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PREFACE 

This report presents an evaluation of the Bretschneider and Reid (1954) 

technique for calculating wave attenuation due to friction and shoaling using 

data collected at the Coastal Engineering Research Center's (CERC) Field 
Research Facility (FRF), Duck, North Carolina. The work was carried out under 

CERC's coastal engineering research program. 

The report was prepared by William G. Grosskopf, Hydraulic Engineer, under 

the general supervision of Dr. C.Le Vincent, Chief, Coastal Oceanography 

Branch, Research Division. 

Comments on this publication are invited. 

Approved for publication in accordance with Public Law 166, 79th Congress, 

approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, 
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT 

U.S. customary units of measurement used in this report can be converted to 
metric (SI) units as follows: 

Multiply by To obtain 

inches 25.4 millimeters 
2.54 centimeters 

square inches 6.452 square centimeters 
cubic inches Ie) 659) cubic centimeters 

feet 30.48 centimeters 
0.3048 meters 

square feet 0.0929 square meters 
cubic feet 0.4283 cubic meters 

yards 0.9144 meters 
square yards 0.836 square meters 
cubic yards 0.7646 cubic meters 

miles 1.6093 kilometers 
square miles 259.0 hectares 

knots 1.852 kilometers per hour 

acres 0.4047 hectares 

foot-pounds 1.3558 newton meters 

millibars LGiley, O98 kilograms per square centimeter 

ounces 28.35 grams 

pounds 453.6 grams 
0.4536 kilograms 

ton, long 1.0160 metric tons 

ton, short 0.39072 “metric tons 

degrees (angle) 0.01745 radians 

Fahrenheit degrees 5/9 Celsius degrees or Kelvins! 

1To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, 

use formula: C = (5/9) (F -32). 

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15. 



SYMBOLS AND DEFINITIONS 

horizontal displacement amplitude of water particles 

friction coefficient 

water depth 

sand grain size of 90th percentile of sediment samples 

significant wave height 

significant wave height at location n 

shoaling coefficient 

shoaling coefficient at location n 

wave height 

roughness height 

wavelength 

wavelength at location n 

deepwater wavelength 

bottom slope 

Reynolds number 

wave period 

maximum horizontal water particle velocity 

kinematic viscosity 

integral of the dimensionless shoaling factor, b¢ 

dimensionless shoaling factor 



CALCULATION OF WAVE ATTENUATION DUE TO 

FRICTION AND SHOALING: AN EVALUATION 

by 
William G. Grosskopf 

I. INTRODUCTION 

Many processes are responsible for variations in the energy of nearshore 

waves including breaking, friction, shoaling, refraction, percolation, and 

nonrigid bottom effects. However, in an area where nearshore bottom contours 

are straight and parallel, and bottom conditions indicate a nonpermeable and 

nonelastic sea floor, wave breaking, shoaling, refraction, and friction remain 

dominant. The area seaward of the pier end at U.S. Army Coastal Engineering 

Research Centers's (CERC) Field Research Facility (FRF), Duck, North Carolina, 

meets these conditions. Data from FRF can be used to evaluate different for- 

mulations of these processes. 

This report evaluates the Bretschneider and Reid (1954) theory recommended 

in the Shore Protection Manual (SPM) (U.S. Army, Corps of Engineers, Coastal 

Engineering Research Center, 1977) for calculating the effect of bottom fric- 

tion and shoaling on incoming waves, using data gathered from two offshore 

Waverider buoy gages (manufactured by Datawell, Haarlem, The Netherlands) 

located off the pier end at FRF. The two Waveriders operate in depths of 

approximately 18 and 10 meters, at 2,880 and 680 meters from shore, respec— 

tively. These instruments are located far enough offshore to avoid the 

possibility of wave breaking, other than whitecapping, as a dissipative 

mechanism between Waveriders for the data set used. Simultaneously observed 

wave spectra from these two gages during 1978 and 1979 were compared to cal- 

culated wave characteristics, using Bretschneider and Reid's (1954) prediction 

for waves traveling over an impermeable bottom of constant slope. Ie als 

found that Bretschneider and Reid's method provides a close correlation with 

observed data, especially in cases where the wave spectrum is narrow and 

single-peaked. 

II. CALCULATING CHANGES IN WAVE HEIGHT DUE TO BOTTOM FRICTION AND SHOALING 

Attenuation of wave height due to bottom friction: and shoaling can be 

calculated using equation (1), for waves with significant wave height, H,, 

Wave period, 1, traveling over a bottom of slope, m, and depth, d, at 

the outer gage 1. Shoaling effects are calculated using linear theory. The 

relation is 

=] 
oa of 

He Keer amen ai (1) 
mT 

where 

Ce = friction coefficient 

Ky = shoaling coefficient 

m = bottom slope 

Hj» = significant wave height at nearshore gage 2 (Waverider gage 610) 

Had significant wave height at outer gage | (Waverider yzage 620) 
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The shoaling coefficient can be calculated from 

4nd “1/9 

2nd L 
K_ = tanh — 1 + ———— (2) 
S i, 4nd 

sinh — 

and 

d/ 72 d 
es ir = ee (5 (3) 

The term o can be evaluated from Figure 1. 

d/T2 (ft/s?) 

1072 

d/T? 

4. $s § (d/T?) (Dimensionless ) 

a 

Figure 1. Graph used in determining the integral of the bottom dissipation 
function, $¢, for waves passing over a constantly sloping bottom. 

The friction coefficient, Ce, has been given considerable attention in 

laboratory and theoretical studies in recent years. Bretschneider and Reid 

(1954) recommend using a constant value of 0.01. More recent laboratory work 

has indicated a dependence of friction factor on the Reynolds number and 

dimensionless bottom roughness height. Jonsson (1966) and Kamphuis (1975) 

produced and refined a friction factor diagram, as shown in Figure 2, where 

the friction factor, Ce, can be found if the Reynolds number at the sea 
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Figure 2. Friction factor diagrams (after Kamphuis, 1975). 

floor, Ra> and the relative roughness’ height, A/k,, are known. The 

Reynolds number is related to the bottom velocity under the wave by 

Uy A ; 

Het tee (4) 

where 

thee? maximum horizontal water particle bottom velocity is 

wm Hey 

2nd 
sinh ee 

L 

L = wavelength 

v = kinematic viscosity of seawater equals 6.25 x One meters per 

second 

A = horizontal displacement amplitude of water particles is 

Hs] 

2nd ) 
2 sinh —— 

= wave number (2m1/L) 

= wave period 



This technique, which is explained and illustrated in CERC Field Guidance 

Letter 79-4 (Esteva, 1979), is used to determine C, in the present study. 

III. COMPARISON WITH FIELD DATA 

Simultaneous observations of a variety of significant wave heights, 

periods, and energy spectrum shapes were chosen from available field data to 

illustrate possible weaknesses or strengths of Bretschneider and Reid's (1954) 

theory in all types of wave climate. The wave data selected were obtained 

from two Waverider buoy gages located in an area outside the breaker zone 

where sediment characteristics indicate that bottom friction is the predomi- 

nant dissipation mechanism. Using conditions at the outer gage (Waverider 

gage 620) as input for Bretschneider and Reid's predictive equations, result- 

ing calculated wave characteristics at the nearshore gage (Waverider gage 610) 

are compared to observed wave height values. Results are shown in Table 1 and 

Figure 3. Negative deviations from observed wave heights indicate the pre- 

dicted value is lower than actually observed; i.e., the theory predicts more 

frictional energy loss than is observed. The range of friction coefficients 

used is 0.004 to 0.07. Most of the large underpredictions occur when no 

change or an actual increase in wave height is observed from offshore to 

inshore, possibly due to strong wind-wave generation. Overprediction indi- 

cates that other dissipation processes are occurring. Table 2 summarizes the 

results of this study. Figure 3 indicates that negative deviations are more 

pronounced for broad or multipeaked spectra, while narrow or single-peaked 

spectra correspond to slightly overpredicted wave heights. General trends 

show that the theory corresponds closely to observed. wave conditions with 

maximum deviations of 60 percent but most conditions are within 15 percent. 

Examining only the data points for the narrow, single-peaked spectra, over- 

prediction occurs for lower wave heights; underprediction occurs for larger 

waves which tend to be more nonlinear at the same shallow depth. 

Table 3, which presents the results of Bretschneider and Reid's theory 

using Baylor staff gages (manufactured by Baylor Company, Houston, Texas) 

along the pier at FRF, provides an example of the theory's inapplicability 

where bottom contours are not straight and parallel. The irregular pier- 

induced topography causes the theory to overpredict wave height at Baylor gage 

665 (located 350 meters from shore), inshore of Baylor gage 625 (located 630 

meters from shore), indicating that other processes (e.g., refraction, bottom 

scattering) are affecting wave heights. As shown in the table, preliminary 

runs of a more advanced, nonlinear model indicate that the additional observed 

losses are likely due to refraction. This example shows that caution must be 

taken in applying the Bretschneider and Reid theory near manmade structures or 

in areas of irregular bathymetry. 

kok kk kk Ok kk Ok RK RK RK ® TV. EXAMPLE PROBLFM * * * ¥ ¥ RX KKK KKK KK 

GIVEN: A wave with the following wave height and period at gage 620 at an 18- 

meter depth: 

T 10 seconds 

FIND: The wave height 2,200 meters closer to shore in a depth of 10 meters. 

Assume a dgn of the sediment to he 90.3 millimeter. 

10 
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© - Narrow Spectrum 

®@ - Broad Spectrum 

1) 

(m) 

Predicted Hgt 

(o) 0.5 1.0 1.5 2.0 25 3.0 

Observed Hgt. (m) 

Figure 3. Comparison of observed and predicted wave heights at the 

nearshore gage (Waverider gage 610), Duck, North Carolina. 

Table 2. Average deviation of Bretschneider and 

Reid's theory from observed wave heights. 

(pet) 
Narrow y = 0.83x + 0.33 

All spectra 0.9lx + 0.03 

(multipeaked) 

Correlation coefficient for all spectra equals 

0.926. 

Table 3. Illustration of the inapplicability of Bretschneider and 

Reid's theory in areas of irregular bottom topography. 

Wave height (m) ¢ Estimated 45665 

Predicted Deviation by including 
from observed] refraction 

2.5 

2.4 

2.1 

1.3 

2.2 
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SOLUTION: 

(1) Determine friction coefficient. From SPM Table C-1 (U.S. Army, 

Corps of Engineers, Coastal Engineering Research Center, 1977) for 

(d/L,)620 S OoliS, 

d 
if = 0.154 and L620 = 116.9 meters 

L/620 

Using linear theory, 

43620 D0 
ees = (089 meter 

2 sinh kd MMA) 

7H 620 (2.0) 
2 ee ee 10000 Matas pes second 

u 
= 

Deter eaganencd = loc 126) 

From equation (4), 

uy A (0.56) (0.89) 3 

Ra = GO Nee SES BES ae NO) 

v (608 10!) 

A A 0.89 
2a oh i aes EN i Yas) 
k, 2dgg 9+ 0006 

Figure 2 then yields the friction coefficient at gage 620 to be 

C= 0.004 

(2) Determine predicted wave height. The average depth in the traverse 

is 14 meters: 

From Figure 1, 

—— 9 = 0.180 or 4 = 1.29 

The bottom slope, m, is @8.0//2))200) = 0.0036, and the shoaling coefficient 

is determined at gage 610 where the wave height is unknown: 

4nd YD 

( =) Ih, 

K. = |{ tanh ih 
s Ith 4nd 

sinh — 

( ne) my /D 

K = |(0.591)\1 + = 0.984 

s610 1.819 
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The predicted wave height at gage 610 is then found by equation (1) to be 

H (0.984) (2.0) GOOG - 8) CeO) al a 1.91 
SOO i : (0.0036)(100) . Bre MESS 

EEC HES Ci Pky Me psen dete ML HER r Keer ut eK M0 Ct ose eee Id CG? Rat Ld Ep ke ke oo fo 63 

V. SUMMARY AND CONCLUSIONS 

The combined effect of shoaling and bottom friction is underpredicted an 

average deviation of 6 percent by Bretschneider and Reid's (1954) theory, 
based on 31 observations. This study indicates that care must be taken in 

applying the predictive theory when wave spectra are broad or multipeaked, or 

when the bathymetry is irregular and the bottom contours are not straight and 

parallel. : 

For parallel bottom contour cases, the largest deviations from observed 

wave conditions arise when the wave spectrum which corresponds to the sig- 

nificant wave characteristics is broad or multipeaked. These large devia- 

tions, due to the presence of large amounts of energy relative to the total 

energy of the spectrum in many wave components, indicate that the significant 

wave height may not be a representative number to use for calculations in the 

equations when the spectrum is not narrow and single-peaked. 

The calculations in Table 3 show that caution must be taken when using the 

equations in areas of irregular bathymetry or near coastal structures where 

the bathymetry may not be uniform. Other types of wave attenuation processes 

become important in these cases, with refraction being particularly dominant 

when the contours are not parallel and other bottom irregularities such as 

holes and shoals are present. 

The choice of the friction coefficient will also play a role in com- 

pounding the predicted wave height deviation from actual observations. The 

coefficients used here are a result of controlled laboratory studies and, 

therefore, may not be a true representation of field coefficients. The 

presence of bottom ripples is not considered in this analysis, but has been 

shown to be a variable in determining the friction coefficient. Also, linear 

theory is used to calculate bottom velocity and horizontal water particle 

displacement; higher order calculations may lower present deviations. 

14 
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