

AUG 59976

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.

Center for Advanced Computation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA ILLINOIS 61801

CAC Document No. 15

ECONOMIC RESEARCH GROUP WORKING PAPER NO. 5

The CAC Economic and Manpower
Forecasting Model:
Documentation and User's Guide
R. H. Bezdek, R. M. Lefler,
A. I. Meyers, J. H. Spoonamore

Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

HBLIOGRAPHIC DATA SHEET	1. UIUC-CAC-DN-71-15	2.	3．Reciprent＇s Accessiom ino．
THE CAC ECONOMIC AND MAHPOWER FORECASTING NODEL： DOCUNENTATION AND USER＇S GUIDE			5．Keporblate October 15． 1971
			6.
7．Author（s） R．H．Bezdek，R．M．Iefler，A．L．Mevers，J．H．Snoonamore			8．P＇ertorming Urpaniantwe Rept． No．CAC－15
9．Pefforming Urgameation Aame and Addreos Center for Advanced Computation University of Illinois at Urbana－Champaign Urbana，Illinois 61801			10．Propect lask burk Limi No．
			11．Contract Grant No． DAFCO 4 72－C－0001
12．Sponsoring Urgantzation diame and thatess U．S．Army Research Office－Irucham Duke Station Durham，North Carolina			13. Type or Report \＆Period Covered Research
			14.

15．Supplementary Notes

16．Abstracts This paper presents the preliminary documentation and user＇s guide for the Center for Advanced Computation economic and manpower forecasting model． Section I gives introductory and background information on the development of the model and presents a brief but rigorous theoretical basis for the on－line system．Section II gives a description of the basic MANPONER／DEMAND program indicating the function of the program，the detailed workings of the system options，and the language in which it is written．Appendices contain specifications of the data tapes and disc files involved，flow charts of the computer processes，and sample date input and output．

17．Key Hords and Document Abalysis．17a．Descriptors
Applications
Social and Behavioral Sciences
Economics
Forecasting（Manpower）

17b．Idencifiers／Open－Finded Terms

17c．COSATI ドicll／（roup
18．Avar！niblity semment No restriction on distribution．
Availsble from National Technical Information Service，Springfield，Virginia 22151

$\begin{aligned} & \text { 19. Securny (.1.1ss (1hiss } \\ & \text { Kopurt } \\ & 1 \end{aligned}$	$21 . \text { Nu. in ines }$
20．sch ully；（ lasso（1h1s 1＇ぃ，＂ 1 （1 タくぐた！！	22．l＇rice

THE CAC ECONOMIC AND MANPOWER FORECASTING MODEL: DOCUMENTATION AND USER'S GUIDE

By
Roger H. Bezdek
R. Michael Lefler
Albert L. Meyers
Janet H. Spoonamore

Center for Advanced Computation
University of Illinois at Urbana-Champaign Urbana, Illinois 61801

October 15, 1971

This work was supported in part by the Advanced Research Projects Agency of the Department of Defense and was monitored by the U.S. Army Research Office-Durham under Contract No. DAHCO4 72-C-0001.

Approved for public release; distribution unlimited.

THE CAC ECONOMIC AND MANPOWER FORECASTING
MODEL: DOCUMENTATION AND USER'S GUIDE

by

Roger H. Bezdek
R. Michael Lefler

Albert L. Meyers
Janet H. Spoonamore

Frik

ABSTRACI

This paper presents the preliminary documentation and user's guide for the Center for Advanced Computation economic and manpower forecasting model. Section I gives introductory and background information on the development of the model and presents a brief but rigorous theoretical basis for the on-line system. Section II gives a description of the basic MANPOWER/DEMAND program indicating the function of the program, the detailed workings of the system options, and the language in which it is written. Appendices contain specifications of the data tapes and disc files involved, flow charts of the computer processes, and sample data input and output.

7h

以y - +

 -1.

I. DESCRIPTION OF THE CAC ECONOMIC AND
MANPOWER FORECASTING MODEL 1
A. The Development of the Model 1
B. Theoretical Basis for the Program 3
II. DESCRIPTION OF THE MANPOWER/DEMAND PROGRAM 11
A. Function of the Program 11
B. Description of EDITFILE 12
C. MANPOWER/DEMAND Processing 13
D. The Data 17
E. Use of MANPOWER/DEMAND 18
III. APPENDICES
Appendix A: Tape Specifications 24
Appendix B: Flow Charts 25
Appendix C: Source List of MANPOWER/DEMAND 36
Appendix D: Sample Input and Output 52

A. The Development of the Model

The Center for Advanced Computation (CAC) economic and manpower forecasting model was initially conceived in the summer of 1969 by Roger Bezdek and Hugh Folk. At that time it was clear that there was, and would continue to be, a pressing need for a general, consistent economic model capable of analyzing both direct and indirect effects of specified changes in the economic environment on the economy and labor market. No model available was capable of simulating in detail the overall effects of changes in expenditures on different types of economic programs and activities which corresponded to alternate national priorities. The development of such a model was undertaken by Roger Bezdek for his Ph.D. thesis in Economics at the University of Illinois at Urbana-Champaign.

The Manpower Administration of the U. S. Department of Labor supported the major portion of Bezdek's dissertation research through a Doctoral Dissertation Grant. Although Bezdek originally planned to develop both historical and projected versions of this model, the latter development was prevented by severe methodological and statistical difficulties. Bezdek's original model pertained to the year 1960. Its development and the results of simulations conducted with it are described in detail in Manpower Implications of Alternate Patterns of Demand for Goods and Services. ${ }^{1}$

[^0]In the spring of 1971, Bezdek and James Scoville developed for the National Urban Coalition a projected version of the basic model which pertained to the mid-1970's. It was used to simulate the effects on the U. S. labor market which would likely be generated by the Urban Coalition's proposed reorderings of national goals and priorities contained in Counterbudget. The model is discussed in detail in Bezdek and Scoville's Manpower Implications of Reordering National Priorities. ${ }^{2}$

Early in 1971, personnel from the newly established Center for Advanced Computation of the University of Illinois became interested in continuing work on this model at the Center. The Center for Advanced Computation is an outgrowth of the ILIIAC IV project. It is an independent unit of the Graduate College which provides an interdisciplinary environment for research projects requiring specialized and sophisticated computer facilities. The development of this type of economic model required sophisticated and efficient computer software and, from the Center's point of view, this model offered a feasible and potentially significant application for ILLIAC IV.

Agreement was reached and an Economic Research Group (ERG) was established at the Center. Bezdek spent the summer of 1971 transferring the basic model onto the Center's computer facilities and improving and expanding it. Work continues in this direction, with Bezdek supervising development of the demand side of the model and Hugh Folk directing development of the supply side. This booklet is written as a user's guide to the demarid-generating portion of the CAC model.

Input components of the model include data tapes, disc files, and computer card decks which can be integrated into a number of consistent
systems via a program which will be explained in Sections II and III of this paper. While a brief theoretical outline of the basic model is included here, no attempt is made to explain the detailed workings of the CAC model. For this information the interested reader is referred to the references at the end of this report.
B. Theoretical Basis for the Program ${ }^{3}$

Adhering to the traditional assumptions of input-output analysis, the economy may be disaggregated into a specified number of sectors, each composed of firms producing a similar product or group of products. Each industry combines a set of inputs in fixed proportions to produce its output which it sells to other industries to meet their input requirements. Letting $x_{i j}$ denote the quantity of the output of industry i required by industry j as an input, letting y_{i} denote the quantity of the output of industry i destined for use by the autonomous sectors, and letting X_{i} denote the gross output of industry i, a static open input-output model may be represented by the following set of $r \in l a t i o n s h i p s: ~$

$$
\begin{gathered}
x_{11}+x_{12}+\cdot \cdot \cdot \cdot \cdot+x_{1 n}+y_{1}=x_{1} \\
x_{21}+x_{22}+\cdots \cdot \cdot \cdot+x_{2 n}+y_{2}=x_{2} \\
\cdot \\
\cdot \\
x_{n l}+x_{n 2}+\cdots \cdot \cdot \cdot \cdot \cdot+x_{n n}+y_{n}=x_{n}
\end{gathered}
$$

3
A more complete development of the theoretical model involved here along with a discussion of the problems involved in its empirical implementation is contained in Bezdek [5].

Since it has been assumed that each industry possesses a linear production function with fixed coefficients, the technical structure of an industry may be described by as many homogeneous linear equations as there are separate cost elements involved:

$$
x_{i j}=a_{i j} X_{j}, x_{2 j}=a_{2 j} X_{j}, \cdot . \cdot . \cdot x_{n j}=a_{n j} X_{j}
$$

The $a_{i j}$'s are referred to as coefficients of production and, writing these relationships in the form of equation set (1), we have:

$$
\begin{aligned}
& a_{11} X_{1}+a_{12} X_{2}+\cdots \cdot \cdot+a_{1 n} X_{n}+y_{1}=X_{1} \\
& a_{21} X_{1}+a_{22} X_{2}+\cdots+a_{2 n} X_{n}+y_{2}=X_{2}
\end{aligned}
$$

(2)

$$
a_{n 1} X_{1}+a_{n 2} X_{2}+\cdots \cdot a_{n n} X_{n}+Y_{n}=X_{n}
$$

The elements $a_{i j}$ form an $n-b y-n$ technical coefficient matrix A and, letting x denote an n -order gross output vector and y denote an n -order final demand vector, equation set (2) may be written as:

$$
\begin{equation*}
x=A x+y \tag{3}
\end{equation*}
$$

The final demand vector y is the vector of outputs available for disposal outside the processing sector and, letting I denote an identity matrix of order n,from (3), we have:

$$
\begin{equation*}
x-A x=(I-A) x=y \tag{4}
\end{equation*}
$$

Assuming that the elements of A are nonnegative and that at least some of the $\mathrm{a}_{i j}$'s are positive insures that (I-A) is nonsingular. Equation (4) may thus be solved for x :

$$
\begin{equation*}
x=(I-A)^{-1} y \tag{5}
\end{equation*}
$$

$(I-A)^{-1}$ is the Leontief inverse matrix and its elements $a_{i j}$
indicate the output requirements generated directly and indirectly from industry i by industry j per delivery of a dollar's worth of output to final demand.

The final demand vector itself may be viewed as the sum of a number of vectors each of which represents the industrial requirements of a distinct component of final demand. Letting u denote the number of final demand activities, g_{j} denote an $n-b y-1$ vector specifying the direct output requirements of exogenous activity j, and ϵ_{j} denote a vector indicating the portion of final demand consumed by exogenous activity j, we have:

$$
\begin{equation*}
y=g_{1}+g_{2}+\cdots \cdots \cdot+g_{u} ; \sum_{i} y_{i}=\sum_{j} \epsilon_{j}\left(\sum_{i} y_{i}\right) ; \sum_{j} \epsilon_{j}=l \tag{6}
\end{equation*}
$$

Writing out the first part of (6) specifically yields linear equations of the following form:
(7) $y_{i}=g_{i 1}+g_{i 2}+\cdots \cdot . .,+g_{i j} \cdot \cdots, \cdot+g_{i u} ; i=1,2, \ldots n$ Consider an arbitrary element $g_{i j}$ defined above. As indicated, $g_{i j}$ shows the direct requirements for input i generated by exogenous activity j and the magnitude of this demand will generally be determined by two factors: the total amount of final demand absorbed by activity j, and the portion of this amount devoted to the purchase of input i. The first factor may be expressed as: $\epsilon_{j} \sum_{i} y_{i}$, while the second factor is written as: $g_{i j} / \sum_{i}^{n} g_{i j}$. Letting $q_{j}=\epsilon_{j} \sum_{i}^{n} y_{i}$, and $p_{i j}=g_{i j} / \sum_{i}^{n} g_{i j}$, equation (7) can be rewritten as:
(8a) $y_{i}=p_{i 1} q_{1}+p_{i 2} q_{2}+\ldots+p_{i j} q_{j}+\ldots+p_{i u} q_{u} ; i=1,2, \ldots, n$ or, letting P denote an n-by-u activity-industry matrix of activity input coefficients, and letting q denote a u-by-l activity-expenditure vector:
(8 b)

$$
\mathrm{y}=\mathrm{Pq}
$$

$p_{i j}$ indicates the direct requirements generated for the output of industry i per dollar of expenditure in final demand sector j, and q_{j} shows the amount of expenditures allocated to activity j.

Within this framework it is possible to determine the direct output requirements generated by alternate distributions of national expenditures among economic activities. Here it is assumed that the elements of the P matrix are fixed over a limited range of expenditure redistribution; the activity-industry matrix thus represents a transformation of expenditures on economic activities into direct output requirements from every industry in the economy. Using equation (5), these direct output requirements can be translated into total output requirements from every industry.

Next, output requirements must be related to employment demands. To accomplish this it is assumed that the employment requirements of an industry are proportional to the industry's output and that this relationship may be expressed in terms of labor input coefficients. Letting $\mathrm{x}_{\mathrm{i}}^{\mathrm{e}}$ denote the total employment in industry i, the labor input coefficient for industry i, θ_{i}, is:

$$
\begin{equation*}
\theta_{i}=x^{e} / X_{i} ; i=1,2, \ldots . ., n \tag{9}
\end{equation*}
$$

Labor input coefficients are thus derived by dividing industry employment by industry output and they show the employment requirements of an industry per unit of output. Employment in each industry may be related to the components of final demand by substituting the values given for X_{i} in (5) into equation (9). Equations of the following form are derived: (IOa) $x_{i}^{e}=\theta_{i} \hat{a}_{i l} y_{l}+\theta_{i} \hat{a}_{i 2^{y}}{ }_{2}+\cdots+\theta_{i} \hat{a}_{i j} y_{j}+\cdots+\theta_{i} \hat{a}_{i n}{ }^{y} n^{\prime}$

$$
\mathrm{i}=1,2, . . ., n
$$

or, letting x^{e} denote an $n-b y-1$ vector of elements x_{1}^{e}, x_{2}^{e}, . . x_{n}^{e}, and letting Θ denote a diagonal matrix whose elements are $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$, the equations in (10a) may be written in matrix notation as:

$$
\begin{equation*}
x^{e}=\Theta(I-A)^{-1} y \tag{lob}
\end{equation*}
$$

Consider the matrix M defined as $M=\Theta(I-A)^{-1}$ whose elements $m_{i j}$ are:

$$
\begin{equation*}
m_{i j}=\theta_{i} \hat{a}_{i j} ; i, j=1,2, \ldots ., n \tag{11}
\end{equation*}
$$

Any element $m_{i j}$ of M shows the total employment required within industry i in order for industry j to deliver a dollar's worth of output to final demand. Each row of M indicates the manner in which employment is generated within industry i by required activity in industries $1,2, \ldots .$. , n and each column of M illustrates how the employment generated by industry j is distributed among all industries. This matrix is referred to as an inter-industry-employment matrix.

The necessary theoretical framework has now been constructed which permits the transformation of alternate priority-expenditure distributions into distinct interindustry-employment demand patterns. Letting $\stackrel{*}{Y}$ denote an n-by-n diagonal final demand matrix, the "total" interindustry-employment matrix, M^{τ}, is derived by postmultiplying M by $\stackrel{*}{Y}$:

$$
\begin{equation*}
M^{\tau}=M_{Y}^{*} \tag{13}
\end{equation*}
$$

The elements of M^{τ} show the total employment generated by and within every industry for a generated distribution of final demand reflecting a specified priority alternative.

The final step in the construction of the theoretical model involves the relation of interirdustry-employment requirements to demands for occupational categories of manpower resources. This transformation is accomplished by using an industry-occupation matrix showing the occupational
distribution of industry employment for the time period under consideration. Denote this matrix by B: the rows of B represent industries, the columns of B represent occupations, and any element $b_{i k}$ of B shows the percent of total employment in industry i composed of persons classified within occupation k.

Let R denote a diagonal matrix whose elements $r_{i i}$ are the row sums of the interindustry-employment matrix and thus show the total employment generated within industry i. One type of manpower information is derived by premultiplying the industry-occupation matrix by R :

or

$$
\begin{equation*}
R B=S^{(\alpha)} \tag{14b}
\end{equation*}
$$

$S^{(\alpha)}$ is a "type α " interindustry-occupation matrix and the elements $S_{i k}^{(\alpha)}$ of it show the total demands for occupation k generated within industry i by a specified distribution of national expenditures.

Letting M denote the transpose of the total interindustryemployment matrix, a second type of manpower impact matrix is derived by premultiplying the industry-occupation matrix by $\stackrel{\circ}{M}$:
(15a)
or:

$$
\begin{equation*}
\stackrel{\stackrel{\rightharpoonup}{M}}{ }=S^{(\beta)} \tag{15b}
\end{equation*}
$$

$S^{(\beta)}$ is referred to as a "type β " interindustry-occupation matrix and the elements $s_{i k}^{(\beta)}$ of it show the demands for occupation k generated by industry i. So while the type α manpower matrix indicates the occupational employment demand generated in every industry, the type β manpower matrix indicates the occupational employment demands generated by every industry. Finally, a third type of manpower impact matrix can also be derived. Letting B^{k} denote an n-by-n diagonal matrix whose elements cortespond to the $k^{\text {th }}$ column of B, the third type of manpower matrix is derived by premultiplying B^{k} by the transposed total interindustry employment matrix:
(16a)
or:

$$
\begin{equation*}
\stackrel{\circ}{M B}(k)=S^{(k)} ; k=1,2, \ldots, h \tag{16b}
\end{equation*}
$$

Since there are h columns in $B--$ one for each occupational classi-fication--it is possible to derive h of these S^{k} matrices. Each S^{k} matrix is essentially an interindustry-employment matrix for the $k^{\text {th }}$ occupation, and an element $s_{j i}^{k}$ shows the employment requirements for occupation k generated within industry i by industry j. These matrices are referred to as occupational employment profiles and they contain a highly detailed description of the structure of demands generated for an individual occupation by a specified distribution of national expenditures.

Taken together, these three types of manpower impact matrices provide a comprehensive and highly detailed picture of the employment impacts likely to result from the implementation of alternate types of economic and social programs and priorities.

II. DESCRIPTION OF THE MANPOWER/DEMAND PROGRAM

A. Function of the Program

The MANPOWER/DEMAND program performs two data handling functions. First, it edits existing data structures, the input matrices to the model. Secondly, and most importantly, it performs the algebraic computations set forth by the theoretical model previously described, for generation of manpower demands based on alternative expenditure patterns and technological assumptions. In effect, the program permits the researcher to experiment by varying the data matrices which represent the input to the economic model and to study the results generated by the MANPOWER/DEMAND processes. For example:

The experimenter executes the general model for a given set of 58 proposed expenditure alternatives, noting the generated occupational employment. By changing the activity-expenditure elements to represent a different pattern of resource allocation, he can analyze the generated effects on the labor market produced by the program. In this case, he must modify the q-vector which represents the expenditure distribution. After observing these results, he may then modify the interindustry-employment matrix or the industry-occupation matrix. Another run on the model gives different results and insight into more modifications.

The MANPOWER/DEMAND program is essentially a model of economic processes represented by several matrix operations but, in addition, its flexibility permits modification of the input matrices prior to execution of these operations.

4
The CAC model described in this report is in the process of being expanded and improved. At periodic intervals additional documentation and user guide reports shall be published which specify the changes which have been made.

B. Description of EDITFILE

Editing is performed on files prior to execution of the MANPOWER DEMAND routine. The following modifications can be accomplished for each matrix:

1. Element-by-element addition, subtraction, multiplication, or division.
2. Overwriting a column or columns with a new column or columns.
3. Deletion of a column or columns, thereby reducing the size of the matrix.
4. Insertion of a new column or columns between existing ones, thereby increasing the size of the matrix.
5. Scaling an entire matrix by multiplying each row by a given constant.

EDITFILE is invoked by the standard ALGOL subroutine call as follows:

$$
\text { EDITFILE(}<\text { File name }>,<\text { number of cols }\rangle,<\text { number of rows }\rangle \text {); }
$$

It accepts on card input the following commands in free form:

```
ADD(<column number>)
SUBTRACT (<column number>)
MULTIPLY(<column number>)
DIVIDE (<column number>)
DELETE(<column number>)
INSERT(<column number>)
SCALE
```

After each command, data cards are included which contain the operands for the above commands in free-field format, i.e., integers or decimal numbers separated by commas. This routine is not invoked if editing of existing matrices is not desired.

C. MANPOWER, DEMAND Processing

Program Overview

ERGWORKS is the routine which performs the major operations dictated by the system. It can accept as input different vectors reflecting various levels and distributions of expenditures on economic activities and it returns generated employment requirements classified by industry or by occupation. Alternately, the expenditure vector can be held constant and manpower demands can be generated by changing rows, columns, or individual coefficients within the various matrices to reflect changes in technology, labor productivity, or occupational displacement. ERGWORKS presently consists of four distinct sections: a core section, which is always executed, and three branches, only one of which is executed during a run. The choice of branch is a user-input control option and depends upon what information the user wents the program to calculate. Branch three, for example, selects a single occupation and gives detailed information on the structure of demand for that occupation.

The Core Section
The first step is to read in and check the list of control options provided by the user. The first option is the year. If the user asks for 1972, the program calls in the data from the four disk files corresponding to 1972^{\prime} s data; if the user asks for 1976 , the program calls in the 1976 projected data. If the user asks for a year other than 1972 or 1976, the program will form the three required matrices and the required q-vector by performing a standard linear interpolation of the data for both years. The interpolation is performed by a special subroutine which subtracts 1972 from the input year, then multiplies the difference between the 1976 data and
the 1972 data by one fourth of the difference in the years and adds the result to the 1972 data. It should be noted, however, that linear interpolation may not necessarily represent economic change within an interindustry model.

The next option read in indicates whether the user wants only the final results and certain selected intermediate results or whether he also wants all intermediate matrices printed out in full. The third option specifies which branch the program is to take. If this option is three, the program also reads in a column number corresponding to the column of that occupational classification in the B-matrix. The program tests both the branch option and the column to assure that the former lies within the range one to three and that the latter lies within the range one to one hundred eighty-five.

The program then reads in the user-given title of the run and the qvector. Both are printed immediately. Next, each of the fifty-eight rows of P^{T} is multiplied by the corresponding element of q . This is mathematically equivalent to converting q into a diagonal matrix and post-multiplying this diagonal matrix by P^{T}. If the "fullprint" option has been called by the user, this new 58 x 89 matrix is printed, first by columns, then by rows.

The same basic code is used to print out each of the matrices required by the fullprint option. The title of the matrix is written, and a FOR-loop selects columns in groups of ten until less than ten columns remain. For each of the rows of the matrix the ten elements corresponding to the ten columns are printed. When less than ten columns remain to be written, the routine prints the end of each row of the matrix, the number of elements printed corresponding to the number of columns left. Once this is done, the same operation is carried out for the transpose of the matrix, effectively causing the matrix to be written by rows instead of columns.

After the new 58×89 matrix is printed (if it is to be printed), a y-vector is created which is eighty-nine elements long. The elements of the y-vector are the column sums of the 58 x 89 matrix.

The y-vector is printed and aggregated to eighty-five elements by deleting four selected elements, and the aggregated vector is printed.

Each of the columns of M is then multiplied by the corresponding element of the y-vector. This corresponds mathematically to post-multiplying the M-matrix by a diagonal matrix created from the y-vector. The row sums and column sums of this new matrix are computed and printed and, if the fullprint option is on, the entire matrix is printed.

After the above operation is completed the new M-matrix is aggregated to a 66 x 85 matrix. Row sums and column sums of this aggregated matrix are taken and a sixty-six order vector, designated r, is created from the sixty-six row sums. To avoid double-counting, the column sums are actually calculated over selected rows of the M-matrix. The row sums, the column sums, the sums of selected elements of both, and (if the fullprint option is on) the matrix itself are printed.

If the program is to branch to the second or third branch, the last operation completed by this core section consists of multiplying each row of the aggregated M-matrix by the corresponding element of the μ-vector and (if the fullprint option is on) printing the resultant matrix. Branch One

Branch one requires the r-vector computed above. But each element of this vector is first multiplied by the corresponding element of the μ-vector. Each row of the B-matrix is then multiplied by the corresponding element of (α) the modified r-vector, forming a matrix called S. If the fullprint option (α) is on S is printed. In both cases row sums and column sums are calculated
for $\mathrm{S}^{(\alpha)}$ over selected columns and rows, respectively, to avoid doublecounting. These row sums and column sums are printed and totaled and the program run then terminates.

Branch Two
Branch two postmultiplies the transpose of the modified aggregated M-matrix by the B-matrix, producing an 85×185 matrix called $S(\beta)$. This operation is modified, however, by multiplying only selected columns and rows to avoid double-counting. If the fullprint option is on, the $\mathbb{S}^{(\beta)}$ matrix is printed out.

The one hundred eighty-five column sums are computed and totaled (over selected rows to avoid double-counting), then printed. Similarly, the eighty-five row sums are computed and totaled (over selected columns to avoid double-counting), then printed. This terminates execution. Branch Three

Branch three begins by selecting and printing a column from the B-matrix. Each of the sixty-six columns of the transpose of the modified aggregate M-matrix is then multiplied by the corresponding element of this column vector to form an 85 x 66 matrix called $S^{(k)}$. In the $S^{(k)}$ matrix h represents the column of the B-matrix selected, where $1 \leq k \leq 185$. If the fullprint option is on, this matrix is printed.

The sixty-six column sums are computed and totaled (over selected rows to avoid double-counting), then printed. Similarly, the eighty-five row sums are computed and totaled (over selected columns to avoid doublecounting), then printed. This terminates execution.

D. The Data

The input data for both routines reside on the same set of disk and card files. The eight disk files contain projected data for years 1972 and 1976 derived from data which were obtained from the Office of Business Economics, the Bureau of Labor Statistics, the Harvard Economic Research Project, the National Planning Association, and the National Urban Coalition, and which were, in part, derived independently by Roger Bezdek. These disk files are matrix representations for the 58 x 89 activity-industry matrix, designated by "P", the 85 x 85 interindustry-employment matrix, designated by "M", the 66 x 185 industry-occupation matrix, designated by "B", and a 66-order vector designated by " μ ".

The P and the M matrices are stored and handled in transposed form within the program. These files can be inputted directly to the model or modified first by EDITFIEE and then used as direct inputs. The card file called CARD contains, first of all, the specifications for any editing to be done on the above disk files. Following these specifications are the run time options for ERGWORKS. These options include the projected year to be run, the fullprint option, and the branch of the routine to be invoked. Following the option, the q-vector (the specified expenditure distribution) is read in.

E. Use of MANPOWER DEMAND

Tapes:
MANPOWER/DEMAND is written in Burroughs B6500 ALGOL language. The source program as well as all data files are stored on nine-track tapes in the B6500 room, Room 10, Coordinated Science Laboratory, University of Illinois, Urbana, Illinois. At present, several versions of the program are saved at points in time to enable programming changes to be made without risk to previous progress. In the appendix a list provides tape numbers and tape contents.

The tape name ERG is used to access any of the tapes. In this and any discussion of $B 6500$ usage, the reader is referred to the Little Golden Book of the $\mathrm{B} 6500^{5}$ for operating system details.

Control Cards:
In order to run MANPOWER/DEMAND on the B6500, a set of control statements must be entered in card form or from a terminal. Listed below are the cards which can be used:

The tape must first be loaded onto disk by the following: ?COPY ERG/= FROM ERG

In order to compile the program: ?COMPILE ERG/MANPOWER/DEMAND WITH ALGOL LIBRARY ?ALGOL FILE CARD = ERG/OCTI DISK SERIAL ? END

The execution is accomplished by the following:
? EXECUTE ERG/MANPOWER/DEMAND
?DATA CARD

2, 1, l,
TEST DATA

10335148160
 and other data cards

? END
(Note: ? is a control character on $B 6500$ and is punched by multipunch 1, 2, 3.)

The execution takes about six minutes of processing time on the $B 6500$ which amounts to about 15 minutes real time in the machine.

Sample Experiments:

Statement of Problem 1: Replace the first 12 columns of the 1972 P matrix with a given set of data, change column 17 to $17 a$ and 17 b and run the program for branch one.

Method of Solving: Use the EDITFILE procedure to modify the ERG/MATRIX/Pl file. The following code must be inserted into the program to form executable code.
$\mathrm{L}:=57$
EDITFILE (P1, L, 89);
REWIND (PI);
ERGWORKS (L, 89, 85, 66, 185);
END
The program is then recompiled, and executed with the following card input:
? DATA CARD
REPLACE (1)
(Data cards to replace second column)
REPLACE (2)
(Data cards to replace second column)
(Data cards to replace l2th column)
REPLACE (17)
(Data cards to replace l7th column)
InSERT (18)
(Data cards to insert between the 17 th and 18 th columns-changes old l8th to l9th column)

STOP
72,1, 1
TEST DATA
103351418160 ...
(Change 57 to 58 long vector here)
14561 ...
?END
Statement of Problem 2: Scale the rows of the 1972 M matrix by a set of constants. Run the program using the modified P matrix above for branch one.

Method of Solving: Again use the EDITFILE procedure to modify the ERG/MATRIX/M3 file. If possible, store the modified P-matrix from the last example; otherwise, include the changes here as in the above program.

The program instructions follow:
$\mathrm{L}:=58 ;$
EDITFILE (M3, 85, 85);
REWIND (M3);
ERGWORKS (L, 89, 85, 66, 185);
END
The above statements are to be inserted in the executable code section of the program. Recompile and execute with the following:
? DATA CARD
MULTIPLY (I)
(85 elements to multiply row 1)
MULIIPLY (2)
(85 elements to multiply row 2)

MULTIPLY (85)
(85 elements to multiply row 85)
STOP
72, 1, l,
TEST DATA
$103351418160 \ldots$
-
-
.
14561 ...
? END

REFERENCES

[1] Abel, Norma. "The Little Golden Book of the B6500." ILJIAC IV Project Report, University of Illinois at UrbanaChampaign, Urbana, Illinois, June 1971.
[2] Bezdek, Roger H. Manpower Implications of Alternate Patterns of Demand for Goods and Services. Ph. D. Thesis and report prepared for the Manpower Administration of the U. S. Department of Labor, University of Illinois at UrbanaChampaign, Urbana, Illinois, 1971.
\qquad - "Manpower Implications of Alternate Patterns of Demand For Goods and Services." 1970 Proceedings of the Business and Economics Section of the American Statistical Association, pp. 417-422.
\qquad - Progress Report on the Development of a Iarge-Scale

Conditional Consistent Economic and Manpower Forecasting
Model. Economic Research Group Working Paper no. l, Center for Advanced Computation Document no. 7, University of Illinois at Urbana-Champaign, Urbana, Illinois, July 1971.
[5] \qquad - Manpower Analysis Within an Interindustry Framework:

Theoretical Potential and Empirical Problems. Economic
Research Group Working Paper no. 4, Center for Advanced Computation Document no. 13, University of Illinois at Urbana-Champaign, Urbana, Illinois, September 1971.
[6] \qquad , and Scoville, James G. Manpower Implications of Reordering

National Priorities. Washington, D.C.: National Urban Coalition, 1971.
[7] Burroughs B6500 Extended Algol Language Information Manual.
Document no. 5000128, Burroughs Corporation, 1971.
[8] McCracken, Daniel D. A Guide to Algol Programming. New York:
John Wiley and Sons, 1962.
[9] Meyers, Albert L. An Introduction to the Pointer Mechanism in
Burroughs Corporation Algol. ILITAC IV Document no. 215, University of Illinois at Urbana-Champaign, Urbana, Illinois, May 1970.

B6500

Tape Number Name
ERG
(1) ERG/MATRIX/Pl
(2) ERG/MATRIX/P2
(3) ERG/MATRIX/M3
(4) ERG/MATRIX/M4
(5) ERG/MATRIX/BI
(6) ERG/MATRIX/B2
(7) ERG/MATRIX/MUI
(8) ERG/MATRIX/MU2
(9) ERG/MANPOWER/SOURCE
(10) ERG/MANPOWER/DEMAND

122
ERG
files 1.-9 same as 202, 204
(10) ERG/ OCTI
(11) ERG/MANPOWER/DEMAND

Description of File

1972 P-MATRIX
1976 P-MATRIX
1972 M-MATRIX
1976 M-MATRIX
1972 B-MATRIX
1976 B-MATRIX
1972 - Mu vector
1976 - Mu vector
Sourcecode for economic model
Compiled version of ERG/MANPOWER/DEMAND

Source code for economic model and edit routine.
Compiled version of (10.)
files 2.-ll same as 122
(1) ERG/MATRIX/Pl modified in experiment

Appendix B

Flow Charts

Appendix C

Source List of MANPOWER/DEMAND

DEFIVE SEF＝LAKEL NFASE？MAENT：
FILE LINE（KTNF $=135$ ，RUFFFKS＝2．14×KFCSTIE＝22．INTHHUE＝A．MYUSF＝2）：

FIIE HICKINN＝1．ACCFSS＝O．TITLF＝＂ERG／MATHTK／H1．＂．HIFFERG＝？
MAXRECSI7E $=14$. LUUKSILF $=4$ ？ 0$):$
 MAXRFCSILE＝14，\＆LUCKSILE＝4つ0）：
FIIEM3CK NN＝1，ACCFFS＝O，TITLF＝＂FRG／MATQTK／M3．＂．HUFFFRG $=2$ ，
MAXRFCSILF $=14$ ，ALICKSILF $=1$ PO）：

HAXRFCSIZF $=14.4$ ，IHKSILF $=120$ ）：
FILE OI（KINN＝I，ACCFSS＝O．TIPLE＝＂FKG／MATRTXIBI．M，RUFFFKS＝？
MAXRFCSILF＝14．तl UCKSILF＝A20）：
FILE $\sigma 2(K I N N=1 \cdot A C C F S S=$ OPTTLF $=$＂ERG／MATKTX／B2．＂．HUFFERG $=2$ 。

 RUFFERS $=$ ？，MAXRFCSILE $=14$ ．HLDCKSITF $=4$ PO）：
FILE AUZ（KINT＝1．ACCFSS＝O．TIT，$=$＂ERG／VECTHR／MIIR．＂， RUFFERS $=$ ？．MAXRECSI $\angle E=14$. BLOC．KSI／E $=4$ ？O）：
FORMAT IN FR（RI10）：FO（x5，9Fタ．4．$\times 7$ ）：
FRDMAT UUT HEAIII（＂EIFMENT VALUE＂），Fi（f4．F20．h），

 HFAD4（／＂CnLS＂，［4，＂TH2U＂，「4／），
 FRRMESS1（＂＊＊＊INCJRRECT JPTION IR NRANC．＇＂）：
KEAL ARKAY P［O：כH：0：DO1，M（0：R5：0：A51：
INTEGFO I．J．K．1：
LAREL FIFI）：
h
LINE PRTNT ROITINEG
${ }_{2}$
\＆DKICEDURES PRTMATRIX ANI PKITRANSH ARF USFI F FR FILLDRINT
h TII PRINT MATRTX 门R IIS TRANSD，ISE．
HRICEMIJRE PRTTRANSP（A，VRUNS，NCIILS，HEAITN $\left.F_{1}\right)$ ：
VALIIE NRONS，NCOLSOHEAIIN：
KFAL ARRAY A［0．0］：
INTEGFR NROWS NOULS：HEADING：
＂EGTN
INTFTEER FIILLRAN，I J．J．K．L：
FULIRIW：$=$ NCILSS－NCOLS ifuU 10 － $3:$

L．：$=k+\partial$ ：
IF HEADTNG＝（）THFN WRIIF（LINF，HFAOB，K•L）ELGF
VRITF（LINE，HEADA，KOL）；
FOR J：＝ 1 STFP 1 UVTIL NRITWS M WRITF（LTNE，F10．J．FחR I：＝KTEP 1 UMTIL L ［0 1 （J．［））；

ENの：
If NCILS＞LTEN HEGIN
IF HFADING＝O THEN NRTTE（LINF．HEAOS．I．＋I．NCILS）EISE
WRITF（LINE，HEADA．L＋I，NCOLS）：
FOH $J:=1$ STFP 1 UNTIL NYONS DO
WKITE（LINE，FTPJ．FUR I：＝L＋1 STEP 1 IINTIL NCOLS NU AP．J．IJ）； END：
wRITF（LINE［SkIP 11）：

```
        END PRTTRANSP;
        HROCENURE PRTMATKIX(A.NRONS,NCTLS.HEAOIN(1):
        VALIIE NRONS.NCILS.HEADING:
        INTEGFR NRIJWS.NCULS.HEAOINS;
        REAL ARRAY A[0,0];
        BEGTN
        INTEGER FULLR,jW,I,J,L,K;
        FULLROW:= NROWS - NROWS MUI) 10 - 9:
        FOR K:=1 STFP 1O UNTIL FULLRUW OO BErIIN
                L:=K + %:
                IF HEADING = O THEN WRITEPLINF,HEAN4,K,L) ELSE
                WRITE(LINF,HEAU5,K,L):
                FOR J:= I STEP 1 UNTIL NCOLS DO
                        WRITE(LINE,FIO,J,FUR I:Z K STFP I UNTILLL DII A[I,J])S
                        ENO:
            IF NROWS> L THEN HEGIN
    IF HFADING = THFN WRITE(LINF.HEAD4,L+I,NROWS) ELSE
        WRITE(LINE,HFADS,L+1,NRONS):
        F\capR J:= 1 STFP & UNTIL NCULS DO
            WRITE(LINF,F7,J,F\capR I:= L+1 STEP 1 UNTIL NROWS DOI A[I,J]):
        END:
        WRITE(LINE[SKIP 1]):
        END PRTMATRIX:
            6
            * FNU OF LINE PRINT ROIITINES
            6
PRMCEUURE ENITFILE(FTL.MON):
vALUE
INTEGER
                    FIL
FILE
2EGIN
*
LAaEL OUT EOFA
    ;
q
ARRAY A[O:2*M:O:N]
            - }\textrm{B}[0:2*M
            -C[0:N]
            , i)[0:13]
            - F[0:2*M]
            ;
    r
    POINTER P
                -Q
                        ;
    Z
    INTEGERI
                        -J
                                -In\EX
                                - SNUM
        -T2M
        ;
    *
    OEFINE
        G(I:J) = A[R[I]:J]*
        -GETC = READ(CARD,/,FOR I!=1 STEP 1 UNTIL N DO C(II)#
        -DOTS = BEGIN
```

TEFTC：

EN：
：

```
INTEGER PRICERIIRE NIMMB:
    QEGIN
    SCAN PIP UNTIL = "(":
    SCCAN P:D+! IJNTIL IN ALPHA:
    SCAN OBD WHILE IN ALPHA:
    NUMR:=INTEGER(P.OFLTA(P.{)):
5NI) N|IMR:
```

```
OROCEOUUE OUTTER(A.H.I.J):
```

OROCEOUUE OUTTER(A.H.I.J):
VALUE I.J:
VALUE I.J:
INTEGFK IO.J:
INTEGFK IO.J:
\triangleRRAY
\triangleRRAY
A.H[0] ;
A.H[0] ;
唯jN
唯jN
INTEGER K:
INTEGER K:
CASE I OF
CASE I OF
REIIN
REIIN
HOK K:=1 STEP, UNTIL J O{S AIK]:=*+H[K]:
HOK K:=1 STEP, UNTIL J O{S AIK]:=*+H[K]:
FOR K:=1 STEP \& UNTIL J OU AlKl:=*=H[K]:
FOR K:=1 STEP \& UNTIL J OU AlKl:=*=H[K]:
FMR K:=1 STEP, UNTIL J DU A(K):=**H[K);
FMR K:=1 STEP, UNTIL J DU A(K):=**H[K);
FOK K:=1 STEP \& UNTIL J DU A(K):=*/H[K]:
FOK K:=1 STEP \& UNTIL J DU A(K):=*/H[K]:
ENO CASE STATEMFNT;
ENO CASE STATEMFNT;
FNT DITTER:
INTEGER PRICEUURE SCANINER:
れとG!心
LABEL ETFF:
READ(CARN.14.1)[*1)[EMFF::];
EUFF: SCANNER:= SNUY:= 7:
SCAN P:POINTFR(D) WHILF = " ":
SCANNER:=SNUM:=
Ir P = "ANT" THEN O FLSSE
IF P = "SIH" THEN I FLSE
IFP="MIILT" THFN 2 ELSE
IFP = "OIV" THEV 3 FL.SF
IF P = MOVFR" THEN 4 FL.SE
IF P = MOFL" THEN 5 FLSE.
IFP = "INS" THEN 6 ELSE
IF P = "SCAL" THEN 7 FLSF
IF P = "AIIJU" THEN \& FLSF O;
IF SNIMM NEQ % AND SNUM NEU X ANI) SNUM NEQ 9 THEN
INUEX:=NIIMB:
FNO SCANNFR:
BEGTN FXECUTARLF EUITFILE riIUE
T $2 M:=M+M:$
FOR I ：$=1$ STED 1 UNTIL MOU

```
```

 RFAD(FIL:/!F\capR J:= 1 STFF'1 UNTIL N nU A[I:J])[FDFA::]:
 FOFA:
FOR I:= 1 STEP I UNTIL M DO B[I]:=1:
\&
* MAIN pROGRAM
\&
WHILE TRUE DO CASE SCANNER UF
BEGTN
DNTS: q 0=ADO
nחTS: x 1-S|B
DOTS:
DOTS:
RFAD(CARD,FG:FOR I:=1 STEP 1 UNTIL N DN G(INDEX:I)):
HFGIN
REPLACE POINTER(B[INNEX1)BY POINTER(BLINDEX+1]) FOR
T2M=INOEX-1 WOROS;
M:=M-1:
ENT:
RFGIN * 6-INS
B[INDEX]:= M:=M+1;
FOR I:= 14 STEP - 1 UNTIL INDEX DO R[I]:=B[!-1!:
READ(CARO,F9,FOR J\&=1 STEP 1 UNTIL N UO A[M,J]):
FNn:
BEGIN
READ(CARD./.FMR I:= 1 STED I UNTIL M ON E[I]):
FOR I:= 1 STEP 1 UNTIL N NU
FOR J:= 1 STEP 1 UNTIL M OU A[I,J]:=**E[J]:
END:
BEGIN
READ(CARD./,FUR I:= 1 STEP I UNTIL M UD E[I]);
FOR I:= I STEP I UNTIL N DO
F!R J\&=1 STEP 1 UNTIL M DO A[I,J]:=**E[I]:
ENO:
GN OUT:
* 8-DONE
ENO CASE;
3
OUT:
*
% WKAP=IJP
8
REWINO(FIL):
FOR I:=1 STEP 1 UNTIL M DO
WRITE(FIL,/,FGR J:=1 STEP I IJNTIL N OM G(I,J)):

```

Eñ evitrile:

PROCEUURE ERGWORKS(IT,JJ.KK.LL.MM):
value
II.JJ.KK.LL.MM :

INTEGER
II:JJ.KK.LL.MM :
REGIN
REAL AKRAY A 0 : 13 ]. MU[0:LL], Q[0:II1, Y[0:JJ], R[0:LL], SH[0:MM].
P[0:I[.0:JJ]. M[0:KK,0:KK], B[0:LL,O:MM]. SB[n:KK, n:MM]:
INPEGER I. J. K. L. RRANCH. YEAR, COLUMN:
BOOLEAN FULLPRINT:
REAL SUM. THTAL:
LAREL FINISH:
\% INTERPILATION PRUCEDURE FUR YEARS TTHER THAN 172 OR 176
REAL + ;
F \(:=(Y E A R-7 ?) / 4\);
FONR \(1:=1\) STFP 1 UNTIL II D) I BEGIN
    QEAU(P1, /, FOR J \(:=1\) STER 1 UNTIL JJ 0! P PT, J]):
    READ(P2, /,FOR J \(:=1\) STAF 1 UNTIL J.J OI Y[ 17):

                                    E.小)
F TR I: \(=1\) STEP 1 UNTIL KK D, REiOIN

    QEAU(M4, /,FIR J \(:=1\) STEP 1 UHTIL KK HII Y[Jl);

                                    Fथ)
FOR \(1:=1\) STEP 1 IINTIL LL O: AKGIN
    REAU(B1, I,FOR J: \(=1\) STFP 1 JNTIL MM ON B[T.J1):
    QEAU(RZ.1.FUR J \(:=1\) STFP 1 UNTIL MM IIO SH[J)):

                                EN:
READ(MU1, /PFIR I : \(=1\) STEP 1 INTIL LL OO AU[T1):
READ(MUつ・ノPGR \(1:=1\) STEF 1 IINTTL LL On R(T1);
FOR I : = 1 STEP 1 UNTIL LL DH MU[I] \(:\) MII[I] + F * (R[I] - iUlI)):
EN:
2





 168．172．177．184．1144；

READ（CARD，／YEAR．I RRANCH）；
IF \(1=0\) THEN FIULPPRNT：\(:=\) FALSF ELSE FIILLPRTNT：\(=\) TRIIF：
IF YEAK GTK 1900 THFN YEAR ：＝YEAK－1900：
IF YEAK＝I？THEN GEGIN SEG；
FOR \(1:=1\) STEP 1 IINTIL II गO
READ（rl．／．FIJR J：\(=1\) STEH 1 HNTIL JJ DU DPL，JJ）；
FOR \(1:=1\) STEP 1 INTIL KK DO
READ（M3，PFOR J：＝ 1 STEP 1 HNTIL KK DIO MPJ．II）： FDR \(1:=1\) STEP 1 IINTIL LL DO
 DEAU（MU1，／PFOR I \(:=1\) STEP 1 UNTIL LL MO M！III）：

\section*{ENT}

ELSF IF YEAR \(=76\) THEN HEGIN SEG：
FOR \(1:=1\) STEP 1 HNTIL II חO）
READ（P2， \(1, F\) OR J \(:=1\) STEP 1 HN1IL．JJ DO P［I．JJ）：
FOR \(1:=1\) STEP 1 IINTIL KK DO
RLAD（M4，／．FOR J：\(=1\) STEP 1 IJNIIL KK IOI MPJ．IJ）：
FOR \(1:=1\) STEP 1 IINTIL LL DIO
READ（R2，／．FOR \(J:=1\) STEP 1 （INTIL MM OO R［I，JJ）：
REAU（MUZ，／．FOK \(I:=1\) STEP 1 UNTIL LL IO MIIIIJ）；

\title{
ELSE INTERPDLATE:
}

IF BRANCH GTR 3 AR BRANCH LSS 1 THEN BEGIN

END:
```

IF BRANCH=3 THEN RFAD(CARD./, COLUMN):
IF BRANCH=3 AND (COLUMN LSS 1 OR COLUMN GTR MM) THFN BFGIN
WRITE(LINE,ERRMESS1):
GO TO FINISH:
ENO!
x
2 READ AND WRITE TITLE AND Q VECTUR
%
READ(CARD:13:A[*]):
WRITE(LINE,13,A[*])\&
I B= O:
THRU ((II DIV 8))
DU READ(CARD,FR,FUR J }:=1\mathrm{ STFP 1 UNTIL 8 DO O[I\&=I+1]);
READ(CARD,FR,THRU II MUD \& DN Q[|\&=I+1]):
WRITE(LINE,</* ALTERNATIVE EXPENOITURE VECTOR*>)*
WRITE(LINE,HEADI):
TOTAL : = 0;
FOR I \& STEP 1 UNTIL II DO BEGIN
TOTAL := TOTAL + Q[I]:
WRITE(LINF,F1,I,Q[I]): END;
WRITE(LINE[SKIP 1],F2,IOTAL)!
Z
\& FORM INDUSTRY ACTIVITY MATRIX (GVERLAYING P)
8
FOR I := 1 STEP 1 UNTIL II DO
FOR J:=1 STEP 1 UNTIL JJ DO P[I,J] \& P P[I,J] * Q[I]:
2

* ROUTINE TO PRINT INDUSTRY ACTIVITY MATRIX AND ITS TRANSPOSE
%
IF FULLPRINT THEN REGIN
WRITE(LINF,<"INDUSTRY ACTIVIYY MATRIXN>):
FOR K:=1 STEP 10 UNTIL 41 DO BFGIN
L:=K + 9:
WRITE(LINE,HEAD4,K,L):
FOR J := = STEP 1 UNTIL JJ DO
WKITE(LINE,F10,J,FOR I := K STEP 1 UNTILLL OO P[I:J]):

```
WRITE(LINE, HEAD4,51, II):
FOR J \(:=1\) STEP 1 UNTIL JJ DN
    WRITE(LINF,F7,J,FOR I :=51 STEP 1 UNTILII DO P[I,J]):
WRITE(LINE[SKIP 1]):
WRITE (LINE, < TRANSPOSE PRINT DF INUUSTRY ACTIVITY MATRIXM>) B
FOR \(K I=1\) STEP 10 UNTIL 71 OO BEGIN
    \(L:=K+9:\)
    WRITE (LINF,HEAD5,K,L):
    FOR J \(\quad=1\) STEP 1 UNTIL II DO
        WRITE (LINE,F1O,J,FOR I \(1=K\) STEP 1 UNTIL L OO P\{J,IJ):
                        END:

WRYTE(LINE.HEADS.81•JJ):
FOR J \(\quad=1\) STEP 1 UNTIL II DO
WRITE(LINF,F1O, J,FחR I \(:=81\) STEP 1 UNTIL JJ DO P[J•I]):

GENERATE FINAL DE MAIND VECTHR ANG PRINT

TMTAL \(:=0\);
FRR \(1:=1\) STEP 1 HNTIL JJ DM HEGIN
r[i]: \(=0\);
FOL J \(:=1\) STEP 1 IINIILII OO Y[I] \(:=Y[I]+P[J P I I:\)
HRTTE(LINF.F1•I,Y(T1):
TOTAL \(:=\) THTAL + Y[I]: FW):
WRITE(LINEISKIP 1/.Fつ.TOTAL):
AgGREGGATE FINAL UFMANII VFCTIIR ANI PRINT
WRTTE(LINF: <n AGGREGATE FINAL DFMANI) VFCTIR">): WRITF(LINE, HFAD1): Y(RO) \(:=Y(81):\)
\(y[0,11:=Y[R]] ;\)
\(Y[R 2]:=Y[87):\)
\(Y[R 31:=Y[R 4] ;\)
Y(R4) \(:=Y(R A):\)
\(Y[K K 1:=Y[1.1]:\)
TOTAL \(:=0\);
FOD \(1:=1\) STEP 1 UNTTL KK ON BEGIN
TOTAL : = TMTAL + YPTJ:
WRIIE(LINF.FIOI.Y(T]): E.NI:
WRITE(LINF[SKIP 1].Fว, IOTAL):
GENERATE THF INTERINDUSIKY EMPIIGYMFVT MATKTX
WRTTE(LINF, <" ROW ANI) CULUMN SUAS UF INTER[NIIISTRY EMPLIYMENT MATRIX">); WRITE(LINE,HFAD3):
TOTAL \(:=0\) :
FOR I \(:=1\) STFP 1 UNTTL KK DU BLSIN
SUM \(:=n\) :
FDR J \(i=1\) STEP 1 INTIL KK IIJ REGI:
M[I.J): = M[I..J] * Y[!1;
SUM: = SUM + 'I[I.J]:
FNI):
WRITE(LINF,FI•I•SUM):
TOTAL \(:=\) TITALL + SIMM:

\section*{ENI:}

NRTTE(LINE[SPACE 2],F2,TITAL);
WRITE(LINEPLEAD2):
TOTAI : = 0 ;
FחR I \(:=1\) STEP 1 UNTIL KK Di) HEGIN
SUM \(:=n\);
FOR J \(:=1\) STED 1 IINIIL KK OH SUM \(:=\) SUM + M[J.IJ:
4RItE(LINF,F1.I.SUM):
TUTAL : = TOTAL + SIM: ENO:
WRITE(LINF[SKIP 1].F?,TITAL):

\section*{}
\(L:=K+91\)
WRITE (LINF, HEAD4,K,L) \&
FOR \(J \quad 1=1\) STEP 1 IINTIL KK OO
WKITE (LTNE,F1O, J,FOR I \(:=K\) STEP 1 UNTIL L DO M[T:J]): EN():
WRTTE(LINE,HFAD4,R1,KK):
FOR \(J i=1\) STEP 1 UNTIL KK DO
WHITE(LINE,F7•J•FOR \(I:=81\) STEP \& UNTIL KK DU M[I•J])
WRTTE(LINE[SKIP 1]):
\%
 FOR K \(:=1\) STEP 10 UNTIL 71 OD BEGIN

L \(1=K+91\)
WRITE (LINE,HEADS,K,L):
FOR \(J \quad i=1\) STEP 1 UNTIL KK DO
WKITE LLINE,F10,J.FOR I : = K STEP I UNTIL L DOM[J•IJ, END:
WRITE(LINE•HEADS.81.KK):
FOR \(\quad \delta=1\) STEP 1 UNTIL KK DO
WKITE(LINE,FT,JOFOR I : HI STEP 1 UNTIL KK DOM[J,II):
WRITE(LINE[SKIP 1])

\section*{END:}
\(\%\)
\% AGGREGATE THE INTERINDUSTRY EMPLOYMENT MATRIX TO LL X KK
8
8
FOR I \(: 1\) STEP 1 UNTIL KK OO BEGIN SEG:
\(M[I, 2]:=M[I, 1]+M[I, 2] ;\)
\(M[1,3]:=M[1,3]+M[I, 4] s\)
\(M[I, 1]:=M[I, 2]+M[I, 3] ;\)
\(M[I, 5]:=M[1,5]+M[I, 6] ;\)
\(M[I, 6]:=M[1,7]:\)
\(M[I \cdot 7]:=M[1,8]:\)
\(M[I, 8] i=M[I, 9]+M[I, 10] ;\)
\(M[I, 4]:=M[I, 5]+M[I, 6]+M[1,7]+M[1,8]:\)
\(M[I, 9]:=M[I, 11]+M[I, 12]+M[I, 85] ;\)
\(M[1010] 8=\operatorname{SUM}:=M[1,13] ;\)
FOR J \(:=14\) STEP 1 UNTIL 64 DU M[I.10] : M[I.10] \(+M[I \cdot J]:\)
M[1011] : a M[I•14]:
\(M[I, 12]: M[I, 15]:\)
\(M[1,13]:=M[I: 16]+M[1,17]:\)
\(M[I \cdot 14] 8=M[I \cdot 16]:\)
M[1,15] \(=M[I, 17]:\)
\(M[1016] \quad 1=M[1.18]+M[1.19]:\)
\(M[1,17]:=M[I, 18]:\)
\(M[I \cdot 18]:=M[I \cdot 19] ;\)
\(M[1,19]: M[I, 20]+M[1,21]\}\)
\(M[I, 20] i=M[I, 22]+M[I, 23] ;\)
\(M[I \cdot 21] i=M[I \cdot 24]+M[I \cdot 25]!\)
\(M[I \cdot 22] \quad=M[I, 25]:\)
\(M[1,23] \quad=M[I \cdot 24]:\)
\(M[1,24]:=M[I, 26]:\)
\(M[!\cdot 26] 1=M[!\cdot 27]+M[I \cdot 28]+M[I .29]\}\)
M[1.27] \(=M[!\cdot 30]:\)
\(M[I, 25] i=M[I, 26]+M[I, 27]\}\)
\(M[I, 28] \&=M[I, 311:\)
\(M[I, 29]: M[I, 32]:\)
```

M[I, 50] := M[I.33] + M[T.34]:
H[T:31] : = M[I.35] + M[1.3n1;
"[!.32]:=M[1.351;
11[[.03]:= M[I,361:
4[1,34] : = 1[I,371+M[IP3N]:
M[[,35]:= M[I.37]:
M[I, 56]:= M[I, 38]:
M[{,3>]:=SUM + M[I.30] + i1[I.4U] + M[I.41] + 14[1.42]:
"[[,3R]: = M[I.43]:

```

```

u[1,39]:}= M[I.44]
4[1,40]:= M[I,511:
1[[,41]:=M[I,38] - M[I,301 = 11L[,40]:

```

```

4[[:43]:=M[].59] +M[[.60] + M[1.61];
1[1,44]:= M[I.591:
"[I,45]:= M[I,60]:
4[1,46]:= 4[I,611:
M[!,47]:= M[I,62] + M[1,07];
M[I,4贝] : = M[I,641:
-[1,50] := M[1,65]:

```

```

"[[,52] := M[{0671:
H[I,)3]:= M[1*66]:
.[1,b4]:= M[I,G8]:
M[1.49]:=M[I.50] + M[1.51] + M[I.54]:
1[I.55]:= M[1.691:
M[[,56] := M[I,70] + M[I./1];

```

```

1[[,58]:= M[I,72]:
4[1,50]:=M[[.73] + M[1./4]:
4[I,60]:= M[I.75]:
M[I,01]:= M[I.76]:
M1,6?1:= M[1,771:
M[1,03]: = M[I,841;
M[].05]:=M[I.78] + M[I.82]:
M[I.66] := M[I.79] + M[I.831:
\because[1.64] := M[I.65] + 11[I.66]:

```
                                    E!

ROUTINF TO PHINT OUT AGGKETATET INTERINOUSTRY EMPLOYMENT MATRIX AND RIJW AND CILUMN SUMS

WRTTE (LINF. \ll AGGREG, ATED INTERINIUSTRY FMPLIYMENT MATKIXM ) ; WRJTE(LINF:<" (ROW ANU COLUMN SUMS GVER SELFCTEO RUWS)">):
WRITE(LINE,HEAD2):
TOPAI. \(8=0\);
FOR I \(:=1\) STEP 1 UNTIL LL DI HERIN
Q[I] \(:=0\) :
₹ OR J \(:=1\) STEP 1 リVTIL KK UQR[I] \(:=R[I]+M[J,[]:\)
wRTTE(LINF•FI.I•R(T ) : ENI):
FOR SPECIALRTWS DII TOTAL : = TOTAL + R[J];
WRITE(LINE[SPACE 2],F?:TUTAL):
WRITE(LINE:HFAO3):
TOTAL \(b=0\);
FOR \(1:=1\) STEP 1 UNTIL KK OU BEGIN
\(y[i]:=0 ;\)

FOR SPECIALROWS DO Y[I] \(:=Y[I]+M[I \cdot J]!\)
WRITE(LINE,FI•I•Y[I]):
TOTAL : = TOTAL + Y[I]: END:
WRTTE(LINE[SKIP 1]•F?,TOTAL):
\%
* ROUTINE TO PRINT AgGREGATE INTERINDUSTRY EMPLOYMENT MATRIX
\(\%\)
If Fullprint then begin
WRITE(LINE, <"AGGREGATE INTERINDUSTRY EMPLOYMENT MATRIX">):
FOR K \(8=1\) STEP 10 UNTIL 71 DO BEGIN
L \(\boldsymbol{i}^{\mathrm{E}} \mathrm{K}+\mathrm{O}\) :
WRIIE(LINE, HEAD4,K.L) B
FOR \(J=1\) STEP 1 UNTIL LL NO WKITE(LINE,F10.J.FIR I \(:=K\) STEP 1 UNTIL L DO M[I:J]): ENT:
WRITE(LINE,HEAD4,81,KK):
FOR J :s 1 STEP 1 UNTIL LL DO
WRITE(LINE,FT,J,FOR I :=81 STEP 1 UNTIL KK DO M[I,JJ):
WRITE(LINE[SKIP 1])B
*
WRITE(LINE, <NAGGREGATE INTERINDUSTRY EMPLOYMENT TRANSPOSF">)B
FOR K \(B=1\) STEP 10 UNTIL 51 DO BEGIN
L \(1=K+93\)
WRITE(LINE,HEADS:K.L):
FOR \(J: 1\) STEP 1 IINTIL KK DO
WRITE(LINE,F10,J,FOR I \(:=K_{\text {ENU: }}\) STEP 1 UNTILL DO M[J.I]):
WRITE(LINE.HEAD5,61.LL):
FOR \(\downarrow:=1\) STEP \& UNTIL KK D
WRITE(LTNE,FT,J.FMR I \(:=61\) STEP 1 UNTIL LL DU M(J.II):
WRITE(LINEGSKIP 11): ENO:
\% FOR BRANCHFS 2 AND 3 MODIFY THE M=MATRIX WITH MU
\%
If BRANCH GTR 1 THEN qEGIN
ARI「E(LINE,HEAD2):
TOTAL : = 0:
FOR \(1 \quad 8=1\) STEP 1 UNTIL LL DO REGIN
SUM \(8=01\)
FUK J \(:=1\) STEP 1 UNTIL KK DI BEGIN
M[J.l] \(:=\mathrm{M}[\mathrm{J},[]\) MU[1]:
SUM \(:=\) SUM + M \(\{J, I]:\) ENT:
WRITE(LINE,FI.I:SUM):
TUTAL : = TOTAL + SUM: ENDB
WRITE(LINE[SKIP1],F2,TOTAL) B

\section*{ROUTINE TO PRINT MODIFIED M=MATRIX}

If FULLPRINT THEN REGIN
WRITE (LINE, <NMODIFIED INTERINOUSTRY EMPLOYMENT MATRIXM) )
FOR K E 1 STEP 10 UNTIL 71 DO BEGIN
\(L: B+9:\)
WKITE(LINE,HEADA,KOL)!
FUR J : = 1 STEP 1 UNTIL LL DT WRITE(LINE,F10:JOFOR I : = K STEP 1 UNTILL DO M[I.J])B ENDI
```

*RIIE(LINF.HFADA.HI,KK):
FOR J:= 1 STEP 1 IINTIL LL DO
WKITE(LYNE,FT,JOFOR I := \&1 SIEP 1 (INTIL KK DU MPIOJI):
WRIIE(LINF(SKIP 11):
*RIIE(LINF,<"TRANSPISE PRINT OF MONIFIED MaMATRIX">):
FOR K := 1 STEP 10 UNTIL 51 DU WEGIN
L : = k + 7:
WHITE(LINE,HEAD5.K.L):
FUR J:= 1 STEP, UNTIL KK DN
NRITEPLINE,F1O.JOFUK I := K STFP I UNTIL L HO M[J.II):
E.ND:
RIIE(LINF,HEAO5,GI.LL);
FUR J := 1 STEP I HINTIL KK DO
WKITE(LINE,F7,J.FOK I := 61 STEP 1 INTIL. LL DO MEJPII):
RIIE(LJNFISKIP 11);
FNO:
ENI:

```
                    SELECT HRANCH FOR RFMAINTNG PKOCFSSING
CAGF WHAIVCH OF BEGIN:
R R A NCH UNE
- - - - - - -

GEGIN ry USING the mU VFCTUR TO MODIFY R
RETIN SEG:
WRITE(LINE[SPACE 2].<ッ***NEW R"VFCTOR (MODIFIEU GY MII)">):
WRITE(LINE•HFAD1):
FOR I : = 1 STEP 1 UNTIL LL OA BEGIN
    Q[I]: \(=\) K「I] * \&Ul!);
    WRIIE(LINE.F1,I•R[T): FNO:
TOTAL \(:=n\);
FHR SHECIALROWS DO TITAL : = TITAL + R[J]:
WRITE(LINF[SKIP 11,F?.TOTAL):
    FURM S (ALPHA), TVERLAYING THE B=MATRIX
FOO \(1:=1\) STEP 1 UNTTL LL !
    FOR J \(:=1\) STEP 1 IINTIL MM DO R[IO.J] \(:=R[I] * B[I, J]:\)
    KUIIINF TO PRINT S(ALPHA) AND ITS TRANSIDISE
IF FULLPRINT THEN GFGIN
WRTTE(LINE•<n***S(ALPHA) MATRIX">);
FOR K \(:=1\) sTEP 10 UNTIL 171 MO REGIN
    \(1:=k+9:\)
    WRITE(LINE,HEAD4,K,L):
    FOR \(J:=1\) STEP 1 INTIL LL DO
        WHITE(LINE,F10.J.FUR \(I:=K\) STEP 1 UNTIL L. DO R[J,I]):
                        ENi);
WRITE(LINE,HFAD4,181,MM);
FOR J \(:=1\) STEP 1 UNTIL LL D ח
    WKITE (LINE,F7,J.FOK I : = 181 STEP 1 IINTIL MM DO H[J,TJ):
WRTTE(LINE(SKIP 11):
```

WRTTE(LINE,<"TRANSPOSE PRINT OF S(ALPHA)">):
FOR K :E 1 STEP 10 UNTIL SI DO HEGIN
L i= K + 9;
WRITE(LINE,HEAD5,K.L):
FOR J \&a 1 STEP 1 UNTIL MM DO
WKITE(LINE,F1O:J,FOR I I= K STEP I UNTILL DO B[I,J]):
END:
WRITE(LINE•HEAD5,61.LL);
FOR J := 1 STEP 1 UNTIL MM DO
WKITE(LINE,F7,J,FOR I : 6 SI STLP I UNTIL LL DO B[I:JT)B
WRITE(LINE[SKIP 1])!
ENT:
*

* calculate rowsums over special columns, overlaying r
8
WRITE(LINE:<nGENERATED INDUSTRY EMPLOYMENT VECTORN>):
WRITE(LINE•HEADI):
FOR I I = 1 STEP \& UNTIL LL DO BEGIN
R\I〕 := 0;
FOR SpECIALCOLUMNS DU R[I] := R[I] + R[I:J]:
WRITE(LINE,FI.I.R[!]): END:
TOTAL I= 0;
FOR SHECIALROWS DO TOTAL : = TOTAL + R[J]:
WRYTE(LINE[SPACE 2].</"TOTAL EMPLOYMENT = ",F17.5>,TOTAL)!
WRITE(LINEP<"GENERATED UCCUPATIONAL EMPLOYMENT VECTOR">);
WRITE(LINE,HEADI):
*
* lake columnsums mver selecteo rows and print
%
FOR I \& = 1 STEP 1 UNTIL MM DO BEGIN
SH[I] := 0:
FOR SPECIALROWS DO SH[I]: = SH[I] + B[J.I]:
WRITE(LINE.FI.I:SH[I]); END:
TOTAL \&= 0:
FOR SHECIALCOLUMNS DO TOTAL : TOTAL + SH[J]:
WRITE(LINE,</"TOTAL FMPLOYMENT = ",FIT.5>,TOTAL)!
ENO OF RRANCH ONE:
*

\$

* R R A N CHHCN
%
* MulTIPLYM * B TO GET S(bETA): OVERLAYING B.
HIT ONLY SPECIAL ROWS TO AVOID DOUBLEECOUNTING.
%
REgIN SEGI
FOR I :\# 1 STEP 1 UNTIL KK DO FOR K : % I STEP I UNTIL MM DO BEGIN
eB[l:K] i= 0:
FOR SPECIALROWS DO SB[I,K] \&= SU[I.K] + M[I.J] B BJ.K]!
END:
% kuutine to print s(heta, ano transpose
*

IF FULLPRINT THEN REGIN
WRITE(LINE:<n***S(BETA) MATRIXN>):
FOR K Ia 1 gTEP 10 UNTIL 171 DO REGIN
i= K + Q;

```
```

 *RI|E(LINE,HFA\capA,K,L):
 FOR J := STEP 1 IINIIL KK DO
 AKITE(LINF,F1O.J.FUR I :#K STEP I |NTIL L OחSHIJ:II):
 END:
 NRTTE(LINE:HEAD4,181,MM)!
|P J \& = 1 STEP 1 UNTIL KK UO
WKITE(LINE,F7,J,FIK I := 181 STEP 1 UNTII MM DO SH[J.I]):
ATTE(LINE[SKIP 1]):
NRTTE(LINF <"TRANSPISE PHINT IF S(BETA)">):
OR K \&=1 STEP 10 |NTIL 71 i)N HFGIN
1 := K + 9:
WRIIE(LINE,HEAD5,K,L):
FOR J }:=1\mathrm{ STEP 1 IINTIL MM UU
WKITE(LYVE,F10,J,FOR I :=K STLP 1 UNTIL L.O! SB[I:JI):
ENU:

```
ARITE(LINE,HEAD5,BI,KK):
OR J : \(=1\) STEP 1 UNTIL MM DO
    WKITE(LTNE,FT,J.FIRR I: \(=\) KI STEP 1 UNTIL KK DU SR[I:1]):
WRITE(LINE(SKIP 1]):
                ENM:

CALCulate vectinr uf coliomnsums ant print
WRTTE(LINF• <"TOTAL OCCUPATIUNAL FMPLIYMENT GFNERATED BY:"/>): ODR \(1:=1\) STEP 1 UNTIL MM DO BEGIN
\(S H[1]:=S R[1,1]:\)
FOR J \(:=\) ? STEP 1 UNTIL KK DD SH[I1 \(:=\) SH[I) + SB[J.I]:
WRIIE(LINF,FI,I,SHPIJ): ENO:
TOTAL \(=0\);
ORR SHECIALCILUMNS DO TOTAL : = TOTAL + SH[J]:
WRTTE(LINF[SPACE 4].F2.TUTAL):
CALCulate and print vector of rinsums e gVer special culiomns,
WRTTE(LINE,<"TOTAL INOUSTRIAL EMPLUYMFNT GENERATED 甘Y:"/>):
TOTAI. \(:=0\) :
FOR I: \(=1\) STEP 1 UNTIL KK DN REGIN
CUY \(:=0\) :
SOR SPECIALCOLUMNS IU SUM : = SUM + SB[I:J]:
WRITE(LINF,FI,I,SIJM):
TOTAL \(:=\) TOTAL + SHM:
END:
WRITE(LINE,F?•TOTAL):
ENO OF RRANCH TWD:


PULL OITT A COLIJMN VECTUR FROM B, OVERWRITING R, ANO PRINT IT
```

8
*
FORM S(H) MATRIX. OVERWRITING M
8
FOQ I := 1 STEP 1 UNTIL KK DN FUR J: : % STEP 1 UNTIL LL DO
M[!,J] : = M[!:J] * R[J]:
*
*
%
IF FULLPRINT THEN BEGIN
WRITE(LINE[SKIP 1]):
WRITE(LINE*<"***S(H) MATRIX*>);
FOR K := 1 STEP 10 UNTIL 51 On RFGIN
L %=K + 9:
WRITE(LINF,HEA\cap4,K,L):
FOR J }:=1\mathrm{ STEP 1 IJNTIL KK D!
WKITE(LTNE,F1O,J,FOR I \&=K STEP 1 UNTIL L DO M[JOI]):
END:
WRITE(LINE,HEAD4,61,LL)I
FOR J := 1 STEP 1 UNTIL KK DO
WKITE(LINE,F7,J,FOR I := 61 STEP I UNTIL LL DO MEJ:II):
WRITE(LINE[SKIP 11))
*
WRITE(LINE,<\#TRANSPOSE PRINT OF S(H)N>);
FOR K \&=1 STEP 10 UNTIL }71\mathrm{ OO BEGIN
L \&=K + 9)
WRITE(LINE,HEAD5,K,L):
FOR J I= 1 STEP \& UINTIL LL NO
WHITE(LINE,F10,J,FOR I \& = K STEP 1 UNTILLL DOM[\:J])।
WRITE(LINE,HEADS,81,KK):
FOR J \&\# STEP I UNTIL LL DN
WKITE(LINE,F7OJOFOR I := 81 STEP I UNTIL KK DO M[I:JJ):
WRITE(LINE[SKIP 1]):
ENח:
%

* CUMPUTE COLUMNSIJMS OF S(H)* UVERWRITING R\& AND PRINT
%
WRTTE(LINE,<nEMPLOYMENT GENERATEN IN:n>):
FOR I \&= STEP I UNTIL LL DO BEGIN
R[I] \& = M[1,I]:
FOR J:= 2 STEP 1 UNTIL KK DO R[l] i= R[I] + M[J.I !:
*RITE(LINE,FI,I.R[I]): END!
* SUM THF COLUMNSIIMS FIR SPECIAL COLUMNS

%
TOTAL :a 0:
FOR SPECIALROWS DO TחTAL := TOTAL + R[J]!
WRITE(LINE[SPACE 4],F2.TOTAL):
*

* CUMPUTE ROWSUMS OVER SPECIAL COLUMNS. PRINT. AND TOTAL
*

WRITE(LINE, <NEMPLOYMENT GENERATED BY:">);
TOTAL \& = O:
FOR I I= 1 STEP I UNTIL KK DN BEGIN
SUM := O:
FOR SPECIALROWS DO SUM I= SUM + M[I:J];
WRITE(LINE,FI,I,SUM)!

```

TOTAL：\(=\) TПTAL＋SIM：

INISH：END ERGNTRKS：
L：＝ち7；
FUK I：＝ 1 STEP 1 UNTIL L DO

RENJND（D1）；
WRITE（LINE，＜mIND\｜STRY ACTIVITY MATRIX＂＞）：
PHTMATKIX（P．L．89．0）：
WKITE（LTNE，＜＂TRANSPISE IIF INIUSTRY ACTIVITY MATRIX＂＞）；
DKITRANSP（P．L．89．0）：
EUITFILF（P1：L．89）：
RENIND（P1）：
FUK I：＝ 1 STEP 1 UNTIL \(L\) リU
READ（P1，I．FOR J：＝1 STEP 1 UNTIL R9 DA PPI，JJ）：
RENIND（P1）：
WRITE（LINE：＜MMONIFIE\｜P MATRIX＂＞）：
DKTMATRYX（P，L，89．0）：
WRLTE（LINE，＜＂TRANSPOSE UF P MATRIXN）：
PKTTKANSP（P，L，89，0）：
EUITFILF（P1，L，凡9）：
REWYND（P1）：
FUK I：＝ 1 STEP 1 UINTIL L IO
READ（P1．／．FIJR J：＝ 1 STEP 1 UNTIL 89 DO P「P•JJ）：
RENINT（PI）：
WKITE（LTNE：＜＂SCALEU P MATRIX＂＞）：
PKTMATRTX（P．L．89．n）；
WKITE（LINE，＜＂TRANGPISE OF SCALED P MATRIX＂＞）：
PKTTKANSP（P．L．89．0）：
FIJK I \(:=1\) STEP 1 UNTIL 35 DII
READ（M3．1，FOR J：\(=1\) STEP 1 I！NTIL 85 nO MrJ．1］）：
REWINO（M3）：
WKITE（LINE，＜＂M＝MATKIX＂＞）：
PKTMATKTX（M，85，85，0）：
WRITE（LTNE，＜MTRANSPOSE UF M＂MATKIX＂＞）：
PKITRANSP（M，85，85．0））：
EDITFILF（M3．85．85）：
REWIND（M3）：
FUR I：\(=1\) STEP 1 UNTIL 85 DO
READ（M3，／，FDR J：＝ 1 STEP 1 UNTIL 85 DO MIJ．II）：
REWINO（M3）：
WKITE（LINE，＜MMDOTFIED M－MATRIX＂＞）：
PKTMATRIX（M．85．85，0）：
WRITE（LINE，＜＂TRANSPOSF OF MUNIFIFI）M－MATRTX＂＞）：
PKTTRANSP（M，85，85，0）：
EKGWORKS（L，89．85，66．185）：

\section*{Appendix D}

Sample Input and Output
```

AITERIVAIIVF F,PFII!ITIIKF VECTITR

```
ELEMFVI "ALIJF
        1733ち1.0าつ)
        43161.100010
        8099.0n0:90

    12.194.0のロロシ

    つ4001•気いいい



        7汉3.19の日が
        3ちは7.9の0かり

    25/44.0の日のハ
    2744ヶ. (1) いいい
        ら4ロん.クのついい
    -6500.1)n!nu
        46) 0 0) (1)0の

        191.0n)0い
        3n34.0のロいい
    1417月.9400』
    19341. ionow
        347 •าก1าの
        - 299.つけかい
        313.10600

                - กn! ! 19
                13. リonon
        1374 . Mnの,
        37!・の日の(1)
        291.107009
    41931.0n00は
        (1)た。のつの日の
        4ก1.000:
    42n1.anがい
        173.0no90
        30は.0のnのい!
        061 . 101911
        154ヶ.0nにいい
            カ7ョ. คのハい)
        1)0コ.0の日(0)
        >20い.0の0)
        340 \%. nncour
        2'250.0n0000
            434 . Incol0
                (1.000)!
        1474.00000
        5) 44.0nのno
    32450 . Onown
        9117.7nつ60
        5) 9 ?.のกの()
\begin{tabular}{|c|c|}
\hline 53 & 大ッフ4．0ncいい \\
\hline 54 & 087．01）（1） \\
\hline 56 & 17）．00いいし \\
\hline 56 & 1035．00．．．：n \\
\hline 57 & 4081．100004 \\
\hline 58 &  \\
\hline TITAL & 774 ¢）リ．00）（1） \\
\hline
\end{tabular}

RIG ANI）CUI．IMN SUMS IFF JVTERINUIITRY EMPLUYMFNT MATEIX
\begin{tabular}{|c|c|}
\hline COI．U．AN & CIILUNNS HAM \\
\hline 1 & 289749．77517 \\
\hline 2 & 537353.97318 \\
\hline 3 & 35401．5）76y \\
\hline 4 & 10166．31412 \\
\hline 5 & －1164． 27117 \\
\hline 6 & 1412．4554．5 \\
\hline 7 & 30317.497 ¢ \\
\hline 6 & －5¢R6．1つめすい \\
\hline 9 & 85：48．799ち6 \\
\hline \(11)\) & 1249．47814 \\
\hline 11 & 9 965798．7つ204 \\
\hline ＋ 2 & 274313．46？ 3 \\
\hline 13 & 51）8285．へのЧちゃ \\
\hline 14 & \(5320377.8841)\) \\
\hline ， 5 & 325388.3 ¢5． 15 \\
\hline 16 & 195752．51501 \\
\hline ， 7 & \(131263.56 \cdot 08\) \\
\hline 18 & 2564094．452／6 \\
\hline －9 & 277697.53723 \\
\hline 20 & 570368.05696 \\
\hline 21 & 1）91．内フつ42 \\
\hline 22 & 595306.97 Kl \\
\hline 23 & 275403.17427 \\
\hline 74 &  \\
\hline 25 & 16643．3Ah3 \\
\hline 26 & 494．14？•14ヶ1／ \\
\hline 27 & 1611世0．03916 \\
\hline ＞8 & 11464.31253 \\
\hline .9 & 631403.32544 \\
\hline 30 & 30103.10 ¢ 42 \\
\hline 21 & 651263．大人703 \\
\hline 32 & \(286463.7560 \sim\) \\
\hline 33 & 285．99643 \\
\hline 34 & 475570.09765 \\
\hline 75 & 5026R．19464 \\
\hline 76 & 534094.53413 \\
\hline 37 & 172235．51539 \\
\hline 38 & 1 178967．19843 \\
\hline 39 & \(7751.4,735\) \\
\hline 40 & B52097．71．46 \\
\hline 41 & 78096．04010 \\
\hline 42 & 237467.47212 \\
\hline 43 & 118575.01038 \\
\hline 44 & \(175247 \cdot 304.4\) \\
\hline 45 & 279396.611373 \\
\hline 46 & 168259．747 ？？ \\
\hline 17 & 287759.33741 \\
\hline 48 & 306600.47647 \\
\hline 49 & 252／13．35514 \\
\hline 50 & \(2179 \%\) ．75311 \\
\hline 51 & \(527287 \cdot 10543\) \\
\hline 52 & 789403.61609 \\
\hline 53 & 419723.14205 \\
\hline 54 & 47762 ． 155799 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline RON & R⿴囗 SUM \\
\hline 1 & 1689254．9754 \\
\hline 2 & 1839631．4220） \\
\hline 3 & 119399.17653 \\
\hline 4 & 235582．介0940 \\
\hline 5 & 27595．21677 \\
\hline 6 & \(58178.579) 5\) \\
\hline 7 & 123171.37 ¢2， \\
\hline 8 & 286566.31612 \\
\hline 9 & 11526i．33629 \\
\hline 10 & \(13001 \cdot 09707\) \\
\hline 11 & 1050342.37271 \\
\hline 12 & 1489505.79224 \\
\hline 13 & 236054.50093 \\
\hline 14 & 1082099．267／1 \\
\hline 15 & 76622.19367 \\
\hline 16 & 564217.45394 \\
\hline ， 7 & \(117455 \cdot 352 / 5\) \\
\hline 18 & 1586577.01169 \\
\hline － 9 & 178935.59661 \\
\hline 20 & 642782.6411.\()\) \\
\hline 21 & 33679.64819 \\
\hline 22 & 370987.58217 \\
\hline
\end{tabular}
\(16100 / \cdot 5441\)
487571.32193
22525\％．タームめ1
\(1154931 . h 373 H\)
474020 ・のメ4ण7
？20ヶ2？．477）
27627？．9マッら）
69748.9974
1の7575．4732？

> フ9445.70んも)
> 315/56.92767
> 141531.3.31n

> 4955クは.K771H
> 419946.11301く8151. ムプッ
> 528 35.6. 3 (1
> 358114. 137
> 47197サ.1つ132
> 111ち51.4の43/
> 15320.1. 14404
> ! 05454.49 なり4 ( 34 内. 17900

> 21722ヶ. 月4 は!
> ?90/24.3いつ47
> 2515A1.27941
> つんノ!日? はマアく!
> 14:33か.tつのノち
> 42けてら〉。カちマノ!
> 1~3ちスつ。151つつ

> イロ5ちソロ.とうなます
> 3ヶ46in.(45クス)
\[
\begin{aligned}
& \text { 大y3153.37つ33 }
\end{aligned}
\]
314433．6A！11
161134．24431
471559．157の4
つられ155n•？23．n

> 672101. 3 क以の4
> 17098つられ.375.い

> ※ノ135ら。Mめけ」
> 711/411.5914?
> 子かけ4421.0774)
> 111017い。4イ1
> ヶのてん4).つつム!
> 8239!?.かのヶ13
\[
\begin{aligned}
& \text { 530471.72;34 }
\end{aligned}
\]

0．0）（0）U0
41
12
\(+3\)
84
85
TOTAL

ก．0の：10）
2023994．3～フラカ 10096654.92537
2547412.4 － 765

つก78297．53629
6ルク325？4．140n／

FLEMFivI

VAl．UF


つ1204は，44 3 1
からのノて，－4られりす はんてから，「7）13
175179．121世5
つロ95！！．7アく4

535427は，いっかの
10つ454，2．勺Oっから
 ツ3カフリ・ルノ11



1730うに9．ん．つノ1

1ノけぎ・1／5は4

5，わit1．finne
749x•4．かつス4d
24（2み）。＇ス131
5！つりアタ．7ヶ．4
139392＋。30；3，
1）in 1／3）．Whal4
94149品••10i
／914．10 144

ムムカタック。つつが


1／54＋1．42か．1

1 3，प0つう．4 1111

375：91．2 100
1／4／373．••44

151133．1213：

154847m．1．15

14．9112．54らかん
7491的．4．203




5フ1334ヶ．\＆2，


111031．ンマー1


\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& 7 \text { 726544.55-14 } \\
& 3750954.9043 \text { ? }
\end{aligned}
\] \\
\hline 10712175．15の0の \\
\hline  \\
\hline 27＊1414．125が \\
\hline 544／）！．んめーり， \\
\hline 76844の．2吅3 \\
\hline  \\
\hline 17691／1．99711 \\
\hline  \\
\hline 2 2 ¢ 321.4554 \\
\hline  \\
\hline
\end{tabular}

TOTAL EMPLUVAFNT＝


4. DESCRIPTIVE NOTES (TYPe of report and Imeluelve defee)

Research Report
5. AU THOR(S) (Firel nave, alddle Inlilal, last neme)

Roger H. Bezdek, R. Michael Lefler, Albert L. Meyers, Janet H. Spoonamore

13. ABSTRACT

This paper presents the preliminary documentation and user's guide for the Center for Advanced Computation economic and manpower forecasting model. Section I gives introductory and background information on the development of the model and presents a brief but rigorous theoretical basis for the on-line system. Section II gives a description of the basic MANPOWER/DEMAND program indicating the function of the program, the detailed workings of the system options and the language in which it is written. Appendices contain specifications of the data tapes and disc files involved, flow charts of the computer processes, and sample data input and output.



UNIVERSITY OF ILLINOIS-URBANA
```


[^0]: ${ }^{1}$ Bezdek [2]

