of Scorpio and of Limulus. Quart. Jour. Micr. Sci., Vol. XXIII., New Ser., pp. 177- 212, Pls. XXII. Jan., 1883. 136 BULLETIN OF THE Lebedinski, J. 90. Einige Untersuchungen tber die Entwicklungsgeschichte der See- krabben.. Biologisches Centralblatt, Bd. X. Nr. 5, 6, pp. 178-185. May, 1890. Lemoine, V. ’68. Recherches pour servir 4 l’histoire des systemes nerveux musculaire et glandulaire de l’écrevisse. Ann. Sci. Nat., Sér. 5, Zool., Tom. IX. pp. 99-280, Pls. 6-11. 1868. Lenz, H. 77. Estheria californica, Pack. Arch. f. Naturg., Jahrg. XLIII., Bd. I. pp. 24-40, Taf. III., 1V. 1877. Lereboullet, A. '43. Mémoire sur la Ligidie de Persoon. Ann. Sci. Nat., Sér. 2, Zool., Tom. XX. pp. 1038-142, Pls. 4,5. 1843. '53. Mémoire sur les Crustacés de la famille des Cloportides qui habitent les environs de Strasbourg. Mém. Soc. Mus: Hist. Nat., Strasbourg, Tom. IV. 2° et 3° Livraisons, pp. 1-130, Pls. L-X. 1853. Leuckart, R. 59. Carcinologisches. Arch. f. Naturg., Jahrg. XXV., Bd. I. pp. 232-266, Taf. VI, VIL. 1859: '75. Organologie des Auges. Jn Handbuch der gesammten Augenheilkunde redigirt von Graefe und Saemische. Band II., Erste Halfte, Zweiter Theil, Erste Halfte, pp. 145-301. 1875. Leydig, F. 50. Ueber Argulus foliaceus. Zeitschr. f. wiss. Zool., Bd. II. pp. 823- 349, Taf. X1X., XX. 1850. 51. Ueber Artemia salina und Branchipus stagnalis. Zeitschr. f. wiss. Zool., Bd. III. pp. 280-307, Taf. VIII. 1851. 55. Zum feineren Bau der Arthropoden. Arch. f. Anat., Physiol. u. wiss. Med., Jahrg. 1855, pp. 376-480, Taf. XV.-XVIII. 1855. ’'57. Lehrbuch der Histologie des Menschen und der Thiere. Frankfurt a. M., Meidinger Sohn & Co. 12+ 551 pp. 1857. 60. Naturgeschichte der Daphniden (Crustacea Cladocera). Tiibingen, Laupp und Siebeck. 4 + 252 pp., 10 Taf. 1860. 64. Tafeln zur Vergleichenden Anatomie. ‘Tiibingen, Laupp & Siebeck. Erstes Heft, 10 Tafeln nebst Erklarungen. 1864. ’64*. Das Auge der Gliederthiere. Tiibingen, Laupp & Siebeck. 50 pp. 1864. '78. Ueber Amphipoden und Isopoden. Zeitschr. f. wiss. Zool., Bd XXX., Supplement, pp. 225-274, Taf. IX.-XII. May, 1878. Lubbock, J. ’88. On the Senses, Instincts, and Intelligence of Animals, with Special Reference to Insects. New York, D. Appleton & Co. 29 + 292 pp. The International Scientific Series, Vol. LXIV. 1888. -_ MUSEUM OF COMPARATIVE ZOOLOGY. y f7 Mayer, P. 82. Die Caprelliden des Golfes von Neapel und der angrenzenden Meeres- Abschnitte. Fauna und Flora des Golfes von Neapel, VI. Monographie, 10 + 201 pp., 10 Taf. 1882. Milne Edwards, H. '34. Histoire naturelle des Crustacés, comprenant |’Anatomie, la Physiologie et la Classification de ces Animaux. ‘Tome Premier. Paris, Rovet. 35 + 468 pp. 1834. Miiller, F. 64. Ueber den Bau der Scheerenasseln (Asellotes héréropodes M. Edw.). Arch. f. Naturg., Jahrg. XXX. Bd. I. pp. 1-6. 1864. Miiller, J. '26. Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Thiere, nebst einem Versuch uber die Bewegungen der Augen und iiber den menschilichen Blick. Leipzig, C. Cnoblock. 32- 462 pp., 8 Tab. 1826. 29. Fortgesetzte anatomische Untersuchungen iiber den Bau der Augen bei den Insekten und Crustaceen. Arch. f. Anat. u. Physiol. (Meckel), Jahrg. 1829, pp. 38-64, Taf. III. Figs. 1-17. 1829. '29*. Sur les yeux et Ja vision des Insectes, des Arachnides et des Crustacés. Ann. Sci. Nat., Tom. XVII. pp. 225-253 and 365-386; Tom. XVIII. pp- 73-106. 1829. ’31.. Ueber den Bau der Augen bei Argulus foliaceus mit Bemerkungen iiber die Eintheilung der Crustaceen nach dem Bau der Augen. Zeitschr. f. Physiol., Bd. IV. Heft 1, pp. 97-105, Taf. VI. Figs. 5,6. 1831. "35. Anmerkung des Herausgebers. Arch. f. Anat., Physiol. u. wiss. Med., Jahrg. 1835, pp. 613, 614. 1835. "52. Anmerkung des Herausgebers. Arch. f. Anat., Physiol. u.wiss. Med., Jahrg. 1852, p. 492. 1852. Newton, E. T. '73. The Structure of the Eye of the Lobster. Quart. Jour. Micr. Sci., New Ser., Vol. XIII. pp. 325-343, Pls. XVI. XVII. 1873. Nusbaum, J. ’87. L’embryologie de Mysis chameleo (Thompson). Arch. Zool. exp. et gén., Sér. 2, Tom. V. pp. 123-202, Pls. V.-XII. 1887. Owen, R. . '43. Lectures on the Comparative Anatomy and Physiology of the Inverte- brate Animals. London : Longman, Brown, Green, and Longmans. 392 pp. 1843. Pagenstecher, H. A. ‘61. Phronima sedentaria. Arch. f. Naturg., Jahrg. XXVII. Bd. I. pp. 15-41. 1861. Parker, G. H. "90. A Preliminary Account of the Development and Histology of the Eyes in the Lobster. Proc. Amer. Acad. Arts and Sci., Vol. XXIV. pp. 24, 25. 1890. 138 BULLETIN OF THE ‘90%. The Histology and Development of the Eye in the Lobster. Bull. Mus. Comp. Zodl., Vol. XX. No. 1, pp. 1-60, 4 Pls. May, 1890. Parsons, G. 31. An Account of the Discoveries of Miller and others in the Organs of Vision of Insects and the Crustacea. Magazine of Natural History, Edinburgh, Vol. IV. pp. 124-134, 220-234, and 363-872. 1831. Patten, W. F 86. yes of Molluscs and Arthropods. Mittheilungen Zool. Station zu Nea= pel, Bd. VI. Heft IV. pp. 542-756, Taf. 28-32. June, 1886. 90. Is the Ommatidium a Hair-bearing Sense-Bud? Anat. Anzeiger, Jahrg. V. Nos. 18, 14, pp. 853-359. July, 1890. Pereyaslawzewa, S. 88. Le Développement de Gammarus poecilurus, Rthk. (Etudes sur le développement des Amphipodes, Premiére Partie.) Bull. Soc. Impér. Naturalistes de Moscou, Nouvelle Sér., Tom. II. No. 2, pp. 185-219, Pls. HI-VI. 1888. Reichenbach, H. "86. Studien zur Entwicklungsgeschichte des Flusskrebses. Abhandl. Senck- enb. Naturf. Gesellsch., Bd. XIV. Heft 1, pp. 1-137, Taf. IL-XI1V. 1886. Rossiiskaya, M. 89. Le Développement d’Orchestia littorea, Spence Bate. (Etudes sur le développement des Amphipodes, Deuxieme Partie.) Bull. Soc. Impér. Naturalistes de Moscou, Nouvelle Sér., Tom. II. No. 4, pp. 561-581, Pls, X Vil OVI 869: Rossiiskaya-Koschewnikowa, M. 90. Développement de la Sunamphitoé valida, Czerniavski, et de l’Amphi- toé picta, Rathke. (Etudes sur le développement des Amphipodes, Qua- tritme Partie.) Bull. Soc. Impér. Naturalistes de Moscou, Nouvelle Sér., Tom. IV. No. 1, pp. 82-103, Pls. 1, II. 1890. Sars, G. O. '67. Histoire naturelle des Crustacés d’eau douce de Norvége. Les Mala- costracés. Christiania, Chr. Johnsen. 155 pp., 10 Pls. 1867. Schaffer, J. C. 56. Der krebsartige Kiefenfuss mit der kurzen und langen Schwanzklappe. Regensburg, HE. A. Weiss. 142 pp. 7 Taf., 1756. Schmidt, O. 78. Die Form der Krystallkegel im Arthropodenauge. Zeitschr. f. wiss. Zool., Bd. XXX., Supplement, pp. 1-12, Taf. [. 1878. Schultze, M. '67. Ueber die Endorgane des Sehnerven im Auge der Gliederthiere. Arch. f. mikr. Anat., Bd. III. pp. 404-408. 1867. ’68. Untersuchungen tiber die zusammengesetzten Augen der Krebse und Insecten, Bonn, Cohen & Sohn. 32 pp., 2 Taf. 1868. y MUSEUM OF COMPARATIVE ZOOLOGY. 139 Schultze, M. (continued). ‘68°. Bemerkuugen zu dem Aufsatze des Dr. W. Steinlin. Arch. f. mikr. Anat., Bd. LV. pp. 22-25. 1868. Spangenberg, F. 775. Zur Kenntniss von Branchipus stagnalis. Zeitschr. f. wiss. Zool., Bd. XXV., Supplement, pp. 1-64, Taf. 1-I1I. 1875. "76. Ueber Bau und Entwicklung der Daphniden. Gottingen Nachrichten, pp. 517-537. 1876. Stebbing, T. R. R. 88. Report on the Amphipoda collected by H. M. S. Challenger during the Years 1873-1876. The Voyage of H. M. 8. Challenger, Zodlogy, Vol. XXIX. 1888. Steinlin, W. '66. Beitrage zur Anatomie der Retina. Bericht St. Gallischen naturwiss. Geselsch., 1865-66, pp. 17-138, Taf. I-III. 1866. ‘68. Ueber Zapfen und Stabchen der Retina. Arch. f. mikr. Anat., Bd. IV. pp. 10-21, Taf. Il. 1868. Straus, H. E. 19. Mémoire sur les Daphnia, de la classe des Crustacés, Premiere Partie. Mém. Mus. Hist. Nat., Tom. V. pp. 380-425, Pl. 29. 1819. Swammerdam, J. ‘52. Bibei der Natur. Edition Hermann Boerhave. Aus dem Holland- ischen tibersetzt. Leipzig, J. F. Gleditschen. pp. 12 + 410 + Regis- ter, Tab. I-LIIL. 1752. aoye, CG, '87. Beitrage zur Anatomie und Histologie von Jacra marina. Inaugural- Dissertation. Kiel, C. Bockel. 387 pp., 3 Taf. 1887. Treviranus, G. R. und L. C. 16. Vermischte Schriften anatomischen und physiologischen Inhalts. Er- ster Band. Gottingen, J. F. Rower. 8 + 188 pp., 16 Taf. 1816. Watase, S. ’89. On the Structure and Development of the Eyes of the Limulus. Johns Hopkins Univ. Circulars, Vol. VIII. No. 70, pp. 34-87. March, 1889. 90. On the Morphology of the Compound Eyes of Arthropods. Studies Biol. Lab. Johns Hopkins Univ., Vol. IV. No. 6, pp. 287-334, Pls. XXIX.-XXXV. Feb, 1890. "90%. On the Migration of the Retinal Area, and its Relation to the Morphol- ogy of the Simple Ocelli and the Compound Eyes of Arthropods. Johns Hopkins Univ. Cireulars, Vol. IX. No. 80, pp. 63-65. April, 1890. 90°. On the Morphology of the Compound Eyes of Arthropods. Quart. Jour. Micr. Sci., Vol. XXXI. Pt. II. pp. 143-157, Pl. XIX. June, 1890. Weismann, A. "74. Ueber Bau und Lebenserscheinungen von Leptodora hyalina Lilljehorg. - Zeitschr. f. wiss. Zool., Bd. XXIV. pp. 349-418, Taf. XXXIII.-XXXVIII. 1874. 140 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. Will, F. '40. Beitrage zur Anatomie der zusammengesetzten Augen mit facettirter Hornhaut. Leipzig, Leopold Voss. 32 pp., 1 Taf. 1840. Zaddach, E. G. '41. De Apodis cancriformis Scheff. Bonne, Typis Caroli Georgii. 72 pp., 4 Tab. MDCCCXXXXI. Zenker, W. 54. Monographie der Ostracoden. Arch. f. Naturg., Jahrg. XX. Bd. I. pp- 1-87, Taf. I-VI. 1854. ie EXPLANATION OF FIGURES. All the drawings were made with the aid of an Abbé camera. Unless otherwise stated, the specimens from which the drawings were made were stained in Czokor’s alum-cochineal and mounted in benzol-balsam. The reagent used in depigmenting sections was an aqueous solution of potassic hydrate }%. a. ax. n. brs. oc. cl. con. cl. ern. el. dst. cl. hyl. cl. ms’drm. cl. px. cl. rtn.’ oy cl. rud. ench. cal. con. cp. sng. crn. cta. d, dsc. dx. gn. opt. h’drm. hp. in. Ins. mb. ba. mb. ern. mb. ern’con. ABBREVIATIONS. Anterior. Axis of nerve fibrille. Optic pocket. Cone cell. Cell of corneal hy podermis. Distal retinular cell. Hyaline cell. Mesodermice cell. Proximal retinular cell. Retinular cell. Rudimentary retinular cell. Shell. Body cavity. Cone. Blood corpuscle. Corneal cuticula. Cuticula. Dorsal. Sucking disk. Right. Optic ganglion. Hypodermis. Liver. Intestine. Lens. Basement membrane. Corneal membrane. Corneo-conal membrane. mb. vel. mb. n. opt. mb. pv’ ph. mb. pr’con. mu. n. for. nl. con. nl. crn. nl. dst. ni. h’drm. nl. hyl. nl. ms’drm. nl. px. nl. rtn.’ n. opt. oc. v. va. sng. Intercellular membrane. Membrane of optic nerve. Peripheral membrane. Preconal membrane. Muscle. Nerve fibre. Nucleus of cone cell. Nucleus of cell in corneal hy- podermis. Nucleus of distal retinular cell. Nucleus of hypodermal cell. Nucleus of hyaline cell. Nucleus of mesodermic cell. Nucleus of proximal retinular cell. Nucleus of retinular cell. Optic nerve. Eye. Ommateum. Posterior. Pore of optic pocket. Retina. Rhabdome. Rhabdomere. Retinula. Left. Ventral. Blood-vessel. Such other abbreviations as have been used are explained in the description of the figures with which they occur. PARKER. — Compound Eyes in Crustaceans. Fig. “cs bo ge PLATE I. Gammarus. A section of the right eye in a plane transverse to the chief axis of the body and through the central part of the retina. X 116. A section lengthwise of an ommatidium. The numbers at the left of the figure correspond to the numbers of the six following figures of transverse sections, and mark the levels at which the latter were taken. X 475. A transverse section in the plane of the corneal hypodermis. 475. A transverse section through the distal ends of the retinular cells and cone. X 476. A transverse section through the proximal portion of the cone and through the adjoining retinular cells. X 475. A transverse section through the retinula in the region of the rhabdome. x 475. A transverse section through the retinular cells somewhat proximal to the basement membrane. > 475. A transverse section through a single retinular celi in the region of its nucleus. XX 475. The proximal portion of a retinular cell viewed from the side. (Compare Fig. 2.) Isolated in Miiller’s fluid. Not stained. X 478. A cone isolated in Miiller’s fluid and viewed from the side. Not stained. x 476. PARKER — CRUSTACEAN EYE PL. I. Zz: cla. mbcrncon _....nl.con 3....nbrin GHP del. B Masel ih Becton GAMMARUS 5 Meisel Jith Boston PARKER. — Compound Eyes in Crustaceans. 14. 15. 5 alte} 19. PLATE II. Argulus. (Figs. 11-17.) A section in a plane transverse to the chief axis of the body and through ‘the right eye. Depigmented. x 140. A longitudinal section of an ommatidium. X 475. A longitudinal section of an ommatidium which had been depigmented. The numbers at the left of the figure correspond to the numbers of the four following figures of transverse sections, and mark the levels at which the latter were made. X 475. A transverse section through the distal end of a cone and the surround- ing pigment cells. X 475. A transverse section through the proximal portion of a group of four cone cells. The intercellular membranes of the cells present four thickened regions. X 475. A transverse section through the rhabdome. Depigmented X 475. A transverse section through the retinula somewhat proximal to the rhabdome. X 4765. Pontella. The left lateral eye seen from the left side. ‘The section is an optical one; its plane is very nearly parallel to the sagittal plane of the body. Depigmented in alcohol (see p. 78). X 275. A transverse section of the optic nerve from a region immediately poste- rior to the retina. The sagittal plane divides the nerve into sym- metrical halves; the fibres in each half belong exclusively to the lateral eye of the corresponding side. > 400. BMeigel Jith Boston. — COPEPODA. PARKER. — Compound Eyes in Crustaceans. PLATE III. Pontella. Figs. 20-29. A complete series of ten consecutive sections through the right and left retinas in planes parallel to the horizontal plane of the animal. The sections are viewed from their dorsal faces. Figure 20 represents the most ventral section; Figure 29, the most dorsal. The plane of Figure 25 is approximately indicated by the incomplete dotted line mu.con.in Figure 18 (Plate II.). In the sections on the present plate the different bodies in the left retina have been designated by appropri- ate letters and figures. The eight rhabdomeres have been indicated simply by numbers; the same number always refers to the same rhabdomere. For the sake of distinction, the two cone cells have been marked cl. con. 1 and cl. con. 2. Some of the nerve fibres (n. fbr. 7 and n. fbr. 8) have been numbered in reference to the par- ticular rhabdomeres with which they are associated. X 400. PARKER — CRUSTACEAN EYE. PLL. E Meisel Jith Boston. PONTELLA. gltit'a4 PARKER — Compound Eyes in Crustaceans. Fig. 38. 39. . 40. 41. 42. 43. 44. 45. PLATE IV. Branchipus. (Figs. 30-32.) . A longitudinal section of an ommatidium. x 400 A transverse section through the distal end of four cones. > 400. A transverse section through the middle portion of a retinula. > 400. Limnadia. (Figs. 38-59.) A section through the anterior part of the body, including the eye, in a plane transverse to the chief axis. X 25. An enlarged portion of a section from the same series as that from which Figure 33 was drawn, but in a position slightly anterior to the lat- ter. x 115. A section through the eye cut in the sagittal plane of the animal. De- pigmented. X 90. A lateral view of an ommatidium. The numbers at the left of the figure correspond to the numbers of the three following figures of transverse sections, and mark the levels at which the latter were taken. X 475. A transverse section through the corneal hypodermis and distal ends of the cones. X 475. A transverse section through four cones at the level where they are thickest. X 475. A transverse section through the central portion of four retinule. x 475. Evadne. (Figs. 40-45.) An‘optical section through the eye and adjoining structures in a plane approximately parallel to the sagittal plane of the body, but lying somewhat to the right of it. > 140. A transverse section through the distal ends of the cones. X 475. A transverse section through the proximal end of a cone. X 475. A transverse section through the distal ends of three groups of retinular cells. In each group the corresponding cells have been designated by the same number. X 478. A transverse section through the central part of four rhabdomes. X 475. A transverse section through a retinula. Depigmented. IMKleinenberg’s alum-hematoxylin. X 476. PARKER — CRUSTACEAN EYE. nlhilrm _.gi.opt. 45. Gy \ @) Ao@ 6 FI clr tr. 4 eal G Z) WY ~el.con a B Meisel ith Boston. — PHYLLOP ODA. PARKER. — Compound Eyes in Crustaceans. Fig. Fig. Fig. 46. 47. 48. 49, 50. PLATE V. Porcellio. A transverse section through a retinula in a plane slightly distal to the basement membrane. ‘The single, light, central spot represents the proximal end of the rhabdome. X 476. Idotea robusta, Kroyer. (Figs. 47, 48.) A transverse section through the distal end of a retinula. The bodies, one of which is marked z, are spheres of coagulated material which occur in the interommatidial spaces, and which have been brought - into prominence by the action of the hardening reagent. X 475. A transverse section through three ommatidia in the region of their rhabdomes. X 475. Idotea wrrorata, M. Edws. (Figs. 49-57.) The anterior face of a section transverse to the chief axis of the body, and passing through the eye on the right side of the head. X 140. A longitudinal section of an ommatidium. The numbers at the left of the figure correspond to the numbers of the following six figures of transverse sections and mark the levels at which the latter were taken. X 475. A transverse section through the distal ends of the cones. X 475. A transverse section through the middle region of a cone. 475. A transverse section through the middle of a retinula. Near the centre of each cell can be seen a small axis of nerve fibrilla. > 475. A transverse section through a retinula composed of seven cells instead of six. This section was cut approximately at the same level as that shown in the preceding figure. 475. A transverse section through a retinula near its proximal end. Each fibrillar axis is much larger at this plane than in that shown in Fig- ure 53. X 475. A transverse section of several groups of retinular cells immediately proximal to the basement membrane. X 475. A transverse section of four retinular cells at the level in which their nuclei occur. The axis of nerve fibrille in the plane of this section and in that of the preceding one (Fig. 56) are smaller than they are at the base of the retina (compare Fig. 55). Spheroma. (Figs. 58, 59.) A transverse section ofa retinula at a level slightly distal to the base ment membrane. X 475. A transverse section of the fibrous ends of the cells from a single re- tinula. The plane of section is slightly proximal to the basement membrane. The only indication of an axis of nerve fibrille is the more transparent condition of the central part of the cells, due to the partial absence of pigment granules. X 476. PARKER — CRUSTACEAN EYE. 1SOPODA. B Meisel lth Boston. Parker. — Compound Eyes in Crustaceans. PLATE VI. Serolis. Figures 60 to 64 inclusive represent the structure of the ommatidium in the adult. Figures 65 to 72 are drawn from sections of ommatidia in well ad- vanced embryos. All figures are magnified 475 diameters. Fig. 60. A tangential section through the most distal portion of the retina. This “ 4 61. 62. 63. 64. section includes a portion of a cone and the tissue lying between it and two adjoining cones. A transverse section of a retinula in the region of its rhabdome. The ' arrangement of the pigment granules and nerve fibrillz is indicated in only one of the four cells. Of the two lines which appear to separate the cone cells (cl. con.) from the rhabdomere (rhb’m.), the one nearer the axis of the ommatidium is the real line of separa- tion; the other lies within the substance of the rhabdomere itself (compare p. 92). A transverse section through a retinula proximal to the rhabdome and in the region of the hyaline cell. As in Figure 61, the pigment granules are drawn in only one of the retinular cells. A transverse section through a single retinular cell in the region of its nucleus. The axis of nerve fibrillz is represented by several small axes in the substance of the cell at one side of the nucleus. A transverse section of the fibrous ends of the cells of one retinula in their passage through the aperture in the basement membrane. Each cell shows a well marked fibrillar axis, the centre of which is often occuffied by a core of pigment. The basement membrane is viewed from its distal face. The irregularly oval body in the upper left-hand corner of the figure is probably a nucleus. It lies on the proximal face of the membrane through which it is seen. A longitudinal section through the ommatidium of an advanced embryo. The numbers at the left of the figure correspond to the numbers of the six following figures of transverse sections, and indicate the levels at which the latter were taken. Figure 68 represents a sec- tion so nearly in the same plane as that shown in Figure 67 that its number has been omitted. A transverse section at the level of the corneal hypodermis. A transverse section through the distal end of a cone. A transverse section made ina plane enly slightly proximal to that shown in Figure 67. A transverse section through the region of the distal retinular nuclei. A transverse section through the proximal ends of the cones. A transverse section through the retinula in the region of the rhabdome. A transverse section at the level of the proximal retinular nuclei. 7% PARKER — CRUSTACEAN EYE. PLVL B Meisel Jeh Boston. SEROLIS. see tact are sae + > r Ph ao tv a aes - he : nya Bias ¢ ig? ee: es + PaRKER, — Compound Eyes in Crustaceans. Fig. 73. PLATE VII. Mysis. A longitudinal section of an ommatidium. The numbers at the left of the figure indicate the levels at which the sections for Figures 75-89 were taken. X 475. The distal face of a corneal facet, cleaned in potash and examined in water. X 475. A transverse section of three ommatidia in the plane of the corneal hy- podermis. X 476. A transverse section through the distal end of acone. X 475. A transverse section through the proximal end of a cone and the adjoin- . ing distal retinular cells. X 475. A transverse section similar to that shown in the preceding figure, except that it is depigmented and stained in Kleinenberg’s alum- hematoxylin. X 475. : Figures 79 to 82 inclusive represent consecutive transverse sections through the region of the proximal retinular nuclei of four adjacent ommatidia. The centre of each ommatidium is indicated by the group of cone cells (cl. con.), and the corresponding ommatidia in different sections are designated by the same Roman numeral. The nuclei around ommatidium II. have been num- bered in Figures 79-81. Figure 79 represents the most distal section, and Figure 82 the most proximal one of the series. igang: ste0n83: STS. Se CO: telat LOU telah F189: yO) ce nol; coz: The bodies marked « and y are portions of nuclei the rest of which are correspondingly marked in Figure 80. X 475. A transverse section of the four fibres at the distal end of the rod (com- pare p. 102). Depigmented, and stained in Kleinenberg’s alum-hem- _atoxylin. X 615. A transverse section of the rod at a slightly more proximal level than that shown in Figure 83. Depigmented, and stained in Kleinenberg’s alum-hematoxylin. X 615. A transverse section of the retinula somewhat distal to the distal end of the rhabdome (compare Fig. 90). Depigmented, and stained in Kleinenberg’s alum-hematoxylin. X 615. A transverse section from the region between the distal end of the rhab- dome and the proximal end of the rod (compare 86 in Fig. 90). De- pigmented, and stained in Kleinenberg’s alum-hematoxylin. X 615, A transverse section through the rhabdome and surrounding retinular cells. X 615. A transverse section, at the level of the basement membrane, through the nerve fibres from a single retinula. Depigmented, and stained in Weigert’s hematoxylin. x 615. A transverse section through the fibres of the optic nerve at a level mid- way between retina and optic ganglion. Preparation as in Figure 88. x 615. A longitudinal section through the basal portion of one and parts of two adjoining ommatidia. Depigmented, and stained in Kleinenberg’s alum-hematoxylin. XX 615. A section cut in the same plane as that shown in the previous figure, but including only the proximal ends of two rhabdomes. Prepara- tion as in Figure 90. X 615. A cone viewed from the side. Isolated in Miiller’s fluid and studied in water. X 475. te PARKER — CRUSTACEAN EYE. PLVIL h.Corny, = ESS) STE. | fEN> aA 80. sé ea _ xz Le I a. Boo 50 B Meisel, lith Boston. MysIs. PARKER. — Compound Eyes in Crustaceans Fig. 93. aa 94. 101. 102. PLATE VIII. Gonodactylus. Part of a tangential section through a superficial portion of the retina. The extreme edges of the section both right and left are immediately beneath the corneal cuticula; the central portion is farthest from the cuticula. At the right of the middle line are seen the ends of the ' larger ommatidia ; at the left, those of the smaller. > 275. A longitudinal section of a large ommatidium. The numbers at the left of the figure correspond to the numbers of six figures of transverse sections (Figs. 96-101), and mark the levels at which the latter were made. Depigmented. X 275. A longitudinal section of a small ommatidium containing its natural pigment. X 275. A transverse section through the cells of the corneal hypodermis and the distal end of the cone in a large ommatidium. X 275. A transverse section through the distal part of a cone in a large omma- tidium. X 276. A transverse section through the middle of a cone from a large omma- tidium. X 276. A tranverse section through a number of cones at the level of the distal retinular nuclei in the large ommatidia. X 275. A transverse section through six retinule of the large ommatidia in the region of the proximal nuclei. Each retinula is numbered. The plane of this section is slightly oblique, so that retinula 1 is cut at a relatively higher level than any of the others, and retinula 6 at the lowest level. 475. A transverse section of a retinula from one of the larger ommatidia, in a plane not far from the basement membrane. Depigmented. X 475. A transverse section of a retinula from one of the smaller ommatidia cut in a plane nearly corresponding to that of Figure 101. X 475. . = PARKER — CRUSTACEAN EYE. Pr, VIL WE MLC: ntlcon. nloon. nlern : d rare 5 ene | ; s : Ss oes po 2 | : \ ¢ f oe P my \ = B Meisel Ith Boston. GONODACTYLUS. [= a cS et ik ‘ te a ak ¥ We i i is ye af 4 PARKER. — Compound Eyes in Crustaceans. PLATE IX. Palemonetes. In all Figures on this plate the magnification is 475 diameters. Fig. 103. A longitudinal section of an ommatidium. The numbers at the left of the figure correspond to the numbers of nine of the following fig- ures of transverse sections, and mark the levels at which the latter were taken. 104. A longitudinal section of an ommatidium which has been depigmented. The bodies marked z resulted from the action of the depigmenting ' reagent. 105. A facet from the corneal cuticula; cleaned in strong potassic hydrate, and examined from its distal side in water. 106. A transverse section through the region of the corneal hypodermis. 107. A transverse section through the distal end of a cone in the region of the nuclei of the cone cells. 108. A transverse section through the middle of a cone. 109. A transverse section through parts of four ommatidia in the region of the distal retinular nuclei. Figures 110-112 represent three successive transverse sections, each through five ommatidia, in the region of their proximal retinular nuclei. Only the outlines of the nuclei and the five groups of cone cells (cl. con.) are drawn. The nuclei in each ommatidium are numbered from 1 to 7, and as their plan of arrangement is the same in the different ommatidia, corresponding nuclei have been designated by the same number. In some cases the nuclei were cut in two, and consequently appear in two adjoining sections. In such cases the two parts have been marked with the same number. Figure 110 is the most distal of the series; Figure 112, the most proximal. Fig.115. A transverse section of the retinula near the distal end of the rhabdome. Depigmented. 114. A transverse section of four retinule at the level of the eighth retinular nucleus. 115. A transverse section through four retinul in the region of the accessory pigment cells; viewed by reflected light. The retinule appear as dark masses embedded in a whitish field composed for the most part of'the substance of the accessory pigment cells. 116. A transverse section through a retinula at about the same level as that shown in Figure 115. Depigmented. 117. A transverse section through the optic nerve fibres at a level slightly proximal to the basement membrane. Depigmented. PL.IX. PARKER — CRUSTACEAN EYE De® O< © g a} @ ge” @O%, q 6 B Meisel lth Boston PALA.MONETES. GHP del. PARKER. — Compound Eyes in Crustaceans. PLATE X. In all Figures on this plate the magnification is 475 diameters. Cambarus. Figures 118-122 represent a series of five successive transverse sections through one and parts of four adjoining ommatidia in the region of their proximal retinular nuclei. Figure 118 represents the most distal section in the series; Figure 122, the most proximal. In these figures, only the outlines of the nuclei and the groups of cone cells are drawn. Crangon. Fig. 123. A transverse section through a number of ommatidia in the region of their distal retinular nuclei. Palinurus. Fig. 124. A transverse section through a retinula in its middle region. The out- lines of the retinular cells cannot be distinguished; the position of each cell is marked by an irregular light mass in its centre. *« 125. A transverse section through a retinula in the plane of its eighth nucleus. Depigmented. Cancer. (Figs. 126-131.) Fig. 126. A corneal facet viewed from its distal surface. The cuticula from which this facet was drawn was cleaned by being boiled in a strong aqueous solution of potassic hydrate. It was examined in water. “127. A transverse section of the distal end of a cone. « 128. . . 149 é. Aboral Wall. . .. . 164 ib body Walle. 3. os, 149 3. Nervous System . . . . 165 a. Cuticula and Hypodermis 149 Ge io as) wa, LGB Bra WHAM cy Ss st oa), LOO . a. Ganglionic Cells . . 166 c. Pigment Cells . . . . 150 B. Internal Structure . . 169 d. Dermal Bodies. . . . 152 b. Cerebral Nerves . . . 170 a. Bicellular Glands . . 152 c. Ventral Nerve Cord and B. Multicellular Glands . 155 le}tesat 5. a eres ee peen ae 4 | y- Sense Papille . . . 157 4. Cerebral Organ... . 172 é. Museular Layers . . . 159!IV. Conclusions. . ..... 176 Bibliography . . . . . . . . 180 | Explanation of Figures . . . . 183 I. Introduction. SomE two years ago, while working on Sipunculus nudus in the zoé- logical laboratory at Gottingen under Prof. E. Ehlers, my attention was attracted by a peculiar organ in the region of the dorsal ganglion ; and Ithough it was a prominent feature of all transverse sections, no men- tion of its presence was found in the literature on Sipunculus. The ob- servations made at that time interested me so much that the opportunity afforded by a short stay at the Naples Zovlogical Station last spring, for which I am indebted to the great kindness of Prof. A. Weismann and the Cultusministerium of Baden, was embraced to procure new, carefully preserved material. A study of the literature on Sipunculus revealed such lack of agreement between authors that a more general study of the form seemed likely to yield results, and, on the advice of Prof. 1 Contributions from the Zodlogical Laboratory of the Museum of Comparative Zoology, under the direction of E. L. Mark, No. XXVIL VOL. XXI. — NO. 3. 144 BULLETIN OF THE E. L. Mark, a more particular consideration of some moot anatomical and histological points was undertaken. This was unfortunately limited by the material on hand, which consisted merely of the anterior portion of the body, corresponding in general to the introvert of reeent writers. As this contains, however, nearly all of the important organs of the nervous system to which especial attention has been paid in this paper, and as its separation from the rest of the body at the time of killing insured good preservation, it is hoped that the conclusions reached may not be without value, in spite of their incompleteness. The histological structure of the body wall and of the nervous system has been treated in detail, and from the results an attempt has been made to throw some new light on the systematic position of the Sipunculids. METHODS. The material used in these investigations was preserved with especial care, and every effort was made to procure a method of killing which should afford a clear idea of anatomical and histological relations under normal conditions, since many of the contradictory statements of va- rious writers have been undoubtedly the result of studying specimens in a distorted state, due to muscular contraction, or have followed the examination of tissues poorly preserved. The thick impermeahle cuticula, and the wealth of muscular tissue in the body wall, render it a difficult matter to avoid at the same time both evils. The method finally adopted as yielding the best results is as follows. After remaining some time in clean sea-water to clear tentacles, body wall, and cesophagus of adhering sand, the animals were brought into a shallow dish of sea-water, and 50 alcohol was allowed to flow gently over the surface, forming thus a thin film, which disseminated itself gradually, and produced in the animals a complete relaxation of the body muscles. It did not seem to answer equally well when the alcohol and water were mixed at the start, as has been recommended for some animals. The length of time necessary for the attainment of com- plete narcosis cannot be exactly given. It varies greatly with different individuals; but if, after lying some four to eight hours, the animals make no contractions on being gently probed with a dull instrument, they may be regarded as sufficiently stupefied, and transferred to 50% alcohol. After a short stay in this, the introvert was cut off, and this alone sub- jected to treatment with higher grades of alcohol, which insured the pene- tration and consequent good preservation of the tissues. The only point in the process which requires especial care, and which often produces a es 8 MUSEUM OF COMPARATIVE ZOOLOGY. 145 a disappointing failure, is the transfer from the salt water and its added alcohol to 50% alcohol. If the animal is but partially narcotized, the muscular contraction induced by the transfer will spoil the specimen. If, on the other hand, it be left too long, the weaker parts of the body wall, especially the upper smooth zone of the introvert, swell out quite rapidly (through osmosis?), and not only the external form but the his- tological elements as well are badly distorted. The golden mean be- tween these two extremes yields specimens as excellent for histological work as for the study of external relations. Material preserved in this way may be well stained by all methods. Where any stain has been of especial value in the study of particular organs or tissues, it will be noted under the topic in question. In this place I wish to express my thanks to Prof. E. Ehlers of Gottingen and to Prof. A. Dohrn ef Naples for past favors, and to Mr. A. Agassiz, Prof. E. L. Mark, and Prof. E. B. Wilson for more recent kindnesses in supplying me with material for this study. II. External Anatomy. Selenka (83, p. 92) has given a full description of the external char- acters of Sipunculus nudus. There are however numerous points of in- terest which first appear in a well expanded specimen, and which deserve especial attention. The body consists of a large posterior region covered by the quadratic integumentary areas (Hautfelder) and of a portion anterior to these, which is called the introvert. 1. INTROVERT. This includes on the average one sixth of the entire length of the animal, and has in general the shape of a truncated cone (Fig. 1), the anterior base of which, only a little less in diameter than the posterior, is surmounted by a wreath of tentacles which nearly encircle the mouth. This region is ordinarily found entirely, or for at least two thirds of its length, invaginated into the following portion of the body, and is only rarely seen extended. In the latter condition it measures from three to four centimeters in length. The circular muscle bands, which are sepa- rate in the posterior part of the body, are here fused into an unbroken sheet of muscular tissue. The fusion takes place abruptly, and causes the immediate cessation of the integumentary areas (Hautfelder) due to the banded musculature, thus fixing a definite posterior boundary to the introvert. On the latter one can distinguish (Fig. 1) four regions : VOL. xxI.— No 3. 10 146 BULLETIN OF THE (1) a posterior papillate zone? (z. pap. p.), (2) a smooth zone (z. lev.), (3) an anterior papillate zone (z pap. a.), and (4) the tentacular crown (pli. éa.). The posterior papillate zone occupies the posterior half of the intro- vert, and shows a posterior portion, which is thickly studded with papillae, and is dark brown in alcoholic specimens, and an anterior part much lighter in color, where the papillee are somewhat scattered. The lighter, almost translucent appearance of the anterior portion of this zone, which permits the central mass of the csophagus and retractors to shine through as a dark band, is due to the great diminution in thickness of the muscular layers. The line of demarcation between the lighter and darker portions of this zone is somewhat definite, and is marked inter- nally by the fusion of the longitudinal muscles into a continuous sheet, and by the entrance into the body wall of the first large composite nerve given off from the ventral nerve cord (¢f. infra). The papillz of this region are all shaped like the bowl of a spoon with the concavity directed toward the body and the tip posteriad. Adjacent to the integumentary areas they are closely crowded, and overlap like the shingles of a roof, so as to hide the skin completely. They vary in size and shape, but are in general broadly pointed, measuring on the average .25 mm. in length, and .65 mm. in breadth.’ Passing forward, this general form is preserved until the point of transition from the dark to the light portion of this posterior papillate zone isreached. Here the papille grow abruptly smaller in absolute size, though relatively longer and narrower, until the characteristic mammiform papilla of the light region is reached. These only are represented in Figure 1. They are much lighter in color, and much less crowded, than the posterior papille, and leave irregular patches of skin entirely free. In breadth such a papilla measures .25 mm.; in length, 37 mm. Iam unable to confirm the statement of Andreae (81, p. 205), that they are arranged “in gleichen Abstinden” ; for the relative distances are extremely variable, being from 70 to 300 w in the anterior portion of this zone. I was also unable to find the arrangement in a double spiral reported by Vogt und Yung (’88, p. 381). There seemed to be in fact no regular arrangement common even to a majority of the specimens examined. Passing forward, the papille grow ever sparser, and finally terminate along a well defined line, which marks the beginning of a smooth zone (z. lev., Fig. 1) entirely free from papillz. It measured 7 mm. in breadth in a specimen which had an introvert of 4 cm. total length. Anterior to 1 The posterior half of the posterior papillate zone is not shown in Figure 1. MUSEUM OF COMPARATIVE ZOOLOGY. 147 this is a zone (z. pap. a.) with small papille ; this measured 3 mm. in breadth in the same specimen. The papille of this zone appear super- ficially as minute discoidal elevations of the skin. In well expanded specimens, the tentacles droop over and nearly cover this zone, which is not separated from their base by any definite line, since the papille extend forward a short distance over the aboral surface of the tentacles, becoming gradually less frequent. They are indeed met with occasion- ally on the whole of this surface, but are entirely wanting on the oral aspect of the tentacles. In all well expanded specimens these regions are as well defined as in the one which has served as the basis for this description, and the zones have the same relative size as in the measure- ments given. 2. TrentTacuLaR Fo.p. The tentacles (Tentakelmembran) originate in the larva as two folds of the oral margin, —“‘lippenartige Falten,” Hatschek (’83, p. 115), — separated dorsally but continuous ventrally, and lying right and left of the median line. Starting, then, from this primitive condition, the form found in the adult would be reached, if it be supposed that these flaps of skin are plaited radially to the oral centre, and that the growth is more rapid on the oral surface as well as toward the margin, thus ne- cessitating a reflection of the flaps back upon the aboral surface. For a careful examination shows that in well expanded specimens the so- called tentacles consist of a thick fold of skin surrounding the terminal oral orifice with numerous plaits and folds arranged radially. This continuous flap may be called the tentacular fold, in preference to membrane, since the latter suggests a false idea of its nature, and its subdivisions may conveniently be termed the radial plaits. The general form of the tentacular fold, as viewed from above (Fig. 2), may be said to be that of a horseshoe with the smaller dorsal curvature interrupted on the middle line. The external or ventral semi-circum- ference is reflected over the superior portion of the introvert, whereas the internal or dorsal portion makes a ventral flexion over the mouth, and lies higher than the other half of the tentacular fold. The superior height of the dorsal portion of the flaps in the larva caused Hatsvhek ('83, p. 115) to regard this as the “ Anlage” of the first pair of tentacles. He knew nothing, however, of the further development of this portion, which probably represents the origin of the dorsal horns, since separate tenta- cles do not exist. In the adult, at any rate, this region shows two horns (Figs. 1 and 2, crnu. d.) projecting ventrad over the oral aperture, and 148 BULLETIN OF THE forming together the dorsal curve of the horseshoe. Brandt (’70, p. 22) assigned a horseshoe shape to the crown of tentacles, but this has been declared false by later investigators. This normal hippocrepian form is often distorted when the introvert is only partially extruded, or when there is undue muscular contraction within the soft mass of the fold itself, and it is always more or less disguised by the secondary radial plaits into which the fold is thrown. The relation of these parts will be easily understood by comparing Figures 1, 2, and 3. It will thus be seen that the reflection of the ten- tacular fold, with its deep radial plaits, brings into prominence regions — the “triangular tentacles” of some writers — which alternate with retreating portions, so as to impart to the margin the appearance of being cut or toothed, especially if the contraction of the muscular ele- ments in this soft fold has drawn it somewhat out of shape. In fact, the description uniformly given by systematic writers has represented the tentacles as a membrane with numerous marginal incisions. This error is due in part to distorted specimens ; the true form may be said to be crenate. Therefore one can speak of the formation of tentacles only in a gen- eral sense. But the fold may be regarded perhaps as the simpler form, from which, by the development of certain areas alternating with regions of reduction, the more highly specialized digitate tentacles might be de- veloped. Only the main folds are represented in Figure 2. These may be much complicated by the appearance of subordinate plaits, until the general plan is confused by a mass of detail. The more simple forms proved, on microscopic examination, to have been the most successfully killed, in that the muscular elements were in a more perfectly relaxed condition. The aboral surface of the tentacular fold is concave, except in the dorsal horns, where it is convex ; it has the same radial folds as the oral surface with which it is approximately parallel. Numerous low circular ridges traverse the aboral surface, and bear in varying number the small papillee already mentioned. These ridges are not regular in course or size, and evidently vary with the convexity of the tentacular fold. In the midst of these, on the dorsal median line, can be found on careful examination a small oval opening (Figs. 2, 3, can. 0. ceb.). It is often so hidden in the ridges of the aboral surface as to make its dis- covery a matter of some difficulty. The opening measures about 1 by 0.5 mm., with its long axis transverse, and is surrounded by an evident marginal ridge. This is the opening of the canal of the cerebral organ, to be described later. MUSEUM OF COMPARATIVE ZOOLOGY. 149 III. Histology. 1.- Bopy Watt. In the body wall may be found the following layers, beginning with the surface : (1) a cuticula, (2) a hypodermis, (3) a cutis, (4) the mus- cular system, covered internally by (5) a delicate peritoneal membrane. a. Cuticula and Hypodermis. The cuticula consists of a substance optically like chitin, but differing from this, as has often been pointed out, in being soluble in boiling KOH. It is further aberrant in the absence of cellulose, which has been shown by Ambronn (’90) to be characteristic of true chitin. Tests with chloriodide of zinc showed neither any trace of blue nor the sub- sequent pleochroismus described by that author for true chitin. This layer is undoubtedly the product of the underlying hypodermal cells, which are everywhere found in a single layer, and normally display a sac-like form, although, as mentioned by Vogt und Yung (’88, p. 383), they may by contraction or compression of the body wall be drawn out into the form of spindles. This has given rise, as they mention, to the erroneous interpretation of such groups of elongated cells as being sensory organs. In contradistinction to these authors, I do not find the proximal ends of these cells ordinarily continuous with fibres which extend to the muscular layer, and cannot agree with them in regarding the entire mass external to the muscles as one layer. For if one exam- ines a transverse section of the body wall as seen in Figure 5, the major- ity of the hypodermal cells are seen to be clearly marked off from the underlying tissue by the cell wall. The fibres of this subjacent tissue, to be described later, often extend up to the bases of the hypodermal cells ; but close examination in favorable regions shows the connection to be merely apparent. Often when these cells are crowded and distorted by near-lying glands, one is inclined to believe in an actual continuity of cell and fibre which cannot be demonstrated, and which, so far as I could find, is not present in less confused regions. Lying partly in the hypoderm, but mostly below it, are the dermal bodies (Hautkérper), which are of three sorts. A description of these will be given in the account of the cutis, with which they are most closely associated. No further specialized cells of any kind were found, neither sensory cells nor peculiar nerve endings of any sort, and I am inclined to regard the claims of their presence as founded upon the ex- 150 BULLETIN OF THE amination of poorly preserved material. Several times it was observed that delicate filaments, branching from some nerve fibre of the skin, pro- ceeded to the hypodermis and penetrated apparently undifferentiated cells; certainly the distal surface of these cells bore no sensory hair or bristle. But the exact manner of termination of the nerve filament remained in doubt. b. Cutis. In placing a cutis in the list of the layers of the body wall, I am not unaware that the two most recent publications on Sipunculus deny its presence. As already mentioned, Vogt und Yung (’88) regard the entire extra-muscular layer as hypodermal, while Andrews (90) evidently dis- credits the existence of a cutis by omitting the name altogether. What, then, is the actual condition of affairs? In sections one finds (Figs. 4, 5) between the hypodermis and the muscular layers a mass of gelatinous tissue, traversed in all directions by fibres, and containing not only glands of various sorts, but nerve fibres and pigment cells as well. Thus, though varying greatly in thickness in different regions of the body, it may properly be regarded, in the light of the characters men- tioned, as a true cutis. The principal part of this layer is the connect- ive-tissue jelly, homogeneous in its consistency and forming the matrix in which the nerves and dermal bodies lie. It is traversed in all direc- tions by a multitude of the finest connective-tissue fibrils, which anas- tomose but rarely. Occasionally a minute nucleus can be observed in the course of a fibre. Scattered nuclei of a larger size, connected with nerve fibres or amoeboid cells, are not infrequent in this mass, and have been erroneously regarded as belonging to the connective tissue. Irregular ameeboid cells with but one nucleus and of a different refractive index from the general mass are found, sometimes in considerable num- bers, and are perhaps similar in nature to the leucocytes of the tentacles, to be described later. c. Pigment Cells. Besides these elements one finds multinuclear cells of irregular out- line more or less filled with granules of a highly refractive character. These are the pigment cells, so characteristic of this group that they de- serve special consideration. Andreae (’81, p. 209) has given almost the only description of these peculiar structures. He represents the pig- ment granules as closely packed in meshes of connective tissue on which nuclei may be observed. This appearance is no doubt due to poorly MUSEUM OF COMPARATIVE ZOOLOGY. 151 preserved material; the true nature of the cells, as well as the process of deposition of the pigment, can clearly be understood from a section such as is shown in Figure 5. The cutis contains here a group of irregu- lar ameeboid () cells, distinguishable from the surrounding mass by their refractive power, and containing from five to many deeply stained nuclei 3m in diameter. The cells are all without any proper membrane, though often surrounded by an envelope of connective fibres, and enclose a varying number of highly refractive granules distinguished by indiffer- ence to any coloring matter but picric acid, which they take up with great avidity. Their natural color by transmitted light is a greenish yellow ; by reflected, however, a dull brown or yellow. That the process of for- mation is gradual becomes evident on the examination of a section like Figure 5. In some cells are seen only a few such granules, or they are confined to one part of the cell ; and all stages are present from this up to a mass of closely packed granules in which neither cell plasma nor nuclei are visible. Even in such cells the nuclei could be demonstrated by prolonged staining and thin sectioning. The plasma of these cells shows at first some slight affinity for hematoxylin, which disappears as the granules become more crowded. In the first stages of deposition the granules are mere bright dots too small to be measured; in the more thickly crowded cells they have reached often twice or thrice the size of a nucleus, and alongside of these are also granules as minute as those of the earlier stage. Such cells are present not only in the cutis, but also in all other organs of the body. They are not always as numerous as shown in Figure 5; in the tentacles they are quite rare, whereas the nervous system contains especially large numbers in all its parts. Seme- what similar cells were found by Biirger (’90) in the nervous system of Nemertines. Wherever these cells are found in Sipunculus they dis- play the same structure, except that elsewhere than in the cutis they are only found well filled with granules. Whether a migration actually takes place, as is suggested by their evidently amceboid character, I was unable to determine. It is to the presence of large numbers of these cells that the papillz of the posterior zone and the walls of the cerebral canal owe their dark color. The pigment cells are present in much greater numbers in large than in small specimens, i. e. in older than in less mature ones. I can confirm the statement of Vogt und Yung (’88, p- 386) that fasting rapidly decreases their number. It is not a neces- sary conclusion that this is to be regarded as reserve material. For even waste may, under the pressure of failure in the food supply, be drawn into the system and worked over again, 152 BULLETIN OF THE d. Dermal Bodies. Various opinions have been held by different authors as to the mor- phological value of the dermal bodies. Keferstein und Ehlers (61) de- scribed them as glands, Leydig (’61) regarded them as sensory organs ; but later writers have inclined to the former view. Andreae (’81) de- scribed three varieties of these organs, whereas Vogt und Yung (’88) made the claim that the sensory organs, Andreae’s third variety, do not exist, and that all of the glands are merely modifications of one sort. As to the first statement, they are undoubtedly correct ; but to the latter view I am unable to assent. The transition from one sort of gland to the other, though plausible from surface views such as given by those authors, is only apparent. For if one examines carefully prepared sec- tions, the seeming similarity gives way to a well marked difference. Not one of the glands is actually unicellular, as claimed by Vogt und Yung, and the multicellular contain never less than five cells, which serves to separate them clearly from the other kind, which is always bicel- lular. Moreover, their behavior toward staining fluids is very differ- ent. For while the bicellular glands take up hematoxylin with such rapidity as to become almost black in a few seconds, the multicellular are but little affected by this reagent. Carmine solutions stain the two about equally, but bring out the nuclei, which are invisible in a haema- toxylin stain. And, finally, the morphological elements of the two sorts are essentially different, as will be shown. The old classification of bi- cellular and multicellular glands will therefore be retained, and the structure of each will be examined more in detail. The bicellular glands, when viewed, even in the living animal, directly from above, display a clear zone along the line of the partition wall be- tween the cells. This is invisible if the gland be viewed from the side, or at a considerable angle, and gives rise to various images if the line of sight be more or less nearly perpendicular to the surface. As the pa- pille which contain the glands have sloping sides, never exactly alike, it is easy to understand how views of the glands from many different directions may be had from a surface inspection, and how the various images may give the appearance of a series from the bicellular to the multicellular gland. If one examines, however, sections of the skin per- pendicular to the surface (Figs. 4, 5), the bicellular glands appear at once as a distinct type. Ordinarily spherical, they may often be found mutually flattened where several lie closely pressed together. They vary in diameter from 40 to 50 p, and present very different appearances MUSEUM OF COMPARATIVE ZOOLOGY. 153 according to the stain employed. The greatest number of structu- ral details are obtained from those lightly stained with hematoxylin. Sections thus stained are represented in Figures 6, 7, and 8. Though evidently differentiated hypodermal cells, they lie almost entirely in the cutis, enveloped by a delicate coat of connective tissue, in which can be found occasional flattened nuclei. The distal half of each cell is occu- pied in great part by a large vacuole, directly continuous with that of the adjoiming cell. The space thus formed measures 12 X15 x 25 p, and communicates with the exterior by means of a narrow canal opening simply on the surface of the cuticula. The duct measures 6-8 p in di- ameter, and at the distal end of the cell does not lie in the centre of the neck (Fig. 9). The connective-tissue envelope does not penetrate between the cells, which in consequence are separated only by their own membranes (Fig. 6 or 11,*), and these, continued over or under the distal vacuole, appear, if the cell be viewed along the plane of the partition, to bisect the vacuole (Figs. 6, 10); the latter suffers, however, a slight constriction along this line, so as to impart to it in transverse section a biscuit-shaped appearance (Fig. 7). Its longitudinal section is cordi- form, as shown in Figure 6. The two large clear spherical nuclei, 9 in diameter (Figs. 10, 11), may be differentiated with carmine or saf- franin, and then appear in the lower half of the cell, usually nearly symmetrical to the dividing membrane. Lach displays a single central deeply stained nucleolus, and many minute chromatine granules. If the plane of the section pass transversely below the vacuole (Fig. 11), the cells are seen to possess a hemispherical form, and the dividing mem- brane to make an S-shaped curve. Whether active or resting, a clear zone of plasma forms the periphery of the cell on all sides, and is therefore adjacent to the vacuole, as well as to the external surface of the cell. This zone is traversed radially by delicate fibrils, the beginnings of the plasma reticulum which fills the cell, but which ordinarily is easily seen only in this clear zone. In every sec- tion one finds a few cells of this sort, which, besides an empty vacuole, exhibit this reticulum very plainly throughout the entire faintly tinted cell body (Fig. 8). They are evidently the functionally inactive or resting cells. The first stage in secretion is seen in the accumulation of numerous granules in the basal portion of the cell (Fig. 6), which are stained deeply with hematoxylin, and by continual aggregation 1 Strictly speaking, Figure 8 represents the /ast phase in secretion. The first differs only in the absence of matter in the vacuole, and of the few granules just below it. 154 BULLETIN OF THE finally obscure the reticulum, and impart to the entire cell, save its marginal zone, an appearance almost opaque (Fig. 7). The secretion first appears in the vacuole in the form of minute beads at the periph- eral ends of the reticular fibrils which traverse the clear zone and terminate at the edge of the vacuole each in a single bead (Fig. 7). During the formation of the secretion in the vacuole, the mass of opaque granules moves toward this space ; and the close of the process is represented in Figure 8, where the vacuole is filled with a homogeneous mass, displaying in a somewhat lesser degree the affinity for hzema- toxylin stains which characterized the granules while contained in the cell substance itself. At the same time, these granules have disappeared, except a few which are grouped in a zone about the vacuole; and the cell has become thereby so much lighter as to show the reticulum at its proximal end. This description of the activity of these organs would seem to place their glandular nature beyond question. In comparing the two sorts of glands, it is of great importance to note that the cells do not show in this case any connection with nerves, whereby they are sharply distin- guished from the multicellular glands. The space (Spalt) which Andreae (81, p. 215) describes as existing between the cells of these glands was found not infrequently in some preparations, but it is evidently due to shrinkage. The double membrane separating the cells, described by the same author, was probably produced in the same way. The distribution of these glands is peculiar. Over the general sur- face of the body they are found only rarely, and on the introvert they are present only in the papille, the interspaces being entirely free from them. Each papilla of the posterior zone of the introvert shows in surface views an irregular double or triple row crossing the convex outer surface near the base, and occupying one half to one third of its entire breadth. Rarely isolated bicellular glands are found near the tip. This regular limited distribution allows perhaps a conjecture as to their possible function. Inasmuch as the behavior of the secretion toward coloring reagents would seem to mark it as mucine (cf. Hoyer, ’90), may it not be that these glands furnish the lubricant demanded by the con- stant movements of the two walls of the introvert? The papillz are especially affected, of course, rubbing against each other in the con- stant inversion and eversion. They receive, furthermore, the greater part of the pressure as the animal forces its way through the sand. in the method described by Andrews (’90, p. 391). The animal does not advance backward with the “ Eichel voran,” as maintained by An- MUSEUM OF COMPARATIVE ZOOLOGY. 155 oS dreae (’81, p. 220)! The secretion may also be of use in cementing the sand grains into a sort of tube noticeable when the animals are dug out of the sand.? The multicellular glands present a type easily distinguishable from that just described. They are to be met with everywhere, not only in the papille, but lying in the interspaces as well, and extending up into the clear zone of the introvert, where they are the only differentiated hypo- dermal cells. Never much crowded, they become here sparser, until they completely disappear at the level of the upper papillate zone; nor are they to be found in or above this zone, nor at any point on either sur- face of the tentacular fold. The multicellular glands may be identified on surface preparations, but an insight into the histological relations is first afforded by sections. With hematoxylin the cell body stains lightly but uniformly, the mass at the distal end more deeply (Fig. 12), but with this stain no nuclei can be found either in the cells or in the con- nective-tissue investment of the gland. Each gland is seen to be made up of a number of flask-shaped cells, which are separated by thin par- titions and which unite at their distal ends into a duct piercing the cuticula and opening upon its surface to the exterior. Andreae (’81, p- 216) was unable to find any nuclei in these cells. The application of a carmine stain, however, shows their presence near the proximal ends of the cells (Fig. 14), where they often lie flattened against the cell membrane by the crowding of the granules accumulated in the cell plasma. The same stain demonstrates also (Fig. 13) smaller nuclei at various points in the connective-tissue investment. There is likewise seen to be a difference in the cells of any one gland which indicates alternation in secretive activity. Thus the plasma of some cells is thickly crowded with large granules, which are entirely wanting in other cells. This is most ‘clearly demonstrated in a transverse section of the gland, as shown in Figure 13. The cells differ in intensity of color to correspond with the number of granules present, and large distended cells are found near those which are evidently thinner and poorer. The pro- duct of these glands is a substance more waxy than fluid, to judge from its manner of caking in the duct, and breaking up into small fragments, like sebaceous material. Its discharge is evidently gradual like its pro- duction ; for I have never found a gland empty, nor does the total amount of secretion present vary greatly.’ This alternation in func- tional activity between the various cells of one gland and the constancy 1 For this suggestion, and the observation that such a tube exists, at least for S. Gouldii, I am indebted to my friend, Mr. C. B. Davenport. 156 BULLETIN OF THE of secretion from the gland as a whole stand in strong contrast with the resting and active stages in secretion as found in the bicellular glands. The function of the secretion from the multicellular glands is probably more general, since the glands are so uniformly distributed over the sur- face of the body.? One of the most peculiar points in connection with these glands is their relation to the nervous system. In almost every instance, a nerve fibre can be clearly traced from the subdermal plexus to the proximal end of the gland, and on fortunate sections (gl.!"" n. fbr., Fig. 14) it was possible in a number of cases to demonstrate an actual connection be- tween gland cell and fibre, in that the former was prolonged into a deli- cate fibril, which, passing out from the glandular cavity in company with similar fibrils from the adjacent gland cells, entered within the neuroglia into the substance of the nerve and appeared to make up its fibrillar structure. This connection of gland cell with nerve fibre is found in all regions of the body, and is not confined, as Andreae maintained, to the posterior tip (Eichel) of the animal. In spite of this direct nervous connection, there seems to be little ground for regarding these struc- tures as sensory organs, the interpretation put upon them by Leydig (61) and others after him. A careful examination brought to light only the single kind of cells, which are in no way comparable with sensory cells. On the other hand, it may be said that a rich nervous supply is not without parallel for glandular structures. The capsules of these glands are very thick, and nuclei are found on the partitions between the cells, showing that each cell is enclosed in a separate investment. But the partitions are never as strong as the gen- eral sheath of the entire gland, which possesses nearly the optical appear- ance of muscular elements. The variations in size are so great, being from 40 x 50 to 90 X 150 p in the same region of the body, that the probability of a muscular capsule snggests itself strongly. Allusion has already been made to the relation of the glands to the papilla. In each papilla of the posterior zone, one finds at its tip an indefinite crowded mass of multicellular glands, and in an irregular double or triple row across the basal half, the bicellular variety. All of these open upon the external convex surface of the papilla. That the relation of glands to papilla is an intimate one, first appears clearly from the formation of the latter. As it is evident that new papille must be added with the growth of the animal, it is of interest to note the steps in the formation of these structures. The first indication is an evident 1 See Addendum. MUSEUM OF COMPARATIVE ZOOLOGY. 157 crowding of the otherwise scattered multicellular glands in the centre of some interspace of more than average size. Then the bicellular glands make their appearance as a loose double row, and so quickly that no intermediate stage could be found. They grow more crowded, and soon after their appearance a shallow furrow may be seen to enclose the mammiform area which they occupy. The skin seems to be tucked in on the three sides at once, and as the furrow grows deeper the papilla becomes more and more prominent. The growth in any papilla is in- crease in breadth rather than in length, so that the relative dimensions gradually change, and the older papilla in any region are markedly wider than those more recently formed, while the length remains nearly constant throughout the entire zone. Sense Papille. — The papille of the anterior zone are thickenings or modifications of the hypodermis, rather than typical papillz like the posterior ones; they correspond probably to the “ Wimperdriisen” of Vogt und Yung (’88, p. 406). They are externally marked as small rounded prominences of the skin, varying in diameter from .15 to .40 mm., and often exhibit an oval or dumbbell-shaped opening in the centre of the prominence. Viewed in cross section (Plate II. Fig. 18) they display an evenly rounded contour, which is surmounted by cilia. These are short on the lateral margins of the area, but increase in length as they approach the apex, where they are longest. If one notices the basement mem- brane, here for the first time well developed, it will be seen that the prominence is almost entirely due to the increased height of the hypo- dermal cells, which have changed their form from that of the usual hypo- dermal elements so as to assume the character of filamentous cells, such as compose the hypoderm of the tentacles, with which they are identical. The isolated elements of the latter (Plate II. Fig. 21) might, indeed, an- swer equally well as types of these cells. In addition to the elongated nuclei of these cells, some few rounded ones are seen scattered between the filamentous cells, more usually near the basement membrane. Perhaps more common than the normal expanded form of the papille, just de- scribed, is the retracted condition shown in Figure 17. Such are found in all degrees of contraction, alternating irregularly with the normal form. The papilla figured is perhaps fully retracted, and one notes that the ap- ical area lies sunk in the structure, so as to give the effect of a cavity and aduct. That this is due in part to the contraction of the cells themselves, and in part to the retraction of the central portion of the papilla, is clear from a comparison of Figures 17 and 18. In spite of this, I was unable to identify any muscular elements connected with the organ, the many 158 BULLETIN OF THE fibres which are attached to the proximal side of the basement membrane being, in refractive power and other optical properties, and in the char- acter of their nuclei, indistinguishable from the other cutis fibres. One often finds such an appearance as is given in Figure 16. This is evi- dently a tangential section of a similar organ; the central clear space represents the hollow produced by the retracted apical area, and the apparently round nuclei are merely the elongated forms transsected. The appearance of the cells suggests no glandular nature, and nothing could be found resembling a secretion. For this reason I am inclined to ques- tion the propriety of the name “ Wimperdriisen” (Vogt und Yung, ’88, p- 406), and to regard them as simple sensory organs. The retraction of the apical area would then be a simple method for protecting the Jong and delicate cilia during the advance of the animal through sand, similar to that reported by other observers for such organs in various groups. I was unable to discover any nerves connected with these organs, so that their sensory nature remains unproved, although none the less probable (Hisig, "87, p. 548). The structures just described are distributed over the aboral surface of the tentacles in somewhat irregular lines, becoming less frequent toward the margin of the fold, but are not present on its oral aspect. They suggest strongly the diffuse sensory organs (Becherorgane) of Capitellide, described by Eisig (’87, p. 547), but they are certainly less highly differentiated in the following respects :— 1. The cilia are not confined to the apical area (Polfeld), but are more or less diffused over the entire prominence. 2. There are only a few of the nervous nuclei (Korner) present in the basal portion. These structures recall the cup- shaped organs of Capitellidze most strongly in the character of their ele- ments, the filamentous cells, in their relation to the general hypodermis, and in the thin cuticula which covers them. In both cases, connection with nervous elements remains a matter of conjecture. Very similar organs have been described by Spengel (’80, p. 465) for Echiurus, as appears at once from a comparison of the figures given by that author (Taf. XXIV. Figs. 21, 22). These, however, differ materi- ally from those in Sipunculus in two respects : first, no cilia were present (Spengel believes them to have been lost through poor preservation); sec- ondly, a fact of more importance, a large number of unicellular glands are found immediately below and in connection with these organs in Echiu- rus. The latter are certainly not present in Sipunculus. The distribu- tion of these organs is quite different in the two forms, since there occur from one to seven on each of the papillae of Echiurus, whereas in Si- punculus they are confined to the small anterior zone of the introvert. MUSEUM OF COMPARATIVE ZOOLOGY. 159 e. Muscular Layers. Of the muscular layers the diagonal is not present in the introvert. The circular layer, which is banded throughout the rest of the body, fuses at the end of the integumentary areas into one continuous sheet, and grows gradually less important anteriad, being almost entirely wanting in the anterior zones. The longitudinal muscular bands do not fuse until the middle of the posterior papillate zone is reached. From this point anteriad they also become reduced so that in the smooth zone the entire muscular layer measures but 70 to 90 » in thickness. This rem- nant passes over into the retractors in a manner to be decribed in treating of the tentacular musculature. 2. TENTACULAR FOLD. A cross section of the tentacular fold shows that it consists of two layers of skin, which form the oral and aboral walls of an irregular cay- ity, traversed perpendicularly by numerous trabecule binding the two sides together (Fig. 3). This cavity is the extension of the so-called blood system, and is often found more or less filled with a coagulum. The character of the oral and aboral walls of this cavity differs: the structure of the oral portion will be considered first. a. Oral Wall. The cuticula (Plate III. Fig. 23) is extremely thin, never exceeding 2m, and usually appearing as a fine double contour. It is pierced by many pores for the exit of the fine cilia, which cover this surface from the apex of the fold down into the mouth. Evidently the inversion of surfaces in the retracted condition of the introvert led Selenka ('83, p. Xvil) and others to regard the oral surface of the tentacles as with- out cilia, and to maintain that the aboral surface was ciliated, exactly the reverse of which is true. The hypodermis (Plate III. Fig. 23) is composed of very high cells, which are in contact merely by their distal ends. Proximally they are prolonged into delicate processes, by which they are attached to the base- ment membrane. These cells are of the type of filamentous cells (Haut- fadenzellen) described by Eisig (’87, p. 300). Lying nearly in the centre of the cell is the elliptical granular nucleus, which measures 11 by 4 xu. These cells are exactly similar to those contained in the sensory organs before described. Some such cells are seen in Figure 21, d, f (Plate IT.). In addition to these there are occasional cells in the hypoderm, the nuclei 160 BULLETIN OF THE of which are narrower and stain much deeper, which possess a denser, more highly refractive cell body. Figure 21, a, c, e, represents these cells, which are seen a situ at cl. sns., Figure 23. These may be sensory cells ; I was, however, unable to discover the sensory hairs described by Selenka (’83, p. xvii) as found on the external surface; these cells certainly possessed merely such cilia as those adjacent. At the level of the mouth there is a transition from these filamentous cells to the columnar cells of the intestinal tract. This serves to fix the level of the oral opening proper, which would otherwise be indefinite on account of the various degrees of expansion or contraction of the animal. b. Migratory Corpuscles. Between these filamentous cells are found at varying heights highly re- fractive spherical nuclei 4 in diameter. My attention was first called to them in a preparation stained by Hamann’s carmine (Plate II. Fig. 15), where they become prominent by reason of their being stained deeper than the other nuclei. A more careful examination showed that they were not accidental, as at first surmised, but definite independent structures. Each is surrounded by an irregular clear zone varying in width from a mere line to one half the diameter of the nucleus. By means of these peculiarities, such cells were traced back through the cutis, where they were most abundant in the spaces just below the basement membrane, to the blood cavity, and were found to agree precisely in size and optical character with one kind of blood corpuscle found in the coagulum there. They may then be regarded as migratory corpuscles or leucocytes, analogous perhaps to those of vertebrates. Similar cells are often met with, though never in such numbers, throughout the body wall. The thin basement membrane to which the processes of the filamen- tous cells are attached is not everywhere equally distinct. Owing to the contraction of the different areas, it may be thrown into extensive and complicated folds, which, combined with the basal processes of the fila- mentous cells, render its identification a matter of difficulty, but in suitable regions it may be identified beyond a doubt. 3eneath this membrane lies a cutis, very similar to that of the body wall. It differs chiefly in the scarcity of pigment cells and in the en- tire absence of glands, The ‘ Wimperdriisen ” seen by Vogt und Yung (88, p. 406) on the oral surface of the tentacles, are merely appearances due to unequal contraction of certain areas, which produces structures superficially similar to the sensory organs of the anterior papillate zone already described. The cutis is further peculiar in the possession of MUSEUM OF COMPARATIVE ZOOLOGY. 161 numerous muscular elements, which are primarily arranged about the blood cavity. The relation of these to the body musculature is of considerable interest. c. Musculature. If a transverse section be made in the plane of the annular mass of muscle surrounding the pharynx which is produced by the fusion of the four retractors, there appears only an indefinite mass of confused fibres. If, however, the section be cut in any longitudinal plane, it will be seen that the longitudinal fibres which compose this mass divide into two unequal parts, each of which draws its fibres from all parts of the origi- nal muscular mass. In such sections each of these portions appears like a band ; the smaller curves over into the muscularis of the body wall of the introvert, or rather goes to form the longitudinal muscles of this, its fibres being directly continuous with those of the predominant longitu- dinal layer. The other and larger portion ascends into the tentacular fold ; a few of its fibres follow the aboral surface of the blood cavity, but by far the greater number are continuous as an apparent muscular band along the oral side of the cavity immediately adjacent to the latter. At the base of the tentacular fold it is thickest, measuring half the thickness of the oral wall in which it lies; but as it advances distad through the tentacular fold, fibres are continually given off peripherally, so that they radiate toward the surface. These terminate in the vac- uolated portion of the cutis in some manner not exactly determined. In this way the muscular band becomes looser and looser by the gradual loss of its elements, until at the tip of the tentacle only a few fibres remain, which attach themselves there. In cross sections the tentacnlar fold shows a few circular fibres, immediately adjacent to the blood cav- ity, which turn into the trabeculz and cross into the corresponding layer of the opposite wall of the fold. In addition to these, the trabecule have other fibres which cut the muscular band at right angles, and run from one side of the tentacular fold to the other. At the outside of the muscular band there can be found usually a few circular fibres. If one considers that this muscular band, prominent in longitudinal sec- tions through any plane, thus represents a muscular sheet extending throughout the whole tentacular fold, and that this lies in the cutis of the oral, or in an expanded condition convex, surface of the blood cavity, with its fibres radiating into every fold of the tentacles, — if one remembers, further, that it is at its base connected with the fused re- tractors, and is in fact merely an extension of them, —then its action in the inversion of the tentacles by drawing in and packing together VOL. XXI. — NO. 3. 11 162 BULLETIN OF THE the various folds and plaits becomes at once clear. Furthermore, the muscles concerned in emptying the blood cavity are primarily the power- ful trabeculee and the longitudinal muscles, whereas the circular muscles, which are comparatively scanty, are only of secondary importance. The cutis of the oral fold contains also numerous vacuoles in groups near the basement membrane, and these may be seen in transverse sec- - tions filled with the migratory cells previously mentioned. In addition to these small leucocytes, occasional larger granular cells are found in the lacunz. These correspond again to the granular corpuscles of the blood. They do not make their way into the hypodermis. A tissue which might be homologized with the supporting tissue of Phoronis does not, according to my observations, exist in this form.” Lastly, lining the blood cavity and covering the trabeculz is an endo- thelium of very flat cells with proportionally large nuclei. This en- dothelial lining is continuous, and is adjacent to a mass of gelatinous connective tissue, which is without vacuoles, so that the blood corpuscles could reach the hypodermis only by a definite migration through the endothelium and the connective tissue. The cavity is often distended by a coagulum which contains corpuscles that, as various writers have maintained, actually differ in size from those of the ccelomic fluid, so that a connection between the two cavities was regarded as improbable. I can confirm the statement of previous writers that no such connection exists. Yet as the corpuscles are in size between the extremes of those in the ccelomic fluid, and not far from the average (cf. the exact meas- urements of Brandt, ’70, p. 3), it is not improbable, in view of the migratory tendency of the corpuscles already described, that the coelomic fluid receives its quantum from the blood system by the active emigra- tion of the corpuscles which are formed in that system. This was con- jectured by Brandt (’70, p. 24), who had found, however, no evidence of such a tendency on the part of the corpuscles. The detailed and careful account of the vascular system given by him has been overlooked by many later investigators. d. Vascular System. Tn contradistinction to Sipunculus Gouldii and to Phascolosoma, the blood cavities of S. nudus are not in the form of regular vessels, but are indefinite lacunar spaces, traversed by trabecule at irregular inter- vals and extending throughout the whole tentacular fold, everywhere almost equally distant from the exterior. 1 See Addendum. » MUSEUM OF COMPARATIVE ZOOLOGY. 163 Numerous facts have been adduced by Andrews (’90, p. 419) to prove the branchial nature of the tentacles in S. Gouldii, chiefly the circulation and the red coloring matter of the corpuscles. Certain structural and other peculiarities compel me to deny the respiratory nature of this system in S. nudus. As was pointed out by Brandt (’70, p. 23), the extreme thickness of the layer of connective tissue in the tentacles would militate against the opinion that respiration takes place to any considerable extent in this part. Furthermore, although I have watched S. nudus in aquaria for considerable periods of time, not only when they were lying upon glass, but also when they were on the surface of the sand, and in their burrows wherever these were adjacent to the glass so as to permit observation, I have seen the tentacles extruded but seldom, and never for more than a second or two, until the water had become so impure as to partially narcotize the animals. The respiratory value of the tentacles when retracted cannot be regarded as very important! But the greatest objection to assigning a respiratory character to this system would seem to be the utter inadequacy of the internal mediation between the vessels and the ccelomic fluid. The possible importance of this system in a respiratory direction must be seriously questioned when one considers that the ring canal and the two blind sacs (in S. Gouldii but one!) buried in the connective tissue of the csophagus, which at best expose but one half their surface to the ccelomic liquid, are the only means of transmitting oxygen from the so-called vascular system to the general body fluid. The observations of Keferstein (’62, p. 47) upon living animals — these were made on Phascolosoma elongatum of a few millimeters in length and fully transparent — showed a constant move- ment of the fluid, but no passage of it from the vessels into the tentacles, or vice versa, except under considerable pressure or violent injuries. The probable lack of respiratory function in the vascular system can- not be extended to all Sipunculids. In this connection it is of great interest to notice that various species are provided (Selenka, ’83, p. xix) with several or many branched lateral appendages attached to the blind sac. Such organs are found in Phascolosoma Semperi, P. maniceps, Phymosoma asser, Dendrostoma signifer, e¢ al. All of these forms pos- sess, according to the same author, long thin filamentous tentacles (ef. his generic descriptions and figures). This peculiarity suggests at once the probability of a respiratory nature for the tentacles; and its occurrence in single species of various genera would indicate that it is a secondarily acquired function.? 1 See Addendum. 164 BULLETIN OF THE The numerous dermal canals close under the hypodermis of 8. nudus are unquestionably of great value in respiration, and the region of the introvert, which is distinguished by thin cuticular and muscular layers, actually not so thick as the walls of the tentacular fold, presents a far greater surface for the transmission of oxygen directly to the coelomic fluid than the entire vascular system. Primarily, then, this system is hydrostatic, and this is probably its chief function in S. nudus. The dorsal and ventral vessels are reser- voirs into which the fluid is driven by the contraction of the tentacular fold. On the other hand, the muscular walls of these vessels serve to force the fluid out into the lacune of the tentacular fold, and thus to move and expand the latter. The varying contraction of these two sets of muscular elements gives rise to the constantly changing form of the tentacles, as the fluid is driven to and fro. This movement might easily simulate, or even under certain conditions become, a circulation. More- over, any method of killing which worked violent contraction would dis- tort the tentacular fold by driving the fluid into the extreme distal ends of the lacune, or by drawing together the entire mass of the tentacular fold, and forcing the fluid back into the dorsal or ventral vessel. It is probably in this way that the lobed or cut form was produced, which has been given as the typical one in all generic descriptions hitherto published. It is worthy of notice that those animals which were killed with expanded tentacles showed the walls of both dorsal and ventral vessels almost in contact, whereas in those which had retracted their tentacles these vessels were so filled by masses of coagulum as to reach a considerable diameter. The probable function, then, of the dorsal and ventral vessels is to receive and hold the fluid forced out of the tenta- cles at the time of inversion of the introvert. e. Aboral Wall. The aboral wall of the tentacular fold differs from the oral chiefly in the undifferentiated condition of the hypoderm. The latter is here com- posed of low non-ciliated cells, identical with the hypodermis of the general body wall, except where it is elevated into the papillae or sensory organs already described. Sensory cells are wanting. The cutis of the aboral wall lacks the vacuoles which characterize that of the oral wall, and there are only very few leucocytes to be found. The thin cuticula, cilia, and sensory cells of the oral, as well as the general sense organs of the aboral, wall of the tentacular fold, show it to be a most important organ of touch, This view is strengthened by the + _— ae erp si MUSEUM OF COMPARATIVE ZOOLOGY. 165 large nervous supply it receives from the brain direct. The cilia un- doubtedly aid in propulsion of food particles into the mouth. 3. NERVOUS SYSTEM. a. Lrain. The supracesophageal ganglion (gz. su’e., Fig. 3) lies dorsal to the blood sinus, between the two dorsal retractors, and is enveloped by an investment of connective tissue. The posterior surface (Plate II. Fig. 22) is marked by a considerable incision in the median plane, and the anterior dorsal margin bears numerous digitate processes, which project into the ccelomic liquid. In sagittal sections the brain appears nearly flat on its ventral side, whereas the dorsal aspect is considerably curved. As seen from transverse sections, however, the dorsal surface is plane, while a deep median furrow (Plate III. Fig. 25) penetrates the ventral wall. Posteriorly (Fig. 25) this is continuous with a partition which divides the brain into two symmetrical lobes. Anteriorly (Fig. 24) the partition fails, and the division is only indicated by the furrow. On the antero-ventral surface is the termination of the cerebral canal (cf. zzfra). The entire ganglion is covered by a capsule (Fig. 25, cps. enc.), the origin of which can only be determined by the consideration of a series of transverse sections. Following such a series from a short distance posterior to the brain, it will be seen that the septum joining the two dorsal retractors is here fused with the dorsal wall of the cesophagus, in which lies the dorsa] vessel. As the posterior extremity of the brain is reached, this septum rises upon the brain, covering its dorsal aspect, and still showing laterally the connection with the dorsal retractors. Imme- diately inferior to the brain lies the dorsal vessel (Fig. 25, va. sng. d.), or, anterior to this, the blood sinus, which is separated from the brain only by its own wall, which thus forms the ventral covering of the brain. The dorsal and ventral layers of the capsule are continuous on those parts of the lateral aspect of the brain where there are no outgoing nerve stems ; but when the latter exist, a neighboring portion of the brain capsule is reflected over them to form the neurilemma (Fig. 25, con’t. tis.). This composite capsule is made up of a loosely woven mass of fibres which often show a plaited arrangement. The discoid nuclei measure 3.5 by 5 p, and are deeply stained in all coloring fluids. Inferior to this basketwork of fibres are found occasional nuclei, which stain very faintly and pos- sess each a few small nucleoli. These are surrounded by a small amount of a granular substance, and are very similar to nuclei found in the midst 166 BULLETIN OF THE of the meshes of the brain itself. Passing inward from this external cap- sule and directly continuous with its elements, fibres penetrate the brain in every direction, either in definite strands, or in a delicate network surrounding the ganglionic cells (Fig. 25). The fibres which make up these meshes are finer than most of those composing the capsule itself, and recall strongly the finer elements of the cutis. With these they also agree in the possession of minute elongated nuclei, although the clear nuclei previously mentioned are by no means rare. These fibres surround each ganglionic cell with a definite covering (Plate III. Fig. 32) of interlacing elements from which others pass off tangentially to neigh- boring cells.. (Cf. Rohde, ’87, Taf. IV. Fig. 44-68.) Ganglionic Cells. — None of the many previous writers on Sipunculus have considered the histological elements of the central nervous system more than cursorily, so that a more extended description of these may be of interest, especially for comparison with the recent exact deter- mination of these elements in many other groups of worms. All the ganglionic cells which were so situated as to admit of a positive answer to the question of their polarity were unipolar, though by no means always unifilar. Such cells as were accurately determined were usually periph- eral, since the mass of other fibres and the confusion of many cells make an accurate determination in the case of those cells which are located in the centre of the nervous mass often impossible. I am inclined to think that in the latter region there are multipolar cells, although the demon- stration of these was not wholly satisfactory. The cells are uniformly without any proper cell membrane. Each lies enveloped in a covering of delicate connective-tissue fibres (Plate III. Fig. 32), which accom- panies the fibrous processes in the form of a delicate sheath (neuroglia). These enveloping fibres are a part of the meshwork which has already been described as arising from its external capsule, and penetrating through the whole brain. Of all the ganglionic cells, the smallest (Plate III. Figs. 24, 25, cl. gn. I.), which usually appear simply as nuclei measuring 6 by 4» (Fig. 30), are the most abundant. They are highly refractive, and show a great affinity for coloring matter. There is a nuclear membrane which is stained deeply, as are also the numerous (4 to 10) nucleoli; between the latter many minute chromatine granules are distinguishable with a high power. These nuclei seem somewhat irregular in shape, varying from circular to oval. This variation I regard as due to the direction of the plane of section, and consider the true form as oval. In most cases it is impossible to find even a trace of a cell body, and I was at first MUSEUM OF COMPARATIVE ZOOLOGY. 167 inclined to doubt the presence of any recognizable cell substance, and consequently to compare them with the “‘ Nervenkerne” described by Rohde (’87, p. 30). But at length fortunate staining and thin section- ing showed unmistakably the presence, in many cases at least, of an ex- tremely small cell body, such as is shown together with the nerve fibre in Figure 31. It will be noticed that the nucleus is oval in this case, and that the nerve fibre proceeds from one of the small ends of the oval. This fact, as well as the variation in form noticed by careful focusing on the nuclei, would seem to warrant the assumption that these nuclei are uniformly oval. From the diminutive size and transparency of the cell body in comparison with the highly refractive nucleus, it is at once evi- dent that the former can be seen only under the most favorable circum- stances. Since I was unable to find any difference in position, size, or optical qualities between these and the other nuclei of similar size and appearance, I feel justified in maintaining the existence of such a cell body for all nuclei of the class. The second sort of ganglionic cell (cl. gn. JJ.) is distinguished by the presence of a much larger cell body (Plate III. Fig. 29). The nuclei correspond so exactly to those of the first class that they can hardly be distinguished from them. I was unable to see that they were either more or less deeply stained, or that they were, on the average, larger or smaller than nuclei of the first sort. The great difference is in the cell bodies, which in this case are several times larger than the nucleus, measuring 20 by 14 », and always evident on account of their slight affin- ity for stains. One or more vacuoles of non-colored matter, the para- mitome of recent writers, may always be found, and in favorable cases there can be seen such a distribution of these as is shown in Figure 32, The paramitome exists in the form of numerous peripheral vacuoles sub- jacent to the enveloping connective fibres, and possibly (?) surrounded by them. The nucleus lies in a zone of clear matter, while the mztome, or filar substance, appears densest external to this. Between these and the first sort of ganglionic elements there exists every possible transi- tion, so that this class is but poorly marked off from the preceding one. The vast majority of these cells are, however, of approximately uniform size, and I therefore cannot agree with Nansen (’87, note, pp. 113, 114) when he maintains that such transitional forms forbid the grouping of these cells in different classes. Such intermediate forms serve rather to explain the development of the one type from the other, without detract- ing from the individuality of either class. 168 : BULLETIN OF THE The third type is that of the large? cells, represented in Figure 28, Plate III. These vary considerably in size and shape ; the mean longi- tudinal diameter is 55 y, the transverse 40m. The cell protoplasm stains rather deeply, and is notably granular. These granules resolve themselves in the nerve processes into fine lines.’ Each large ganglionic cell contains a number of clear spaces, the paramitome, exactly similar to those already described for cells of the second class ; and these are often arranged concentrically, and more or less regularly along the periphery of the cell. The single nucleus, 15 by 12 w in diameter, is usually found nearer the end of the cell from which the nerve fibre emerges, and, in contrast with those already described, is stained only lightly. A nuclear membrane is very distinct, and there is one large nucleolus 2-3 in diameter. In rare cases two smaller nucleoli were found, never more. The nucleus also contains numerous fine granules of chromatine, which are very distinct in the matrix, which remains completely unstained. Nuclei of this class are not infrequently cres- centic, with a clear space enclosed by the horns of the crescent, corre- sponding exactly to such forms as are figured by Rhode (’87, Taf. IV. Fig. 51 et al.). Although variable, these cells represent a more isolated type than either of the other classes, and intermediate forms, especially in nuclear appearance and structure, are rarely seen in the brain. An examination of the ventral nerve cord in transverse section shows a preponderance of cells of the second class. The first class is poorly represented, though the size of the plasmatic portion varies greatly in different cells. Occasionally one finds cells which in their deep staining and nuclear appearance recall the large cells of the brain. But meas- urements showed one such cell to be only 24 by 20 and its nucleus 7 by 11 » in diameter, dimensions which are far smaller than those of the average of the large cells in the brain. These cells do not seem to be regularly arranged in the ventral nerve cord, and no grouping could be found which suggested metamerism. The peripheral nervous plexi possess very few ganglionic elements, and these few are not reducible to the types present in the central nervous system, for they are invariably multipolar, and are situated at the crossing or branching of fibres. 1 It is much better, for the sake of clearness in neurological terminology, to keep the term “giant cells” (Riesenzellen) for the huge elements in the ner- vous system of Nemertines, Annelids, et a/., as German writers have done, than, with Shipley (’90, p. 16) and Andrews (’90, p. 424), to apply the term to such cells as I have placed in the third class, to which the former are at most only re- motely homologous, MUSEUM OF COMPARATIVE ZOOLOGY. 169 The znternal structure of the brain shows a strictly bilateral arrange- ment of the elements. A transverse section through the middle of the ganglionic mass is represented in Figure 24 (Plate III.). The fibrous matter is collected into two commissural masses, in which the fibres run both anteroposteriad, chiefly at the lateral extremities, and laterally, chiefly in the middle. The real relation of these commissures to each other is first seen in sagittal sections (Plate II. Figs. 19 and 20), where the fibrous matter has the form of a > with the apex directed forward. The dorsal arm of this > is prolonged backwards in two lateral horns, which are surrounded by ganglionic cells. The tips of these horns, cut transversely, are seen in Figure 25 (Plate III.). The similar ventral horns are the roots of the circumcesophageal connectives. From near the anterior apex of the > asmall arm of fibrous matter is directed forward, as Seen in a sagittal section of the brain near its left lateral margin (Plate II. Fig. 19). This becomes, in a median sagittal section, a small commis- sure cut transversely (coms. a., Fig. 20), and separated from the brain by the connective-tissue capsule. This commissure is at its right side again connected with the brain, as already described, for the left extremity. Thus it resembles in its form and relation to the main fibrous mass of the brain the handle of a basket, the handle being directed forward. It lies, as can be easily seen from the figures, immediately below the surface of the cerebral organ, and its relation to that structure will be more fully explained later. The arrangement of the ganglionic elements in the brain is somewhat definite. Ganglionic cells of the first sort are found in nearly every part, and make up all diffuse centres, where, however, transitional forms render their separation from the second class difficult. The former are most strongly marked at the tip of the dorsal horn (cl. gn. J., Fig. 25), where they are very densely crowded. They cover also the lateral and dorso-lateral aspects of the dorsal commissure (Fig. 24) in similar dense masses. The anterior face of the fibrous matter is also almost exclu- sively occupied by cells of the first class; and from this region they extend a short distance ventrally. Here one finds a gradual transition into the ganglionic cells of the second class (c/. gn. J/., Plate II. Fig. 20, Plate III. Fig. 24), which occupy the entire ventral and posterior as- pects of the fibrous matter. These cells also fill the space between the dorsal and ventral commissures, but are found dorsally only between the two lateral fibrous swellings on the lateral edges of the dorsal commissure. They are never so crowded as cells of the first class, and display no particular arrangement into clusters or groups. 170 BULLETIN OF THE The large ganglion cells of the third class (cl. gn. J/J.) are present in a somewhat limited number, and always in a definite position. They lie in the posterior third of the brain, on its medial posterior boundary (Figs. 19, 20, 25). The large fibres which pass off from these cells are easily seen to turn toward the opposite side of the body and to make their way into the ventral commissure, where they are lost to view, either because they are split up into a number of small ones, or from some other cause suffer a diminution in diameter. This crossing of fibres from cells on one side of the body to the connective? of the other certainly does not take place frequently in either of the other two groups of ganglionic cells.) Wherever circumstances permitted the following of nervous processes in groups I. and II., these were seen to pass off towards the connective on the same side of the body as the cell itself. b. Cerebral Nerves. From either side of the brain two groups of nerves pass off; the an- terior consists simply of the first tentacular nerve (x. ta. 1, Fig. 22, Plate II.) ; the posterior contains the second, third, and fourth tentac- ular nerves and the cesophageal connective. The tentacular nerves radiate from the brain to the aboral wall of the tentacular fold, and, splitting there into numerous branches, follow the aboral wall of the blood cavity toward the distal margin of the fold. The first tentacular nerve supplies that portion which was designated as the dorsal horn. Follow- ing the margin of the fold from this region toward the ventral line, its successive parts are seen to receive their nerve supply from the third, second, and fourth tentacular nerves successively. Each of these in- nervates about equal portions of the fold. I was unable to trace the ultimate termination of the nerves in this region. The cesophageal connectives give off each three branches: (1) the splanchnic, (2) the muscular, and (3) the inferior muscular. The splanchnic is given off ventrally and medially immediately after the connective leaves the ganglion (n. spl., Figs. 22, 25). It passes diag- onally forward, — not posteriad,® as stated by other writers,’ — and into 1 IT use the word connective in the sense first suggested by Lacaze-Duthiers, to distinguish the nerve fibres joining ganglionic nerve centres which are on the same side of the body, reserving the word commissure for such fibres as cross the median plane of the body. 2 This nerve is turned backward in Figure 22, for the sake of clearness in the drawing. Normally, it extends forward under the ganglion. 8 This relation is obscured when the introvert is slightly retracted, and even apparently reversed when the retraction is greater. MUSEUM OF COMPARATIVE ZOOLOGY. eet the circular muscles of the pharynx, where it terminates in a distinct ring at about the level of the middle of the brain. At the point where the splanchnic nerve forms a ring around the pharynx one finds a few nerve cells, but they are few in number, and hardly deserve the name of a ganglion. From this ring it is easy to trace in serial sections the stems of the intestinal plexus, which are here large. This plexus lies in the connective tissue of the intestinal wall, and was first described by Andrews (’90, p. 405) for S. Gouldii. However, he failed to find a splanchnic ring, or any anterior connection of the plexus with the central nervous system. The muscular branch (n. mu. ret.) passes off laterally from the middle of the cesophageal connective, and divides near the centre of the fused mass of the dorsal and ventral retractors into two branches, one of which traverses each retractor. Not far behind this branch there is upon the connective a small trunk (*, Fig. 22), which passes to the sur- face of the muscular mass, but which could not be traced farther. It remained doubtful whether this was a subsidiary muscular branch or of other value. c. Ventral Nerve Cord and Plexi. After the union of the two connectives, the ventral nerve cord thus formed floats a short distance free in the body cavity, and sends off nu- merous long nerves to the body wall. The first of these, the composite nerve of Andreae (’81, p. 248), is by no means always composed of eight branches in a single sheath, as stated by that author. The number varies from six to nine, and the size of the different trunks varies as well (Plate II. Fig. 22, 7.). In fact, the later branches, which according to him consist of two trunks, one from each side of the nerve cord, not only show great variability in the size of these trunks (Fig. 22, JZ), but also at times only a single trunk can be found, which then comes from but one side of the nerve cord. All these frequent irregularities point to a lack of metamerism in the nervous system. On reaching the body wall these nerves branch in a digitate manner through the muscles of the intro- vert, the main trunks being longitudinal, and do not form nervous rings around the body as in other parts of the wall. From these longitudi- nal stems large trunks pass outward through the musculature to the dermal plexus. This dermal plexus lies in the cutis at its plane of union with the mus- culature, and consists of large longitudinal trunks (plz. x. drm., Plate I. Fig. 4) with lateral anastomoses. From this network, fibres (7m. g/.) 172 BULLETIN OF THE pass outward through the cutis to the multicellular glands and to the hypodermal cells, as already described, as well as inward (7m. mu.) to the muscles. The existence of such a plexus has already been shown by Andrews (’90, p. 395) for S. Gouldii. To his description, which answers equally well for S. nudus, I can only add a few obser- vations as to the histology of the nerve trunks. Each of these pos- sesses a well defined sheath or neuroglia (7’gl., Fig. 5), in which discoid nuclei (n’gl. nl.) measuring 2 by 4.5 by 6 w are common. These nuclei lie either inside or outside of the membrane ; they may be stained deeply, and contain many nucleoli. The substance inside the neuroglia has a distinct fibrillar appearance, and when these nerve stems were bent upon themselves so as to be cut transversely and still extend longitudi- nally within the same section, the fibrille appear in the transverse sec- tion as dots. These are also the fibres which are connected with the cells of the multicellular glands (g/.’” n. fbr., Plate I. Fig. 14). The existence of the peritoneal plexus found by Andrews (90, p. 395) in S. Gouldii could not be demonstrated in preserved specimens. No doubt the examination of fresh material will show its presence in 8. nudus as well. 4, CEREBRAL ORGAN. This interesting structure may be considered under two heads : first, the canal; and secondly, the surface next to the brain, or the cerebral organ proper. The canal opens, as already described, on the dorsal median line, just posterior to the tentacular fold (can. o. ceb., Figs. 2 and 3). From this point it extends posteriad about 1.5 to 2mm., to the anterior ventral surface of the brain, where it terminates blindly (0. ceb., Fig. 3). From the marginal fold which surrounds the opening arise numerous longi- tudinal ridges, which traverse the entire canal, and give it in transverse section (can. o. ceb., Plate II. Fig. 26) a branched appearance. In a sur- face view the walls of the canal appear thickly spotted with brown, and further examination shows this to be due to the presence of large num- bers of the characteristic pigment cells, which are usually seen crowded in masses along the summits of the ridges (cl. pig., Fig. 26). It is prob- ably this canal which was found by Keferstein und Ehlers (761, p. 47) in S. tesselatus. The canal is correctly figured (Taf. VII. Fig. 1, 2, «, w’), but they evidently mistook its true character, since they say: “ Ausser- dem sieht man vom Hirn zum Tentakelkranz einen aus zwei Hadlften bestehenden, dicken Strang verlaufen, der dort endet, und an dem End- MUSEUM OF COMPARATIVE ZOOLOGY. 1 es punkte, wie man bei der Betrachtung von aussen her wahrnimmt, in der Haut von einer Gruppe kleiner Falten umgeben ist als wenn er eine Rohre ware und hier nach aussen mundete.”? Among recent writers, Vogt und Yung (’88, p. 404) mention and figure the “cerebral canal,” without a more particular description of its structure or morphological relations.” The histological study of the canal shows some features of interest. Its entire surface is lined by an extremely thin cuticula, which appears under high powers merely as a double contour, pierced by numerous short cilia. The cells of the ventral wall of the canal have the appear- ance of ordinary hypodermal cells, except that they bear cilia. The dorsal wall is made up of similar cells near the mouth of the canal, but these become higher as the brain is neared, until at the middle of the canal they have assumed the form of a high columnar epithelium with large nuclei. This condition is preserved up to the surface of the brain. When examined more closely, these cells are seen to be filled with granules of a highly refractive nature, especially at their distal ends, and may be regarded as the source of the more or less extensive coagulum always found at the basal end of the canal. We have here, then, the secretive portion of this organ. In cross sections of the canal (Plate III. Fig. 26) one sees clearly a group of muscular fibres which is deflected from the circular layer of the body wall and encircles the canal in the form of a sphincter (sp/t.), which, although most marked at the opening of the canal, is present along its entire extent. The function is evidently to prohibit the entrance of extraneous matter during the forward motion of the animal, and to 1 The Italics are not in the original. 2 P. S.—Since writing the above, I have obtained access to a preliminary com- munication by Spengel (’77), and find that in this he has maintained “ die Existenz eines vom Gehirn zur Basis der Tentakeln ftihrenden, offenen Canales.” Spengel was thus the first to arrive at the true form of this structure, but I cannot find that he has anywhere given a more detailed account of its morphological or physiologi- eal character. In the same paper he says: “Das Gehirn stellt sich als eine knopf- artige Verdickung des diesen Canal auskleidenden, mit der Epidermis zusammen- hingenden Epitheles dar.” Against this interpretation it may be said that the embryological evidence of Hatschek (’83) makes it probable that the canal is sec- ondarily formed. Furthermore, a histological examination of the parts shows that the brain is less closely connected with the cerebral organ than appears super- ficially, since the brain capsule separates the two completely, except at the entrance of the anterior commissure, which furnishes the nervous supply to the organ in question. A full discussion of these relations follows the histological description of the cerebral organ which is given later. 174 BULLETIN OF THE assist in changing the water contained in the canal. In the latter func- tion it would be assisted by the cilia lining the canal. At its posterior end the canal widens abruptly into a saucer-shaped cavity, which lies with its concave surface upon the antero-ventral face of the brain (Figs. 3, 20, 27), and includes a low rounded prominence (0. ceb.) which I regard as the cerebral organ proper. Macroscopically, this appears to be continuous with the brain, but internally the con- nective-tissue capsule separates it almost entirely from the ganglionic mass. The histological character of this prominence, and its relation to the brain, require more extended consideration. When one examines a longitudinal section of this region (Plate III. Fig. 27), perhaps the most striking feature is the extremely prominent cuticula (4 » in thickness), which covers exactly the convex surface, and only that portion, for at the margin of this convexity (f, Fig. 27) it passes abruptly over into the very thin cuticula of the canal wall. At each lateral edge of the cavity there is a considerable thickening of the cuticula, which extends a short distance into the subjacent tissue and has in cross section the outline of a small retort. The cuticula pre- sents a sharp outer boundary, and there one finds no remnants of cilia in the sections, yet I am inclined to think that cilia are present in the living animal. For in preserved specimens the entire lower portion of this canal is filled with a granular coagulum, which might easily enclose and obliterate cilia, if indeed any were preserved in this deep and nar- row canal, where fluids evidently could not readily penetrate. The lat- eral cilia, which are perfectly distinct in the anterior half of the canal, become gradually less so, until in the lower portion, which is filled with this coagulum, they entirely disappear. In partly macerated specimens this thick cuticula breaks up into small blocks along lines extending perpendicularly to the surface, so that one may reasonably assume that there is a ciliated condition of this surface in the living animal. It is difficult to study the cells which underlie this cuticula, inasmuch as the cell boundaries are very indistinct ; the most evident feature is the regular row of nuclei which lies. close under the cuticula. From these a crowded mass of nuclei (cl. gn.?) and fibres extend at right an- eles to the surface into an irregular group of fibres (transsected in Fig. 27, coms. a.), —the anterior commissure already described. If one ex- amines the nuclei, their resemblance in size, shape, and optical proper- ties to those of the central nervous system is evident. An actual entrance of the fibres into this anterior commissure can also be easily observed. The connection of these fibres and nuclei with the hypodermal MUSEUM OF COMPARATIVE ZOOLOGY. 175 cells is very difficult to prove in sections; but in a badly preserved and hence partially macerated preparation there was in many places a defi- nite continuity of these cells with the fibres and underlying nuclei. The probability of a direct continuity of the hypodermal cells with the central nervous system through the anterior commissure seems to me to be strong evidence in favor of the special sensory nature of the organ. An examination of its morphological relations also yields much that is favorable to this view. The existence of a glandular area, the direct connection of the organ with the central nervous system, and its median position near the an- terior extremity of the body, all point to its close relationship to such sense organs as are cited by Dewoletzky (’87, p. 278), and as are com- mon in the class Vermes. These have their origin, according to Dewo- letzky, in ‘“‘ein Paar flimmernder Hauteinstiilpungen.”” Whether the same holds for this cerebral organ of Sipunculus can naturally be de- cided only upon embryological evidence. Hatschek (’83, p. 115) says that toward the close of the larval stage two “ Wimpergruben” are formed, one on either side of and near the median line. Further, he says, “Es sind dies wohl Sinnesorgane die sich wahrscheinlich auch am erwachsenen Thiere werden nachweisen lassen.” These would by their fusion produce an organ which, in position at least, would correspond to that which I have described; and from the absence of any other structure to which these Wimpergruben can be traced, it is allowable to assume their genetic connection with this cerebral organ until the development shall furnish positive evidence on the question. That this organ might be the apical area (Scheitelfeld) which, by the recession of the brain from the surface, had come to be connected with the exterior by means of a canal, is disproved by Hatschek’s (’83, p. 108) observa- tion that there is a complete separation of the ganglion from the body wall at the time of its retreat ; according to the same author, the forma- tion of the Wimpergruben was subsequent to this separation. If, now, the other members of the group of Sipunculids be examined for similar structures, two cases are found which require consideration. Shipley (90, p. 18) has described an infolding of the preoral lobe which extends to the surface of the brain, and from which a pair of retort- shaped tubes penetrate into the ganglionic mass, one at each dorsal lateral angle of the brain. The cells of the inner limb of the tubes secrete a black pigment. Andrews (90, p. 418) finds in S. Gouldii two similar tubes proceeding from the lateral edges of a transverse pit an- terior to the ridges of the ciliated cushion. These tubes extend into 176 BULLETIN OF THE the ganglionic mass, and contain a coagulum, but have no pigment. Comparing these two accounts with each other and with that just given of the cerebral organ in S. nudus, it will be seen that the tubes lack pigment in 8. Gouldii, and that both tubes and pigment are wanting in S. nudus, unless the regions of thickening in the cuticula on the lateral aspect of the cerebral organ noted above be the rudiments of such struc- tures. The optic nature claimed by Shipley for the tubes in Phy- mosoma agrees with their reduction or disappearance in the forms inhabiting the sand. The position of the organs would seem to indicate an homology between the ciliated cushion of S. Gouldii, the deep pit of the preoral lobe in Phymosoma, and the cerebral organ in §S. nudus. As to the histological character of the organ in Phymosoma, nothing is found in the account of Shipley. Andrews describes that of S. Gouldii as ciliated and well supplied with nerves. The deep location of the or- gan in S. nudus may be merely for protection, or perhaps due to the development of the glandular area, or even necessitated by the recession of the brain from the surface. The canal is much longer in S. tessela- tus, where the brain also lies deeper in the body, than in S. nudus. An analogous variation may be seen in the deep-seated lateral organs of the Enopla as compared with those of the Anopla. Finally, if it be asked why the whole structure may not be regarded as a degenerate organ, of which the pigmented tubes were originally the active portion, I can only say that the active glandular area and ciliated canal cannot be explained on such an assumption, and still less can the special nervous supply. I studied the structure a long time with this idea in mind, but finally became convinced that it was untenable in every respect. Although the evidence is far from complete, I regard it as an actively functional organ, morphologically the equivalent of the cili- ated cushion of Phascolosomes, and possibly with a more highly specialized function, since it certainly has a more highly differentiated form. Such organs are by no means rare. Dewoletzky (’87, p. 277) has given a list of similar ones, and has considered at length their probable function, which he regards as “some sort of general perception as to the character of the surrounding medium.” IV. Conclusions. If now the account I have given of certain points in the anatomy and histology of S. nudus be compared with that given by Andrews (90) for S. Gouldii, it will be noticed that, while there is a general similarity, a MUSEUM OF COMPARATIVE ZOOLOGY. yay correspondence in details is wanting. The dermal glands are hardly more than similar in type, and a direct correspondence between the different kinds is not to be found ; for the bicellular are entirely want- ing in 8. Gouldii, and the multicellular of 5. nudus agree with neither group described for 8. Gouldii. Whether the non-glandular organs of Andrews correspond to the small papillae described above cannot be definitely determined, on account of the brevity of Andrews’s description and the lack of figures. On the other hand, Andrews has emphasized the fact that a close agreement exists between the dermal bodies of S. Gouldii and those of various Phascolosomes. Again, in the arrange- ment of the musculature, in the uniform unbanded circular layer, in the absence of diagonal fibres, and in numerous other details, S. Gouldii is unlike S. nudus, and in the same degree that the former resembles Phascolosoma. In the light of these facts, a modification of the generic characters given by Selenka (’83) to Sipunculus, which include 8. Gouldii in the same genus with S. nudus, would seem advisable. Striking as is the similarity between the anatomy of the nervous sys- tem in the Annelids and in the Sipunculids, certain characteristic dif- erences are worthy of note. The peripheral system of plexuses is very highly developed in the latter, and consists almost entirely of fibres, whereas the dermal plexus of Capitellids, Nemertines, and Poly- chets is composed largely of ganglionic cells. In the ventral nerve cord of Sipunculids there is no metameric arrangement of the lateral branches, nor any concentrations of the ganglionic elements in the cord itself. On the other hand, there is present a splanchnic nerve and an intestinal plexus in both Sipunculids and Annulata, and the complicated structure of the supracesophageal ganglion in Sipunculus agrees in gen- eral with that of various Annelids and Nemertines. As regards the histology of the central nervous system, it will be noticed that the description given in this paper for S. nudus corresponds closely with that given by Rohde (’87) for Cheetopods, and by Birger (90) for Nemertines. It is of interest, however, to note more exactly the points of likeness and difference. If further investigation should lead to the discovery of a minimal cell body for the nervous nuclei (Nerven- kerne) of Rohde, — and I think this probable on account of the extreme difficulty experienced by Birger (90, p. 106) and myself in finding this cell substance, — then these nervous nuclei would correspond in general character and occurrence with the first class of ganglionic cells described by Birger in Nemertines, and with the first type in Sipunculus. The first class of Rohde agrees in general with the second of Biirger ; but VOL. XXI.— NO. 3. 12 178 BULLETIN OF THE both differ from the second type in Sipunculus in one important point, namely, their arrangement. While they are (always?) found grouped in clusters in the brains of Polychets and Nemertines, such an arrange- ment is never unquestionably present in Sipunculus, though indications of a regular grouping were sometimes noticed. This may be regarded, perhaps, as indicating a less highly specialized condition in the Sipuncu- lid nervous system. According to Rohde and Burger, these cells have nuclei slightly smaller and more deeply stained than those of the first class. I did not find any such difference between the two groups in Sipunculus. The third type of cells in the Sipunculid brain shows also a general correspondence to Class III. of the Nemertines and Class II. of the Chetopods. In both Chetopods and Nemertines there exists a fourth type, — the paired “giant cells” of the central nervous system, with their accompanying “giant fibres.’ These are entirely lacking in the Sipunculids. No one of the large cells has acquired any uniform or considerable superiority of size over its fellows. Furthermore, no giant fibres can be found in the ventral nerve cord, so that these elements probably do not exist in the Sipunculid nervous system. This may be regarded as further proof of the lower grade of specialization in the Sipunculids. The earlier investigators regarded these “giant cells” as “ Bildungen ganz verschiedener Art” (Spengel, ’81, p. 40), but the more recent writers incline toward the opinion that they are homologous throughout (Hisig, 87, and Friedlander, ’89). Now, either these “giant cells” are neomorphie in both groups, and hence not at all homologous, or the Sipunculids were separated from the primitive stem before the separa- tion of Nemertines and Annelids took place, and before the differentia- tion of these elements had been effected. A complete disappearance of giant cells and giant fibres in the Sipunculids is hardly probable, in the light. of the persistence of these and all other nervous structures. This would put the origin of the Sipunculids farther back than has usually been maintained, and would make their relationship to the Annelids somewhat distant. Of importance in this connection is the simple un- differentiated condition of the ventral nerve cord, which shows no trace of a metameric concentration of ganglionic cells, such as is found in the Annelids. According to the researches of Andrews (90), moreover, the lateral branches lack that metameric character which has heretofore heen assigned to them, and I have been able to confirm this in part for S nudus. Lack of metamerism in the adult, as well as in the larva, would serve to strengthen the view of only a remote relationship MUSEUM OF COMPARATIVE ZOOLOGY. 179 between Annelids and Sipunculids, as has long been maintained by Hatschek (80 and ’83) on embryological grounds. The existence of at least giant fibres has been proved for Echiurus by the researches of Greeff (79) and Spengel (’80, p. 487), and more recently for Thalassema by Rietsch (’86, p. 402), so that the presence of corre- sponding ganglionic cells may be reasonably assumed. This is, then, a further ground for separating the Sipunculids from the Echiurids, and for assigning to the latter a closer relationship to the Annelids than the former have. This position has been defended from an embryological standpoint by Hatschek (’80, p. 71) and Conn (’86, p. 399). In spite of the well known conservatism of the nervous system, I am well aware of the dangers of such conclusions based upon the study of a single system or a single form. The foregoing comparison is offered, then, merely as a new side light on the unsettled question of the position of the Sipunculids, and in the hope that the accumulation of evidence from various sources may some day bring a clear and full solution of the problem. January 20, 1891. Addendum. During the correction of the proof-sheets there has appeared a second paper by Shipley (91) on Phymosoma (P. Weldonii, n. s.). It is interesting to note that the gland cells there described (p. 114) correspond very closely to the multicellular glands of S. nudus, except that no connection with nerve fibres is reported. Shipley affirms positively (p. 115) “the absence of those skeletal cells which formed so interesting a feature” of P. varians (Shipley, ’90, p. 9). That such a tissue does not exist in S. nudus has already been emphasized. This is then strong proof that it is an individual peculiarity of the one species, rather than an ancestral relic. In general the claimed relationship of Sipuncu- lids and Phoronis seems to me to have little in its favor beyond the external similarity of the two forms. It is a pleasure to see that Shipley and I have both arrived independently at the same conclusions regarding the vascular system. He (’91, p. 116) does not regard it as important in respiration, and explains the cecal diverticula of the dorsal vessel, which might be looked upon as strengthening the view of its respiratory nature, as merely reservoirs for the increased overflow from the tentacles, which are exceptionally numerous in this species. 180 BULLETIN OF THE BIBLIOGRAPHY. Ambronn, H. 90. Cellulose-Reaction bei Arthropoden und Mollusken. Mitth. aus d. Zool, Station Neapel, Bd. IX. Heft 3, pp. 475-478. 15. Juni, 1890. Andreae, J. 61. Beitrage zur Anatomie und Histologie des Sipunculus nudus, L. Zeitschr. f. wiss. Zool., Bd. XXXVI. Heft 2, pp. 201-258, Taf. XII., AT Nove, LSS: Andrews, E. A. (90. Notes on the Anatomy of Sipunculus Gouldii, Pourtalés. Studies Biol. Lab. Johns Hopkins Univ., Vol. IV. No. 7, pp. 389-430, PI. XLIV.-XLVII. Oct., 1890. Brandt, A. 70. Anatomisch-histologische Untersuchungen uber den Sipunculus nv- dus, L. Mém. de Acad. Imp. d. Sci. d. St. Pétersbourg, VII® Sér. Tom. XVI. No. 8, pp. 1-46, Taf. I., 11. 10 Feév., 1870. Biirger, O. "90. Untersuchungen tiber die Anatomie und Histologie der Nemertinen nebst Beitragen zur Systematik. Zeitschr. f. wiss. Zool., Bd. L. Hefte 1, 2, pp. 1-277, Taf. 1-X. 10. Juni, 1890. Conn, H. W. °86. Life History of Thalassema. Studies Biol. Lab. Johns Hopkins Univ., Vol. ILI. No. 7, pp. 351-401, Pl. XX.-XXIII. June, 1886. Dewoletzky, R. ’87. Das Seitenorgan der Nemertinen. Arb. aus d. zool. Inst. Wien, Tom. VII. Heft 2, pp. 233-280, Taf. XII., XIII. Eisig, H. ’°87. Monographie der Capitelliden des Golfes von Neapel. Fauna u. Flora d. Golfes v- Neapel, No. XVI. xxvi-+ 905 pp., 37 Taf. Friedlander, B. ’89. Ueber die markhaltigen Nervenfasern und Neurochorde der Crustaceen und Anneliden. Mitth. aus. d. Zool. Station Neapel, Bd. IX. Heft 2, pp. 205-265, Taf. VIL 24. Sept., 1889. Greeff, R. '79. Die Echiuren (Gephyrea armata). Nova Acta k. Leop.-Car. deutsch. Acad. d. Naturforscher, Bd. XLI. Pt. 2, No, 1, pp. 1-172, Taf. XVI- XXIV. MUSEUM OF COMPARATIVE ZOOLOGY. 181 Hatschek, B. ’80. Ueber Entwickelungsgeschichte von Echiurus und die systematische Stellung der Echiuride. Arb. aus d. zool. Inst. Wien, Tom. ILL. Heft 1, pp- 45-78, Taf. IV.—-VI. ’°83. Ueber Entwickelung von Sipunculus nudus. Arb. aus d. zool. Inst. Wien, Tom. V. Heft 1, pp. 61-140, Taf. IV.-IX. Hoyer, H. "90. Ueber den Nachweis des Mucins in Geweben mittelst der Farbe- methode. Arch. f. mik. Anat., Bd. XXXVI. Heft 2, pp. 310-374. 27. Sept., 1890. Keferstein, W. ’62. Untersuchungen iiber niedere Seethiere. Zeitschr. f. wiss. Zool., Bd. XII. Heft 1, pp. 1-148, Taf. I-XI. 16. Juni, 1862. ’65. LBeitrage zur anatomischen und systematischen Kenntniss der Sipuncu- liden. Zeitschr. f. wiss. Zool., Bd. XV. Heft 4, pp. 404-445, Taf. XXXI.- XXXII. .25. Oct., 1865. Keferstein, W., und Ehlers, E ‘61. Zoologische Beitrage gesammelt im Winter 1859-60 in Neapel und Messina. II. Untersuchungen iiber die Anatomie des Sipunculus nudus. pp- 35-52, Taf. VI-VII. Leipzig, 1861. Leydig, F 61. Die Augen und ueue Sinnesorgane der Egel. Arch. f. Anat. u. Physiol., 1861, pp. 588-605. Nansen, F. ‘87. The Structure and Combination of the Histological Elements of the Central Nervous System. Bergens Museums Aarsberetning for 1886, pp. 29-215, Pl I.-XI. Rietsch, M. ’86. Etude sur les Géphyriens armés ou Echiuriens. 1° et 2"° Partie. Recueil Zool. Suisse, Tom. III. pp. 3138-515, Pl. XVIL-XXII. Juin- Juillet, 1886. Rohde, E. ’87. Histologische Untersuchungen iiber das Nervensystem der Chaeto- poden. Zool. Beitrage (Schneider’s), Bd. II. Heft 1, pp. 1-81, Taf. I.-VII. Selenka, E. ’83. Die Sipunculiden, eine systematische Monographie. Semper’s Reisen in den Philippinen, II. Theil, Bd. IV., 131 pp., 14 Pls. Wiesbaden, 1883. Shipley, A. E. 90. On Phymosoma varians. Quart. Jour. Mier. Sci., Vol. XX XI. pp. 1-27, Pl.I-IV. April, 1890. ‘91. Ona New Species of Phymosoma, with a Synopsis of the Genus and some Account of its Geographical Distribution. Quart. Jour. Micr. Sci., Vol. XXXII. pp. 111-126, Pl. XI. March, 1891. 182 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. Spengel, J. W. 77. Anatomische Mittheilungen titber Gephyreen. Amtlicher Bericht der 50. Versammlung deutscher Naturforscher und Aerzte in Minchen vom 17. bis 22. Sept., 1877. p. 189. ’'80. Beitrage zur Kenntnis der Gephyreen. I1.. Die Organisation des Echiurus Pallasii. Zeitschr. f. wiss. Zool., Bd. XXXIV. Heft 3, pp. 460-538, Taf. XXIII-XXVI. 30. Jul, 1880. ’81. Oligognathus Bonelli, eine schmarotzende Eunicee. Mitth. aus d. Zool. Station Neapel, Bd. III. Heft 1, pp. 15-52, Taf. IZ-IV. 9. De- cember, 1881. Vogt, C., und Yung, E. ’88. Lehrbuch der praktischen vergleichenden Anatomie. Bd. I., 906 pp. mit 425 Holzschnitten. Viehweg und Sohn, Braunschweig, 1888. EXPLANATION OF FIGURES. All figures were drawn with the aid of an Abbé camera, unless otherwise stated. They represent without exception preparations of Sipunculus nudus, L. The method of staining and systems employed are indicated briefly for each specimen. ABBREVIATIONS. can.o.ceb. Canal of cerebral organ. cl. gn. I., II., III. Ganglionic cell L., I, el. fil. cl. pig. cl. sns. coms. a. coms. d. coms. @. COMS. v. con't. tis. cps. ene. ernu. d. ct. cta. gl.” gl.” dt. gl.” env. gl.” nl. gl.” dt. gl” env. or III. Filamentous hypoderm cell. Pigment cell. Sensory cell. Anterior commissure of brain. Dorsal « bo Cisophageal connective. Ventral commissure of brain. Connective tissue. Capsule of brain. Dorsal horn of tentacular fold. Cutis. Cuticula. Bicellular gland. Duct of bicellular gland. Envelope “ a Nucleus se Vacuole s rs Multicellular gland. Duct of multicellular gland. Envelope o s gl’ n. fbr’ Nervous fibrilla to multicel- gl” nl. gn. swe. lular gland. Nucleus of the multicellular gland. Supraesophageal ganglion. Wdrm. lew’cy. mb. ba. mit. mu. cre. ngl. n’gi. nl. n. mu. ret. nl. sns. n. spl. n. ta. o. ceb. or. pa mit. pap. pli. ta. plx.n. drm. pr’e. dq. rm. gl. rm. mu. spht. va, sng. d. va. sng. v. z. lev. Hy podermis. Leucocytes. Basement membrane. Mitome. Circular muscles. Neuroglia. Neuroglia nucleus. Nerve of retractors. Nucleus of sensory cell. Splanchnic nerve. Tentacular nerve. Cerebral organ. Mouth. Paramitome. Papilla. Tentacular fold. Dermal nerve plexus. Digitate processes of brain. Glandular branch of plexus. Muscular i ss Sphincter of cerebral canal. Dorsal blood-vessel. Ventral blood-vessel.. Smooth zone of introvert. z. pap.a. Anterior papillate zone of 2. pap. p. introvert. Posterior papillate zone of introvert. ; i i asi oi ay ly yore eee Ot ee e Rsk cg ‘i. y ia iv sn . vt ti ios EN ae Wh geld atrrl el eal Ghar ire etl > 7 wD Le alodeitn 4) earn ie : pay i Owe atilfvnis She gS avi “3 civ 1% iy Mp: ‘ ; ine dc aa” Rib x. ft aw. itis vaciu ti vag, bs iter A ois Latte a) » De i | ‘ re : Ven ; ng to ot bie phy Wieden iyo Warp. — Sipunculus. Fig. Oa PLATE it Anterior half of the introvert. The base of the figure corresponds to the middle of the posterior papillate zone. ‘The slight contraction at the centre of the zona levis is not usually found. Camera outline. Simple microscope. X 3. Anterior aspect of tentacular fold. The figure is diagrammatic only to the extent that secondary folds are omitted. Camera outline. Simple microscope. X 4. Sagittal section of introvert. Diagrammatic in regard to details.. Simple microscope. X 8. Longitudinal section of body wall of introvert in the anterior portion of the posterior papillate zone. Muscles diagrammatic. Boéhmer’s hema- toxylin. Zeiss 3. A. X 98. Transverse section of body wall at about the region indicated by the line gl.” in Fig. 4. Hamann’s carmine. Zeiss 1. D. X 370. Sections of bicellular glands in the three dimensions of space. Kleinen- berg’s hematoxylin. Zeiss apochr. 4mm. Oc.6. X 425. Soon after the beginning of secretion. ‘The membrane dividing the two cells is shown at *. At the period of greatest activity in secretion. At the close of secretive activity. Transverse section of duct of bicellular gland immediately below the cuticula. Zeiss apochr.4mm. Oc.6. X 425. 10, 11. Longitudinal and transverse sections of bicellular glands to demon- strate position of nuclei. Hamann’s carmine. Zeiss apochr. 4 mm. Oc. 6. X 428. 12-14. Multicellular glands. Zeiss apochr.4mm. Oc.6. 400. 12. 13. 14. Longitudinal section. The duct is filled with a secreted material. Klei- nenberg’s hematoxylin. Transverse section. At the left centre of the section a cell has fallen out. Hamann’s carmine. Longitudinal section to demonstrate nuclei and connection of gland cells with nerve fibres. Mayer’s cochineal. WARD .— SIPUNCULUS. Pr. I. <_< 00.000) 10. 2 2G y 7 way & ke | \ bd r fo fi | \e\-.gllen j | * Crna.d. == ‘ B Meisel ith. Boston. WarD. — Sipunculus. PLATE IL Fig. 15. Transverse section of epithelium of tentacular fold to show the leucocytes in situ. Hamann’s carmine. Zeiss 1. E. 500. 16-18. Sense papillze from anterior papillate zone of introvert. 16. i: 18. no: 20. 21. Tangential section through a single papilla. Hamann’s carmine. Zeiss LD ex 300: Transverse section. Apical area retracted. Hamann’s carmine. Zeiss 1D ssl: Transverse section. Papilla fully expanded. Orth’s picro-litho-carmine. Zeiss 1. D. X 220. Lateral sagittal section of brain at point of departure of the anterior com- missure from the central fibrous mass. Plane of section indicated on Figure 22 by dotted line “19.” Mayer’s cochineal. Zeiss 1.A. X 50. Median sagittal section of brain. Plane of section indicated on Figure 22. Mayer’s cochineal. Zeiss 1. A. X 50. Cells of tentacular epithelium isolated by maceration ; a, c, and e, sensory, b, d, and f, filamentous cells. Zeiss apochr.4mm. Oc.8. X 725. Central nervous system. Composite figure from maceration preparations controlled by serial sections. The splanchnic nerve (n. spl.) should project forward under the brain. For the sake of clearness it is repre- sented as if turned posteriad; * denotes inferior muscular branch (?). The numbers denote the planes of sections represented in Figures 19, 20, 24, and 25. X 8 (about). WARD.— SIPUNCULUS. = _.CAN.O.Ceb, 7a, AS FE B Meisel lth Boston.’ m7 : ast j re) eres — peta! ”~ ‘- hig Warp — Sipunculus, 26. 27. PLATE III. Transverse section of hypodermis of tentacular fold with sensory cells. Weigert’s picro-carmine. Zeiss apochr. 4mm. Oc. 8. X 725. Transverse section of brain. Plane of section shown in Figure 22, Plate II Grenacher’s alcoholic borax carmine. Zeiss 1. A. X 50. Transverse section of brain. Plane of section shown in Figure 22, Plate Il The sertion was cut somewhat obliquely, and the right half lies posteriad. Grenacher’s alcoholic borax carmine. Zeiss 1. A. X 60. Transverse section of body wall passing through the canal of the cere- bral organ at about the middle of its course. The left of the figure is dorsal. Hamann’s carmine. Zeiss 1. A. X 80. Transverse section of the cerebral organ: only one half is represented, and but a small section is drawn in detail. The cerebral canal begins at the angle near the number 27, and extends forward at right angles to the surface marked cta. The transition from the cuticula of the cere- bral organ to that of the canal is marked by a t- Czokor’s cochineal and picric acid. Zeiss apochr.4 mm. Oc. 8. X 510, 28-31. Ganglionic cells. Zeiss apochr.4mm, Oc 8. X 510. Fig. 28, Class 32. III. Fig. 29, Class II. Fig. 30, Nuclei of Class I. Fig. 31, Class I. Oblique section through a ganglionic cell of Class II., showing the regular arrangement of the paramitone. Hamann’s carmine. Zeiss apochr. 4mm. Oc. 8. X 728. WARD.— SIPUNCULUS. Ay, CPS ene, : NN y et) hae i : K oe ng, Me nether., Mh } f ee B Meisel, lith Boston. No. 4.— Three Letters from ALEXANDER AGASSIZ to the Hov. MarsHaLL McDonatp, United States Commissioner of Fish and Fisheries, on the Dredging Operations off the West Coast of Cen- tral America to the Galapagos, to the West Coast of Mexico, and in the Gulf of California, in charge of ALEXANDER AGASSIZ, carried on by the U. S. Fish Commission Steamer “Albatross,” LIEUT. COMMANDER Z. L. Tanner, U.S.N., Commanding. 1 STEAMER ALBATROSS, Panama, U. S. oF CoLomBra, March 14, 1891. My pEAR CoLoneL McDona.p : — We returned yesterday from our first trip. The route extended from Panama to Point Mala, and next to Cocos Island ; from there we ran in a southerly direction, then northwesterly to Malpelo Island, and back to the hundred-fathom line off the Bay of Panama. We spent several days trawling off the continental plateau of the Bay. This trip being rather in the nature of a feeler, I cannot tell you just what I think it means. But I believe I can to some extent conjecture probabilities from what has been accomplished. I have found, in the first place, a great many of my old West Indian friends. In nearly all the groups of marine forms among the Fishes, » Crustacea, Worms, Mollusks, Echinoderms, and Polyps, we have found familiar West Indian types or east coast forms, and have also found quite a number of forms whose wide geographical distribution was already known, and is now extended to the Eastern Pacific. This was naturally to be expected from the fact that the district we are exploring is practically a new field, nothing having been done except what the “Albatross” herself has accomplished along the west coast of North and South America. The ‘ Challenger,” as you will remember, came from Japan to the Sandwich Islands, and from there south across to Juan Fernandez, leaving, as it were, a huge field of which we are attacking the middle wedge. As far as we have gone, it seems very VOL. XXI —No 4, 186 BULLETIN OF THE evident that, even in deep water, there is on this west coast of Central America a considerable fauna which finds its parallel in the West Indies, and recalls the precretaceous times when the Caribbean Sea was prac- tically a bay of the Pacific. There are, indeed, a number of genera in the deep water, and to some extent also in the shallower depths, which show far greater affinity with the Pacific than with the Atlantic fauna. Of course, further exploration may show that some of these genera are simply genera of a wider geographical distribution ; but I think a suffi- ciently large portion of the deep-sea fauna will still attest the former connection of the Pacific and the Atlantic. Iam thus far somewhat disappointed in the richness of the deep sea fauna in the Panamic district. It certainly does not compare with that of the West Indian or Eastern United States side. I have little doubt that this comparative poverty is due to the absence of a great oceanic current like the Gulf Stream, bringing with it on its surface a large amount of food which serves to supply the deep-sea fauna along its course. In the regions we have explored up to this time, currents from the north and from the south meet, and then are diverted to a westerly direction, forming a sort of current doldrums, turning west or east or south or north according to the direction of the prevailing wind. The amount of food which these currents carry is small compared with that drifting along the course of the Gulf Stream. I was also greatly surprised at the poverty of the surface fauna. Except on one occasion, when during a calm we passed through a large field of floating surface material, we usually encountered very little. It is composed mainly of Salpze, Doliolum, Sagittas, and a few Siphonophores, —a striking con- trast to the wealth of the surface fauna to be met with in a calm day in the Gulf of Mexico near the Tortugas, or in the main current of the Gulf Stream as it sweeps by the Florida Reef or the Cuban coast near Havana. We also found great difficulty in trawling, owing to the considerable irreg- ularities of the bottom. When trawling from north to south, we seemed to cut across submarine ridges, and it was only while trawling from east to west that we generally maintained a fairly uniform depth. During the first cruise we made nearly fifty hauls of the trawl, and in addition sev- eral stations were occupied in trawling at intermediate depths. In my dredgings in the Gulf of Mexico, off the West Indies, and in the Carib- bean, my attention had already been called to the immense amount of vegetable matter dredged up from a depth of over 1,500 fathoms, on the lee side of the West India Islands. But in none of the dredgings we raade on the Atlantic side of the Isthmus did we come upon such masses en MUSEUM OF COMPARATIVE ZOOLOGY. 187 of decomposed vegetable matter as we found on this expedition. There was hardly a haul taken which did not supply a large quantity of water logged wood, and more or less fresh twigs, leaves, seeds, and fruits, in all possible stages of decomposition. This was especially noteworthy in the line from the mainland to Cocos Island, and certainly offers a very practical object lesson regarding the manner in which that island must have received its vegetable products. It is only about 275 miles from the mainland, and its flora, so similar to that of the adjacent coast, tells its own story. Malpelo, on the contrary, which is an inaccessible rock with vertical sides, and destitute of any soil formed from the disinte- gration of the rocks, has remained comparatively barren, in spite of its closer proximity to the mainland. The most interesting things we have found up to this time are repre- sentatives of the Ceratias group of Fishes, which the naturalists of the “ Albatross” tell me they have not met before on the west coast of North America. The Crustacea have supplied us with a most remark- able type of the Willemoesia group. The paucity of Mollusks and also of Echini is most striking, although we brought up in one of the hauls numerous fragments of what must have been a gigantic species of Cystechinus, which I hope I may reconstruct. We were also fortunate enough to find a single specimen of Calamocrinus off Morro Puercos, in 700 fathoms, a part of the stem with the base, showing its mode of at- tachment to be similar to that of the fossil Apiocrinide. The number of Ophiurans was remarkably small as compared with the fauna of deep waters on the Atlantic side, where it often seems as if Ophiurans had been the first and only objects created. The absence of deep-sea corals is also quite striking. They play so important a part in the fauna of the deeper waters of the West Indies, that the contrast is most marked. Gorgoniz and other Halcyonoids are likewise uncommon. We have found but few Siliceous Sponges, and all of well known types. Star- fishes are abundant, and are as well represented in the variety of genera and species as on the Atlantic side of the Isthmus. I may also mention the large number of deep-sea Holothurians (Elasipoda) which we ob- tained, as well as a most remarkable deep-sea Actinian, closely allied to Cerianthus, but evidently belonging to a new family of that group. We found the usual types of deep-sea West Indian Annelids, occasion- ally sweeping over large tracts of mud tubes in the region of green mud. Although we dredged frequently in most characteristic Globigerina ooze, I was much struck with the absence of living Globigerine on the surface. Only on two occasions during a calm did we come across any number 188 BULLETIN OF THE of surface Globigerine and Orbulinz. On one occasion the trawl came up literally filled with masses of a species of Rhabdamina closely allied to R. lineata. Thus far no pelagic Algz have been met with. It is interesting to note that at two localities we came across patches of modern greensand similar in formation to the patches discovered off the east coast of the United States by the earlier dredgings of the Coast Survey, of Pourtales, and of the ‘‘ Blake.” Having always been more or less interested in pelagic faunz, and having paid considerable attention to its vertical distribution during my earlier cruises in the “ Blake,” I was naturally anxious to reconcile the conflicting statements and ex- periences of the naturalists of the “ Challenger” and “ Gazelle” on one side, and my own observations on the other. Both Murray and Studer contended that, in addition to the deep-sea and pelagic faune, there was what might be called an intermediate fauna with characteristic species, having nothing in common with the other two; while I maintained, on the other hand, from my experiments in the “ Blake,” that there was no such intermediate fauna, but that the pelagic fauna might de- scend to a considerable depth during the daytime to escape the effects of light, heat, and the disturbing influence of surface winds, and that this surface fauna on the Atlantic side — off shore in deep water — did not descend much deeper than 150 to 200 fathoms. In order to test this point, Dr. Chun, under the auspices of the Naples Station, made an expedition to the Ponza Islands. Dr. Chun applied to a tow-net an apparatus for closing it, similar to the propeller in use on our ther- mometer and water cups. He towed toa depth of 1,400 meters, if I am not mistaken, but never at any great distance from the mainland or from the islands of the Gulf of Naples, and came to the conclusion that the pelagic fauna existed all the way to the bottom. At the time, I considered his experiments inconclusive, and was of course anxious to repeat them in a strictly oceanic district, in great depths, and at a con- . siderable distance from shore. I had an apparatus constructed by Ballauf of Washington, similar to that used by Dr. Chun. Unfortu- nately, in testing it we found the pressure of the tow-net against the propeller shaft so great as to make the machine useless, or at any rate, most unreliable. Thanks to the ingenuity of Captain Tanner, we over- came these obstacles. He devised a net which could be closed at any depth by a messenger, and which worked to perfection at 200, 400, 300, and 1,000 fathoms, and had the great advantage of bringing np anything it might find on its way up above the level at which it was towed. The lower part of the bag alone was closed by a double set of slings pulled EEE MUSEUM OF COMPARATIVE ZOOLOGY. 189 by two weights liberated from a bell crank by a messenger. We found that, in towing the net at 200 fathoms for twenty minutes, we got every- thing in any way characteristic of the surface fauna which we had fished up with the tow-net at the surface. In addition to this, we brought up five species of so called deep-sea Fishes, Scopelus, Gonostoma, Beryx, and two others, which had thus far been brought up in the trawl, and con- sidered characteristic of deep water. Also a peculiar Amphipod, and the young of the new species of Willemoesia mentioned above. We then tried the same net at 300 and 400 fathoms, and in neither case did we bring up anything in the closed part of the bag, while the upper open part brought up just what we had found previously at a depth of 200 fathoms, plainly showing that in this district the surface fauna goes down to a depth of 200 fathoms, and no farther. Next came our single attempt to bring up what might be found, say within 100 fathoms of the bottom, and Captain Tanner’s net was towed at a depth of 1,000 fathoms where the soundings recorded 1,100. Unfortunately, we deep- ened our water while towing only twenty minutes to over 1,400 fathoms, so that we failed in our exact object. But we brought up in the closed part of the bag two species of Crustacea, a Macruran and an Amphipod, both entirely unlike anything we had obtained before. I hope in the next cruise to follow this up, and determine also the upper limits of the free-swimming deep-sea fauna. In the upper part of the bag (the open part) we brought up a couple of so called deep-sea Medusz, which must have been collected at a comparatively moderate depth, judging from their perfect state of preservation. I can hardly express my satisfaction at having the opportunity to carry on this deep-sea work on the ‘“ Albatross.”” While of course I knew in a general way the great facilities the ship afforded, I did not fully realize the capacity of the equipment until I came to make use of it myself. I could not but contrast the luxurious and thoroughly con- venient appointments of the “ Albatross” with my previous experiences. The laboratory, with its ingenious arrangements and its excellent accom- modations for work by day and by night, was to me a revelation. The assistance of Messrs. Townsend and Miller in the care of the specimens was most welcome, giving me ample time to examine the specimens during the process of assorting them, and to make such notes as I could between successive hauls, while paying some attention also to the work of the artist, Mr. Westergren. He has found his time fully occupied, and we have in this trip brought together a considerable number of colored drawings, giving an excellent general idea of the appearance 190 BULLETIN OF THE of the inhabitants of the deep waters as they first come up. These drawings can be used to great advantage with the specimens in making the final illustrations to accompany the reports of the specialists who may have charge of working up the different departments. . . . We left Panama on the 22d of February, and returned to Panama after an absence of twenty days. Il. ALBATROSS, AcaPuLco, April 14, 1891. We have reached the end of our second line of explorations. After coaling we left Panama, and reached Galera Point, where we began our line across the Humboldt Current, which was to give us a fair idea of the fauna of that part of the coast as far as the southern face of the Galapagos. With the exception of three good casts, the trawling on that part of the sea bottom proved comparatively poor, nor did the sea face of the southern slope of the Galapagos give us anything like the rich fauna I had expected. Theoretically, it seemed certain that a sea face like that of the Galapagos, bathed as it is by a great current coming from the south and impinging upon its slope, and carrying upon its surface a mass of animal food, could not fail to constitute a most favor- able set of conditions for the subsistence and development of a rich deep- sea fauna. In the deeper parts of the channel between Galera Point and the southern face of Chatham Island we found a great number of Elasi- poda, among them several genera like Peniagone, Bathodytes, and Eu- phrosine, represented by numerous species. The Starfishes of this our second cruise did.not differ materially from those collected during our first trip, but we added some fine species of Freyella, Hymenaster, Astrogonium, Asterina, and Archasteride to our collections. Among the Sea-urchins on two occasions we brought up fine hauls of a species of Cystechinus with a hard test, many specimens of which were in admirable state of preservation. Among the Ophiurans nothing of importance was added, unless I may except a lot of Ophiocreas attached to a Primnoa, and a pretty species of Sigsbea attached to a species of Allopora, from the south side of Chatham Island. The Gorgonians were remarkably few in number, which is undoubtedly due to the unfavorable nature of the bottom we worked upon. Nearly everywhere except on the face of the Galapagos slope we trawled upon a _ MUSEUM OF COMPARATIVE ZOOLOGY. 191 bottom either muddy or composed of Globigerina ooze, more or less con- taminated with terrestrial deposits, and frequently covered with a great amount of decayed vegetable matter. We scarcely made a single haul of the trawl which did not bring up a considerable amount of decayed vegetable matter, and frequently logs, branches, twigs, seeds, leaves, fruits, much as during our first cruise. Our Crustaceans, from the nature of the bottom, naturally consisted of the same groups of deep-sea types which we obtained before. I may, however, mention a haul containing a goodly number of Nephrops, a genus we had not previously obtained. Among the Worms the Maldaniz and limicolous types were unusually abundant at some localities, the empty mud tubes often filling the bottom of the trawl. Some very large specimens of Trophonia were collected, and remarkably brilliantly colored (orange and carmine) Nemerteans and Planarians. The Mollusks were very scanty, and the absence of Comatule or other Crinoids was equally disappointing, even when trawling on the extension of the line started three years ago by the “ Albatross,” on the eastern face of the Galapagos slope, when on her way from Chatham Island to San Francisco. We took up this line off Indefatigable Island, hoping to obtain from that quarter our best results, but our hauls were very disappointing. The ground proved not only most difficult to dredge upon, but also comparatively barren, and it was not till we got into the oceanic basin again, between the Galapagos and Acapulco, that our catches improved. But even then they were not to be compared with the hauls at similar depths in the Atlantic off the West Indies, or along the course of the Gulf Stream. Among the Fishes, our most important catches were fine specimens of Bathyonus, of Bathybrissa, of Bathypteroides, and a few specimens of Ipnops in excellent condition. From the nature of the bottom we naturally expected rich hauls of Siliceous Sponges, but we did not find many, and I do not think there are many novelties among those we have collected. On two occasions, a number of specimens of Ascidians were brought up; among them was a fine white translucent Corinascidia. Among the Bryozoans, the most noteworthy haul was a number of beautiful specimens of the delicate Naresia, in excellent condition. On the line from the Galapagos to Acapulco we brought up a good many Foraminifera from the mud bottoms. On several occasions the bottom must have been covered with huge masses of a new type of an arena- 192 BULLETIN OF THE ceous Foraminifer, forming immense curling sheets attached by one edge to stones or sunk into the mud. This Foraminifer seems to in- crease in size by forming irregular more or less concentric crescent- shaped rings. When it comes to the surface, it 1s of a dark olive-green color. During this second cruise we continued our experiments with the Tanner closing tow-net, in order to determine the lower limits of the surface pelagic fauna, and to determine also if there is any so called in- termediate pelagic fauna at other depths, or within a short distance from the bottom. On the 25th of March, at a point not quite half way between Cape San Francisco and the Galapagos, in 1,832 fathoms of water, the Tanner net was sent down to tow at a depth which varied from 1,739 to 1,773 fathoms. The net was towed within these limits for a period of some- thing over twenty minutes. The messenger was then sent down to close the net ; time occupied seven minutes. The net was then drawn up to the surface. The lower part of it was found to have closed perfectly, and contained nothing beyond a few fragments of leaves. The lower bag was carefully washed in water which had been strained, and the water examined with all possible care, and sifted again. It contained nothing. The upper part of the net, however, which had remained open on its way up, was found to contain the identical surface things which on former occasions we had found in the Tanner net down to a depth of 200 fathoms. They were a small species of Sagitta, and species of Doliolum, Appendicularia, a huge Sagitta, a large number of Leucifer and Sergestes, and several species of Sshizopods and Copepods ; two spe- cies of Hyperia, probably parasitic on a Salpa, which was also quite abun- dant ; several finely colored Calanus, some Isopods, and a number of fragments of what must have been a very large Beroe, measuring from five to six inches in diameter ; Leptocephalus, several specimens of Sto- mias, of Scopelus, of Melamphes, and other species, many of which, like some of the Schizopods, had been considered as typical deep-sea forms. Among the so called deep-sea Meduse, several specimens of Atolla and Periphylla were also found in the open part of the net. I may mention also as of special interest a huge Ostracod, allied to Crossophorus, with a thin semi-transparent carapace, and measuring somewhat more than one inch in length. The largest Ostracod previously known is not more than one third of an inch long. On two other occasions this same Ostracod was brought up in the tow-net from a depth of less than 200 fathoms. MUSEUM OF COMPARATIVE ZOOLOGY. 193 The surface at this point was also examined with the tow-net, and the pelagic animals found to be the same as those brought up in the open part of the tow-net on its way from the bottom. ‘The number both of species and specimens was, however, much less than in the Tanner net. On the following day the Tanner tow-net was sent to be towed at a depth of 214 fathoms. In twenty minutes the messenger was sent down and the net hauled up. The bottom part of the net came up tightly closed. {ts contents were examined in the same manner as before in well sifted water, and the water was found to be absolutely barren, while the upper part of the net, which came up open, and was not more than eight or nine minutes on the way, was well filled with surface life. The net contained this time a number of Hyalzas and Criseis, in addition to the things collected the day before. An examination of the surface fauna at this same point with the tow-net showed the presence only in smaller numbers of the same species which the open part of the same net con- tained, except that there were a larger number of bells and fragments of Diphyes and of Cristalloides than in the Tanner net. The point at which this experiment was made was about 250 miles from the Galapa- gos, and about the same distance from Cape San Francisco. There were myriads of Nautilograpsus swarming on the surface of the water ; they literally filled the surface tow-net. On two other occasions, once at a distance of 350 miles in a southeasterly direction from Acapulco (depth 2,232 fathoms), we tried the same experiment with the Tan- ner net, and invariably with the same result. The net was towed at a depth of 100, of 200, and of 300 fathoms, each time for twenty minutes, the messenger sent down, and the bottom part closed. At the depth of 100 fathoms, the closed part of the net contained practically the same things as the open part of the net; at 200 fathoms, the lower part of the net contained but few specimens of the surface life ; and at 300 fathoms, the closed bottom net came up empty. On the following day the surface was carefully examined, and the tow- net sent to 175 fathoms, where it was towed for twenty minutes, and the messenger sent down to close it. The lower net came up well filled with the surface pelagic species, which on this day were unusually varied, it having been smooth and calm the previous night, and the morning before the towing was made. This haul was made in the evening, at 8 p.m. The previous hauls had been made at about 10 a. m., in a bril- liant sunlight. Again on the 11th of April, about thirty miles southeast of Acapulco, in a depth of over 1,800 fathoms, the Tanner net was sent to a depth of 300 fathoms, and the messenger sent down to close it. VOL. xxi —No. 4. 13 194 BULLETIN OF THE There was nothing in the lower part of the net which had been closed, while the open part contained an unusually rich assortment of surface species, and among them a large number of Scopelus, of Schizopods, and of Rhizopods, mainly Collozoun and Acanthometra. These experiments seem to prove conclusively that in the open sea, even when close to the land, the surface pelagic fauna does not descend beyond a depth of 200 fathoms, and that there is no intermediate pelagic fauna living between that depth and the bottom, and that even the free- swimming bottom species do not rise to any great distance, as we found no trace of anything within 60 fathoms from the bottom, where. it had been fairly populated. The experiments of Chun regarding the distribution of the pelagic fauna have all been made in the Mediterranean, within a compara- tively short distance from the shore, and in a closed basin show- ing, as is well known, special physical conditions, its temperature to its greatest depths being considerably higher than the temperature of oceanic basins at the limit of 200 fathoms, or thereabout, which we assume now to be the limit of the bathymetrical range of the true oceanic pelagic fauna. At 200 fathoms our temperature was from 49° to 53°, while, as is well known, the temperature of the Mediterranean soon falls at 100 fathoms even to about 56°, a temperature which is continued to the bottom in this closed basin. Of course, if temperature is one of the factors affecting bathymetrical distribution, there is no reason except the absence of light which would prevent the surface pelagic fauna from finding conditions of temperature at the greatest depth similar to those which the surface fauna finds within the limit of 200 fathoms in an open oceanic basin. Arriving as we did at the Galapagos at the beginning of a remarkably early rainy season, I could not help contrasting the green appearance of the slopes of the islands, covered as they were by a comparatively thick growth of bushes, shrubs, and trees, to the description given of them by Darwin, who represents them in the height of the dry season as the supreme expression of desolation and barrenness. Of course, here and there were extensive tracts on the sea-shore where there was nothing to be seen but blocks of volcanic ashes, with an occasional cactus standing in bold relief, or a series of mud volcanoes, or a huge black field of volcanic rocks, an ancient flow from some crater to the sea; but as a rule the larger islands presented wide areas of rich, fertile soil, suitable for cul- tivation. The experiments at Charles Island, where there is a deserted plantation, and at Chatham Island, where Mr. Cobos has under success- MUSEUM OF COMPARATIVE ZOOLOGY. 195 ful cultivation a large plantation producing sugar, coffee, and all the tropical fruits, as well as extensive tracts on which his herds of cattle, sheep, and donkeys roam towards the higher central parts of the island, show the fertility of these islands. They are indeed as favorably situ- ated for cultivation as the Sandwich Islands or Mauritius, and there is no reason why, if propetly managed, they should not in the near future yield to their owners as large returns as do those islands. I obtained from Mr. Cobos a piece of the so called sandstone said to occur on Indefatigable Island, and which of course I was most anxious to see, as the occurrence of true sandstone would have put quite a different face on the geological history of the Galapagos from the one usually re- ceived. This I found to be nothing but coral rock limestone, either a breccia or slightly odlitic, identical with the formation found back of the beach at Wreck Bay on Chatham Island. I found there an old coral rock beach, extending on the flat behind the present beach, composed entirely of fragments of corals, of mollusks, and other invertebrates, cemented together into a moderately compact odlitic limestone, which when discolored, as it often is and turned gray, would readily be mistaken for sandstone. This coral rock is covered by just such a thin, ringing coating of limestone as characterizes the modern reef rock of other local- ities. On nearly all the islands there are a number of sandy beaches made up of decomposed fragments of corals and other invertebrates, and cemented together at or beyond high-water mark into the modern reef rock I have described. The coral is mainly made up of fragments of Pocillopora, which is found covering more or less extensive patches off these coral sand beaches, but which, as is well known, never forms true coral reef in the Panamic district. The only true coral reef belonging to this district is that of Clipperton Island, (if we can trust the Admiralty charts,) situated about 700 miles to the southwest of Acapulco. But neither at Cocos Island, nor at the Galapagos, nor anywhere in the Pana- mic district, do we find true coral reefs, — nothing but isolated patches of reef-building coral. The absence of coral reefs in this district has of course already been noted by other naturalists, who have been struck by this feature in an equatorial region. Dana has ascribed it to the lower temperature of the water due to the action of the Humboldt Current com- ing from the south, pouring into the Bay of Panama, and then flowing westward with the colder northerly current coming down the west coast of Mexico and Central America. From the investigations made this year by the “ Albatross,” I am more inclined to assume that the true cause of the absence of coral reefs on the west coast of Central America is due 196 BULLETIN OF THE to the immense amount of silt which is brought down the hill and moun- tain sides every rainy season, and which simply covers the floor of the ocean to a very considerable distance from the land, the Jand deposits being found by us even on the line from the Galapagos to Acapulco at the most distant point from the shore to the side or extremities. The mud in Panama Bay to the hundred-fathom line is something extraordi- nary, and its influence on the growth of coral reefs is undoubtedly greatly increased from the large amount of decomposed vegetable matter which is mixed with the terrigenous deposits. The course of the currents along the Mexican and the Central and South American coasts clearly indicates to us the sources from which the fauna and flora of the volcanic group of the Galapagos has derived its origin. The distance from the coast of Ecuador (Galera Point and Cape San Francisco) is in a direct line not much over 500 miles, and that from the Costa Rica coast but a little over 600 miles, and the bottom must be for its whole distance strewn thickly with vegetable matter. The force of the currents is very great, sometimes as much as 75 miles a day, so that seeds, fruits, masses of vegetation harboring small rep- tiles, or even large ones, as well as other terrestrial animals, need not be afloat long before they might safely be landed on the shores of the Galapagos. Its flora, as is well known, is eminently American, while its fauna at every point discloses its affinity to the Mexican, Central or South American, and even West Indian types, from which it has proba- bly originated ; the last indicating, as well as so many of the marine types collected during this expedition, the close connection that once existed between the Panamic region and the Caribbean and Gulf of Mexico. I have already referred to the physiognomy of the deep-sea fauna, showing relationship on the one side to Atlantic and West Indian types, and on the other to the extension of the Pacific types, which mix with the strictly deep-sea Panamic ones. The western and eastern Pacific fauna, while as a whole presenting very marked features in common, yet also present striking differences. The vast extent of territory over which some of the marine types extend, through all the tropical part of the Pacific, may readily be explained from the course of the great western equatorial current and the eastern counter current, which cannot fail to act as general distributors in space for the extension of a vast number of marine Vertebrates and Invertebrates. Mr. Townsend made quite a large collection of Birds from Chatham and Charles Islands, considering the short time we were there. a MUSEUM OF COMPARATIVE ZOOLOGY. 197 As soon as we have reached Guaymas, I shall be able to give you a better résumé of the character of the deep-sea fauna of the Panamic region, and of its relationship on the one side to the Pacific fauna and on the other to the West Indian region. III. Guaymas, April 25, 1891. We left Acapulco on the 15th of April, for our third cruise, into the Gulf of California, and steamed as far as Cape Corrientes without attempting to do any trawling. The character of the bottom, as indi- cated on the charts, promised nothing different from what we had dredged off Acapulco, and on the line from there to the Galapagos Islands. We made one haul off Cape Corrientes, bringing up nothing but mud and decomposed vegetable matter. This induced us to keep up the Gulf of California, till we were off the Tres Marias. We there made several hauls, and obtained some Umbellule, Pennatule, Trochoptilum, An- thoptilum, and a fine Antipathes, a few Comatule, a large Astropec- ten, some fine specimens of Urechinus and of Schizaster, a few Holo- thurians, Lophothuria, Trochostoma, and two species of Elasipoda, besides a few fragments of Gasteropods, with an empty shell of Argonauta. Among the Crustacea there came up the usual types found living upon muddy bottom, such as Glyphocrangon, Heterocarpus, Notostoma, Penta- cheles, Nematocarcinus, Nephrops, together with species of Lithodes and of Munida. The usual types of Jimicolous Annelid also were found here, Halinzcia, Terebella, Maldania, and the like, a few Ophiurans, Ophiopholis and Ophiocantha, a few fragments of Farrea, and a huge Hyalonema of the type of H. toxeres. Among the Fishes there were a few Macrurans, Bathypteroides, Lycodes, and Malthe. The trawl was usually well filled with mud, and with the mud came up the usual supply of logs, branches, twigs, and decayed vegetable matter. On going farther north into the Gulf of California, the nature of the bottom did not change materially, and we found the trawling most diffi- cult from the weight of the mud brought up in the trawl. But occa- sionally a haul was made which more than repaid us for the time spent on the less productive ones. Two of the hauls are specially worthy of mention, as being characteristic of the deep-water fauna of the Gulf of California, one made in 995 fathoms, and the other in 1,588 fathoms. We obtained in these hauls a number of Ophiomusium and Ophiocreas, 198 BULLETIN OF THE some fine specimens of Schizaster, a new genus allied to Paleopneustes, and also the same species of Cystechinus, with a hard test, and of Phor- mosoma, which we had obtained before on the line from the Galapagos to Acapulco. Beside these, there came up a number of specimens of an interesting species of Pourtalesia, most closely allied to Pourtalesia miranda, the first type of the group dredged in the Florida Channel by Count Pourtales. The deeper haul was specially rich in Holothurians, among them a fine large white Cucumaria, some specimens of Trochostoma, several species of Bathodytes, some of them remarkable for their white color, their huge size, and comparatively small number of ventral tentacles. With these were numerous specimens of an interesting species of Eu- phronides. In this haul I was specially struck with the Elasipoda, and the great variety in the consistency of the skin in individuals of one and the same species ; it varied in different individuals from extreme tenuity to a comparatively tough gelatine-like consistency. On carefully sifting the mud, we found a number of interesting Foraminifera, and of deli- cate and minute Gasterepods and Lamellibranchs, fragments of the shell of an Argonauta, and two species of a huge ribbed Dentalium. Among the Starfishes were specially noticeable a large Brisinga, a long-armed Cribrella, and several species of Astropecten. The usual types of Worms were found in the mud at these greater depths. In addition to a num- ber of Macruroids, we obtained a pink Amphionus, a large black Beryx- like fish, a fine Nettastoma, and a couple of species of Lycodes. The usual surface species of Stomias and of Scopelus also came up in the trawl. Among the Crustaceans were a fine lot of Arcturus, of Colos- sendeis, of Glyphocrangon, and of a Caridid with a deep blue patch on the base of the carapace, making the strongest possible contrast to the dark crimson coloring of the rest of the body. Blue is a very unusual color in the deep-sea types, although the large eggs of some of the deep-sea Macrurans are often of a light blue tint. We brought up in the trawl at various times, and subsequently also in the Tanner net, from depths of less than 200 fathoms, the same gigantic Ostracod which I mentioned in one of my previous letters, several specimens of Atolla, and fragments of a huge Periphylla, which must have been at least fifteen inches in diameter. Also a most inter- esting new type of Bougainvillia, remarkable for having eight clusters of marginal tentacles, but only four chymiferous tubes. We continued our experiments with the Tanner tow-net. On the 16th of April, about 120 miles from Acapulco, we sent the net to tow oaks. MUSEUM OF COMPARATIVE ZOOLOGY. 199 at a depth of 175 fathoms,and after towing for about twenty minutes sent the messenger to close it. On examining the bottom part of the net, which came up tightly closed, we found it to contain practically the same things as we obtained in the surface net at the same spot. On two occasions we sent the net to be towed at depths of 800 fathoms and of 700 fathoms, the depths at these points being in one case 905 fathoms and in the other 773 fathoms. At the greater depth, the water shoaled somewhat while towing, as the closed part of the net came up partly filled with fine silt; while during the second haul, the twisting of the swivel wound the straps of the weights round the rope, and the net came up open, but must have dragged very close to the bottom, as it contained a fine specimen of Nettastoma, and some Pene- ids, which we supposed to be deep-sea types. Otherwise the net con- tained only the customary surface species of Sagitta, Pteropods, Copepods, Schizopods, Tunicates, and Fishes. These two hauls were made about the middle of the Gulf of California, at a distance of some fifty miles in a southwesterly direction from Guaymas. On the 23d of April, a few hours before reaching Guaymas, we made one more attempt with the Tanner tow-net, at a depth of 620 fathoms, sending the net to be towed at a depth of from 500 to 570 fathoms. We found in this case in the bottom part of the net, which came up tightly closed, a Scopelus, a Penzid, and a Hyalea, while the upper open part of the net contained the same surface species we had obtained before. My experience in the Gulf of California with the Tanner self-closing net would seem to indicate that in a comparatively closed sea, at a small distance from the land, there may be a mixture of the surface species with the deep-sea bottom species, a condition of things which certainly does not exist at sea in an oceanic basin at a great distance from shore, where the surface pelagic fauna only descends to a com- paratively small depth, about 200 fathoms, the limits of the depth at which light and heat produce any considerable variation in the physical condition of the water. The marked diminution in the number of spe- cies below 200 fathoms agrees fairly with the results of the “‘ National ” Expedition. The more I see of the “ Albatross,” the more I become convinced that her true field is that of exploration. She is a remarkably fine sea boat, and has ample accommodation for a staff of working specialists such as would be needed on a distant expedition. The time will soon come when the Fish Commission will hardly care to continue to run her, 200 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. and I can conceive of no better use for so fige a vessel than to explore a belt of 20° latitude north and south of the equator in the Pacific, from the west coast of Central America to the Kast Indian Archipelago. The success of the “ Albatross” thus far has depended entirely upon the zeal, energy, intelligence, forethought, and devotion ‘of Captain Tan- ner, if I may jadge of the past by the present. He never spares himself, and he is always ready to make the most of the time at his disposal for the benefit of the special object he has in charge. He looks after every haul of the trawl himself, and will not allow any one else to jeopard in any way the material of the vessel, or the time it requires to make a haul. That responsibility he assumes himself, and it constitutes his daily work. In looking over the records of the ‘“‘ Albatross” during her voyage from New York to San Francisco, I am struck with the amount of work which has been accomplished. It would be but a just return to Captain Tanner, if Congress would make the necessary appropria- tions to work up and publish all that he has brought together, not only on that cruise, but also what has been left untouched thus far of the immense collections made by him in the Caribbean, and off the east coast of the United States, to say nothing of his explorations in the Gulf of California, on the coast of California, on the coast of Alaska, and in the Behring Sea, from which he has accumulated endless and most interesting material, which no other ship could get together unless she had another Tanner in command. We reached Guaymas on the 23d of April, in the afternoon, and I parted from the ship with great regret, but more than satisfied with the results of this expedition. Allow me, in concluding, to thank you most cordially for haying given me the opportunity to join the “ Albatross” on this extended cruise, and for your kindness in urging the President to allow the vessel to be detailed for this work. As soon as it may become practicable, I shall send you a full résumé of our work, accompanied with sketches of the Tanner tow-net and a detailed chart of the route we followed. Very respectfully yours, ALEXANDER AGASSIZ. CAMBRIDGE, May, 1891. a No. 5.— The Development of the Pronephros and Segmental Duct in Amphibia, By Hersert H. Frevp.} ConTENTS. PAGE PAGE iwintroduction .) < << « «<< 201 CaAmblystoma.2s 5 1. 247 II. Descriptive Part . . . . . 208 Sitges. sya ole 248 PUMGAA Ban are te. 2) Faerie DO Stage . . . «.. . 250 Be cs at 3) DOE Staves. st 200 pee SS. StageIV. ..... . 262 SapeMie ye , s my e 20S SIAGCRURME + fs) 0 ss) Boe eee. Ce aes 2 DIS Seaeewe My Tee es at) QB Rey nn 58 Syd a,c | 227 III. General Discussion . . ; 262 ROOM oe x DOT The Kidneys of apiiienia 262 PER a hy 3 BAT The Pronephros of the Cra- EE se) wea) 2A niota. . . | oe eee eS es - S S SAD The Segmental Date te 285 ems ees 5). 8 248 Organogenetic Conclusions . 295 OS a ee: © Phylogenetic Conclusions . 307 rage a ew s, 24551 V.. Bibliography ....3 « « « 823 Stage V. . « . - . . - .246| V. Explanation of ena esa I. Introduction. Tue studies upon which this paper is based were undertaken with the purpose of determining the relation which the urogenital system bears to the germinal layers in Amphibia. At the time when they were begun, especial interest in this topic had been awakened by the appearance of Flemming’s paper (’86), in which the author entirely confirmed the state- ment previously made by Graf Spee (’84), that the system was of ecto- dermal origin. This view was gladly welcomed on many sides, for it was felt that an origin from this source was more in harmony with gen- eral conclusions already accepted than was the method previously advo- cated. Moreover, a new light seemed now to be cast on the phylogeny of Vertebrates. Under these circumstances, it appeared highly desirable that the position which Graf Spee and Flemming had taken be subjected to the test of renewed investigation on other groups of Vertebrates than 1 Contributions from the Zodlogical Laboratory of the Museum of Comparative Zodlogy, under the direction of E. L. Mark, No. XXVII. VOL. xxI.—wno. 5. 202 BULLETIN OF THE those employed by them. The researches of these authors had been conducted on Mammalian material only, and it was the hope of the writer to find in Amphibia a similar mode of origin for the excretory duct. The material employed in the present investigations consisted of em- bryos of Rana, Bufo, and Amblystoma. The study of the problem was begun with Rana pipiens Schreb. (halecina), embryos of which had been prepared in the spring of 1884 by Prof. E. L. Mark, who kindly placed his series at my disposal. In the spring of 1889, while in Baltimore, Md., I secured an abundance of the eggs of Rana sylvatica Le Conte.! These eggs are large, measuring at the blastula stage two millimeters or more in diameter. I also found them far better for embryological study than those of other species of frogs examined. An advantage which they possess for my purpose is that the germ layers are very well sepa- rated from one another. Moreover, the body cavity appears at an early stage, making the boundary between the somatic and the splanchnic mesoderm very pronounced, both in the region of the protovertebre and of the lateral plates. The eggs of Bufo studied, B. americanus Le Conte, were collected dur- ing the spring of 1887, in Cambridge and in Jamaica Plain, Mass. At this time I also collected a small quantity of Amblystoma eggs from a pond in Jamaica Plain; but a careful search, carried on during several subsequent trips to this locality, failed to yield any more eggs. Prof. J. S. Kingsley at this time kindly sent me from Indiana some Amblystoma material which he had preserved ; but for the determina- tion of many points at issue I was obliged to wait till another season offered opportunities for collection. In the spring of 1889, therefore, I made a trip to Baltimore, where I was able to collect an abundant sup- ply of the eggs of this Amphibian, most if not all of the material col- lected belonging to the species A. punctatum Linn. In this work I was accommodated at the Biological Laboratory of the Johns Hopkins Uni- versity, —a privilege for which I am under obligation to that institu- tion. My thanks are particularly due my friend Dr. T. H. Morgan for his kind assistance during my stay in Baltimore, and for material of his collection. I may here also express my obligations to Dr. John S. Billings, Sur- 1 Inasmuch as the observations of European investigators have usually been made on R. temporaria, it is of interest to note that R. sylvatica Le Conte has been regarded by some systematists as a variety of R. temporaria (Giinther, ’58, p. 17). In any event, the development of the two forms may be assumed to be very similar. MUSEUM OF COMPARATIVE ZOOLOGY. 203 geon U.S. Army, for the favor of sending me from the Surgeon General’s library in Washington a number of papers to which I should otherwise have been unable to gain access. I am further indebted to Mr. Samuel Garman and to Mr. G. H. Parker for the revision of my proof-sheets, and for suggestions during the progress of my work. Mr. Parker also read the earlier portions of my manuscript. The material was prepared by ordinary histological methods ; but in- asmuch as many of the hardening reagents and stains which I tried gave thoroughly unsatisfactory results, I may state in brief the treatment which proved most successful. The embryos of both Rana and Bufo can be satisfactorily killed in Kleinenberg’s picrosulphuric mixture ; they can then be successfully stained in Orth’s lithium-picrocarmin. The object should be exposed to the action of the stain as long as possible, care being taken to guard against maceration. In order to accomplish this purpose, it has frequently proved advantageous to stain the object twice, removing it after the first staining to strong alcohol. In passing the stained object through grades of alcohol, it is important to keep a little picric acid dissolved in the several fluids in order to prevent the alcohol from extracting the yellow stain from the specimen. Embryos treated in this way show a very effective double stain. The nuclei are bright carmine, contrasting with the yellow color imparted by the picric acid to the yolk spherules among which they are found. As a killing reagent, Merkel’s fluid also gives good results. It should be followed by Kleinenberg’s hematoxylin, and the decolorizing should be watched with care. With Amblystoma the best method of treatment is that with Fol’s chromic-osmic-acetic mixture, followed by Czokor’s cochineal. The picrosulphuric mixture followed by picrocarmin, as recommended for Rana and Bufo, is also of service. It is usually best to stain on the slide; and, in my experience, satis- factory results with hematoxylin can very rarely be reached by staining in toto. II. Descriptive Part. In the following account of the development of the pronephros and segmental duct, I shall first treat these organs descriptively. For this purpose, I shall take up in succession Rana, Bufo, and Amblystoma, and shall describe selected stages in the development of each. This account will be followed by a general discussion of nephridial organs, in which the results of other investigators will be reviewed. 204 BULLETIN OF THE A. Rana. Stace I. Plate I. Figs. 1-3. At the first stage which I shall describe the embryo has departed only a little from the spheroidal form presented by the egg during segmenta- tion. The medullary plate is widely open, its lateral margins being only slightly elevated above the general surface. At the hinder end of the medullary plate the blastopore is plainly visible. An idea of the exter- nal form of the embryo can be gained by reference to Goette’s figure of Bombinator ('75, Taf. III. Fig. 41), or to van Bambeke’s of the Axolo- tyl (’80, Pl. XII. Fig. 9). In water of 15 to 18° C. eggs of R. sylvatica reached this stage in about sixty hours after fertilization ; the eggs of R. halecina develop somewhat more slowly. The general relations of the germinal layers at this stage are shown in Figure 2. The ectoderm consists of two distinct layers (Figs. 3 and 7, ec'drm.' and ec’drm.”). Except in the region of the medullary thicken- ing (/a. med.), which is produced by a proliferation of the deeper of these two layers, the ectoderm is nearly uniform in thickness. The two layers present slightly different histological characters. In the outer layer (Figs. 3 and 7, ec’drm.’) the cells are large and columnar, and their external surfaces project as rounded eminences, giving a roughly granular appearance to the surface of the embryo. Lach cell contains scattered pigment granules, which are especially massed along its external face. Small yolk spherules (sph. vt.) are present in considerable numbers. The cells of the deep layer (ec’drm.’’) are smaller than those of the outer, and are somewhat flattened. The pigment granules are scattered through- out the cells of this layer, without showing special accumulations. The yolk spherules present the same appearance as those of the superficial layer. The entoderm and yolk cells (Fig. 2, en’drm. and el. vt.) form the great mass of the interior of the embryo. The wide lumen of the gut trav- erses the dorsal portion of this mass. The chorda (n’cd.) has the form of a longitudinal ridge, imperfectly cut off from the entoderm below, and in contact with the medullary plate above. A single cell layer (en’drm.) on each side of the chorda forms the dorsal roof of the intestine. As this layer passes out laterally, it increases in thickness, becomes several cells deep, and finally merges in the mass of large yolk cells (cl. vt.) lying ventral to the intestinal cavity. All the cells of the entoderm contain large yolk spherules. Pigment is present in considerable quantity in the MUSEUM OF COMPARATIVE ZOOLOGY. 205 cells bordering the cavity of the intestine ; elsewhere it occurs only as scattered granules. At this stage two plates of mesoderm (Fig. 2, Ja. ms’drm.) extend out laterally, one on each side of the chorda, and pass ventrally around the mass of yolk cells to be united in the median line below. Each plate is thickest (Figs. 1, 3, at Ja. pr’vr.) next the notochord ; as it passes out- ward, it becomes thinner. Before the ventral surface of the embryo is reached, it is reduced to a layer two cells thick, representing the somato- pleure and splanchnopleure (so’plu. and spl’plu.) of this region. The cells of the mesoderm are in general smaller than those of the yolk-entoderm. The yolk spherules which they contain are also somewhat smaller than those in the entoderm. Pigment is rarely present except in the form of scattered granules. In the foregoing account of the relations of the germ layers the de- scription refers in the main to the typical condition, realized in the middle trunk region; in this and in subsequent stages modifications occur in the head and tail regions. These special conditions are of no consequence for the present purpose. There are certain histological characters, to which allusion has already been made, which may serve as criteria for distinguishing the germ layers. The most satisfactory of these is the size of the yolk spherules. As I have indicated, the spherules are largest in the entoderm and smallest in the ectoderm ; in the mesoderm they are of an intermediate size. Measurements of spherules from the three layers in the region of the future pronephros gave the following results: entoderm, mean diameter of spherules, 8; mesoderm, mean diameter, 5; ectoderm, diameter rarely exceeds 3. Excluding the head and tail regions, these dimen- sions represent, I believe, fair averages for the whole body. The dis- tribution of pigment affords another criterion for distinguishing the layers. In the superficial ectoderm, the pigment (Figs. 3, 7) is massed along the external surface of each cell. In the deep ectoderm, it is present in con- siderable quantity, but is scattered throughout the cell. Except in cer- tain specialized regions, there is little pigment in either mesoderm or entoderm. I have also noted the differences in the mean sizes of the cells: the yolk cells are in general the largest, and those of the ecto- derm the smallest, the mesodermal cells being of intermediate size. The great variability of this character prevents its having much weight, however, in determining to which of the three layers a given group of cells belongs. I shall now consider in greater detail some of the modifications which 206 BULLETIN OF THE the mesoderm exhibits, particularly such as occur in the region where the pronephros is subsequently developed. For this purpose I have selected two embryos of Stage I. which show slightly different condi- tions. The account will first relate to the specimen which is shown, by the less differentiation of the medullary plate as well as by other features, to be the younger. This embryo measures 2.31 mm. in length. In fol- lowing a series of cross sections forwards, the three germ layers become apparent at about 0.35 mm. from the posterior end, or a short distance in front of the blastopore. Here the structure of the mesoderm is rather obscure, since in a transverse section of the animal this layer is cut obliquely. The condition, however, is here nearly the same as that which I am about to describe for a more anterior section. Figure 3 represents a section of this embryo 0.91 mm. from the pos- terior end. On the ventral side of the embryo the mesoderm consists of two layers, each of which is only a single cell in thickness. These two layers, which represent somatopleure and splanchnopleure, are separated by a narrow space, the cceelom (cel.). In the lower left-hand corner of the figure, the beginning of this two-layered condition of the meso- derm can be seen. On following the mesoderm towards the dorsum, it becomes gradually thicker. In the mesoderm of this region there is found an extensive cavity (ccel.), which is usually irregular in outline, and might be mistaken for a wholly artificial condition. That the two layers were once in contact is shown by the correspondence of outline on the two sides of the space. The separation along this line is so regular, however, in successive sections, and recurs so frequently in other em- bryos, that the cavity must be regarded as an artificial expansion of an already existing split, rather than as an indifferent rupture of a solid mass of cells. In many sections of this embryo it is easy to trace a iine of division reaching from the ventral cavity (ccelom) to the large lateral cavity just described. This, then, represents a portion of the coelom (normally, I believe, closed), and the layers of mesoderm on the two sides of it are consequently somatopleure and splanchnopleure. The mesoderm in this region, as I have stated, is several cells deep. Along the inner and outer edges of the wedge-shaped plate of tissue constitut- ing the mesoderm of either side, the cells, except where artificial rup- tures occur, are in close contact, and form an epithelial lamella. The central. portion of the plate, where this is more than two cells in thick- ness, contains cells of a more rounded shape, which do not form definite rows, but which are closely applied to the outer layer, —a condition which becomes quite evident when the ccelom is artificially enlarged. MUSEUM OF COMPARATIVE ZOOLOGY. 207 The somatopleure of this region, then, is a layer at least two cells in thickness. The splanchnopleure, on the other hand, im this as in later stages, consists of a layer one cell in depth, extending from the ventral surface of the animal to the protovertebral plate.’ Naturally no sharp line of division can be drawn at this stage between the «protovertebral plates and the adjacent portions of the lateral plates. In the section under consideration, the protovertebral plate is rather compact, and it is difficult to indicate with certainty the boundary between the somatic and splanchnic layers. A study of this portion of the mesoderm, how- ever, has convinced me that the coelom (cel.’) is already outlined, and lies in such a position as to leave only a single layer of cells dorsal to it, —a condition which is perfectly evident in later stages. It is indicated by such a distribution of pigment as is seen to the right in Figure 3. On following the series of sections farther towards the head, a con- striction of the mesoderm appears beneath the lateral margin of the medullary plate, and the open celom is continued into the protover- tebral plate. In a section 1.2 mm. from the posterior end the somatic and splanchnic layers are each but one cell thick in the region of the protovertebral plate. The cells of the somatic layer, which in the proto- vertebral portion are of a high columnar form, become tile-like beneath the pronounced lateral thickening (compare Fig. 1, eras. gn.) of the medullary plate. The somatopleure immediately lateral to the medul- lary plate is rather thick, and becomes thinner both towards the median dorsal and median ventral lines. The regularity of the bounding walls of the body cavity in this region, and the occurrence of a space where no other signs of distortion are apparent, lead me to believe that the separa- tion of the two layers of mesoderm is here perfectly normal, and not, as in more posterior regions, an artificial separation of two closely applied lamelle. It is, in general, very difficult to observe karyokinetic conditions in mesodermal or yolk cells, owing to the presence of the large and nu- merous yolk spherules; but I am reasonably certain that I have ob- served cells in the somatopleural thickening, dividing in a plane parallel to the surface of the layer; i.e. the cells were dividing in such wise as to increase the thickness of the layer. In a section 1.32 mm. in front of the posterior end, the lateral portion 1 The differentiation of the protovertebre has not yet begun in this region, and I shall designate the thick masses of mesoderm on each side of the chorda as protovertebral plates. 208 BULLETIN OF THE of the medullary plate is greatly thickened, and the lateral plates are thereby wholly cut off from the protovertebral plate. The thickening of the medullary plate is the hinder portion of a considerable ganglionic mass, which is the basis for the subsequently differentiated ganglia Gasseri, acusticum, and nodosum.? The somatopleural thickening may be traced to a point about 80‘u farther forward, where the body cavity is no longer expanded. ‘The relations of this thickening to the nephridial organs will be discussed in connection with Stage II. (page 211). In a slightly older embryo, measuring 2.34 mm. in length, the condi- tion of the mesoderm is nearly the same as in the one last described. The somatic layer shows a marked thickening (Plate I. Fig. 1, cras. so’plu.), which is greatest immediately lateral to the protovertebral plate. An anterior coelomic chamber is also present. The anterior limit of the thickening is situated, as before, about 0.1 mm. in front of the hinder end of the enlargement which is destined to give rise to the cranial ganglia. The thickening (Fig. 1, cras. so’plu.) of the somatopleure is slightly more pronounced than in the younger embryo. The results of this study may be summarized as follows. There exists already at this stage a slight somatopleural thickening, which is maximum along a line immediately lateral to the protovertebral plate. This thickening is associated with a local expansion of the ccelom. It is most pronounced in the region directly posterior to the cranial gan- glionic mass. Posteriorly it 1s lost in a general lateral thickening of the somatic layer. The location of the thickening corresponds closely with the region in which the pronephros and segmental duct later arise. Whether we have in this thickening the first rudiment of the excre- tory system will be discussed in connection with Stage II. 1 I may here note that I have been able to make out for the series of spinal and cranial ganglia in Rana, Bufo, and Amblystoma an origin not unlike that described by Beard (’88, pp 166, 183) in Selachii and Aves, and by Schultze (’88, p. 349) in Rana. The ganglia are developed from the ectoderm at the lateral margins of the medullay plate (Fig. 3, fnd. gn. spi.), The differentiation of the ganglia 1s already apparent before the neural tube is infolded A spinal ganglion does not arise as an outgrowth from the neural tube, nor as a separate thickening of indiffer- ent ectoderm, but is differentiated from a first rudiment (Anlage) common to it and to the neural tube. MUSEUM OF COMPARATIVE ZOOLOGY. 209 Stace II. Plate I. Figs. 4, 5. Plate Il. Figs. 13, 14. This stage includes embryos with a distinct medullary groove, the edges of which, however, have not yet fused to form a complete neural tube. Several protovertebrz can be distinguished. In treating of the structure of the pronephros in this stage I shall first consider two embryos, which, judging from external appearances, seem to have reached the same stage of development. These embryos are about as far advanced as the one figured by Hertwig (’83, Taf. V. Fig. 6). In both the medullary groove is widely open. They are about 2.5mm. long, and have been sectioned, one transversely, the other frontally. Following the series of cross sections forward from the tail end, and comparing them with those of the preceding stage, the changes which have occurred will be apparent. In the posterior region, the mesoderm, as it passes outward and downward from the chorda, tapers much more rapidly than in the earlier stage. Even as far posteriorly as a few sec- tions in front of the blastopore, this condition can be observed ; and, in a section 0.72 mm. from the posterior end, the thick central mass of meso- derm, the protovertebral region (Fig. 4, Ja. pr’vr.), has a triangular out- line in cross section, and is readily distinguishable from the lateral plate (da. (.), with which it is continuous at its outer angle. The protover- tebral plate consists of an outer epithelial layer and a central mass of cells. It is the former which is prolonged into the lateral plates. Each of these is here in general only one cell deep. Between somatopleure and splanchnopleure a few scattered cells occur, which can be assigned only with difficulty to either layer. At 0.96 mm. from the posterior end the hindermost protovertebra visible in cross section can be distinguished. Between this point and the ganglion nodosum four protovertebre are to be observed. Passing farther forward, it is difficult to assign boundaries to the protovertebre. There is certainly one which is partially broken up into mesenchymatic tissue.’ Still farther forward the series of the protovertebre is con- tinued by mesenchyme of a yet looser structure. Inasmuch as I have 1 I use this expression merely as descriptive of tissue of a certain histological character, quite independently of its origin. Indeed Iam convinced, from observa- tions which appear in the sequel, that not merely the head mesenchyme, but also much of that in the trunk, arises in relatively late stages from mesodermal tissue, substantially in accordance with the account of Balfour (’78, pp. 107 et seq.), which has recently found champions in Ziegler (’88) and others. VOL. XXI._ — NO. 5 14 210 BULLETIN OF THE reached no conclusions respecting the number and position of the head somites, and since great diversity of opinion exists in the accounts to be found in the literature, I shall make no attempt to number the protovertebree with which I shall have to do in any other way than by beginning with the most anterior that is readily distinguishable. Disregarding, then, the one which is wholly broken up into mesenchy- matic tisue, somite I. lies in the same transverse plane as the fun- dament? of the ganglion nodosum, and extends backward to the hinder end of that structure. This protovertebra also shows signs of extensive conversion into mesenchyme, although part of it at a later stage undergoes muscular differentiation. Somite II. is the first of the series of well developed trunk protovertebre. In the specimen under consideration somites I. to VI. are already differentiated. As I have stated, the somatopleure in the middle of the trunk consists of a layer one cell deep, to which a few loose cells lying between it and the splanchnopleure may possibly also be assigned. In the region of somite IV. the somatopleure becomes thickened. The thickening is greatest at the level of the lower margins of the protovertebre (com- pare Plate IL. Figs. 15, 16), and tapers both dorsally and ventrally. It is to be remarked in this connection that the protovertebre are not yet fully separated from the lateral plates; but that in cross sections through the middle of a somite, —i. e. midway between the anterior and posterior faces of a protovertebra, —the ccelom can be traced to the dorsal margin of the protovertebra, and furthermore that the somato- pleure and splanchnopleure are seen to be continuous with the somatic and splanchnic layers of the protovertebree. The somatopleural prolif- eration extends forward as far as the anterior face of somite II. The cells in the thickening have a columnar shape, and are at least two deep. In some sections I have observed, in addition, a third row of thin cells next the body cavity. Near the ventral limit of the thickening a nearly horizontal line of division in the substance of the thickening can be observed. When seen in cross section, this line is shghtly con- cave above. It is here that ruptures produced by artificial causes are likely to occur, and the line thus indicated marks, I believe, the lower limit of the pronephros. The somatopleural thickening is the funda- ment of the pronephros, and I shall call it in the following pages the 1 In the following pages I shall use the word fundament as an equivalent of the German exprcssion Anlage, the term fundamentum having been adopted as the basis for the lettering of the figures of such structures in the “ Contributions ” from this Laboratory. [ == [ae MUSEUM OF COMPARATIVE ZOOLOGY. Pallet pronephric thickening. The dorsal portion of the expanded body cavity is the pronephric chamber. The question whether the somatopleural thickening described in Stage I. be an early condition of the pronephric thickening is only to be answered by considering the fate of the former. Behind somite IV. this early thickening wholly disappears, and the one which is seen at a later stage is an independent formation. This conclusion is justified by a com- parison of Figure 4 (Plate I.), showing the somatic layer to be only one cell thick in the posterior region of an embryo of the present stage, with Figure 3, which shows a two to three layered somatopleure (so’plw.) in a somewhat more anterior region of an embryo of the next younger stage. In the region of somites II., III., and IV., however, the somatopleure never wholly thins out ; but the thickening is here moulded into a more definite form, and becomes the fundament of the pronephros. To my mind, it is as if the mesoderm, in the process of becoming thinner, was overtaken by the necessity of affording material for the formation of the pronephros and duct, and, as a matter of physiological economy, used for that purpose an accumulation of cells already present. Indeed, from the form of the thickening in anterior portions of the embryo, I am disposed to regard the differentiation of the pronephric thickening in this sense as having begun already in Stage I. The corresponding series of frontal sections shows five well developed protovertebre, representing somites I.-V. (Plate II. Figs. 13, 14). A mass of mesenchymatic tissue in front of somite I. is doubtless the rem- nant of the rudimentary anterior protovertebra observed in the series of cross sections, and behind somite V. the differentiation of a sixth is faintly indicated. Above the level of the lower border of the chorda the protovertebrz are sharply marked off from one another, and the somatic layer is relatively thin. Near their ventral margins, however, the suc- cessive protovertebre are in close contact, and the somatic layer shows a pronounced lateral thickening (Fig. 13, cras. pr’nph.). On passing ventrally to the region of the lateral plates, the inter- protovertebral constrictions vanish. Since frontal sections, however, do not here cut the layer of mesoderm perpendicularly, certain sections in the series show a distinctly segmented splanchnic layer, while the so- matic thickening in the same frontal plane is unsegmented. Farther ventral there are no traces of segmentation in either layer. Here the splanchnopleure (spl’plu.) uniformly consists of a single layer throughout its entire extent. The somatopleure facing the ganglion nodosum, and also that in the posterior region, is thin; but in the anterior portion of 212 BULLETIN OF THE the trunk, immediately behind the ganglion nodosum, there is a marked thickening (cras. pr’nph.), which ends abruptly in front, but gradually thins out into indifferent somatopleure behind. This thickening is distinctly present through a length of 0.5 mm., which is slightly greater than the extent of protovertebre II., IIL, and IV. Still farther ven- trally, the antero-posterior extent of the thickening is much diminished, the reduction taking place from both ends, so that in passing ventrally the region in which the structure is last visible is situated approxi- mately beneath protovertebra III. Another pair of embryos, one of which was 2.5, the other 2.6 mm. in length, presented a condition of the pronephros somewhat more advanced than that just described (Plate I. Fig. 5). In these embryos the lips of the medullary fold in the most advanced region were in contact, but had not yet fused. The anterior limit of the pronephric thickening was the same in position as in the younger pair of embryos, lying near the middle of somite Il. A study of the arrangement of the nuclei in this region made it evident that there were at this stage in general three layers in the thickening. The innermost of these is the thinnest, and is destined to be- come the peritoneal covering of the pronephros ; the other two represent the two walls of the pronephric pouch, soon to be described. The prone- phric thickening in the region of the anterior face of somite IV. is shown in Figure 5. The section gives a somewhat false impression as to the somatic layer of the protovertebra, unless the relation of the section to the successive somites be borne in mind. The considerable thickening which this layer apparently undergoes on passing into the protovertebra is due to the circumstance that the section here passes obliquely through a portion of the anterior wall of somite IV. Sections through the middle of a protovertebra show a gradual thinning of the somatic layer as far as the dorsal angle of the mesoderm (compare Plate II. Fig. 15, which is a cross section of the following stage), where this layer is almost pave- ment-like. The pronephric thickening extends rather farther posteriorly than in the former pair of embryos, and while it is manifestly difficult to set a limit to the structure, I am confident that the thickening ex- tends into somite V. This posterior extension of the thickening is to be regarded as the fundament of the pronephric, or, according to the later nomenclature of Balfour, the segmental duct. The corresponding series of frontal sections shows six well differen- tiated protovertebre, representing somites I.-VI. The same group of cells which I interpreted before as the last remnant of a rudimentary MUSEUM OF COMPARATIVE ZOOLOGY. 213 anterior somite is still present, and a few more posterior protovertebre are in process of formation. Frontal sections just ventral to the chorda are very instructive. By following through a series of these, an idea can be had of the successive changes which take place in passing from the protovertebre to the lateral plates, —a region of prime importance for problems respecting the development of the urogenital organs. In sections approximately tangent to the chorda at its ventral border (com- pare Fig. 5), the plane of the section passes through the ventral floor of the protovertebra, and cuts the somatic mesoderm near the place where the protovertebra passes into the lateral plate. The body cavity is ex- panded in the anterior part of the trunk. The mass of tissue on the median side of the body cavity appears very broad, owing to the circum- stance that the plane of the section, as before noted, lies in the floor of the . protovertebra. The somatic layer is several cells thick, and very com- pact in structure, owing to the fact that the section passes through the dorsal margin of the pronephric thickening. In following the series of sections farther ventrally, the boundaries between the segmental con- stituents of the pronephric thickening become indistinct ; and in a sec- tion 90» farther ventral they have wholly vanished. This section, however, still shows traces of segmentation in the splanchnic layer, which is here reduced in thickness, the plane of this section having passed ventral to the floor of the protovertebra. Still farther ventrally the segmentation of the splanchnopleure likewise vanishes, and finally the pronephric thickening gives place to undifferentiated somatopleure. [ have looked in vain for prolongations of the body cavity into the prone- phric mass at this stage. I believe that the pronephric thickening is to be regarded as a solid proliferation of the somatopleure, in which, how- ever, the somatic layer of the protovertebree takes some part. Stace IIT. Plate I. Fig. 6. Plate I. Figs. 11, 12, 15-17. In embryos of this stage the medullary canal is wholly closed, the fun- daments of two pairs of gills are present, and the auditory vesicle consists of a shallow depression of the deep ectoderm. The pronephric thickening has now begun to assume a more definite form, and during this stage becomes converted into a tubular organ. I shall first consider the structure as seen in a series of cross sections from an embryo measuring about 2.7 mm. in length. Figures 15 to 17 are from this series. The anterior end of the pronephric thickening is 214 BULLETIN OF THE located in somite II. The plane of the section from which Figure 15 was drawn passes somewhat behind the middle of this somite, so as to show the location of the constriction between the protovertebree and the lateral plates. In the middle of the somite, the arrangement of the cells composing the pronephric thickening appears to be that of a fold in which the layers are in close contact. The thickening is composed of three layers of cells, and it is possible to trace the somatic layer of the protovertebra into the outer layer of the thickening. The lateral indifferent somatopleure is continuous at the ventral border of the thickening with the inner or thin Jayer which lies next to the body cavity. Near the upper border of the thickening this inner layer appears to be folded abruptly on itself to form the middle layer of the thickening. ‘The middle and outer layers are continuous with each other distally, i.e. ventrally.1 This anterior knob of the pronephric thickening (Fig. 15, fnd. nph’st.!) is the fundament of the first nephrostome, a later stage in the development of which is shown in Plate III. Fig. 18 (nph’stm.1). In Figure 15 the three lay- ers are indicated by the arrangement of the nuclei. Of these the two outer form the fundament of the first nephrostomal tubule. The inner- most layer represents the underlying peritoneum. In the region be- tween somites II. and IIL. it is impossible to distinguish definite layers in the thickening. On entering somite III., the pronephric thickening has a far greater breadth, and it consists of three layers, the meaning of which is to be understood by a comparison with the condition in the region of the first nephrostome, just described. In somite IV. (Fig. 16) a division of the thickening into a dorsal and ventral part is indicated, near the termination of the dotted line (cras. prnph.). The dorsal part is the fundament of the third nephrostome, and the ventral part represents the anterior portion of the segmental duct (more properly, common trunk, see page 228). The ventral por- tion of the thickening can be traced backwards from this point through a distance of about 0.37mm. Figure 17 is drawn from a section through a region near the anterior boundary of somite VII., and shows 1 The correlative terms distal and prorimal are so frequently employed by Ger- man writers as synonymous respectively with posterior and anterior that it seems advisable to allude to the fact that they are not used in the present paper in that sense, but invariably with their primitive signification ; thus, the distal portion of a process is that part which is most remote from the point of attachment, whether the structure project anteriorly or posteriorly, medially or laterally, dorsally or ventrally. MUSEUM OF COMPARATIVE ZOOLOGY. 215 the thickening (cras. pr’nph.) near its posterior termination. The mass is evidently a thickening ém sctw of the somatopleure. On either side of the fundament of the segmental duct the somatopleure is one cell thick, whereas in the fundament itself it is two or three cells in thickness. If the additional cells arose by a free backward growth from the anterior pronephric mass, we should expect to find them lying on the external face of a continuous somatopleural layer. But, as a matter of fact, no such continuous inner layer exists; on reaching the thickened region, the somatopleure merely becomes several cells in thickness, the outer cells presenting really a somewhat more compact condition and a more linear arrangement than the inner ones. The constrictions between the protovertebre and the lateral mesoderm can be distinctly made out only in intersegmental regions. As is shown in Figure 15, between somites II. and III. the level of the constriction is immediately dorsal to the nephrostomal portion of the pronephric mass. In the region between somites III. and LV. the division occurs at a corresponding position. This series of sections shows no sharp sepa- ration between protovertebral and lateral mesoderm posterior to somite IV., the protovertebral plate being here only partly broken up into suc- cessive metameric blocks, which do not as yet possess sharp ventral boundaries. In frontal sections, the pronephric thickening shows a similar condition (compare Figs. 11-14) to that which obtains in the case of the embryo described under Stage II. (page 213), the most noticeable difference being an increase in the thickness of the pronephric mass. The longi- tudinal extent of the thickening corresponds approximately to that of five somites, though the posterior limit is of necessity somewhat un- certain. The posterior portion has every appearance of having arisen in the same way as the part lying beneath somites II., III., and IV. The latter, however, represents, as we have seen, the future pronephros ; the former is the fundament of the segmental duct. In an embryo slightly older than those last described, the evidences of an incipient canalization of the pronephric system are more pronounced. In the region of somites II.-IV., the two outer layers of the pronephric thickening are separated from the peritoneal layer by a distinct line of division. In the intersegmental regions, the outline of these two layers is that of an elongated ellipse, the nuclei being disposed, for the most part alternately, on either side of its major axis. The significance of this distribution becomes apparent on studying later stages, in which a lumen 216 BULLETIN OF THE has appeared in the organ. It is then found that the lumen occupies the position of the major axis of the ellipse, and that the nuclei of the bounding cells lie close to the interior surface of the wall. If a tube so constituted be compressed laterally, so that the lumen wholly disap- pears, it is evident that the cells of the opposed walls would be likely to accommodate themselves to one another so as to present an alternate arrangement of their nuclei. Opposite the middle of a somite, the relations are somewhat different. Here the two layers of what I shall hereafter call the pronephric pouch do not remain confluent at its dorsal extremity, but separate, the outer becoming continuous with the somatic layer of the protovertebra, the inner with the deepest layer of the thickening, and thus finally with the lateral somatopleure. In this region the body cavity can be seen to project for a short distance between the two layers of the pronephric pouch, as shown in Plate I. Fig. 6, ca/. This figure demonstrates very clearly the relations of the pouch to the lateral mesoderm and the over- lying somites. In the case of the younger set of embryos which have been con- sidered in this stage, it will be remembered that the boundary between the lateral mesoderm and the protovertebrae was evident only in inter- segmental regions. In the somewhat older individual now under con- sideration, the constrictions between these two portions of mesoderm have advanced into segmental regions as well; so that now, for the first time, the precise relations between the fundaments of the nephrostomes and the protovertebre lying above them can be accurately determined. The last remnant of the communication between the protovertebral cavity and the body cavity I shall call the communicating canal, following in this the nomenclature of Renson (’83). The section shown in Figure 6 passes through this canal (can. comn.). and it is to be especially noted that the constriction between the somites and the lateral plates takes place dorsal to the region of communication between the pronephric sys- tem and the body cavity. Immediately dorsal to the pronephros, the somite sends out a lateral fold of the somatic layer, which is destined to form the capsule of the pronephros, to which I shall have occasion to refer in later stages. In somite IV., the division of the pronephric mass into a dorsal and ventral part is faintly indicated, but the dorsal part shows no trace of the lumen which is destined to become the third nephrostome. In this embryo, the constrictions between the protovertebre and lateral plate have advanced into more posterior regions. In somite V. the constric- MUSEUM OF COMPARATIVE ZOOLOGY. 217 tion occurs immediately dorsal to the fundament of the segmental duct, which, as I have shown, is continuous anteriorly with the ventral half of the thickening appearing in somite IV. A series of measurements from the dorsal median line shows that the ventral portion of the pro- nephric thickening remains at a nearly constant level, so that the pro- tovertebree must reach a somewhat more ventral position in the posterior region than in somites II.-IV. Figure 11 (Plate II.) represents a frontal section through the dorsal part of the pronephric pouch in one of the oldest embryos of this stage. It shows the course of the earliest fundaments of the three tubules which emerge from the somatopleure beneath protovertebre II., III., and IV. The most anterior outgrowth, arising in somite II., inclines outward and backward into the region of somite III. ; the second outgrowth proceeds from its origin beneath protovertebra III. directly outward; and the third outgrowth inclines forward, so that its distal extremity also lies in the region of somite III. As the review of the previous stages has shown, these fundaments of the tubules have not arisen as separate out- growths from the somatopleure, but have been differentiated from the originally continuous pronephric thickening, the three fundaments being confluent distally. In this section the nuclei are abundant along a central band, but scarce or wholly absent in peripheral parts. This peculiar arrangement be- comes intelligible when we consider that the plane of the section passes almost tangentially through the curved dorsal wall of the pouch. As we have seen in transverse sections, the nuclei lie close to the inner lumen of the pouch ; it is therefore only in the deeper central parts of the sec- tion that they are encountered. In a section 0.03 mm. farther ventral (Fig. 12), the lumen of the pouch can be made out, though it is not con- spicuous. It is difficult to say whether at this stage the lumen is contin- uous throughout the whole structure. In many embryos the evidence of such continuity seems indubitable; whereas in others, apparently quite as far advanced in other respects, the lumen seems to consist of uncon- nected portions. In some instances where no trace of a separation of the walls could be seen, a line of pigment indicated the position of the lumen. Occasionally I have met with a distinct prolongation of the body cavity into the pronephric mass. This condition has been most frequently en- countered in the case of the fundament of the first tubule. I am not, however, inclined to place much weight on such observations as proving the claim that the lumen of the pronephros forms as an ingrowth of the ccelom proceeding from the nephrostomes and advancing into the duct. 218 BULLETIN OF THE On the contrary, the lumen is already potentially present, as shown by the arrangement of the nuclei before any actual separation of the walls occurs. I am of opinion that, in the cases referred to, the separation is largely artificial, and that the ruptures take place most frequently at the nephrostomes for the reason that the walls, which elsewhere form a closed ring, here have in cross section the form of a sharp re-entrant angle bor- dering on a large open space. It is evident that in the former region the walls would be less liable to be torn apart in the preparation of the ma- terial than in the latter. In general, however, it must be admitted that the development of the lumen, like that of the system as a whole, actually advances from anterior to posterior regions. The fundaments of the three pronephric tubules shown in Figure 11 are not to be regarded as outgrowths from the somites. They are, it is true, very closely related to the segments in their arrangement, but, as transverse sections prove (Plate I. Fig. 6, and Plate II. Fig. 15), they lie wholly ventral to the lower boundaries of the protovertebre. The frontal section figured (Fig. 12) was chosen for the reason that it was the one which indicated most precisely the course of the fundaments of the three tubules. The plane of the section is parallel to a tangent to the dorsal margin of the structure, and passes only a little below that margin, not through the nephrostomes. These begin in a more ventral unsegmented region. In the oldest embryos of this stage, the fundament of the duct has developed very rapidly. Anteriorly, it has in cross section a distinctly elliptical outline, and its cells have, with reference to the major axis of the ellipse, the same arrangement that I have described for the inter- segmental regions of the pronephric pouch. On following the structure backwards, this distribution becomes less and less obvious, until the cells seem to have no definite arrangement. In this region the funda- ment of the duct is in far more intimate union with the somatopleure than was the case in anterior somites. Im the region of somite IX. the last trace of the structure is to be seen as a simple thickening of the somatopleure, similar in form to that described and figured in the youngest embryos of this stage (Fig. 17), for a region just back of somite VI. The region in which the duct is formed is throughout im- mediately ventral to the constriction separating the protovertebre from the lateral plates.? 1 In sections from the posterior end of the embryo, it is necessary to guard against the false appearances which arise from the obliquity of the plane of the MUSEUM OF COMPARATIVE ZOOLOGY. 219 The mode of development which I have described in the foregoing pages, taken in connection with frontal sections, which show that the pronephric thickening tapers gradually backwards into indifferent soma- topleure, seems to me to be very strong evidence concerning the precise origin of the duct. -I believe I am justified in concluding that the seg- mental duct between somites V. and [X. arises in situ from a thickening of the somatopleure serially equivalent to that from which in the anterior region the pronephros is developed. Indirect evidence which can be brought to bear on this question will be reserved for the fuller con- sideration which can be accorded it, in connection with the following stage (page 222). Stace IV. Plate I. Figs. 8, 9. Plate III. Figs. 18-26. Plate IV. Figs. 29, 39. Plate V. Fig. 45. I have placed in this stage embryos of frogs taken from five different killmgs. They all belong to the fourth day after fertilization, and aside from individual variation show an evident advance in organization on the preceding stage. In all a distinct differentiation of muscular tissue has begun, the auditory vesicle is wholly cut off from the epidermis, and the ventral sucking (or more properly sticking) disks are well developed. In the following description, I shall find it convenient to distinguish a younger and an older set of embryos. In the younger set the embryos are from 3} to 34 mm. long; they have about 14 protovertebree and the fundaments of 3 pairs of gills. The embryos of the older set are from 34 to 33 mm. long; they possess about 17 protovertebrz and the funda- ments of 4 pairs of gills. All the embryos of this stage have the pronephric pouch in its typical form. A side view of this organ with the neighboring portion of the section to the vertical axis of the protovertebra. Cross sections in this region fre- quently encounter two contiguous protovertebre. If the plane of the section traverse the communicating canal of a protovertebra, it would also pass obliquely through the dorsal portion of the next anterior protovertebra. The latter would then appear in cross section as a distinct mass immediately lateral to the neural tube and the chorda, and would resemble the condition which a protovertebra presents when cut near its anterior or posterior wall. Immediately below this mass there would be found on the same cross section the ventral portion of the more posterior protovertebra, with the corresponding part of its cavity. The latter, how- ever, being apparently a direct continuation of the body cavity, owing to the exist- ence of the communicating canal, would appear to represent the dorsal part of the body cavity, and the fundament of the duct would thus seem to be farther removed from the dorsal angle of the body cavity than it really is. 220 BULLETIN OF THE segmental duct is shown in Figure 39 (Plate IV.). In this drawing, the outlines were obtained by reconstruction from a series of cross sections. The pronephric pouch is suspended from the dorsal angle of the body cavity by the nephrostomal funnels. Elsewhere it is wholly cut off from the mesoderm, and merely rests conformably on the outer surface of the somatopleure. The precise relations of the parts can be understood by referring to the series of cross sections shown in Figures 18 to 22 (Plate III.). Figure 18 represents a section through the left pronephros in the region of the first nephrostome. The location of the plane of this section in the reconstruction is indicated by the dotted line 78, in Figure 39. The lateral plates are here wholly cut off from the protovertebree, splanchnopleure and somatopleure being continuous with each other at the dorsal angle of the body cavity. Figure 19 shows the structure of the organ between the first and second nephro- stomes. In this and the following sections it was found advisable to depict the pronephric structures of the rvzght side in order to exhibit in each case the section which most clearly showed the structural con- ditions. The next drawing (Fig. 20) in the series represents a section through the second nephrostome. In the preceding section, —not fig- ured, —the three portions into which the lumen is here divided are continuous. The constriction between the middle and the ventral lumen is artificial; for the cells occasioning this local closure do not belong to the proper wall of the pouch, but form a group within the cavity. In several instances I have observed such groups of cells lying entirely free in the lumen of the pouch (Plate V. Fig. 45). In the present case, however, the mass is very intimately connected with the adjoining walls. This condition is preserved through a distance corresponding to the thickness of two or three sections, but the mass terminates by becoming free from both walls, so that in cross section it has the appearance of an “island” of tissue occupying the lumen of the pocket. The occurrence of these islands within the cavity of the pouch is of significance in determining precisely how the organ is developed. It is difficult to com- prehend how they could be formed, provided the canals were produced by a fold of the somatopleure. On the other hand, they are perfectly intelligible on the assumption that the canals arise by the rearrange- ment of a solid mass of cells into a peripheral layer with a central lumen. According to the latter view, the islands would represent residual portions of the pronephric thickening which had not been trans- formed into peripheral wall. Returning now to the section last under consideration (Fig. 20), the MUSEUM OF COMPARATIVE ZOOLOGY. 221 ventral union of the walls of the pronephric cavity is, as I have shown, artificial ; the constriction between the middle portion of the lumen and the dorsal, or nephrostomal, portion is more apparent than real, for it is formed by the posterior wall of the nephrostomal tube, the plane of the section not having cut exactly in the axis of the tubule. In the section following that shown in Figure 20, the pouch is detached from the peri- toneum, and presents an appearance similar to that shown in Figure 19. Before the third nephrostome is reached, the canal is divided by a hori- zontal constriction into two tubes. The dorsal portion forms the tubule of the third nephrostome ; the ventral portion is the anterior end of the segmental duct. Figure 21 shows these parts in the region of the third nephrostome. ‘The section corresponds in position with the dotted line 21 in Figure 39. In the following sections the duct rapidly assumes a more dorsal posi- tion (compare Fig. 39). It then proceeds directly backward, at the level of the constriction between protovertebre and lateral plate. Figure 22 shows the duct in the region of somite VI. It has not yet been formed, however, throughout its entire length. On passing posteriorly, it grad- ually loses its lumen; then the circular arrangement of the nuclei indi- cating the position of the lumen also vanishes; the structure at length terminates as a simple thickening of somatopleure in the region of the tenth somite. In a few individuals, however, I found slight evidences of a mode of ending different from that just described. In one case the indications seemed so strong as to compel me to seek confirma- tion of the view that the duct takes its origin 7 situ. I shall therefore give the details of the evidence on this point, and discuss its probable significance. Figure 23 represents in cross section the fundament of the duct in this specimen, as shown in the fifth section in front of its termination. The section of the mass here contains about eight cells, which are in close contact with the somatopleure. In the second section behind this one there are shown parts of four or five cells (Fig. 24). The protoplasmic patch in the centre (cd.) is wider than an average cell of the fundament, and probably represents the anterior ends of two cells lying in the fol- lowing section (Fig. 25, c. and d.). Dorsal to this mass of protoplasm is a nucleated cell (6.), and above this a small area of protoplasm with a faint nucleus (a.) which is doubtless a portion of a cell the principal part of which was cut off by the preceding section. On the ventral side of the centre of the fundament there is also a round nucleated cell (¢.). In the next following section (Fig. 25), there are two nucleated cells in the 222 BULLETIN OF THE centre of the mass (c. and d.), which, as I have said, doubtless corre- spond to the central protoplasmic area (cd.) seen in the preceding sec- tion. The most prominent cells of that section are here represented by two faint circles of protoplasm (>. and e.). In the next following section, not figured, the duct terminates as a single non-nucleated mass, probably corresponding to the dorsal cell in Figure 25. This remnant lies in a distinct depression of the somatopleure (Fig. 26, f.). This depression continues backwards through the space of three sections. Instead, then, of terminating in a thickening of the somatopleure, the end of the duct lies in a groove of unmodified somatopleure. There is no tissue directly behind the uct for its further growth, and the inference is natural that the somatopleure is mechanically depressed before the growing tip of the duct. In fact, I believe this to be actually the case, and that in this region the duct does grow by a simple cell proliferation within its own mass. The key to the situation is to be found in the location of the pos- terior end of the duct in this specimen. An enumeration of the somites shows that the sections figured lie at the hinder end of somite XI. To show the bearing of this fact, I shall anticipate some of the results of a study of Stage V. In a series of frontal sections of the latter stage, I have succeeded in locating with reference to the successive somites the position at which the duct opens into the cloaca. The open- ings are in the same vertical plane with the middle of somite XII. The posterior end of the duct, then, in the specimen which I have just de- scribed, is within the distance of half a somite from its final termination. In order to empty into the cloaca, the duct has to grow inward from its position at the lateral margins of the protovertebree to a position much nearer the median plane. It is difficult to comprehend how the duct could make this extension, except by proliferation of its own cells. It is just in this region that I find evidences of such a mode of growth. If the inference I have drawn from the facts adduced be correct, it seems to me to add strength to the conclusion I have reached in regard to the general mode of formation of the duct, inasmuch as it has been shown to be possible to detect free growth where it exists. That the duct arises in the way I have described, and is not developed from the ectoderm, is shown, moreover, by certain indirect evidence which may be properly discussed at this point. As I have already stated, the duct is developed in such intimate connection with the somatopleure that I have been led to believe that it arises throughout its entire length from a proliferation iz situ of that layer. In almost all of my prepa- MUSEUM OF COMPARATIVE ZOOLOGY. 220 rations the duct in its backward growth is separated by a considerable space from the ectoderm, and I have observed no instance in which it was impossible to distinguish a perfectly sharp line between the funda- ment of the duct and the overlying ectoderm. In describing the germ layers in Stage I., I referred to certain histo- logical criteria which might be employed in determining to which germ layer a given group of cells belonged. The most valuable of these is the difference in the size and abundance of the yolk spherules, which even in that early stage served to contrast sharply the mesoderm from the ecto- derm. In later stages, this character is equally pronounced. When the duct appears, the cells which constitute it are not distinguishable in histological features from those of the adjacent mesoderm, but are very different from those of the neighboring ectoderm. It seems to me ex- tremely improbable that the cells of the fundament of the duct, with their numerous large yolk spherules, should have been recently derived from those of the ectoderm, which are provided with only few spherules of much smaller size. It would be entirely contrary to our conceptions ot the physiological nature of yolk, if in the course of embryonic develop- ment this material was increased instead of diminished in quantity. A similar argument seems to me to afford evidence that the duct arises in situ. If the duct had grown freely backward from an anterior proliferation, such growth would in all probability have been associated with the consumption of yolk in the cells of the fundament, and the spherules would be smaller or less numerous than those of the adjacent mesodermal cells. This, however, is not the case. I conclude, therefore, that the segmental duct arises throughout its entire length by a proliferation in situ of the somatopleure. Its posterior end, however, grows across to the cloaca free from adjacent tissue. Returning to the pronephric pouch, I purpose describing the relations of that organ to the somites. The section represented in Figure 29 (Plate IV.) shows graphically these relations. The plane of section in this case was very nearly tangential to the somatopleure at the points where the nephrostomes emerge. In this section it is evident that the three nephrostomes lie precisely under the first, second, and third somites, behind the ganglion nodosum. These correspond to the so- mites which I have numbered II., III., and IV.; so that the proneph- ric pouch remains in the same position as the pronephric thickening of earlier stages. In Figure 21 (Plate III.) the last remnant of the canal connecting the body cavity with the cavity of the protovertebre is faintly indicated (above the letters ce/.'’) in the same transverse 224 BULLETIN OF THE plane as the third nephrostome; and Figure 6, as we have seen, shows more plainly the same condition in the case of the second nephro- stome at an earlier stage. The structure of the protovertebre in this stage (Plate V. Fig. 45) merits especial consideration. Already in younger stages there is a differentiation of a peripheral epithelial layer surrounding the dense cen- tral mass, or kernel of the protovertebra. Laterally this peripheral part is represented by the entire somatic layer, which is separated from the kernel by the protovertebral cavity (ca/.). Along the median and ven- tral boundaries of the somite, a layer having an epithelial character is also to be seen. Thus the central mass which is to develop into the myo- tome lies on the median side of the celom, and is wholly surrounded by an epithelial layer. Frontal sections show that this layer can be traced inward for some distance between successive somites, both from their median and lateral surfaces. Since the development of the protovertebree proceeds from before backwards, a single frontal section shows successive stages in the changes which they undergo. From such a section it is apparent that neither the median nor the lateral portion of the pe- ripheral layer develops muscular fibres. That portion of this layer, however, which is included between the kernels of successive proto- vertebra, is apparently differentiated into muscle, and becomes merged in the myotomes. Very soon after the first development of muscle fibres in the myotomes, the peripheral portions which have not been converted into muscle separate from the central mass, and, while yet ad- hering in a lamella, show evident signs of disassociation. It is to be noted, that, in regions where traces of the communicating canal are still distinguishable, the median peripheral layer, not the kernel, is seen to be continuous with the splanchnopleure. The somatopleure, on the other hand, may be traced, as before, into the outer layer of the protovertebra. This peripheral layer I believe to be wholly converted, with the excep- tion stated, into mesenchymatic tissue. In the stage before us we see that it is distinctly breaking away from the myotome, and that the cells are acquiring a flat tile-like form. In the following stage no layer that could properly be called epithelial is present. In its stead there is a considerable quantity of loose mesenchyme, and the lateral face of the myotome is covered by a sheath consisting of very delicate fibrillar con- nective tissue. Not merely is mesenchyme. produced by the thin peripheral layer of the protovertebree, but in anterior regions considerable portions of the kernels of the protovertebree also undergo a metamorphosis in this direc- MUSEUM OF COMPARATIVE ZOOLOGY. 225 tion. Thus, if I be not mistaken, a protovertebra immediately in front of somite I. has been wholly converted into mesenchymatic tissue; the kernel of the succeeding protovertebra (somite I.) has given rise to a considerable quantity of mesenchyme ; and the process has been mani- fested, though to a less degree, even in succeeding somites. Further- more, having established the continuity of splanchnopleure and somato- pleure with the median and lateral peripheral layers respectively of the protovertebre, it seems to me the more probable that the former as well as the latter may give rise to mesenchyme. I have, in fact, seen condi- tions directly in front of the first nephrostome which indicated a very extensive production of mesenchyme from the lateral plate in that region. My reason for dwelling at so great length on the derivatives of the peripheral layer of the protovertebra is, that this layer plays an impor- . tant part in forming certain accessory portions of the pronephric system. I refer to the capsule of the pronephros. Already in the preceding stage I noted the occurrence of a lateral fold of the somatic layer im- mediately dorsal to the constriction between protovertebre and lateral plates (Fig. 6). In the younger individuals of Stage IV. the fold covers the dorsal surface of the pronephric pouch, and extends a short distance down on its lateral surface (Figs. 18-21, fnd. cps.) In the older set of embryos it has reached the somatopleure ventral to the pronephros, and thus forms a complete investing capsule. In frontal sections the fundament of the capsule may be seen to consist of a series of segmental outgrowths from the successive pro- tovertebre. Later, these segmentally arranged structures fuse into a continuous enveloping sheet. Lateral to the pronephros the capsule presents in general a two-layered condition, the result of its having been formed as a fold; but on ascend- ing to the level of the lower boundary of the somite, these two layers separate (Plate V. Fig. 45) ; one passes beneath the protovertebra, cover- ing the pronephros on its dorsal aspect ; the other is continuous with the somatic layer of the protovertebra, forming a lateral sheath to the myo- tome. These layers are present in the region both of the pronephros and of the duct, but are seen in their simplest condition in the region of the second nephrostome (Fig. 20); not merely because this is the middle ot the pronephros, but also because the process is somewhat modified in the protovertebra next in front of it (somite II.). Somite IT. is ope of those in which a considerable portion of the kernel of the protovertebra is con- verted into mesenchyme. For this reason the inner layer of the capsular 15 226 BULLETIN OF THE fold, after separating from the layer which forms the lateral sheath of the myotome, passes inward, and is there lost in a loose mass of tissue (Fig. 18), resulting from the disassociation of certain cells of the somite in that region. Intersegmental regions also present appearances which are con- fused by the occurrence of cells belonging to the partition between two successive somites. The points which I especially wish to emphasize in this description are (1) the origin of the capsule from the somatic layer of segmented mesoderm, and (2) the fact that the layer from which the capsule is developed is also in other regions converted into mesenchy- matic tissue. In the younger specimens of this stage a horizontal fold of the splanch- nopleure is to be noticed, forming a slight ridge directly across the body cavity from the pronephros. It first appears in front of the second ne- phrostome, and develops from this point backwards. It is the fundament of the glomus or pronephric glomerulus.’ In the earliest trace of this organ that I have been able to find (Plate I. Fig. 8) there were already a few small mesenchymatic cells (ms’chy.) located in the angle of the fold. The source of these cells I have been unable to determine with certainty. ‘The nuclei of all the cells in the fold itself lie very close to the body cavity, and it does not seem probable that those small cells could be produced by delamination from the splanchnopleure without an actual migration of the nuclei of the somatopleural cells to the basal, or entodermal, surface of that layer. I have never seen signs of such migra- tion, and I therefore do not believe that it occurs. Furthermore, the folded portion of the somatopleure does not at once become thinner than the neighboring portions of that layer. In older stages, such a thinning takes place, but it seems to be due to a superficial extension of the layer, rather than to delamination. The position of the nuclei of the large entodermal cells in this neighborhood is equally unfavorable for the formation of these small cells by delamination. The only remaining explanation is that the latter have migrated into their present position from relatively remote parts. Other loose cells may be found between entoderm and splanchnopleure, and the question here raised is only a part of the larger problem as to the source of all such cells, including those which bound the yolk veins. The fate of the cells which I have found in the fundament of the glomus, I shall consider in treating of a later stage. I may, however, here anticipate to the extent of stating that they sare connective-tissue elements. 1 The former term seems to me preferable, and will be employed in the follow- ing pages. The exact relations of the glomus to the mesonephric glomeruli will be explained in the general discussion. MUSEUM OF COMPARATIVE ZOOLOGY, 227 Figure 9 shows the fundament of the glomus in one of the older em- bryos of this stage. Within the hollow of the fold may be seen two cells (ms’chy.), which are to be regarded as the descendants of the first small cells to which I referred In the younger embryo. Their differen- tiation in the direction of connective tissue can be noticed throughout the whole extent of the fundament. The scattered rounded cells near them probably represent embryonic blood cells in the region of the aorta. STAGE V. Plate I. Fig. 10. Plate IV. Figs. 31-34, 40. The embryos belonging to this stage are on an average about thirty hours older than those of Stage LV. At this period almost all of the eggs are hatched ; and, the duct having opened into the cloaca, the pro- nephros becomes functional. The larve of this stage measure 5-7 mm. in length, the rapid increase in size being largely due to the growth of the tail. The form which the pronephros presents in this stage has been studied by means of reconstructions in the case of four pronephridia. The dia- grams on Plate LV., Figures 31 to 38, represent in a rough way the num- ber and distribution of the convolutions which the tubules present in this and the following stage. Of these, Figures 31 to 34 relate to the present stage. Figure 40 is a more accurate view of the pronephros which I have diagrammatically represented in Figure 32. In Figure 40 the out- lines were taken with but little modification from the original recon- struction. [I have not hesitated, however, even in this case, to remove defects plainly due to artificial causes, such as distorted sections and inaccurate superpositioa. Comparing this drawing with Figure 39, it is easy to follow the changes that have taken place. In the earlier stage the fundaments of the three tubules are already present. The first modification which may be noted is the deepening of the constrictions which are indicated between the successive nephrostomes. In this way are formed three transverse tubules, joining distally a longitudinal canal; the former are the nephrostomal tubules, the latter I shall call the collecting trunk. In this case the continuation of the collecting trunk pursues a nearly straight course to the posterior margin of the gland, where it emerges as the segmental duct.' A second change which is apparent in Figure 40 ‘In Figure 40 the first nephrostomal tubule and the collecting trunk have a pink color, the second tubule is yellow, and the third is orange, whereas the seg- mental duct is uncolored. 228 BULLETIN OF THE is the growth of the collecting trunk in the region between the second and third nephrostomal tubules, and the consequent separation of the latter. The further complication in this case is mainly due to a con- volution of the second tubule; slighter contortions occur in other parts. {n the case of the pronephros diagrammatically represented in Figure 31, however, a canal, which corresponds to what we should regard in Figure 32 as the anterior portion of the segmental duct, has been folded first forwards, reaching nearly to the level of the first nephrostome, and then backwards. The bends which are convex anteriorly may be called the anterior bends; those which are convex posteriorly, the posterior bends. The universal occurrence of this condition in all older embryos makes it desirable to distinguish this bent portion of the tube and its deriva- tives both from the original longitudinal canal of the pronephros, which I have called the collecting trunk, and from the straight posterior por- tion, or segmental duct proper. In the following pages I shall speak of each nephrostomal tubule as extending from its origin in the nephro- stome to its junction with-the longitudinal canal, or collecting trunk. In the case of the first nephrostomal tubule, the point of union with the collecting trunk is usually marked by an abrupt change of direction ; where this does not occur, however, the distinction between the two portions must be somewhat arbitrary. The collecting trunk forms the continuation of the first nephrostomal tubule, it receives in its backward course the second tubule, and may be regarded as terminating at the point of entrance of the third tubule. The common trunk arises from the point of junction of the third tubule with the collecting trunk, and, after making various convolutions, leaves the gland at its posterior end as the segmental duct. In the two pronephridia shown in Figures 31 and 33, we have before us examples respectively of the two principal forms of convolution which are to be recognized in subsequent stages, viz. the contortion of the second tubule and that of the common trunk. The third tubule finally undergoes convolution to some extent; but the first tubule and the collecting trunk take almost no part in the process. Although complication has appeared both in the second tubule and in the common trunk, it is to be noticed that these processes do not have a fixed sequence. I have numbered the diagrams on Plate IV. with refer- ence to the state of development shown by the larve. In doing this, I have not been guided by the age alone, for the large amount of indi- vidual variation makes that method nearly valueless; but I have en- deavored, by passing in review a large number of characters, to gain a notion of the relative degree of development shown by the larve. MUSEUM OF COMPARATIVE ZOOLOGY. 229 The first of the series of diagrams (Fig. 31) shows complication to have taken place to a considerable extent in both the convoluted regions. In the next diagram (Fig. 32) the second tubule alone takes part in the complication. Figures 33 and 34 represent respectively the right and left pronephridia of one individual. In the right pronephros (Fig. 33) the typical condition of the common trunk is present, while the neph- rostomal tubules have undergone no contortion. Likewise in the left pronephros (Fig. 34) it is the common trunk to which the increasing complication is due; but in this case there are two additional bends introduced by a slight folding backward of the middle of the anterior bend. The convolutions of the common trunk lie principally in the ventral portion of the gland. The tubes which in cross section are seen in the dorsal part are mainly the several nephrostomal tubules, and the collecting trunk. This condition is likewise retained in later stages. The position of the pronephros with reference to the myotomes has not changed since the preceding stage. The whole structure is slightly longer, but the myotomes have also lengthened to the same extent. The three nephrostomes are situated, as before, beneath the first, second, and third myotomes posterior to the ganglion nodosum, and are seg- mental in position. In all the embryos of this stage the duct has opened into the cloaca. It is to be remembered in this connection, that the morphological posi- tion of the duct is outside the somatopleure; so that the celom and two layers of mesoderm intervene between it and the intestine. As might be expected, the union does not take place until the segmented and unsegmented portions of the mesoderm have become separated from each other. The passage to the cloaca is then effected through the split thus produced, and consequently around the dorsal angle of the body cavity. In the frog, there is a sharp histological contrast between ectoderm and entoderm, and there is therefore no difficulty in assigning a limit to the proctodeal invagination. The region into which the duct opens is the hind gut, and the intestine at this point is unquestionably lined with entodermal cells. The portion of the primitive gut posterior to the openings of the segmental duct forms the Amphibian cloaca, and corre- sponds precisely, I should say, with that part of the cloaca of Amniota which Gadow (’88, p. 28) has recently designated by the name wrodeum. The wall of the intestine is not wholly passive in the union occurring between it and the duct. In front of the excretory openings, the lumen of the intestine has an elliptical form, its major axis being vertical. 230 BULLETIN OF THE On passing backwards, the dorsal half broadens and finally exhibits two lateral processes, or cornua, the walls of which are composed of a layer one cell deep. The ducts open into the distal ends of these cornua (see Fig. 27, showing the condition in Stage VI.). Behind the outlets of the segmental ducts, the lumen of the intestine has a nearly circular outline, and descends rapidly to the anus, or, as it may now more cor- rectly be called, the cloacal aperture. I was able to seein Stage LV. faint traces of these intestinal cornua. The cells of the dorsal roof of the intestine showed in this region a looser structure, and a line of pigment indicated the region of the outfolding. ‘The cells of the duct and those of the cloaca are histologically very different from each other, so that it is for a long time possible to draw a line sharply separating the two constituents where they have come in contact. The pronephric system of tubules presents in this stage quite uniform histological characters. I shall therefore describe its typical condition, and then consider the modifications that are to be found in certain of its regions. The walls of the tubules are very thick, measuring on the average about 25 » in thickness. They accommodate themselves readily to the structures with which they come in contact, becoming thinner opposite elevations in neighboring surfaces, and thicker next to sinuses. The size of the lumen varies greatly. In the segmental duct proper, the diameter of the lumen is about 25 »; it is usually somewhat greater in the region of the convoluted tubules. The walls of the tubules are composed of an epithelium, consisting of a single layer of columnar cells. The radial dimension of the cells in the case of thick walls is approxi- mately three times their width. Where the plane of the section cuts the wall of a tube tangentially, the cells may be seen to have a polygo- nal outline. The nuclei invariably occur close to the central lumen of the tube; each is large, and is usually provided with a single distinct nucleolus. The eccentric position of the nuclei is attended with a corresponding distribution of the cell protoplasm. By the picro-carmin method which I have employed, the yolk spherules take a bright yellow stain, and the nucleus a light red. The active protoplasm has a faint pink coloration, which, however, is wholly invisible if too much picric acid be left in the preparation. In young cells, where only a small amount of yolk has been consumed, the delicate tint of the protoplasm cannot be seen, since all the light passing through the section encounters yellow yolk spherules. As the consumption of the yolk progresses, the protoplasmic matrix comes into view. In the wall of the tubules, the yolk is crowded to the outer surface of the cell, and a sheet of protoplasm MUSEUM OF COMPARATIVE ZOOLOGY. 231 first becomes visible close to the lumen. It is here also that pigment makes its appearance. The histological character of special regions now claims our attention. The pronephridia shown in Figures 31 to 33 are all histologically very similar, but in the case of the gland represented in Figure 34 some notable differences occur, which I shall consider later. The somato- pleure covering the pronephros is at this stage very thin. Each of the cells composing the membrane is thickest in its central portion, and tapers rapidly towards its margins. In the more advanced larva, the cells have elongated to such an extent that the peripheral portion is reduced to a thin protoplasmic plate, which is nearly devoid of yolk spherules. The central mass, on the other hand, contains the nucleus, and nearly all the yolk spherules. The peritoneum is continuous with the columnar epithelium of the walls of the tubules at the outer rim of the nephrostomes, which have the characteristic form of a funnel. Before reaching the periphery of the funnel, however, the columnar layer becomes slightly thinner, and at the rim it tapers rapidly, until it becomes continuous with the peritoneum (compare Fig. 18 of a younger and Fig. 28 of an older stage). The nephrostomal funnels are always deeply pig- mented. The pigment is most abundant along the incurved surface, but is quite dense even up to the rim. It continues for a variable distance into the tubules. In the case of the pronephros, represented in Figure 31, the whole system of tubes was pigmented from the nephrostomes to the posterior bend near the beginning of the common trunk. The pig- ment granules are always disposed in a layer along the free surface of the cells. The nephrostomal tubules show in general the typical character, which I have previously described. The collecting trunk appears to be quite rigid, for I have never seen such a reduction of its lumen due to pressure as other tubes exhibit. The calibre of this canal is usually larger than that of the nephrostomal tubules. The portion of the duct which lies behind the third nephrostome is nearly straight. and of uniform calibre. Generally the lumen is slightly wider, and the wall thinner, than in the nephrostomal tubules. In the pronephridia, shown in Figures 31 and 33, the loop embracing the anterior bend of the common trunk seems to have but little rigidity. It follows a tortuous course, and fre- quently the walls are so closely pressed together that the lumen is locally obliterated. A peculiar modification in the pronephros, represented in Figure 34, has been alluded to. In this case, the common trunk, after proceeding from the level of the third nephrostome for a certain distance forward 232 BULLETIN OF THE along tne ventral border of the gland, as in the other embryos, under- goes a change of structure at about the level of the second nephrostome. The lumen there begins to enlarge, and the wall to become thinner. Farther forward, the cavity of the tube becomes greatly dilated, and the bounding wall is reduced to a delicate pavement epithelium, having the same appearance as the peritoneum covering the pronephros. The tube again contracts shortly before attaining its most anterior bend. A similar dilation also occurs in the following stage, in the description of which I shall again refer to the chamber thus produced and suggest its possible function. The pronephros at this stage is completely invested in a loosely fitting capsular membrane. The cells of which this envelope is composed have become very thin, so that they form a delicate sheet not more than 6 p thick. The nuclei occur in slightly enlarged portions of the cells. They are rather small, and show a tendency to be flattened in the plane of the layer. At the lower outer angle of the myotome, the capsular membrane is continuous with the myotomal sheath, as in the earlier stage. The capsule covers the pronephros so loosely as to leave exten- sive spaces between the enveloping membrane and the tubules. These spaces, together with those between the convoluted tubes, form an ex- tensive and complicated system of sinuses, which bound the pronephric tubules on every side (compare Fig. 28, belonging to the next older stage). Behind the last nephrostome, a considerable space intervenes between the wall of the capsule and that of the duct. There is thus formed a single continuous but irregular channel, which accompanies the duct through- out its entire course ; it is also prolonged into the region of the gland as a jarge ventral sinus, which is triangular in cross section (compare the lower of the spaces marked sn. sng. in Fig. 28). This channel is the fundament of the posterior cardinal vein. The course of the vessel may be traced at this stage for a short distance behind the point where the ducts open into the cloaca. There are two veins connected with the an- terior end of the pronephros. Of these the ventral one is the larger, and is continuous posteriorly with the cardinal vein. The dorsal vessel of the pronephros also unites with the cardinal vein by means of the spaces between the tubules. After passing forward and leaving the pronephros, the ventral vessel proceeds medianwards to empty into the sinus venosus, this vessel constituting the ductus Cuvieri. The dorsal vessel of the pronephros can be traced forward into the head. In the somite next in front of the first nephrostome, it lies between the ganglion nodosum and the myotome. It can be traced for some distance along the base of the MUSEUM OF COMPARATIVE ZOOLOGY. 233 cranium, passing close to the median wall of the auditory vesicle and the ball of the eye.? There are two kinds of cells found within the capsule of the pronephros concerning which I have as yet said nothing. Those which are more numerous are scattered, of circular outline and of unform size. Each has in general three or four large yolk spherules, and the nuclei are rather 1 Tn order to ascertain, if possible, what vein of the adult this vessel represents, it will be necessary to describe here its condition in later stages. In the oldest embryos I have examined, 8.5 mm. long, the vein runs forward from the pronephros parallel to the aortic root and its continuation, the carotid artery. The vein is separated from the arterial trunk by the ganglia nodosum and faciale. Recalling the earlier position of the vein, it will be seen that it has been transferred from the median to the external side of the vagus nerve. In an intermediate stage, I have been able to see the nerve during its transit through the vein, thus confirming an observation of Kastschenko (’87, pp. 275, 276). Following the vein farther forward, it is found to pass immediately ventral to the auditory vesicle, directly in front of which it sends a branch around the ganglion faciale to the side of the cranium. Slightly farther forward the vein divides, its branches passing around the more anterior of two ventral processes of the gan- glion faciale. The two trunks thus formed separate. One enters the orbit, and can be traced to the anterior end of the optic bulb. The other passes below the eye, and pursues a nearly straight course to the anterior horn lip. A description of the venous system of the adult frog has been given by Gruby (42) and by Ecker (’64-81). The distribution of the veins which enter the dorsal portion of the pronephros corresponds most closely with the internal jugular of these authors. From the figures of Goette (’75), however, there can be no doubt that the vein I have described corresponds to the one which he calls the external jugular. I have been able to find a vein entering the sinus venosus directly which agrees ac- curately with the inferior jugular of Goette, but I have found none corresponding to the one he calls the internal jugular. It is stated by Goette (pp. 759, 760) that the vein named by him external jugular receives large branches from the maxillary and mandibular regions. This character would seem to connect it with the exter- nal jugular of Gruby and Ecker. According to Goette (p. 765), however, the exter- nal jugular of Gruby and Kcker is the same as his inferior jugular. I believe this statement to be true, and it seems possible that Goette, who confesses that his studies upon the veins did not extend beyond the first larval periods, may have erred in his account of the distribution of these rudimentary vessels. Since the preceding description was written, a paper by Marshall and Bles (90°) has appeared, which adds another to the divergent accounts I have re- viewed. The inferior jugular of Marshall and Bles corresponds closely with the vein I have alluded to under that name. The anterior cardinal vein is described by these authors (90°, p. 286) as “formed by the union behind the ear of a jugular vein returning blood from the brain and dorsal part of the head, and a facial vein which lies superficially along the side of the head ventral to both eye and ear.” These vessels are described in tadpoles, measuring 9 mm. in length. My own . observations on larve of nearly this size do not agree with this description. 234 BULLETIN OF THE smaller than in the cells of the tubules. Very similar elements abound in the fundaments of blood-vessels at this stage, and it is evident that the cells are embryonic blood corpuscles. ‘The spaces in which they occur constitute a complicated system of communicating blood sinuses, and are continuous with the lumens of the vessels entering and leaving the pronephros. The other class of cells to which I have referred are mesenchymatic. I have carefully studied these cells in the endeavor to ascertain their precise origin. A mode of reasoning similar to that employed in dis- cussing the probable origin of the inner cells of the glomus leads to the conclusion that the mesenchymatic cells of the pronephros cannot have been given off from the walls of the tubules. As I have stated, the cells in these walls are very thick, and their nuclei lie close to the lumen of the tube. Under these circumstances, it is difficult to under- stand how any cells of the tubule should divide so as to give off from their basal surfaces cells as small as those in question. The usual pro- cess of cell division, if it took place parallel to the surface of the layer, would result in the production of a small cell on the side toward the lumen and a large outer segment. Such a large cell might, it is true, by repeated divisions, break up into numerous small cells, but for several reasons I do not believe this to have been the case. If such a delamina- tion and subsequent cell division took place, it would naturally be a conspicuous process; but I have never observed any evidences of it. This method of origin would involve a considerable thinning of the tubes, which does not take place. There remain two other possible sources for the mesenchymatic cells of the pronephros. They may have arisen from the tissue bounding the pronephros, viz. the capsular membrane and the adjacent somato- pleure, or they may have come from remote regions. In judging between these possibilities, it is important to consider the sudden appearance of the cells and the small amount of differentiation they have undergone. It seems to me highly improbable that they should have already accomplished any extensive migrations. Under these cir- cumstances, such positive evidence as I am able to adduce is the more convincing. In studying the youngest stages in which mesenchyme was present in the pronephros, this tissue was usually found near the somatopleure or the capsule, and frequently consisted of a row of cells closely applied to one of these layers. Occasionally I have seen a layer of mesenchymatic cells arranged along the somatopleure in a very definite manner, so that the nuclei of the two layers lay directly opposite each MUSEUM OF COMPARATIVE ZOOLOGY. 235 other and the intercellular regions precisely corresponded. In such cases the evidence seems strongly in favor of delamination, but I have never seen a nucleus dividing in that direction. This negative evi- dence, however, should have little weight, since all cell divisions occupy a comparatively short time, and are also obscured by the numerous yolk spherules. The observations just recorded agree very well “with the rapid thinning of the somatopleure to which I alluded in discussing the histology of the tubules. 1 conclude, then, that the mesenchymatic tissue of the pronephros arises from the adjacent somatopleure, and probably also to some extent from the capsular membrane. The glomus (Plate 1. Fig. 10) has attained in this stage nearly its final dimensions. The lateral] plate having become wholly detached from the protovertebre, the glomus has the appearance of being attached to the wall of the body cavity at its dorsal angle (compare Fig. 9, of a younger stage, and Fig. 47, of Bufo). There is some individual variation, but in genera] it may be stated that the ridge constituting the organ under consideration extends continuously from the first nephrosteme backward to a.position slightly behind the third. It appears in cross section (Fig. 10) obovate, being attached by the narrower end. In structure it is very compact, so that it is difficult to locate with precision cell boundaries in the dense interior mass. The investing portion consists of a single layer of cells, which is continuous with the peritoneum. These cells are large, and have the form of spheres flattened on their inner surfaces (compare Plate VI. Figs. 49 and 50, /a. pi’ton., which represent this layer in Bufo), They are slightly pigmented, and a distinct row of pigment granules can usually be seen close to the inner surface of the layer. These outer cells are evidently the representatives of the large cells of the splanchnopleure which was folded, at a previous stage (see page 227), to form the earliest fundament of the glomus (Fig. 9, fnd. glm.). In certain favorable re- gions I have seen a thin structureless membrane lying directly within the outer cellular layer (compare Figs. 49, 50, mb. ba.). When any of the cells of that layer become detached. which frequently happens, this base- ment membrane usually remains in place, and gives a sharp outer con- tour to the glomus in that region. Besides the compact mass of large cells there occur within the organ one or two cells in each section (com- pare Figs. 49, 50, en’th.) which have an elongated form. They lie close to the basement membrane, with which their long axes are parallel. In sections each cell has a central swollen portion containing the nucleus, from which it tapers in both directions. 1 have not been able to trace the delicate lateral portions to their terminations, but I believe that 236 BULLETIN OF THE these cells form a complete endothelial lining, which follows closely the delicate basement membrane. ‘They doubtless represent the loose cells alluded to in Stage LV. as occurring within the fundament of the glomus. Their origin 1 have already discussed in connection with that stage, where | showed that they were probably not derived from the outer layer of ‘the glomus. Although the structure of the central mass of cells is, it must be admitted, somewhat obscure, 1 have found no evi- dences of the complication which Hoffmann (’86, p. 591) has recently maintained for it. On the contrary, a comparison of many individual cells in this mass with the loose cells in the cavity of the aorta has made me confident that most of the cells contained in the glomus are embryonic blood cor- puscles. It is possible, however, that others are derived from infolded portions of the outer layer of the glomus. They appear to have no representatives in early stages of the organ. In my opinion, then, the glomus is essentially a blood sinus, the wall of which projects into the body cavity, carrying before it the peritoneal layer. The junction of the two aortic roots takes place very nearly opposite the first nephrostome (compare Plate IV. Fig. 28, rz. ao.), The aortic trunk thus formed (Fig. 10, ao.), since it occupies the space between the chorda and mesentery, passes close to the attachment of each glomus, The precise relations of the aorta to the glomus are rather difficult to observe, since the former is peculiarly liable to injury in sectioning. The interior of the chorda at this stage consists of a frail vesicular tissue, whereas its outer sheath is tough, and resistant to cutting instruments. In sectioning, therefore, it collapses, and occasions serious distortion of the adjacent parts. In the younger individuals of this stage, the cavity of the aorta did not seem to be sharply marked off from the root of the glomus; in sev- eral instances, indeed, 1 was able to observe a continuity between the endothelium of the aorta and that lining the glomus. In older indi- viduals I have repeatedly noticed distinct branches from the aorta pass- ing into the glomus (Plate I. Fig. 10, va. sng.), These observations were made, however, only on the most favorable sections, and I have been unable to ascertain the number or distribution of such branches, In both of the two most obvious cases, however, the vessel] entered the hinder end of the glomus. Occasionally, the vessel to the glomus seems to be only a lateral branch given off from a vessel which can be traced between entoderm and splanchnopleure for some distance ventral to the glomus (Fig. 10, va. sng., the lower of the two dotted lines), MUSEUM OF COMPARATIVE ZOOLOGY. 237 I have spoken of the expanded dorsal portion of the body cavity, into which the nephrostomes open, and which contains the glomus. This portion of the body cavity constitutes the so-called pronephric chamber. It is not to be regarded as a closed cavity. Elsewhere the somatopleure and the splanchnopleure are closely applied to each other, but there is absolutely no fusion of these layers ventral to the pronephros. Stace VI. Plate III. Fig. 2%. Plate IV, Figs. 28, 30, 35-38, 41. Plate VI. Fig. 51. The larve included in this stage are in general two or three days older than those of the preceding stage. They are about 8 mm. long from the anterior end to the tip of the tail. In this stage, the body no longer tapers gradually from the branchial region to the posterior end ; but a definite line of separation is established between the trunk and tail regions. In the tail a distinct membranous fin has appeared, both along the dorsal and the ventral median lines. The horn lips can be seen surrounding the mouth, and the external gills project prominently on both sides of the body. The pronephros of this stage has developed aleng lines foreshadowed in the preceding stage. The general form of the organ can best be un- derstood by reference to the series of diagrams (Figs. 35-37) and the reconstruction (Fig. 41) given on Plate IV. As will be evident at once, the gland has reached a high degree of complexity, produced, however, by a continuation of the same process of complication which had begun in Stage V. Thus the first nephrostomal tubule? and the collecting trunk retain throughout a nearly unmodified condition; the third ne- phrostomal tubule usually becomes slightly complicated ; the second exhibits the greatest number of convolutions. The common trunk, however, is the part which has been principally concerned in producing the increased complexity of the gland. It is to be noted that this con- tortion is not of a wholly indefinite nature ; indeed, there is consider- able uniformity in the pronephridia of different individuals of the same stage of development. In Figure 31, representing a pronephros of a larva in Stage V., it is to be seen that there are ouly two bends in the common trunk, which extends forward to the anterior end of the gland. From this simple condition the later complications may be derived by a few simple steps. In order to follow the changes it will be advisable to 1 The same colors have been employed for corresponding parts in both Figures 40 and 41. Consult explanation of Figure 41. 238 BULLETIN OF THE distinguish : (1) posterior bend adjacent to the collecting trunk, (2) as- cending arm, (3) anterior bend, and (4) the descending arm, which is continuous with the segmental duct. The simplest condition which I have found in Stage VI. is represented in Figure 35. This diagram relates to a larva of R. sylvatica Le C., and it is of interest to note its close similarity to Figure 38, which represents the pronephros of a larva of R. pipiens Schreb. (halecina) of this stage. These two pro- nephridia will be considered together. In both, the ascending arm of the common trunk makes either an S-shaped bend or a loop interpo- lated near the middle of its course; the transverse portion, or anterior bend, is thrown into one or two slight folds, and the descending arm shows two loops, one in the middle of the gland, and the other near its posterior end. The two remaining diagrams (Figs. 36, 37), though taken from different individuals, are alike in all essential particulars. The principal changes from the condition shown in the simpler prone- phridia just described consist in the development of an additional loop in the course of the ascending limb, and of several slight folds in the transverse portion ; the loops present in the younger individuals of this stage have persisted and become more extensive. In the case of the larva whose pronephros is represented in Figure 37, I made a compar- ative study of the pronephridia found on the two sides of the body. The comparison showed that a slight want of symmetry existed between the two sides. Occasionally the direction in which equivalent tubes were bent did not correspond. On the right side of the body (the one figured), for example, the hindermost loop of the descending arm was formed by an inward bend, while in the left pronephros the corresponding tube is bent outward. In the descending arm of the left pronephros a small loop oceurs in addition to those present on the right, while one of the two loops occurring in the ascending portion of the right side is almost unrepresented on the left ; thus, the right pronephros approxi- mates in this respect the simpler organ represented in Figure 35. A more striking anomaly of the left pronephros consists in the occurrence of a slight bend of the collecting trunk between the junctions of the sec- ond and third nephrostomal tubules, so that the latter connects with an ascending portion of the collecting trunk. Finally, the third nephro- stomal tubule of the left side joins the collecting trunk farther posteri- orly than does the one on the right side. In general, however, it seems to me that the several pronephridia studied show a rather remarkable uniformity even in the details of the arrangement of their tubules. The position of the pronephros with reference to the muscle plates is MUSEUM OF COMPARATIVE ZOOLOGY. 239 the same in this stage as in the foregoing. The lateral plate is now wholly cut off from the myotomes ; but a study of serial sections shows that each nephrostome lies beneath a myotome. These myotomes corre- spond to somites II., III., and IV. The course of the duct in this stage is the same as in Stage V. The openings into the cloaca (Plate III. Fig. 27, dé. sg.) are now situated at the bottom of a depression in the dorsal wall of the cloaca (clce.). While the excretory products enter the main cloacal chamber by a single aper- ture, a glance at the histological characters of the short median unpaired trunk shows that it is lined with entodermal cells, and is therefore really a diverticulum of the roof of the cloaca. The ducts of the two sides, therefore, are not to be regarded as uniting into a common trunk, but as opening separately into a dorsal diverticulum of the cloaca. The histological characters of the pronephric system have not under- gone any great changes since the preceding stage. Figure 28 (Plate IV.) shows a cross section of the left pronephros of the larva, whose right pronephros is diagrammatically represented in Figure 37. The plane of the section passes through the first nephrostome, and the transition from the pavement cells of the peritoneum to the columnar epithelium of the tubules is clearly shown. This section also shows, besides the first nephrostomal tubule, the anterior ends of two loops which belong to the transverse portion of the common trunk. The walls of all the tubules are thinner than in the preceding stage, and since the nuclei re- main of about the same size as heretofore, they now occupy a far larger proportion of the cell, and in the case of the thinnest-walled tubules are frequently almost in contact with both the outer and inner surfaces of the cell. The amount of yolk in the cells is considerably lessened, especially in those parts which exhibit the greatest number of convolu- tions. In some cells, a single large spherule is the sole remnant of the formerly abundant yolk. Pigment is present as scattered grains in the walls of all the tubules; it also shows a tendency, as in the-previous stage, to accumulate along the free surfaces of the cells. The nephro- stomes, however, are densely pigmented on the surface that is directed towards the body cavity and the lumen of the tubule. The duct pos- terior to the pronephros (Fig. 30) offers no features worthy of special mention. It is accompanied throughout by the cardinal vein (vm. erd.), on the median side of which the earliest fundaments of the mesonephric tubules are visible. I have described a special enlarged region of the convoluted duct in a larva of Stage V. A similar condition is apparent on both sides of the 240 BULLETIN OF THE body in the case of the individual whose pronephros is represented in Figure 35. The dilated chamber (Plate VI. Fig. 51) is here formed by a great expansion of that portion of the ascending arm of the common trunk (tr. com.) which is adjacent to the collecting trunk (tra. elg.). A similar dilated chamber occurs in the pronephros represented in Figures 36 and 41; but in the latter case neither the dilation of the lumen nor the thinning of the wall is very pronounced. In both these cases the expanded chamber is present in portions of the tubular system which are exactly equivalent to each other. Under these circumstances, the expansion of the descending limb of the duct occurring in the prone- phros of Stage V. (Hig. 34) seems quite anomalous. The dilated chamber is invariably, however, superficial in position, lying close to the capsular membrane. I have been unable to reach an entirely satisfac- tory opinion regarding its function. Since it is situated so near to the nephrostomes, it does not seem very well adapted to serve as a reservoir for the storage of fluids secreted by the gland, for by far the larger por- tion of the secreting surface is situated between it and the duct. How- ever, the chamber doubtless receives whatever fluids are gathered by the nephrostomes or are secreted by the peritoneal tubules, and it is pos- sible that the enlargement exists solely for this purpose. In following the duct from the dilated region towards its outlet, a greatly contracted portion is reached, and this may serve for the better retention of fluid contained in the chamber. The capsule in these larvee is not so well marked as in those of the pre- ceding stage. Between the pronephric tubules and the ectoderm there has arisen a considerable quantity of mesenchyme, and the capsule now appears merely as the line along which this mesenchyme comes in con- tact with the pronephric tubes and blood sinuses. In discussing the blood supply for the preceding stage, it seemed advisable to consider the vessels in older larve as well, and J shall there- fore merely refer here to the account given in that connection." 1 Tn all the larve of this stage which I have examined, I have observed a peculiar sac, of which I have been unable to find any mention in the literature. In the oldest larva of this stage it consists of a capacious sinus lying in the triangular area bounded by the myotomes, the somatic peritoneum, and the ectoderm. It extends backwards from the niveau of the third nephrostome fora length of two or three myotomes, and appears to be closed upon all sides. The sac lies in a mass of loose mesenchyme, but possesses firm walls, so that any opening would naturally be easily recognizable. In the interior of the sac, cells which are undistinguishable from blood corpuscles are found in considerable numbers. In a younger larva the sac occurs in a corresponding position, is nearly filled with blood cells, and is in open MUSEUM OF COMPARATIVE ZOOLOGY. 241 The glomus is somewhat larger and more compact than in the preced- ing stage, and for that reason its structure is more obscure ; but I have seen nothing which would lead me to believe that it differs materially from the condition exhibited by the younger glomi of Stage V. The organ is bounded by a definite peritoneal layer and contains blood cells together with embryonic connective-tissue stroma. The blood cells are usually contained in definite channels, and, being closely packed together, frequently appear in cross sections to be disposed with considerable reg- ularity around a central point. This arrangement is naturally suggest- ive of a tubular or a rod-like structure ; but the histological characters of the cells and the conditions exhibited by adjacent sections show that this impression is illusory. In short, I have been unable to find within the glomus any traces of the rods and thick-walled tubes which have been described by Hoffmann (’86, p. 591). No closed pronephric chamber exists at this stage. In the most anterior sections in which the pronephric tubules appear, a blind anterior diverticulum of the body cavity is to be seen; but this unites with the general body cavity surrounding the intestine even before the niveau of the first nephrostome is passed. Throughout the remainder of the pronephric region the lung bud (Plate IV. Fig. 28, fnd. pul.) forms a ridge on the splanchnic side of the celom. This ridge partially separates the pronephric chamber from the general body cavity ; and in the region of the third nephrostome a still more perfect closure is effected on the right side of the body by means of the approximation of a portion of the midgut to the peritoneum covering the pronephros. Stace VII. The age of the larve of this stage, reckoned from the time of fertiliza- tion, is about forty-seven days. A large gap therefore intervenes between Stages VI. and VII., and the older larvee are studied merely for the pur- pose of observing the process of degeneration in the pronephros. In the larvee of Stage VII. the mesonephros has already attained a degree of complication comparable to that gained by the pronephros at Stage VI., i. e. the same average number of tubes appear in cross sections through the two glands. The mass of contorted tubules in the case of the meso- nephros, however, is formed wholly by the transverse tubules, while the communication with the cardinal vein. Ina larva of intermediate age, the sinus communicates with the cardinal vein by means of a very narrow canal. Respect- ing the fate and the significance of this singular structure, I have no suggestions to offer. VOL. XXI. —NO. 5. 16 249 BULLETIN OF THE duct pursues a direct course through the gland. The duct is situated in the dorsal portion of the mesonephros adjacent to the lower borders of the myotomes ; its relations are therefore different from those of the longitudinal canal of the pronephros, since, as we have seen, the common trunk in the pronephros is greatly convoluted, and its windings occupy the ventral portions of the gland. The marked signs of degeneration which the pronephros presents in this stage prevented my reconstructing the gland, since it proved to be impossible to follow any given tube throughout the entire series of sec- tions. Indeed, I am convinced that the tubules are no longer strictly continuous. I must therefore content myself with a brief description of the histological features noticed. The lumen of the tubules is greatly enlarged, and is frequently filled with a dense coagulum which stains similarly to protoplasm. The cell walls are very thin and show a tendency to become shredded or frayed along the interior surface. The membranes between the cells in the wall have become indistinct, and the number of nuclei in a given area is far less than in a corresponding portion of the wall in Stage VI. The nuclei are stained only feebly, but contain deeply staining granules, and seem to be disappearing, since one can observe numerous gradations between the typical nuclei and those which have become so pale as to be nearly invisible. The ground substance of the walls is slightly vacu- olated and contains numerous scattered dark granules. Between this remnant of the cellular wall of the tube and the basement membrane, I have frequently seen small cells with deeply stained nuclei. These may possibly represent intrusive connective-tissue elements. I regret that I have not been able to make an extended study of the degeneration of the pronephros; but the limit which I have set to my work is perhaps the least arbitrary which I could easily make. B. Bufo. The development of the pronephros and the segmental duct in Bufo is very similar to that which I have described for Rana. For this reason, I can treat the development in Bufo much more briefly, and shall lay principal stress upon those features which are unlike in the two genera. Stace I. In the case of Rana, this stage included embryos which showed an ill defined somatopleural thickening lying immediately posterior to the cranial ganglionic mass. This proliferation proved, on comparison with MUSEUM OF COMPARATIVE ZOOLOGY. 243 older specimens, to be the first indication of the pronephric thickening. A similar condition of the somatopleure is presented by embryos of Bufo about 2 mm. long, in which the medullary folds are widely open. The general relations of the germinal layers at this stage are almost identical with those in Rana, and the same histological criteria for distin- guishing them can be employed. The ectoderm is very sharply marked off from the mesoderm. The former is deeply pigmented, while the ad- jacent mesoderm is almost destitute of pigment. The yolk spherules of the ectoderm measure on the average about 2 »; those of the meso- derm, about 4 p. In embryos in which the medullary tube is still widely open, the somatopleure and splanchnopleure are separated from each other by a distinct space, the ccelom, which can be traced with perfect distinct- ness into the protovertebral plate, where it becomes slightly expanded. In the anterior half of the embryo, both the somatic and the splanch- nic layers are only one cell in thickness. Posteriorly, and in the middle trunk region, however, certain loose cells bordering on the coelom become associated with the somatic layer ; but this layer is never, except at the extreme hinder end, more than two cells in thickness. Stace II. Embryos in which the medullary tube is just closed exhibit a con- dition of the mesoderm slightly different from that of Stage I. In the posterior portion of the embryo, the mesoderm is quite thick in the re- gion of the protovertebral plate, and becomes gradually thinner as it approaches the ventral portion of the body. Anteriorly, the protovertebral plate shows traces of the differentiation of four or five protovertebre. Of these, the most anterior lies in the same transverse plane as the ganglion nodosum, and, following the method of designation which was employed in the case of Rana, would properly represent somite I. This protovertebra, as in Rana, shows signs of transformation into mesenchyme, and is considerably compressed in the region of the ganglion. The thickening has the general form which I have described for the corresponding stage of Rana, and its anterior margin is situated under somite IT. In the region of its greatest thickness, which is somewhat lateral to the boundary between the protovertebra and the lateral plate, it is two or three cells deep. It thins out slowly on the ventral side, much more rapidly on the side of the protovertebra, or dorsally. The thickening 244 BULLETIN OF THE involves the ventral portion of the lateral wall of the protovertebra itself, although the greater part of the thickening is in the region of the lateral plate. I have not been able to find any sharp plane of division marking the lower limit of the thickening. The latter extends posteriorly through a distance of three or four somites, but it is difficult to make out its rela- tions to the protovertebre, in consequence of the small amount of differ- entiation which these exhibit at this stage. It seems to me, however, that the thickening reaches backward into a region posterior to that in which the pronephric tubules later develop, and therefore represents already the first fundament of both the pronephros and the anterior end of the segmental duct. Frontal sections show the same relations between the pronephric thickening and the protovertebree that I have described for Rana, but in Bufo the ceelom is entirely obliterated by the growth of the prone- phric thickening, and consequently the pronephric chamber described in a corresponding stage of Rana does not exist in Bufo. This circumstance renders the determination of the precise boundaries between the two lay- ers of mesoderm somewhat more difficult in the Toad than in the Frog, but still there is usually an unmistakable line of division between soma- topleure and splanchnopleure even in the former. The pronephric thick- ening at this stage is from two to three cells thick, and is a solid mass. SracE III. In embryos of this stage, the fundament of a single pair of gill-folds is present; the fundament of the auditory vesicle consists of a simple thickening, which is just beginning to separate from the superficial ecto- derm ; and five or six protovertebre have made their appearance. The embryos measure from 2.25 to 2.50 mm. in length. The pronephric thickening becomes sharply marked off in this stage from the undifferentiated mesoderm lying ventral to it, and the canali- zation of the structure is accomplished by the arrangement of the cells around a lumen. Segmentally, the pronephric thickening has in general the form of a close fold of somatopleure, whereas intersegmentally it ap- pears as a flattened tube. The points of continuity with the coelom are situated each directly beneath the middle of a protovertebra, and the somites in which they appear are II., III, and IV. The duct arises as a backward continuation of the pronephric thicken- ing, and contrasts very sharply in histological characters with the ecto- derm, in consequence of the pigmentation and paucity of yolk spherules in the latter. MUSEUM OF COMPARATIVE ZOOLOGY. 245 Stace IV. Plate V. Fig. 43. Embryos of this stage measure from 2.8 to 3.1 mm. in total length. Muscular fibres have begun to appear in the myotomes, the auditory vesicles are entirely detached from the external ectoderm, and the pro- tovertebre have been differentiated as far back as the anus. The pronephric pouch of Bufo is very similar to that of Rana. It communicates with the celom by means of three nephrostomes, and from its ventral margin the duct takes its origin. The nephrostomes are segmental in position, and are situated beneath protovertebre IL, Miprand: TVA The duct can be followed for some distance posterior to the hinder- most pronephric nephrostome as a distinct elliptical tube with a central lumen. The lumen, however, disappears further posteriorly, and the duct terminates either as a simple thickening of the somatopleure, or its posterior end merely rests upon the mesoderm in the region of somite XI. The hinder tip of the duct (Fig. 43, fnd. dt. sg.) in both cases re- sembles very closely the adjacent mesoderm both in the size and in the abundance of yolk spherules, and it differs from the ectoderm both in these features and in the scarcity of pigment. In Bufo I have never been so fortunate as to find the growing end of the duct situated in a groove of depressed mesoderm ; but I believe that the fundament ex- tends itself from the region of its origin in the somatopleure to the pro- jecting cornu of the cloaca by means of an independent growth on the part of its own cells. The greater part of the duct, however, arises from a local proliferation of somatopleure. The pronephric capsule in Bufo arises as a downgrowth from the outer peripheral layer of the protovertebrze. In this stage, however, it has not reached the somatopleure ventral to the pronephros, but merely forms a two-layered scale-like sheet of tissue covering the dorsal portion of the gland. The pronephric chamber is present at this stage. The general body cavity, however, has not yet appeared, the somatopleure and splanchno- pleure being in other regions in close contact. 1 T have preserved in the enumeration of the body somites of Bufo the same designations that were employed in the case of Rana. In Bufo, however, the ker- nel of the degenerate protovertebra in front of somite I. gives rise to a few muscle fibres. 246 BULLETIN OF THE Stace V. Plate V. Figs. 42, 46. Plate VI. Figs. 47, 49, 52. At this stage the larve were hatched and swam about freely in the aquaria. The larve measured from 4 to 6 mm. in length, and each had a distinct tail, which protruded for a distance of 1.5 to 2 mm. behind the anus. The pronephros was probably already functional. The character of the convolutions of the pronephric tubules was studied in the case of four pronephridia. In this feature one of them corresponded very closely with the condition in the pronephros of Rana represented in Figure 33. The remaining pronephridia differed from this type solely in the circumstance that the third nephrostomal tubule joined the collecting trunk at the extreme posterior portion of the bend, which im Rana usually forms the first portion of the common trunk. The position of the pronephros with reference to the somites remains in general nearly the same as in the preceding stage. In individual cases, however, the nephrostomes do not appear to lie precisely under the middle of the myotome. In embryos of this stage, the segmental ducts already open into the cloaca. These openings are situated beneath myotome XII. It is obvious from this fact that the duct in the older embryos of Stage IV. had already very nearly reached the region of its final communication with the cloaca. In Bufo the lumen of the gut is very narrow, and is sep- arated from the lateral walls of the body by an extensive mass of yolk cells. The cloacal cornua are therefore in this case very long, extending to the outer surface of the entoderm. The ducts reach these cornua by passing between the dorsal angle of the body cavity and the overlying myotomes. The histology of the pronephros in Bufo does not present any note- worthy features of difference from that in Rana. The tubes are all slightly smaller in Bufo, and their walls contain somewhat more pigment than do those of Rana. The capsule envelops the pronephros and duct in the way that I have described for Rana, and it also encloses a series of blood sinuses which are developed from the posterior cardinal vein. I was not able to obtain in Bufo any additional evidence in regard to the origin of the mesenchyme of the pronephros. Two veins emerge from the anterior end of the pronephros. One of these is the immediate continuation of the posterior cardinal vein, which, in passing forward as the ductus Cuvieri (Plate V. Fig. 42, dt. Cwv.), makes a rapid ventral descent to open into the sinus venosus. The MUSEUM OF COMPARATIVE ZOOLOGY. 247 other vein (Fig. 42, wn. jg/.) passes forward between the myotome and the vagus nerve. It evidently is one of the jugular veins, but I have not been able to study its distribution in later stages, and am therefore unable to state more precisely which vein of the adult it represents. The structure of the glomus in Bufo is far more evident than in cor- responding stages of Rana. In treating of the development of the glo- mus in the latter, I reached the conclusion that it arises as a simple fold of splanchnopleure, into which mesenchymatic cells migrate. In later stages I was able to identify the original outer sheath with a distinct basement membrane, and found within this membrane a large number of embryonic blood corpuscles, and occasionally certain cells which resembled in their histological characters those of the sheath or peritoneal layer. In Bufo the vascular system is less developed than in the corresponding stage of Rana; and, owing to the small number of the blood corpuscles, the remaining cellular elements come more plainly into view. The usual form of the glomus is that of a hollow peritoneal sac lined with endothelium (Plate VI. Figs. 47, 49, 50), und containing scat- tered blood corpuscles (Fig. 46). At the entrance to the sac the endo- thelium (en’th.) is continuous with the loose mesenchyme surrounding the aorta, and, in certain regions, the lumen of the latter can be traced into the interior of the glomus. This organ, then, exhibits markedly the character of a blood sinus, the walls of which project into the body cavity. Occasionally one encounters in Bufo certain minor pocketings of the peritoneal layer of the glomus, — invaginations into the lumen of the glomus at the place, e. g., occupied by the letters cel." (Fig. 52). If the cells at the apices of such invaginations were to become detached, this condition would serve to indicate the source of the pigmented cells found in the interior of the glomus in the case of Rana, although I have as yet reached no final conclusion in regard to this matter. In this stage the body cavity exists as a distinct lumen only in the region from which the nephrostomes emerge, where it constitutes a pro- nephric chamber. My studies on the development of the excretory organs in Bufo have not extended beyond the present stage. Cc. Amblystoma. Plate V. Fig. 44. Plate VI. Fig. 48. Plate VII. Figs. 53-56. Plate VIII. Figs. 57-65. Amblystoma shows in the development of its excretory system many features of similarity to the Anuran forms already described. The dif- 248 BULLETIN OF THE ferences, however, are far greater than those which exist between Rana and Bufo, and will require for their presentation a fuller treatment than was given in the case of the latter genus; but the development in all three genera is sufficiently similar to allow the recognition of the same successive stages, based upon the degree of complication exhibited by the pronephros. Stace I. Plate VI. Fig. 48. In embryos of this stage, the two lateral medullary folds have just fused to form the neural tube. The embryos have a slightly elongated form and measure about 3.7 mm. in length. They are slightly more advanced than the embryo of Amblystoma represented by Bambeke (80, Planche XI. Fig. 35). The eggs from which I derived my series of embryos had been deposited for a variable length of time before they were collected, and I am unable to give the ages of the several stages.’ The general arrangement of the germ layers (Plate VI. Fig. 48) is similar to that which I have described for Rana and Bufo. The ecto- derm (ec’drm.) consists in general of a single layer of cells, each of which has the form of a cube slightly flattened. Scattered ectodermal cells form an incomplete deep layer, which may gain in some regions, e. g. in the head, a very considerable development. The outer face of each ectodermal cell possesses a thin layer of pigment, but this is by no means so dense as in Rana and Bufo. At this stage yolk spherules are abun- dant in all the cells of the ectoderm. The entoderm has nearly the same arrangement as in Rana, but the yolk cells are relatively more abundant, and the lumen of the gut is narrower. In the anterior region, the chorda consists of a simple fold in the dorsal roof of the intestine; but in the posterior portion of the body it is represented by a single row of high columnar cells, which form a layer convex from side to side towards the lumen of the intestine. This layer is the one which O. Hertwig (’83) has named the chorda-ento- blast. The cells of the yolk entoderm are in general the largest in the 1 A quantity of the eggs of Amblystoma punctatum Linn. raised in the laboratory during the present season reached the several stages as follows: Stage I., 5 days; Stage II., 5 days, 12 hours; Stage III., 6 days, 15 hours; Stage IV., 7 days, 15 hours; Stage V., 8-14 days; Stage VI.,15-20days. These figures are only approx- imate, and between Stages II. and V. the individual variation is frequently more than sufficient to cover the entire interval between two successive stages. The temperature of the water varied somewhat during the period, but I believe that 10 or 11° C. would be a fair average. MUSEUM OF COMPARATIVE ZOOLOGY. 249 body, and contain very large yolk spherules. The majority of the ento- dermal cells contain no conspicuous accumulations of pigment ; but the latter may occasionally be found in considerable quantity, particularly in the cells bordering on the gut. In the dorsal portion of the body, the mesoderm consists of two lateral masses of tissue, each of which spreads outward and ventralward from the neural tube, and joins its fellow of the opposite side in the ventral median line. Each of these masses of mesoderm is thickest next to the medullary tube, and gradually becomes thinner in passing outward around the mass of yolk cells. In the dorsal half of the body (Fig. 48) each mass of cells consists of two distinct layers, which are continuous with each other along the sides of the neural tube. They represent the first division into somatic (/a. so.) and splanchnic (da. sp/.) mesoderm, and the slight space which separates them is the ccelom (c@/.). On passing outward and ventrally, the two layers of mesoderm gradually approach, and at length are continuous with, each other; for a short distance farther, it is still possible to trace two rows of nuclei, indicating approx- imately the territory occupied by the Jayers; but this arrangement finally disappears, and before the ventral surface is reached the meso- derm has the form of a layer only one cell in thickness (ms’drm.). In both somatic and splanchnic layers, the cells are of a nearly cubical form, but those of the parietal layer are rather thicker, and may be even columnar. The mesoderm of the ventral side of the body, on the other hand, is composed of more flattened elements. The cells of the meso- derm are in general intermediate in size between those of the ectoderm and of the entoderm. Their yolk spherules are much smaller than those in the entoderm, but resemble those in the ectoderm too closely to af- ford a thoroughly satisfactory criterion for distinguishing the two layers. The mesodermal yolk spherules are, however, slightly larger than those of the ectoderm ; and in doubtful cases they may be taken into account. The pigment of the mesoderm is usually collected along that surface of the cell which faces the coelom, and may in part serve as a guide for following that cavity in cases where the bounding layers of mesoderm are in close contact with each other. I have spoken of the somatic mesoderm as a layer a single cell in thickness ; this is not, however, an adequate representation of the actual condition. In many sections there may be observed, from place to place, an additional cell associated with the otherwise single layer. The occur- rence of an incomplete second layer of cells is most noticeable in the anterior portion of the trunk, in a region directly lateral to the protover- 250 BULLETIN OF THE tebral plate. It is probable that this slightly thickened somatic layer is the first indication of the pronephric thickening. Stace II. Plate V. Fig. 44. Embryos of this stage measure nearly 4 mm. in length ; the medul- lary tube has become entirely separated from the superficial ectoderm, and three protovertebree can be distinguished in longitudinal sections. The fundament of the pronephros forms in this stage (Plate V. Fig. 44) an evident thickening of the somatic mesoderm lying immediately lateral to the protovertebral plate. Throughout the greater part of the thick- ening, the layer is obviously two cells thick, and occasionally three nuclei may be seen in a line perpendicular to its surface. The cells constitut- ing the thickening are closely compacted, and do not appear to form definite layers. The fact that the thickening passes through a stage in which it is only two cells in thickness precludes the possibility of its being a disguised fold with closely applied walls, for in that event there must be at least three layers of cells involved. Neither the anterior nor the posterior limit of the thickening can be clearly determined at this stage. Iam also unable to state definitely its relations to the protover- tebra, inasmuch as these cannot be adequately made out in transverse sections, and the extent of the thickening cannot be satisfactorily ob- served in such longitudinal sections as pass through both the protover- tebree and the pronephric thickening. The latter may be traced for a distance of about 0.5 or 0.6 mm. Each protovertebra at this stage measures about 0.27 mm. in length, so that the thickening extends through a length of about two protovertebre. In slightly older embryos the pronephric thickening becomes in gen- eral three cells in thickness ; but it is still a solid proliferation, with no indication of extensions of the coelom between the layers. Stace III. Plate VII. Figs. 55, 56. At this stage the young Amblystomas are about 4.3 mm. long and dis- tinctly elongated in shape; but they show as yet no trace of a tail. They are further characterized by the possession of about eight well marked protovertebre. In all the embryos of this stage the pronephric thickening is at least three cells in depth, and has a definite ventral boundary. The thickening extends as far forward as the front face of somite III., and posteriorly MUSEUM OF COMPARATIVE ZOOLOGY. 251 tapers gradually into undifferentiated somatopleure. The backward pro- longation of the thickening is the first fundament of the segmental duct, and may be traced at least as far back as somite VI. Both portions of the thickening appear to arise in the same way ; namely, by cell prolifer- ation in the somatopleure. It is a matter of some difficulty to ascertain when the first trace of a lumen appears. Before the two walls actually separate, the nuclei fre- quently show an arrangement which is suggestive of an evagination ; but one cannot always trust such appearances. Later, a line of pigment can be traced from the body cavity for some distance into the interior of the thickening, and finally the two walls separate, leaving a clearly defined lumen. In all cases, the two regions of continuity with the celom are opposite the middle of protovertebree III. and IV. respectively ; and there is no indication whatever of a continuous fold. Although the pronephric mass thus shows evident signs of segmen- tation, yet, as is to be seen by a comparison of segmental and interseg- mental regions (Plate VII. Figs. 55 and 56), the proliferation is not interrupted in the latter regions. In frontal sections through prone- phridia in which a definite lumen has begun to appear (compare Plate VII. Fig. 55), there can be seen two narrow canals leading from the cavities of protovertebre III. and IV. and extending outward as coelomic diverticula into the pronephric mass. From this condition the hasty conclusion might be drawn that the narrow canals are in fact outgrowths from the protovertebral cavities. This however, in my opinion, is not the case. If the relations of the mesoderm in such a transverse section as is shown in Figure 55 be regarded, it will be seen that a frontal section through the pronephric region (in the fignre cited, a horizontal section a little below the level of the letters cv/.’) would cut through the proto- vertebral cavity near its floor, and at the same time pass through the lumen of the pronephric thickening. Since, moreover, these two spaces are continuous by means of the communicating canal, it might at first appear that the latter belonged to the pronephric tubule. The fate of that portion of the tube, however, shows this interpretation to be incor- rect, and that it was only by means of the communicating canal that the lumen of the pronephros communicated with the protovertebral cavity ; for when the separation of the protovertebre from the lateral plate takes place, the communicating canal, which is assumed to be the stalk of the pronephric diverticulum of the protovertebra, becomes closed, and the pronephros is thereby left in communication with the body cavity alone (compare Mollier, 90, Taf. XII. Figs. 10c., 10 d., tr, and tr,). fe BULLETIN OF THE Stace IV. Larvee of Amblystoma do not possess a conspicuous widely open pronephric pouch, such as has been described in Anuran species; but the proliferation becomes at once converted into a tubular organ. In- deed, the condition of the pronephric thickening in Stage III. is the one which is most similar to the Anuran pronephric pouch, since it is then a continuous structure having connections with the celom in segmental regions. In slightly older embryos, the dorsal half of the pronephric thicken- ing is no longer continuous through the region between protovertebre II]. and IV.; and from this region backward to the hinder face of pro- tovertebra IV. the mass is distinctly divided into two tubes. Of these two tubes, the more median and dorsal is the second nephrostomal tubule; the more lateral and ventral is the common trunk. Finally, it is to be observed in a number of cases that an anterior loop of the common trunk occurs a short distance in front of the point of junction with the nephrostomal canals. The pronephros thus has a form which approximates very closely to the condition which forms the starting point for the next stage (Plate VIII. Fig. 58). Stace V. Plate VIII. Figs. 57-60. This stage includes embryos which have attained a length of from 5 to 6 mm. Many of the older embryos of the stage have already hatched ; they possess well developed tails and swim about freely. The general form of the pronephros has been studied by means of a number of rough reconstructions, some of which are represented by the diagrams on Plate VIII. In Figures 57 to 60 inclusive, which belong to this stage, no windings have been reproduced which were not of suf- ficient magnitude to form definite antero-posterior loops; and, further, in plotting these loops, no attempt has been made to preserve in the diagram the natural direction in which the tube is actually bent. How- ever, the relative positions of the bends in an antero-posterior direction have been accurately reproduced. In the younger individuals of this stage, the pronephros (Fig. 58) resembles in many respects that of Rana represented in Figure 33; but it differs from the latter, notably in the occurrence of two instead of three nephrostomes and nephrostomal canals. For this reason, there is no canal which corresponds to the collecting trunk of Anura, save that MUSEUM OF COMPARATIVE ZOOLOGY. 253 portion of the latter which intervenes between nephrostomes I. and II. ; and in discussing the topographical relations of the tubules it will be needless to distinguish this remnant of the collecting trunk from the first nephrostomal tubule. In this simplest condition of the pronephros, the common trunk makes a single loop, the anterior curve of which is situated nearly as far forward as the level of the first nephrostome. In somewhat older pronephridia (Figs. 59, 60) the main bend of the common trunk occupies a position even in front of the first nephrostome, and a number of minor folds intervene between the junction of the nephrostomal canals and this most anterior fold. In none of the pronephridia of this stage is there any evidence of convolution in the nephrostomal canals. One individual of this stage departed from the normal condition, in that it possessed three instead of two nephrostomal canals. This abnormality occurred on both sides of the body, and appears to be correlated with a less highly developed first nephrostomal tube. It is to be noted that the third tubule (Fig. 57) appears as an appendage attached to the most posterior loop of the common trunk. This topographical relation suggests that it is the most posterior of the three nephrostomal tubules which has been added to those normally present in Amblystoma, and this inference is shown to be correct by the relations which the several tubules bear to the body somites. The question whether the most posterior of the three tubules in this case represents the third nephro- stomal tubule of the Anuwran pronephros can be answered only by a con- sideration of the relations which the several nephrostomes in the two groups bear to the overlying protovertebre, and will be recurred to in the general discussion which follows. I may here anticipate to the extent of stating that the first and second tubules of Amblystoma probably correspond respectively to the second and third of Rana and Bufo, the abnormal third tubule belonging to a yet more posterior metamere. The position of the pronephric nephrostomes with reference to the myotomes was determined at an early stage by the location of the first metameric diverticula which are developed within the pronephric mass ; and in the present stage these relations have not materially changed. The two nephrostomes of the normal pronephros lie beneath the third and fourth myotomes respectively. In the case of the pronephridia with a supernumerary nephrostome, the first two nephrostomes occur beneath myotomes III. and IV. respectively, while the third nephro- stome is found beneath myotome V.? 1 Myotome I. of this enumeration reaches forward to the root of the vagus nerve, and is flanked on its outer face by a portion of the ganglion nodosum, exactly as in the case of the Anura described. 254 BULLETIN OF THE In this stage the segmental duct in the younger embryos shows some- what different conditions from those found in the older embryos. In the case of unhatched embryos possessing the simple pronephros shown in Figure 58, the duct on passing backwards gradually dimin- ishes in calibre, and finally loses all trace of a lumen. ‘The funda- ment of the duct is in this region composed of four or five cells in each cross section, which are frequently arranged with some regu- larity about the centre as an axis. On proceeding to more posterior regions the fundament of the duct becomes intimately connected with the mesoderm, and is finally lost in that layer. In Amblystoma the histological characters of the mesoderm and the ectoderm are not sufficiently unlike to allow one to base on them a definite con- clusion respecting the layer which has furnished the material for the fundament of the duct. In all cases which I have observed, however, the duct neither unites with the ectoderm nor terminates freely ; but its posterior end invariably is closely applied to the mesoderm, and con- sequently is most probably derived from that layer. In view of the fact that the yolk spherules of the fundament of the duct are of the same size as those present in the adjacent mesoderm, I am of opinion that the duct has undergone no extensive independent growth, but has arisen in situ as a proliferation of the somatopleure. In the older embryos of this stage, the duct has extended backwards to the region of the cloaca, and joins the latter near the posterior face of myotome XX. A distinct post-anal gut is present at this stage. Its anterior portion contains an evident lumen, and appears as a direct con- tinuation of the pre-anal portion; its posterior tip is solid, and extends backward into the tail region for the distance of about one millimeter. From the ventral floor of this continuous intestinal tube, a median di- verticulum leads backward and downward to the anus. The histological characters of this diverticulum differ markedly from those of the rest of the intestine, and by comparison with younger stages it becomes evi- dent that the former has resulted from a proctodzal invagination. Where the intestinal tube is joined by the proctodeum the ventral por- tion, or cloaca, is T-shaped. The lateral arms receive the segmental ducts, and the ventral stem may be followed to the anus. In Ambly- stoma, then, the segmental ducts open into the intestine at the point where the proctodeal ectoderm and the entoderm pass over into each other. It is somewhat doubtful with which of the two germ layers the wall of the ducts becomes continuous; but it is possible that —in con- trast to the condition obtaining in the Anura studied — the ducts open upon an ectodermal surface. MUSEUM OF COMPARATIVE ZOOLOGY. 255 In the younger embryos of this stage, the walls of the pronephric tubules are all very thick ; they gradually diminish in thickness as the embryo grows older. The lumen, on the other hand, is at first narrow, but afterwards becomes much wider. Its size varies greatly in different portions of the pronephros. For example, the lumen of the long arm of the common trunk, which forms the direct continuation of the segmental duct, is usually much narrower than the average lumen of the other pronephric tubules. The nephrostomal canals near their junction and the adjacent portion of the common trunk usually have a wide lumen. In the abnormal pronephros represented in Figure 57, however, the lumen of the first nephrostomal tubule was very narrow, a circumstance which, as I have already suggested, may possibly be correlated with the presence of a third nephrostome. The lining epithelium of the tubes is composed of polygonal cells, which in the younger embryos have a high columnar form, but become gradually thinner as development proceeds. The nuclei when stained with Czokor’s cochineal show a coarsely granular or reticulate structure, and are located close to the lumen of the tubule. The protoplasm takes a uniform delicate tint, which is masked, however, by the deeply staining yolk spherules. These are most abundant near the basal surface of the cell ; they decrease in number and in size with the growth of the larva. In the younger embryos of this stage, the somatopleure is composed of somewhat flattened cells, whose superficial dimension is approximately double the thickness of the cell. The walls of the pronephric tubules in these embryos have a thickness of about 37.5 yw, while the parietal peritoneum has an average thickness of only about 15 pp. These two epithelial layers are confluent at the nephrostomes, the wall of the tubule diminishing rapidly in thickness to that of the peritoneum. The nephrostomes, as well as many of the pronephric tubules, are slightly pigmented on their internal surfaces; but the pigmentation is by no means SO conspicuous as in Rana and Bufo. In the older larve of this stage, the peritoneum is much thinner; but since the walls of the tu- bules have also diminished in thickness, nearly the same relations are to be observed at the nephrostome as in the younger embryos. As in Rana and Bufo, the pronephric capsule in Amblystoma develops in the form of a downgrowth from the somatic layer of the protover- tebree. In Amblystoma the two-layered condition of the capsule and its connection with the overlying protovertebre are maintained in the oldest larve of this stage. It seems probable, moreover, that the down- growth from the protovertebre is met by a more or less pronounced 256 BULLETIN OF THE upgrowth from the somatopleure immediately ventral to the pronephros. The thickness of the capsular sheath gradually diminishes in the course of the development of the larvee, but it is in general approximately equal to that of the peritoneum in the same individual. In the older larve, moreover, the pronephros, and especially the segmental duct, become partially covered by a downward extension of the myotome. In such larvee the anterior limb bud is prominently developed at this stage, and its cells cover in part the posterior ventral portion of the pronephros. The sinuses within the capsule are bounded by mesenchymatie cells and contain scattered blood corpuscles ; they are continuous posteriorly with the posterior cardinal veins, so that the venous blood in passing forward from the hinder portions of the body bathes the pronephric tubules on every side. The vessel emerging from the anterior end of the pronephros receives a large vessel from the head, and from the point of union the ductus Cu- vieri leads to the sinus venosus. The former vessel is one of the jugu- lar veins. The distribution of this vein and its probable representative in the adult will be considered in connection with the following stage. The first trace of the glomus appears in embryos of this stage. It consists, as in Rana and Bufo (compare Plate I. Figs. 8, 9, and Plate VI. Fig. 47), of a horizontal fold of splanchnopleure lying close to the dorsal angle of the body cavity. This fold extends, when fully formed, from the first nephrostome backwards to the second. The outer layer of the organ consists, as shown by its development, of splanchnic peritoneum, which is usually bounded within by a sharp contour. I am of opinion that the latter is in reality a thin structureless basement membrane. The interior mass of the glomus consists of several different elements. In the young stages embryonic blood cells form a prominent constituent. Other cells are present, which have an elongated form and are evidently connective-tissue elements ; and there appear to be still other cells which are of a less modified character and in which nuclear mitoses occur. Many of the latter may well represent young stages in the development of blood corpuscles, for I have observed mitotic division of blood cells even in certain older larvee of Stage VI. In addition to the classes of cells just mentioned, there are a few large cells whose nature is to me quite obscure. These cells measure 60 » or more in diameter, and contain large yolk spherules, which are closely packed together and make up almost the entire substance of the cell. The histological characters of these cells ally them most closely with those of the ento- derm, and in the youngest stages in which I have been able to identify MUSEUM OF COMPARATIVE ZOOLOGY. 25 them they were clesely associated with the yolk entoderm, which lies medio-ventral to the region of the glomus. It is probable that they arise from the entoderm and migrate into the interior of the splanchno- pleural fold. Ihave been unable to find in either Rana or Bufo any cells similar to these large cells in the glomus of Amblystoma, and I have at present no suggestion to offer respecting their significance. The glomus, as I have already indicated, is a highly vascular organ, and even in the younger stages it is possible to find vessels which connect it with the aorta. These vessels usually follow the splanchnic layer quite closely, and appear to lie external to the large cells to which reference has been made. In the younger larve of this stage the body cavity in the pronephric region has the form of separate chambers, from each of which a single nephrostomal tubule arises ; but elsewhere the cavity is wanting on ac- count of the contact of the peritoneal surfaces. In the older individuals it is expanded over a much larger area, but by the development of the lung bud a dorsal portion of the cavity is partially separated from the rest as a pronephric chamber. Stace VI. Plate VII. Figs. 53, 54. Plate VIII. Figs. 61-65. The larve included in this stage were taken from several different killings made in the course of three or four days. They measure about 9 mm. from the anterior end to the tip of the tail. An anterior limb bud is plainly visible upon surface view, and the tail is provided with a distinct membranous fin. The great complication in the structure of the pronephros which is attained in this stage is accomplished by a continuation of the same pro- cess of forming convolutions that has been described for the preceding stage. Indeed, the separation of the two stages is at best quite arbi- trary. Figures 61-65 represent various pronephridia of the present stage. It is to be noticed that the portion of the common trunk of which the segmental duct is the direct continuation can be traced from the anterior limit of the pronephros backwards without convolution, or after having formed a few insignificant loops. The common trunk from its junction with the nephrostomal tubules to this most anterior bend is thrown into a series of complicated convolutions, which may be so arranged as to present a gradation of considerable regularity (Fig. 62), or may be quite irregular (Fig. 65). In most cases, however, it is to be noticed that the arrangement of the loops is in general favorable for a compact VOL. XXI.— NO. 5. 17 258 BULLETIN OF THE disposition of the tubes (Fig. 62). The convolution in this stage is no longer confined to the common trunk, the nephrostomal tubules un- dergoing slight contortion (Figs. 63-65). I have determined the positions of the pronephric structures to the somites in these later stages by their relations to the spinal ganglia. The first and second nephrostomes lie very nearly in the same transverse plane as the first and second spinal ganglia respectively. In the young- est larvee of this stage the boundaries between the myotomes may still be made out in transverse sections, and the nephrostomes are then found to lie beneath myotomes III. and IV. It is probable that in later stages as well two myotomes occur in front of the first spinal ganglion. The duct after leaving the pronephros pursues a nearly straight course backwards to the cloaca. In the larve of this stage, the post-anal gut has atrophied, and the ducts open into the intestinal tract just at the point where it bends downward toward the anus or cloacal aperture. The outlets of the two sides of the body are quite widely separated, never opening into an unpaired median depression in the dorsal roof of the cloaca, as is the case in the corresponding stage of Rana. The out- lets of the segmental ducts are situated between the eighteenth and the nineteenth spinal ganglion, which would correspond to somite XX. or XXI. Their position is, then, the same as in the preceding stage. (Compare page 254.) In the series of embryos included under Stage V., it was shown that the walls of the pronephric tubules became gradually thinner as the ani- mal developed. In the pronephridia of the present stage the same pro- cess has been continued, and the cells are frequently so reduced in thickness that the nucleus appears to be in contact with the basal as well as the superficial, or inner, surface of the cell. Occasionally tubes occur whose walls are so thin that each nucleus causes a protuberance into the lumen of the tube. But wherever the thickness of the epithe- lium exceeds the diameter of the nucleus, it is to be noticed that the . latter lies close to the inner surface of the tube, whereas the yolk spherules are accumulated in the basal portions of the cells. The yolk spherules are much less numerous than in the preceding stage. In many cells they are wholly wanting, and in all they now form a much less prominent constituent than the cell protoplasm. The nephrostomes present no new features of interest in this stage. Most of the pronephric tubules contain more or less pigment, which is usually accumulated in irregularly distributed dark patches. In one or two instances I have had a fair degree of success in dissecting out the MUSEUM OF COMPARATIVE ZOOLOGY. 259 pronephros of a fresh specimen. In such an isolated pronephros the course of the tubes can be followed with tolerable accuracy in conse- quence of the pigmented areas occurring in their walls. The loss of yolk spherules, to which the pronephric tubes have been subjected on reach- ing the present stage, is shown in a striking manner by the transparency of the gland as contrasted with the snow-white yolk-eutoderm. The histological characters of the duct (Plate VII. Figs. 53, 54) re- semble closely those of the pronephric tubules. Its calibre is greatest in the region immediately posterior to the pronephros (Plate VII. Fig. 54), becoming less as the duct passes posteriorly (Fig. 53). Throughout its course it is accompanied by the posterior cardinal vein (vn. erd.). In the older larvze of this stage, the segmental duct in its passage backwards to the cloaca receives a large number of mesonephric tubules, which will be described in the sequel. The pronephros of the present stage is covered on its dorsal surface by the main body of the myotomes. From the outer angle of each myotome, moreover, a distinct fibrillar sheet envelops the entire lateral surface of the gland. This layer is the capsule, whose origin has been discussed in connection with Stage V. In the present stage, it frequently becomes deeply pigmented. The anterior portion of the pronephros is also overlaid by a stratum of smooth muscle fibres, which arises from the dorsal fascia. This mus- cular sheet is continuous in front with a muscle layer which is inserted upon the ventral surface of the mandible, and probably represents the depressor maxillee of the adult. The pronephros is also covered in part by the shoulder girdle, which in this stage is wholly composed of cartilage. The vascular sinuses enclosed within the capsule are the direct con- tinuations of the posterior cardinal vein, They also receive — usually about midway between the first and second nephrostomes — a blood- vessel, which may be traced nearly as far back as the cloaca, and which accompanies in its course the ramus lateralis of the vagus nerve (see Fig. 53, just median to v. 1.). Iam not aware of any prior mention of a vessel having this course, and am unable to state whether this vein has any representative in the adult. The vessel emerging from the anterior end of the pronephros receives a vessel from the head, and the two form the ductus Cuvieri, which pro- ceeds downward and inward to join the sinus venosus. The anterior branch may be traced forward into the head in the same direction as the original trunk ; it accompanies in its course the ramus lateralis vagi. 260 BULLETIN OF THE In consequence of the uncertainty as to what vein of the adult this vessel represents, I shall here digress to describe its distribution at this stage. For purposes of description, I shall follow it from its point of junc- tion with the cardinal vein forward towards its finer branches. Before reaching the ganglion nodosum, it sends a branch dorsalward, which can be traced for a short distance between the lateral wall of the cranium and the ganglion. The main trunk continues forward external to the ganglion, and gives off a branch which passes around the posterior end of the audi- tory capsule and enters the cranium. The original vessel now passes for- ward through a narrow channel left between the auditory capsule and the articulating portion of the mandibular cartilage. Near the anterior end of the auditory capsule it divides into two branches, one of which passes dor- sal to the eyeball, accompanying in its course the ophthalmic branch of the trigeminal nerve ; the other branch passes ventral to the eyeball, and continues into the anterior maxillary region, following the course of the canalis nasalis. The main trunk runs nearly parallel to the aortic root and its prolongation, the carotid artery, the efferent branchial trunks joining the aortic root by passing immediately ventral to the vessel whose course I have been following. The vein evidently corresponds to the one described under Stage V. of Rana (page 233, foot-note), and appears to me to represent in all probability the internal jugular of Gruby (42) and of Ecker (64—82). The glomus is considerably broader and thicker than in Stage V. ; but its longitudinal extent is about the same. In the middle of its course its distal edge reaches across the body cavity and fuses with the somatic peritoneum which covers the pronephros. The structure of the organ appears to be nearly the same as in the preceding stage, but the in- terior raass is so compact that one can distinguish little more than the nuclei, which present quite uniform characters. Cells which are unques. tionably endothelial are frequently evident along the basal surface of the peritoneal layer ; they also traverse the interior of the glomus dividing this space into compartments. Pigment is present both in the peritoneal wall and in the interior mass. It has a scattered distribution, appearing in the form of perfectly black patches. The large cells to which allusion was made in Stage V. are present also in this stage. They have about the same size and histological features that formerly characterized them. The pronephric chamber has not changed materially from the condition exhibited in Stage V. The most anterior pronephric tubules are situated immediately lateral to a diverticulum of the body cavity, which in sec- tions through this region appears wholly isolated. On following the MUSEUM OF COMPARATIVE ZOOLOGY. 261 series of sections backward, however, the chamber enlarges greatly, even before the nephrostomes are reached, and is separated from the ventral portion of the body cavity only by the lung bud. Between the first and second nephrostomes, the pronephric chamber is divided into two parts by the fusion of the distal edge of the glomus with the somatic peritoneum covering the pronephros. Still farther posteriorly, an open communication is established, not merely between these two portions of the pronephric chamber, but also between the latter and the general body cavity. In almost all the larvee of this stage, the mesonephric tubules have appeared, and in many individuals they have already opened into the duct. There is always a space intervening between the pronephros and the mesonephros, in which no tubules are developed. This interval ap- pears to be subject to some variation, but in the majority of cases it comprises four somites. In the most anterior region of the mesonephros the tubules show traces of a metameric arrangement, but this is wholly lost in more posterior regions. These relations can perhaps be best illustrated by the accom- panying table, which shows the positions of the right mesonephric tubules in the larva, whose pronephros is represented in Figure 64. The somites have been reckoned by reference to the spinal ganglia, but the results are here expressed in terms of the original metamerism of the myotomes. Somite III. — Pronephric nephrostome I. ee eye — oe “cc TT: ee V.— Tubules absent. (73 Vil foe (a3 ee ee VII. 2s (73 73 (73 Wale eat: 6c (73 & IX.— 1 mesonephric tubule. 73 NE —= jj “ “ 73 7G Is Esai “ “ es XII. — 2 a tubules. sc SY OL 83 a ee “cc MTV. 5 és “ “ec eV. ut 4 “ “ ae peVvile——5 “ “ Each tubule of the mesonephros (Plate VII. Fig. 53) has the ordinary form, which has induced several authors to call it ‘“ sickle-shaped,” and consists of cells which are wholly devoid of yolk spherules, in which the nucleus occupies almost the entire body of the cell. Along the region which corresponds to the cutting edge of the sickle, a few loose cells (fnd. 262 BULLETIN OF THE glm.') occur, which constitute the earliest fundament of the glomerulus. The nephrostomes, however, have not opened at this stage. In the region between pronephros and mesonephros (Plate VII. Fig. 54) certain masses of cells are found on the median side of the duct in the same position as that occupied in the posterior region by the meso- nephric tubules. These cells do not form a continuous mass, but are interrupted at intervals. The cords of cells thus formed do not, how- ever, appear to correspond in their arrangement to the metamerism of the body. It is possible that they represent rudimentary nephridial tubules, but the evidence in favor of this interpretation must be regarded as far from satisfactory. I have been unable to ascertain the precise mode of origin of the mesonephric tubules, having sought in vain for nuclear mitoses which should throw light upon this question. There are in younger stages many retroperitoneal (subperitoneal) cells which might be collected and rearranged so as to produce the tubules ; or, again, the fundaments of the tubules might be formed by proliferation from the peritoneum. The cells of the tubule have evidently undergone very rapid division, as is indicated by the complete consumption of the yolk; and this cireum- stance seems to me to favor the second view. Furthermore, I have found nuclear mitoses (Fig. 54) in the region immediately in front of the meso- nephros which indicate that the cords of cells in this region arise from the peritoneum. Although I am unable to assert that the mesonephric tubules arise from the peritoneum, I am inclined to regard it as probable that they do. There is no evidence, however, of a definite invagination of the wall of the body cavity. This is the oldest stage of Amblystoma which I have examined, and with it I close the descriptive part of this paper. III. General Discussion. Having presented in a purely descriptive manner the facts of develop- ment as yielded by my own studies, I shall now endeavor to use these observations as a basis for the criticism of the results of other investiga- tors, and in closing shall point out certain general conclusions which seem to me warranted by such a review. Recent researches have extended greatly the number ‘of animals in which a homologue of the pronephros is known, so that it may now be fairly assumed that the organ appears in the ontogeny of all Vertebrates. In view of much recent evidence (Hatschek, ’88°, Rabl, ’88, Ayers, ’90) MUSEUM OF COMPARATIVE ZOOLOGY. 263 which clearly supports the view that Amphioxus is closely related to Craniotes and occupies a position near the base of the Vertebrate phylum, the kidneys of this animal are of prime interest in the present connection. Notwithstanding the extreme importance of the subject, however, the relation of the excretory system of Amphioxus to other Chordates must still be regarded as a matter of considerable doubt. At least seven different views have been advanced respecting the excre- tory organs of this animal. According to the earliest of these views, which originated with Joh. Miiller (42, p. 101, see also Langerhans, ’76, p-. 322, and Rolph, ’76, p. 140), certain modified groups of cells lying in the posterior portion of the atrium are claimed to possess an excretory function. I presume that no morphologist would endeavor to homol- ogize these excretory patches with the kidneys of Vertebrates. The same is true of the glandular structures described by Owen (’66, p. 533, Fig. 169, 4), and the epithelial bands of Wilh. Miller (’75, p. 109). Nor can I see in the “pigmented canals,” atrio-ccelomic funnels, of Lankester (’75, pp. 260, 261, and ’89, pp. 394-397) any features which would definitely link them to Vertebrate nephridia. The account given by Hatschek (’84) of his discovery of a single nephridium, which he believes to open into the pharyngeal cavity, is too brief to permit one to form a final judgment upon his interpretation. The observation has not been confirmed by any subsequent investigator save perhaps Lankester and Willey (’90, p. 459), who do not however regard this organ, which they call the sub-chordal tube, as a nephridium. There is nothing in its structure as described by either author which in my opinion justifies its comparison to a Vertebrate excretory tubule. The most recent paper on this topic, which is by Weiss (’90), is of considerable interest from the physiological researches which it records : these show that a large portion of the atrial epithelium, as well as the excretory patches of Miiller, have a well marked excretory function. Of greater morphological value is the description given by Weiss of certain small tubules in which the excretory function is peculiarly active. These tubules empty into the atrium at the upper margin of that cavity in the region of each secondary gill bar. They seem to project into the ceelom, but Weiss was unable to detect a continuity between their lumen and the ceelom. Since the relations of these tubules to the ccelom are not ascertained, I am of opinion that the observations of Weiss do not afford satisfactory reasons for regarding them as homologues of either the Ver- tebrate or the Annelidan nephridia. Weiss’s account, however, is at least very suggestive. An important feature is the metamerism of the 264 BULLETIN OF THE tubules ; for while the metamerism of the gill bars does not correspond in the adult to that of the myotomes, yet we should not lose sight of the fact that according to Kowalewsky (’67, see his Figs. 36 and 39) such a correspondence exists in the embryo. At such a stage, then, there would be present a single excretory tubule for each myotome. In a recent lecture before the Gesellschaft fiir Morphologie und Physi- ologie in Miinchen, Boveri (90) has endeavored to show the existence in Amphioxus of homologues of the pronephros, the mesonephros, and the segmental duct. The tubules which Boveri regards as pronephric are probably the same structures as the excretory tubules of Weiss; and I infer that the same have been seen by Spengel (90, p. 282), though this writer makes no suggestion as to their significance. Both Weiss and Boveri claim to have proved by feeding the animals with carmine that the tubes are actually excretory. According to Boveri, also, they open into the atrium at the upper margin of each secondary gill bar; but their course is somewhat differently described by the two authors. Boveri maintains that each tube communicates by means of several openings with the dorso-pharyngeal ceelom. As confirmatory of his position that these canals represent the pronephric tubules of Craniota, he describes the relations they bear to the gill vessels, which he identifies with the seg- mental vessels described by Paul Mayer (’87, p. 343) in Selachii. Accord- ing to Riickert (88, pp. 239-242), the glomus of Elasmobranchs consists of a rete mirabile in connection with these segmental vessels. Adjacent to the excretory tubules, Boveri finds that the gills display an increase in vascularity, and that anastomoses are formed between the branchial ves- sels. This condition does not seem to have been noticed by Weiss. Spengel, who made a special study of the gill vessels, describes a longi- tudinal vessel at a corresponding level (longitudinal trunk of the liga- mentum denticulatum), but does not discuss its significance. It seems to me that Boveri’s observations, provided they be confirmed, afford fairly satisfactory evidence of the existence of true nephridia in Amphioxus ; and, as I shall endeavor to show in the sequel, that these are constructed on a type which may be assumed to represent a primitive condition of the Vertebrate kidney. The starting point of Boveri’s researches was the hypothesis that the atrial cavity and gonadial pouches of Amphioxus correspond to the seg- mental duct and mesonephros respectively of Craniota. The attempts of Haeckel (’74*, p. 37, and 774°, p. 305) and of Huxley (76, pp. 221, 222) to discover a homologue of the segmental duct in Amphioxus must, in my opinion, be held to have at present merely an historical interest; MUSEUM OF COMPARATIVE ZOOLOGY. 265 it remains for me to consider whether the theory of Boveri be better grounded. The arguments which are adduced in favor of the homology of the gonadial pouches and the mesonephros may be reduced to the following points of similarity. The gonadial pouches of Amphioxus are metameric diverticula of the dorso-pharyngeal ccelom, in accordance with the estab- lished views of Kowalewsky and Rolph, as confirmed by Boveri, who finds in the adult a continuity of the epithelia belonging to the two tracts ; the mesonephric tubules likewise are primitively metameric diverticula from the dorsal portion of the body cavity (see Sedgwick, ’80*, et a/.). The generative cells develop in the walls of the gonadial diverticula; the early occurrence of germinal cells at the proximal ends of the forming mesonephric tubes has also been described by Riickert (’88, p. 257) for Selachii. Finally, the canal by which the gonadial pouches primitively communicated with the ccelom arches over the dorsal angle of the atrial cavity in a way that is very similar to that in which the mesonephric tubules curve outward to join the duct. The only reason — save those that require the prior assumption that the gonadia represent mesonephric tubules — which I can see for identifying the atrium with the segmental duct is the fact that nephridial (pronephric?) tubes open into it. This argument seems to me of very little weight. Boveri himself believes that the pronephros primitively opened directly to the exterior. Unless other evidence can be adduced, I see no adequate reason for regarding the formation of the atrial cavity as a step in the development of the seg- mental duct. On the other hand, that interpretation seems to me quite opposed to all that is known of the development of the segmental duct. As I have shown in the preceding pages, there can be no doubt that, in Amphibia at least, the duct develops solely from the mesoderm. According to the opposed view —the ectodermal origin of the duct — the development always proceeds from a pazr of narrow rod-like thickenings of ectoderm, one on each side of the body, which are very different from the unpaired ventral groove from which, according to the most recent account (Lankester and Willey, ’90) the atrium develops. If, now, we deny the homology of the atrium with the segmental duct, the outward arching of the gonadia becomes a most insignificant topographical resem- blance. It seems to me that it would be manifestly unfair to base so far reaching a homology on the remaining points of resemblance, viz. the early occurrence of germinal cells in the mesonephric tubules, and the circumstance that the gonadia are metameric diverticula of the dorso- pharyngeal ccelom. 266 BULLETIN OF THE Turning now to Craniota, the pronephros in Amniota and Selachii is a wholly degenerate structure ; in many Anamnia, however, it serves for a longer or shorter time as a functional excretory organ. The pronephros of Dipnoi alone is wholly unknown. Beard (’90, p- 157) speaks of the transformation of a part of the pronephros into the Miillerian duct as “a well known fact”; but the only authority he cites in this connection (Parker, ’89) does not make such a statement, nor have I succeeded in finding anywhere in the literature any account of the pronephros of Dipnoi. Unless Beard has personal observations on this matter, I believe that in Dipnoi absolutely nothing is known of the pronephros or its transformation, save such inferences as may be drawn from the adult anatomy. I shall therefore merely repeat the statement of Ayers (85, p. 506), that the development probably proceeds as in Amphibia, since the adult urogenital system in this group presents the closest analogy with that of the Dipnoi. The excretory system of Cyclostomes is similar to that of Amphibia. In Petromyzon a pronephros develops in the Ammoccetes larva, but aborts in the adult. The number of nephrostomes and of tubules is small (4, according to Wilh. Miiller; 4 to 5, Shipley; 3, Kupffer ; according to Semon, an inner and an outer row of nephrostomes are to be distinguished); and they communicate with an anterior expanded portion of the body cavity. According to Fiirbringer (’78*, p. 42), the pronephros extends over about four somites. Opposite the nephro- stomes, a vascular organ projects from the root of the mesentery into the body cavity. This is the so-called glomerulus; as figured hy Scott (81, Taf. IX. Fig. 24), it strikingly resembles the glomus of Am- phibia. According to Scott, the pronephric tubules develop secondarily as outgrowths from the segmental duct. On the other hand, Shipley has confirmed the statements of Miiller and Fiirbringer, according to which the nephrostomes and tubules are formed by the incomplete closure of a longitudinal groove of somatopleure. Finally, Kupffer maintains that the tubules arise as three separate evaginations of the somatopleure, a result which is in harmony with my own observations on Amphibia.* In Myxine nothing is known of the early development ; but in late stages an organ has been made known by the studies of Wilh. Miller 1 In Goette’s (’88, p. 163) preliminary account of the development of Petromyzon he states that a pronephros develops in the same manner as in Amphibia. This would indeed be a conclusion acceptable to me, but until the accounts are more at one in regard to the latter group the statement is somewhat vague. I await with interest the publication of that portion of Goette’s final paper which relates to the excretory system. MUSEUM OF COMPARATIVE ZOOLOGY. 267 (75) and of Firbringer (’78*, pp. 38, 39), which plainly represents the Amphibian pronephros. Whether it ever persists in the adult is still a matter of doubt (see Weldon, ’84) ; but in young individuals, at least, the segmental duct (ureter) is prolonged anteriorly to the heart region. Here it gives off numerous coiled tubes, which branch and open by funnel- shaped. nephrostomes into the pericardial cavity. On its dorsal side, the duct gives off a few tubules which terminate in glomeruli resembling those of the mesonephros. This condition and the large number of tubules constitute the main points of difference between the Amphibian pronephros and that of Myxine. The pronephros of Teleosts and Ganoids appears to me to be reduci- ble to a single type of structure, which can be easily derived from the condition present in Amphibia and Cyclostomes (and Dipnoi?). The so-called head-kidney of Teleosts described by Hyrtl (51, p. 29) is prob- ably derived from the embryonic pronephros, though mesonephric ele- ments may also be found in the adult head-kidney (see Emery, ’82, p. 46). According to Rosenberg (’67, pp. 42 et seg.) and Oellacher (’73, pp. 97- 100), the excretory organs arise as a pair of grooves of the somato- pleure directly beneath the protovertebree. A process of constriction, which proceeds from a middle region forwards and backwards, leads to the conversion of each groove into a tube, the segmental duct. The anterior portion becomes wholly cut off from the body cavity, and is thrown into numerous coils. The tip becomes considerably swollen, and is invaginated by an outgrowth from the aorta forming a single glomer- ulus on each side. Goette’s (’75, pp. 826, 827) account of the development of the pro- nephric glomerulus in Teleosts is somewhat different, and affords a better basis for homologizing the pronephros of Teleosts with that of Amphibia. Goette maintains that the somatopleural groove is imperfectly closed in front, leaving a single nephrostome, opposite which a glomerulus (glomus) is developed. Subsequently, the pronephric chamber becomes separated from the rest of the body cavity, and comes to resemble a Malpighian capsule with its contained glomerulus. While Fiirbringer (’78*) confirms Goette’s view, Hoffmann (’86, p. 621 et seg.) has quite re- cently reasserted that this Malpighian capsule is the blind infolded end of the segmental duct, and the homology with the Amphibian glomus and pronephric chamber, which appears to me probable, he denies. Hoffmann’s position does not seem to me tenable in the light of com- parative studies. Even though it should be shown that the ducts 268 BULLETIN OF THE have absolutely no connection with the body cavity at the time when the glomerulus is formed, I could nevertheless defend my position by the assumption that the blind anterior end of the duct is a compound structure, representing both nephrostomal canal and pronephrie cham- ber. It seems to me that, were it necessary to make this assumption, an extensive comparative study would justify such ‘an interpretation. The pronephros of Teleosts was long supposed to remain functional in the adult ; but recent investigations seem to favor the conclusion that it never persists in fully mature individuals, with the possible exception of a few degenerate animals like Fierasfer (cf. Balfour, 81°, 82; Grosglik, 85 and ’86; Emery, ’80, ’81, and ’85 ; Calderwood, 791). The account given by Balfour and Parker (’82, pp. 415-424) of the development of the pronephros in Lepidosteus is in very close agree- ment with the development in Teleosts as described by Goette and by Fiirbringer. The only conspicuous point of difference is, that, while in Teleosts the pronephric chamber becomes wholly detached from the body cavity, in Lepidosteus a remnant of the original communication probably persists as a so-called peritoneal tubule. As among Teleosts, the pro- nephros atrophies in adult Lepidostei. Beard’s (’89, pp. 114, 115) account of the early development differs greatly from that just given. According to this author, the pronephros is formed as a solid proliferation from the intermediate cell layer (Balfour) in the region from the 4th to the 8th or 9th somite inclusive. Externally, the proliferation fuses with the ectoderm. As a rule, there are formed three pairs of pronephric nephrostomes, of which the most posterior pair abort. The pronephric chamber is formed by the narrow- ing of the ciliated opening and the widening of the part opposite the glomerulus. Since Beard does not describe the development of the glomerulus, the account seems to me decidedly vague; but I believe I am right in accrediting to the author the view held by Hoffmann for Teleosts, that the glomerulus is not developed in the body cavity. As I understand him, it is developed in the course of the pronephric tubes. All the studies on Ganoids thus far enumerated have been made upon Lepidosteus. In Acipenser, Salensky (’78, 80) maintains, in opposition to Kowalewsky, Owsjannikoff and Wagner (’70), that the excretory organs first appear as a differentiation in the form of a solid cord of cells. There is at that stage no trace of the ccelom, nor of a division into protovertebral and lateral plate. Indeed, this cord of cells first marks the region where the latter separation will later occur. In its further development the MUSEUM OF COMPARATIVE ZOOLOGY. 269 cord of cells acquires a lumen, either by a rearrangement of the cells, or by destruction of the axial ones. Anteriorly the structure now opens into the body cavity. The anterior portion elongates and becomes more and more convoluted up to the time of “ post-embryonic” development. Opposite each of the peritoneal funnels are formed glomeruli [glomi] as processes from the radix mesenterii. They are covered by a pigmented layer of peritoneum. Salensky does not seem to me to have been very clear upon the earliest development, which was studied mainly by surface views, and I am of opinion that these stages would show very different conditions if more recent technical methods were employed. The most interesting feature of the development, as described by Salensky, is the occurrence of a glomus in the position which is typical for Amphibia and Petromyzon. The excretory system has probably been studied more carefully in Selachii than in any other group. The independent researches of Bal- four (75 and ’78) and Semper (’74 and ’75) are in substantial accord, and have formed the basis for all subsequent investigations. For our purpose, the most prominent feature of the development as described by these authors is the absence of any structure which demonstrably répresents the pronephros. According to Balfour, the first trace of the excretory system appears as a solid knob springing from the “ interme- diate cell mass ” near the level of the hind end of the heart. From this anterior proliferation a solid cord of cells grows backward between ecto- derm and mesoderm. The posterior portion is the fundament of the segmental duct; the anterior knob persists in adult females as the ostium abdominale of the oviduct. According to Balfour, this solid knob represents a rudimentary pronephros. Very recently the early development of the excretory organs has been placed in a new light by the researches of Riickert (’88) and van Wijhe (89). According to Riickert, the development begins with the forma- tion of a pronephros as an outgrowth towards the ectoderm from the ventral portions of several protovertebre, extending from the third or fourth trunk somite backwards for a distance of four to six somites. The thickening extends ventrally in each somite to the region where the segmented mesoderm passes into the unsegmented lateral plates. The proliferation, in the formation of which the somatic layer is alone con- cerned, shows on careful study a metameric character. From the pos- terior end of each protovertebra a narrow canal can be traced outwards and backwards, where it unites with a similar canal emerging from the next following somite. The pronephric mass fuses for a time with the 270 BULLETIN OF THE ectoderm and probably receives a contribution of cells from that layer, The duct grows backwards as far as the cloaca at the expense of the ectoderm. Having reached this stage of development, the pronephros rapidly degenerates. This process takes place in a slightly different way in the anterior and posterior regions. A variable number of the most anterior evaginations flatten out into a simple longitudinal groove of per- itoneum, the ostium abdominale ; the remaining ones become closed and detached from the peritoneum ; thus there remains a longitudinal canal communicating with the body cavity by the slit-like ostium. In inter- preting the structure as a rudimentary pronephros, it is important to note the discovery by Riickert (pp. 239-242) of a structure which he re- gards as a pronephric glomerulus, or glomus. ‘This structure is developed in connection with segmental blood-vessels which pass from the aorta to the right subintestinal vein, and which have been described by Paul Mayer (’87, p. 343). In Torpedo the vessels are present on the right side in the same number as the segments of the pronephros, and as they pass ventrally between the entoderm and the splanchnopleure it is to be noticed, in regard to the middle vessels at least, that they send out buds, which form projections from the median peritoneal wall opposite the pronephric tubules. It will be at once seen that the development of the pronephros as de- scribed by Riickert is in striking agreement with the account I have given of the early stages in the development of the Amphibian pro- nephros, and I have no hesitation in homologizing the two organs. ‘The earliest stage which has been observed in both groups is that which I have termed the pronephric thickening. This is followed in both by the stage of canalization; but the Selachian pronephros never goes beyond an early condition of the pronephric pouch, in which, however, the homo- logues of the nephrostomal tubules and the collecting trunk appear. The points of difference between the account I have given and that given by Riickert for corresponding stages of the Selachian pronephros seem to me, with a single exception, to be either unreal or insignificant. The exception to which I refer pertains to the participation of the ecto- derm in the formation of the pronephric thickening. This condition I am confident does not occur in Amphibia. Moreover, the evidence upon which Riickert bases his statement seems to me far from conclusive, nor has his observation been confirmed by any subsequent investigator. Riickert described the pronephric thickening as a product of the proto- vertebrae. I cannot admit that this is true for Amphibia ; but I believe that our differences of opinion are really due to the fact that we use dif- MUSEUM OF COMPARATIVE ZOOLOGY. OT 1 ferent criteria for determining the boundaries of the protovertebre. There can be no doubt that the earlier pronephric thickening is made up of metameric constituents; but I should be unwilling to regard all segmented mesoderm as belonging to the protovertebre. On the contrary, I am of opinion that the ventral extent of the protovertebree is for the first time defined when the longitudinal constriction appears which divides the primitive ccelom into protovertebral cavity and pleuro- peritoneal or (secondary) body cavity. When such a definite line of demarcation has been established, the remnant of the pronephros in Selachii, as well as the functional pronephros in Amphibia, remains con- nected with the latter space. The remaining points of difference relate to the number of tubules involved, — which, as we have seen, varies even within the class of Amphibia, — and to their position with refer- ence to the somites. The latter feature seems to me to be at once difficult to determine and of minor importance. Before the conclusion of this paper I shall endeavor to indicate how the glomus of Amphibia may possibly have been derived from the type of structure which is described by Riickert for Selachians and by Boveri (790) for Amphioxus. The results gained by van Wijhe (’89) do not seem to me to differ from those of Riickert in many respects which are of importance for a comparative study. The great divergence of their descriptions in the case of many details seems to me to be occasioned mainly by the peculiar conception which Riickert holds of the relations between the protover- tebral and the lateral mesoderm. For these details and for the hotly contested questions of priority, I must refer to the original papers (van Wijhe, ’86, ’87, ’88*, ’88>, ’89, Riickert, ’88, ’89), and consider here those features only which merit special attention because of their bearing on the general questions of homology. Van Wijhe denies positively the participation of the ectoderm in the formation of the pronephric thicken- ing ; and he claims that the ostium abdominale is formed from the pro- nephros by the fusion of the nephrostomes. Finally, structures which are supposed by him (pp. 480-482) to represent the pronephric glomeruli of Riickert are described as occurring on both sides of the body, not, as affirmed by Riickert, on the right side alone, and van Wijhe inclines to the view that they are actually equivalent to the glomi of Amphibia. The body described by van Wijhe consists of a vascular rod, which passes obliquely from the dorsal to the ventral lip of the pronephric pouch, and represents the last trace of the partition between two peritoneal open- ings, which have not yet fused. Riickert’s description is not entirely des BULLETIN OF THE clear, and also suffers from misleading typographical and grammatical errors ; but it is certain that the structure he describes lies within the splanchnic peritoneum, and is not to be confounded, as was done by van Wijhe, with the partition between two pronephric tubes. iickert says (88, p. 239), ‘Es [ein Paul Mayer’sches Quergefass] zieht dicht an der medialen Grenze der Vornierenanlage vorbei und gelangt, indem es die Leibeshéhle durchbricht, d. h. ihre Wandung vor sich herstiilpt, an die Aussenfliche des Darmes, wo es zwischen Ectoderm [soll wohl Entoderm heissen] und Splanchnopleura gelegen, mit der rechten Subintestinalvene confluirt.”” I cannot admit that the structure described by van Wijhe is the homologue of the Amphibian glomus, nor do I believe that it corresponds to the structure observed by Riickert. The mode of development of the excretory system is much alike in the three groups of Amniotes. It seems, however, best in the present in- stance to deal with the Reptiles separately from Birds and Mammals. The most important of the works on the Reptilian excretory system is perhaps the monograph of Braun (’77), which, however, is of little ser- vice in elucidating the earliest stages. Weldon (’83) first gave a satis- factory account of the early development. According to this author, the first trace of the excretory system in Lacerta is found in the region of the intermediate cell mass, and consists of a series of vesicles (Segmen- talblischen of Braun), which have a strictly metameric arrangement. Throughout a region of five protovertebre (from the 8th to the 12th), there appears on the external wall of these segmental vesicles a rod of cells at first composed of discontinuous parts. This rod is the fundament of the segmental duct ; in the region between two successive protover- tebree, it is budded off from the unmodified “ middle plate” (Waldeyer), or intermediate cell mass. Behind the twelfth protovertebra, the duct grows backward, free from adjacent tissue. The rod of cells soon ac- quires a lumen, continuous anteriorly with the cavities of the segmental vesicles. The observations of Mihalkovies (’85) upon Lacerta agilis differ from those of Weldon mainly in two particulars. In the first place, according to Mihalkovies (pp. 42, 43), the most anterior three or four pairs of seg- mental vesicles at the time of their origin communicate both with the body cavity and with the protovertebral cavity. In other words, they are formed as expansions of what I have termed the communicating canal, or Mittelplattenspalten of the German authors. Some somites in the series, however, may be without vesicles. Secondly, Mihalko- vics (p. 48) maintains that the segmental duct buds off from the middle MUSEUM OF COMPARATIVE ZOOLOGY. 273 plate as a continuous cord of cells at a time when only the first trace of the segmental vesicles has appeared. Before the (3 or 4) anterior segmental vesicles have entirely lost their connection with the body cavity, they communicate distally with the lumen of the segmental duct, and may therefore be regarded as typical nephrostomal canals. This condition is never encountered in the posterior vesicles, which develop independently of the celom in the solid Wolffian blastema, or middle plate. In consequence of this difference in the mode of development of the anterior and posterior portions, Mihalkovics is of opinion that the first three or four segmental vesicles represent a rudimentary pronephros. According to Strahl (’86), the segmental vesicles are budded off from the ventral portions of the protovertebre, and gain secondarily a con- nection with the body cavity ; the duct does not appear until the vesicles are evident. Ostroumoff (’88°, p. 81) confirms for Phrynocephalus the observations of Mihalkovics regarding the anterior segmental vesicles, although he is unable to ascertain the precise number that communicate with the body cavity. He also interprets these anterior vesicles as a pronephros. The duct, however, first appears in disjointed fragments lying between successive vesicles. According to Hoffmann (’89), there develops in Reptiles a pronephros similar to that described by Riickert (88) for Selachii. It appears as a series of evaginations of the somatopleure. These are formed in the re- gion where the protovertebre pass over into the lateral plates. The organ extends over a variable number of somites (6-7 in Lacerta and 5-6 in Tro- pidonotus). As protovertebree separate from the lateral plate, the pro- nephric evaginations remain in connection with the former, except in the case of the first outgrowth (L. agilis, in L. muralis the first two), which forms for a time a single pronephric ostium. The most posterior out- growth extends backwards, and forms the fundament of the segmental duct. The fate of the several evaginations is different. The most ante- rior and possibly the next following outgrowth abort at an early stage ; the remaining evaginations become detached from the protovertebre and fuse with one another, thus forming a tube closed in front, but continu- ous posteriorly with the segmental duct. Hoffmann identifies these evaginations with the segmental vesicles of Mihalkovics and Weldon, but asserts that these authors mistook for a separate fundament of the segmental duct a blind backward prolongation of the evagination belong- ing to the immediately preceding somite. These backward processes are described by Riickert for Selachii. Ostroumoff’s (’88, pp. 78, 79) state- VOL. XXI.— NO. 3. 18 274. BULLETIN OF THE ment, apparently unknown to Hoffmann, that the duct first appears in short fragments, each of which lies posterior to a segmental vesicle, could be readily brought into accord with these observations. In regard to the correctness of Hoffmann’s conclusions that these evagi- nations represent a pronephros, I am of opinion that there is considerable room for doubt. The organ described by Hoffmann differs in two im- portant respects from that of Selachii, and from the young stages of the Amphibian pronephros as presented in the first part of this paper. In the latter groups, while the metameric evaginations are yet continuous with the ccelom, they have also fused distally to form a longitudinal canal (collecting trunk) ; this condition I wholly miss in Hoffmann’s account, according to which all the evaginations remain distinct from each other till they have entirely separated from the colom, and only the more posterior outgrowths ever fuse together. Secondly, no struc- ture comparable to the Amphibian glomus is described. The latter objection would apply equally to the account given by Mihalkovics.? None of the previous investigators were more successful in finding glomeruli of the pronephric type. In regard to the former feature, however, the account of Mihalkovics is more satisfactory, since the most anterior three pairs of vesicles stand in precisely this relation to the body cavity and to the collecting trunk (segmental duct). In reviewing Mihalkovics’s interpretation, Hoffmann says (’89, p. 272), since “ die Vorniere als eine Ausstiilpung, die Urniere nicht als solche entsteht, kommt es mir héchst wahrscheinlich vor, dass die Vermuthung von Mihalkovics, nach welcher die proximalen Urnieren- kaniilchen der Eidechsen der Vorniere der Amphibien entsprechen, eine andere Deutung zulasse.” I judge from this passage that Hoffmann is inclined to regard as mesonephric tubules the anterior three or four seg- mental vesicles described by Mihalkovics. I am quite unable to har- monize this view with Hoffmann’s prior identification (89, pp. 267, 268) of the pronephric evaginations described by him with the segmental vesicles of Mihalkovics and Weldon. The mode in which the meso- nephric tubules develop in Lacerta is asserted to be very similar to that described by Riickert and van Wijhe for Selachii. If I properly under- stand Hoffmann’s description, the space lettered c. in Tafel XVII. Figs. 3 and 4, is the lumen of a mesonephric tubule. From these figures it is evident that the mesonephric tubule develops from a portion of meso- derm ventral to the pronephros ; but according to both Riickert and van 1 Figures 18 and 19, referred to by Wiedersheim (790%, p. 413) in this connection, do not relate to Reptiles at all. They represent sections of Duck embryos. MUSEUM OF COMPARATIVE ZOOLOGY. Hig fe Wijhe, the mesoderm which produces the mesonephric tubules in Selachii belongs to a region dorsal to that which gave rise to the pronephros (see the diagrams appended to van Wijhe, ’89, Taf. XX XII.). In view of the difficulties to which I have alluded, it seems to me that Hoffmann’s position cannot be regarded as satisfactory. Furthermore, if Hoffmann’s observations? on the origin of the posterior mesonephric tubules be accurate, the contrast which Mihalkovics endeavored to es- tablish between the anterior and posterior tubules does not exist. If, finally, these anterior three or four pairs of tubules develop in their course typical Malpighian capsules remote from the peritoneum, — Mihal- kovics is not clear on this point, — I can see no reason for regarding them as pronephric. I am therefore of opinion that there is at present no evidence which proves a pronephros to exist either in Lacertilia or in Ophidia. It remains for me to consider two recent papers by Wiedersheim (7907, 790”), which describe a very interesting condition of the excretory system in Crocodilia and Chelonia. The anterior portion of the em- bryonic excretory organs in these groups consists of a number of tubules which take their origin in ciliated nephrostomes, and, after un- dergoing contortion, join a longitudinal canal continuous with the seg- mental duct. From the root of the mesentery a large glomus protrudes into the body cavity. It lies in a distinct fold of the peritoneum, and consists of a mass of highly vascular tissue receiving distinct vessels from the aorta. It extends continuously opposite a number of nephro- stomes, and is evidently equivalent to the Amphibian glomus. In some- what more posterior regions the conditions are essentially the same ; but the nephrostomes and the glomus having approached each other, they are cut off from the main portion of the body cavity by a longitu- dinal fold of peritoneum. In this manner, there is formed a pronephric chamber comparable to that of Amphibia. In yet more posterior regions, the pronephric chamber with its contained glomus breaks up into a series of capsules containing glomeruli, each of which then appears to form the blind termination ofa tubule. This is the region of the mesonephros with typical Malpighian capsules. In the subsequent development of the em- bryo, the anterior portion of this excretory system early atrophies, and the hinder part alone constitutes the well known Wolffian body, or mesonephros. In my opinion, the account given by Wiedersheim affords a satisfactory basis for the view that the most anterior portion of this excretory system is truly pronephric. It seems, however, quite impos- 1 Similar observations are recorded by Orr (’87, pp. 825-327). 276 BULLETIN OF THE sible to draw a rigid line between pronephros and mesonephros. Indeed, such is a part of the conclusion which I think we shall finally be able to draw from the entire review. The numerous accounts which have been recently given of the pro- nephros in the higher Amniota may be conveniently treated under three heads : — (1.) According to Balfour and Sedgwick (’78, ’79), the Miillerian duct in the Chick first appears in a region somewhat behind the front end of the Wolffian duct as three slender invaginations of the peritoneum which covers the Wolffian body. These invaginations later fuse at their distal extremities, and the most posterior involution grows backwards in con- nection with the Miillerian duct. There is thus formed a longitudinal ‘canal with three peritoneal funnels, the whole structure being comparable to the pronephros of Amphibia. Slightly in front of the nephrostomes there is attached to the radix mesenterii a vascular body which resembles the Amphibian glomus. It receives blood-vessels from the aorta, and projects into the body cavity enclosed in a distinct sac of peritoneum. Gasser (’74, pp. 58, 59) had previously observed somewhat similar condi- tions in the anterior end of the Miillerian duct ; and, by renewed inves- tigation, Gasser and Siemerling were able to confirm the occasional occurrence of the phenomenon, though a single invagination appeared to be the rule. Multiple invaginations have also been mentioned by Kollmann (’82°, p. 20), Siemerling (’82, p. 29), Jano&ik (’85, p. 43), and Mihalkovies (’85, p. 295) ; but Braun (’79) and Renson (83, p. 37) were unable to find any evidence of such a condition. Braun also opposed Balfour and Sedgewick in their view respecting the nature of the vascular body, and Sedgwick (’80°) later came to the conclusion that this struc- ture was really a series of greatly modified mesonephric glomeruli. This interpretation was adopted by Balfour (’81*, p. 590). (2.) The second view is set forth in the recent account of Felix (’90), who describes in a chick embryo with eight protovertebre a series of outgrowths, which, emerging from the lower hinder portions of protover- tebree IV.-VIIL, extend backward and outward toward the ectoderm. The latter layer occasionally presents local thickenings in this region, and in some cases a connection between the mesodermal outgrowths and the ectodermal thickenings can be observed. In older embryos no trace of the structures can be found, As was the case with the evaginations found by Hoffmann (’89) in Reptiles, no fusion of their distal extremities is recorded. This condition makes them at once unlike the Selachian pronephros described by Riickert, and the early stages of the Amphibian MUSEUM OF COMPARATIVE ZOOLOGY. Did er pronephros as detailed in the preceding pages. Moreover, Felix pro- duces no evidence to show that they stand in any genetic relation what- ever to the Wolffian duct, or to the pronephric structures described by other authors. In the present state of knowledge his interpretation seems to me untenable. (3.) The remaining views all have the common feature that they regard certain rudimentary canals in connection with the anterior end of the Wolffian duct as pronephric. The views are somewhat divergent, but I _ have been able to compile from them a general statement which will in a measure explain their conflicts. In bringing the observations of each author under this general scheme, I shall frequently be driven to regard his results as incomplete, but I shall as far as possible avoid questioning his statements from an a@ priori standpoint. In general three regions of the embryonic excretory organ may be distinguished: the pronephros, an intermediate region, and the meso- nephros. For criteria of these regions, I shall use in the main glomeru- lar structures: those of the pronephros are glomi wholly external to the tubules; those of the intermediate region are transitional glomeruli, which develop in peritoneal canals, but project through the nephrostomes into the body cavity ; those of the mesonephros are typical glomeruli, which have only a mediate connection with the body cavity through the tubule. It now remains to consider the results of the observers whom I have placed in my third group. The work of Gasser and Siemerling (’78, ’79), subsequently carried on by Siemerling (’82), relates to Birds alone. These authors recognize two distinct portions of the Wolffian duct: a portion lying in front of the fifth somite, and a posterior portion. The former shows many irregularities, is broken up into discontinuous fragments, and early atrophies ; the latter develops more slowly, but. more regularly, and persists as the duct of the Wolffian body. The first indications of tubules consist of the so-called primary cords, which are continuous with the coelomic epithelium by means of funnel-shaped ostia, while they are distally in contact with the duct. Gasser and Siemerling maintain that they belong to the most anterior part of the mesonephros, a portion which early atrophies. They are quite similar to the S-shaped canals of K6lli- ker (79). In front of the region of the “ primary cords” similar evagi- nations occur, but these never reach the duct. . On some Points in the Anatomy of Polycheta. Quart. Jour. Micr. Sci., Vol. XXVIII. pp. 239-278, Pl. XVII.-XIX. Nov., 1887. Dansky, J., und J. Kostenitsch. ’80. Ueber die Entwickelungsgeschichte der Keimblatter und des Wolff’schen Ganges im Hihnerei. Mém. Acad. Imp. Sci. St.-Pétersbourg, Sér. 7, Tom. XXVII. No. 13, 25 pp., 2 Taf. Sept., 1880. Dursy, Emil. 67. Der Primitifstreif des Hiihnchens. 80 pp., 38 Abbild. auf 3 Taf. Lahr: Schaumburg & Cie. 1867. Duval, Matthias. ’82. Sur le développement de Vappareil génito-urinaire de la Grenouille. I. Le rein précurseur. 32 pp.,2 Pl. Montpellier: Bohmet Fils. 1882. [Also in Rev. des Sci. Nat., Sér. 3, Tom. I.] Ecker, Alexander. ’'64—"82. Die Anatomie des Frosches. I. Knochen- und Muskellehre. vi-+ 139 pp., 96 Fig. Braunschweig, 1864. II. Nerven und Gefasslehre. Mit Beitragen von R. Wiedersheim. vi-+ 115 pp., 1 Taf., 64 Fig. Braun- schweig, 1881. III. Lehre von den Hingeweiden, dem Integument und den Sinnesorganen. Bearbeitet von R. Wiedersheim. vi-+ 95 pp., 1 Taf., 35 Fig. Braunschweig, 1882. Eisig, Hugo. '78. Die Segmentalorgane der Capitelliden. (Auszug) Mitth. zool. Stat. Neapel, Bd. I. pp. 93-118, Taf. IV. 1878. ’87. Monographie der Capitelliden des Golfes von Neapel und den angren- zenden Meeres-Abschnitten nebst Untersuchungen zur vergleichenden Anatomie und Physiologie. Fauna u. Flora d. G. v. Neapel, Monogr. XVL, xxvi + 906 pp., 20 Holzschn., 37 Taf. in Lith. Berlin: Fried- lander. 1887. Emery, Carlo. ’80. Le specie del genre Fierasfer nel Golfo di Napoli e regioni limitrofe. Fauna u. Flora d. G. v. Neapel, Monogr. IL., 76 pp., 9 Tav. lit., 10 incis. in legno. Leipzig: Engelmann. 1880. ’81. Morphologie der Kopfniere der Teleostier. Biolog. Centralbl., Bd. I. pp. 527-529. 15 Dee., 1881. ’82. Studi intorno allo sviluppo ed alla morfologia del rene dei Teleostei. Mem. Reale Accad. dei Lincei, Cl. Se. fis. ecc., Ser 3a, Vol. XIII. pp. 43- 50,1 Tav. 1882. [ Abstract given in Arch. ital. de Biol., Tom. IL. pp. 185-145.] MUSEUM OF COMPARATIVE ZOOLOGY. ae ’85. Zur Morphologie der Kopfniere der Teleostier ; Erwiderung an Herrn S. Grosglik. Zool. Anzeig., Bd. VIII. pp. 742-744. 28 Dec., 1885. Felix, Walther. 90. Zur Entwickelungsgeschichte der Vorniere des Hiihnchens. Anat. Anzeig., Bd. V. pp. 526-530. 12 Sept., 1890. Fleischmann, A. 87. Zur Entwickelungsgeschichte der Raubthiere. Biol. Centralbl., Bd. VII. pp. 9-12. 1 Marz, 1887. Flemming, Walther. ’86. Die ektoblastiche Anlage des Urogenitalsystems beim Kaninchen. Arch. f. Anat. u. Physiol., Jahrg. 1886, Anat. Abt., pp. 236-248, Taf. XI. 18 Aug., 1886. Foster, M., and F. M. Balfour. 74. The Elements of Embryology. xix + 272 pp., 71 Figs. London: Macmillan. 1874. ’83. The Elements of Embryology. 2d Edit. Revised. Edited by Adam Sedgwick and Walter Heape. xiv-+ 486 pp., 141 Figs. London: Maemillan. 1883. Fraipont, Julien. ’80*. Recherches sur l’appareil excréteur des Trématodes et des Cestodes. Arch. de Biol., Tom. I. pp, 415-456, Pl. XVIII., XIX., 1 Fig. 20 Aoit, 1880. ’80°. Recherches sur l’appareil excréteur des Trématodes et des Cestodes. (Deuxieme Partie.) Arch. de Biol., Tom. II. pp. 1-40, Pls. I.,JI. 1881. °87. Le genre Polygordius. Fauna u. Flora d. G. v. Neapel, Monogr. XIV., xiv + 125 pp., 16 Pl. lith., 1 Fig. dans le Texte. Berlin: Friedlander. 1887. Francotte, P. 81. Sur l’appareil excréteur des Turbellariés rhabdoceles et dendroceles (Comm. Prélim.). Bull. Acad. Roy. Belgique, Ann. 50, Sér. 3, Tom. I. pp. 30-34, 1 Pl. 1881. °83. Note sur l’anatomie et Vhistologie d’un Turbellarié rhabdocéle. Bull. Acad. Roy. Belgique, Ann. 52, Sér. 3, Tom. VI., pp. 723-735, 1 Pl. 1883. Furbringer, Max. ‘77. Zur Entwickelung der Amphibienniere. (Inaug. Diss.) viii + 124 pp., 3 Taf. Heidelberg: Horning. 1877. '78*. Zur vergleichenden Anatomie und Entwickelungsgeschichte der Excre- tionsorgane der Vertebraten. Morph. Jahrb., Bd. IV. pp. 1-111, Taf. I-[1I. 1878. "78". Ueber die Homologie der sog. Segmentalorgane der Anneliden und Wirbelthiere. Morph. Jahrb., Bd. IV., pp. 663-678. 1878. °79. Ueber den principiellen Standpunct des Herrn Prof. Semper. Morph. Jahrb., Bd. V. pp. 396, 397. 1879. 328 BULLETIN OF THE Gadow, Hans. 88. Remarks on the Cloaca and the Copulatory Organs of the Amniota. Phil. Trans. Roy. Soc. London, Vol. CLXXVIIL B., pp. 5-37, Pl. IL-V. 1888. Gasser, E. 74. Beitrage zur Entwicklungs-Geschichte der Allantois der Miiller’schen Gange und des Afters. (Acad. Habilitationsschr. Marburg.) 75 pp., 3 Taf. Frankfurt: Winter. 1874. '75. Die Entstehung des Wolff’schen Ganges beim Huhn. Sitz.-Ber. d. naturf. Gesellsch. Marburg, Jahrg. 1875, Nro. 1 u. 2, pp. 21-28. Jan. Feb., 1875. '77._ Beobachtungen tiber die Entstehung des Wolff’schen Ganges bei Em- bryonen von Hihnern und Gansen. Arch. f. mikr. Anat., Bd. XIV. pp. 442-459, nebst 2 als Anhang ausgegeb. Taf. 1877. °82. Zur Entwicklung von Alytes obstetricans. Sitz.-Ber. d. naturf. Gesellsch. Marburg, Jahrg. 1882, Nro. 5, pp. 73-97. Oct., 1882. Gasser, E., und Siemerling. ’'78. Das obere Ende des Wolff’schen Ganges im Hihnerei. Sitz.-Ber. d. naturf. Gesellsch. Marburg, Jahrg. 1878, Nro. 3, pp. 62-65. Nov., 1878. '79. Beitrage zur Entwickelung des Urogenitalsystems der Huhnerembry- onen. Sitz.-Ber. d. naturf. Gesellsch. Marburg, Jahrg. 1879, Nro. 5, pp. 58-65. Juni, 1879. Gegenbaur, Carl. 78. Grundriss der vergleichenden Anatomie. te verb. Aufl., vili + 655 pp., 356 Fig. in Holzschn. Leipzig: Engelmann. 1878. Giacosa, Piero. '82. Etudes sur la composition chimique de l’ceuf et de ses enveloppes chez la Grenouille commune. I. Sur lenveloppe muqueuse del’ceuf. Zeitschr. f. physiol. Chemie, Bd. VII. pp. 40--56. Nov., 1882. [ Abstract given in Arch. Ital. Biol., Tom. II. pp. 226-230. ] Giles, Arthur E. ’88. Development of the Fat-bodies in Rana temporaria. A Contribution to the History of the Pronephros. Quart. Jour. Micr. Sci., Vol. XXIX. pp. 133-142, Pl. XIV. Oct., 1888. Goette, Alexander. '75. Entwickelungsgeschichte der Unke (Bombinator igneus). viii + 964 pp., m. Atlas v. 22 lith. Taf. Leipzig: Voss. 1875. ’'88. Ueber die Entwickelung von Petromyzon fluviatilis (vorl. Mitth.). Zool. Anzeig., Bd. XI. pp. 160-163. 26 Marz, 1888. Graff, Ludwig von. ’82%. Monographie der Turbellarien. I. Rhabdoccelida. xii + 44] pp., 12 Holzschn., Atlas mit 20 Taf. Leipzig: Engelmann. 1882. ’82>. Ueber Rhodope Veranii Kolliker. Morph. Jahrb., Bd. VIII. pp. 73- 84, Taf. II. 1882. MUSEUM OF COMPARATIVE ZOOLOGY. 329 Grobben, Carl. ’88. Die Pericardialdriise der chaetopoden Anneliden, nebst Bemerkungen iiber die perienterische Flissigkeit derselben. Sitz.-Ber. d. k. Akad, Wiss. Wien, matth—naturh. Cl., Bd. XCVII. Abt. 1, pp. 250-263. - 1888. Grosglik, S. ’85. Zur Morphologie der Kopfniere der Fische. Zool. Anzeig., Bd. VIII. pp- 605-611. 12 Oct., 1885. ’86. Zur Frage uber die Persistenz der Kopfniere der Teleostier. Zool. Anzeig., Bd. IX. pp. 196-198. 29 Marz, 1886. Gruby. '42. Recherches anatomiques sur le systeme vemeux de la Grenouille. Ann. Sci. Nat., Sér. 2, Tom. XVII., Zool., pp. 209-280, Pl. IX., X. 1842. Giinther, Albert. ’58. Catalogue of the Batrachia Salientia in the Collection of the British Museum. xvi-+ 160 pp., 12 Pl. London. 1858. Haddon, Alfred C. ’87. Suggestion respecting the Epiblastic Origin of the Segmental Duct. Sci. Proc. Roy. Soc. Dublin, Vol. V., N. S., Pt. 6, pp. 463-472, Pl. X. April, 1887. Haeckel, Ernst. '74* Die Gastraea-Theorie, die phylogenetische Classification des Thierreichs und die Homologie der Keimblatter. Jena. Zeitschr. f. Naturwiss., Bd. VIIL. pp. 1-55, Taf. I., 4 phylogen. Tabellen. 1874. "74>, Anthropogenie oder Entwickelungsgeschichte des Menschen. xviii + 732 pp., 12 Taf., 210 Holzschn., 36 genet. Tab. Leipzig: Engel- mann, 1874. Hatschek, Berthold. 78. Studien iber Entwicklungsgeschichte der Anneliden. Arb. zool. Inst. Wien, Bd. I. Heft 3, pp. 277-404, Taf. XXIJI.-XXX. 1878. 80. Ueber Entwicklungsgeschichte von Echiurus und die systematische Stellung der Echiuriden (Gephyrei chetiferi). Arb. zool. Inst. Wien, Bd. III. pp. 45-78, Taf. I1V.-VI. 1880. 84. Mittheilungen titber Amphioxus. Zool. Anzeig., Bd. VIL. pp. 517-520. 29 Sept., 1884. ’88*. Lehrbuch der Zoologie. te Lieferung, iv + 144 pp., 155 Abbild. im Text. Jena: Fischer, 1888. ’°88>. Ueber den Schichtenbau von Amphioxus. Vortrag in der 3ten Sitz. d. Anat. Gesellsch. auf der 2ten Versamml. in Wiirzburg. Anat. Anzeig., Bd. UI. pp. 662-667, 5 Abbild. [Diskussion, pp. 673-679.] 15 Aug., 1888. Henneguy, Félix. *88,’89. Recherches sur le développement des Poissons osseux. Embryo- génie de la Truite. Journ. de l’Anat. et Physiol., Année XXIV., pp. 330 BULLETIN OF THE 413-502, 24 Fig.; pp. 525-617, Pl. XVIII-XXI. 16 Dec., 1888, and 20 Feb., 1889. Hensen, Victor. 66. Bemerkungen tiber die Lymphe. Arch. f. pathol. Anat., Bd. XXXVIT. pp. 68-93. Sept., 1866. ; 67. Embryologische Mittheilungen. Arch. f. mikr. Anat., Bd. III. pp. 500- 503. 1867. '75,’76. Beobachtungen uber die Befruchtung und Entwickelung des Meer- schweinchens und Kaninchens. Arch. f. Anat. u. Physiol., Jahrg. 1875, Anat. Abt. (His u. Braune’s Zeitschr., Bd. I.), pp. 218-273, 353-4238, Taf. VIIT—XII. 26 Nov., 1875, 20 Marz, 1876. Hertwig, Oscar. ’°83. Die Entwicklung des mittleren Keimblattes der Wirbelthiere. vi + 128 pp., 9 Taf. Jena: Fischer. 1883. ’°88. Lehrbuch der Entwicklungsgeschichte des Menschen und der Wirbel- thiere. 2te verm. u. verb. Aufl., xii+ 519 pp., 304 Abbild. im Text, 2 lith. Taf. Jena: Fischer. 1888. His, Wilhelm. 65%. Die Haute und Hohlen des Korpers. Acad. Progr. Basel, 34 pp. 1865. 65». Beobachtungen tiber den Bau des Saugethiereierstockes. Arch. f. mikr. Anat., Bd. I. pp. 151-202, Taf. VIII.—XI. 1865. ’68. Untersuchungen iiber die erste Anlage des Wirbelthierleibes. Die erste Entwicklung des Hihnchensim Ei. xvi+ 287 pp., 12 Taf. Leip- zig. 1858. Hoffmann, C. K. ’86. Zur Entwickelungsgeschichte der Urogenitalorgane bei den Anamnien. Zeitschr, f. wiss. Zool., Bd. XLIV. pp. 570-648, Taf. XXXIII.-XXXV., 4 Holzschn. 14 Dec., 1886. ’°89. Zur Entwickelungsgeschichte der Urogenitalorgane bei den Reptilien. Zeitschr. f. wiss. Zool., Bd. XLVIII., pp. 260-300, Taf. XVII, XVIIL., 1 Holzschn. 28 Juni, 1889. Houssay, Frédéric. 91. Etudes d’embryologie sur les Vertebrés. IV. Les Fentes Branchiales. Bull. sci. de la France et de la Belgique, Tom. XXIII. pp. 55-79, Pl. J-III. 21 Févr., 1891. Hoyer, Heinrich. 90. Ueber den Nachweis des Mucins in Geweben mittelst der Farbe- methode. Arch. f. mikr. Anat., Bd. XXXVI. pp. 310-374. 27 Sept., 1890. Huxley, Thomas H. '76. On the Classification of the Animal Kingdom. Jour. Linn. Soc., Vol. XIL., Zodl., pp. 199-226. (Read Dec. 3, 1874.) 1876. ~~ MUSEUM OF COMPARATIVE ZOOLOGY. ool Hyrtl, J. "51. Das uropoetische System der Knochenfisthe. Denkschr. d. k. Akad. Wiss. Wien, math.-naturwiss. Cl. Bd. II. pp. 27-100, Tab. IX.-X VII. 1851. lijima, Isao. ’84. Untersuchungen iiber den Bau und die Entwicklungsgeschichte der Siiss- wasser-Dendrocoelen (Tricladen). Zeitschr. f. wiss. Zool., Bd. XL. pp. 359-464, Taf. XX.-XXIII. 27 Juni, 1884. Janodik, J. ’85. Histologisch-embryologische Untersuchungen uber das Urogenital- system. Sitz.-Ber. d.k. Akad. Wiss. Wien, Bd. XCI., math.-naturwics. Cl., Abt. 3, Febr.-Heft, pp 97-199, 4 Taf. 1885. ’°87. Zwei junge menschliche Embryonen. Arch. f. mikr. Anat., Bd. XXX. pp. 559-595, Taf. XXXIV., XXXV. 18 Nov., 1887. Kastschenko, N. 87. Das Schlundspaltengebiet des Huhnchens. Arch. f. Anat. u. Physiol., Jahrg. 1887, Anat. Abt., pp. 258-300, Taf. XVII—-XIX. 8 Dec., 1887. Keibel, Franz. 883. Zur Entwicklungsgeschichte des Igels (Erinaceus europeus). Anat. Anzeig., Bd. III. pp. 631-637, 1 Abbild. 1 Aug., 1888. 88>. Die Entwickelungsvorgange am hinteren Ende des Meerschweinchen- embryos. Arch. f. Anat. u. Phisiol., Jahrg. 1888, Anat. Abt., pp. 407- 430, Taf. XXIII, XXIV. 5 Oct., 1888. Kellogg, J. L. 90. Notes on the Pronephros of Amblystoma punctatum. Johns Hopkins Univ. Cire., Vol. IX. No. 80, p. 59. April, 1890. Klebs, Edwin. ’°89. Die allgemeine Pathologie oder die Lehre von den Ursachen und dem Wesen der Krankheitsprocesse. 2te Th. Stérungen des Baues und der Zusammensetzung. xx-+ 837 pp., 79 farb. Abbild. im Text, 47 Farben- taf. Jena: Fischer. 1889. Kolliker, Albert von. ’61. Entwickelungsgeschichte des Menschen und der hoheren Thiere. x + 468 pp., 225 Holzschn. Leipzig: Engelmann. 1861. "79. Entwickeiungsgeschichte des Menschen und der héheren Thiere, 2te Aufl, xxxiv-+ 1083, 606 Fig. im Text. Leipzig: Engelmann. 1879. K6llmann, Jul. ’822. Die Doppelnatur des excretorischen Apparates bei den Cranioten. Zool. Anzeig., Bd. V. pp. 522-524. 9 Oct., 1882. ’°82>. Ueber Verbindungen zwischen Coelom und Nephridium. Festschr. z. Feier d. 300 jahrigen Best. d. Univ. Wirzburg gew. v. d. Univ. Basel, pp. 1-59, Taf. I., If. 1882. 91. Die Rumpfsegmente menschlicher Embryonen von 13 bis 35 Urwirbeln. Arch. f. Anat. u. Physiol., Jahrg. 1891, Anat. Abt., Heft 1, pp. 66-88, Taf. I11-V. 19 Mai, 1891. 332 BULLETIN OF THE Kowalewsky, A. 67. Kutwickelungsgeschichte des Amphioxus lanceolatus. Mém. Acad. Imp. Sci. St.-Pétersbourg, Sér. 7, Tom. XI. No. 4,17 pp., 3 Taf. 1867. Kowalewsky, A., Ph. Owsjannikow und N. Wagner. '70. Die Entwickelungsgeschichte der Store. Vorlawifige Mittheilung. Bull. Acad. Imp. Sci. St.-Pétersbourg, Tom. XIV. pp. 317-325, 7 Fig. 1870. Kowalewsky, R. "75. OOpasopanie HadaJb MOYVeIONOOBHXS OPLanoBL Y KYPHAHXS 3aporHmeis. Tpyin Jadopar. Bapmas. Yuus. Bum. Il, erp. 149-208. 1875. [The Origin of the Fundaments of the Urogenital Organs in Chick Em- bryos. Stud. Lab. Warsaw Univ., No. IL. pp. 149-208. 1875.] Kiikenthal, Willy. ’85. Ueber die lymphoiden Zellen der Anneliden. Jena. Zeitschr. f. Natur- wiss., Bd. XVIII. pp. 319-364, Taf. X., XI. 10 Feb., 1885. Kupffer, Carl. 88. Ueber die Entwicklung von Petromyzon Planeri. Sitz.-Ber. d. k. b. Akad. Wiss. Miinchen, math.-phys. Cl., Heft 1, Sitz. v. 4 Feb., 1888. pp- 71-79. 1888. Lang, Arnold. ’'81. Der Bau von Gunda segmentata und die Verwandtschaft der Platyhel- minthen mit Coelenteraten und Hirudineen. Mitth. Zool. Stat. Neapel, Bd. IIL. pp. 187-251, Taf. XIL-XIV. 9 Dec., 1881. '84. Die Polycladen (Seeplanarien) des Golfes von Neapel und der angren- zenden Meeres-Abschnitte. Fauna u. Flora d. G. v. Neapel, Monogr. XI., ix + 688 pp., 54 Holzschn., 39 lith. Taf. Leipzig: Engelmann. 1384. Langerhaus, Paul. "76. Zur Anatomie des Amphioxus lanceolatus. Arch. f. mikr. Anat., Bd. XII. pp. 290-348, Taf. XIL-XV. 1876. Lankester, E. Ray. '75. On some New Points in the Structure of Amphioxus and their Bearing on the Morphology of Vertebrata. Quart. Jour. Mier. Sci., Vol. XV. pp. 257-267, 4 woodeuts. July, 1875. ’89. Contributions to the Knowledge of Amphioxus lanceolatus Yarrell. Quart. Jour. Micr. Sci, Vol. XXIX. pp. 365-408, Pl. XXXIV.- XXXVI., XXXVI?., XXXVI. April, 1889. Lankester, E. Ray, and Arthur Willey. 90. The Development of the Atrial Chamber of Amphioxus. Quart. Jour. Mier. Sci., Vol. XXXI. pp. 445-466, Pl. XXIX.-XXXII., 9 woodcuts. August, 1890. Lockwood, C. B. ’'87. The Development and Transition of the Testis, Normal and Ab- normal. Jour. Anat. and Physiol., Vol. XXI. pp. 635-664, Pl. XV. July, 1887. © [s) Qo MUSEUM OF COMPARATIVE ZOOLOGY. McIntosh, Wm. Carmichael, and E. E. Prince. 88. On the Development and Life-Histories of the Teleostean Food- and other Fishes. Trans. Roy. Soc. Edinburgh, Vol. XXXV. pp. 665-946, Pl. 1-XXVIII. 1888. Marcussen, Jean. 51. Sur le développement des parties génitales et uropoiétiques chez les Ba- traciens. Gazette Méd. de Paris, 1851. [Quoted from Duval, *82.] Marshall, A. Milnes, and Edward J. Bles. 90%. The Development of the Kidneys and Fat-Bodies in the Frog. Stud. Biol. Lab. Owens College., Vol. II. pp. 133-158, Pl. X. 1890. 90. The Development of the Blood-vessels in the Frog. Stud. Biol. Lab. Owens College, Vol. Il. pp. 185-268, Pl. XIJI1-XV. 1890. Martin, E. °88. Ueber die Anlage der Urniere beim Kaninchen. Inaug. Diss. Marburg. Arch. f. Anat. u. Physiol., Jahrg. 1888, Anat. Abt., pp. 109-123, Taf. VIL. 15 Juni, 1888. Mayer, Paul. ’87. Ueber die Entwickelung des Herzens und der grossen Gefassstamme bei den Selachiern. Mitth. zool. Stat. Neapel, Bd. VII. pp. 338-370, Taf. XJ., XII. 18 April, 1887. Meyer, Eduard. 82. Zur Anatomie und Histologie von Polyophthalmus pictus Clap. Arch. f. mikr. Anat., Bd. XXI. pp. 769-823, Taf. XXXII.,XXXIIT. 28 Oct., 1882. '87. Studien iber den Korperbau der Anneliden. Mitth. zool. Stat. Neapel, Bd. VII. pp. 592-741, Taf. XXII.-XXVII. 22 Dec., 1888. Meyer, Hans. 90. Die Entwickelung der Urniere beim Menschen. Arch. f. mikr. Anat., Bd. XXXVI. pp. 188-172, Taf. V.-VI. 1890. Mihalkovics, Geza von. 84. Untersuchungen tiber die Entwickelung der Harn- und Geschlechtsorgane der Vertebraten. I. Die Primordialnieren (Nephridien) der Amnioten. Math. u. naturwiss. Ber. aus Ungarn, Bd. II. pp. 178-183. 1884. [Translated from Math. és. Természettud. Ertesito”, Bd. II.] ’85. Untersuchungen tiber die Entwickelung des Harn- und Geschlechts- apparates der Amnioten. (Auszug) Internat. Monatschr. f. Anat. u. Physiol., Bd. II. pp. 41-62, 65-106, 284-339, 348-385, 387-433, 435- 485, Taf. 1-IX., TX. A. 1885. [Abstract of A gerinczes Allatok kivdlaszto’ és ivarszerveinek fejlodése. 380 pp., 10 Tab.] Mitsukuri, K. 88. The Ectoblastic Origin of the Wolffian Duct in Chelonia. (Prelim. Notice.) Zool. Anzeig., Bd. XI. p. 111. 5 Marz, 1888. 334 BULLETIN OF THE Mollier, S. '90. Ueber die Entstehung des Vornierensystems bei Amphibien. Arch. f. Anat. u. Physiol., Jahrg. 1890, Anat. Abt., pp. 207-235, Taf. XI., XII., 1 Holzschn. 20 Juni, 1890. Miiller, Johannes. 29. Ueber die Wolff’schen Korper bei den Embryonen der Frésche und Kroten. Meckel’s Arch. f. Anat. u. Physiol., Jahrg. 1829, pp. 65-70, Tat. Dit. 1829: ’30. Bildungsgeschichte der Genitalien. xvili+ 152 pp., 4 Taf. Diissel- dorf. 1830. '44, Ueber den Bau und die Lebenserscheinungen des Branchiostoma lubri- cum Costa, Amphioxus lanceolatus Yarrell. Abhandl. d. k. Acad. Wiss. Berlin, 1842, pp. 79-116, Taf. I1-V. 1844. Miller, Wilhelm. '75. Das Urogenitalsystem des Amphioxus und der Cyclostomen. Jena. Zeitschr. f. Naturwiss., Bd. IX. pp. 94-129, Taf. IV., V. 1875. Nagel, W. ’°89. Ueber die Entwickelung des Urogenitalsystems des Menschen. Arch. f. mikr. Anat., Bd. XXXIV. pp. 269-384, Pl. XVII-XX. 2 Dec., 1889. Oellacher, J. 73. Beitrage zur Entwicklungsgeschichte der Knochenfische nach Beobacht- ungen am Bachforelleneie I1I.—-V. Zeitschr. f. wiss. Zool., Bd. XXIII. pp. 1-115, Taf. L-IV. 30. Jan., 1873. Orr, Henry. 87. Contribution to the Embryology of the Lizard. Jour. of Morph., Vol. I. pp. 311-372, Pl. XIJT-XVI. Deec., 1887. Ostroumoff, A. '88*. Zur Entwicklungsgeschichte der Hidechsen. Zool. Anzeig., Bd. XI. pp: 620-622. 5 Nov., 1888. '88>. Kencropin passntiaamepnms. Tpyaa OOmecrsa Ecrecrsoncnuraresett npn WMI. Kazan. Vans. T. XIX. sum. 122 erp, 38 Tao. Rasans, 1888. [Contributions to the Developmental History of the Lizard. Mem. Soc. Naturalists Univ. Kasan, Vol. XIX. Part 3, 122 pp., 3 Pl. Kasan, 1888.] Oudemans, A. C. '85. The Circulatory and Nephridial Apparatus of the Nemertea. Quart. Jour. Mier. Sci., Vol. XXV., Suppl., pp. 1-80, Pl. I-III. 1885. Overlach, M. '85. Die pseudo-menstruirende Mucosa uteri nach acuter Phosphorvergiftung. Arch. f. mikr. Anat., Bd. XXV. pp. 191-2385, Taf. X., XI. 18 Juli, 1885. (se) (J) OU MUSEUM OF COMPARATIVE ZOOLOGY. Owen, Richard. ’66. On the Anatomy of Vertebrates. Vol. I. Fishes and Reptiles. xlii + 650 pp-, 452 Fig. London: Longmans, Green, & Co. 1866. Owsjanniskow, Ph. ’89. Zur Entwickelungsgeschichte des Flussneunaugens (Vorl. Mitth.). Bull. Acad. Imp. Sci. St.-Pétersbourg, Tom. XXXIII. No. 1, pp. 83-95. Avril, 1889. Parker, W. Newton. '88. Zur Anatomie und Physiologie von Protopterus annectans. Ber. naturf. Gesellsch. Freiburg, Bd. LV. pp. 83-108. 1888. Perenyi, Josef von. ’87. Die ektoblastische Anlage des Urogenitalsystems bei Rana esculenta und Lacerta viridis. Zool. Anzeig., Bd. X. p. 66. 31 Jan., 1887. °88. Entwickelung des Amnion, Wolff’schen Ganges und der Allantois bei den Reptilien. (Auszug aus d. Ungarischen. M. tud. akademiai Ertesit6”. 1888.) Zool. Anzeig., Bd. XI. pp. 138-141. 19 Marz, 1888. 89. Amnion und Wolff’sher Gang bei den Eidechsen. Math. u. naturw. Ber. aus Ungarn, Bd. VI. pp. 14-26, Taf. II., III. 1889. [Translated from Math. es Termeszettud. Ertesito”, Bd. VI.] Pintner, Theodor. °80. Untersuchungen iiber den Bau des Bandwurmkoérpers mit besonderen Beriicksichtigung der Tetrabothrien und Tetrarhynchen. Arb. zool. Inst. Univ. Wien, Tom. III. Heft 2, pp. 1638-242, 9 Holzschn., Taf. XIV.- XVIII. 1880. Rabl, Carl. '88. Ueber die Bildung des Mesoderms. Vortrag in der 3ten Sitz. d. Anat. Gesellsch. auf der 2ten Versamml. in Wiirzburg. Anat. Anzeig., Bd. III. pp- 667-673, 8 Abbild. [Diskussion, pp. 673-679.] 15 Aug., 1888. Remak, Robert. ’55. Untersuchungen iiber die Entwickelung der Wirbelthiere. vi—+ xxxviii + 195 pp., 12 Taf. Berlin: Reimer. 1855. Renson, George. '83. Contributions 4 l’embryologie des organes d’exerétion des oiseaux et des Mammiferes. These Bruxelles. 56 pp., 3 Pl. Bruxelles: Mayolez. 1883. Rolph, W. '76. Untersuchungen iiber den Bau des Amphioxus lanceolatus. Morph. Jahrb., Bd. II. pp. 87-164, Taf. V.-VII. 1876. Romiti. °74. Ueber den Bau und die Entwickelung des Eierstockes und des Wolff’- schen Ganges. Arch. f. mikr. Anat., Bd. X. pp. 200-207, Taf. XIII. 1874. 336 BULLETIN OF THE Rosenberg, Alexander. ’67. Untersuchungen tiher die Entwicklung der Teleostier-Niere. Inaug. Diss. Dorpat. 77 pp., 1 Taf. Dorpat. 1867. Roule, Louis. 89. Etudes sur le développement des Annelides et un particulier d’un Oli- gochete limicole marin (Zuchetreoides Marioni noy. sp.). Amn. Sci. Nat., Sér. 7, Zool., Tom. VII. pp. 107-422, Pl. VIII.-XXIL., 22 Fig. dans le Texte. 1889. Riickert, Johannes. ’°88. Ueber die Entstehung der Excretionsorgane bei Selachiern. Arch. f. Anat. u. Physiol., Jahrg. 1888, Anat. Abt., pp. 205-278, Taf. XIV.-XVI. 15 June, 1888. ’89. Zur Entwicklung des Excretionssystem der Selachier. Hine Erwiderung an Herrn van Wijhe. Zool. Anzeig., Bd. XII. pp. 15-22. 7 Jan., 1889. Riickert, Joh., und W. Mollier. ’'89. Ueber die Entstehung des Vornierensystems bei Triton, Rana, und Bufo. Sitz.-Ber. Gesellsch. f. Morph. u. Physiol. in Munchen, Bd. V. Heft 2, pp. 47,48. 1889. Ryder, John A. ’87. [Résumé of Haddon (’87).] Amer. Naturalist, Vol. XXI. pp. 587- 590. June, 1887. Salensky, V. "78, ’80. Vcropia passnria crepaagm (Acipenser ruthenus). TpyiH O6mectsa Ecrecrsoncnuraresret npn MMI. Kasan. Yunus. T. VIL, Bun. 2, 3, erp. 1-545, Ta6. I-XIX. HKasanp. 1878, 1880. [ History of the Development of the Sterlet (Acipenser ruthenus). Mem. Soe. Naturalists Imp. Univ. Kasan, Vol. VII. No. 2, 3, pp. 1-545, Pl. I-XIX. Kasan. 1878, 1880.] ’°BL. Recherches sur le développement du Sterlet (Acipenser ruthenus). Arch. de Biol., Tom. II. Fase. 2, pp. 233-341, Pl. XV.—XVIII. 1881. [Autbor’s abstract of V. Saleusky, 78, °80. ] Schmiegelow, E. 81. Studier over Testis og Epididymis Udviklingshistorie. 96 Sid., 3 Taf. (Afhandl. for Doctors-graden.) Kjobenhavn. 1881. °82. Studien iiber die Entwickelung des Hodens und des Nebenhodens. Arch. f. Anat. und Physiol., Jahrg. 1882, Anat. Abt., pp. 157-168, Taf. X., 1 Holzschn. 9 Aug., 1882. Schultz, Alexander. °75. Zur Entwickelung des Selachiereies. Arch. f. mikr. Anat., Bd. XI. pp. 569-582, Taf. XXXIV. 1875. Schultze, Oscar. ’°88. Die Entwickelung der Keimblatter und der Chorda dorsalis von Rana fusca. Zeitschr. f. wiss. Zool., Bd. XLVII. pp. 325-352, Taf. XXVIII, XXIX. 27 Nov., 1888. MUSEUM OF COMPARATIVE ZOOLOGY. 337 Scott, W. B. 81. Beitrage zur Entwickelung der Petromyzonten. Morph. Jahrb., Bd. VII. pp. 101-172, Taf. VIL-XI. 1881. Sedgwick, Adam. 7802. Development of the Kidney in relation to the Wolffian Body in the Chick. Quart. Jour. Micr. Sci., Vol. XX. pp. 62-83, Pl. VI., VII. April, 1880. [ d/so in Stud. Morph. Lab. Univ. Cambridge, Vol. I.] *80°. On the Development of the Structure known as the Glomerulus of the Head-Kidney in the Chick. Quart. Jour. Micr. Sci., Vol. XX. pp. 372- 374. July, 1880. *81. On the Early Development of the Anterior Part of the Wolffian Duct and Body in the Chick, together with some Remarks on the Excretory System of the Vertebrata. Quart. Jour. Micr. Sci., Vol. XXI. pp. 432- 468, Pl. XXVI. July, 1881. Selenka, Emil. *82. Der embryonale Excretions apparat des kiemenlosen Hylodes martini- censis. Sitz.-Ber. d. k. Akad. Wiss. Berlin. No. 8, Sitz. v. 16. Feb., 1882, pp. 117-124, Taf. II. 1882. Semon, Richard. °90. Ueber die morphologische Bedeutung der Urniere in ihrem Verhiltnis zur Vorniere und Nebenniere und tiber ihre Verbindung mit dem Genital- system. Anat. Anzeig., Bd. V. pp. 455-482, 8 Abbild. 22 Aug., 1890. [Im Auszuge mitgetheilt zz Veyhandl. d. X. internat. medic. Kongress- es, Berlin, 1890, Bd. II. Abt. 1, Anatomie, pp. 135, 136. Diskussion: Wiedersheim, Semon. April, 1891.] Semper, Carl. 74. Die Stammesverwandtschaft der Wirbelthiere und Wirbelosen. Arb. zool.-zoot. Inst. Wiirzburg, Bd. II. pp. 25-76, Taf. III-V., 1 Zylogr. 1874. °75. Das Urogenitalsystem der Plagiostomen und seine Bedeutung fiir das der wibrigen Wirbelthiere. Arb. zool.-zoot. Inst. Wiirzburg, Bd. II. pp. 195-509, Taf. X.-XXII. 1875. 76. Die Verwandtschaftsbeziehungen der gegliederten Thiere. III. Stro- bilation und Segmentation (nebst einen Anhang). Arb. zool.-zoot. Inst. Wiirzburg, Bd. III. pp. 114-404, Taf. V-XV. 15 Oct., 1876. °78. Sind die Segmentalorgane der Anneliden homolog mit denen der Wir- belthiere? Eine Erwiderung an Herrn Dr. Firbringer. Morph. Jahrb., Bd. LV. pp. 322-327. 1878. Shipley, Arthur E. °87. On Some Points in the Development of Petromyzon fluviatilis. Quart. Jour. Mier. Sci., Vol. XXVII. pp. 325-370, Pl. XXVIL-XXIX. Jan, 1887. [ 4/so in Stud. Morph. Lab. Univ. Cambridge, Vol. IIT. pp. 173-218. ] VOL. xXI.— NO. 4. 22 338 BULLETIN OF THE Siemerling, Ernst. ’'82. Beitrige zur Embryologie der Excretionsorgane des Vogels. Inaug. Diss. Marburg. 40 pp.,1 Taf. Marburg. 1882. Spee, Ferdinand Graf. '84. Ueber direkte Betheiligung, des Ektodermes an der Bildung der Urnierenanlage des Meerschweinchens. Arch. f. Anat. u. Physiol., Jahrg. 1884, Anat. Abt., pp. 89-102, Taf. V. 7 Marz, 1884. '86. Ueber weitere Befunde zur Entwickelung der Urniere. Mitth. Ver. Schlesw.-Holst. Aerzte, Heft 11, Stiick 2,2 pp. Kiel 1886. Spengel, J. W. "76. Das Urogenitalsystem der Amphibien. Arb. zool.-zoot. Inst. Wiirz- burg, Bd. III., Heft 1, pp. 1-114, Taf. I-IV. 1 Juli, 1876. 90. Beitrag zur Kenntniss der Kiemen des Amphioxus. Zool. Jahrbicher, Abt. f. Anat. u. Ontog., Bd. IV. Heft 2, pp. 257-296, Taf. XVII., XVIII. 30 Sept., 1890. Spoof, A. A. °83. Beitrage zur Embryologie und vergleichenden Anatomie der Cloake und der Urogenitalorgane bei den hoheren Wirbelthieren. Akad. Habil.- Schr. Helsingfors. xix + 116 pp., 5 Taf. Helsingfors. 1883. Strahl, H. '86. Ueber den Wolff’schen Gang und die Segmentalblaschen bei Lacerta. Sitz.-Ber. naturf. Gesellsch. Marburg, Jahrg. 1886, Nro. 3, pp. 46, 47. Aug., 1886. Strahl, H., und E. Martin. °86. Anlage des Wolff’schen Ganges beim Kaninchen. Sitz.-Ber. naturf. Gesellsch. Marburg, Jahrg. 1886, Nro. 3, pp. 46, 47. Aug., 1886. Sutton, J. Bland. °86. An Introduction to General Pathology. xvi + 390 pp., 149 Figs. Philadelphia: Blakiston. 1889. Timm, R. °83. Beobachtungen iiber Phreoryctis Menkeanus Hoffm. und Nais, ein Beitrag zur Kenntniss der Fauna Unterfrankens. Arb. zool.-zoot. Inst. Wirzburg, Bd. VI. pp. 109-157, Taf. X., XI. 1883. Veith. °89. Vaginalepithel und Vaginaldrusen. Virch. Arch. f. path. Anat., Bd. CXVIL. pp. 171-192, Taf. VIJ. 1 Juli, 1889. Waldeyer, Wilhelm. . °70. Lierstock und Ei. Ein Beitrag zur Anatomie und Entwickelungs- geschichte der Sexualorgane. vili+- 174 pp., 6 Taf. Leipzig: Engel- mann. 1870. Weiss, F. Ernest: °90. Excretory Tubules in Amphioxus. Quart. Jour. Micr. Sci., Vol. XXXI. pp. 489-497, Pl. XXXIV., XXXV. Nov., 1890. MUSEUM OF COMPARATIVE ZOOLOGY. 339 Weldon, W.F. R. °83. Note on the Early Development of Lacerta. Quart. Jour. Mier. Sci., Vol. XXIII. pp. 134-144, Pl. IV.-VI. 1883. *84. On the Head-Kidney of Bdeilostoma, with a Suggestion as to the Origin of the Suprarenal Bodies. Quart. Jour. Micr. Sci., Vol. XXIV. pp. 171- 182, Pl XV. April, 1884. Wichmann, Ralf. 84. Beitrage zur Kenntniss des Baues und der Entwicklung der Nieren- organe der Batrachier. Inaug. Diss. Bonn, 20pp. Bonn: Georgi. 1884. Wiedersheim, Robert °86 = ~= Lehrbuch der vergleichenden Anatomie der Wirbelthiere. 2te Auflage. xiv + 890 pp., 614 Figs. Jena: Fischer. 1886. 790%. Ueber die Entwicklung des Urogenitalapparates bei Krokodilen und Schildkréten. Anat. Anzeig., Bd. V. pp. 837-344. 5 Juli, 1890. °90>. Ueber die Entwicklung des Urogenitalapparates bei Crocodilen und Schildkroten. Arch. f. mikr. Anat., Bd. XXXVI. pp. 410-468, Taf. XVI.-XVIII., 2 Holzschn. 22 Oct., 1890. Wijhe, J. W. van. °86. Die Betheiligung des Ektoderms an der Entwicklung des Vornieren- ganges. Zool. Anzeig., Bd. IX. pp. 633-635. 1 Nov., 1886. °87. Ontwikkeling van de uitscheidingsorganen der Selachiers. Nederl. Staatscourant, Oktobernummer. 1887. 88. Ueber die Entwickelung des Excretionssystems und anderer Organe bei den Selachiern. Anat. Anzeig., Bd. IIL. pp. 74-76. 18 Jan., 1888. °88". Bemerkung zu Dr. Riickerts Artikel iber die Entstehung der Excre- tionsorgane bei Selachiern. Zool. Anzeig., Bd. XT. pp. 539, 540. 1 Oct. 1888. °89. Ueber die Mesodermsegmente des Rumpfes und die Entwicklung des Excretionssystems bei Selachiern. Arch. f. mikr. Anat., Bd. X XXIII. pp. 461-516, Taf. XXX-XXXIJI. 25 Juli, 1889. Wilson, Edmund B. '87. The Germ-Bands of Lumbricus. Jour. of Morph., Vol. I. pp. 183- 192, FE Val.» Sept., 1887. '89. The Embryology of the Earthworm. Jour. of Morph., Vol. IIT. pp. 387-462, Pl. XVI.-XXII. Dec., 1889. Wilson, Henry V. "90. On the Development of the Sea Bass (Serranus atrarius). Prelim. Comm. Johns Hopkins Univ. Cire., Vol. IX. No. 80, pp. 56-59, Figs. 3-5. April, 1890. Wittich, von. 52. Beitrage zur morphologischen und histologischen Entwickelung, der Harn- und Geschlechtswerkzeuge der nackten Amphibien. Zeitschr. f wiss. Zool., Bd. 1V. pp. 125-167, Taf. X., XI. 2 Sept., 1852. 840 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. Ziegler, H. Ernst. °87. Die Entstehung des Blutes bei Knochenfischembryonen. Arch. f. mikr. Anat., Bd. XXX. pp. 596-665, Taf. XXXVI-XXXVIIT. 18 Nov., 1887. °88. Der Ursprung der mesenchymatischen Gewebe bei den Selachiern. Arch, f. mikr. Anat., Bd. XXXII. pp. 378-400, Taf. XIII. 17 Oct., 1888. Zschokke, F. °87. Studien iiber den anatomischen und histologischen Bau der Cestoden. Centralbl. f. Bakt. u. Parasitenk., Bd. I. pp. 161-165, 193-199. 1887. EXPLANATION OF FIGURES. All the Figures, unless otherwise stated, were drawn with the aid of an Abbé camera lucida, and represent the appearance of the anterior faces of the sections. Plates I-IV. were made from preparations of Rana sylvatica Le Conte; Plates V.-VIII. from Rana sylvatica Le Conte, Bufo americanus Le Conte, and Ambly- stoma punctatum Linn. ABBREVIATIONS. (For the meaning of letters a, d, c, d, e, f, in Figures 24-26, see the explanation of those Figures.) ao. can. comn. ed. spi. cl. ms’drm. cl. vt. cle. cel. cael.’ col.” cp. sng. cps. pr’nph. cras. gn. cras. pr’nph. cras. so’plu. d. dt. sq. dt. Cuv. dz. ec’drm. ec’drm’ ec’drm.” en’th. Jnd. are. vr. Jnd. eps. Jnd. dt. sq. find. glm. Jnd. gl.’ Jnd. gn. spi. Jnd. mbm. Jnd. ms’nph. fnd. nph’st.1 fnd. pul. glo. Aorta, Communicating canal. Spinal cord. Mesodermal cells. Yolk cells. Cloaca. Ceelom. Protovertebral cavity. Body cavity. Blood cells. Pronephric capsule. Ganglionic thickening. Pronephric thickening. Somatopleural thickening. Dorsal aspect. Segmental duct. Ductus Cuvieri« Right side. Ectoderm. Superficial layer of same. Deep layer of ectoderm. Endothelium. Deep layer of a vertebral arch. Fundament of the pro- nephric capsule. Fundament of the segmen- tal duct. Fundament of the glomus. Fundament of glomerulus. Fundament of a spinal gan- glion. Limb bud. Fundaments of mesoneph- ric tubuies. Fundament of first pro- nephric nephrostome. Lung bud. Glomus. gn. nd. gn. Spi. hp. m. la. I. la. med. la. ms’drm. la. pv’ton. la. pr’vr. la. so, la. spl. m. mb. ba. ms’drm. ms’chy. my’tm. foils n’cd. npl’stin. Ganglion nodosum. Spinal ganglion. Liver. Intestine. Lateral plate. Medullary plate. Mesodermal plate. Peritoneal layer. Protovertebral plate. Somatic layer. Splanchnic layer. Median. Basement membrane. Mesoderm. Mesenchyme. Myotome. Nervus lateralis. Chorda dorsalis. Nephrostome. nph’stm.t U-, M1. 1st, 2d, and 3d pronepbric pvton. pror. rx. ao. rx. vag. sb.-n’ed. Sn. Sng. sot. IL ete. so’plu. sph. vt. spl’plu. nephrostome, respectively. Peritoneum. Protovertebra. Aortic root. Root of the vagus nerve. Sub-notochordal rod. Blood sinus. Somites I. II., etc. Somatopleure. Yolk spherules. Splanchnopleure. tbl. nph’stm.1., 1, M1 1st, 2d, and 3d nephro- tbl. pr’nph. trn. elg. trn. com. va. sng. vn. erd, vn. jgl. stomal tubules respectively. Pronephric tubule. Collecting trunk. Common trunk. Blood-vessel. Posterior cardinal vein. Jugular vein. ro al lee Aye proeree en! o Me that, a9 ic ; ye Tagg ae até ite 3 ries o> (Wibsce Hadar Wu hairs me Pyvacthel sipewads wallz « gLirre : : pol ee autre OA Bate Lime: by apiees ¢ ‘ie z gg amg wid)liat mee S. . = shh *°Pb5 » FieLp. — Pronepliros in Amphibia. 10. PLATE I. A portion of a cross section through the anterior trunk region of one of the older embryos included under Stage I. X 110. A cross section through the same embryo in the middie trunk region. X 26. A portion of a cross section through the middle trunk region of one of the younger embryos in Stage I. XX 92. A portion of a cross section through the hinder trunk region of one of the younger embryos belonging to Stage IL. xX 92. A portion of a cross section through the anterior trunk region of one of the older embryos from Stage II. The section passes through an interprotovertebral septum. > 110. A portion of a cross section from one of the older embryos in Stage III. The plane of the section passes through the middle of Somite III. e110: A small segment,of a cross section through the embryo shown in Figures 15-17 of Plate II. The Figure represents a portion of the ventro- lateral ectoderm with three subjacent mesodermal cells. 615. A portion of a cross section through the embryo shown in Figures 18-22, Plate III. It shows the fundament of the glomus. X 110. A portion of a cross section through a slightly older embryo, showing the glomus in a more advanced stage of development. X 110. A portion of a cross section through an embryo of Stage V., showing a branch of the aorta which gives off a small vessel to the glomus. x 160. B Meisel Jith Boston. Fre.p, — Pronephros in Amphibia. PLATE II. All the Figures on this plate are magnified 110 diameters. Figs 11 and 12. Portions of two frontal sections through the pronephric thicken- ing of one of the older embryos belonging to Stage III. Fig. 11 shows the dorsal margin of the thickening. Fig. 12 shows a section through the nephrostomal region. Figs. 13 and 14. Portions of two frontal sections from oné of the younger embryos of Stage II. Fig. 13 shows the ventral ends of the anterior protovertebre. Fig. 14 shows a section through the dorsal portion of the pronephric thickening. Figs. 15-17. Portions of three cress sections through one of the younger embryos of Stage III. Fig. 15 shows the anterior end of the pronephric thickening. The plane of the section passes a little behind the middle of Somite Il. Fig. 16 shows the pronephric thickening in the region of Somite V. Fig. 17 shows the thickening near its posterior termination. Fistp. — Pronephros in Amphibia. PLATE III. Figures 18-22 and 27 are magnified 110 diameters ; Figures 23-26, 260 diameters. Figs. 18-22. Portions of a series of cross sections through an embryo of Stage IV. In Figure 18, the pronephros of the right side is shown; in the remaining Figures, the pronephric organs of the left side. The location of the several sections on the reconstruction (Fig. 39) is shown by the series of lines bearing corresponding numbers. Fig. 18 shows the first nephrostome. Fig. 19 is from a region between the first and the second nephrostomes. Fig. 20 shows the second nephrostome. Fig. 21 shows the third nephrostome and the anterior portion of the segmental duct. Fig. 22 shows the segmental duct in the middle trunk region. Figs. 23-26. Cross sections of the fundament of the segmental duct near its pos- terior termination, from an embryo of Stage IV. Fig. 23 shows the duct five sections in front of its termination. Fig. 24, three sections before its termination; a., b., and c., cells in the fundament of the duct; cd., portions of the two cells c. and d., which are to be seen in the following section. Fig. 25 shows the duct one section in front of its termination ; c. and d., cells in the rudiment of the duct; 6. and c., portions of two cells bearing the same lettering in Figure 24. Fig. 26 shows the depression of the somatopleure (/.) directly behind the tip of the fundament of the duct. Fig. 27. A cross section from a larva whose pronephros is shown in Figure 41. It shows the opening of the segmental duct into the cloaca. FIELD.-PRq Babi B Meisel lith Boston. Fisitp. — Pronephros in Amphibia, PLATE IV. Fig. 28. Part of a cross section through the anterior trunk region of a larva belonging to Stage VI. The Figure shows the pronephros in the region of the first nephrostome. > 110. Fig. 29. Part of an oblique longitudinal section through a larva of Stage IV. The plane of the section was directed so as to cut the somatopleure tan- gentially along the line of the three nephrostomes. Its direction is represented by the line 40 in Figure 20. x 110. Fig. 30. Part of a cross section through the middle trunk region of a larva, from which Figure 28 was also drawn. (Stage VI.) X 110. Fig. 31-88. A series of diagrams illustrating the convolution of the pronephric tubules. These diagrams, which are based upon reconstructions from cross sections, merely serve to show the number and approxi- mate location of the loops in a longitudinal direction. No attempt has been made to indicate in the diagrams the changes in position undergone by the tubules in a transverse direction. The gray tint represents the common trunk and the anterior portion of the seg- mental duct. The first nephrostomal tubule and the collecting trunk are colored pink. The second and third tubules are repre- sented in yellow and orange respectively. Figs. 31-34 are from various larve of Stage V. Fig. 32 is a diagram of the recongtruction shown in Figure 40. Figs 33 and 34 represent the right and the left pronephros respectively of the same individual. Figs. 35-37 are from various larve of Stage VI. Fig. 36 is a diagram of the reconstruction shown in Figure 41. Fig. 88 is from a larva of Rana halesina. Figs. 39-41. A series of reconstructions from cross sections of larve in different stages of development. In Figures 40 and 41, the common trunk and the anterior portion of the segmental duct have been shaded without color; the collecting trunk and the first nephrostomal tubule have been colored pink; and the second and third nephro- stomal tubules are respectively yellow and orange. X 66. Fig. 89. Right pronephric pouch of a larva belonging to Stage IV., viewed from the median side. The X’s represent the position of the nephro- stomes. The lines 18-21 show the various levels at which the sec- tions represented in Figures 18-21 were made. Fig. 40. Right pronephros of a larva belonging to Stage V., viewed from the median side. Fig. 41. Right pronephros of a larva belonging to Stage VI., viewed from the ventral side, the external face being uppermost. D . FIELD de. PL. B Meisel Jith Boston. 3 _ — at Fre_p. — Pronephros in Amphibia. Fig. Fig. . 42, ig. 44. 46. PLATE V. A portion of a cross section through the anterior trunk region of a larva of Bufo, belonging to Stage V. The Figure shows the pronephros in the region of the first nephrostome. X 110. A section through the rudiment of the duct near its hinder tip, from an embryo of Bufo belonging to Stage IV. X 400. Zeiss apochr. 4mm. Oc. B. ; A portion of a cross section through the anterior trunk region of an embryo of Amblystoma belonging to Stage III. The section shows the pronephric thickening in the region of its greatest development. xX 65. A portion of a cross section through the anterior trunk region of an em- bryo of Rana belonging to Stage IV. The section shows the pro- nephric pouch in the region of the second nephrostome. X 110. An embryonic blood corpuscle occurring in the glomus of a larva of Bufo belonging to Stage V. x 956. PEM .- PRONEPEROS IN AMPHIBIA. B Meisel lith Boston. ee 7 ‘ ns FieLp. — Pronephros in Amphibia, Fig. ig. 47. g. 50. oll 52. PLATE VL. A portion of a cross section through the anterior trunk region of a larva of Bufo belonging to Stage V. The Figure shows the pronephric structures in a region between the first and second nephrostomes. x 158. A portion of a cross section through the middle trunk region of an em- bryo of Amblystoma belonging to Stage I. > 65. Anterior face of a cross section through the glomus of a larva of Bufo belonging to Stage V. X 470. Zeiss apocr.4mm. Oc. 6. Anterior face of a portion of a cross section through the right glomus of the same larva, including also the opposite peritoneal wall. x 710. Zeiss apochr. 4mm. Oc. 12. A cross section (right side, anterior face) through the pronephros repre- sented in Figure 37. The section passes directly in front of the third nephrostome, and shows the expanded region of the common trunk at the level of its union with the collecting trunk. x 90. A portion of a cross section through the glomus of a larva of Bufo be- longing to Stage V. The Figure shows an infolding (opposite the letters cal.””) of the outer peritoneal layer of the glomus. Xx 500. thlaphstm2Z MO) gi \, {/ 6 trn.cly. eae 4) Sa . or ——— eo 7; nt af, t t | . XN. = Fieip. — Pronephros in Amphibia. Fig. Fig. Fig. 53. 50. g. 56. PLATE VII. A portion of a cross section through the posterior trunk region of a larva of Amblystoma belonging to Stage VI. The section shows the fun- dament of the second primary mesonephric tubule (dé. sp.). x 90. A portion of a cross section through the middle trunk region of a larva of Amblystoma belonging to Stage VI. The section shows one of the “cords of cells” which occur between the mesonephros and the pronephros ; it exhibits a case of nuclear mitosis in the peritoneum, which suggests the origin of these cells. X 500. Zeiss apochr. 4mm. Oc. 8. A portion of a cross section through the anterior trunk region of an embryo of Amblystoma belonging to Stage III. The pronephric thickening is shown in the region of the middle of Somite II. x 90. A portion of a cross section from the same series. The pronephric thickening is shown in the region of the posterior face of Somite II. x 90. FIELD.-PRONEPHROS IN AMPHIRIA. Sid anew: ee umytin. . BMeisel lth Baston. FreLp. — Pronephros in Amphibia. PLATE VIII. Figs. 57-60. Reconstructions of several pronephridia of Amblystoma larvz be- longing to Stage V. Fig. 57. Reconstruction of a pronephros showing three nephrostomal tubules. Figs. 61-65. Reconstructions of several pronephridia of Amblystoma larve be- longing to Stage VI. FIELD.- PRONEPHROS IN AMPHIBIA. PL. VIII. il BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY AT HARVARD COLLEGE, IN CAMBRIDGE. VOL. XXII. CAMBRIDGE, MASS., U.S. A. 1891-92. UNIVERSITY PRESS: JoHN WILSON AND Son, CAMBRIDGE, U.S. A. CONTENTS. No. 1.— Contributions from the Zodlogical Laboratory. XXVIII. Observa- tions on Budding in Paludicella and some other Bryozoa. By C. B. Davenport. (12 Plates.) December, 1891 No. 2. — Contributions from the Zodlogical Laboratory. XXIX. The Gas- trulation of Aurelia flavidula, Pér. & Les. By Frank Smitu. (2 Plates.) December, 1891 No. 38. — Contributions from the Zoélogical Laboratory. XXX. Amitosis in the Embryonal Envelopes of the Scorpion. By H. P. Jonnson. (38 Plates.) January, 1892 No. 4.— A Fourth Supplement to the Fifth Volume of the Terrestrial Air- Breathing Mollusks of the United States and Adjacent Territories. By W. G. Binney. (4 Plates.) January, 1892 PAGE 127 163 eee -~ Theva oy oa © es" gar,” a mire } -& @ } No. 1.— Observations on Budding in Paludicella and some other Bryozoa. By C. B. Davenrort.? ConTENTS. PAGE PAGE A. SPpEcIAL Parr. III. Budding in Marine Gymno- lemoatar ie . 40 I. Introduction 1 1. Architecture of the ‘Steck . 40 2 ee DUG Patudicella ‘ 2. Origin and Development of 1. Architecture of the Stock . 2 aE talon £ the .Buddin the Individual. . . . 53 Ree oe NE g 3. Meterctationatthe Poly pide 64 Region . . 4 IV. Origin of the Gemmiparous peo emot the Polypide is Tissue in Phylactolemata 66 the Terminal Bud ... 7 y ‘ 4. Origin and Development of B. GeneraL ConsIDERATIONS. 5 27 ah meena Body : lesbawsiotebuddings .. 3 is) +a. 901 are penn O& the xvody: II. Relation of the Observations on Wallies. utero be Sti) 22 Budding in Bryozoa to the 6. Development of the Balepida 18 Germ Layer Theory . . . 8&8 7. Origin of the Museles . . 27 afte , III. On some Characteristics of 8. Formation of the Neck and P : Gemmiparous Tissue . . 98 Atrial Opening . . 31 é . IV. Relationships of Endoprocta 9. Development of the Com- and Ectoprocta . .. . . 102 munication Plate .. . 382 10. Role of the Mesodermal SENG yaa meme: Gih- Weems. LOG Vacuolated Cells .. . 34/|Literaturecited . .... . . 109 A. SPECIAL PART. I. Introduction. THE somewhat heterogeneous studies here brought together have been prosecuted at different times and in different places, as opportunity for getting light on the problem of non-sexual reproduction as exhibited in the group of Bryozoa has presented itself. While studies on the fresh water species were pursued chiefly here at Cambridge, those on marine Bryozoa were made while occupying one of _ the tables of the Museum at the United States Fish Commission Labora- 1 Contributions from the Zodlogical Laboratory of the Museum of Comparative Zovlogy, under the direction of E. L. Mark, No. XXVIII. VOL XxII.—wno. 1. i 2 BULLETIN OF THE tory at Wood’s Holl, Mass., during the summer of 1889, and while at Mr Agassiz’s Newport Laboratory during the summer of 1890. To my instructor, Dr. E. L. Mark, for many valuable suggestions during the progress of my work and the writing of this paper, to Mr. Alexander Agassiz, for the kind hospitality accorded me at his Newport Laboratory; and to Hon. Marshall McDonald, United States Commissioner of Fish and Fisheries, and Dr. H. V. Wilson, Assistant at Wood’s Holl, for fa- vors shown me while at the Wood’s Holl Laboratory, I make grateful acknowledgment of my indebtedness. A word as to localities. The marine Bryozoa were found especially abundant at Newport on floating eel-grass in the cove and on the piles of the wharf. The embryos of Cristatella and Plumatella were found in colonies which literally covered the bottom of some parts of the south or shady side of Trinity Lake, Pound Ridge, New York. . They occur especially in densely shaded and fairly deep water near the shore. The Gymnolemata present many difficulties to finer technique. They possess a chitinous covering, often very thick, and frequently, in addition, a calcarous skeleton. When the latter is present, picro-nitric acid mixed with sea water is a fairly good fixing reagent ; when it is absent, hot cor- rosive sublimate was most serviceable. The objects must be transferred through the grades of alcohol with extreme caution, to prevent the col- lapse of the ectocyst. I used the chloroform-paraffin method of em- bedding in order to make transfers more gradual at this stage. Some difficulty was experienced in staining such small objects on the slide, since the tissues are very loosely associated ; and on the other hand zn toto staining is unsatisfactory in some cases, owing to impenetrability of the ectocyst. Often it was necessary to open the body cavity of each indi- vidual by means of a sharp knife or needle. The best results were obtained with alcoholic dyes like Kleinenberg’s hematoxylin and Mayer’s cochineal; although Ehrlich’s hematoxylin was often used with success. II. Budding in Paludicella. 1. ARCHITECTURE OF THE STOCK. Paludicella, as is well known, occurs in quiet streams and forms stocks on the under surfaces of stones and other objects. Seen with the naked eye these stocks appear as a fine lacework, composed of constantly branching lines of individuals. Some of the stocks which I have meas- ured are over 25 mm. in length along their greatest diameter. MUSEUM OF COMPARATIVE ZOOLOGY. 35 When the stock is studied more carefully, it is seen that the individ- uals which compose it are arranged one in front of the other, forming lines. (Figs. 1, 2, 2.) We may distinguish (1) a single primary branch, which forms a continuous line from the oldest individual, which has been derived directly from the egg, to the terminal one; and (2) secondary branches, which arise from the individuals of the primary branch and at right angles to their axes. Typically, a secondary branch arises from both the right and left sides of each adult member of the primary branch. but in some cases the secondary branch of only one side appears to be formed. The secondary branches are composed, like the primary, of a continuous line of individuals placed end to end. ‘These in turn give rise to ter- tiary branches, which run out at right angles to the right and to the left of the secondary ones, and hence parallel to the primary branches. Quaternary branches may occur in like manner, but I have never seen branches of a higher order than the fourth. All of these branches may lie in one plane, but frequently some of the lateral buds are so placed that they give origin to secondary branches which rise above the plane of the object upon which the stock lies. A study of Figure 1 and the cor- responding diagram, Figure 2, reveals some additional facts. The two lateral buds of an individual do not arise at the same time, and there is a tendency for the first, and therefore oldest and most developed, sec- ondary branches to arise alternately on opposite sides of the primary branch. This last rule has many exceptions, however. The long axis of the individual coincides with that of its branch ; the sagittal plane lies in that axis, and at right angles to the substratum. The atrial opening is near the distal end of the individual in the sagit- tal plane, and is turned away from the substratum. The anal aspect of the polypide is placed nearer the tip of the branch, — hence distad ; the mouth, on the contrary, proximad. A very casual observation shows that not all branches nor all individ- uals are of the same size. The shortest and therefore youngest branches are placed most distally, and are seen as small buds. The terminal indi- viduals of the branches are also evidently less well developed than the more proximal ones. The adult individuals measure from 1.5 to 2.0 mm. in length and from 0.50 to 0.35 mm. in width. The younger individ- uals differ from the older in form also. The outline of the adult branch, looked at from the side, and disregarding the atrial opening, is formed by a series of beautiful sigmoid curves (Fig.9). The concave and convex points of the upper and lower sides of an individual are not placed exactly opposite each other, and the lower (abatrial) side approximates more 4 BULLETIN OF THE nearly to a straight line. The point at which the upper and lower curves most nearly approach each other is where the separation of two individuals takes place; that at which they are farthest apart is the middle of the zocecium, occupied by the polypide and sexual organs. The outlines of the young zoccia are straighter, and their breadth is considerably less than that of the adult. From what we have already seen, the method of growth of the stock is perfectly evident: it is by the formation of new median buds at the tips of existing branches, and of new branches from lateral buds. In order to understand the origin of the individuals of the primary branches, to which subject we will first turn our attention, we must study the tips of the branches. 2. HistoLtogy oF THE Buppine REGION. Figures 7-9 will serve to show more in detail the method of formation of new terminal individuals. We find in these cases one polypide already pretty well developed and attached to the body wall by means of the kamp- toderm at about the point at which the pyramidal muscles (mu. pyr.) are seen to be forming. That portion of the animal which extends from about the region of formation of the muscles to a point a little proxi- mad of the tip represents the region which will go to form the new in- dividual. The tip itself, for reasons which will presently appear, is not to be included in the terminal individual. The tip of the branch is to be regarded as homologous with the margin of the corm in corm-building genera of Gymnolemata. Figures 7-9 (gn.) also show the position of the bud which is to produce the polypide. By consulting first Figure 9, in which the polypide bud is apparent, the significance of the swellings of the body wall in Figures 8 and 7 becomes clear. Figure 14 (Plate II.) represents a stage in the development of the polypide bud, somewhat later than that shownin Figure 9, and this may serve us as a starting point in our study of the origin of a new individual, and, first of all, of the new polypide. The whole of Figure 14, from the tip down to the neck of the older polypide (cev. pyd.), may be divided, for convenience, into three zones: first, that distad of the young bud, which may be called the tip of the branch (Fig. 14, a to B) ; secondly, the region of the bud itself, which may be called the gemmiparous zone (6 to y) ; and thirdly, the region between this last zone and the neck of the older poly- pide, which, for want of a better name, may be called the proximal zone (y to 8). In the formation of a new polypide between a and B, that region will in turn become divisible into the three zones just named, MUSEUM OF COMPARATIVE ZOOLOGY. 5 exactly as the region a to 8 represented the tip of the branch when the older polypide, whose neck is shown at cev. pyd., was of the age that the younger bud is now. It will be necessary first of all to study carefully each of these three regions before treating of their origin and fate. The tip of the branch consists of the two layers of cells which are found in other parts of the body wall, —the ectoderm and the mesoderm, as the coelomic epithelium may, for brevity’s sake, be called. The cells of the ectoderm at the extreme tip (Plate I. Fig. 6) are greatly elongated, form- ing a columnar epithelium. There are about 25 or 30 of the larger cells. They have a length of 28 » to 32 p, and a diameter of about 4p. They possess an ovoid nucleus averaging 5.7 » by 2.6 p, which lies in the middle of the cell but slightly nearer the ccelomic epithelium than the cuticula. It possesses a large nucleolus over | » in diameter, which often appears stellate owing to the threads of plasma surrounding and proceeding from it and forming a nuclear network. As the figure shows, the plasma of the cell is filled with large, apparently deeply stained granules, some of the largest being over 0.6 » in diameter. The coarser granules lie chiefly in the immediate vicinity of the nucleus, but are also found arranged in long lines at right angles to the surface throughout the greater part of the cell, becoming finer the farther they lie from the nucleus. A fine network can sometimes be made out between the large granules, but this appear- ance is more evident at the peripheral portion of the cell, where there are no large granules. At the outer and inner ends of the cells one finds large vacuoles, the largest of which are of about the same size as the nucleus ; these become smaller the nearer they lie to the nucleus. In many cases the larger vacuoles are each seen to be partly filled by a body which stains slightly, and, as focusing determines, is more highly refractive than the plasma. Similar highly refracting, slightly stainmg granules are found in, and in fact often composing, the smaller ‘‘ vacuoles.” Owing to the fact that the deeply staining granules lie near the nuclei, and that the vacuolated and finely granular plasma lies more remote, there is a very marked deeply stainmg band occupying the middle of the ectodermal layer, and having about four tenths the thickness of the whole layer. At the outer ends of the cells, and doubtless secreted by them, there is a cuticula about 1» thick. Its inner surface is sharply marked off from the underlying plasma; its outer surface is less sharp, and there are usually very minute particles of dirt attached to it (not represented in the figure). The whole cuticula forms in section a continuous band of substance, which stains deeply in Ehrlich’s hematoxylin (but not at all in alum cochineal), and covers nearly the whole tip. Looked at from 6 BULLETIN OF THE the surface after staining in hematoxylin, it appears uniformly dark. The mesoderm of the tip is highly modified, and a description of it will be more instructive after I shall have described the normal ccelomic epithelium, as I shall do later. Passing from the extreme tip towards B (Fig. 14), one finds the ecto- dermal cells gradually changing in form, size, and structure, and becoming slightly broader, and very much shorter. Their nuclei lie near the inner ends of the cells, possess a thick ‘nuclear membrane,” and are more nearly spherical than those of the columnar cells, but of about the same size. They each possess one very large, centrally placed nucleolus, whose diameter equals and sometimes exceeds one third that of the nucleus, and whose outline is often somewhat stellate. Outside of the nucleus in the cell body there are fewer and fewer vacuoles as we pass from the tip, but the plasma is still coarsely granular, and here, as before, these stained granules surround the nucleus. It is now the regions between cells rather than those at the inner and outer ends which remain unstained, so that the cells are separated from one another by light spaces. The mesodermal layer becomes somewhat thinner than at the tip, that is to say, its cells are flattened. he nuclei are elongated in the axis of the branch, and average about 4m by 2.2». They possess one spheri- cal nucleolus, whose diameter is about two thirds of the minor axis of the nucleus. Small, clear vacuoles often with highly refractive spherical bodies are abundant in the cell protoplasm, which stains as a whole less deeply than does the ectoderm. Such highly vacuolated elements will be called reticulated cells. If we study the gemmiparous zone at astage considerably earlier than that shown in Figure 14, in fact at a stage in which a polypide is about to arise, we find an appearance of the layers represented by Plate I. Fig. 3. In such a region the ectoderm consists of cuboid cells about 7p high by 6.5 w broad. The nuclei are large, nearly spherical, and vary in size from 3.5 to 6.0p. The largest nuclei are those in the region from which a bud is about to arise (ev.). One in this region (to the right of ew.) is 6.5p by 6.0 » in diameter, with a nearly spherical, eccentrically placed nucleo- lus of about 3.0 in diameter. This nucleus is the largest which I have found in the whole tissue of Paludicella, and the same is true of the nucle- olus. From the examination of many regions from which buds are about to arise, I can assert that such regions always, in Paludicella, possess large nuclei and large deeply staining nucleoli. I shall have occasion to de- scribe similar conditions elsewhere, and to point out the probable signifi- cance of these facts. The cell body possesses a highly granular, deeply MUSEUM OF COMPARATIVE ZOOLOGY. 7 staining plasma; the inner ends of the cells, however, do not stain so deeply as the middle or peripheral portions. The cuticula (omitted from Fig. 3, see Fig. 5) is usually somewhat different in appearance from that at the extreme tip. In section we can distinguish two layers : an outer, thicker, deeply staining layer, which is not continuous but appears broken into larger or smaller bits; and an inner, thin, non-stainable and highly refractive portion, from which the first layer is often slightly separated. This second layer is closely applied to the underlying cells, which doubtless secrete it. Looked at from the surface (Fig. 10, a.) the deeply stainable layer is seen to be broken into irregular polygonal pieces ranging from 2 » to 17 » in diameter and sepa- rated from one another by spaces ranging from 0 to 6 pz. The mesoderm forms a loose epithelium, whose average width is less than that of the ectoderm (Fig. 3, ms’drm.). As a whole, moreover, it stains less deeply. In a portion of the gemmiparous zone, which lies about 180° from the budding region, the mesoderm has become so delicate a layer, if it exists at all, as not to be easily distinguishable. In the vicin- ity of the bud its cells have irregular outlines and extend out into the ccelom as though possessed of the power of amceboid movement. The nuclei are spherical or ovoid, smaller than those of the ectoderm, and on the whole have smaller nucleoli. The cell body is highly vacuolated. The vacuoles are not large and clear in outline, but whole regions of the cell body seem to be reduced to a non-stainable condition, and in some of these regions a finenetwork may still be observed. The proximal zone (Fig. 14, y to 8) is distinguished, soon after the: first rudiment of the bud appears, by the diminished thickness of the ectoderm. The cells have become transformed from a columnar to a pavement epithelium. The nuclei are smaller, the nucleoli less prom- inent, and the cell body stains much less deeply. The cuticula is of two kinds, as before, but with this difference: the deeply staining outer part is less conspicuous, and the pieces are smaller and more widely sep- arated. Looked at from the surface, we find an appearance like Figure 10, ¢., in which the dark bodies represent the deeply staining cuticula. These pieces are much smaller than those of the gemmiparous zone, ranging from 0.6 » to 9.5 m in diameter, and separated from each other by spaces ranging from 0 to 13 x. 3. ORIGIN OF THE POLYPIDE IN THE TERMINAL Bubp. Observation having shown that budding in Paludicella follows definite laws, we ought to be able to discover the place and time at which buds 8 BULLETIN OF THE will arise ; and it is necessary to do this in order to study the origin of the gemmiparous cells, and the changes which they undergo preparatory to an actual involution. The study of tips of branches shows that the necks of the polypides of any branch all lie in one plane, and that this plane also includes the youngest polypide ; also that the youngest polypides always arise distad of the next older. Knowing these facts, our observations may be confined to a short line running from the neck of the youngest apparent buds to the tips of the branches studied. The time at which to search for incipient buds and the place in the line where they will be found is illustrated by Figure 7 (Plate I.). The youngest developed bud is one the axes of whose tentacles are approximately parallel to the axis of the branch, and whose brain cavity, gn., is not yet constricted off from that of the cesophagus. The place of origin is near the tip, immediately beyond the point at which the ectoderm changes rapidly from a columnar to a pavement epithelium. Figure 3 is from a section across the branch in the region of an incip- ient bud. I have already described the conditions of the cells of this region. Those near ex. are larger than the surrounding ones, and show signs of cell division both in the ectoderm and mesoderm. In both cases shown in the figure, the direction of division is such as will tend to increase the superticial area of the layer in which it ocenrs. The ecto- derm seems to be the most important layer of the two in the process of invagination which is about to take place. I think one is led to this conclusion if one considers a folding of an epithelium to be due to an increase in the area of the epithelium within a certain circumference without a correspondingly great increase in the circumference itself. Such a conception implies, first of all, mutual pressure of the cells of the invaginating epithelium. The cells of the mesodermal layer do not seem to be under mutual pressure; in some cases they are barely in contact. The cells of the ectoderm are evidently closely applied, and probably, therefore, under mutual pressure. The one case of cell division which is occurring in the ectoderm is at the inner end of the cell. In fact, the centre of the nuclear plate is much nearer the deep end than are the centres of the adjacent nuclei. The effect of this division is to increase the area on the inner surface of the ectoderm more than that on the outer, as appears from a study of the sections shown in Figures 4 and 5. In Figure 4 certain cells lie already below the niveau of the surrounding ones, very much as though they had moved downward on account of this being the direction of least resist- ance. . iniges iiber die Metamorphose der Siisswasserbryozoen. Zool. Anz., IX., No. 232, p. 547. °87. Zur Entwicklungsgeschichte der cyclostomen Seebryozoen. Mitth. aus. d. zool. Stat. zu Neapel, VII. 2, p. 177. Parker, G. H. °89. Report upon the Organisms, ete. Rept. Mass. State Board of Health on Water Supply and Sewage, I., p. 581. Pergens, E. °89. Untersuchungen an Seebryozoen. Zool. Anz., XII., No. 317, p. 504. Prouho, H. °90. Recherches sur la larva de la Flustrella hispida (Gray), structure et métamorphose. Arch. Zool. expér. et gen., (2), VIII. 3, p. 409. MUSEUM OF COMPARATIVE ZOOLOGY. 118 791. Sur le développement de la Membranipora pilosa. Assoc. Frangaise pour Avance. d. Sci., XIX., 2° part., p. 517. Reichert, K. B. 70. + Vergleichende anatomische Untersuchungen iiber Zoobotryon pellucidus (Ehrenberg). Abhiandl. konigl Akad. Wissensch. zu Berlin, a. d. Jalire 1869, II., p. 233. Reinhard, W. W. 80. Zur Kenntniss der Sisswasser-Bryozoen. Zool. Anz., IlI., No. 54, p- 208. Repiachoff, W. 75. Zur Entwickelungsgeschichte der Tendra zostericola. Zeitschr. f. wiss. Zool., XXV. 2, p. 129. 75°. Zur Naturgeschichte der chilostomen Seebryozoen. Zeitschr. f. wiss. Zool., XX VI. 2, p. 139. °78. Ueber die ersten embryonalen Entwickelungsvorginge bei .Tendra zostericola. Zeitschr. f. wiss. Zool., XXX., Suppl., p. 411. ’°80. Ks Mopoasorin Mmanoxs- 69 pp., 4 Tab., 8°. Odessa, 1880. Seeliger, O. 785. Die Knospung der Salpen. Jena. Zeitschr., XIX. 3, p. 573. °89. Zur Entwickelungsgeschichte der Pyrosomen. Jena. Zeitsclir., RAAT... p. 595. 89%. Die ungeschlechtliche Vermehrung der endoprokten Bryozoen. Zeitschr. f. wiss. Zool., XLIX. 1, p. 168. °90. Bemerkungen zur Knospenentwicklung der Bryozoen. Zeitschr. f. wiss. Zool., L. 4, p. 560. Semper, C. °77. + Beitrage zur Biologie der Oligochaeten. Arb. zool.-zoot. Inst. Wirz- burg, IV. 1, p. 65. Smitt, F. A. 65. Om Hafs-Bryozoernas utveckling och fettkroppar. Ofversigt Kongl. Vetenskaps-Akad. Forhandl., XXII. 1, p. 5. 65%. Kritisk forteckning ofver Skandinaviens Hafs-Bryozoer. Ofversigt Kongl. Vetenskaps-Akad. Forhandl., XXII. 2, p. 115. 67. Kritisk forteckning Ofver Skandinaviens Hafs-Bryozoer. Ofversigt Kongl. Vetenskaps-Akad. Foérhandl., XXIV. 5, p. 279. Stuhlmann, F. *87. Zur Kenntnis des Ovariums der Aalmutter. Abhandl. naturwiss. Verein in Hamburg, X. 48 pp. Tullberg, T. 82. Studien iiber den Bau und das Wachsthum des Hummerpanzers und der Moiluskenschalen. Kongl. Svenska Vetenskaps-Akad. Handl., XIX. 3. 57 pp. 12 Taf. VOL. XXII.— No. 1. 8 114 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. Verrill, A. E. °73. Report upon the Invertebrate Animals of Vineyard Sound, ete. Rept. U. S. Com. Fish and Fisheries, 1871-72, p. 295. Vigelius, W. J. 84. Die bryozoen, gesammelt wahrend 3. u. 4. Polarfahrt des “ Willem Barents.” Bijdragen tot de Dierkunde, XI. 104 pp., 8 Taf. °86. Zur Ontogenie der marinen Bryozoen. Mitth. zool. Stat. zu Neapel, VI. 4, p. 499. °88. Zur Ontogenie der marinen Bryozoen. Mitth. zool. Stat. zu Neapel, VIII. 2, p. 374. Wagner, F. v. °90. Zur Kenntniss der ungeschlechtlichen Fortpflanzung von Microstoma u.s.w. Zool. Jahrb. (Spengel), Abth. f. Anat. u. Ontog., IV., p. 329. Zacharias, O. °86. Ueber Fortpflanzung durch spontane Quertheilung bei Siisswasser- planarien. Zeitschr. f. wiss. Zool., XLIII. 2, p. 271. Zoja, R. °90. Alcune ricerche morfologiche e fisiologiche sull’ Hydra. Bollettino Scientifico, XII. 3, p. 65. "91. Quelques recherches morphologiques et physiologiques sur PHydre. Arch. ital. de Biol., XV. 1, p. 125. [Résumé of Zoja, ’90.] f ven nae a a7 ne ; ad tn SR One De . 7 ois meee : pha aeaitp 112 it : ity i ols ety aha vrt AY e.. ) 5 | Davenport. — Budding in Bryozoa, Fig. Fig. Fig. PLATE. EF. ABBREVIATIONS. cev. pyd. Neck of polypide. gn. Ganglion. cta. Normal cuticula of adult i. Inner layer of bud. body wall. kmp’drm. Kamptoderm. cta.’ Cuticula secreted by tip. ms’drm. | Mesoderm. ec’drm. Ectoderm. mu. pyr. Pyramidal muscles. ex. Outer layer of bud. @. Césophagus (pharynx). ga. Stomach. rt. Rectum. gm. Bud. ta. Tentacle. All figures are of Paludicella Ehrenbergii. 1. Stock of Paludicella Ehrenbergii, viewed as an opaque object. X 4.5. Diagram representing the interrelations of individuals in stock shown in Figure 1. A-H are individuals of the ancestral (median) branch; a, b,c, ete., lateral branches given off from the ancestral branch to the right; a’, b’, branches given off to the left ; a, B, etc., lateral branches of second order given off in the direction of the distal end of the ancestral branch; a’, B’, etc., given off in the direction of proximal end; a,’, lateral branches of third order — to left. ig. 28. Diagram of another (smaller) stock. Letters have same significance as in foregoing. 3. Cross section of branch near tip, showing the first trace of the bud of the polypide at er., 7. 635. 4, Cross section of branch near tip, showing bud of polypide slightly older than in Figure 3. X 635. 5 Cross section of slightly collapsed branch near tip, showing ingression of cells at ex. to form inner layer of bud. 635, 6. Longitudinal section of tip of branch to show cell structure. Zeiss, ; oil immersion, Oc. 1. > 1000. Figs. 7, 8,9. Optical sections (nearly in sagittal plane) of three tips of branches in successive stages of development, showing relations of young bud, gm., to next older polypide. In Figure 8 the branch is slightly shrunken. X 87. Pit msdrm. Beisel Jith Boston. Davenport. — Budding in Bryozoa, PLATE II. ABBREVIATIONS. cev. pyd. Neck of polypide. ec’drm. Ectoderm. cta. Normal cuticula of body gm. l. Anlage of lateral bud. wall. kmpdrm. Kamptoderm. cta.’ Cuticula secreted by tip. ms’drm. Mesoderm. All Figures from preparations of Paludicella Ehrenbergii. Fig. 10. Surface view of cuticula near the end of a branch at intervals, a being nearest the tip, and d farthest from it. The branch was stained in Erlich’s hematoxylin, the color being taken up by superficial cuticula only. X 820. Figs. 11, 12, 13. Cross sections of the cuticula taken at different distances from the tip, to show the stainable and non-stainable cuticule. Figure 11 is from near the tip, Figure 13 farthest from it. >< 1000. Fig. 14. Longitudinal median (sagittal) section through the tip of a branch show- ing cells of tip and an early stage in the development of the polypide. x 410. Fig. 15. Cross section of branch showing origin of lateral bud. X 636. Fig. 16. Longitudinal section of body wall of branch through the point at which a lateral bud is originating. Polypide of ancestral branch is nearly adult. > 636. Fig. 17. Longitudinal section of body wall from near the tip through the Anlage of alateral bud. X 410. Fig. 18. Cross section of branch showing histological conditions of Anlage of lateral bud. The polypide has reached a stage of development cor- responding to that of Figure 36, Plate IV. 1000. Fig. 19. Longitudinal section through body wall from the same branch as Figure 17, but farther from the tip. Histological conditions are to be com- pared with those of Figure 17, which represents a less differentiated condition. X 410. Fig. 20. Cross section of branch in which the polypide has reached a stage slightly younger than that of Figure 386. To show An/age of two lateral buds with their cuboidal undifferentiated cells. Xx 410. | | LI. cf a k [a] c < ~ S ja) wo & ; ah, — 4 i % : = 475° @ : g ware te ae ae A oe " = opas ant = aoe, ¢ ‘ at 2 ee fa, PA C70 .5%, mw aerese ie ee LOR a ae oe a - ; Sao “ oe ¢ ef. & Fy _« eye * S | DAVENPORT DAVENPORT. — Budding in Bryozoa. PLATE III. ABBREVIATIONS. An. Anal side of polypide. kmp’drm. Kamptoderm. atr. Atrium. loph. Lophophore. cev. pyd. Neck of polypide. ms'drm. Mesoderm. cl. mu. ret. Young cells of retractor mu. par. Parietal muscle. muscle. e. (Esophagus. cta. Cuticula. Or. Oral side of polypide. ec’drm. Ectoderm. rt. Rectum. ga. Stomach. vlv. cr. Cardiac valve. gn. Ganglion. All figures from preparations of Paludicella Ehrenbergii. Tigs. 21-25. Longitudinal sections through buds of polypides at successively older stages. The tip of the colony, and therefore the anal aspect of the polypide, is to the right in all cases. All figures < 410. Stage of Figure 37 (Plate 1V.). Few nuclei in central region. Shows rapid growth of bud, chiefly at neck of polypide. ‘The two inner cell layers are about to separate to form the common cavity of atrium and esophagus. Beginning of formation of alimentary tract at rectum, 7t. The row of nuclei separating the atrio-cesophageal cavity from the alimentary tract is due to the fusion of the two inner layers of the bud along this line. Rectum and stomach completed. Retractor muscles begin to form. Lophophore and young tentacles have made their appearance, and cesophagus and pharynx are separated from atrium. Beginning of formation of brain at gn. Part of cross section of a branch of stage of Figure 30. Parietal mus- cles, mu. par., occupy a diameter of the section, and are attached to the cuticula. < 635. Young parietal muscle at stage of Figure 28. This is one of the pair which in a later stage are found lying together in Figure 26. 635. Cross section of branch showing young polypide, and reticulated vacuo- lated cells. 410. Bit of body wall, with cuticula separated from underlying ectoderm to show ends of parietal muscles. X 690. DAVENPORT. — BUDDING IN BRYOZOA. PLIIL. «> re ————— =: — — a PP era La eT LTO - o *) ero ee ee proeeremne T. ans vy a a i | ra i 2 f fe ng vy nee Le os ey eee! = Pere So es Wi eee ea ee n ne a beak a i Rd; — + aft et 8 } tie ee De co a Davenport. — Budding in Bryozoa. PLATE IV. ABBREVIATIONS. An. Anal side of polypide. i. Inner layer of bud. an. Anus. loph. Lophophore. atr. Atrium. ms’drm. _Mesoderm. can.erc. Ring canal. mu. Muscle fibre in funiculus. ec’drm. Ectoderm. n’ Circumesophageal nerve. ex. Outer layer of bud. @. (Esophagus. Jun. inf. — Inferior funiculus. Or. Oral side of polypide. Jun. sup. Superior funiculus. rt. Rectum. ga. Stomach. vac. Vacuole. gn. Ganglion. vlv. er. Cardiac valve. All figures from preparations of Paludicella Ehrenbergii. Fig. 30. Cross section of polypide bud of stage of Figure 24, Piate III. The posi- tion is indicated by the line 30, Figure 24. > 410. Figs. 31-34. Four cross sections of a branch through a young polypide, some- what younger than that of Figure 25. Figure 31 is nearer the anal, Figure 34 nearer the oral surface. In Figure 34 that part only of the section of the polypide which lies near the body wall is represented. x 410. Fig. 35. Cross section of branch through polypide of age of Figure 25. To show origin of tentacles and ring canal. X 410. Fig. 36. Sagittal section of young polypide at period of closure of ganglion, gn. x 410. Fig. 36. Bit of same polypide a few sections to one side of plane of Figure 36, showing origin of inferior funiculus. X 410. Fig. 37. From cross section of branch showing early stage in development of the bud. x 410. Fig. 38. From a sagittal section of nearly adult polypide, showing the two funiculi and their muscles. X 410. Figs. 89 and 40. Two neighboring sections parallel to the body wall through a bud of the stage of Figure 23. Figure 40 lies three sections below Fig- ure 39. Figure 39 shows the atrial cavity, formed as yet only on the anal side. Figure 40 shows the beginning of formation of the ali- mentary tract at the anal end. Note the vacuolated condition of the mesoderm. X 410. Fig. 41. Polypide of about the stage of Figure 25 looked at en face. The anal tentacles, being turned under, do not appear. ‘To show compressed condition of polypide, and alternating position of tentacles. Cf. Figure 77, Plate IX. X 3820. DAVENPORT — BUDDING IN BRYOZOA. = 2 & is Ss { ‘ — ares ; > 90) \ = o (Peo ® lo) : } (o} ales @e\o, {2 = 4 3°) 3. @\-@>) G S°'\'\5)\ 4 WSe * } gz | / oS -Getekgw ay ee f & Cancre. ye * Vy q OF ie | 0) ‘@ ae OP qo. \ 9/ ‘S oY Ro o/ pee geceO) B Meisel lith:Boston ace ? DaveENPORT. — Budding in Bryozoa. PLATE V. ABBREVIATIONS. an. Anus. kmp’drm. Kamptoderm. cev. pyd. Neck of the polypide. loph. Lophophore. clr. set. | Collare setosum. ms’drm. Mesoderm. cta. Normal cuticula of adult mu. par. Parietal muscles. body wall. mu. pyr. Pyramidal muscles. cla.! Cuticula secreted by the tip of. atr. Atrial opening. * of branch. rt. Rectum. ec’drm. Ectoderm. spht. Sphincter. All figures from preparations of Paludicella Ehrenbergii. Fig. 42. Cross section of branch of age of Figure 387, Plate 1V., to show origin of primary parietal muscles. > 410. Figs. 48 and 44. Successive sections through a polypide slightly older than that of Figure 25, cut perpendicularly to the long axis of the branch. Dur- ing this period the lophophore becomes more nearly circular, and its aboral ends meet oralwards of the rectum, 7t. Figure 44 is nearer the tip of the branch. X 410. Fig. 45. Axial section of neck and atrial opening of polypide just sufficiently devel- oped to be capable of extrusion. Shows the collare setosum in place. x 410. Fig. 46. Section of communication plate cut across the branch. Two sections (10 w) above Figure 51. x 635. Figs. 47-49. Three stages in the development of the communication plates. Lon- gitudinal sections of the branch. In Figure 47, the polypide has reached the stage of Figure 22; in Figure 48, the stage of Figure 23; and in Figure 49, the stage of Figure 24. x 635. Fig. 50. Longitudinal section through neck of young polypide, showing the sink- ing of the neck below the general surface of the body, and the method of forming the inner cuticula of neck. X 3890. Fig. 51. Cross section of branch through communication plate. The left side of the section includes the cuticula and the underlying flat ectodermal layer. The right side cuts a little lower into the mesodermal cells. X 635. a -_ DAVENPORT. - BUDDING IN BRYOZOA. B Meisel lith Boston. ~“ay ve oe ee eee - bia oft BNE yiyces / bb ereabicih Nir La “ieee eat fia C.] 2 r “ ROP ded fermes cs " ss 1 a DAVENPORT. an. can. crc. cev. pyd. cl. rtl. cta. cta.’ ec’drm. eX. gm. gn. Fig. 52. Fig. 53. Fig. 54. Fig. 55. Fig. 56. Fig. 57. Fig. 58. Fig. 59. — Budding in Bryozoa. PLATE: VEZ ABBREVIATIONS. Anus. i. Inner layer of bud. Ring canal. kmp’drm. WKamptoderm. Neck of the polypide. la. comn. Communication plate. Reticulated cells. ms’drm. | Mesoderm. Normal cuticula of adult mu. par. Parietal muscles. body wall. mu. pyr. Pyramidal muscles. Cuticula secreted by tip. nv Circumeesophageal nerve. Ecetoderm. a. (Esophagus. Outer layer of bud. rt. Rectum. Bud. vac. Vacuole. ganglion. All figures from preparations of Paludicella Ehrenbergii. Cross section of a branch through a polypide slightly older than that shown in Figure 36. The section passes through the brain and whole extent of the ring canal, together with its opening into the ccelom. x 635. Next section below Figure 52 of same series ; showing the beginning of the circumcesophageal nerve ring. X 6969. Shows connection of mesodermal cells of body wall, ms’drm, with those of the outer layer of bud, er. X 1080. Origin of the secondary parietal muscle cells from mesoderm of body wall. X 635. Histological conditions of the budding regions. The cells have large nu- clei, the mesodermal cells are vacuolated and rapidly dividing; the cells of the bud are densely granular. Zeiss, ;'; oil immersion, Oc. 1. x 1070. Normal vacuolated cell, full of food particles. > 10380. Longitudinal section of young lateral branch, showing highly reticulated character of mesoderm, and nearly complete formation of communi- cation plate. X 410. Reticulated cell, showing, one of the pseudopodia-like processes which frequently appear on them, projecting into the celom. X 1030. Figs. 60-62. Three successive sections from a series across the tentacles of a pol- Fig. 63. ypide which has 15 tentacles, and is of about the stage of Figure 36. The odd tentacle (*) is shorter than the others, and lies opposite the rectum, rt. XX 296. Cross section of branch through neck of polypide of about the age of Fig- ure 36. Shows also the young pyramidal muscles. > 410. DING IN BRYOZOA. er. DAVENPORT. — BuD L Ampilrm._ .s B Meisel, lith. Boston. DAvENPORT. — Budding in Bryozoa. Fig. Fig Fig Fig. Fig. 64. PLATE VII. For explanation of notation employed on this plate, see page 41. Outline drawing of one of the lateral “ fans’ ? of Bugula turrita, taken from the axis of the colony and spread out flat on the slide. < casl2: . Diagram showing arrangement of individuals in Figure 64. Outline drawing of one of the lateral branches of a stock of Crisia eburnea, spread out flat on the slide. Part of stock of Bugula flabellata. x 16. x 10. 5¢, Diagram showing arrangement of individuals in Figure 65. . ; ~~ ff Davenport. — Budding in Bryozoa. Op. PLATE VIII. ABBREVIATIONS. Operculum. pyd. rgn. Regenerated polypide. pyd. dyn. Degenerated polypide. Fig. 67. Fig. 68. Fig. 714. Diagram to show interrelation of individuals in the corm, Figure 69. A part of a corm of Membranipora pilosa, to show regular arrangement, with a single median branch, each of whose individuals gives rise to two lateral branches. The * indicates margin of frond on which stock was growing. X ca. 8. Young corm of Flustrella hispida, to show arrangement of individuals. x 10. Young corm of Membranipora pilosa, with several median branches, show- ing regular arrangement. The marginal ones alone give rise to lateral branches. X 10. Young corm of Lepralia Pallasiana, showing arrangement of individuals. On the left, the nuclei of the cells of the body wall are shown, to indicate the inequality of their distribution. On the right, nuclei are omitted. At pyd. rgn. a regenerating polypide is seen, on the opercu- lum. X 45. Plan of Figure 71. — ° ; y= DAVENPORT. — BUDDING IN BRYOZOA. PL.VIIL. 16 Ev A,g0 os* 7 a fa >) aoe . Ae 21 6 D wins , 7 “A 29 re ee a; } : F\ 95 foe oN * hh FR 25 wl D> 3 oY 39 My Us33 . L344 <6 oo aee—COSE SE eed B Meisel lth.Boston a a ee ee DAVENPORT. — Budding in Bryozoa. PLATE IX. ABBREVIATIONS. An. Anal side of polypide. ~ lu. gm. Lumen of bud. atr. Atrium. marg. Margin of corm. can. cre. Ring canal. ms'drm. Mesoderm. cev. pyd. Neck of the polypide. n’ Circumeesophageal nerve. cla. Cuticula. @. Cisophagus. ec’drm. Ectoderm. Or. Oral side of polypide. ex. Outer layer of bud. rt. Rectum. ga. Stomach. sep. Wall of zocecium in the corm. gm Bud. sol. Sole of the corm. gn. Ganglion. tet. Roof of the corm. 7. Inner layer of bud. Fig. 72. Longitudinal vertical section through the peripheral part of the corm of Lepralia Pallasiana, showing the margin of the corm and two zoecia, the older of which contains a polypide. > 160. Fig. 73. Longitudinal vertical section through the margin of a corm of Lepralia Pallasiana, showing the two layers of this region and the origin of the polypide. x 410. Fig. 74. Young regenerating polypide of Flustrella hispida. The section passes through the sagittal plane. > 380. Fig. 75. Vertical section through margin of corm of Flustrella hispida, to show origin of polypide. x 410. Fig. 76. Sagittal section through young polypide of Flustrella hispida, to show early stage of development of alimentary tract. X 410. Fig. 77. Superficial view of young polypide from upper surface of corm of Flus- trella hispida, showing young tentacles and their relation to the anus (at atr.). X 820. Fig. 78. Bud of polypide of Flustrella hispida at the time of closure of the pore of invagination. x 390. Fig. 79. Radial section through margin of corm of Flustrella hispida, showing bud of polypide. » 410. Fig. 80. Young polypide of Flustrella hispida. 880. Fig. 81. Bud of Lepralia Pallasiana immediately before the formation of alimen- tary tract, showing relation of the rectal pocket (7t.) to the atrio- pharyngeal cavity above. X 410. Fig. 82. Section through polypide, through lately formed brain and circum- cesophageal nerves (n.’) growing around esophagus (@.). X 410. se cS i er @e ree BMeisel lith Boston. J, io a “| t Davenport. — Budding in Bryozoa. PLATE X. ABBREVIATIONS. An. Anal side of polypide. kmp’drm. Kamptoderm. an. Anus. lu. gn. Lumen of the ganglion. atr. Atrium. ms’drm. Mesoderm. can. ere. Ring canal. mu. Musculature of esophagus. cev. pyd. Neck of polypide. mu.ret. Retractor muscle of polypide. ce. Cecum. @. (Esophagus. eta, Cuticula. op. Operculum. di’sep. Wall of zocecium in the corm. Or. Oral side of polypide. ec'drm. Ectoderm. or. Mouth. ex. Outer layer of bud. pyd. dgn. Degenerated polypide, “ brown Sun. Funiculus. body.” ga. Stomach. rt. Rectum. gn. Ganglion. ta. Tentacle. Ue Inner layer of bud. Fig. 83. Sagittal section through young polypide of Escharella variabilis. X 820. Fig. 84. Regenerated polypide of Lepralia Pallasiana on operculum (op.). > 3880. Fig. 85. Cross section of pharynx of adult polypide of /scharella variabilis, show- ing perforated cell walls. 635. Fig. 86. Sagittal section of young polypide of Lepralia Pallasiana, showing forma- tion of brain. X 3820. Fig. 87. Section parallel to sole of a corm of Escharella variabilis at about the stage of Figure 86, showing atrium, ganglion, and rectum. X 430. Fig. 88. Vertical section through a bit of roof of corm of Lscharella variabilis at neck of polypide, showing also the region of future operculum and of origin of future regenerated buds. Compare with Figure 90. X 410. Fig. 89. Sagittal section of young regenerated polypide of Flustrella hispida inter- mediate in age between Figures 86 and 83. Shows the origin of the ganglion and rotation of the oral tentacles. X 820. Fig. 90. Vertical section of a bit of body wall from same individual as Figure 88, to show the comparatively less embryonic condition of cells here than at neck of polypide. > 410. Fig. 91. Operculum of Lepralia Pallasiana cut perpendicularly to surface, show- ing origin of aregenerating polypide. Body wall somewhat shrunken from cuticula. > 410. Fig. 92. Section through a regenerated polypide of Escharella variabilis, showing relations of alimentary tract to “brown body” (pyd. dgn.). X 410. DAVENPORT. — BUDDING IN BRYOZOA. BMeisel lith. Boston. A 4 : = Satire & f ‘ hya ert ar sr | re eh & &. . ¥ vi “ OF eR Ged By 0.! 7 DavenPoRT. — Budding in Bryozoa. PLATE XI. ABBREVIATIONS. cev. ow. Neck of ocwcium. ms’drm. Mesoderm. cel. Ceelom. ow. Occium. ec’drm. Ectoderme ov’ Ooblasts. en’drm. Entoderm. pyd. Polypide. ex. Outer layer of bud. sto. Stolon. 2. Inner layer of bud. tet. Roof of stock. lu. gm. Lumen of the bud. Fig. 93. Fig, 94. Fig. 95. Fig. 96. Fig. 97. Fig. 98. A portion of a longitudinal section through a young stock of Plumatella polymorpha, about two weeks after hatching from statoblast (killed 12th May, 1890), showing the body wall just analward of the neck of a young polypide (pyd.), at the oral side of which a younger bud has already arisen. The inner (mesodermal) layer of the body wall shows odblasts (ov.’) in various stages of development. > 600. Longitudinal section of ocecium of Cristatella showing embryo which is giving rise to the coelomic epithelium by ingression of cells at its proximal pole, —i. e. the pole nearest the neck of the oecium. There are in the next section two other cells in the cavity of the blastula, one of which appears degenerate in that it contains a huge vacuole, and has no distinct nucleus, the chromatic substance lying scattered loose near the cell wall. X 600. Longitudinal section through occium of Cristatella and its contained em- bryo. One polypide bud and the stolon (sto.) are shown here. There are two other buds in the embryo further developed than this one, lying to one side of it, and on the side of each of these buds is the Anlage of another. The stolon is seen to be well developed, lying be- tween the ectoderm and mesoderm throughout the region bounded by the three older buds, and extending as a zone beyond them, and even beyond the An/age of the youngest polypides. The embryonic tissue thus forms a disk about 75 & 150 win extent. X 890. Transverse section of ocecium of Plumatel/a, showing origin of first pol- ypide. Compare with Figure 99, which represents an earlier stage. x 390. Longitudinal section through ocwcium and contained embryo of Cristatella. The stolon is already cut off from the ectoderm. This stage imme- diately follows that of Figure 101, Plate XII. The forming bud is that of the first polypide. X 890. Oblique section through owcium of Plumatella, showing a later stage in development of the inner layer of the larva (cf. Fig. 94). > 600. Longitudinal section of occium and contained larva of Plumatella. The bud shown at 7., ex. is the first in the colony. An incipient (second) bud is shown five sections to one side in the region indicated by an asterisk. X 410. PLXI. DAVENPORT. — BUDDING IN BRYOZOA. —_ \Gay) oO. ms drm.+ end.) —— BMeisel,lith.Boston. NY Davenport, — Budding in Bryozoa, PLATE XII ABBREVIATIONS. ec’drm. Ectoderm. ms’drm. Mesoderm. ex. Outer layer of bud. ow. Occium. v Inner layer of bud. sto. Stolon. lu. gm. Lumen of the bud. Fig. 100. Longitudinal section of a larva of Plumatella polymorpha, in which the two layers are established; the pole of ingression is directed upward, on the plate. Fig. 101. Section of upper part of zocecium of Cristatella mucedo, with its contained larva. Showing the formation of the stolon at the pole of ingres- sion and the attachment of this pole to the placenta-like neck of the oecium (*). x 390. Fig. 102. Section through an occium of Cristatella, with its contained larva. One polypide is already established, and a second is arising. The two are the only buds in the larva. On the left of the older bud the stolon is seen to be intruding itself between the ectoderm and meso- derm of the larva. X 390. Fig. 103. Section through the two oldest polypides of the Cristatella larva, to- gether with the stolon. This larva contains one other less developed bud at one side of these two. X 390. Fig. 104. Plumatella polymorpha. Stage of first bud later than that shown in Figure 96, exhibiting pore of invagination closed by overgrowth of ectoderm. X 390. DAVENPORT. — BUDDING IN BRYozoa. Pr xi * SS ae = (oO (0 c Ly koe SLY Cree Gai ae BMeisel th Boston. No. 2. — The Gastrulation of Aurelia flavidula, Pér. & Les. By Frank Smiru.! PRECEDING the appearance of Goette’s (’87) publication in 1887 upon the development of Aurelia aurita and Cotylorhiza tuberculata, the yas- trulation of Aurelia had been regarded, in the light of the studies of Kowalewsky, Haeckel, Claus, and others, as the result of invagination or at least of a process nearer to invagination than to any other method of gastrulation. Gvette’s work seemed to show, however, that, instead of an invagina- tion, there is an ingression of cells to form the entoderm, and that the first result of this ingression is the production of a solid gastrula, or sterrogastrula, which is only subsequently hollowed out, and is put into communication with the exterior through the formation of a prostoma at a still later period. Recently, in a paper dealing especially with the development of Cotylorhiza tuberculata, Claus (’90) reaffirms the posi- tion taken in his previous paper (’83), in which the gastrulation in Aurelia was represented as being simply a modification of invagination. In recent papers by Hamann (’90) and McMurrich (’91), Goette’s views are adopted, and form part of the basis for statements that, in the devel- opment of the Scyphomeduse, invagination, instead of being the rule, is the exception. This want of agreement among those who have given the subject most attention makes the determination of the actual method of gastru- lation in Aurelia a matter of considerable interest, and it may be assumed that any contribution to the solution of the question will not be unwelcome. Early in the current year, at the suggestion of Dr. E. L. Mark, I undertook to investigate the method of gastrulation in A. flavidula. Through the kindness of Mr. B. H. Van Vleck of the Boston Society of Natural History, I was enabled to spend two months of the summer of 1887 at his seaside Laboratory at Annisquam, Mass., where I then collected the material used in the present study. The embryos were killed with picro-nitric acid, and preserved in 90 per cent alcohol, in which they have been kept during the three intervening years. Of the 1 Contributions from the Zodlogical Laboratory of the Museum of Comparative Zoology, under the direction of E. L. Mark, No. XXIX. VOL. XXII. — NO. 2. 116 BULLETIN OF THE various staining fluids tried, Erlich’s acid haematoxylin gave decidedly the best results for sections. For examination of the whole embryos, Grenacher’s alcoholic borax-carmine and Czokor’s alum-cochineal each gave good results. The latter stain possesses the peculiarity of stain- ing embryos of different ages with corresponding degrees of intensity, the youngest stages being stained the least, the degree of intensity in- creasing with the age of the embryo up to the planula stage. The result of segmentation is a one-layered blastosphere, as in A. aurita. Although the diameter of the blastoceel, or segmentation cavity, presents some individual variations at a given stage of develop- ment, it in general corresponds very nearly with that of A. aurita, as described by Goette (’87, p. 3). It increases slightly as the process of gastrulation advances. ‘The cells of the blastosphere are usually some- what shorter at one pole than elsewhere, and it is from this region that the entoderm is formed. The nuclei of all the cells are situated very near the outer surface of the blastosphere. Small spheroidal bodies con- stitute the greater portion of each cell; they are very evenly distributed through its substance, except in the vicinity of the nucleus, where they are somewhat jess abundant. Vacuoles of variable sizes are usually found in some of the cells. The nuclear region stains a little more deeply than the remaining portion. The method of gastrulation in A. flavidula is similar to that in A. aurita as described by Claus (’83, pp. 2 and 3), although it resembles even more closely a typical invagination. When the process of cleavage has resulted in the formation of a blastosphere composed of somewhat more than four hundred cells, a depression of limited extent appears in the portion of the wall which is composed of the shorter cells. From this depressed region is formed the entoderm, which develops as a single con- tinuous layer of cells surrounding a small cavity, the coelenteron. At the beginning of the process, and throughout its duration, the coelenteron is in communication with the exterior by means of a narrow passage, the blastopore, or blastoporic canal. See also Explanation of Figures (Plate I. Figs. 1-4). From these figures it is apparent that only a small por- tion of the wall of the blastosphere is concerned in the invagination, and to that extent it must be regarded as deviating from the typical invagination, where one half of the wall of the blastosphere is infolded to form the entoderm. The colenteron is, however, at all stages of gas- trulation, an open sac-like cavity, and therefore noticeably different from that of A. aurita, of which Claus (’83, p. 3), says: “ Mit dem weiteren Nachriicken der die Mundspalte begrenzenden Zellen in das Innere des MUSEUM OF COMPARATIVE ZOOLOGY. Dwi Larvenleibes iindert sich jedoch allmahlig das friihere Verhiltniss zu Gunsten der Entodernifiillung, die noch immer keine wahre Hohle, sondern eine schmale lineare, mit der Hauptachse des Levbes zusammenfallende Spalte besitzt.” 1 With the growth of the entodermal layer, the celenteron enlarges, and the cleavage cavity is diminished, until finally it is entirely obliterated and the entoderm everywhere comes into contact with the ectoderm (Plate I. Figs. 4-6, Plate II. Fig. 11). During the process of gastrulation, and also for a short time after its completion, the thickness of the entoderm, which is much less than that of the ectoderm, does not increase. Figures 5 and 6 (Plate I.) are from sections of two embryos at different stages of development. Figure 5 is from an embryo soon after the completion of gastrulation ; Figure 6 is from an older stage. Since in each case the section is from the middle of its series, it follows that a decided thickening of the ento- derm takes place between the stages represented by these Figures. This thickening is apparently due to an increase in the number of the cells, which are soon unable to find room for themselves except by elongation. The entodermal cells are quite different in appearance from those of the ectoderm; they are approximately spherical, and do not have as numerous spheroidal yolk bodies as the latter. Their nuclei, however. closely resemble those of the ectoderm, and usually lie in the portion of the cell nearest the ccelenteron. As is to be seen from Plate II. Fig. 7, —a section nearly perpendicular to the blastoporic canal,— the blastopore in A. flavidula is very small. A similar condition has been shown by Claus to exist in A. aurita, and by Metschnikoff (’86, Taf. X. Fig. 14) in Nausithoé marginata. The nuclei of the cells composing the wall of the blastosphere are sit- uated, as has been stated, near the surface of the sphere. But at about the time of the beginning of the invagination, sometimes a little earlier, a few of the nuclei are found in the deeper portion of the wall. At first there are only one or two such displaced nuclei to be observed in the whole embryo, but as development progresses they increase in number. A careful examination of sections shows that the cells to which they belong do not extend, like the remaining cells of the wall, through its whole thickness, but that they are wedged in as it were between the bases of the ordinary cells. The latter are much elongated, and from mutual pressure are prismatic, whereas the deep cells are spheroidal and project in some cases into the segmentation cavity. Since these cells are found at various intermediate positions between the outer and inner 1 The original is not Italicized. 118 , BULLETIN OF THE surfaces of the wall, I infer that they result from a process of migration inward, either at the time of cell division or independently of that pro- cess. Indeed, there is obviously no other possible source whence these cells could come, but the exact process of transfer is not easily determined. I believe that this increase in number is at first for a considerable time due exclusively to the migration of cells which once shared in forming the external boundary of the sphere, but later the division of cells which have already migrated into the deeper portion of the ectoderm undoubt- edly contributes to this increase. We have now to turn our attention to a phenomenon of considerable importance, the study of which from preserved material is, however, attended with difficulties. I refer to the ingression of cells from the wall of the blastosphere into the cleavage eavity, which begins a con- siderable time before the invagination commences. The latter does not take place until the number of cells forming the wall of the blastosphere has exceeded 400, whereas the ingression, as far as can be inferred from the cases which I have studied, may occur at any time after the blasto- sphere contains about 100 cells up to the period of invagination. The phenomenon of ingression in A. flavidula is not of constant occurrence, but when it does take place is similar to that represented by Goette (87, Taf. I. Figs. 1-5) for the earlier stages of the blastula in A. aurita. It consists of a migration into the cleavage cavity of one or two, rarely more than three, of the cells of the blastospheric wall. With the exception that they assume a spherical form, because relieved from pressure, they are at first similar in size, as well as in nuclear and other characters, to the cells remaining in the wall. The study of ingression upon preserved material is attended with diffi- culty, since in any one specimen we have the condition at only one stage of development, and cannot say with certainty what its condition has been in past stages, or what it might have been during some subsequent period. This can be determined only by studying the conditions exist- ing in other embryos killed at other stages, and arranging all in their probable natural sequence. In view of this fact, I have sectioned and examined several hundred embryos which were killed at different stages of development. As faras possible the results obtained from these sections have been verified by the study of embryos cleared and mounted whole. Although this ingression occurs before invagination, I have deferred the discussion of it until now, because invagination is constant in its occur- rence, whereas the ingression does not appear to be so; indeed, the majority of the specimens have shown no indications of it. MUSEUM OF COMPARATIVE ZOOLOGY. 119 The subsequent history of these cells, as shown by the comparison of specimens of succeeding stages of development is both interesting and peculiar. I imagine that it is such cells as these to which Claus (90, p. 3) refers when he says: “Ich habe den vereinzelt eingetretenen zwei bis drei Zellen, weil sie nicht regelmiissig in jeder Blastula sich abldsen, der am vegetativen Pole einwuchernden Zellenmasse gegenitiber keine weitere Bedeutung beigemessen, so dasse ich dieselben zwar auf einer Abbildung darstellte, im Texte aber nicht besonders erwiahnte, und bin auch jetzt noch der Ansicht, dass diese auffallend kleinen Zellen wieder riickgebildet werden und iiberhaupt nicht zur Bildung des Entoderms beitragen.” In my judgment, a part of the difference of opinion be- tween Goette and Claus is due to the fact that there are two kinds of cells which find their way into the cleavage cavity. These are the large cells described by Goette as beginning to be formed at an early stage of the blastula, and much smaller cells, of which I shall have more to say hereafter, that make their appearance only at later stages of develop- ment. Claus seems to have seen “very small cells,” and to have assumed that they were equivalent to the large cells figured by Goette. I am unable to say with certainty that the cells seen by Claus are the equivalents of those figured by Goette, but Claus assumes that they are, and I have the more reason to believe it because the large cells are of more frequent occurrence than the small ones. But if this be so, I do not understand how Claus could speak of them as “diese auffallend kleinen Zellen.’” But however that may be, I have reason to believe that the supposition of Claus, that they ultimately degenerate, is correct. Soon after the ingression of a cell its nucleus undergoes changes: which result in its disappearance as such, for instead of a nucleus there can be seen only one or more small, isolated, deeply stained particles, which I judge to be scattered portions of the nuclear chromatine (Plate II. Figs. 8 and 10). Even these are often wanting. I have said that this nuclear change follows soon after the ingression of the cell, because out of the numerous instances in which these cells have been present there is not one in which the nucleus retains its original condition after the cells in the wall of the blastula have given evidence, by their diminished size, that they have undergone division since the ingression took place. This conclusion is in part based on the assump- tion that at the time of ingression the ingressing cells are of about the same size as those which remain in the wall of the blastula. The in- gressing cells sometimes persist, without any further apparent changes 120 BULLETIN OF THE than the disintegration of the nucleus, until the process of gastrulation is completed. Such cases are not as common, however, as others, where there is to be found in the cleavage cavity material which appears as though it had resulted from the disintegration of similar cells. This material has a spongy or vacuolated appearance, and contains faintly staining bodies or granules similar to those found in the ectodermic cells; it does not possess definitely circumscribed boundaries; on the contrary, it fills the cleavage cavity more or less completely, but is not of uniform density throughout. The fact that this material is not homo- geneous, and that it contains granules, etc., prevents the conclusion that it has been produced as a simple secretion into the cleavage cavity, although it may have been formed in part by such a process. The fre- quent association of this material with ingression cells in the same spe- cimen (Plate II. Fig. 8), and the lack of other ways of accounting for its presence, lead me to believe that it is produced by the disintegration which I have suggested. There is another peculiarity of the development which I believe to be connected with this process of nuclear disintegration. It is this: after having once entered the cleavage cavity the immigrating cells seem to lose their power of division, and consequently do not become more numerous, while the cells composing the blastospheric wall undergo repeated divisions, as is shown by their increased number and dimin- ished size. The number of these immigrating cells is small, usually only one or two, very rarely more than three, so that I have not been successful in finding the ‘“ Verbindungsglieder” connecting the conditions shown by Goette (’87, Taf. I.) in his Figures 5 and 6, which Claus (’90, p. 4) re- garded as essential to the substantiation of Goette’s view of the method of gastrulation. Reference has been made to the fact that in some cases the ingrowing cells persist both during and after the process of invagination. In the latter case, they are to be found in the ecelenteron rather than in the cleavage cavity. Figure 11 (Plate II.) is drawn from such a specimen. Figures 9 and 10 represent two sections of one individual in which the invagination is not completed, and furnish a hint as to the process by which the cells pass into the ceelenteron from the cleavage cavity. The entoderm being composed of less closely fitting cells than the ectoderm, doubtless admits the passage of the large immigrated cells through it more readily than the latter would (Plate II. Fig. 9). The immigrated cell is of course passive in this process. Since it is prevented by the MUSEUM OF COMPARATIVE ZOOLOGY. Lot firm wall of the ectoderm from escaping, the pressure exerted upon it by the enlarging entoderm is probably sufficient to cause it to be forced through the entodermic wall into the ceelenteric cavity. From Figure 10 it is to be seen that one cell has already reached the gastral cavity. In speaking of these peculiarly situated cells I have thus far assumed that they are such as originally reached the cleavage cavity by an early ingression, where, with changed nuclear condition, but apparently with no further alteration, they have remained until the time of gastrula- tion. That this is their source is evident from the following consid- erations. First, the small diameter of the blastoporic canal (Plate II. Fig. 7), which is from the same series as Figures 9 and 10, precludes the assumption that they might have entered the gastrula cavity from without. Secondly, in their large size and general appearance they are unlike the cells of either ectoderm or entoderm at any time during gastrulation, and so could not have been derived from those sources during that process. ‘Thirdly, they do correspond in size and general characters, except in their nuclear conditions, with the cells of the blastospheric wall as the latter appear at the time when ingression takes place. It is difficult to state either the cause or the purpose of this immigra- tion. That it is not essential to the welfare of the embryo, either by affording nourishment to the developing cells of the entoderm, or in any other way, is evident from the fact that in a large number of cases it does not occur. That it is not an inherited tendency, derived from a more primitive method of gastrulation by ingression, is probable from the fact that the immigrating cells do not appear to have any share whatever in the formation of the entoderm. On the other hand, its occurrence seems to be much too frequent to be considered as acci- dental. I have stated previously (p. 119) that two very different kinds of cells are to be found at times in the cleavage cavity. Besides the large immi- grating cells already described at length, I have found in a much smaller number of cases very small cells (Plate I. Fig. 2), one or two in num- ber, that appear precisely like the deep-lying ectodermal cells already described. Because of their strong resemblance to the latter, their exceptional occurrence, and the fact that they do not appear until after the beginning of the development of the deep-lying ectodermal layer, I incline to the opinion that they are derived from that layer, and that their occurrence is entirely accidental. At first it appeared to me surprising that two investigators could 122 BULLETIN OF THE reach such different conclusions as those published by Claus (’83 and 90) and Goette (’87), concerning the method of gastrulation in the same animal, A. aurita. Since studying this process in A, flavidula, it seems less strange. ‘The results obtained from my first sections led me to think that the conclusions reached by Goette would be confirmed in the case of A. flavidula. Better staining, thinner sections, and more accurate orientation have made it certain, however, that the method of gastrulation in this species is much more in accord with the description given by Claus, and that the process really is one of invagination. Certain considerations weaken my confidence in the position defended by Goette. A comparison of his Figures 6-9 (787, Taf. I.) with some of my thicker sections, or with those which were made when the gastrula was so oriented as not to be cut parallel to the blastoporic canal, makes it appear to me probable that his results are based upon similar inade- quate sections. In Figure 8 (Plate II.) there are only about one half as many nuclei visible as there are cells, the nuclei of a portion of the cells being contained in adjacent sections. In figures of corresponding stages of A. aurita as represented by Goette (87, Taf. I.), nuclei are figured in nearly all the cells. I believe this to be evidence that his figures were drawn from thick sections. The blastopore, because of its very small diameter, is quite easily overlooked in thick sections, and especially if the plane of sectioning is somewhat oblique to the longitu- dinal axis of the blastopore. Since, as previously stated, the nuclei of the entodermal cells are usually situated in the portion of the cell near- est the ccelenteron, it is easy to find in thick sections of an invaginating embryo conditions like those represented by Goette in his Figures 6-8. My Figure 12 (Plate II.) reproduces a section of the same series as that represented in Figure 3 (Plate I.). The intervening section (not figured) is quite similar to Goette’s Figure 8. An examination of the cells bordering the blastoporic canal in Figure 3 will show how sections like Figure 12, or such as are a little oblique to the chief axis of the embryo have the appearance of containing immigrating cells. Such sections also exhibit the flattening in the region of the shorter cells to which Goette (’87, p. 4) has called attention in the following words : “Schon wiihrend der Gastrulation zeigt sich eine Stelle des Keims im Bereich seiner kiirzeren Zellen etwas abgeplattet.” Additional considerations increase the probability of the correctness of the view which I have advanced to explain Goette’s error. With advancing stages of development, I have found an increase in the num- ber of the cells composing the ectodermic wall. This is undoubtedly MUSEUM OF COMPARATIVE ZOOLOGY. 133 subject to slight individual variations, but the number of such cells is nevertheless in quite close correlation with the stage of development. An examination of Goette’s Figures 6-9 (’87, Taf. I.) reveals such a simi- larity in the number and size of the cells composing the ectoderm in each of the four supposed stages, that I am driven to the conclusion that they represent sections from specimens of a single stage of development, which may have been produced by cutting in planes having different relations to the chief axis of the embryo. When we consider that in the majority of embryos there are no signs of ingression, and that in the cases where it does occur the immigrating cells in some instances degenerate early, and in others persist undivided throughout the process of gastrulation, and that they at no time show evi- dences of even sharing in the formation of an entoderm, — and when we further reflect that all the conditions shown in Goette’s Figures 6-9 can easily be reproduced from sections of invaginating gastrulz of a single stage of development, —it seems improbable that the entoderm of Au- relia develops even occasionally by ingression. At present, therefore, there seems to me to be no evidence that in this genus gastrulation occurs by both methods, invagination and ingression. The Scyphomedusz present several interesting variations in gastru- lation. The anomalous development occurring in Lucernaria is as far removed from the usual process as that group itself is from the other Scyphomeduse. According to MeMurrich (91, p. 314), the solid plan- ula in Cyanea arctica is formed by the immigration of certain of the blastula cells. This plunnla is subsequently hollowed out, and gives rise to a structure like an invaginate gastrula, but it is formed without any invagination. In Cyanea capillata (Hamann, 790, pp. 16, 17) there seems to be a solid ingrowth of cells from one pole of the embryo, and a simultaneous development of the celenteron. The entoderm of Chry- saora (Claus, ’83, p. 5, Taf. I. Fig. 21 h) is developed in a way which is somewhat similar to that described by Hamann for Cyanea capillata, According to Claus (’83, p. 2, and ’90, p. 4), the gastrulation of Aurelia aurita approximates the method by invagination a little more closely than that of Chrysaora, since its cells are arranged ina single layer about the fissure-like ccelenteron. Aurelia flavidula exhibits a still more nearly typical invagination, since the ccelenteron is from the beginning _an open sac-like cavity. Cotylorhiza tuberculata (Cassiopea Borbonica) “has an invaginate gastrula which closely resembles that of Aurelia flavidula (Claus, 90, Taf. I. Figs. 2 and 3; Kowalevsky, ’73, Taf. IT. Fig. 1). Finally, in Pelagia noctiluca and Nanusithoé marginata, as 124 BULLETIN OF THE shown by Metschnikoff (’86, pp. 66-68, Taf. X.), there is a typical in- vagination. If the observations of MceMurrich (791, p. 314) on Cyanea arctica are substantiated, we have among the Scyphomedusze one example of the formation of a sterrula by ingression, with the subsequent formation of a gastrula-like structure, without an invagination. From the preceding summary it is to be seen that there are in Scyphomedusz two cases in which the mode of gastrulation appears to be intermediate between ingression and invagination, and at least four cases of unquestionable invagination. If, in the light of so much variation in the mode of gastrulation in this group as is shown by the few forms studied, it is “safe to conclude that any one mode is typical, that mode would cer- tainly appear to be invagination, and not, as Hamann and MeMurrich have recently maintained, ingression. CAMBRIDGE, June 20, 1891. MUSEUM OF COMPARATIVE ZOOLOGY. 125 BIBLIOGRAPHY. Claus, C. ’°83. Untersuchungen iiber die Organization und Entwicklung der Medusen. Prag u. Leipzig, 96 pp. 790. Ueber die Entwicklung des Scyphostoma von Cotylorhiza, Aurelia und Chrysaora, sowie tiber die systematische Stellung der Scyphomedusen. _ I. Arbeiten a. d. zool. Inst. Wien, Tom. IX. p. 85. Goette, A. 87. Abhandlungen zur Entwicklungsgeschichte der Tiere. Viertes Heft. Entwicklungsgeschichte der Aurelia aurita und Cotylorhiza tuberculata. Hamburg u. Leipzig, 79 pp. Hamann, O. °90. Ueber die Entstehung der Keimblatter. Ein Erklarungsversuch. In- ternat. Monatsschr. f. Anat. u. Physiol., Bd. VII. pp. 1-28. Kowalevsky, A. 73. Untersuchungen iiber die Entwicklung der Coelenteraten. Nachrichten Gesellsch. Freunde Naturerkennt., Anthropol. u. Ethnog. Moskau, 1873. (Russian.) See also Hoffmann u. Schwalbe, Jahresbericht, Bd. IL. p. 279. McMurrich, J. P. °91. Contributions on the Morphology of the Actinozoa. II. On the Devel- opment of the Hexactinie, Jour. Morphol., Vol. IV. p. 303. 91". The Gastrea Theory and its Successors. Biological Lectures delivered at the Marine Biol. Laboratory, Wood’s Holl. Boston, p. 79. Metschnikoff, E. °86. Embryologischestudien an Medusen. Wien, 159 pp. Akt Aint P Ma Sas a fy i = - Limite” P) vas ? EXPLANATION OF FIGURES. All the figures were drawn from sections with the aid of an Abbé camera. The sections from which the figures were made were 5 wu in thickness. Surra. — Gastrulation in Aurelia, PLATE I. ABBREVIATIONS. bl’ po. Blastopore. cav. sq. Segmentation cavity. el, Immigrated cell. celent. Celenteron. cog. Coagulum. ec’drm. Ectoderm. en’drm. Entoderm. nl, Chromatic portion of degenerated nucleus. nl. ec’'drm. Nuclei of deeper portion of ectoderm. Figures 1-4. Sections to illustrate the nature of the invagination. Fig. 1. or 9 ro An early stage of invagination. 460. A slightly later stage than that of Figure 1. x 540. A stage in which the invagination is well advanced. 385. A gastrula with invagination completed. 410. Section of a gastrula cut in a plane (equator) perpendicular to the axis of the blastoporic canal. X 3865. Section of an older individual through the equator, showing increase in thickness of the entoderm. X 586. SMITH.— GASTRULATION IN AURELIA. B Meisel, ith. Boston Smira. — Gastrulation in Aurelia. PEATE ABBREVIATIONS. bl’po. Blastopore. cav. sg. Segmentation cavity. el. Immigrated cell. ceelent. Ceelenteron. cog. Coagulum. ec’drm. Ectoderm. en’drm. Entoderm. nl. Chromatic portion of degenerated nucleus. nl. ec’drm. Nuclei of deeper portion of ectoderm. Figures 7, 9, and 10 are from different sections of the same individual. Fig. 7. Section through the blastoporic canal and nearly perpendicular to it. x 410. F “ 8. Section at a stage preceding invagination. It shows an immigrated cell in which the nucleus has degenerated. X 385. “ 9. Section before the close of gastrulation, showing an immigrated cell in the segmentation cavity. X 410. “ 10. Section from the same individual as Figure9. It contains an immigrated cell in the ceelenteric cavity. 410. “ 11. Section of a gastrula with two immigrated cells contained in the ccelen- teric cavity. X 385. “ 42. Section from the same individual as Figure 3, to show the appearance when the gastrula is cut parallel to, but at one side of, the blastoporic canal. X 385. \ JRELIA. — UU SMITH.— GASTRULATION IN coplent.~ bl po. iS nS § » ob. sston h.Bs Yet MeSel, Ui Bao: No. 3.— Amitosis in the Embryonal Envelopes of the Scorpion. By H. P. Jounson.? In the fall of 1889, at the suggestion of my instructor, Prof. E. L. Mark, I decided to work upon the problem of the so-called “ direct ” or amitotic division of nuclei. While in search of suitable material, my attention was called to a brief article by Blochmann (’85), describing a very well marked amitotic division for the large nuclei of the embry- onal membrane of the’ scorpion. A number of Centrurus embryos were kindly given to me by my friend, Dr. G. H. Parker. These em- bryos had lain in 90% alcohol since the summer of 1886. The mode of fixation (for the purpose of studying the development of the eyes) was somewhat unusual; for, immediately after their removal from the mother, they were immersed in 35% alcohol, and thence carried up quite rapidly, through 50 and 70%, to 90%. Notwithstanding this rather crude method, the membranes were in excellent histological condition, in no way inferior to material afterwards prepared by the most approved methods of fixation. In addition to the material above mentioned, I received from Mr. Richard Goeth, of Burnet County, Texas, during the following winter and spring, about three dozen live specimens of Centrurus (sp. incog.).? A lot that arrived in the latter part of May contained several pregnant females, with embryos in different stages. The scorpions were chloro- formed, and the ovarian tubes with the embryos enclosed were dissected out as quickly as possible. A number of killing agents were used, including Flemming’s weaker chrom-aceto-osmic, Rabl’s chrom-formic, Perenyi’s fluid, Kleinenberg’s picro-sulphuric, and Merkel’s fluid. For staining, I have used chiefly Ehrlich’s hematoxylin. Grena- cher’s alcoholic borax-carmine and Czokor’s alum-cochineal have given fair results. Safranin, employed according to Flemming’s method, I 1 Contributions from the Zodlogical Laboratory of the Museum of Comparative Zoology, under the direction of E. L. Mark, No. XXX. 2 This is the species used by G. H. Parker in his study on the development of the eyes (see Bull. Mus. Comp. Zodl., Vol. XIII. No. 6, p. 175, 1887), and was then undescribed. Iam not aware that it has since received a name. VOL. XXII. — NO. 3. : 128 BULLETIN OF THE have found less serviceable than the stains above mentioned. After staining, the preparations were dehydrated, cleared with oil of cloves, and mounted in benzole-balsam. The embryo is enveloped by three epithelial membranes, the ovarian capsule, the membrana serosa, and the amnion, —named in order from without inward. The serosa and amnion are strictly embryonic structures, analogous to the foetal membranes of the higher Vertebrates. There are two contradictory accounts as to the manner of their formation. Possibly they do not arise in the same way in all genera of scorpions. In a brief communication by Kowalevsky und Schulgin (’86, p. 526) upon the development of Androctonus ornatus, it is stated that they originate as a fold from the edge of the blastoderm, the outer layer of the fold forming the serosa, the inner the amnion. The fold grows up over the blastoderm, the edges coalesce, and the membranes finally separate from the ovum. ‘The more recent account by Laurie (’90, p. 114) states that in Luscorpius the serosa arises by a proliferation of the peripheral cells of the blastoderm, extends as a delicate membrane forward and back- ward over the egg, which it finally covers completely, and then becomes entirely separate from the blastoderm. The formation of the amnion begins when the serosa has covered about two thirds of the embryo, and, like the serosa, its origin is ectodermic. The amnion, however, “ never loses its connection with the epiblast as the serous membrane has now done, but remains attached to its edges and only extends round the egg as the epiblast extends” (p. 116). Unfortunately, I have not obtained sufficiently early stages of Centrurus to ascertain how its mem- branes arise, but, in removing the latter from the embryo, I have never found the amnion attached to the ectoderm. The membrane which I have called the “ovarian capsule” I at first wrongly took to be the follicular epithelium, and under this supposition it was indicated as e’th. fol. in Figure 2. Like the follicular epithelium, it arises from the ovarian tube ;-but the follicle is formed as a diverticulum of the tube, previous to the maturation of the ovum, and serves as a nutritive cap- sule for the latter during its growth. The ovarian capsule, on the contrary, is that part of the ovarian tube which receives the ovum after fertilization, and enlarges to accommodate the growth of the embryo. The fcetal membranes fit so loosely over the embryo that they can be easily removed in a single piece. In late stages, the ovarian capsule is readily separable from the membranes ; in earlier stages, it adheres closely to them. It is rarely possible to separate the serosa from the amnion, MUSEUM OF COMPARATIVE ZOOLOGY. 129 and a transverse section (see Fig. 2) shows only a trace of a dividing wall between them, although in surface view the cell walls of both mem- branes are clearly seen (Fig. 1). Metschnikoff (71, p. 219) describes the membranes of Scorpio (Huscorpius) italicus as connected with each other by delicate fibres, which terminate just over the amniotic nuclei. I have found such fibres in the earlier stages of my material, but not in the older ones, nor are they everywhere present in the younger mem- branes. The membranes of the Brazilian scorpion examined by Bloch- mann (’85, p. 481) were found closely applied to each other. I. The Serosa. Plate I.; Plate II. Figs. 14,15; Plate III. The cells of the serosa have great superficial extent, measuring half a millimeter or more in diameter; but proportionally they are very thin. Their size is exceedingly variable, as may be seen by com- paring Figure 3 with Figures 11 and 13 of the same magnification, although the last two represent cells of only average size. Both small and large cells are apt to be aggregated in certain parts of the serosa, yet very small cells often occur sporadically in the midst of large ones. The cell walls are extremely distinct in late stages of the embryo, but in earlier stages are often difficult to trace in an ordinary stained preparation. As remarked by Blochmann, they have a distinct fibrous structure. The cells are irregularly polygonal in shape, usually elongated, sometimes nearly square or triangular. Not infrequently they are bounded by curved outlines (Fig. 13). The nuclei of the serosa measure from 25 to 60, or more in diameter, but as a rule are small in proportion to the cells (Figs. 1-3 and 11-15). In the membranes of young embryos the nuclei are larger absolutely and in proportion to the cells than in old membranes. In face view the resting nucleus is nearly circular; in section, it is seen to be considerably flattened, in accordance with the thinness of the cell (Fig. 2, n/. sr.). It occupies the full thickness of the serosa, and some- times causes a bulging of the cell at the point where it lies, as is shown in Figure 2. Blochmann states (’85, p. 480) that the nuclei of the se- rosa always cause that membrane to encroach zxward upon the amnion ; but a dividing line between amnion and serosa is so seldom visible in Centrurus, that I am unable to say whether such is the case. The nuclear membrane is thin, but clearly visible, except in nuclei that have undergone degeneration. ‘The chromatic substance, or nuclein, is VOL, XXII. — NO. 3. 9 130 BULLETIN OF THE for the most part in the form of granules distributed evenly throughout the nucleus. Indications of a reticular or filamentous structure are, however, frequently present. I believe there is a chromatic network throughout the nucleus, but the abundance of granular chromatin pre- vents one from tracing it. Several nucleoli are always present. They are extremely variable in size and shape, and in many cases appear to be only aggregations of granular chromatin. They take a stain with hematoxylin and carmine in no way different from the rest of the chromatin, except that it is more intense. A very large proportion (about four to one) of the cells of the serosa contain two nuclei. These pairs of nuclei have all arisen from single nuclei by amitotic division. It is obvious that division of the cell is not contemporaneous with, and does not immediately follow, the division of the nucleus. In many cases, especially when the embryo is far ad- vanced, cell division probably does not occur at all. Very few cells out of the thousands I have examined have had more than two nuclei; but I have found several with three nuclei, and two cells with four. This seems to be the maximum number. These cells of the serosa, therefore, are not to be classed with multinucleate cells in which the nucleus divides into a great number of irregular and unequal fragments. Here the division takes place in an orderly fashion, and division of the cell follows nuclear division in regular sequence, though not immediately. In every serosa examined, nuclei were found in process of division. Some preparations furnish many more examples of division than others ; and occasionally three or four adjacent cells will contain dividing nuclei (Fig. 45). Very frequently, however, only one or two dividing nuclei will be found in the whole serosa. It cannot therefore be supposed that nuclear division is frequent; and I have found that there are more cells with dividing nuclei in the membranes of late stages of the embryo than in the earlier ones. The first sign of approaching division is an elongation of the nucleus (Fig. 4), almost always parallel to the long axis of the cell. Naturally, the elongation progresses by insensible gradations from the nearly circu- lar form of the resting nucleus, so that one cannot say positively that the nucleus is going to divide until the elongation has become marked. The absolute amount of elongation varies greatly, and is less in the membranes of young embryos than in those of older ones. The example represented in Figure 4 is from an old membrane, and shows almost the extreme of elongation. This stage, while giving not the slightest evi- dence of ordinary mitosis, is characterized by a longitudinal arrange- MUSEUM OF COMPARATIVE ZOOLOGY. 131 ment of the chromatic substance, as indicated in Figure 4. The effect is most marked upon the nucleoli. Blochmann (’85, p. 482) found only two nucleoli at this stage, and these were usually situated one at each end of the elliptical nucleus. Where there are several nucleoli, as is usually the case with the nuclei I have studied, there is an approxi- mately equal distribution of them to the daughter nuclei. The nucleoli vary so much in size and shape, that it is impossible to say how precise is the apportionment of chromatin by this method. Most nuclei in the elongated condition already show a slight constric- tion, generally more marked on one edge than on the other (Fig. 4). If no further elongation takes place, the constriction beeomes deep and narrow, as represented in Figures 5 and 12. This style of division is characteristic of young membranes, and gives rise to daughter nuclei which lie close together, or even in contact (Fig. 13). It is doubtless a more vigorous and rapid type of division than that found in the older membranes, to be described directly. If the nucleus continues to elon- gate while constricting, it assumes the dumb-bell form represented in Figures 6 and 7. The daughter nuclei, at first ovate or pyriform, be- come rounder as the connecting thread becomes thinner. Division of this type is almost confined to old membranes; I have rarely found it in those from young embryos. The nuclei represented by Figures 6 and 7 show more clearly than usual a peculiar arrangement of the chromatic threads. The filaments have the appearance of a fascicle of slender rods, which lie very close together in the connecting bridge, and thence radiate into both daughter nuclei. They are stainable both with carmine and hematoxylin. Some- times these threads can be resolved into rows of granules (Fig. 7, right- hand daughter nucleus). The later stages also show traces of these longitudinal threads (Figs. 8, 9, 10). In the example represented by Figure 6, the nucleoli partook of the general longitudinal disposition of the chromatic substance, but were probably arranged in this manner at an earlier stage of division, as explained for Figure 4. In the later stages of division, this arrangement of the nucleoli is gradually lost. The final stages, represented in Figures 8, 9, 10, may be briefly de- scribed. These stages are far commoner than the early ones; hence, it must be supposed that they require more time. The constricted por- tion is drawn out into a thin, deeply staining thread. This thread undoubtedly contains chromatin, and in a peculiarly condensed form. In this respect these nuclei differ from the nuclei of the Malpighian vessels of Aphrophora spumaria, as described and figured by Carnoy 132 BULLETIN OF THE (85, Plate I. Fig. 7) ; for the connecting thread in the dividing nucleus of Aphrophora remains unstained, and therefore contains no chromatin. The dividing nucleus represented by Figure 8 is peculiar in several respects. In the first place, the daughter nuclei are very unlike in form, though this is by no means unusual with dividing nuclei from old membranes. All the stainable nucleoli are in one daughter nucleus, while the other still shows a faint longitudinal arrangement of its chromatic threads. The sharply stained connecting thread is notched at a point midway between the daughter nuclei, probably indicating the place where, at a later stage, rupture would have occurred. The daughter nucleus on the left is nearly destitute of chromatin in the crescent-shaped space lying next the connecting thread, and an inner contour line is visible (#), from the central point of which a stainable cord extends to the proximal end of the connecting thread. I have seen a similar appearance in the late stages of other dividing nuclei, and it undoubtedly indicates the manner in which the daughter nuclei some- times attain a rounded form. Occasionally, however, daughter nuclei entirely separate from each other have a conical or tapered form. In the last stages of division, the connecting thread is drawn out to extreme tenuity (Figs. 9 and 10), So exceedingly fine does this thread become, that, with the highest power accessible to me (Zeiss’s homoge- neous immersion objective 4), I could barely trace its course through the cytoplasm, though in most cases I made out that it was continuous from nucleus to nucleus. It is finally broken at or near the centre, and the proximal tips, as Blochmann suggests, are probably absorbed by the daughter nuclei. In even so late a stage as that shown by Figure 10, the longitudinal chromatic filaments are still perceptible. The right- hand daughter nucleus contains four loop-shaped bodies that strongly resemble chromosomes. ‘They are, however, almost unstained by hema- toxylin. Blochmann states (’85, p. 482) that in no case did he find a division of the cell following the division of the nucleus. As already said, the great proportion of binucleate cells renders it certain that cell division is not an immediate consequence of nuclear division. Although I have carefully examined great numbers of binucleate cells, I have only once seen a cell wall in process of formation (Fig. 27). Yet one finds plenty of evidence that cell division does take place. Pairs of cells like those in Figure 11 are of frequent occurrence. It is safe to infer, I think, from the arrangement of the binucleate cells which surround these, as well as from the correspondence in size and shape of this pair, MUSEUM OF COMPARATIVE ZOOLOGY. 133 that they have arisen from an elongated binucleate cell by the forma- tion of a divisional cell wall. In one instance, I have found a cell wall fully formed before division of the nucleus was completed (Fig. 27). It cuts across the fine connecting thread at about the middle point of the latter. This must be considered as in some degree abnormal, especially since it was found in a serosa the nuclei of which had evidently degen- erated. Although division of the cell is almost always accomplished by the formation of a cell wall, I have found several constricted cells, showing that division may be partly, or even wholly, effected in this manner. Sometimes the constriction is so deep that the opposite walls meet (Fig. 28); but it is more usual to find that, after the cell has become considerably constricted, a cell wall is formed joining the inward curves of the constriction, and completing the division. At first, I thought it possible that the constriction was mechanically produced by the pres- sure of growing cells on either side. But this would not explain the invariable occurrence of the constriction at precisely the point where it would take place in a free cell, — equidistant from the daughter nuclei. Furthermore, the curvature of cell walls (see Fig. 13), which is almost certainly caused by the growth of cells and consequent tension, has no reference to the position of the nuclei. As far as can be judged, the dauglter nuclei are, as a rule, of equal size, and alike in shape. I have found many instances of beautifully symmetrical division (Figs. 9 and 10); but the nuclei of the serosa are not altogether exempt from the irregularities that seem to be inseparable from amitotic division wherever it occurs. Sometimes the resulting nuclei are obviously unequal (Fig. 13), even in young membranes; and in old membranes, where the nuclei have undergone degeneration, not only are the daughter nuclei extremely irregular in shape, but often very dissimilar in size. Relations of the Nuclei to the Cell. — A very brief examination of a preparation of the serosa convinces one that the nuclei are symmetri- cally arranged in the cells. When there is but one nucleus, it occupies the centre of the cell; when there are two or three nuclei, each presides over a half or a third of the cytoplasm. This arrangement is so con- stant, that any marked deviation from it catches the eye at once. In- stances of decidedly unsymmetrical arrangement of nuclei, one of which Figure 13 represents, are very unusual. As regards elongated cells, the daughter nuclei lie in the long axis of the cell, and at approximately equal distances from its ends. Occasionally, however, the nuclei lie in 134 BULLETIN OF THE the short axis (Fig. 12), and much more frequently are placed obliquely, as in cell a, Figure 14. We would suppose that, in the event of division of an elongated cell with nuclei lying transversely, the cell wall would pass longitudinally between the nuclei; but I have not been able to find evidence of longitudinal divisions. From the large number of cells with nuclei lying obliquely, one would infer that oblique division of the cell often took place. I am unable to discover, however, that such is the case ; and it seems extremely probable that the divisional plane of the cell does not always coincide with that of the nucleus. I have found about 25 cells of the serosa with three nuclei. This seems to be a matter of individual variation in the make-up of the membrane, for all but three of the trinucleate cells were in membranes from the brood of a single scorpion, and membranes from some broods appear to have none. I have in one instance found a group of tri- nucleate cells (Fig. 14, 4, 2, 3, 4). At this spot nuclear multiplica- tion has outstripped cell multiplication. It is nearly always easy to see which of the two original nuclei has divided, for we find two of the nuclei smaller than the third, and nearer to each other than to the latter. In cell 2, for instance, the pair of nuclei on the left have arisen from a nucleus occupying a position about midway between them. The same statement would doubtless hold true for the two nuclei on the right in cell 3, and here the odd nucleus is elongated. When the cell is long and the nuclei all lie in the longitudinal axis, as is the case in cell 7, it is usually impossible to determine which of the two original nuclei has divided ; for the nuclei are equidistant, and nearly alike in size. Another type of equidistant nuclei is shown in cell 4,——a distribution quite as characteristic of very large, broad cells as the linear arrange- ment is of elongated cells. I have spoken of the division of one of the two original nuclei as though it always took place after the nuclei were completely separate, and had taken their positions in the cell. This seems to be the usual method, for I have several times found one of the original nuclei in the act of dividing. But it is possible, of course, for them to arise by a tripartite division, in which the three nuclei would be formed simultaneously. I have found only one instance of a true triple division, represented in Figures 29 and 30, and as this occurred in a serosa which had plainly undergone degeneration, I do not consider it as altogether normal. It will be noticed that the origi- nal nucleus became trilobed, and that the lobes became daughter nuclei of approximately equal size by the formation of three divisional planes, meeting at the centre of the original nucleus, The daughter nuclei on MUSEUM OF COMPARATIVE ZOOLOGY. 135 the right are still united to each other by strands at the corners. Very similar tripartite divisions were found by Overlach (85, Plate XI. Figs. 35 and 41) in the epithelium of the cervix uteri. In two other cases, I have found one of the daughter nuclei in a late stage of division (Figs. 31, 32) ctse/f elongating and undergoing constriction, It will be noticed that the constricted daughter nucleus is considerably larger than its mate. I have found but two cells with move than three nuclei, and these both contained four. This condition is brought about by the division of both nuclei of a binucleate cell. On a@ priori grounds, one would reason that quadrinucleate cells would be nearly as abundant as those with three nuclei, for, apparently, it must often happen that a pair of danghter nuclei, arising as they do by a symmetrical and accurate constriction, are ready to divide at almost the same moment. Yet there are doubt- less influences which operate to prevent the division of one of the nuclei. Although it is of course impossible to generalize on the char- acteristics of quadrinucleate cells, it may be of interest to mention the peculiarities of the two found. They are both large cells, of nearly equal width at the ends, and the breadth of both exceeds half the length. In one, both pairs of nuclei lie transversely, showing that the second divisional plane was at right angles to the first. In the other, represented in Figure 33, the lower pair of nuclei lie in the longitudinal axis, the upper pair almost transversely. One of the quadrinucleate cells is considerably larger than any cell near it, while the other (Fig. 33) though by no means small, is of much less dimensions than the im- mense bi- and uninucleate cells around it. I am unable to assign any reason for the multinuclear condition of this cell. One fact, however, is worthy of note. The united volume of its four nuclei does not exceed the bulk of the single nucleus of a neighboring cell. One can- not, of course, ascertain what the size of the primitive nucleus of the multinucleate cell was, but it is very improbable that it exceeded in volume the nucleus of the uninucleate cell in question, for the latter cell is considerably the larger of the two, and throughout this serosa the size of the nuclei bears a direct ratio to the size of the cells. As regards the influence or influenceg impelling nuclei to divide independently of the division of the cell, nothing very definite can be stated. It is certain that the absolute or relative size of the cell has little or no influence upon the division of the nucleus. There are cells of all sizes, from the largest to the very smallest (Fig. 3), which are binucle- ate; and it is usual to find, side by side with bi- or multinucleate cells, 136 BULLETIN OF THE others with a single nucleus that are actually larger than the former (compare the cells in Figure 14). In such cases, the single nucleus is always larger than the daughter nucleus of the other cells. I am unable to see that multiplication of nuclei in the cell leads to any immediate increase of nuclear material. The more they divide, the smaller they become. Probably the most important office of division is a@ more extensive distribution of nuclei throughout the cytoplasm, with correspond- ing increase of nuclear surface ; and this, considering the great superfi- cial extent of the cells, and the comparatively small size of the nuclei (at least in the older membranes) must be a matter of some importance for the activities of the cell. It is especially so in the case of elongated cells. If such cells have but a single nucleus, a large part of the cytoplasm must be remote from it; and if the nucleus is at the centre of the cell, the cytoplasm at the ends of the cell will be most remote. So, to restore the equilibrium between cytoplasm and nuclei, the nucleus must elongate in the longitudinal axis of the cell, and the daughter nuclei move toward the ends of the cell. As a matter of fact, nearly all elongated cells have two nuclei, and these lie in the long axis of the cell, usually rather nearer its ends than toeach other. It cannot be denied that many short or squarish cells also contain two nuclei; and, conversely, a few much elongated cells can be found that have but one. In the latter case, it is interesting to observe that almost invariably the nucleus has begun to elongate in the longitudinal axis of the cell, and is often far advanced towards division. We can say almost with certainty, then, that such cells are of recent formation, and that the equilibrium between cytoplasm and nucleus is promptly restored by division of the latter. It is true that cases like that represented in Figure 12, where nuclear division takes place in the short axis of an elongated cell, cannot be explained in this manner. Such instances are so rare that they might almost be con- sidered as abnormal ; but the difficulty of the matter lies in the fact that we get all gradations between nuclei ranged in the true longitudi- nal axis, and those placed in the transverse axis. It is common to find them lying more or less obliquely in the cell, though the obliquity is seldom so great as to prevent them from practically fulfilling the con- ditions of the hypothesis. It is not supposable that all the agencies impelling nuclei to divide, and controlling the direction in which division shall take place, reside in the cytoplasm ; possibly the most potent of them exist in the nucleus itself. That axial differentiation, with definite pole and antipole, is as MUSEUM OF COMPARATIVE ZOOLOGY. 137 characteristic of the resting nucleus as of the mitotic nucleus, was postulated by Rabl (’85, p. 323) from a careful study of the chromatic network in the “skein stage” of mitosis. In a recent paper (’89, pp. 23, 24), the same writer states that the “polar depression,” usually visible in young daughter nuclei, persists much longer than usual in the epi- thelial nuclei of the Triton ; so that for these mitotically dividing nu- clei it is highly probable that polar differentiation is always present in the resting state. Carnoy (’85) has shown that, in the resting nuclei of the testicular cells of certain Arachnids, the chromatic filaments are distinctly arranged with reference to a definite axis (Planche V. Figs. 165-169), and Van Gehuchten (’89) has found the same in glandular cells of a Dipterous insect, Ptycoptera contaminata. It is obvious that the discovery of an “ organic axis,” as Van Gehuch- ten calls it, in amitotically dividing nuclei is more difficult, for here there is no polar depression or longitudinal arrangement of chromatic fila- ments to indicate its direction in the resting nucleus. It is usual for each division of the nuclei of the serosa to take place at right angles, or nearly so, to the plaue of the previous division. This is well seen in many multinuclear cells, where one or both pairs of nuclei lie trans- versely in the cell, and therefore at right angles, or nearly so, to the direction of the first division (see cells 2 and 3, Fig. 14). In other cases, however, two consecutive divisions take place in the same direc- tion (Fig. 14, cell 2). It occurred to me that possibly there was an organic axis in the nuclei of the serosa which in some cases exerted a controlling influence upon the direction in which division took place, but which in most instances was counteracted by influences resident in the cytoplasm. Transverse divisions of the nucleus (Fig. 12) could then be accounted for by assuming that the influence of the organic axis is _ dominant in these cases, while oblique divisions would be explainable on the ground that neither influence was predominant, but that both acted with about equal force in directions at right angles to each other. A question of interest in this connection is, whether, when the cytoplasmic influence is dominant, and tends to make the nucleus divide in a plane parallel to its organic axis, division actually does take place in that direction. If such were the case, an organic axis would be a fact’ of slight morphological importance, and the longitudinal arrangement of chromatin, which takes place in the earlier stages of constriction (Figs. 4, 6, 7), might occur in any direction, without reference to an organic axis. If, on the contrary, it were necessary that the longitudinal fila- ments should be arranged parallel to the organic axis, in order that 138 BULLETIN OF THE division might take place transversely to the axis, this result could still be attained by a rotation of the nucleus, even when the tendency was for the nucleus to divide at right angles to the previous division. It is obvious that rotation would occasionally be apparent, provided it took place soon after division, and previous to the absorption of the proximal end of the connecting filament. I examined a large number of prepara- tions to find evidence of rotation, but I must admit that the evidence was slight, and hardly sufficient to establish the hypothesis which I had formulated. It is therefore put forth provisionally, in the hope that it may lead to further investigations in this line. The most striking instance of rotation was found in one of the quadri- nucleate cells (Fig. 33, nuclei a and )). It is evident that three nuclear divisions have taken place without any division of the cell, producing two, three, and four nuclei. The arrangement of nuclei makes it rea- sonably certain that the dower pair arose by division of one, and the upper pair by division of the other nucleus of the binuclear stage. Only under this supposition could the daughter nuclei of that stage have had the normal arrangement, to which all the neighboring cells rigidly conform. We further find, that, while the upper pair of nuclei has arisen by a division in the long axis of the cell, the lower pair has been produced by division in the transverse axis, and therefore in con- formity with the law previously stated (p. 136). One nucleus of each pair (a and 6) retains a remnant of the connecting filament, which is directed, not toward the sister nucleus, but to a point 90° distant from it. This condition could have been brought about only by rotation of the nuclei, which in both cases has been through an are of 90°. In the serosze from older embryos, the daughter nuclei almost inva- riably recede from each other in the course of division, The amount of recession is governed by the length of the cell (Fig. 15). In the younger membranes, as already stated, the constriction is deep and narrow, so that the nuclei not infrequently lie very near together (Fig. 13). In these young membranes, however, the nuclei are larger, and the cells are usually smaller, than in the old membranes. Since, moreover, the darge binucleate cells of young membranes almost always have their nuclei symmetrically placed at the ends, it is probable that the nuclei gradually move apart after division, as the cell increases in size. It will be seen that my interpretation of the primary cause of the division of these nuclei agrees in part with the hypothesis advanced by Chun (’90) for the explanation of amitotic division in general. This is, MUSEUM OF COMPARATIVE ZOOLOGY. 139 in brief, that the object of amitotic division is the distribution of nuclear material throughout the cytoplasm, with corresponding increase of nu- clear surface. He considers it the final phase of a series of conditions which begins with a simple lobed nucleus, and includes branched nuclei of various degrees of complication. In support of this interpretation, Chun lays stress on the statement that cell division, after an amitotic division of the nucleus, has seldom or never been observed with cer- tainty, thereby implying that amitosis cannot have in view the multi- plication of cells. I do not consider this as essential to the hypothesis, nor, in fact, do I believe him correct on this point. The evidence of cell division after amitosis seems to me abundant and conclusive. It was observed by F. E. Schulze (75) in Amba polypodia; by Ranvier (75), Biitschli (76), Flemming (82), Arnold (’87), and others, in leu- cocytes ; by Kiikenthal (’85), in the lymphoid cells of Annelids ; and by Carnoy (’85), in various cells of Arthropods. As the foregoing shows, there is abundant evidence that, in the serosa of the scorpion, division of the cell sometimes, at least, follows amitotic division of the nucleus. Furthermore, the extremely regular and well ordered manner in which the nuclei divide, and the similarity as to size and shape of the daughter nuclei, seem to me decidedly against the notion that the sole object of the division is to disseminate nuclear substance in the cytoplasm ; for in those cases where amitosis is not followed by division of the cell, and assumably takes place simply for the purpose of dissemination, the nuclear products are very variable as to number, size, and shape. II. The Amnion. Plate I. Figs. 1 and 2; Plate II. Figs. 16-20. The amnion is much thinner than the serosa, and like it is composed of a single layer of flat, polygonal cells (Fig. 1, am.). But, while both the cells and nuclei of the serosa have become enormously larger than the blastodermic cells from which they originated, those of the amnion have changed little as regards size. The boundaries of the amniotic cells are not always visible, and I find that preparations, even when hardened and stained in the same manner, show the greatest variation in this respect. As a rule, the cell walls in the amnion are sharply and clearly defined only in preparations of membranes from advanced em- bryos. The same is true of the cell walls of the serosa. In general, the amniotic cell has but one nucleus, which usually occu- pies the centre of the cell. _Blochmann makes the same statement as to 140 BULLETIN OF THE the number of nuclei in each cell, and he found no evidence of division among them. ‘The outline of the nuclei, which measure about 15 p in diameter, is frequently somewhat irregular or lobed. Like the nuclei of the serosa, they are flattened tangentially (Fig. 2, nl. am.); but not- withstanding this, they cause an outward bulging of the cell upon the serosa, as shown in Figure 2. They contain always one or more highly refractive, deeply staining nucleoli. The rest of the scanty chromatic substance is in the form of minute granules, occasionally arranged partly in a very faint network (Fig. 18, 6 and c). As in the nuclei of the serosa, chromatic threads frequently unite the nucleoli. Division of the amniotic nuclei is of rare occurrence. In only one of my preparations are dividing nuclei at all abundant. The division takes place without mitosis, but is of a different type from that of the nuclei of the serosa. The only alteration of the chromatin is possibly a change in the position of the nucleoli ; I have not been able to detect any modification of the reticulum. The first sign of approaching divis- ion is elongation of the nucleus (Figs. 16 and 18, a). A deep narrow constriction appears at the equator of the nucleus (Fig. 17). This is followed by the formation of an equatorial septum, at once partition- ing off the nucleus into two daughter nuclei (Fig. 18, 6). If there are but two nucleoli, it is the rule to find one in each daughter nucleus ; but where there are several, they are often unequally apportioned. After the formation of the septum, the daughter nuclei still adhere to each other, and division seems always to be attained by deepening of the equatorial constriction in the plane of the septum (Figs. 18, 6, c, and 19). I have not found any evidence of a recession of the nuclei before division of the cell. Furthermore, the rarity of binucleate cells makes it very probable that cell division follows nuclear division promptly. As in the serosa, division of the cell takes place by the formation of a cell wall without marked constriction (Fig 20). The position of the nuclei in this figure, and the frequency with which nuclei are found near the boundaries of the cells (Fig. 1, am.) is evidence of the prompt- ness of cell division after the division of the nucleus. It is clear that Chun’s hypothesis will not hold in this case, for there is even less tendency than in the serosa to accumulate nuclei in the cell. This may be owing in part to the shape of the cell, for it is sel- dom elongated. It would seem that, in case the cell becomes elongated, nuclear division takes place and the cell divides immediately after the nucleus. The orientation of the nuclei with reference to the cytoplasm of their respective cells would then be accomplished by their migration to the centre of the cells. MUSEUM OF COMPARATIVE ZOOLOGY. 141 III. The Ovarian Capsule. Plate II. Figs. 21-26. The epithelium of the ovarian capsule is not often easily made out in ordinary stained preparations, for the nuclei of muscle fibres and con- nective-tissue cells lie not only just external to the epithelial nuclei, but frequently in the same plane with them. In most of my prepara- tions the boundaries of the epithelial cells cannot be seen at all, and I have therefore confined my attention mainly to those which show them distinctly. In shape, the cells are more or less irregular, oblong hexa- gons (Figures 24 and 25 represent typical shapes). The cell walls are broad and fibrillated, like those of the serosa, though the cells them- selves are smaller even than those of the amnion. The nuclei are not only larger in proportion to the cells, but often larger absolutely, than the amniotic nuclei. The amount and arrangement of the chromatin in the capsular nuclei (except in a certain phase) is almost precisely like that already described for the nuclei of the amnion, but there is usu- ally only one conspicuous nucleolus. The small amount of chromatic substance, aside from the nucleolus, has a granular appearance, but sometimes shows indications of a filamentous or reticular arrangement (see Figs. 21, 23, 24). Seen in face view, the nuclei are circular, and have a distinct nuclear membrane. The section (Fig. 2, n/. fol.) shows that they are less flattened than the amniotic nuclei. Here, again, we have amitotic division, and of precisely the same type as prevails in the amnion. Apparently, division is not of common occurrence, for I have been able to find only a few instances, and have, unfortunately, not seen its earliest stages. Figures 21, 22, and 23 show the simple manner in which it is effected. As each daughter nucleus contains a nucleolus, and the ordinary resting nucleus has but one, division of the nucleolus must precede division of the nucleus. In one important respect the division of these nuclei differs from that of the amniotic nuclei. The cell does not divide immediately after the nucleus, and consequently a great number of cells are binucleate. Some even contain three nuclei. I have obtained no evidence whatever of cell division. 142 BULLETIN OF THE IV. Degenerative Changes. Plate II. Figs. 14, 24-26; Plate III. Figs. 28, 34. The striking difference in the appearance of cells and nuclei, and the different manner of division of the nuclei, exhibited by serose of different ages, have frequently been referred to. Such changes, in part at least, I believe to be due to degeneration of the membranes, which, with the exception of the ovarian capsule, are temporary struc- tures, soon to be cast off by the embryo. Hence it is not surprising to find them undergoing degeneration iz toto. The degenerative changes are about equally well marked in all three membranes; but on account of the great size of cells and nuclei, the changes are most conspicuous in the serosa. If the membrane comes from a young embryo, the walls of the cells are unstainable, and therefore often difficult to make out. The nuclei have a vesicular appearance, with smooth, rounded contour, abundant karyoplasm, and scanty chromatic substance. For this reason the nuclei seldom stand out clearly from the cytoplasm in a stained preparation, often being no darker than the rest of the cell. Serose from somewhat older embryos, while giving no sure signs of degeneration, have nuclei slightly different from those of the youngest membranes. The amount of chromatic substance appears to be larger. It is gathered into denser and more deeply staining masses, and the nucleoli become larger and more stainable (compare Figures 4 and 5, the former from an older membrane than the latter). Many nuclei at this stage become irregular in outline, and are more or less shrunken in appearance, changes which prepare the way for complete degeneration, found in membranes from the oldest embryos. The nucleus here becomes shrunken into a formless mass, which stains deeply and uni- formly. This condition seems to be due almost wholly to loss of the karyoplasm, for the nuclear membrane is seen to be drawn closely over the much condensed chromatic substance. The uniformly staining effect, however, is generally believed to be produced by the solution of a part of the chromatin in the karyoplasm ; this is best seen in nuclei that have not completely degenerated, where the deeply stainable solid chromatin is immersed in the less stainable matrix. Not all the nuclei in a membrane are affected to the same degree by the degenerative change. This is shown in Figure 14, where the nuclei of cell a, and that of the cell farthest to the left, are more affected than any others. But in the oldest membranes almost every nucleus has undergone extreme degeneration. -? MUSEUM OF COMPARATIVE ZOOLOGY. 143 It is an interesting fact, that even the most thoroughly degenerated membranes have numerous nuclei in all stages of division. The divid- ing nuclei have undergone the same degenerative alteration as the rest. It is impossible to state whether these nuclei had begun to divide after the regressive change, or had been overtaken by these changes while undergoing division; and it is equally impossible to say whether degeneration would have prevented the nuclei from completing their division. The division is essentially like that of younger nuclei, but often unsymmetrical. Not all the degenerative changes are confined to the nuclei. The cells also give evidence of modification. Their walls become more distinct, not only because they are denser and thicker, but on account of their stainability with hematoxylin. The cytoplasm frequently has a reticulated structure, which is densest about the nucleus. In the oldest membranes, certain large groups of cells have nuclei surrounded by a narrow bright ring, and outside this a much broader halo of a radiating structure, which takes a deeper stain than the rest of the cytoplasm (see Fig. 34). The appearance of the whole is strikingly like that of the “attraction spheres” of ovarian and other cells, but in this case has certainly nothing to do with mitosis. If the cell contains two nuclei, or a dividing nucleus, each daughter nucleus is surrounded by a halo. In early stages of division, however, the elongated nucleus has a single halo. I am unable to account for these appearances ; I do not regard them as attraction spheres, but rather as a result of degener- ation. The attraction sphere should radiate from a centrosome ; here it radiates from the nucleus as a centre. I may state, in passing, that my search for centrosomes in the serosa has been wholly unsuccessful. The pale ring is very generally present around nuclei that have under- gone degeneration. It seems to have no intimate connection with the radiating zone, being frequently found where the latter is absent. The life history of the serosa cells corresponds closely with that of certain cells in the Malpighian vessels of Aphrophora spumaria de- scribed by Carnoy (’85, p. 219). The cells at the two extremities of the tubes contain nuclei not greatly different from those of young serose, but the nuclei of the middle portion are irregular, jagged, and filled with amorphous chromatin. They therefore bear a strong resemblance to the degenerated nuclei of the serosa. Furthermore, the origin of the peculiar nuclei of the middle portion of the Malpighian vessel agrees closely with that of the degenerated nuclei of an old serosa. It is thus described by Carnoy (p. 220): ‘Sur les petites 144 BULLETIN OF THE larves on rencontre tous les intermédiaires entre les noyaux des extrémi- tés et ceux du milieu. Peu a peu le boyau s’efface, Je noyau lui-méme se rétrécit et perd la regularite de ses contours a cause du plissement de sa membrane ; a la fin la nucléine ne forme plus a l’intérieur qu’une masse compacte et homogene, & peu prés comme cela se présente dans la téte des spermatozoides.” In both cases the degenerated nuclei are found in stages of division ; in both, the cytoplasmic reticulum is distinct only in old cells, and where these cells are binucleate it is dicentric, with filaments radiating from the nuclei. The dicentricity of the binu- cleate cells is a point to which Carnoy calls special attention (p. 229). He considers that here the radiating filaments of the cytoplasmic retic- ulum answer to the polar asters of karyokinesis, and that the nucleus has the function of a centrosome. The same reasoning would apply to the degenerated cells of the scorpion’s serosa. The regressive metamorphosis undergone by the epithelial cells of the ovarian capsule (Figs. 24-26) is very peculiar. Here, again, the cell walls are affected in the same way as in the serosa and amnion, for they are not distinctly seen until after the nuclei have degenerated. Nearly all of the epithelial cells of an old capsule have two nuclei, which are dissimilar in size and appearance (Figs. 24 and 25). The smaller takes a rather deep, uniform stain, almost as dark as that of the chro- matin of the other. A nucleolus is always present, and frequently minute granules of chromatic substance. The uniformly staining char- acter of the nucleus is doubtless produced by chromatic substance held in solution by the karyoplasm, a condition of common occurrence with degenerating nuclei. The larger nucleus (Figs. 24 and 25) takes oniy a slight stain, owing to the scantiness of its chromatic substance, which is present in the usual form of isolated granules and an imperfect network. By examination of a large number of cells, I found nuclear differentia- tion of every degree, beginning with nuclei almost alike in size and stainability (Fig. 24), then passing to examples of marked dissimilarity (Fig. 25), where the pale nucleus has become almost invisible, and the smaller deeply staining one has attained a very sharp, definite outline. As the pale nucleus becomes more and more shadowy, its shape becomes irregular. Near cells of this sort others can be found which contain only a single deeply staining nucleus (Fig. 26), the other having disappeared altogether. In case of trinucleate cells, I have invariably found two of them to be of the pale sort. I am unable to offer any other explanation of these changes than that they are the result of degeneration or of decreased activity of the tissue. MUSEUM OF COMPARATIVE ZOOLOGY. 145 But why one nucleus should become altered in one way, and the other in an entirely different manner, is difficult to say. A very similar dif- ferentiation of nuclei has been observed by Chun (’90) in the egg germs of a Siphonophore (Stephanophys). He found only one nucleus in the youngest germs, while the middle-sized and larger egg cells contained two of different size, the larger being pale, and the smaller staining in- tensely. The smaller nucleus moves to the periphery of the egg and is no longer visible when the latter is ripe. ‘The larger nucleus persists as the germinative vesicle. In only one instance did he see a stage that showed that the smaller nucleus budded out of the larger. Chun compares the small, deeply staining nucleus to the “ Stoffwechselkern” (macronucleus), and the pale one to the “ Fortpflanzungskern ” (micro- nucleus) of the ciliate Infusoria. Summary. 1. The embryo of the scorpion is enveloped by three membranes, the ovarian capsule, the serosa, and the amnion. 2. The ovarian capsule is an enlargement of the ovarian tube ; the serosa and amnion arise from the blastoderm of the egg. 3. Serosa and amnion are at first distinct, and joined to each other by minute fibres. These afterwards disappear, and the membranes coalesce, 4, The serosa is composed of immense flat cells, very variable in size and shape. The cell walls are fibrillated. 5. The majority of the serosa cells have two large nuclei of equal size. ‘There are rarely more than two. 6. The nuclei are disk-shaped, have a distinct nuclear membrane, and chromatin in the form of granules and filaments, the latter forming an indistinct reticulum. There are usually several nucleoli. 7. The cytoplasm of the serosa has a distinct reticular structure. 8. Nuclear division in the serosa is amitotic, and takes place by con- striction, preceded by elongation of the nucleus. It is followed or ac- companied by recession of the daughter nuclei, which remain for some time comnected by a fine strand. 9. Constriction of the nucleus is usually accompanied by a longitudi- nal arrangement of some of the chromatic threads, radiating from the constricted part. The nucleoli are distributed about equally to the daughter nuclei. ; VOL. XXII. — NO. 3. 10 146 BULLETIN OF THE 10. Nuclear division may be followed by division of the cell, but not often immediately. The cell divides by the formation of a cell wall, either with or without constriction. 11. The binucleate condition of cells is independent of their size ; but, in general, the size of the nucleus, or nuclei, is proportional to the size of the cell. 12. Elongated cells of the serosa are generally binucleate. The nuclei almost invariably lie in the long axis of the cell, near the ends. 13. A binucleate cell becomes trinucleate by division of one of its nuclei, and quadrinucleate by the division of both. Very rarely the division is tripartite, and the three nuclei are produced simultaneously from a single one. 14. Division of the amniotic nuclei is also amitotic, but the constric- tion is supplemented by a septum at the equator of the elongated nucleus. 15. ‘There is apparently no rearrangement of the chromatic substance. Nucieoli are apportioned equally to the daughter nuclei. 16. Division of the nucleus is quickly followed by division of the cell, so that binucleate cells are not common. 17. The epithelium of the ovarian capsule is composed of small hexagonal or rectangular cells, which frequently contain two or more nuclei. 18. The nuclei are very similar to those of the amnion, but usually contain only one nucleolus. 19. Nuclear division is amitotic, and precisely like that of the amni- otic nuclei. Each daughter nucleus contains one nucleolus. 20. No instance of cell division was observed. 21. All three membranes undergo degeneration as the embryos ap- proach maturity. 22. In the serosa the cytoplasmic reticulum becomes more distinct, and is seen to radiate from the nuclei. The cell-walls become stainable. 23. The chromatic substance of the nuclei becomes grouped into dense masses; the reticulum and nucleoli become more distinct. The outlines of the nuclei become irregular. 24. As degeneration proceeds, the cytoplasm frequently forms a halo of radial structure around the nucleus. MUSEUM OF COMPARATIVE ZOOLOGY. 147 25. The nuclei finally become reduced to uniformly staining, irregu- lar masses of chromatin, which has partly entered into solution. Such nuclei are found in all stages of division. 26. In binucleate cells of the ovarian epithelium the nuclei become dimorphic. 27. The chromatic substance of one of the nuclei enters into solution in the karyoplasm, and the nucleus becomes reduced in size. 28. The other nucleus loses its stainability, and increases in size. It finally disappears. V. Discussion of Amitosis. As long as karyokinesis was supposed to be a uniform process, all the complicated details of which were carried out with the greatest exact- ness and in the same sequence, wherever it occurred, no one sought to homologize it with the little known and far simpler “direct” division. The latter had, apparently, so restricted a range, and had received so little attention, that its very existence was denied ; and it was generally anticipated that, in the few kinds of cells in which it was stated to oc- cur, a better technique and more careful study would reveal mitotic phenomena. This opinion seemed to receive confirmation by the dis- covery of mitotic division in leucocytes and the Protozoa, thus carrying mitosis back to the simplest types of cells and to the lowest forms of life. The ascertainment of two facts has brought about a radical change in our views regarding amitosis: (1) the variability of karyo- kinesis, including, in some cases, the omission of apparently essential steps ; and (2) the wide occurrence of amitosis, new instances of which are constantly coming to light in various parts of the Animal Kingdom. Inasmuch as it became necessary to recognize the existence of direct division, efforts were naturally made to find links connecting it with mitosis ; the variability of both mitosis and amitosis seemed to lend strength to the theory which refers them to a single fundamental plan of division. In this scheme, amitosis is considered either as a primitive method from which mitosis was evolved, or else is looked upon as a degenerate form of mitosis, occurring in nuclei which, from their patho- logic or exhausted condition, have lost the power of dividing by the more complicated process. By fixing epithelium of the salamander larva with osmic acid, then treating it with Miiller’s fluid, and finally staining with hematoxylin, Pfitzner (’86*) has shown conclusively that, even in cases of very perfect mitosis, the karyoplasm maintains its integrity, and divides 148 BULLETIN OF THE by a simple constriction, as in direct nuclear division. This fact has led Waldeyer (’88) to the conclusion that karyokinesis in based upon the simple scheme of division conceived by Remak. He says: “I would interpret the facts in such a way that we have to regard as the funda- mental form the simple amitotic division, which is now proved for many cases ; it always takes place where the nucleus either is poor in chroma- tin, or when it does not matter about strict bipartition of the chromatic material. Should the latter be required, then we shall find mitosis, since it is the most direct, most certain, and most simple manner in which an exact bipartition of chromatic substance is brought about.” It seems to me, however, that there are differences of so fundamental a character between mitosis and amitosis, as at present understood, that it is impossible to refer them to a single plan of division. Both, indeed, achieve the same result, — division of the nucleus, including its two constituents, chromatin and karyoplasm. In both cases, the karyo- plasm divides by constriction. In amitosis, the chromatin undergoes little if any change in preparation for division ; in mitosis it becomes con- solidated into a limited number of thickened rods or loops (chromosomes), which arrange themselves in the plane of division (“ mother star,” “couronne équatoriale”?) and segment either longitudinally or trans- versely, the halves moving to opposite poles (“ diaster ”), and undergo- ing a reversed metamorphosis to form two daughter nuclei. If this were all there is to karyokinesis, — and in some cases the process is much simpler, — we might hope to find transitions between it and ami- tosis ; for there are examples of amitosis in which the chromatic net- work undergoes changes during division, and it would be conceivable that the highly organized changes of the chromatic substance during mitosis were either evolved from them, or that they were a simplifica- tion of the more detailed changes. In mitosis, however, other struc- tures besides chromosomes make their appearance, — the centrosomes, attraction spheres, and spindle. These structures are not known to take any part whatever in amitosis, and in this respect at least the two kinds of division are fundamentally different. The most recent workers upon karyokinesis agree in assigning to the spindle rays the function of separating or dividing the chromosomes, and drawing (or pushing) the seg- ments towards the poles. ‘The centrosomes are focal points towards which the spindle rays converge, and lie entirely outside the nucleus. The for- mation of the spindle has been carefully studied by many investigators of karyokinesis, and, while there are very divergent views as to its ori- gin and mode of action, the most recent workers in this field (of whom MUSEUM OF COMPARATIVE ZOOLOGY. 149 E. van Beneden, Boveri, and Watase may be mentioned) are agreed that the spindle arises from the cytoplasm. The same view with regard to the spindle in the mitosis of vegetable cells was expressed by Stras- burger, Guignard, and other botanists. The centrosome, as a converging point for the spindle fibres and polar rays, plays a most important part in karyokinesis, and, so far as known, none at all in amitosis. The centrosome has indeed been found by Flemming (’91) in leucocytes, which certainly divide amitotically ; but there it is a single structure, and as Flemming’s figures show, takes no part in the amitotic division of the nucleus. Whether it also remains passive during the mztoézc division of leucocytes and in amitosis followed by division of the cell, is not known. It has been supposed by Carnoy (785) that spindle rays were present in certain nuclei which divide amitotically, but this seems extremely doubtful, especially since they have no perceptible action on the chromatic substance. I believe it can be shown in every case of amitosis known, that the division of the chromatin is accomplished ixdependently of chromosomes, spindle rays, or any other visible influence outside of the nucleus. The persistence of the nuclear membrane in amitosis, and its dis- appearance in mitosis, were formerly considered points of distinction between the two kinds of division; but, as is well known, more recent studies have shown that the membrane persists in many cases of un- doubted karyokinesis, especially among the Arthropods (Carnoy, ’85) and Protozoa (Gruber, ’83, R. Hertwig, ’84, Pfitzner, ’86°, and Schewiakoff, ’88). Its presence seems to offer no obstacle to the karyokinetic changes, and Watase (’91) has pointed out that it need not prevent the formation of an extra-nuclear spindle, the rays of which may pene- trate the membrane. In the nuclei of Opalina ranarum, and in the micronuclei of Infusoria generally, where, according to all observers, the nuclear membrane persists, the mitotic division is accompanied by con- striction ; but the fact that constriction is here wszble may be considered as in some measure a result of the persistence of the membrane, thereby making evident the outline of the karyoplasm. Yet constriction does not always take place when the membrane persists, for in the spermatic cells of Pagurus striatus, figured by Carnoy (’85, Plate VII. Fig. 244), the nuclear membrane is visible at all stages, and gives no evidence of constriction. The modification of the chromatic substance into chromosomes is usually the most conspicuous feature of karyokinesis, and in most cases serves to distinguish mitotic nuclei from any of the amitotic ones. The 150 BULLETIN OF THE chromosomes invariably include all the stainable substance of the nu- cleus, so that the presence of nucleoli in a nucleus undergoing constric- tion may be taken as perhaps the strongest evidence of direct division. The behavior of nucleoli in amitosis is of peculiar interest. Where theré is a single nucleolus, it constricts previous to the constriction of the nucleus, according thus with the Remakian scheme. The division of the nucleolus, however, has rarely been observed. It was first de- scribed, I believe, by F. E. Schulze (75), in the division of Ameba poly- podia; has since been figured by Carnoy (’85, Plate I. Figs. 10, 12, 13) for various amitotically dividing Arthropod cells, and by Hoyer (’90) for the intestinal epithelium of Rhabdonema nigrovenosum. A peculiar modification of the nucleolus, and its division into four segments pre- vious to the constriction of the nucleus, was observed by Platner (’89, pp. 145-149) in the Malpighian vessels of Dytiscus marginalis. It is extremely probable that, whenever the nucleolus is a single and defi- nitely organized structure, it always divides previously to or during con- striction of the nucleus. Where there are several small nucleoli, they may indeed arrange themselves so as to be equally apportioned to the daughter nuclei ; but they are not known to divide, as the chromosomes in mitosis do. Amitotic division, even more than karyokinesis, is variable in its phenomena. It takes place by constriction, by formation of division planes, by gemmation, and by enlargement of one or more perforations (Arnold, ’88, Flemming, ’89). It is either simple or multiple, and it may or may not be accompanied by division of the cell. The resulting nuclei may be equal or unequal. Amitosis occurs throughout both the Animal and Vegetable Kingdoms ; but as far as animals are concerned, it is far the most frequent among wnicellular organisms, ameebord cells (leucocytes), and epithelial tissues. There seem to be no authentic instances of it in connective tissues (except possibly the fat-cells of Arthropods, described by Carnoy), none in nervous tissue, and but one or two in muscle fibres (Carnoy, ’85, p. 221). Not only the nuclei of fixed tissues divide by the direct method, but also those of nascent tissues, at least among the Arthropods. Direct division is, however, of rare occurrence in the embryo. I believe there are only two authentic instances of it, — that discovered by Carnoy in the ventral plate of an embryo of Hydrophilus piceus (’85, p. 224, Plate I. Fig. 11), and that found by Wheeler (’89, p. 313) in the formation of the blastoderm of Blatta germanica, where no instance of mitosis was detected. The embryonal membranes of the scorpion I do not include under this head, because they are temporary structures forming no vital part of the embryo. MUSEUM OF COMPARATIVE ZOOLOGY. 151 Among the Metazoa, epithelial tissues offer by far the greatest num- ber and the most interesting cases of amitosis. Furthermore, as Ziegler (91) has very recently shown, epithelial cells of unusual size, with some peculiar functional activity (generally secretion) are most apt to exhibit this method of division. Cell division has seldom been observed to fol- low amitosis in such large cells, which therefore become multinucleate. Other epithelial cells which frequently furnish instances of amitosis are those which are near the end of their functional activity. Cells of the outer layer of a stratified epithelium sometimes divide amitotically, while those of the deeper (and therefore younger) layers of the same epithelium divide by mitosis. A good instance of this was recently described by Dogiel (’90) in the epithelium of the bladder of Mammals. The nuclei of the large epithelial cells lining the intestine of Arthropods very com- monly divide by amitosis, as was found by Frenzel (’85) in the midgut of Astacus and Maja; by Carnoy (’85) in the intestinal epithelium of Iso- pods; and by Faussek (’87) in the digestive tract of a Cricket (Hremobia muricata) and in the larva of #schna. The intestinal epithelium in all Arthropods has an important secretory function. Cells whose function is excretory likewise exhibit amitotic division of the nucleus, as in the Malpighian vessels of Insects. The occurrence of amitosis in glandular and excretory epithelium is readily explainable on Chun’s hypothesis, for the functional activities of such cells are peculiarly intense, and it is easy to see that a distribution of nuclear material in the cytoplasm is of advantage to the cell. The occurrence of nuclei of unusual size (as compared with the nuclei of other cells of the same animal) seems to me likewise referable to the peculiar needs of the cytoplasm in these cells. Cases of amitosis peculiarly difficult of explanation are those pre- sented by the germinal epithelium of the testis. So many observers have reported direct division in sperm mother-cells, that there seems no reasonable doubt of its occurrence. It has been suggested that the cells which divide amitotically never produce spermatozoa, but merely serve to secrete a fluid. This explanation, however, will not serve in the case of certain Isopods (Oniscus asellus and Idotea sp.) in the testes of which Carnoy (85, p. 222) found amitosis. the prevailing type of di- vision, and mitosis of very rare occurrence. Direct division is found more or less frequently in the testicular cells of many other Crustacea, as the extensive work of Gilson (’84-87), and the investigations of Sabatier (’85) show, and occasionally in the other groups of the Arthro- pods. Among Vermes, it was found by Lee (’87) in Nemertians, and 152 BULLETIN OF THE by Léwenthal (89) in a Nematode (Oxyuris ambigua). It need hardly be said that amitosis in sexual cells is unexplained by any hypothesis yet offered regarding the biological significance of this type of division, and further investigations on this point are absolutely necessary before we can form any general opinion in regard to it. In the maturation and segmentation of the ovum no instance of direct division is known, and it is here that karyokinesis is exhibited in its most complete form. The well known observations of Boveri (’87) on the segmentation of the egg of Ascaris megalocephala are of special in- terest on this point. He found a modification of the chromatic threads as early as the two-blastomere stage, one of them (cell A) retaining the four chromosomes characteristic of the nucleus after fertilization, the other (cell B) undergoing a reduction of its chromosomes into the form of granules. The two blastomeres arising by division of cell A undergo the same differentiation, the nucleus of one (cell A’) retaining the chromatic loops, the other (cell A?) undergoing reduction, so that in the four-cell stage only one nucleus has retained its chromatic loops. The systematic reduction of chromosomes was observed up to the 64- cell stage. The important deduction Boveri makes from these facts is, that the cells retaining their ancestral nuclear characters are the Anlage of the sexual cells of the developing animal, and that the cells whose nuclei undergo a modification of the chromosomes are all somatic cells. In accordance with this hypothesis, the division of both male and female sexual cells ought always to be karyokinetic, and of a somewhat different type from the karyokinesis of the somatic cells of the same animal. The latter statement, indeed, holds true for the testicular cells of the salamander, as was discovered by Flemming (’87). It also appears from the work of Carnoy, that in the post-embryonic life of Arthropods mitotic division is of rare occurrence in the tissue cells, but is of constant occurrence in the reproductive cells of the same forms. As has already been stated (p. 147), attempts have been made to find a morphological connection between karyokinesis and direct divis- ion, and thus to solve the puzzling question of the relations they bear to each other. Carnoy (’85, p. 398) believes he has found transitions between them in the division of the numerous nuclei of Opalina rana- rum. Some of these show a distinct spindle, others none ; in both cases the nuclear membrane persists, and division is accomplished by constric- tion. Pfitzner (86°), however, found only mitosis in 0. ranarum. Car- noy has also seen transitional forms of division in the spermatic cells of MUSEUM OF COMPARATIVE ZOOLOGY. 153 Pagurus striatus, and P. callidus (Planche VII. Figs. 244, 245). A nu- clear plate is here formed, both in perfect mitosis and in degenerated mitosis; but in the former instance a spindle is formed, and the chromo- somes segment individually, while in the latter the plate divides in t&to by constriction, without the help of a spindle. This modified type of mitosis, if we may so regard it, Carnoy considered as the result of degradation (pp. 316, 317), inasmuch as it appeared only in old sperm mother-cells after spermatozoa had become numerous in the testis. This accords with the earlier view that direct division is concomitant with senescence of the nuclei, based especially upon nuclear division in plants (Schmitz, ’79, Johow, ’81). I have regarded this as a possible explanation of the occurrence of amitotie division in the embryonal envelopes of the scorpion, for these tissues are temporary structures which obviously are near the end of their functional activity. This explanation, however, will not fit all cases; for instance, the occurrence of amitosis in embryonic cells, and its prevalence in the testicular cells of some Isopods, already mentioned. The hypothesis advanced by Chun seems to throw light upon many of the cases of amitotic division which are referable to a sort of bud- ding or branching of the nucleus, carried to such a point that the buds or branches become constricted off as separate nuclear elements. These cases are, of course, not to be confounded with a disintegration of the nucleus, such as takes place in the macronucleus of Infusoria after conjugation, and sometimes in the degeneration of tissues. The distribution or extension of nuclear substance in the cytoplasm, whereby the surface of the nucleus is increased, is an event of frequent occur- rence. It is seen in the many forms of lobed nuclei, such as those of the ovarian capsules of Amphibia (see Flemming, ’82), and in those of leucocytes ; in hollow or perforated nuclei (giant cells); in branched nuclei (spinning glands and Malpighian vessels of Lepidoptera) ; and in the band-shaped and moniliform nuclei of many Infusoria. These pecn- liar shapes are evidently produced by the activity of the nucleus itself, probably correlated with a special function of the cytoplasm. From the deeply incised lobation or band-shape of such nuclei it is an easy step to the formation of separate smaller nuclei by the deepening of a constriction already formed. »Such daughter nuclei will as a rule be irregular in shape and unequal in size ; but if their production subserves a definite and important function, we should expect that in some cases their formation would become a regular process, governed by definite laws. It is possible that the more symmetrical kinds of direct division 154 BULLETIN OF THE are to be explained in this way, and such an explanation seems to apply well, as suggested on a preceding page, in the case of the scorpion’s serosa. Division of the cell does not follow as a rule, and upon this fact Chun lays stress. But, so far as we know, there is nothing to exclude the subsequent occurrence of cell division, and it is even probable that cell division is induced by the presence of more than one nucleus. This I take to be the case in the scorpion’s serosa, where I believe the division of the cell is due in part to the dicentricity set up in the cytoplasm by the division of the nucleus. The study of nuclear division among the Protozoa seems likely to throw much light upon the relations of amitosis to mitosis, for there can be little doubt but that this group presents the most primitive types of nuclear division. So far as known, the very lowest forms of animal cells (Amebe) always divide by the direct method, as the study of Ameba polypodia by F. E. Schulze ?75), and of Pelomyxa villosa, Amaba secunda, and A. proteus by Gruber (’83 and 785), has shown. The division of the nucleus of Ameba proteus takes place by a sharp equatorial cleft, passing through the large, centrally placed nucleolus, and dividing that and the peripheral zone of chromatin into two exactly equal halves, which after- wards move apart. This is regarded by Gruber (’83, p. 385) as a simple type of karyokinesis, because an exact division of the chromatin is accom- plished. No kinetic change of the chromatic substance is necessary to bring this about, hence none occurs. It seems to me that the absence of centrosomes and a spindle effectually separates this type of division from true karyokinesis, and until these are discovered, the nuclear di- vision of Amaba proteus must be relegated to amitosis. The presence of so perfect a type of karyokinesis as that found in Huglypha alveolata, worked out so completely by Schewiakoff (’88), is strong evidence against the hypothesis that karyokinesis was gradually evolved from direct di- vision. For here, among the lowest forms of animal life, we have nuclei dividing both by a simple constriction, and by the most highly developed kinetic changes. Nuclear division among the Infusoria is of special interest, for we regularly find in the same individual nuclei very different in structure and function, — macro- and micronuclei. The former divide directly, the latter by karyokinesis. Apparent exceptions are seen in Spirochona gemmipara, where, according to R. Hertwig (’77) the macronucleus divides by karyokinesis ; and in Opalina ranarum, studied most carefully by Pfitzner (’86>). As only one kind of nucleus is found in Opalina, it is probable, as Biitschli suggests (788, p. 1500), that these are of ~ MUSEUM OF COMPARATIVE ZOOLOGY. 155 the micronuclear type, inasmuch as the division is in all essential re- spects like that of micronuclei, and in the resting state the nuclei bear no resemblance to macronuclei. The direct division of macronuclei is often accompanied by a longitudinal arrangement of the chromatic fila- ments, resembling that found in the scorpion’s serosa (see Figs. 6, 7, 8). It seems to me that Carnoy is wrong in speaking of these longitudinal filaments as a “spindle,” for it has never been shown that they converge to the poles of the nucleus, and frequently they can be resolved into granules, which is never the case with spindle fibres. Their resemblance to the spindle of karyokinesis is deceptive. From their behavior with stains, I regard them as consisting of chromatin, and Biitschli (’88, p- 1526) speaks of this stage of the macronucleus as the ‘“ Kniuelsta- dium,” implying that the parallel filaments are chromatic threads. Among the Vertebrates, amitosis is unusual, and where it exists kary- okinesis is generally found to occur in cells of the same kind. It is almost confined to cells which do not form fixed tissues, as leucocytes of all kinds, and “giant cells,” especially those of the red marrow. It also occurs in testicular cells of Vertebrates. In leucocytes, according to all observers, the nuclear division takes place by constriction, and is frequently accompanied by division of the cytoplasm (Rauvier, 75; Flemming, 782, p. 344; Arnold, ’87). But, as the recent work of Fiemming (91) and others shows beyond a doubt, leucocytes also di- vide by karyokinesis. It is difficult to say whether there is more than a single kind of leucocyte, one dividing directly, the other indirectly, or whether cells of the same kind divide in two different ways. In ease of giant cells, it has been shown by Arnold (’84), Denys (’86), Demarbaix (’89), and others, that division occurs both directly and by multiple karyokinesis. Both kinds of division are followed by division of the cytoplasm, leading to the formation of a brood of daughter cells within the mother cell. After going over the literature of amitosis, taking especial note of the manner of its occurrence and distribution in the Animal Kingdom, I have become convinced that it is not derived from mitosis, and, on the other hand, is not the forerunner of the more complicated process. I con- sider it another type of division altogether, which, along with karyoki- nesis, has been transmitted from the simplest forms of life to the most highly organized. While apparently every kind of nucleus may, at some stage of its existence, divide by karyokinesis, many afterwards exchange this type of division for the simpler process. The special conditions which evoke the exchange are very imperfectly understood, 156 BULLETIN OF THE and no hypothesis has yet been offered that will explain all the known instances. Some of the hypotheses that have been suggested I have already dwelt upon at length; others, as scantiness of chromatin, and even its entire absence in the nucleus (Léwit, 90), seem to me still more inadequate. 1 One fact in favor of the independence of the two types of division is the sudden change from mitosis to amitosis, without any visible interme- diate stages. Phylogenetically, this is seen in the abrupt transition from the amitotic division of Amebe to the very perfect karyokinesis of the nearly related Huglypha. Ontogenetically, of course, the exchange is far more abrupt. In the conjugation of Infusoria, all divisions of the micro- nucleus are undoubtedly mitotic, while the jirst (after conjugation) and all subsequent divisions of the macronucleus, ztself formed from modified micronuclei, are by direct division. Again, the amitosis of the blasto- dermic nuclei of Blatta (Wheeler, ’89) is an abrupt change from the perfect mitosis of segmentation. Other instances are the sudden change from mitosis to amitosis in the layers of stratified epithelium, and in the generations of spermatic cells. Another fact in favor of my view is the almost universal distribution of amitosis, and its occurrence in many kinds of cells with widely different functions. It seems more reasonable to suppose that a process so widely extended is inherited, and exists potentially in all cells, rather than to look upon it as independently assumed in a multitude of special cases. The latter supposition is opposed to all we know of the transmission of fundamental characters. While it is evident that both mitosis and amitosis appeared at a very early period of organic life, it is impossible to say which appeared first. But, on a priort grounds, we may conclude that the simpler type pre- ceded the more complex. CAMBRIDGE, September 28, 1891. It was not until this paper had gone to press that I had access to the recent communications on amitosis by Flemming (’91*), Léwit (791), Verson (’91), Frenzel (’91), and O. vom Rath (91). Jn his review of recent work on cell division, Flemming says (p. 139): “ Es ist also nicht nur als feststehend anzusehen, dass Amitose vorkommt, sondern auch, dass sie in normal lebenden Geweben vorkommt, und dass sie zur MUSEUM OF COMPARATIVE ZOOLOGY. 157 Zellenvermehrung fiihren kann.” When, however, both mitosis and amitosis occur in the same tissue, he considers it probable that only the former is the zorma/ method of regeneration and of growth. The brief papers by Lowit, Verson, and Frenzel are replies to Ziegler’s (91) recent article on amitosis, and contain little that is new. Verson describes briefly the early stages in the spermatogenesis of the silkworm (Bombyx mori). He states that the spermatocytes originate from a single large nucleus (‘“‘ Riesenkern”), which divides repeatedly and unequally by amitosis. The small daughter nuclei thus produced divide by mitosis, and at length form the spermatocytes. Frenzel adduces instances of amitosis in the intestinal epithelium of Crustacea and Insects which do not fall within Ziegler’s generalizations. Vom Rath’s paper is a valuable contribution to our scanty knowledge of the occurrence of amitosis in spermatogenesis. He shows very con- clusively that, in the testis of the crayfish, amitosis does not occur in the generations of sperm-forming cells, but only in abortive nuclei (‘‘Randkerne”’), which soon degenerate into an amorphous mass. If such a fate could be established for all amitotically dividing nuclei in the testes of animals, it would be much easier to form a logical estimate of amitosis. 158 BULLETIN OF THE BIBLIOGRAPHY. Arnold, J. 84. Ueber Kerntheilung und vielkernige Zellen. Virchow’s Arch. f. pathol. Anat., Bd. XCVIII. p. 501. °87. Ueber Theilungsvorgange an den Wanderzellen, ihre progressiven und regressiven Metamorphosen. Arch. f. mikr. Anat., Bd. XXX. p. 205. ’'88. Weitere Mittheilungen uber Kern- und Zelltheilungen in der Milz., ete. Arch. f. mikr. Anat., Bd. XXXI. p. 541. Blochmann, F. 85. Ueber directe Kerntheilung in der Embryonal-hiille der Scorpione. Morph. Jahrb., Bd. X. p. 480. Boveri, T. '87. Ueber Differenzirung der Zellkerne wahrend der Furchung des Eies von Ascaris megalocephala. Anat. Anz., Jalrg. II. p. 688. Biitschli, O. "76. Studien iiber die ersten Entwickelungs-vorgange der Hizelle, die Zell- theilung, und die Conjugation der Infusorien. Abhandl. Senckenberg. Naturf. Gesellsch., Bd. X. p. 218. 88. Protozoa. Abth. III. infusoria und System der Radiolaria. Broun’s Classen u. Ord. des Thier-Reichs, Bd. I. Abth. 3, p. 1098. Carnoy, J. B. '85. La Cytodiérése chez les Arthropodes. La Cellule, Tom. I. p. 191. Chun, C. 90: Ueber die Bedeutung der direkten Kernteilung. Sitzungsber. Physik- dkonom. Gesellsch. Kénigsberg i. Pr., Jahrg. 31, 6 pp. Demarbaix, H. 89. Division et dégénérescence des cellules géantes de la moélle des os. La Cellule, Tom. V. p. 27. Denys, J. '86. la Cytodiérése des cellules géantes et des petites cellules incolores de la moélle des os. La Cellule, Tom. II. p. 245. Dogiel, A. S. 90. Zur Frage iiber das Epithel der Harnblase. Arch. f. mikr. Anat., Bd. XXXV. p. 389. Faussek, V. ’87. Beitrige zur Histologie des Darmkanals der Insekten. Zeitschr. f wiss. Zool., Bd. XLV. p. 694. MUSEUM OF COMPARATIVE ZOOLOGY. 159 Flemming, W. ’82. Zellsubstanz, Kern- und Zelltheilung. Leipzig, F. C. W. Vogel. ’87. Neue Beitrage zur Kenntniss der Zelle. Arch. f. mikr. Anat., Bd. XXIX. p. 389. ’89. Amitotische Kerntheilung im Blasenepithel des Salamanders. Arch. f. mikr. Anat., Bd. XXXIV. p. 437. "91. Ueber Theilung und Kernformen bei Leucocyten, und uber deren At- tractionsspharen. Arch f. mikr. Anat., Bd. XXXVLII. p. 249. 91". Ueber Zellteilung. Verhandl. Anat. Gesellsch., 5. Versamm., p. 125. Frenzel, J. ’°85. Ueber den Darmkanal der Crustaceen, nebst Bemerkungen zur Epithel- regeneration. Arch. f. mikr. Anat., Bd. XXV. p. 137. °91. Zur Bedeutung der amitotischen (direkten) Kernteilung. Biol. Cen- tralb , Bd. XI. p. 558. Gehuchten, A. van. ~ 789. L’Axe organique du noyau. La Cellule, Tom. V. p. 177. Gilson, G. '84~87. Etude comparée de la spermatogénése chez les Arthropodes. La Cellule, Tom. I. p. 11; Tom. II. p. 83; Tom IV. p. 1. Goppert, E. "91. Kerntheilung durch indirekte Fragmentirung in der lymphatischen Randschicht der Salamandrinenleber. Arch. f. mikr. Anat., Bd. XXX VII. mC TRE Gruber, A. ’83. Ueber Kerntheilungsvorgange bei einigen Protozoen. Zeitschr. f. wiss. Zool., Bd. XXXVIII. p. 372. ’°85. Studien iber AmGben. Zeitschr. f. wiss. Zool., Bd. XLI. p. 186. Hamann, O. *90. Monographie der Acanthocephalen. Teil I. Jena. Zeitschr., Bd. XXV. p- 113. Hertwig, R. "77. Ueber den Bau und die Entwickelung der Spirochona gemmipara. Jena. Zeitschr., Bd. XI. p. 149 ’84. Ueber die Kerntheilung bei Actinosphaerium eichhorni. Jena. Zeitschr., Bd. XVII. p. 490. Hoyer, H. 90. Ueber ein fiir das Studium der direkten Kerntheilung vorziiglich geeignetes Objekt. Anat. Anz, Jahrg. V. p. 26. Johow, F ‘81. Die Zellkerne von Chara foetida. Bot. Zeit., Jahrg. XX XIX. Nos. 45, 46. Kowalevsky, A., und M. Schulgin. 86. Zur Entwicklungsgeschichte des Skorpions (Androctonus ornatus). Biol. Centralb , Bd. VI. p. 525. 160 BULLETIN OF THE Kikenthal, W. '85. Ueber die lymphoid Zellen der Anneliden. Jena. Zeitschr., Bd. XVIIT. p- 319. Laurie, M. ‘90. Embryology of a Scorpion (Euscorpius Italicus). Quart. Jour. Micr. Sci., Vol. XXXI. p. 105. : Lee, A. B. '87. La Spermatogénese chez les Némertiens. Recueil zool. Suisse, Tom. LV. p. 409. Lowenthal, N. ’89. Ueber die Spermatogénése von Oxyuris ambigua. Internat. Monatsschr. f. Anat. u. Physiol., Bd. VI. p. 364. Lowit, M. (90. Ueber Amitose (directe Theilung). Centralb. f. allgem. Pathol. u. pathol. Anat., Bd. I. p. 281. 91. Ueber amitotische Kernteilung. Biol. Centralb., Bd. XI. p. 513. Metschnikoff, E. 71. Embryologie des Skorpions. Zeitschr. f. wiss. Zool., Bd. XXI. p. 204. Overlach, M. 85. Die pseudomenstruierende Mucosa uteri nach acuter Phosphorvergilt- ung. Arch. f. mikr. Anat., Bd. XXV. p. 191. Pfitzner, W. 86%. Zur morphologischen Bedeutung des Zellkerns. Morph. Jahrb., Bd. XI. p. 54. : 86". Zur Kenntniss des Kerntheilung bei den Protozoen. Morph. Jahrb., Bd. XI. p. 454. Platner, G. 89. Beitrage zur Kenntniss der Zelle und ihre Theilungserscheinungen, I-III. Arch. f. mikr. Anat., Bd. XXXIIT. p. 125. Rabl, C. '85. Ueber Zelltheilung. Morph. Jahrb., Bd. X. p. 214. 89. Ueber Zelltheilung. Anat. Anz., Jahrg. IV. p. 21. Ranvier, L. "75 Recherches sur les éléments du sang. Travaux Lab. d’Histol., p. 1. Rath, O. vom. 91. Ueber die Bedeutung der amitotischen Kerntheilung im Hoden. Zool. Anz., XIV. Jahrg. Nos. 373, 374, 375. Sabatier, A. '85. Sur la spermatogénése des Crustacés décapodes. Compt. Rend., Tom. C. p. 391. Schewiakoff, W. '88. Ueber die karyokinetische Kerntheilung der Euglypha alveolata. Morph Jahrb., Bd. XIII. p. 193. MUSEUM OF COMPARATIVE ZOOLOGY. 161 Schmitz, F. '79. Beobachtungen uber die vielkernigen Zellen der Siphonocladiaceen. Halle. Schulze, F. E. "75. Rhizopoden-studien, V. Arch. f. mikr. Anat., Bd. XI. p. 583. Verson, E. 91. Zur Beurteilung der amitotischen Kernteilung. Biol. Centralb., Bd. XI. p. 556. Waldeyer, W. ’°88. Ueber Karyokinese und ihre Beziehungen zu den Befruchtungsvor- gangen. Arch. f. mikr. Anat., Bd. XXXII. p. 1. [Transl. Quart. Jour. Mier. Sci., Vol. XXX. p. 159.] Watase, S. ‘91. Studies on Cephalopods. I. Cleavage of the Ovum. Jour. Morph., Vol. IV. p. 247. Wheeler, W. M. 89. The Embryology of Blatta germanica and Doryphora decemlineata. Jour. Morph., Vol. III. p. 291. Woodworth, W. M. 91. On the Structure of Phagocata gracilis, Leidy. Bull. Mus. Comp. Zool., Vol. XXI. p. 1. Ziegler, H. E. ’87. Die Entstehung des Blutes bei Knochenfischembryonen. Arch. f. mikr. Anat., Bd. XXX. p. 596. 91. Die biologische Bedeutung der amitotischen (direkten) Kernteilung im Tierreich. Biol. Centralb., Bd. XI. p. 372. : fo . ee ; | ter, te eat ? 4 > . i 1 / if ia| Sly f . 7 AY eed wey «eo Re i { \ ‘ \ ] , nt Tre ¥ Te Be NE faa, PUM sishicier sacihnie Ns, ah : wl f ce : fe ee i iu = ‘ yo) aad ¥ ? : 5 ; me a ‘ r z 3) ; 1. eas Q Y iy! . f = > | aan L : ' i x 4 i ( + \ , ‘ = = y j A rey + ‘ i A H . } 4 j J. t 1 iI Wat ’ Mi a i UL huiat (ee fi Ay y ( 4 Py ¢ i Thad : i ue ale ig i A , - lon 1. m ini i “< y “ _ rg a U,. w i 9 shat, Ss) = 7 : hy = 4 . # i.) ‘is . a7 OD | 4 \ U r L i an iJ at , i a * ‘ Oy) Soi ey Pai : y oe a a eee yt,‘ an : voy 7 4 - 4 | x WW a dae Wore Vi pan 6 Cie on - :' Fatt 9 hi fi ; iV 7" 1 EXPLANATION OF FIGURES. All figures are from drawings made with the aid of an Abbé camera. Jounson. — Nuclear Division. PLATE I. Fig. 1. Five cells of the serosa, two of them covered by the amnion, which is omitted from the rest of the figure for the sake of clearness. am., amnion; sr., serosa. XX 180. Fig. 2. Section through the embryonal membranes and ovarian capsule. The fibrous appearance of the ovarian capsule is due to the presence of muscle fibres and connective tissue. The boundary line between amnion and serosa is visible only in the vicinity of the amniotic nuclei. e’th. fol., epithelium of ovarian capsule (when the plates were engraved [I still took this to be the follicular epithelium, hence the error in the abbreviation) ; nl. fol., nucleus of capsular epithelium ; nl. sr., nucleus of serosa; nl. am., nucleus of amnion. XX 680. Figs. 3-15 are all from the serosa. Fig. 3. Very small, binucleate cell. Xx 180. Figs. 4-10. Nuclei at different stages of division. vac., vacuole; zx, new nuclear wall within the old one. X 580. Fig. 11. Two cells produced by division of a binucleate cell. X 130. Fig. i2. Cell from the serosa of a young embryo, with dividing nucleus; the axis of elongation corresponds with the short axis of the cell. X 130. Fig. 13. Cell from serosa of a young embryo, with nucleus unequally divided and daughter nuclei eccentric in position. X 130. JOHNSON - NUCLEAR Division. B Meisel Jith. Boston Jounson. — Nuclear Division. PLATE II. Fig. 14. Piece of the serosa from an advanced embryo, with four adjacent tri- nucleate cells (1, 2, 3, 4); nuclei of cell a and the large cell farthest to left have undergone degeneration. X 90. Fig. 15. Three cells of the serosa from an old embryo to show recession of daugh- ter nuclei towards the ends of the cells. X 90. Figs. 16-20 are from the amnion. Figs. 16-19. Stages in the division of amniotic nuclei. In Figure 18 three stages © are shown, a, b,c. X 800. Fig. 20. Two amniotic cells, apparently formed by recent division. X 3875. Figs. 21-26 are from the capsular epithelium. Figs. 21-23. Cells showing successive stages of nuclear division. X 800. Figs. 24-26. Cells to show the degeneration of nuclei. In Figure 24 the nuclei a.e but slightly differentiated; in Figure 25 the pale nucleus has become much larger and very faint; in Figure 26 it has disappeared altogether. x 800. PL I JOHNSON - NUCLEAR DIVISION i Bostan inn, E Meisel HP. J. del. : ; ; j + 3 = ‘ ‘ an I “sy & " i. : / 2 ae r tay " a = - } - | " - ui i) AY i) bs - , yt (Ay | Py i ih ‘ . 7 a ris AL > os 4 pea . Jounson. — Nuclear Division PLATE III. Figs. 27-34 are all from the serosa. Fig. 27. A cell undergoing division by formation of a cell plate. The daughter nuclei are still united by a connecting thread. The dotted line on the left indicates the edge of the fragment of membrane in which this cell occurs. From the serosa of an advanced embryo. X 804. Fig. 28. A cell divided by constriction, without the formation of a cell plate. The nuclei have undergone degeneration. From the serosa of an advanced embryo. X 150. Fig. 29. A cell, the nucleus of which has undergone tripartite division. From an old serosa. XX 150. Fig. 80. Nucleus of the same, more highly magnified. The chromatin is grouped in granular masses. Two of the daughter nuclei are still united by strands of the nuclear membrane. XX 6980. Figs. 31-32: Constricted nuclei from a young serosa. One of the daughter nuclei of each is larger than its mate, and has itself become elongated and constricted. X 304. Fig. 33. Quadrinucleate cell. The upper of the two original nuclei has divided in a longitudinal, the lower in a transverse plane. Nucleus a still shows a remnant of the connecting thread, and nucleus } retains the conical form it had in division. Both nuclei have rotated 90° from the plane of elongation. X 304. Fig. 34. Cell from the serosa of a far advanced embryo. The nuclei have under- gone extreme degeneration. Each nucleus is surrounded by a bright ring, outside of which is a broad zone of a radiate structure, more stainable than the rest of the cytoplasm. X 150. soN NucLeAR Division. No. 4.— A Fourth Supplement to the Fifth Volume of the Terres- trial Air-breathing Mollusks of the United States and Adjacent Territories. By W.G. Binney} Tue following pages are believed to contain, all that has been added to our knowledge of the subject prior to date. Students are requested to note that in the Third Supplement, p. 214, the figures of Arionta Diabloensis and Bridgesi are reversed. On p. 225, Explanation of Plate VII., the references E and F are reversed: on p- 226, Explanation of Plate XI., Figures D and G are reversed. Buruineton, NEw Jersey, July 1, 1891. Glandina decussata, Dress. Plate I. Fig 4. Under the name of decussata, specimens are found in most collections which can hardly be referred to that species. I have figured one of them, and its dentition has already been described and figured in my Third Supplement. The shell is readily recognized by its more cylindrical form. Should it prove distinct from decussata, I would suggest for it the specific name of Singleyana. I received it from Bexar County, Texas, collected by Mr. Wetherby. Selenites Vancouverensis, Lea, var Keepi, Hempnite. Plate II. Fig. 5. Shell umbilicated, greatly depressed, thin, smooth, shining, transparent, scarcely marked by the delicate wrinkles; very light horn-color; whorls over four, some- what flattened above and beneath, and scarcely descending at the aperture; spire 1 The Terrestrial Air-Breathing Mollusks of the United States and the Adjacent Territories of North America, described and illustrated by Amos Binney. Edited by A. A. Gould. Boston, Little and Brown, Vols. I., II., 1851; Vol. III., 1857. Vol. IV., by W. G. Binney, New York, B. Westermann, 1859 (from Boston Journ. Nat. Hist.). Vol. V., forming Bull. Mus. Comp. Zo6l., Vol. IV., 1878. Supplement to same, in same, Vol. IX. No. 8, 1883. Second Supplement, in same, Vol. XIII. No. 2, 1886. Third Supplement, in same, Vol. XIX. No. 4, May, 1890. VOL. XXII — NO. 4. 2 164 BULLETIN OF THE flat, not rising above the body whorl; suture well impressed; umbilicus moderately large, exhibiting most of the volutions; aperture transversely subcircular, wider than high; lip simple, thickened, sinuous above, very slightly reflected at the base, ends scarcely approached. Width ;; inch, height 4; ich. Hills near Oakland, California. One specimen only. This rare and interesting little shell I collected some years ago. It is a perfect miniature form, in every respect, of S. Vancouverensis. I regard it as an extremely small variety of that so called species. It is about the size of the variety of S. Duranti, lately described as S. cwlatus, Mazyck, but differs very materially in form, sculpture, and the general texture of the shell. It differs from var. Catalinensis in being more robust, larger, and has a smaller umbilicus. I dedicate this pretty little shell to Prof. Josiah Keep, of Mills College, California, who has done so much through his interesting little book to stimulate the study of West Coast shells. The above is Mr. Hemphill’s description, from “The Nautilus,” Vol. IV. p. 42, 1890. My figure is drawn from an authentic specimen, Selenites Vancouverensis, var. hybridus, Hempuict. Shell broadly umbilicated, depressed, slightly convex above, surface shining, polished, of a dark yellowish green color, lines of growth coarse, rib-like and regu- lar on the spire, finer and more irregular on the body whorl, crossed by fine revolv- ing lines that become fainter on the last whorl, suture well impressed ; aperture rounded, broader than high, greatly indented above ; lip simple, very little reflected below at its junction with the columella, very sinuous above, its terminations joined by a very thin callus. Height % inch, breadth 1 inch. Astoria, Oregon. In the strong rib-like sculpturing of the spire, depressed form, and sinuous lip, it resembles sportellus. In its greater diameter, dark greenish color, and the absence of the decussating sculpture on the last whorl, it approaches Vancouverensis. All our American Selenites commence life with a finely granulated shell. When they have attained about two whorls, the stria begin to appear, and increase in strength as the shell increases in size. It is well known that all shell-bearing mollusks construct their shells in obedi- ence to the laws of their constitutional characteristics and the environment, among which I include affinity of matter and mechanical skill, the latter a faculty pos- sessed to a greater or less degree by all animals. Some individuals in a colony of shells display greater mechanical skill than others, or possess stronger imitative powers, and closely follow the lines and styles of their forefathers, strictly attend- ing to the details of sculpturing, not omitting a rib or line. Other individuals of the same colony, not having this imitative faculty so strongly developed, may change or vary the form of the shell by constructing it with more convex whorls, generally resulting in a narrower or more elevated shell; or they may flatten the whorls, resulting in a broader and depressed form. Some modification of the um- bilicus generally follows the change in the form of the shell. In both cases the sculpturing may be what we call characteristic of the species, or may be more or less modified by the omission of one, two, or more ribs, or the ribs may be more MUSEUM OF COMPARATIVE ZOOLOGY. 165 irregular in shape. A few lines may also be dropped, perhaps some added, or the entire surface may be modified in obedience to the laws of the mechanical skill possessed by the individual, and the affinity of matter secreted by the animal, for the purpose of constructing the shell. An examination of a large number of Selenites concarus, and of our West Coast forms, convinces one that the entire group of Americana Selenites is the offspring of a single common type. The above is Mr. Hemphill’s description, from ‘“‘ The Nautilus,” Vol. IV. p- 42, 1890. Selenites Duranti, var. Catalinensis, Hempui tt. Plate II. Fig. 3. I figure an authentic specimen. See Third Suppl., p. 221. Selenites Vancouverensis, var. transfuga, Hempuict. Shell very much depressed, planulate, broadly umbilicated, of a dirty white color; whorls 34 or 4, flattened above, more rounded beneath, with regular strong rib-like striz; suture well impressed, becoming deeper and channel-like as it ap- proaches the aperture; aperture hardly oblique, slightly flattened above, with a tendency to a corresponding depression below ; lip simple, roundly thickened inter- nally, its terminations approaching, forming in some specimens a short columellar lip, joined by a heavy raised callus in very adult specimens. Height 3; inch, greatest diameter ;°;, lesser 7% inch. San Diego, California, to Todos Santos Bay, Lower California. This is the small flat shell that has been distributed as a variety of sporte/la, and also as a variety of Voyanus. I find, however, on comparing it with the typical Voyanus collected by me last fall, that it is quite a different shell. The ribs are closer and finer than either sportellus or Voyanus, the umbilicus is much larger, and it is a very much more depressed shell. I consider it, however, a deserter from the Northern forms, and name it accordingly. It is a much larger and a more globose form than simplilabris of Ansey. The above is Mr. Hemphill’s description. Selenites Vancouverensis, Lra. The only differences that I can detect between this shell and Se/enites concava, Say, are these. The umbilicus in the California shells is a little more contracted, the color is a shade darker, the strie are a little closer, stronger, and more regular, and the body whorl is a little more flattened at the aperture. Height g inch, breadth ¢ inch. Sonoma Co. to Santa Cruz Co., California. The above is Mr. Hemphill’s description of what he calls S. concavus, var. occidentalis. 166 BULLETIN OF THE Selenites Vancouverenis, var. tenuis, Hempar.y. Shell broadly umbilicated, depressed, nearly planulate ; of a dirty greenish brown color; whorls 5, flattened above, more rounded beneath, the last expanding later- ally as it approaches the aperture, and crowded with fine oblique striz ; suture well impressed ; aperture rounded, slightly flattened above; peristome simple, hardly reflected below. Height } inch, breadth 7% inch. Napa Co., California. The small size, nearly planulate form, and thin, lean body whorl as it emerges from the aperture, will serve to distinguish this shell from the other forms of concavus found on the West Coast. The above is Mr. Hemphill’s description. He refers ali these varieties to concavus, but I use the specific name Vancowverensis for all Pacific Region forms. Limax Hemphilli. Plate II. Fig. 1. Length (contracted) 19mm. Mantle long, 9mm. End of mantle to end of body 9mm. Foot wide 2mm. Median tract of foot gray, lateral tracts brown. Median area of foot rather wider than either lateral area. Mantle free an- teriorly as far as respiratory orifice. Body tapering posteriorly, not carinate. Mantle somewhat granulose, not concentrically striate. Color dark brown, obscurely marbled with gray ; sides anteriorly grayish and paler. Limax Hemphilli, W. G Brxney, 3d Suppl. T. M. V., p. 205, Plate VIII. Fig. E; Plate I. Fig. 13; Plate II. Fig. 3 (1890). A species of the Pacific Province, having been found from British Columbia to San Tomas River, Lower California, by Mr. Henry Hemphill, in whose honor it is named. ‘ The general outward appearance of this species resembles that of campestris, but every specimen examined by me from numerous localities had a peculiarity in its lingual dentition which seems to me of specific value, — the presence of an inner cutting point to the lateral teeth, very much the same as is found in agrestis. "The anatomy of this species is specifically distinct from agrestis in wanting the trifurcate penis sac of the latter, even did its distribution not preclude its being a form of agrestis. I have ventured therefore on giving it a specifie name. The penis sac is large, long, gradually tapering to the apex ; the genital bladder is globular, on a short, stout duct. I figure on the plate a variety from San Tomas River, Lower California, called pictus by Mr. Cockerell. Its body is pale, reticulated with gray spots; mantle with black or gray spots. Resembling L. Berendti, Strebel, from Guatemala. For lingual dentition, ete., see Third Supplement. ~J MUSEUM OF COMPARATIVE ZOOLOGY. 16 Zonites Shepardi, Hemeartt. 2 Shell umbilicated, very small, depressed ; whorls 3 or 34, shining, transparent, smooth, somewhat flattened; spire scarcely elevated above tlie body whorl; aper- ture oblique, oval; peristome simple, acute, its ends hardly approaching; suture well impressed; umbilicus pervious, and moderately large for so small a shell. Great diameter, 2 mm. Height, 1 mm. Santa Catalina Island, California. This little shell belongs to the planulate forms, and somewhat resembles a minute Z. Whitneyi. I dedicate it to Miss Ida Shepard in recognition of her active services among the mollusks of Long Beach, Cal., where she resides. The above is Mr. Hemphill’s description. Zonites Lawe. Shell small, umbilicated, globose, flatter below, shining, light horn-colored, marked with coarse wrinkles of growth; spire rounded; whorls 8, gradually increasing, slightly convex, the last excavated below around the umbilicus ; aperture oblique, rounded; peristome simple, acute, thickened with callus within. Greater diameter 9 mm., lesser 7 mm.; height 4 mm. Zonites placentula, part, W. G. Brxney, formerly, Terr. Moll. U.S. V., p. 124, Fig. -44; Plate III. Fig. L (dentition). Zonites Lawi, W. G. Binxey, Suppl. to Vol. V. p. 142; Plate IIL. Fig. E (also, Ann. N. Y. Ac. Sci., Vol. L, Plate XV. Fig. E, as undetermined). Mountains of Tennessee (Miss Law); a species of the Cumberland Subregion. Readily distinguished from placentula by its larger size, higher rounded spire, greater number of whorls, and more widely excavated umbilical region. Jaw as usual in the genus. Lingual membrane (Vol. V. Plate III. Fig. L, as placentula) with 25-1-25 teeth; three laterals and one transition tooth. Zonites Caroliniensis, Cockerett. Plate II. Fig. 7. Among the specimens of Zonites sculptilis collected in the mountains of North Carolina are many which differ from the type widely enough to be considered a distinct species. Mr. Cockerell suggests for it the name Caro- linensis, thus describing it : — This species differs from scu/ptil’s in its fewer whorls, straighter columellar margin, less iunate aperture, fewer radiating strie, and other points. It is figured as sculptilis in Manual of American Land Shells, Fig. 231. 168 BULLETIN OF THE Zonites sculptilis. Plate III. Fig. 9. For the sake of comparison with the preceeding species, I have given other figures here of the true Z. sculptilis. Zonites Simpsoni, Pitssry. Plate I. Fig. 8, I give an enlarged figure of an authentic individual of this species. For the description see Third Suppl., p. 218. Zonites Diegoensis, HemPuitt. Plate III. Fig. 2. Shell minute, umbilicated, thin, light horn-colored, with delicate incremental strie, globose; whorls 34, convex; base swollen; suture deep; umbilicus broad ; aperture narrow, rounded ; peristome thin, acute, its ends approximated, the inner one slightly reflected. Greater diameter 33 mm., lesser 1}; height 13 mm. Near Julian City, San Diego Co., California. On Cuyamaca Mountain, 4,500 feet elevation. The above is Hemphill’s description. My figure is drawn from an authentic specimen. Zonites cuspidatus, Lewis. Vol. V., Fig. in text; Suppl., Plate II. Fig. C. Shell imperforate, small, slightly convex above, flattened below ; light horn color, shining; whorls 6, gradually increasing in size, with wrinkles of growth, the last not descending at the aperture; peristome thin, acute; aperture rounded, bearing within behind the peristome a white callus, on which is one subcentral and a second basal, erect, recurved tooth-like process, sepa- rated by a rounded sinus; base often blackish, showing the white callus prominently. Greater diameter 8 mm., lesser 6; height 4 mm. Zonites cerinoideus, var. cuspidatus, Lewis, Proc. Phila. Ac. Nat. Sci., 1875, p. 334. Zonites cuspidatus, W. G. Binney, Ann. N. Y. Ac. Nat. Sci., Vol. I. p. 359, Plate XV. Fig. C; Suppl. to Terr. Moll. V., Plate II. Fig. C. Mountains of Tennessee and North Carolina: a species of the Cumberland Subregion. The tooth-like processes within the aperture, strongly curved towards each other, form an arched space. MUSEUM OF COMPARATIVE ZOOLOGY. 169 Miss Law thus wrote from Philadelphia, Tenn., of this species: “ Unlike gularis, it seems to be a rare shell, and I find it only by scraping off the sur- face of the ground in the vicinity of damp mossy rocks. Its habits are more like placentula than gularis. I never mistake one for a gularis, even before picking it up; the thickened yellow splotch near the lip, and the thinner spot behind, showing the dark animal through it, as well as its more globular form, particularly on the base, make it look very different when alive.” Zonites macilentus, SxurTtt. Plate III. Fig. 3. The individuals of this group are very often difficult to identify, on account of the blending of their specific characters. The typical macilentus is distin- guished by a very wide umbilicus and a single revolving lamina starting from near the basal termination of the peristome. The figure of macilentus in Vol- ume V. shows a second revolving lamina and a much smaller umbilicus. I give here another figure of what appears to me to be the shell described as macilentus. How constant are the characters of the species can be shown only by a large suite of individuals. Tebennophorus Hemphilli. Plate III. Fig. 4. I give a figure of the jaw already described by me. Patula strigosa, Goutp, var. jugalis, Hempurtt. Shell umbilicated, depressed with numerous prominent oblique striz; spire very moderately elevated or depressed ; whorls 53, somewhat flattened above, but more convex beneath, the last falling in front, with two dark revolving bands, one at the periphery and the other above; the body whorl subcarinated at its beginning, but more rounded as it approaches the aperture; suture well impressed; color ashy white, with occasional horn-colored stains; umbilicus large, pervious, showing the volutions ; aperture oblique, ovate, but in very depressed specimens the aperture is at right angles with the axis of the shell; peristome simple, thickened, its ter- minations approaching and joined by a thick heavy callus, making the peristome in very adult specimens continuous. Height of the largest specimens 4 inch, breadth 1 inch. Height of the smallest specimens 3% inch, breadth 42 inch. Patula strigosa, var. jugalis, HEMPHILL, The Nautilus, 1890, p. 134, in Binney’s 3d Suppl., p. 215, figure. ¢ Banks of Salmon River, Idaho. This is another interesting form of the very variable strigosa. It inhabits stone piles, and other places where it can find shelter and protection against the fatal rays of the summer’s sun, close along the banks of the river. It is interesting on 170 BULLETIN OF THE account of its very @epressed form and the ovate form of the aperture, the heavy callus joining or “ yoking”’ together the extremities of the peristome. The above is Hemphill’s description. The figure in the Third Supplement is drawn from an authentic specimen. Patula strigosa, GovuLp, var. intersum, HEmpPuHILt. Shell umbilicated, sublenticular, depressed, thin, dark horn-color, more or less stained with darker chestnut. Whorls 54 or 6, somewhat flattened above, more convex beneath, obtusely carinated at the periphery, and bearing numerous coarse oblique rib-like stria, and two dark revolving bands; suture well impressed; um- biticus large, pervious; aperture oblique, subangulated ; peristome simple, thick- ened, its terminations joined by a thick callus. Height of the largest specimen 4 inch, breadth inch. Height of the smallest specimen ; inch, breadth 7% inch. Patula strigosa, var. intersum, HemMpHILt, The Nautilus, 1890, p. 135. Bluffs along the banks of Little Salmon River, Idaho. This shell inhabits stone piles at the foot of a steep bluff back some distance from the river. It seems to be quite rare, as I found but few specimens during the two or three days of my stay in its vicinity, and many of them were dead. I regard it as one of the most interesting shells found by me during the season, for it combines the depressed angulated or keeled forms of the Haydeni side of the series with the sculpturing of /dahoensis, two shells representing opposite charac- ters in every respect. It thus becomes the companion of Wahsatchensis, a beautiful shell, combining the same characters, but much more developed, and connected with the large elevated forms. Var. intersum fills the opposite office, by uniting these characters with the small depressed forms. Taken as a whole, this series of shells, as now completed, seems to me to offer the best guide or key to the study of species that the student can have. Every known external character belonging to the genus Helix is so gradually modified and blended with opposite characters, that, if one had the moulding or making of the many and various intermediate forms, he could scarcely make the series more complete than Nature has done herself. The above is Hemphill’s description. Patula strigosa, Goutp, var. globulosa, CocKERELL. Small, globose, dark above periphery, with two bands, transverse grooved striz rather well marked. Diameter 113, alt. 83mm. Black Lake Creek, Summit Co. The specimen seems immature, but is remarkable as being the only form I have seen in Colorado that is nearer to strigosa than Cooperi. It is doubtless allied to var. Gouldi, Hemphill. (Cockerell.) Patula strigosa, var. globulosa, COCKERELL, The Nautilus, 1890, p. 102. The above is Cockerell’s description. The above varieties of Patula strigosa are transversely ribbed. The following are smooth or striate MUSEUM OF COMPARATIVE ZOOLOGY. 171 Patula strigosa, Govxp, var. Buttoni, Hempuitt. Plate I. Figs. 2 and 10. I figure the typical and the toothed forms. See 3d Suppl., p. 220. Patula strigosa, Goutp, var. albofasciata, Hempui.t. Plate IV. Fig. 9. Shell globose, elevated or depressed; whorls six, convex, with a broad white band at the periphery, which shows just above the suture on two or three whorls of the spire as it passes towards the summit or apex, separating two variable chestnut-colored zones; the upper one in some specimens is often very dark, in others very light passing into horn-color, and broken into blotches, stains, or irregular lines, which pass up a few whorls of the spire and blend with the horn-colored summit; the lower zone spreads towards the umbilicus in irregular stains, often beautifully clouding the base of the shell, or is often broken into irregular revolving lines, and other varied patterns of coloring; strie rib-like, quite coarse in some specimens, in others finer and closely set together; aperture circular, ovate, and occasionally pupeform; peristome simple, thickened, sub- reflected at its junction with the columella, and partially covering the umbilicus, the ends approached and often joined by a callus, the peristome sometimes bearing a tooth-like process; umbilicus deep, moderately large, narrower in elevated and broader in depressed specimens; suture well defined. Greater diameter of the largest specimen 17 mm., height, 12 mm.; greater diameter of the smallest 12 mm., height 7 mm.; with all the intermediate sizes. Box Elder Co., Utah. Among leaves, brush, and grass, on limestone rock. Altitude, about 4,600 feet above the sea. This variety of strigosa is so very variable in all its characters I find it quite difficult to draw a description that will cover all the individuals which I include in it. Ihave given the measurements of the largest and smallest specimens, but there are all the intermediates between those figures. The above is Mr. Hemphill’s description. An authentic individual is figured on the plate. Patula strigosa, Goup, var. subcarinata, HempPnite. Among the shells recently collected by Mr. Hemphill at Old Mission, Coeur d’Alene, Idaho, was a marked variety of this species, for which Mr. Hemphill suggests the name subcarinata. The specimens vary greatly in elevation of the spire, and in the number and disposition of the revolving bands, often quite wanting, as in the specimen figured in the Third Supplement. All have a very heavy shell, the body whorl of which has an obsolete carina which is well marked at the aperture, modifying the peristome very decidedly. See the figure. 172 BULLETIN OF THE In examining the genitalia I find the base of the duct of the genital bladder ereatly swollen along a fifth of the total length of the duct. Mr. Hemphill (The Nautilus, 1890, p. 133) thus describes it : — The shell in general form resembles a large, coarse elevated or depressed Cooperi: It has six whorls, well rounded above and beneath, and subcarinated at the periph- ery. The body whorl has two revolving dark bands, one above and the other below the periphery ; sometimes the upper band spreads over the shell to the su- ture, forming a dark chestnut zone that fades out as it passes toward the apex. The peristome is simple, thickened, its terminations joined by a callus; aperture obliquely subangulate; the suture is well impressed. Height of the largest speci- men 1 inch, breadth 14 inches; height of the smallest specimen ¢ inch, breadth 1 inch. Rathdrum, Idaho. An authentic specimen is figured in the Third Supplement. Patula strigosa, Goutp, var. bicolor, HEMPuHILL. Plate IV. Fig. 7. This shell is a colored variety of the last. It may be characterized as being of a general dark horn-color mingled with dirty white; there are occasional zones of dark horn-color above and fine dark lines beneath, but no defined bands. In some of the specimens the light color prevails, in others the horn-color spreads over the shell in irregular patches. Height 7 inch, breadth 1% inches. Rathdrum, Idaho. (Hemphill.) Patula strigosa, var. bicolor, HEMPHILL, The Nautilus, 1890, p. 183. An authentic specimen is figured. Patula strigosa, Goutp, var. lactea, HemPuitt. Plate {V. Fig. 8. This is a beautiful clear milk-white shell, with 53 whorls, subcarinated at the periphery. In the elevated forms the aperture is nearly circular, as broad as high; but in the depressed forms the aperture is broader than high, obliquely suban- gulate. The lip is simple, thickened, its terminations joined by a heavy callus, — the thickening of the lip and callus is a shade darker than the body of the shell. Height of the largest specimen 1 inch, breadth 1} inches. Rathdrum, Idaho. The above varieties represent a colony of the largest specimens of the strigosa group that I have collected. They are an important and very interesting addition to the series, and serve to confirm my previous views on the relationship of what I call the strigosa group. This colony inhabits open places in the dense pine forests of the mountains, overgrown with deciduous bushes. They hibernate among MUSEUM OF COMPARATIVE ZOOLOGY. Liye leaves, brush, and roots of trees, and in protected and secure places, generally on the north slopes of the mountains. (Hemphill.) Patula strigosa, var. lactea, Hempuitt, The Nautilus, 1890, p. 134. An authentic specimen is figured. Patula strigosa, var. Utahensis, Hempui.t. For locality, see 2d Supplment, p. 30. This is a rough, coarse, carinated variety, figured in Terr. Moll. V., p. 158, Fig. 66. The peristome is sometimes continuous by a heavy raised callus connecting its terminations. It is sometimes smaller and more elevated. (2d Suppl., p. 33.) Patula strigosa, Goutn, var. depressa, CocKERELL. Shell flattish, maximum diameter 213, altitude 123 mm. Specimens of this variety were sent to me by Miss A. Eastwood, who found them in a cafon near Durango, Colorado. The same variety is figured by Binney, Man. Amer. Land Shells (1885), p. 166, Fig. 153. (Cockerell.) Patula strigosa, var. depressa, COCKERELL, The Nautilus, 1890, p. 102. Patula strigosa, var. albida, Hempuitt. _ Shell broadly umbilicated, greatly depressed, white, tinged with horn-color; sur- face covered with fine oblique strie and fine microscopic revolving lines; whorls 6, convex, the last falling in front; spire very little elevated, apex obtuse, aperture oblique, nearly round; peristome simple, thickened, subreflected at the columella, its terminations approaching, joined by a thin callus. Height 3 inch, greatest di- ameter 1 inch, lesser ? inch. Near Logan, Utah. Patula strigosa, var. albida, Hemputitt, The Nautilus, IV. p. 17, June, 1890. The above is Hemphill’s description, Patula strigosa, var. parma, Hempuitt. Shell broadly umbilicated, greatly depressed, of a dark dirty horn-color, surface somewhat rough, covered with coarse irregular stria, and microscopic revolving lines ; whorls 54 or 6, subcarinated throughout, somewhat flattened above, rounded beneath, and striped with two chestnut-colored bands, one above and the other just at the periphery; spire very little elevated, umbilicus moderately large and deep; aperture ovately round, oblique; peristome simple, subreflected, its termi- nations approaching and joined by a thin callus. Height + inch, breadth 1 inch. Near Spokane Falls, Washington. Patula strigosa, var. parma, Hempuitt, The Nautilus, IV. p. 17, June, 1890. The above is Hemphill’s description. 174 BULLETIN OF THE Patula strigosa, var. rugosa, HempuHict. Shell umbilicated, elevated or globosely depressed, of a dull brown ash-color; surface rough, covered with coarse irregular oblique striz, and microscopic re- volving lines; whorls 5, convex, with or without one or two narrow faint revolv- ing bands. In most of the specimens the bands are obsolete; spire elevated, obtusely conical; suture well impressed; umbilicus large, deep; aperture nearly round; peristome simple, thickened, its terminations approaching and joined by a thin callus. Height of the largest specimen # inch, greatest diameter 1 inch. Height of the smallest specimen 4 inch, greatest diameter % inch. New Brigham City, Utah. A large rough robust form, with very convex whorls. Some of the specimens so closely resemble solitaria, Say, that one not well acquainted with both forms would be easily deceived, and refer it to that species. In its adolescent state the lip is very thin or easily broken, and on the surface of the adult shells these frac- tures give it a rough and uneven appearance. Patula strigosa, var. rugosa, HEmMpuitt, The Nautilus, 1890, Vol. IV. p. 16. ¢ The above is Hemphill’s description. Patula strigosa, var. carnea, HEMPHILL. Shell umbilicated, greatly depressed, dark horn-color, rather solid, shining, sur- face somewhat uneven and covered with irregular oblique striz; whorls 54, con- vex, the last faintly subcarinated in the depressed specimens, falling in front, sometimes faintly banded, but most of the specimens are plain and without bands ; spire subconical, apex obtuse; suture well impressed, umbilicus large; aperture circular; peristome simple, thickened, its terminations well approached and joined by acallus. Height § inch, greater diameter §, lesser 3 inch. Near Salt Lake, Utah. Patula strigosa, var. carnea, HEMPHILL, The Nautilus, Vol. IV. p. 15, June, 1890. The above is Hemphill’s description. * Patula strigosa, var. fragilis, Hempnivy. Shell umbilicated, elevated or globosely depressed, translucent, thin, fragile, somewhat shining, of a dark horn-color, surface covered by fine oblique striz ; whorls 5, convex, the last descending in front and striped by two dark chestnut bands, one above and the other below the periphery ; suture well impressed ; aper- ture oblique; peristome simple, thickened ; umbilicus moderate, deep, partially covered by the reflected peristome at the columella. Height of the largest speci- men ,*; inch, greatest diameter § inch, lesser $ inch. Near Franklin, Idaho, among red sandstone. A very thin and almost transparent variety of the very variable strigosa. By its ~ MUSEUM OF COMPARATIVE ZOOLOGY. 175 peculiar shade, it is very evident that the animal has drawn largely from the red sandstone for the material to build its shell. Patula strigosa, var. fragilis, HEMPHILL, The Nautilus, Vol. IV. p. 17, June, 1890. The above is Hemphill’s description. Patula strigosa, var. picta, Hempxttt. Shell umbilicated, elevated or globosely depressed, of a dirty white color, stained more or less with chestnut; surface somewhat rough and uneven, covered with moderately coarse oblique striz, and fine revolving lines; whorls 6, convex, sub- carinated, with a broad white band at the periphery, and a dark zone of chestnut on the upper side, extending from the peripheral band to the suture, fading out as it traverses the whorls of the spire; beneath, on the base of the shell, it is striped with numerous bands that sometimes extend into the umbilicus, and also into the aperture; spire elevated; apex obtuse; suture well impressed; umbilicus moder- ately large and deep, broader in the depressed than in the elevated forms; aper- ture nearly circular; lip simple, subreflected, its terminations approaching and joined by athin callus. Height % inch, greatest diameter 1} inches, lesser 1 inch. Rathdrum, Idaho. Patula strigosa, var. picta, HEMPHILL, The Nautilus, Vol. IV. p. 16, June, 1890. The above is Hemphill’s description. Patula strigosa, var. hybrida, Hempnitt. Shell umbilicated, depressed, white, spire horn-color, surface of the shell cov- ered with fine oblique striw, and widely separated revolving raised lines; whorls 5, flattened above, rounded beneath, the last falling in front, and striped with two faint chestnut bands; suture well impressed ; umbilicus large, showing nearly all the volutions; aperture nearly circular; peristome simple, thickened, its termina- tions approaching and joined by a thin callus. Height % inch, diameter # inch, lesser 2 inch. Near Logan, Utah. This is an interesting shell, as it is the beginning of the forms of strigosa that finally develop the revolving lines into prominent ribs, as seen on the surface of var. Haydent, Gabb. Patula strigosa, var. hybrida, Hempuity, The Nautilus, Vol. IV. p. 17, June, 1890. The above is Hemphill’s description. Mr. Cockerell (The Nautilus, 1890, p. 102) mentions by name only the fol- lowing Colorado forms: — P. strigosa Cooperi, form trifasciata, Ckll. Mesa Co. P. strigosa Cooperi, form confluens, Ckll. West Mountain Valley, Custer Co.; Garfield Co.; Mesa Co. 176 BULLETIN OF THE P. strigosa Cooperi, form elevata, Ckll. Delta Co. : P. strigosa Cooperi, form major, nov. Shell with diam. 25mm, Near head of North Mam Creek, Mesa Co., Sept. 14, 1887. P. strigosa Cooperi, var. minor, Ckll. Near Egeria, Routt Co., abundant. It is quite a distinct local race. Pristiloma, ANceEy. Animal as in Patula. Shell small, imperforate, horn-color, shining, many whorled ; spire de- pressed conic; aperture sometimes armed with radiating, rather crowded, palatal lamellee. Northern and Arctic North America. Types: Zonites Stearnsi and Lansingi, BLAND. Formerly Pristina, ANCEY, and Anceyia, PILSBRY, preoc. Jaw low, wide, slightly arcuate, ends little attenuated, blunt, with numer- ous crowded broad ribs, denticulating either margin. Lingual membrane with tricuspid centrals, bicuspid laterals, aculeate mar- ginals, as in Zonites. Separated from Microphysa by the ribbed jaw combined with the lingual membrane of Zonites: a very unusual occurrence. Pristina Lansingi, Brann. Piate III. Fig. 6. I give a better figure of this species. Pristiloma Stearnsi, Buanp. Vol. V., figures in text. Suppl., Plate I. Figs. N (dentition) and O (jaw). Shell minute, imperforate, globose conic, striate, shining, horn-colored ; suture impressed ; whorls 7, regularly increasing, the last not descending, very globose, swollen below, excavated closely around the imperforate umbilical region; aperture rounded; peristome simple, acute. Greater diameter 4 mm., lesser 34; height 25 mm. Zonites Stearnsi, BLAND, Ann. N. Y. Lyc., XI. 74, Figs. 1, 2 (1875). Microphysa Stearnsi, W. G. Binney, Terr. Moll. V., figs. in text; Suppl., Plate II. Figs. N (dentition) and O (jaw). Astoria, Portland, Oregon ; Olympia, Washington; Alaska. A species of the Oregonian region. It is larger, more elevated, and more distinctly striated than Lansingi, with wider, more rounded, unarmed aperture. MUSEUM OF COMPARATIVE ZOOLOGY. 177 The jaw is of the same type as described under P. Lansingi, with over 19 ribs. (Suppl., Plate II. Fig. O.) The peculiar lingual membrane also is the same as in that species, with four laterals on each side of the central tooth. (Suppl., Plate I. Fig. N.) Punctum, Morse. Animal as in Patula. Shell minute, umbilicated, thin, horn-colored, depressed globose; whorls 4, the last not descending ; spire slightly elevated ; aperture rounded ; peristome thin, acute. Europe and North America. Jaw slightly arcuate, ends blunt, not acuminated, composed of numerous subequal, overlapping distinct plates. Lingual membrane as usual in the Helicide; bases of attachment sub- quadrate, reflection small, tricuspid in the centrals, bicuspid in the laterals, marginals irregularly denticulated. Distinguished by the peculiar free plates of the jaw. There are two species of Punctwm, conspectum and pygmeum. Helicodiscus fimbriatus, Wernerey, var. salmonaceus, Hempuitt. Plate Iil. Fig. 8. I give a figure of this variety from an authentic specimen. See 3d Suppl., p- 189. Anadenus, Hernemann. Animal limaciform, subcylindrical, tapering behind ; tentacles simple; man- tle anterior, concealing an internal shell-plate ; no longitudinal furrows above the margin of the foot, and no caudal mucus pore ; a distinct locomotive disk ; external respiratory and anal orifices on the right posterior margin of the mantle; orifice of combined genital system behind and below the light eye- peduncle. (See Plate I. Fig. 1.) Internal shell-plate small, oval, flat, with posterior nucleus and concentric strie. (See Plate.) . Jaw with numerous ribs. See Plate III. Fig. 5. Lingual membrane with tricuspid centrals, bicuspid laterals, and quadrated marginals. (See same.) Differs from Prophysaon by its posterior respiratory orifice, by the position of the genital orifice, and by its locomotive disk. Himalaya Mountains ; recently found in San Diego County, California, by Mr. Hemphill. VOL. XXII, —NO. 4. 12 178 BULLETIN OF THE It will be remembered that Fischer considers Prophysaon a subgenus of Anadenus. The geographical distribution of Anadenus would seem to preclude its being found in California, but to that genus only can J refer the species whose de- scription here follows. Anadenus Cockerelli, Hemruit. Plate I. Fig. 1; Plate III. Fig. 5. Length (contracted) 133 mm. ; mantle, length 43, breadth 2 mm. End of mantle to end of body, 8mm. Foot, breadth 2mm. Foot with the locomotive disk, being distinctly differentiated into median and lateral tracts. Respira- tory orifice slightly posterior on right side of mantle. Genital orifice below right tentacle. No caudal mucus pore. Locomotive disk about half as wide as either lateral area. Sides of foot wrinkled, but not differentiated from lateral areas, nor specially marked, the wrinkles being a continuation of the transverse grooves of the lateral areas. Mantle tuberculate-rugose, oval in outline, bluntly rounded at either end; not grooved as in Amalia. Mantle free in front as far as respiratory orifice. Back rather bluntly keeled its whole length; rugz# rather flattened and obscure, consisting of grooves en- closing mostly hexagonal lozenge-shaped spaces, which are themselves rugose. Color uniform brown-black, without markings, except some dark marbling on the lighter sides. The portion beneath and in front of the mantle is pale, and the head and neck have a gray tinge. Foot brown. Shell internal, thinnish, white, oval in outline. Stomach large, swollen, broad. Liver pale ochrey. Anadenus Cockerelli, Hempnutty, The Nautilus, Vol. IV. No. 1, May, 1890, p. 2. Anadenulus, CocKERELL, Ann. Mag. Nat. Hist., Oct., 1890, p. 279. Cuyamaca Mountains of San Diego Co., California. Mr. Henry Hemphill. Jaw low, wide, slightly arcuate, ends blunt, anterior surface with about twenty wide, flat ribs, squarely denticulating either margin. (Plate III. Fig. &. Lingual membrane short and narrow. Teeth 20-1-20, of which eight only on either side are laterals. Centrals tricuspid, laterals bicuspid, marginals quadrate, bluntly bicuspid. (Same Plate.) Prophysaon Hemphilli. From Portland, Oregon, Mr. Hemphill brought seventy-seven individuals of a slug which may prove a variety of P. Hemphilli. They have the tawny color of flavum. The internal shell is so delicate, it is impossible to remove it without breaking it. The penis sac is as in P. Hemphilli. The mantle is sometimes smooth, sometimes tuberculate; its fuscous lateral bands are some- times united by a transverse posterior band. Some of the individuals had the tail constricted preparatory to excision. (See below, under Phenacarion.) MUSEUM OF COMPARATIVE ZOOLOGY. 179 Prophysaon Andersoni, J. G. Coorrr. 3d Suppl., Plate III. Fig. 1? Plate VII. Fig. C; Plate I. Fig. 8 (dentition) ; Plate IX. Figs. I, J (enlarged surface). Shield strongly granular-rugose, the respiratory orifice nearly median on its right margin ; tail acute, with small gland; reddish gray, the body somewhat clouded with black, the shield paler, clouded, or more usually with a dark band on each side above the respiratory orifice, converging in an elliptic form; a pale dorsal streak ; head uniform pale brown, tentacles darker ; foot and often the mantle tinged with olive. Length 2.5 inches (Cooper). Arion Andersoni, J. G. CoorrR, Proc. Phila. Ac. Nat. Sci., Plate III. Fig. F. Prophysaon Andersoni, J. G. Cooper, Pr. Amer. Phil. Soc., 1879, p. 288. Prophysaon Andersoni, W. G. Binney, Terr. Moll. V., 3d Suppl., Plate III. Fig. 1? Pl. VIL. Fig. C; Plate I. Fig. 3 (dentition); Plate IX. Figs. I, J (surface). A species of the Pacific Province, Straits of De Fuca to Oakland, California. The characteristic of this species is the light dorsal band, which is not present in P. Hemphilli. It has the broad vagina, stout, short, cylindri- cal penis sac, and genital bladder of P. Hemphilli, as well as the foliated reticulations. In the many living and alcoholic specimens which I have examined, I have failed to detect any appearance of a caudal mucus pore, which Dr. Cooper is confident of having observed, excepting in eight individuals out of thirty col- lected by Mr. Hemphill on San Juan Island. Many individuals examined by me are excided as described under Phena- carton foliolatus. Figure 1 of Plate III. of 3d Suppl. was drawn from a specimen received from Dr. Cooper. It represents the true Andersoni, distinguished by a light dorsal band, and by genitalia such as I have described for P. Hemphilli. The same form, also received from Dr. Cooper, is drawn by Mr. Cockerell on Plate VII. Fig. C. Mr. Cockerell has shown me that I have confounded with it another species, which he proposes to call P. fasciatum. See next species. Specimens collected by Mr. Hemphill at Old Mission, Coeur d’Alene, Idaho, appear to agree with specimens of this species received from Dr. Cooper. The jaw is low, wide, slightly arcuate, with over 12 broad, stout ribs, denticu- lating either margin. The lingual membrane is given in Plate II. Fig. 2, of 3d Suppl. The central and lateral teeth are slender and graceful. The latter have, apparently, a second inner cutting point, as is found in Limazx agrestis. I have so figured it, hoping to draw attention to it, and thus settle the question of its being there. On Plate IX. I have given enlarged views of the surface, drawn by Mr. Arthur F. Gray. (See Explanation of Plate IX. Figs. I and J of 3d Suppl.) 180 BULLETIN OF THE Prophysaon fasciatum, CocKERELL. Length (in alcohol) 19 mm. Mantle black, with indistinct pale subdorsal bands, — an effect due to the excessive development of the three dark bands of the mantle. Body with a blackish dorsal band, commencing broadly behind mantle and tapering to tail, and blackish subdorsal bands. No pale dorsal line. Reticulations on body squarer, smaller, more regular, and more sub- divided than in P. Andersoni, Cooper. Penis sac tapering, slender. Testicle large. Jaw ribbed. (Cockerell.) _ Prophysaon fasciatum, COCKERELL, The Nautilus, 1890. Prophysaon fasciatum, W. G. Brxney, 3d Suppl. to Terr. Moll. V., p. 209, Plate VII. Fig. A. Coeur d’Alene Mountains, Idaho; a species of the Central Region. This species is described by Mr. Cockerell as distinct from Anderson, with which I have formerly confounded it. (2d Suppl. to Vol. V., p. 42.) It hasa dark band on each side of the body, running from the mouth to the foot, and a central dorsal dark band. To this must be referred the descriptions of animal, dentition, jaw, and genitalia formerly published by me as of Andersont. I am indebted to Mr. Theo. D- A. Cockerell for a figure and description of this species. The former is given on Plate VII. Fig. A, while the latter is given here in the words of Mr. Cockerell, whose name must consequently be associated with it as authority. The animal extends itself into a long, cylindrical worm-like body with ob- tuse ends; the mantle is covered with minute tubercles. Jaw low, arcuate, ends blunt; with numerous (over 15) irregularly devel- oped broad, stout ribs, denticulating either margin. The lingual membrane has 30-1-0 teeth, with about 12 perfect laterals. Centrals tricuspid ; laterals bicuspid; marginals with one long, stout, oblique inner cutting point, and one outer short, blunt, sometimes bifid cutting point. Resembling that of P. Hemphilli. Another membrane has 50-1-50 teeth. Mr. Cockerell describes the penis sac as tapering; in specimens examined by me it is cylindrical, as in Hemphill. The internal shell is thick, easily extracted without breaking. Phenacarion, Cockrret..} Animal limaciform, cylindrical, blunt before, tapering behind; tentacles simple; mantle large, anterior, pointed behind, concealing a delicate, thin, subrudimentary calcareous shell-plate, easily fractured; no longitudinal fur- rows along the margin of the foot; a caudal mucus pore; no distinct locomo- tive disk; external respiratory and anal orifices on the right anterior margin 1 Phenax = an impostor, and Arion. Cockerell, The Nautilus, Vol. III. p. 126, March, 1890. MUSEUM OF COMPARATIVE ZOOLOGY. 181 of the mantle; orifices of the combined generative organs behind and below the right eye-peduncle. (See 3d Suppl., Plate VIII. Fig. A.) Jaw arcuate, with numerous ribs. (Plate IX. Fig. B of same.) Lingual membrane with tricuspid centrals, bicuspid laterals, and quadrate denticulated marginals. (Plate 1X. Fig. C of same.) Northwestern parts of North America, in the Oregon Region. Allied to Prophysaon, but distinguished by its more anterior respiratory orifice, its rudimentary shell-plate, and decided caudal pore. Phenacarion foliolatus, Goutp. Color a reddish fawn, coarsely and obliquely reticulated with slate-colored lines, forming areole, which are indented at the sides, when viewed by a mag- nifier, so as to resemble leaflets; the mantle is concentrically mottled with slate-color, and the projecting border of the foot is also obliquely lineated. The body is rather depressed, nearly uniform throughout, and somewhat trun- cated at the tip, exhibiting a conspicuous pit, which was probably occupied by a mucus gland. The mantle is very long, smooth, and has the respiratory ori- fice very small, situated a little in front of the middle. The eye-peduncles are small and short. Length 85 mm. Arion foliolatus, Goutp, Moil. U.S. Exp., page 2, Fig. 2, a, b (1852); Binney, Terr. Moll., II. 380, Plate LX VI. Fig. 2 (1851); W. G. Binney, Terr. Moll., 1V. 6; copied also by Tryon and W. G. Binney, L. & Fr. W. Sh., I. 377. Phenacarion foliolatus, CocKERELL, The Nautilus, 1890, III. 126; W. G. Bryney, 3d Suppl. to Terr. Moll. V., p. 206, Plate VIII. Fig. A; Fig. B (shell- plate); Plate IX. Fig. B (jaw); Fig. C (dentition); Fig. D (genitalia). Discovery Harbor, Puget Sound (Pickering) ; Olympia and Seattle, Wash- ington (Hemphill). Dr. Gould adds to the above description these words (Vol. II. p. 31): “ That this animal belongs to the genus Arion there can be little doubt, from the peculiar structure of the tail, as represented in Mr. Drayton’s figure, and from the anterior position of the respiratory orifice. It is a well marked species, characterized especially by the leaf-like areole by which the surface is marked.” It is with the greatest pleasure that I announce the rediscovery by Mr. Henry Hemphill of this species, which has hitherto escaped all search by recent collectors. It has till now been known to us only by the description and figure of the specimen collected by the Wilkes Exploring Expedition, almost fifty years ago, and given in Vols. II. and III. of Terrestrial Mollusks. A single individual was found in December, 1889, at Olympia, Washington, and sent to me living by Mr. Hemphill. It can thus be described. (See Fig. A of Plate VIII. of 3d Suppl.) Animal in motion fully extended over 100 millimeters. Color a reddish 182 BULLETIN OF THE fawn, darkest on the upper surface of the body, mantle, top of head, and eye- peduncles, gradually shaded off to a dirty white on the edge of the animal, side of foot, back of neck, and lower edge of mantle, and with a similar light line down the centre of back; foot dirty white, without any distinct locomo- tive disk ; edge of foot with numerous perpendicular fuscous lines, alternating broad and narrow; mantle minutely tuberculated, showing the form of the internal aggregated particles of lime, the substitute of a shell-plate, reddish fawn-color, with a central longitudinal interrupted darker band and a circular marginal similar band, broken in front, where it is replaced by small, irregu- larly disposed dots of same color; these dots occur also in the submarginal band of light color. Body reticulated with darker colored lines, running almost longitudinally, scarcely obliquely, toward the end of the tail, and con- nected by obliquely transverse lines of similar color, the areas included in the meshes of this network covered with crowded tubercles, as in Prophysaon Andersoni, shown in Plate IX. Figs I, J. Tail cut off by the animal. (See below.) Excepting its being of a deeper red, it agrees perfectly with Dr. Gould’s description. Mr. Hemphill writes of it: “I have to record a peculiar habit that is quite remarkable for this class of animals. When I found the specimen, I noticed a constriction about one third of the distance between the end of the tail and the mantle. I placed the specimen in a box with wet moss and leaves, where it remained for twenty-four hours. When I opened the box to examine the specimen, I found I had two specimens instead of one. Upon examination of both, I found my large slug had cut off his own tail at the place where I no- ticed the constriction, and I was further surprised to find the severed tail piece possessed as much vitality as the other part of the animal. The ends of both parts at the point of separation were drawn in as if they were undergoing a healing process. On account of the vitality of the tail piece, I felt greatly interested to know if a head would be produced from it, and that thus it would become a separate and distinct individual.” The animal on reaching me still plainly showed the point of separation from its tail (see Fig. A). The tail piece was in an advanced stage of decomposition. I have noticed the con- striction towards the tail in many individuals. The edges of the cut were drawn in like the fingers of a glove, after the excision. The tail of the foliolatus having been cut off, I was unable to verify the presence of a caudal pore from this individual. It was plainly visible in an- other specimen from Seattle. In the large Olympia individual, the irregularly disposed particles of lime in the mantle, of unequal size, seemed attached to a transparent membranous plate. With care I removed this entire, and figure it. It is suboctagonal in shape (Plate VIII. Fig. B). Under the microscope it appears that the par- ticles of lime do not cover the whole plate; at many points they are widely separated. This aggregation of separate particles is the distinctive character of the subgenus Prolepis, to which foliolatus would belong if retained in Arion. MUSEUM OF COMPARATIVE ZOOLOGY. 183 The genitalia of the large individual from Olympia is figured on Plate IX, Fig. D. The ovary is tongue-shaped, white, very long and narrow ; the ovi- duct is greatly convoluted; the testicle is black in several groups of ceca ; the vagina is very broad, square at the top with the terminus of the oviduct, and the duct of the genital bladder entering it side by side; the genital blad- der is small, oval, on a short narrow duct ; the penis sac is of a shining white color, apparently without retractor muscle; it is short, very stout, blunt at the upper end where the extremely long vas deferens enters, and gradually narrow- ing to the lower end. There are no accessory organs. The external orifice of the generative organs is behind the right tentacle. (See 3d Suppl., Plate IX. Fig. D.) The jaw is very low, wide, slightly arcuate, with ends attenuated and both surfaces closely covered with stout, broad separated ribs, whose ends squarely denticulate either margin. There are about 20 of these ribs. (See Plate IX. Fig. B.) The lingual membrane is long and narrow, composed of numerous longitu- dinal rows of about 50-1-50 teeth, of which about 16 on each side (Plate IX. Fig. C) may be called laterals. Centrals tricuspid, laterals bicuspid, marginals with one long inner stout cutting point, and one outer short side cutting point. The figure shows a central tooth with its adjacent first lateral, and four extreme marginals. Phenacarion Hemphilli. This form is figured on Plate VIII. Fig. C of 3d Suppl. When extended fuily, it is 70 mm. long. It is more slender and more pointed at the tail than foliolatus. The body is a bright yellow, with bluish black reticulations. The edge of the foot and the foot itself are almost black; shield irregularly mottled with fuscous ; the body also is irregularly mottled with fuscous, and has one broad fuscous band down the centre of the back, spreading as it joins the mantle, with a narrower band on each side of the body. The other charac- ters, external and internal, are given below. It loses its color on being placed in spirits, becoming a uniform dull slate-color. Mantle lengthened oval. Shell-plate represented by a group of calcareous grains concealed in the mantle; it is impossible to remove it as one shell-plate. A decided caudal pore. Phenacarion foliolatus, var. Hemphilli, W. G. Binney, 3d Suppl. to Terr. Moll. V., p- 208; Plate VIII. Fig. C; Plate X. Fig. H (genitalia). Gray’s Harbor and Chehalis, Washington, and Portland, Oregon (Hemphill); a species of the Oregon Region. On the only living one of the lot from Gray’s Harbor, the pore was dis- tinctly visible, and is figured on Plate VIII. Fig. C. Usually it seemed more “a conspicuous pit” than a longitudinal slit, as in Zonites. At one time I distinctly saw a bubble of mucus exuding from it. It opened and shut, and is 184 BULLETIN OF THE still plainly visible on the same individual, which I have preserved in alcohol and added to the Binney Collection of American Land Shells in the National Museum at Washington. Jaw low, wide, arcuate, ends attenuated, anterior surface with 16 ribs, den- ticulating either margin. Lingual membrane as in foliolatus ; teeth 50-1-50, with 19 laterals on each side. Genitalia (3d Suppl., Plate X. Fig. H) ; the form from Gray’s Harbor has its generative system very much the same as described for foliolatus above. The ovary is much shorter and tipped with brown, and is less tongue-shaped. The penis sac tapers to its upper end. The vagina is not squarely truncated above. The system much more nearly resembles that of Prophysaon Andersoni (see Terr. Moll., V.) than that of the Olympia foliolatus. Binneya notabilis, J. G. Cooper. Plate I. Fig. 9. A new figure is here given, drawn by Mr. Cockerell. Triodopsis Mullani, Buanp, var. Blandi, Hempuitt. Plate IL. Fig. 6. Shell with the umbilicus partially closed, orbicularly depressed; dark horn-color, obliquely striated; spire short, very slightly elevated, nearly planiform; aperture semilunar, at a right angle with axis of the shell, with a very short nipple-like pari- etal tooth; peristome thickened, white, plain, without teeth and roundly reflected. Height 4 inch, breadth 3 inch. Post Falls, and banks of Salmon River, Idaho. Helix Mullani in form and size resembles very much the common tridentata of the Eastern States. Among the various forms it assumes, nore are more marked than the little depressed shell before me. It can be very readily separated from the typical Helix Mullani, or its other varieties, by its very depressed form, small size, and the absence of the teeth-like processes on the inner margin of the peristome. I cannot detect any microscopical revolving lines, or tubercles bearing hairs, mentioned by Bland in his description of H. Mullani. The above desciption is by Mr. Hemphill, who furnished me with the specimen figured. Polygyra septemvolva, var. Floridana, Hempuitt. Shell deeply umbilicated, elevated, globose conic, light horn-color, with numerous fine ribs above, but smooth beneath; whorls 5% or 6, the last subangular at the periphery ; suture well impressed; spire greatly elevated with an obtuse apex; MUSEUM OF COMPARATIVE ZOOLOGY. 185 aperture lunate, well rounded, and nearly circular; peristome reflected, rounded ir front, the margins joined by a triangular tooth on the parietal wall. Greater diam- eter 6 mm., altitude 5 mm. Oyster Bay, Florida. This is a small, very elevated form of the P. cereolus group. The above is Mr. Hemphill’s description. Mesodon ptychophorus, A. D. Browy, var. castaneus, Hemputtt. Shell umbilicated, globosely depressed, of a dark chestnut color; surface covered with coarse, irregular, widely separated lines of growth, and crowded, microscopical revolving lines; whorls 54, convex, the last slightly descending in front, spire ele- vated; suture well impressed, aperture subcircular; lip white, reflected and par- tially covering the umbilicus, its terminations approaching; umbilicus small and deep. Height § inch, diameter 1 inch. Old Mission and Rathdrum, Idaho. I regard H. ptychophorus as the progenitor of what I call the Townsendiana group of West Coast land shells, and this colored variety seems to still further indicate its relationship to Townsendiana, for the spire whorls of nearly all the specimens of Townsendiana that I have collected are chestnut-colored. Townsendiana does not begin to put on its wrinkles until it has made about four revolutions of the shell. The wrinkles are probably due to its environment. The above is Hemphill’s description, from The Nautilus, Vol. IV. p. 41, 1890. Aglaja fidelis, var. flavus, Hempxttt. Shell umbilicated, elevated, very faintly subcarinated, of a uniform light yellow color throughout, without bands or other stains of coloring; whorls 64, convex, with coarse oblique striz, and microscopic irregular revolving lines; peristome reflected below, simple above; aperture roundly ovate; umbilicus moderate, and partially covered by the reflected peristome; suture distinct. Greater diameter 34 mm., alti- tude 23 mm. Chehalis and San Juan Islands, Washington ; Port Orford, Oregon. This is a rare and beautiful variety of this well known West Coast land snail. The above is Mr. Hemphill’s description. Aglaja fidelis, var. subcarinata, Hemputtt. Shell orbicularly depressed ; umbilicated ; of a deep dark chestnut-color without bands; whorls 64, convex or somewhat flattened, the last subcarinated at the periphery ; striz coarse, oblique, crossed by numerous well defined wavy revolving lines; peristome simple, thickened above, reflected below, and nearly covering the umbilicus ; umbilicus moderate; aperture roundly ovate; suture well impressed. Greater diameter 37 mm., altitude 20 mm. Humboldt Co., California. 186 BULLETIN OF THE This is a very dark, intermediate form of jidelis, which in its southern march under changed conditions assumes a more carinated form, and is known to con- chologists as infumata, Gould. The above is Mr. Hemphill’s description. Arionta Coloradoensis, STEaRns. Shell orbicular, moderately depressed, whorls slightly elevated, apex obtuse, number of whorls four to four and a half, rounded. Umbilicus narrow, showing the penultimate whorl, though partially covered by the reflection of the lip at the point of junction with the base of the shell. Aperture obliquely ovate, nearly circular, and almost as broad as high. Lip slightly thickened and reflected, or simple, vary- ing in this respect; more reflected and aperture more effuse at the columella. Parietal wall in the heavier examples calloused, the callus connecting with the inner edges of the outer lip above and below. Shell rather fragile, thin, translu- cent ; surface smooth and shiny, and sculptured with fine incremental lines. Color pale horn to white, and otherwise marked by a single narrow revolving reddish brown band just above the periphery, which in some specimens is obscure or absent. In some individuals certain faint scars upon the upper whorls imply an occasionally hirsute character. mm. Maximum diameter of largest . . - . . - - + + 15.25 Minimum diameter of largest . . . - - +--+ + 18.26 Altitude oflargest . . . eer Wee ee 81 KN Maximum diameter of siiallent sade La ape oe SB ab Minimum diameter of smallest adult .. .. - - 12.00 Altitude of smallest adult . . .... =. +. =. 875 Grand Cafion of the Colorado, opposite the Kaibab plateau, at an elevation of 8,500 feet. (Mus. No. 104,100.) The above, while exhibiting a facies or aspect of its own, its nevertheless sug- gestive of H. Remondi, Gabb, Mazatlan, in the Mexican State of Sinaloa, and also from the high mesas.or table lands in the neighborhood of Mulege, Lower Cali- fornia. H. Carpenteri, Newcomb, which is a synonym of H. Remondi, is credited by the author to “ Tulare Valley,” and has been found in other localities in Cali- MUSEUM OF COMPARATIVE ZOOLOGY. 187 fornia. A glance at the map will show how widely separated geographically H. Coloradoensis is from its nearest allies, and this discovery of Dr. Merriam’s extends the distribution of the West Coast type of Helices farther to the eastward than heretofore, and adds an area of great extent to that previously known. The above description and figure were published by Stearns in Proce. U. S. Nat. Mus., Vol. XIII. p. 206, Plate XV. Fig. 6, 7, 8, 1890, all copied above. I have examiued the jaw and lingual dentition to find them similar to those of the other species of Arionta. Arionta Traski, var. proles, Hempuxi.t. Shell umbilicated, very much depressed, thin, shining, of a dark horn-color ; whorls 54, somewhat flattened above, convex beneath, the last slightly falling in front, with a dark band above the periphery, and crowded with strong oblique strie; suture well impressed; umbilicus moderately large and deep; aperture hardly oblique ; peristome simple, thin, subreflected, its terminations approaching. Height % inch, breadth { inch. Tulare Co., California, near Fraser’s Mill. A much flatter and more depressed form than any of the varieties of Traski that Ihave seen. There are no revolving microscopical lines, as in Traski. The above is Mr. Hemphill’s description. Arionta tudiculata, var. Tularensis, Hemputit. Shell umbilicated, very thin and frail, shining, of a light greenish horn-color, globosely depressed; whorls 53, convex, the surface minutely granulated, and crowded with fine oblique striz, with a single chestnut revolving band; suture well impressed; umbilicus very small; aperture oblique, subcircular; peristome simple, hardly thickened, its columellar portion expanding and nearly covering the small umbilicus. Height $ inch, breadth inch. Tulare Co., California. This is one of those puzzling intermediate forms uniting two species that can be with equal propriety placed in one or the other. It has the exact form of the typical Traski found at Los Angeles, and along the coast, though much smaller and thinner, and it has the sculpturing of tudiculata much modified. It seems to fill the gap quite completely between those two species. The above is Mr. Hemphill’s description. Arionta tudiculata, Bryey. Plate II. Fig. 7, 8. New figures are here given of the form cypreophila. In The Nautilus, Vol. IV. p. 41, 1890, Mr. Hemphill also describes a var. subdolus thus: — 188 BULLETIN OF THE Shell narrowly umbilicated ; globosely depressed, of a dark yellowish color, sur- face somewhat shining, covered with oblique striz, interrupted by numerous wavy lines and oblong blister-like wrinkles, hardly perceptible to the naked eye ; whorls 54, convex, striped by a single chestnut band, double margined by lighter ones; spire very little elevated, suture well impressed; lip simple, reflected, and nearly covering the umbilicus, its terminations approaching and joined by a thin callus; umbilicus narrow and small. Height 3 inch, greatest diameter 1 inch, lesser 7 inch. San Jacinto Valley, San Diego Co., California. A very depressed form, quite variable in size, some of the specimens not being more than half the size of the measurements given. It is lighter colored than any of the southern varieties of tudiculata except var. Binneyi. Arionta Ayresiana, Newcoms. Plate I. Fig. 7. I give a new figure of this species. Arionta intercisa, W. G. Bryyey. In “ Zoe,” Vol. I. No. 11, January, 1891, p. 330, Mr. Hemphill describes these varieties of A. intercisa : — Var. minor. Smallest specimen, greatest diameter 18 mm., altitude 11 mm. Uniform light yellowish chestnut-color, with and without a band, and varies very much in form and elevation or depression of spire. Var. elegans. Uniform ashy buff-color, faintly banded, and variable in form. Var. nepos. Uniform ashy white ; spire horn-color, variable in form and sculpturing. Var. albida. Uniform milk-white, sometimes with a faint band at the periphery; sculpture nearly obsolete. In the same journal (p. 434) Mr. Hemphill thus describes several varieties of redimita, which species he refers, however, to Kelletti: — Var. castaneus. Uniform, polished, chestnut-color, darker band at the periph- ery, spire sprinkled with fine ashen specks. Var. hybrida. Uniform ash-white color, and a dark band at the periphery, flecked with transverse markings and specks of dark brown and light chestnut. Arionta ruficincta, Gass. Plate I. Fig. 3. A new figure is given of this species. Arionta Kelletti, Forsss. Mr. Hemphill, in Terr. Moll. V., 3d Suppl., has thus described several varieties. I figure authentic specimens of each. Var. albida (Plate IV. Fig. 3). This is a beautiful clear white translucent MUSEUM OF COMPARATIVE ZOOLOGY. 189 variety, with no markings or stains of any kind. It is quite thin and frail, and a trifle smaller than the average size of Kelletti. Santa Catalina Island, California. Two specimens only found by me. Var. castanea (Plate IV. Fig. 4). Among the numerous patterns of coloring assumed by H. Kelletti, none are more conspicuous than this well marked va- riety. The body whorl is of a deep shiny chestnut-color above the periphery, and becomes lighter as it follows the whorls of the spire to the apex. The band at the periphery is quite variable in the different specimens; it is gener- ally light and well defined above, but below it is irregular, and spreads over the base of the shell more or less. Santa Catalina Island, California. This variety is not rare. In “Zoe,” Vol. I. No. 11, pp. 333, 334, Mr. Hemphill has also thus described several other forms. Var. nitida (Plate IV. Fig. 2). Uniform, translucent, shining, dark horn- color, with a poorly defined dark band, coalescing with a poorly defined whit- ish band below it, at the periphery; spire faintly flecked with ashen gray. Catalina Island. Var. multilineata (Plate 1V. Fig. 1). Shell marked by alternate shades of ashen white, chestnut, or brown, arranged in an irregular series of revolving and sometimes wavy lines, with a broader and poorly defined band at the periphery; markings finer beneath than above. Var. frater. Shell of a beautiful, uniform, horn-buff color, sometimes fad- ing into lighter horn-color, with a darker band at the periphery, and numerous faint, alternate revolving lines of ashen or dark horn-color above and below; generally, not always, lighter colored beneath, and sometimes with a whitish zone beneath the band at the periphery. Var. Californica. The shell is colored with a darker shade of uniform buff than the above, dark band at the periphery, generally uniform in color above and below; sometimes flecked with squarish dots. Var. Forbest. Ground coloring whitish buff, with a revolving series of poorly defined and coalescing lines, bands, and blotches. Var. bicolor. Color very dark horn or brownish, flecked with numerous re- volving very fine dots or irregular lines, with or without a very faint band at the periphery. Var. tricolor. Irregularly painted with numerous revolving whitish, brown- ish, and chestnut flecks, blotches, and stains, with or without a band at the periphery. Var. albida. (See below.) Var. albida, a. Milk white ground, very faintly stained with light horn, and with poorly defined and fading lines. Mr. Hemphill considers redimita as a form of Kellettt. (See that species.) 190 BULLETIN OF THE Euparypha Tryoni, Newc. Mr. Hemphill has thus described several varieties. (See Zoe, Vol. I. pp. 331, 332.) Var. varius. The upper or dark zone is of a lighter shade of bluish brown or chestnut than the type, and is flecked and sprinkled with ashen white; band at the periphery dirty white beneath. Var. nebulosa (Plate IV. Fig. 5). Lighter colored above than var. varius, marbled and clouded with various patterns of dark brown and dirty white ; dirty white beneath. Var. fasciata (Plate IV. Fig. 6). Uniform light chocolate above and be- neath, with a dark band at the periphery. Var. Californica. Creamy buff-color, darker above than below the periph- ery, very faintly banded. Var. albida. Uniform creamy, and sometimes milk-white above and be- neath, and without band. Var. subcarinata. Among the subfossils that occur on Santa Barbara Island we find a form of H. Tryoni which adds an interesting link to its history and to its present form. It may be characterized as follows. Shell depressed glo- bose, consisting of about 53 whorls, the last subcarinated at the periphery; in other respects closely resembling the recent form. Greater diameter 23.15 and 20.11 mm., largest and smallest specimens. Pomatia Humboldtiana, Vat. Texas, at Altuda, at an elevation of 5,000 feet, where it, a single specimen in fair condition, had been thrown out with soil by a prairie dog. (Mus., No. 118,366.) William Lloyd. This species has not before been reported from any locality within the territory of the United States. It was described from Mexico, where it is found in the neighborhood of the city of Mexico, and in other localities. The national collec- tion contains several examples from the Real del Monte. It has a pretty close resemblance to some of the varieties of the European H. (Pomatia) pomatia, and it may possibly be an introduced form. 7. pomatia has for centuries been esteemed as an article of food in various parts of Europe, and was regarded as a dainty by the ancient Romans. It was propagated and raised in large quantities for their use, and specially fed on certain plants to give the flesh a particular flavor. Unmistakable specimens of another favorite edible snail common to Europe, HI, (Pomatia) aspersa, is found in Mexico, and examples from Puebla, in the prov- ince of Puebla, Mexico, were presented to the National Museum by the Mexican Geographical Commission a few years ago. The presence of these two forms most certainly suggests the question as to whether they were not introduced by the Spaniards many years, centuries, ago, either for food purposes or incidentally in the routine and accidents of commercial intercourse. The above was published by Stearns in Proc. U. 8. National Museum, Vol. XIV. p. 96,1891. It will be remembered that Helix Buffoniana was figured as aspersa by Dr. Binney in Volume III. MUSEUM OF COMPARATIVE ZOOLOGY. 191 Bulimulus Ragsdalei, Pitssry. Plate II. Fig. 9. Tt is about the size and form of B. Mooreanus, but rather more slender and elevated. he surface is not smooth, as in the other American Bulimuli, but strongly ribbed-striate longitudinally. The apex is blunt; peristome thick- ened within ; columella reflexed over the narrow but open umbilicus. The aperture is less than half the length of the shell; color brownish, corneus somewhat translucent, the riblets opaque white. Height 22 mm., diam. 10 mm. ; height of aperture 10$ mm., diameter 7 mm. Bulimulus Ragsdalei, Pitspry, The Nautilus, Vol. III. p. 122, March, 1890. Proc. Acad. Nat. Sci. Phila., 1890, p. 296, Plate V. Fig. 3. St. Jo, and at Warren’s Bend, twenty-five miles from Gainesville, and in Cook and Montague Counties, Texas (Ragsdale). A figure of an authentic specimen is given 14 the natural size. The descrip- tion is a copy of the original. ‘ Bulimulis Dormani. Plate I. Fig. 6. A new figure is given. Rhodea Californica. This extralimital species has actually been received by Dr. Cooper from Lower California. (Proc. Cal. Acad. Nat. Sci., 1891, p. 102.) It had been quoted as an Achatina from Monterey. (See Vol. V.) Pupa Californica. Dr. Sterki in Nautilus, Vol. IV. page 7, mentions a variety, elongata, from San Clemente Island ; on page 18, varieties trinotata, Diegoensis, and cyclops. Pupa Coloradensis, Cockerett. Shell brown, shiny, thinnish, striate, especially on penultimate whorl ; out- line oblong-oval, barrel-shaped ; apex blunt; whorls 4; aperture pyriform; peristome brown, thick, continuous by a well marked callus on parietal wall ; outer lip not constricted. The teeth within the aperture are brown, one long, one on parietal wall, one on columella, and two (the lower one largest) on outer wall. Long. 13, lat.1 mm. Allied to P. corpulenta, but decidedly smaller, more striate, and slightly narrower. (Cockerell.) 192 BULLETIN OF THE Pupa Pilsbryana, Srerx1. Shell minute, narrowly perforate, cylindrical-oblong to cylindrical, somewhat attenuated towards the rather blunt apex, colorless (when fresh glassy) with a very delicate bluish tint, smooth and polished, with few, irregular microscopic strie which are more marked near the aperture. Whorls 44-54, moderately rounded with a rather deep suture, especially in the upper half, regularly and slowly increasing, the embryonal being relatively large, the last somewhat ascending toward the aperture; the latter of moderate size, lateral, subovate, margins approached, peristome somewhat expanded, without a thickened lip or a callus in the palatal wall; outside is a barely perceptible trace of a crest near the margin, and behind that a slight impression most* marked upon the inferior palatal fold. Lamelle 4 or 5; one apertural, rather high, of moderate length, simple; one columellar, horizontal, of moderate size, simple; basal very small or wanting; palatals the typical, inferior deeper seated, of moderate size, superior small or very small. Alt. 1.5-1.7, diam. 0.8-0.9 mm. Pupa Pilsbryana, SterKx1, The Nautilus, Vol. III. p- 123, March, 1890. There is a slight variation; the example from New Mexico being of lesser diam- eter, and having no trace of a basal lamella. The soft parts have not been seen so far, but will be of high interest, since, to judge from the shell, our species seems to be an intermediate form between the hordeacella, etc. group, and P. curvidens, especially its var. gracilis. P. Pilsbryana has much resemblance in shape and size to small albino examples of P. hordeacella, Pilsb., but under a glass is at once distinguished by the shorter simple apertural lamella not ending at or very near the upper termination of the palatal margin, as it does in hordeacella, and by the smooth surface. The fine bluish hue may also be a distinguishing character if it prove constant. The above is Sterki’s original description. Pupa calamitosa. Plate II. Fig. 1. See 3d Suppl., p. 219. A reduced copy of one of the original figures is given here. Pupa Hemphilli, Srerx. In examining a lot of about forty-five specimens of Pupa calamitosa from the banks of San Tomas River, Lower California, I found there were two distinct forms in them. The author says, in his description of P. calamitosa: ‘“ Several specimens have only one lamella on the outer lip, and are rather larger than the typical form described,” represented in Plate XII. Fig. 16 (loc. cit., No.7). Probably I had a greater number of examples at disposition than Mr. Pilsbry. The two forms proved to be distinct by an entirely different formation of the lamella, as MUSEUM OF COMPARATIVE ZOOLOGY. 193 well as of the basal part of the shell. And among the whole number I found not one intermediate or doubtful specimen. There is no doubt but that we have to consider them as being specifically distinct, the more so since they live together in the same locality. For the new species I would propose the name P. Hemphilli, in honor of the man to whom we owe so many valuable additions to our malaco- logical fauna. As in shape and general appearance the two species are almost alike, it may be the best way to characterize the one in question by comparing it with P. calamitosa, Pilsb. P. Hemphilli averages a trifle larger than its companion, but either is some- what variable in size. While ca/amitosa has a minute perforation, Hemphilli is umbilicated in quite a peculiar way. There is a nodule-like pro- Ba jection on the umbilical part of the last whorl, producing a rima beside the umbilicus ; in calam- itosa there is nothing of this formation. On the other hand, the latter has a small but distinct groove-like impression just at the base, near the aperture appearing as a slight projection inside. y This feature is wanting in Hemphilli. Lamelle: in the latter species, when looking from front, only one is generally seen in the palatal wall, corresponding to the superior one in calamitosa, but longer; i. e. be- ginning deeper in the throat, and fairly seen on the outside; also marked there by a corresponding impression, ascending in a curve from near the base. A little dis- tant from its inner end, just above the projection mentioned, there is another lamella beginning, directed toward the base and ending there, also seen on the outside. Quite generally there is a very small, thin, but well formed lamella in the palatal wall, near the projecting auricle. The columellar fold is quite short and small in Hemphilli, yet consisting of a vertical and a horizontal part. The (main) apertural lamella is decidedly longer in our species, and the supra- apertural higher and entire, while in ca/amitosa it is evidently composed of two parts marked by an indentation in the middle, or even entirely separated, in quite mature specimens. About twenty examples, collected at San Diego, Cal., by Mr. Hemphill, are all P. Hemphilli, no calamitosa among them. They are little different from the San Tomas River specimens, except by a somewhat shorter palatal lamella. The above is Sterki’s description (The Nautilus, July, 1870, Vol. IV. p. 27). My figure was drawn by him from the type. Pupa hordeacella, Pitspryr. Plate Il, Fig. 2. The shell is of a long-ovoid shape, smaller and slenderer than P. servilis, Gould, translucent, waxen white, finely striate; the aperture is rounded, with a thin, ex- panded peristome. Within, there is, on the parietal wall, an entering fold arising near the termination of the outer lip, its edge a trifle sinuous or nearly straight; the columella has a fold about in the middle. There is a tiny deep-seated fold on VOL. XXII. — NO. 4. 13 194 BULLETIN OF THE the base of aperture, near the columella, an entering fold within the outer lip, equidistant from the above described parietal and columellar folds, and a tiny denticle above it. ‘The columellar fold is not situated so high on the pillar as in P. servilis. ‘The latter half of the body whorl is flattened on the outer lower por- tion, as the Figure J shows. There is a low wave-like ridge or “crest” also, but scarcely visible in many specimens. Alt. 1.8, diam. 8 mm. ” Pupa hordeacella, Pruspry, Proc. Acad. N. Sci. Phila., 1890, p. 44, Plate I. Figs. Gree TK Arizona to Florida. The figures were drawn with the aid of the camera lucida. They should be com- pared with Gould’s excellent figures of P. servilis in the Boston Journal of Natural History, Vol. [V., Plate 16, Fig. 14, and those of P. pellucida, in Strebel’s Beitrag zur Kenntniss der Fauna mexikanischer Land- und Siisswasser-Conchylien, Theil IV. Plate XV. Fig. 10. The latter are the more valuable in this connection, as they are not only faithful drawings on a sufficiently large scale, but are the only ones drawn from continental specimens (Vera Cruz, Mexico). The measurements given by Strebel and Pfeffer are, alt. 24, diam. of last whorl fully 1 mm., alt. of aperture mm. Gould’s P. servilis and Pfeffer’s P. pellucida were both described from Cuba. I see no reason for not following W. G. Binney in considering them synonymous, pellucidus having precedence. (Pilsbry.) The above is Pilsbry’s description. I give also a reduced view of one of his figures. Pupa Clementina, Srerx1. Shell very minute, narrowly perforate, cylindrical, pale horn-colored, transpar- ent, with rather obtuse apex ; whorls 54, regularly increasing, moderately rounded, with rather deep suture, smooth, with few microscopic striz, somewhat shining; last whorl occupying rather more than two fifths of altitude, somewhat ascending to the aperture, with a slight, revolving impression on the middle of its last one third, ending at the auricle; a very slight, flat crest elevation near the margin, only in the lower part; aperture lat- eral, scarcely oblique, subovate with the palatal margin slightly flattened, upper part of same somewhat sinuous, peristome a little expanded with a slightly thickened lip just at the margin; lamelle 6, white, two on the apertural wall, the apertural typical, and a rather long supra-aper- tural, ending in a callus at the upper termination of the palatal margin; columel- lar one typical, horizontal; basal very small, nodule-like, deep-seated ; palatals two, typical, the inferior a little longer. Alt. 1.9, diam. 0.8 mm. ; apert., alt. 6, diam. 0.5 mm. Three examples of this species were collected by Mr. H. Hemphill on San Cle- mente Island, California, among numerous P. Californica; Row. All were exactly alike, well formed and fully mature. They cannot be referred to any one of our species published, and doubtless represent a form of their own, although so far it was not possible to examine the soft parts. Pupa Cle- mentina. MUSEUM OF COMPARATIVE ZOOLOGY. 195 In size, shape, and general appearance it somewhat resembles /sthmia, yet lacks the rib-like striation; the lamella would be typical for Vertigo and some of the smaller Pupe but for the presence of the well developed supra-apertural which P. Clementina has in common with P. calamitosa, Pilsbry, and Hemphilli, Sterki; but, on the other hand, there is nothing of the characteristic palatal or gular folds of these two species. Thus, in several regards, our form is an intermediate and connecting one between different groups, and consequently deserves our special interest. Pupa Clementina, SterK1, The Nautilus, Vol. IV. No. 4, Plate I. Fig. 4, August, 1890, The above is a copy of Sterki’s original description and figure. Pupa Dalliana, STERKI. Shell conic or ovate-conic, of greenish horn-color, transparent, finely irregularly striate in the lines of growth, polished; whorls 43, well rounded, with deep suture rather rapidly increasing, the last occupying about 2 of altitude towards the aperture, somewhat ascending on the penultimate. Aperture lateral, somewhat oblique, subovate, with just percepti- bly flattened palatal margin; margins approximate, the ends pro- tracted ; peristome shortly but decidedly expanded, with a very fine thread-like lip near the margin, the same continuing as a very fine callus on the apertural wall inside of the line connecting the ends of the margins; palatal wall quite simple; no lamella. Alt. 1.2, diam. 1.3 mm. This form has been collected by Mr. Hemphill near Clear Lake, Lake Co., Cal., and I propose to name it in honor of Mr. William H. Dall. The specimens before me were fifteen, fresh, remarkably uniform in their whole appear- ance; all were more or less covered with a dark brown hard crust of slime and dirt, generally thickest around the aperture. Doubtless this coating is done “purposely ” by the animals, as in many other species also. When cleaned, it shows about the size and shape of a well grown Vertigo ovata, Say; but by a good eye, or under a glass, is at once recognized as something else, by the rounded aperture and the absence of lamelle. (Sterki.) Pupa Dallia na. Pupa Dalliana, SterK1, The Nautilus, Vol. IV. No. 2, p. 19, June, 1890. Dr. Sterki’s description is copied above. My figure was drawn by him from the type. Pupa syngenes, Pitsprr. Shell subcylindrical but wider above, composed of eight narrow, convex whorls, sinistrally convoluted ; texture as in P. muscorum, but color rather lighter brown. Last whorl ascending, imperforate, bearing a strong high crest just behind the 196 BULLETIN OF THE outer lip. Aperture shaped as in muscorum, having a single small parietal denticle. Altitude 3%, diameter 13 mm. Pupa syngenes, Pitspry, The Nautilus, 1890, Vol. III. p. 296, Plate V. Figs. 1, 2. Two specimens of this form are before me, and I am in doubt whether to give them a new name, as they may be only. sinistral monstrosities of the common P. muscorum. The shells are labelled “ Arizona” in the Academy collection, col- lector not known. (Since the above paragraphs were in type, I have received a communication from my friend, Dr. V. Sterki, to whom I sent a specimen of P. syngenes, which I at first described as a variety of muscorum. He says: — “Tam satisfied that it is a species, and not a var. of muscorum; the shape of the whole shell, the last whorl so considerably flattened, and ascending, the number of whorls, seem to me to prove its specifical rank. . . . After washing out the aper- ture of your specimen, I saw a rather strong lamella or tooth on the columella, and a barely perceptible trace of an inter-palatal lamella, which, however, is validified by the impression on the outside.”) The above is Pilsbry’s description. An authentic specimen drawn by Dr. Sterki is figured here. Vertigo ovata, Say. Of V. tridentata Sterki writes (The Nautilus, 1890, p. 135): “It has a wide distribution in the northern part of the country ; originally found in Illinois, it has been collected in different parts of Ohio and New York, as well as in Minnesota and Colorado. In general it is remarkably constant in its characters ; yet there are slight differences ; here I found a few examples from low ground, together with V. ovata; they were a trifle larger, Bee a thicker and deeper colored shell than-those from upland places.” MUSEUM OF COMPARATIVE ZOOLOGY. 197 Vertigo Oscariana, STERKI. This is the most peculiar of our species. It is of the size of milium, but oblong, with either end nearly equally pointed, the last whorl being considerably narrowed and flattened towards the subtriangular, small aperture; shell thin, delicate, of pale horn-color, as is the palatal wall and margin; the latter simple and straight, with a very slight, thin callus inside ; lamella 3, whitish, rather small; one aper- tural, one columellar (longitudinal), and the inferior palatal; some- times there is also a very small superior palatal. Length 1.5, diameter 0.8 mm. This remarkable Vertigo has been detected in Eastern Florida, on the coast at Mosquito Island, etc., by Mr. Oscar B. Webster and his father, Mr. Geo. W. Webster, of Lake Helen, Florida. These gentlemen took much pains to ascertain the range of distribution of this form and some V: Cone others, and it is consequently only just to name the species in honor of 20. Mr. Webster. The most striking character of it, besides the narrowed ; last whorl, is the thin and straight palatal wall and margin, so that, indeed, the shell appears to be immature. But when seen under a glass of sufficient power, the margin is completed, and, as already mentioned, there is a thin callus at a little distance from the margin. Moreover, Mr. Webster wrote me that, of more than 150 examples he had seen, all were alike. A few days ago, in a lot of P. corticaria, Say, from Ithaca, N. Y., sent from Texas, there was one example of this species, the shell dead, but in fair condition, a little larger and less fragile than the Florida examples, and with a well marked callus corresponding to a slight but distinct crest. The specimen may have been collected in New York, and from its appearance at least I would ascribe to it an origin north of Florida. Since the above was written, I have found a few exam- ples in drift from Guadalupe River, Texas, collected by Mr. J. A. Singley, sent by Mr. Wm. A. Marsh. By the kindess of Mr. Webster I was enabled to see a living example. The foot and the lower parts of the head are nearly colorless; head, eye-tentacles, and neck light gray. Jaw very tender, thin, pale yellow, consisting of about 14 longitudinal plates, shorter and wider in the middle, longer and narrower toward either end; it is much like that of V. tridentata, Wolf. Odontophore about 0.36 mm. long, 0.1 mm. wide, about 110 square rows in each $+ $-+ 3 teeth; central very small; laterals gradually passing into marginals; the latter serrate. Different from that of V. tridentata. In drift with numerous minute shells, from Guadalupe River, Texas, kindly sent by Wm. A. Marsh, I found one specimen of this species, which consequently is not confined to Eastern Florida, where it was detected by Messrs. Webster, but may be widely spread over the southern part of our country. Vertigo Oscariana, StERKI, Proc. Ac. Nat. Sci. Phila., 1890, p. 33; The Nautilus, 1890, p. 136. The above is Sterki’s description, and the figure is drawn by him from the type. 198 BULLETIN OF THE Vertigo Binneyana, STERKI. They are of the size and general appearance of V. callosa, very narrowly per- forate, cylindrical oblong, light chestnut-colored; whorls 5, moderately rounded, nearly smooth; aperture relatively small, peristome little expanded; outer wall with a well formed crest interrupted by a rather long revolving groove ; corresponding to the crest there is a callus of lighter color; lamellz 6; on the apertural wall a small supra-apertural and a well developed apertural; columellar appearing rather massive; at the base, one rather small but well formed, appearing tooth-like; palatals 2, long, especially the inferior. Length 2.0 mm., diameter 1.0 mm. Last year, Mr. W. G. Binney kindly presented me with two exam- ples of a Vertigo collected at Helena, Montana, by Mr. H. Hemphill, which seemed to be of a new species; but yet I did not like to publish a description founded upon only these two specimens. Lately among a number of small Pupide from different parts of British America sent by Mr. Geo. W. Taylor of Ottawa, there were a few examples of this same species, from Win- nipeg, Manitoba, dead and weathered, but good enough to be identified. Probably there are other examples of this species in collections, and more will be found in the Northwest. It is named in honor of Mr. W. G. Binney, to whom I owe the two beautiful specimens in my collection. ana. Vertigo Binneyana, StERKI, Proc. Ac. Nat. Sci. Phila., 1890, p. 33. The above is Sterki’s description. I am also indebted to him for the figure. Vertigo callosa, Srerx. There are in collections two different species under the name of V. Gouldii, Binn. Their size and coloration is nearly the same, at least in most variations, as are also the apertural lamelle as to number and position. Yet they are decidedly and con- stantly distinct, especially by the formation of the outer wall at the aperture. Judging from the descriptions and more especially from the figures, the true V. Gouldii is the one characterized as follows: the last whorl is somewhat predomi- nating, thus rendering the whole shell more ovate or conic ovate ; the palatal wall near the aperture is decidedly flattened, or impressed, the impression comprising also the crest and being especially well marked at the “auricle” (as I name the more or less projecting part about the middle of the outer margin, to have a con- cise expression), forming a roundish groove outside and a decidedly prejecting angle inside, thus producing the “two curves meeting in the centre of the peri- stome.” A feature not striking, but only seen by careful examination, is the posi- tion of the short tooth-like lamella at the base, somewhat nearer the margin than the end of the columella, the base perceptibly widened at that place; the said lamella is probably an equivalent of the inferior columellar lamella, which in most Vertigos stands very low, in many exactly at the base. The other species, V. callosa, has the last whorl relatively less wide, so that the whole shell is of a more oblong shape. In the palatal wall, only the part behind MUSEUM OF COMPARATIVE ZOOLOGY. 199 the crest is somewhat flattened, while the latter itself forms one unbroken curve from the base up to the suture, and at the moderately projecting auricle there is only a slight flattening. The inferior columellar lamella is at the end of the col- umella, sometimes wanting or a mere trace. Well worthy of notice is a pecuiiar formation of the surface, the epiconch showing microscopic wrinkles or foliations in the direction of the lines of growth producing a peculiar silky gloss, especially on quite fresh examples, and more in some forms than in others. The first two examples of this species I obtained in 1855 from Mr. Henry Moores, of Columbus, Ohio, and in 1889 I saw a few more in his collection. In 1887, Mr. E. W. Roper sent me some others from Massachusetts. Last year in different collections I saw quite.a number of specimens from different places in New York near the metropolis, under various names: V. Gouldw, milium, ovata, and also mixed with Bollesiana. Of the Ohio examples the color is somewhat lighter, the callus and the lamelle are strong and white, while in the Eastern examples they are somewhat thinner and more of the color of the shell. The name cal/osa was thus mainly derived from the Ohio form (which, however, may be regarded as a variety). It is with some hesitation, however, that I now bring it under this head ; it is the equivalent of the European V. pygmea, Drap., of which I have examples for com- parison from different countries of the Old Continent, which I have partly col- lected myself there during a number of years. The two may even be identical ; at least it would be absolutely impossible to distinguish New York examples from most Europeans. Both forms agree also in certain variations of the aper- tural lamelle; the inferior columellar lamella may be absent in either, or there may be present a small supra-palatal fold, thus rendering the number variable from 4 to 6, the typical, however, being 5. An examination of the soft parts will probably decide the question; so far I have not had an opportunity to make it. On our continent, the range of distribution of the two species —V. Gouldii and callosa —seems to be somewhat different, the former having been found in New York, Ohio, Illinois, and Colorado, the latter from Massachusetts to Ohio. Vertigo callosa, Srerxt, Proc. Ac. Nat. Sci. Phila., 1890, p. 31. The above is Sterki’s description. Vertigo parvula, Srer«r. Among several hundred small Pupide collected in Northeastern Ohio (Summit and Lake Counties) by Mr. A. Pettingell, there were two examples of a doubtless new species, which I in the same way named V. parvula. It is about of the size, shape, and appearance of V. (Angustula) milium, Gould; but ranges in quite another group, having a quite simple palatal wall and margin, and only three lamellz. In Texas, Vertigos seem to be decidedly rare. In many hundreds of Pupide from that State which Mr. J. A. Singley and Mr. Wm. A. Marsh kindly forwarded me there were only about half a dozen such; a few milium, one rugosula, one Oscariana, as mentioned above, and one specimen of a form which probably will prove to be a new species of quite peculiar formation. Vertigo parvula, StERKI, The Nautilus, 1890, p. 136. The above is Sterki’s description. 200 BULLETIN OF THE Vertigo approximans, SrTerK1. In 1887, Mr. A. A. Hinkley, of Dubois, Ill., sent me, with other Pupide, one specimen of a Vertigo, probably new, and in 1889 another of the same. The said gentleman and Mr. William A. Marsh kindly forwarded me all their Pupide for examination, but so far I have found no other example, yet I am satisfied such will be found. The form is related to Vertigo ovata and Gouldii, but different, and is characterized by the two palatal lamella being close together, for which reason I gave it the manuscript name V. approximans. Vertigo approximans, STERK1, The Nautilus, 1890, p. 186. The above is Sterki’s description. Vertigo rugosula, STERKI. Related to V. ovata and Gould; in shape more elongated than the latter, more cylindrical, and somewhat larger. Apertural parts and lamellae much like those of ovata; but the columella is decidedly longer and straighter, and the inferior colu- mellar lamella is distinctly placed on it. Length 1.8-2.0, diameter 1.1mm. Of a peculiar formation is the surface. Of the five well-rounded whorls, about one and a half of the upper are nearly smooth; the following, with exception of the last, are distinctively and regularly striated; the last is very finely but distinctly rugose in the sense of the lines of growth, near the aper- ture again striated. Color, dark chestnut. This is a beautiful species, of which I saw the first example in the collection of Mr. Bryant Walker, who had found it in April last at Pass Christian, Mississippi. Last September, Mr. W. G. Mazyck col- lected a number of them on Sullivan’s Island, 8. C. In either place they were in company of Pupa rupicola, Say. Quite lately I have seen one example from Lee County, Texas, sent by Mr. J. A. Singley; it was a dead shell, and not fully mature, but recognizable. The species consequently seems to be widely distributed along the South Atlantic and Gulf coasts. Two specimens were sent in by Mr. H. Hemphill, who collected them at Fish Camp, Fresno Co., Cal. In Eastern Florida, Volusia County, etc., a form has been found to be quite com- mon which I refer to this species, but as a distinct variety which may be called ovulum. It is somewhat smaller, ovate; the striation and rugosity of the surface are less marked, and the inferior apertural lamella is wanting. In turn it has in most examples a lamella at the base (between inferior columellar and inferior palatal), and the callus in the palatal wall is rather strong. The coloration of part of them is somewhat lighter. It cannot be confounded with V. ovata, Say, its rela- tions to the type of rugosula being evident, and, in addition, ovata has been found with it. Nor can it be referred to ventricosa. It is larger and stronger, of much darker color, its surface is not so smooth and polished, it has three or even four lamellz more, and the columella is longer. Vertigo rugulosa, SrERK1, Proc. Acad. N. Sci. Phila., 1890, p. 34. ~~ \' V. rugosula. The above is Sterki’s description. The figure was drawn by him. MUSEUM OF COMPARATIVE ZOOLOGY. 201 Liguus fasciatus, Mutt. Plate I. Fig. 5. The Vaccas Key variety, noticed in page 435 of the Manual of American Land Shells, is figured in the plate. Orthalicus undatus, Bruce. Plate Il, Fig, 4, I give a new figure of the variety of this species. Holospira Arizonensis, STEARNS. Shell dextral, elongately cylindrical, pupiform, dingy white to pale horn-color, translucent. Number of whorls, twelve to thirteen. Slightly convex, the su- tures distinctly defined. The upper six or seven whorls rather abruptly tapering towards the obtuse apex, which has a slightly twisted and rather a papillose aspect. The last whorl is curved under and constricted back of the mouth, forming an umbilical notch. The apex and following whorl are smooth; the three or four succeeding whorls sharply and somewhat obliquely plicated longitu- tudinally, the median and following whorls be- coming somewhat obscurely sculptured other than by distinct growth lines. The basal whorl is strongly sculptured below, and back of the mouth, and obtusely angulated underneath. Aperture ovate, slightly angulated anteriorly, somewhat effuse, rimmed and projecting. The dimensions of two examples are as follows : — mm. WIDE SEE > f) 2) 5 eer eran b> ' ManeEnHUGPEEEEE eee. sss Gs eae ee OD ie AGEIMICLCDE Tce =) dS eke fea ss «ee et ts wl ROueRIGIReLCr: arse. Of so acdes ic «02 5 oa. . 4 Dos Cabezas, Arizona, where the above two specimens and numerous fragments were found in a cave in November, 1889, by V. Bailey, and contributed to the United States National Museum (No. 104,392) by Dr. C. Hart Merriam. Among the species of this group that are geographically related is H. Remondi, Gabb, described from Arivechi, Province of Sonora, Mexico, a form sharply sculp- tured throughout, and in minor features also different; H. Pfeifferi, Menke, col- lected by Remond at Hermosillo, in the same province, with the previously named 202 BULLETIN OF THE species; and H. (Celocentrum) irregulare of Gabb, from the high table-lands back of Mulege, in the peninsula of Lower California. All of these are separable at a glance from Arizonensis. The above is Stearns’s description and figure from Proc. U.S. National Mus., Vol. XIII. p. 208, Plate XV. Figs. 2, 3, 1890. Onchidella borealis, Datt. Coos Bay, Oregon. It is gregarious in its habits. Fifty specimens were taken in a small crevice of clay shale, near high tide. Single individuals, or several clustering together, were taken afterwards lower down on the tide under loose stones. When in motion, the animal moves off quite rapidly for so small a creature, with two short, stout pedun- cles protruding in front of the mantle, bearing keen, sharp black eyes. The color is dark slate, splashed with blotches and streaks of ashen white. The body when in motion is 4 inch long, ;3; wide, $ high, and oblong-oval in form, a little broader behind than before. It is covered with small tubercles, which are larger around ~ the edge of the mantle than those higher up on the body, giving the edge of the mantle a serrated or tooth-like appearance when the animal is at rest. When it is at rest on a smooth surface, the base of the animal is nearly circular, or a little longer than wide, the centre of the body is elevated to quite a sharp apex, which together with its color resembles some varieties of a very young Acmea pelta, aad would be very readily taken for such by an inexperienced col- lector. The foot is white, and works in rapid undulations when the animal is in motion. The above remarks are made by Mr. Hemphill in a recent letter. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Figs. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. SLMPABMAP wre — 1 2 3 4. 5. 6 vi 9 Se Oe ee Co Ox aac NO MUSEUM OF COMPARATIVE ZOOLOGY. EXPLANATION OF PLATES. PLATE I. Anadenus Cockerelli. Animal and internal shell. Patula strigosa, var. Buttoni. Arionta ruficincta. Glandina decussata, var. Singleyana. Liguus fasciatus, var. from Key Vaccas. Bulimulus Dormani. Arionta Ayersiana. Zonites Simpsoni, enlarged. Binneya notabilis, enlarged. Same as Figure 2, toothed variety. PLATE II. Pupa calamitosa, reduced from original figure. Pupa hordeacella, from original figure. Selenites Duranti, var. Catalinensis, enlarged. Orthalicus undatus, variety. Selenites Vancouverensis, var. Keepi, enlarged. Triodopsis Mullani, var. Blandi. , 8. Arionta tudiculata, var. cypreophila. Bulimulus Ragsdalei, enlarged one half. PLATE III. Limax Hemphilli, var. pictus. Animal and internal shell. Zonites Diegoensis, enlarged. Zonites macilentus, enlarged. Tebennophorus Hemphilli, jaw. Anadenus Cockerelli, jaw and tongue. Pristiloma Lansingi, enlarged. Zonites Caroliniensis, enlarged. Helicodiscus fimbriatus, var. salmonaceus, enlarged. Zonites sculptilis, enlarged. bo we 204 BULLETIN OF THE MUSEUM OF COMPARATIVE ZOOLOGY. PLATE IV. Fig. 1. Arionta Kelletti, var. multilineata. Fig. 2. Arionta Kelletti, var. nitida. Fig. 3. Arionta Kelletti, var. albida. Fig. 4. Arionta Kelletti, var. castanea. Fig. 5. Euparypha Tryoni, var. nebulosa. Fig. 6. Euparypha Tryoni, var. fasciata. Fig. 7. Patula strigosa, var. bicolor. Fig. 8. Patula strigosa, var. lactea. Fig. 9. Patula strigosa, var. albofasciata. PLATE I. MOLL. BINNEY : 4TH SUPPL. TO TERR. BINNEY: 4TH SUPPL. TO TERR. MOLL. PLATE It 6 ‘ 6 "i le in I} at A. arte f vie reid a sf aatiy ei ~, i mn, i "i i : f is . , ‘ { j ‘ i) } L i H | +e ye qi Je is : ae mt i? BINDING SeEvT. MAY 16 066 QL Harvard University. Museun a. of Yomparative Zoology H3 Bulletin Veel—22 Biological & Medical Serials PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET UNIVERSITY OF TORONTO LIBRARY