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INTRODUCTION

Actuarial science is peculiarly dependent upon the Theory of

Probabilities, the solution of many of its problems is best effected

by resort to the Differential and Integral Calculus and in practical

work the Calculus of Finite Differences is almost indispensable.

Excellent text-books on these subjects are, of course, available but

none of them has been written with the special requirements of

the actuary in view. In beginning his training the student is,

therefore, confronted by the difficulty of judicious selection and in

the circumstances it has appeared to the Council of the Institute

of Actuaries that a mathematical text-book sufficiently compre-

hensive, with the standard works on Higher Algebra, to provide the

ground-work of an actuarial education would be of great value. At

the request of the Council, Mr Alfred Henry has undertaken the

preparation of such a work and the resulting volume is issued in

the confident expectation that it will materially lighten the toil of

those who essay to qualify themselves for an actuarial career.

A. W. W.

May 1922.
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AUTHOE'S PREFACE

Actuarial science is essentially practical in that, whilst it is based

on the processes of pure mathematics, the object of the worker

must be to produce a numerical result.

For this reason it is necessary for considerable prominence to be

given, in the curriculum of the actuarial student, to the subject of

Finite Differences, and it thus becomes convenient, in the study of

those subjects not included under the heading of Algebra, to deal

with this part of the syllabus first and, notwithstanding certain

theoretical objections, to treat the fundamental propositions of the

Differential and the Integral Calculus as being, substantially,

special cases of similar propositions in Finite Differences. The

subjects enumerated cover so wide a field that it has been necessary

to exercise considerable compression and to include only such

problems as are requisite for a proper knowledge of the subjects

within the syllabus.

In the chapter on Probability it will be seen that the numerical

or "frequency" theory of probability has been adopted. Having

regard to the practical nature of the actuary's work, it is thought

that strict adherence to this aspect of the subject is necessary if

the student is to acquire sound views from the outset. The subject

of Inverse Probability has been excluded from the examination

syllabus in recent years and for this reason it is not introduced into

the present work.

In conclusion the author would wish to tender his best thanks

to many colleagues and other members of the Institute of Actuaries

for their kind assistance and useful criticisms. In this connection

he is particularly indebted to Mr G. J. Lidstone, who was good

enough to read the chapters relating to Finite Differences and

made many valuable suggestions.

AH.
August 1922.
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NOTE AS TO SYMBOLS

In a few cases certain mathematical symbols have been employed,

the use of which in modem mathematical work may be unfamiliar

to students.

! Used instead of
|

to represent & factorial. Thus

n! =[71= 71(71-1) (71 -2) 1,

where n is positive or integral.

= Denotes an identity which is true for all valttes of the variable.

n\
(] Used instead of "C-, (n. r) or ,

.

rj ^ ' ' r!(7i r)V

Tends to the value ; has the limiting value, e.g.

As :p -»- 00 , (1 + - r -»" e" and e~^ -*- 0.
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CHAPTER I

FUNCTIONS. DEFINITION OF CERTAIN TERMS.
GRAPHICAL REPRESENTATION

1. When the value of a certain quantity y depends upon, or

bears a fixed relation to that of another quantity, x, y is said to be

di. function of x, and the relationship is written as y=f(x).
[Other notations used are u^-yVx, <!> (x\ etc.]

Thus, we may have y — x^, y — a^, y — sin a?, y = log x. The
quantities forming the right-hand sides of the equations are all

functions of x.

When expressed in this way the relationship of y to a? is said to

be explicit But if, for example, aa^ + 2hxy + cy"^ = 0, it is clear that,

whilst the value of 3/ depends upon that of a?, it cannot be determined

in any case by direct substitution of the value of x. The relation-

ship in such circumstances is said to be implicit. In this particular

example the relationship can, of course, be made explicit by solving

the equation for y in terms of x.

The quantities x and y are called variables.

The quantity x is called the independent variable since it may
assume any value, whereas y is called the dependent variable since

its value depends upon that of x.

The independent variable is sometimes referred to as the argu-

ment

2. Functions may, of course, involve more than one variable.

For example we may have y — a?2^ ox u— ^-^ ; and all these

variables may be involved implicitly. A function of more than one

variable would be denoted by /(a;, y, z), vbx.yy ^tc.

If we have a function w, such that

u = aP'y^zf^ + af-'y^'sf^' + ...

and a + 6 + c = a' + 6' + c' = . . . = n,

then u is said to be a homogeneous function ofn dimensions,

H. T.B.I. 1
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3. A function of two variables may be represented graphically

according to the scheme of the figure shown.

Let two straight lines of indefinite length OX, F be drawn at

right angles to each other. The point is

called the origin, OX is called the axis of x

and Y the axis of y.

Then if ON is measured along the axis of

X, equal in value to x, and at that point a

perpendicular line PN is drawn equal in

value to 2/ = f{x), ON is called the abscissa

and PN the ordinate of the point P. The
convention is taken that measurements of x in the direction OX are

considered to be positive and those in the contrary direction nega-

tive. Similarly measurements of y in the direction OF are treated

as positive and those in the contrary direction as negative. The
point P, written for convenience as (x, y), is thus completely deter-

mined from given values of x and y.

If for every value of x the corresponding value of y were plotted

on a diagram such as the above a continuous curve would be

obtained which would be the graphical representation of the equa-

tion y =f{x). It is, of course, impossible in practice to plot every

value of the function, but generally a few values can be filled in so

as to enable the curve to be drawn by sight.

It should be noted that the lines OX and OY, and consequently

the origin 0, can be chosen quite arbitrarily and that the position

of the point P can be fixed, in the manner indicated, with reference

to any suitable axes of co-ordinates.

4. The point P can be fixed with reference to its distance fi"om

two straight lines not at right angles to each other, the distance

PN= y being measured along a line parallel to the axis of y.

The values x and y corresponding to a given point P are called

the rectilinear co-ordinates (or simply the co-ordinates) of the point

P. Where the axes are at right angles to each other the system

can be distinguished, if necessary, by referring to x and y as the

rectangular co-ordinates of P.

As a rule rectangular co-ordinates are the more convenient to use

in practice and lead to simpler results. Unless otherwise expressed

it is to be understood that rectangular co-ordinates are implied.
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5. The following examples give simple cases of the graphical

representation of explicit functions.

(i) The equation x = a clearly represents a straight line parallel

to the axis of y and at distance a from it; for the value of x at any

point is constant and equal to a.

(ii) The equation y = 7nx represents a straight line passing

through the origin and making an angle 6 with the axis of x, where

tan 6=^m\ since at any point the ratio y :x \^ constant and equal

to tan 6.

(iii)

B

M

Y

P\
is/ >l\ X

Let ilJ5 be any straight line cutting the axes oi x and y respec-

tively at the points A and 5, so that OA — a and OB = h.

Let P be any point on the line AB, of which the co-ordinates are

(a?, y). Then, if perpendiculars PN and PM be dropped upon the

axes of X and y, MP — x and NP — y.

Also

and

X ON PB
a ~ 0A~~ AB

I-

NP
OB

AP
==AB^

X

^i-'-

^B + AP
a AB

= L

^
. yHence - + f = 1 is the equation of the straight line AB.

|1~2



4 FUNCTIONS

6. An implicit function can be similarly represented. For ex-

ample, it is obvious from the ordinary properties of the circle that

the implicit relationship x^ + y^ — o? represents a circle of radius a

with its centre at the origin.

Note. The function y = a + hx-^ ca? -k- da? + . . . is sometimes

called a parabolic function, since the equation y^a + bx-\-cx^

is represented graphically by a curve which is known as a

parabola.

7. It does not follow that for every value of x there will always

be a real value of y.

Thus, consider the function y^^(x — a) (x — b)(x— c), where

c>b> a. If a; is negative, the right-hand side of the equation is

negative and y can have no real value. If x is positive and < a, the

position is the same. If, however, x> a and < 6, then the right-

hand side is positive and y has a real value; but when x>b and

< Cy y is again unreal and remains so until x>c when a real value

of y results for each value of x.

The form of the curve is shown below, where OA = a, OB = b

and 00 = c.

In circumstances such as these,

where one or more parts of a

curve are isolated from the

others, the function and the

curve representing it are said to

be discontmuous.

8. It is convenient here to

introduce the conception of the

limiting value of a function, or simply a limit.

If y=if(x) and y continuously tends towards a certain value and

can be made to differ by as little as we please from that value, by

assigning a suitable value to x, say a, then /(a) is said to be the

limiting value off(x) when x tends to the value a.

A convenient notation is as follows

:

y-*-f(p) when x-*-a.

Also /(a) would be expressed as Lt f(x).
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Thus let y = . By writing y in the form 1— we see that
oc cc

by making x indefinitely great, we can make the value of y differ

from unity by as little as we please.

Thus

9. We will now give an example of another form of discontinuity,

=(—

y

\x — aj
shownand for this purpose we will take the curve y

below.

Here it will be seen that as a? -^ a, the value of y -^ oo . Similarly

if a? -*-oo
, y -^1.

Thus if we draw two lines, one

PN parallel to the axis of y and at

distance a from it, and the other

QM parallel to the axis of x and at

unit distance from it, the curve will

continuously approach these lines

but will not actually touch them
except at an infinite distance from the origin.

Such lines are called asymptotes to the curve.

In general, actuarial functions are finite and continuous ; but in

mathematical work, as will be seen later, attention to these points

is necessary in the consideration of certain problems.

Y

j
v_

-^^ J
N ^

10. Explicit functions involving two variables, and implicit

functions of three variables, can be expressed in a diagram of three

dimensions. Thus if we have z=f{x, y) or f{x, y,z)-0 we may
measure x, y and z by reference to their perpendicular distance, not

from two lines, but from three planes at right angles to each

other.

A useful simile is that of the floor and two adjacent walls of

a rectangular room of indefinite size. Any point in space is fixed

by reference to its perpendicular distance from the two walls and

the floor, x. and y being the respective distances from the walls,

and z that from the floor. The conventions as to positive and

negative values are similar to those previously explained.
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11. As an example, if ^ = x^y^, the values of the function for unit

intervals in the values of x and y are shown in the following table

:

Value
oft/

Value of X

1 2 3 4 ...

1

2
3
4

1

4
9
16

4
16

36
64

9
36
81

144

16
64
144
256

We will conceive the floor as being covered with a linoleum of

chess-board pattern, the sides of the squares being at unit distance

apart. The perpendicular distance from the floor of all points in

these squares is nil and, therefore, z has the value 0. The corners

of these squares will thus represent the various points (0, 0, 0),

(0, 1, 0), (1, 1, 0), (1, 0, 0), (2, 1, 0), etc. If we were to erect at each

corner a peg of height equal to the appropriate figure taken from

the above table, the tops of the pegs would give points on the surface

representing the equation z = x^y'\ If the value of z were plotted

for every possible combination of values of x and y, we should,

of course, obtain the continuous surface corresponding to z = x^y\

Polar Co-ordinates.

12. An alternative method of defining a point in a plane surface

is as follows.

Let an origin be taken and a fixed line OX be drawn fi-om it

;

then the position of any point P is known if the distance OP and

the angle XOP are given.

Thus if OP = r and Z XOP = 6,r and 6 are known as the polar
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co-ordinates of P, and the point P can be written as (r, 6). The

distance OP is called the radius vector and the angle XOP is called

the vectorial angle.

The convention adopted is that the angle XOP is reckoned

positive if measured from OX in a direction contrary to that in

which the hands of a clock revolve, and negative if measured in the

reverse direction.

Further, the radius vector is considered positive if measured

from along a line bounding the vectorial angle, and negative if

measured in the opposite direction. To illustrate this system, let

PO be produced to a point Q such that 0Q = OP = r. Then the

point Q may be written alternatively as (r, tt + ^) or (— r, 6).

13. The relation between rectangular and polar co-ordinates can

be easily established. For if OX be taken as the axis of x then

OYy the axis of y, is perpendicular to it. Also let PN be drawn

from the point P perpendicular to the axis of x.

Then, clearly, if x, y be the rectangular co-ordinates of P,

x=: ON = OP cos e = r cos 6,

y = Pi\r = OP sin (9 = r sin 6.

Any equation in rectangular co-ordinates can therefore be trans-

formed into an equation in polar co-ordinates by the above substi-

tutions.

14. Three simple examples of the graphical representation of an

equation in polar co-ordinates are now given.

(i) The polar equation r = a clearly represents a circle of radius

a with its centre at the origin; since the radius vector is constant

and equal to a.
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(ii) In the diagram shown in § 13, ifON = a andPN be produced

indefinitely in either direction, then the polar equation of the

straight line so obtained will be

r cos ^ = a,

since ifP be any point in the line

OP cos (9 = r cos 6 = ON = a.

(iii) Let OA be a diameter of a circle OPA of radius a. Then

if P be any point on the circle such that OP = r and lAOP^Q,
0P = 0A cose = 2acoad.

The polar equation of the circle, if be the origin, is therefore

r = 2a cos 6,



CHAPTER II

FINITE DIFFERENCES. DEFINITIONS

1. The subject or calculus of Finite Differences deals with the

changes in the values of a function (the dependent variable) arising

from finite changes in the value of the independent variable (see

Chapter I, § 1).

Many questions arise which can be dealt with on systematic lines,

but probably the most important problems which require to be

solved in actual practice, and with which we are concerned at this

stage of the subject, are the summation of series, and the insertion

of missing terms in a series of which only certain terms are given.

It will be convenient to proceed in the first place to some ele-

mentary conceptions and definitions.

2. If we have a series consisting of a number of values of a

function, corresponding to equidistant values of the independent

variable, and from each term of the series we subtract the algebraic

value of the immediately preceding term, we shall obtain a further

series of equidistant terms. The process is known as differencing

the terms of the series, and the terms of the new series are known

as the first differences of the original terms. By repeating the pro-

cess with the terms forming the first differences, we shall obtain

a further series forming the second differences of the original function,

and so on. Thus if we have f{x) for the first term of the series

and/(a7 + ^) for the second term, the first difference oi f{x) is

f{x-\-h)-f{x) and is designated ^f{x). The second difference of

f{x) is A/ (a; + ^) - ^f(x) and is designated ^^f{x). This may be

set out as in the following scheme

:

Function First Differences Second Differences Third Differences

/(^)

/(^+2A)

/(^+3A)

fix+h)-fix)

f{x+2k)-fix+ h)

f{x+Zh)-f{x+ 2h)

/(^•+4A)-/(^+3A)

f{x+2h)-2f{x+h)

f{x-^3h)-2f{x+2h)

f{x+U)-2f{x+3h)
+f{x+2h)

/(a:+ 3A)-3/(:r+2A)
+ 3/(^+A)-/(a;)

/(^+4A)-3/(^+3A)
+ 3/(a;+2A)-/(a;+A)
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The first term of the series is known as the leading term and the

terms in the top line of differences are known as the leading dif-

ferences of the series.

It must be clearly understood at the outset that A is merely a

symbol representing the operation of differencing f{x) once ; it is

in no sense a coefiicient by which f{x) is multiplied. This point is

dealt with again in § 5.

3. An examination of the character of the series which ultimately

results from the process of differencing repeatedly, leads to the

development of certain important theorems. Before proceeding

further, it will be helpful to give a practical example.

Example 1. Obtain the differences of the series given hyf{x) = af^,

where x has all integral values from 1 to 6.

/(^)
Firpt Second Tliird Fourth

Differences Differences Differences Differences

1 1 7 12 6
2 8 19 18 6
3 27 37 24 6
4 64 61 30
5 125 91
6 216

It will be observed in the above example that the fourth and,

therefore, all higher differences are zero ; it will be seen later that

this would equally have been the case had more terms of the series

been taken. We can therefore construct all the remaining terms

of the series by a process of continuous addition.

4. Although most functions with which the actuary has to deal

are not of the simple character of that shown above, yet it will

usually be found that the differences of the function for which

further values are required tend to the value zero and are sus-

ceptible to treatment by methods which will be developed subse-

quently.

The student should obtain confirmation of this fact and insight

into the character of certain series by taking out the differences of

tabulated functions such as logarithms, annuity-values, etc.
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5. Before proceeding to the consideration of the various problems

which arise, it is necessary to develop certain fundamental formulas.

In § 2 A has already been defined as the symbol of the operation

by means of which the value of f(x + h)—f{x) is obtained.

Similarly, it is customary to use the symbol E as representing

the operation by which the value of /(a?) is changed to the value

f{(c + A), so that

Ef{x) =/(^ + h) =f(x) + Af(x).

It must be carefully remembered that these symbols represent

operations only and must be interpreted accordingly. Thus E^a^ is

clearly not the equivalent of (Exf; the former expresses the result

of operating twice upon the function xf^ in the manner indicated

above, giving a value (x + 2hy, whereas in the latter case the opera-

tion is applied once to the function x and the resulting term (x + h)

is squared.

6. If, then, these symbols are found to obey the ordinary alge-

braical laws, they can be dealt with algebraically provided always

that the results are interpreted symbolically in relation to the

function which is the subject of the operation. This principle is

known as that of Separation of Symbols or Calculus of Operations.

The algebraic laws referred to above comprise

:

(1) The Law of Distribution.

(2) The Law of Indices.

(3) The Law of Commutation.

Taking these laws in succession

:

(1) The symbol A is distributive in its operation, for

= [/i (x+h) -A W] + [/s (^+ h) -/, (x)]

+ [A(^ + h)-Mx)]-h...

= A/(a;) + A/,(^) + A/3(a;)-H....

Similarly the symbol E is distributive, for

£![Ma:)-\-A{x)+Mx)+...]^[f,(x + h)+Mx-hh)^Mx-\-h)+...]

==EMx) + EMx)-^EMx)-\-....

(2) The symbol A obeys the law of indices, for in the case of

positive integers the symbol A"'/ (a;) represents the operation,

repeated m times, of differencing f(x).
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Thus A"»/(a;) = (AAA ... m times)/(a;),

.-. A'»A"*/(a;) = (AAA ...n times) (AAA . . . m times) /(a;)

= (AAA . . . (m + 7i) times) /(a?)

= A"+"»/(a;).

Similarly it may be shown that the symbol E obeys the law of

indices.

(3) The symbol A is commutative in its operation as regards

constants, for, if c be a constant,

A[cf(x)] = c/(x + h)-cf(x)

^cAf(x).
The like result can be deduced as regards E.

7. It follows that, since

Ef{x) = (l-^A)f(x),

therefore E = l+A
and A = J5;-1.

The two operators are thus connected by a simple relation, which

will be found later to lead to important results.

8. As an example of the manner in which the relationship

between the operations represented by E and A can be utilised in

the solution of problems, we may take the following

:

Example 2. Prove that

/(0) + ^/(l) + J/(2) + g/(3) + ...

= ^ [/(O) + a;A/(0) +J AV(0) +...].

Since

/(I) = E/(0) = (1 + A)/(0); /(2) = E'/(0) = (1 + A)V(O), etc.,

we have /(O) + xf(l) + J/(2)
+ J /(3) + J.

= [l +^(1 + A) + |-J(l + A)« + ...]/(0)

= [«'"+''>]/(0)

= e-[e-^]/(0)

/(O)
A'

l+xA + a^j^ + ..

/(0)+^A/(0) + jAy(0)+...].



CHAPTER III

FINITE DIFFERENCES. GENERAL FORMULAS
AND SPECIAL CASES

1. Starting from the relationship proved in Chapter II, § 7, it is

now possible to develop two formulas of the utmost importance.

2. To express /(a; + mh) in terms of f(x) and its leading dif-

ferences.

By definition f(a) + mh) = E^f(x)

= (l + A)-/(^),

since by Chapter II, § 7, ^ = 1 + A.

Expanding the above expression by the Binomial Theorem we
have

/(a, + mA) = [l + mA + (™) A^ + (;:) A»+ . . . + (^ A^'jfix)

=/(«:) + m^f(a^) + (^) AV(a.) + Q) A'f(cc) + ...

+ C)^"'/W (D-

Bearing in mind that the symbol A obeys the ordinary algebraic

laws and that the Binomial Theorem holds for all values of the

index, positive, fractional or negative, it will be realised that the

above proof is perfectly general.

It is instructive, however, to show how the formula may be

deduced for fractional and for negative values of m.

3. Fractional value. Let — be a positive proper fraction, and

let the interval between the given terms of the series be h. It is

required to find the value of f(x-^—h].

Also let f(x + h) -f(x) = A/(a;),

and /(^ + J)-/W = VW.
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In the second case, the unit of differencing has been altered to

- and, bearing in mind that n is a positive integer, we may write

at once from the theorem in the preceding article

therefore (1 + A)/(^) = (1 + Byf(x\

and (1 + ^ff(x) = (1 + B)f(x).

Since m is also an integer, it follows that

(1 + Srf(x) =/ (a; + ^ a) = (1 + A)V(^)

=/(^)+^ Af(w) + AY(x)+ .

.

..

4. Negative value. It is desired to find the value oi f{x — mh).

Now, from the preceding theorems, it is clear that

i\ + ^rf{x-mh)^f{xl
therefore

/(a;-TOA) = (l + A)-"'/W
= [l + (-m)A + (-^)A'+. ..]/(:.)

=/(^) +(-m)A/W + (-;)AV(«)+....

The above proofs show that the theorem holds universally and

illustrate how the principle of Separation of Symbols can be applied

whenever the symbols of operation obey the ordinary laws of algebra.

5. To express A^f(x) in terms of f(x) and its successive values.

A-^f{x) = (E-irf(x)

= [^"» - mE'"--"^ + (2 )
^"^' -...+(-!)"»] f(x)

=/(a; + mh) - mf(x + ^^T^lA) +
( 2
)/(^ + m-2A) - . .

.

+ (-l)-/W (2).

Alternatively both the above formulas can be easily proved by

the ordinary methods of induction.

Formula (1) also follows directly from the ordinary formula of

Divided Differences (see Chapter VIII). This method has the

advantage of showing directly the application of formula (1) to cases

where m has a fractional or a negative value.
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6. The above formulas are expressed in a form which applies in

the most general way, i.e. when the interval of differencing is h and

the leading term is /(a?). It is clear, however, that by altering the

unit of measurement the formula will be simplified although the

result is not affected. Similarly by changing the leading term

(which process corresponds to shifting the "origin") so that the

leading term is expressed as /(O) a further simplification in form

is made.

If, therefore, the interval of differencing becomes unity and the

leading term can be represented by /(O), the first formula can be

written

/«=/(0) + nA/(0)+(2)AV(0)+ (3).

An example will make this clear.

Having given the values of/(10), /(15),/(20), etc. it is desired

to express /(17) in terms of /(lO) and its leading differences.

The original formula (1) gives the value of /(lO + 1'4A), where

A = 5, and therefore we write

/(lO + 1'4A) =/(10) + 1-4A/(10) + ^-i^^^^AV(lO) 4- ...

,

where A, A'^, ... are taken over the interval h.

But the same result is secured if the unit of measurement is

changed from 1 to 5 and if at the same time /(lO) is made the

initial term of the series, for then /(lO), /(lo), /(20), ... can be

written as ^(0), F{1), F(2), ... and the required value, viz./(l7),

becomes F(l'4i) which by formula (3) is equal to

i^(0) + 1-4AF(0) +^^^^^ A'^i^CO) + ....

7. The above formulas are of general application if sufficient

terms of the series are known, but it is convenient at this stage to

consider the particular forms taken by the differences of certain

special functions.

8. f{x) = ax^

The result of differencing has been, therefore, to change the term

involving the highest power of so from ax^ to anx"^'^ (thus reducing

its degree in x).
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Similarly a further process of differencing will reduce the degree

of a; to n — 2 and the coefficient of the highest power of x will be

an (n — 1). By repeating the process we arrive at the result that

the nth difference of ax"^ is independent of x and is equal to a.n\.

The (n + l)th difference is therefore zero.

Corollary. It follows that the nth difference of

ax'^-\-bx'^^ + cx'^-^+ ... +k
is constant and equal to a . w!.

9. f(x) = X (x - 1) (x - 2) ,.. (x - m -\^ 1).

This expression is usually denoted by x^*^\

Af(x)^(x+l)x(x-l)...(x'-m + 2)-x(x-'l)(x-2)...(x-m+l)

= mx (x—l),..(x — m + 2)

— 'mx^^~^\

Similarly Ay (a?) = m (m - 1) a;^"^^)^

By repea,ting the process we arrive at the result

A"*/(a;) = m!,

which is otherwise obvious from the preceding article since /(a?) is

of the 7^ith degree in x,

10. f{x) = ^ (^ + 1) (^ ^ 2) . . . (a; + m - 1)
•

Corresponding to the notation already used, this can be denoted

by ajt-*").

^^^^^ " (a;+l)(a? + 2)...(a? + m) " x{x-\-l){x-\-2) ...(x + m-\)
— m

a; (a? + 1) (ic + 2) . . . (a? + m)

= — 77ia;^~"*+^^

Similarly Ay(a;) = m (m + 1) a;(-^»+>)

and so on.

11. /(^) = a^

A/ (a:) = a*+i - o*

= a*(a-l).

Whence Ay(a?) ^a'^ia- ly.
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12. For many purposes it is convenient to have a table of the

leading differences of the powers of the natural numbers. These

can be represented as the differences of [aj*»]a,=o and are sometimes

known as the " Differences of 0."

The following table gives a number of values of the first term

and leading differences of l^'^x^]x=o, which, for convenience, can

be written as ^"^O'*

:

n /(O) A A2 A3 A4 A6 A«

1

2 2 —
3 6 6 —
4 14 36 24 —
5 30 150 240 120

13. A working formula for constructing a table such as the

above by a continuous process may be obtained as follows:

[See formula (2).]

Therefore, when f(x) — x^,

whence, putting a?= 0,

= n [n*"-! - (n - 1) (n - l)'^-i + ("^
2 ^) (71 - 2)"*-^ - . .

.]

= w [(1+ n-Vf-'^ - (w - 1) (1 4-^ir:2)^-i

= 71 [A«-ia;"»-i]a.=i (4).

But /(l)=/(0) + A/(0),

and A'^-^/ri) = A'^-i/(0) + AV(0).

Therefore

[^n-i^w-i]^^^ = [A"-iar"»-i]x=o + [A"a;^-^J„=o

H. T.B.I.
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Hence A'»0»»» = n [A^-^O^^^ + A'^O"*-!] (5).

It follows that the differences of [oj'^Jajrro can be constructed from

those of [x^~%^Q, and so on.

To take an example from the table given above,

A*0» = 4[A»0*4-A*0^]

= 4 [36 + 24] = 240.

14. By using the result given in § 9, it is possible to expand

f(x) in terms of ic<°^ x^^\ x^^\—
Let f(x) = ilo + ^loo^'^ + ^aa^^'^ + ^sa;^'^ + • • • •

Then, putting a; = 0, we' see that

/(0) = A.

Differencing both sides of the equation, we get

Af(x) = A, + 2A,x^'^ + SA,x^'^ + . . .

.

Again putting a; = 0, we find

A/(0) = ^,.

By repeating the above processes, we obtain successively

Ay(0) = 2!^, AV(0) = 3!.l3,... AY(0) = n!^„,

whence

A=/(0), A = A/(0). A =
^4f->....

A.=^,
and

f(x) =/(0) + xAfiO) +J A»/(0) + ... +5 A»/(0) + ... (6).



CHAPTER IV

FINITE DIFFERENCES. INTERPOLATION

1. The subject of interpolation is one of the most important in

Finite Differences and may be enunciateid as follows.

It frequently happens that we have given a number of values of

f{x) corresponding to different values of x, and we wish to find

a value of the function for some other value of x. If the form

of the function is known or can be deduced from the given values,

the problem is, of course, simple, although in many cases it is more

convenient to proceed by the methods of Finite Differences. But it

is frequently the case, especially in actuarial work, that the function

cannot be expressed, algebraically or otherwise, in any simple form,

and resort must be had to other devices.

2. Looked at from the point of view of a problem in graphs, we
may regard the given values of the function as representinga number
of isolated points on a curve, and it is desired to plot a further point

corresponding to a given value of the abscissa.

It follows that if the form of the function (i.e. the equation of

the curve) is unknown, some assumption must be made as to the

relationship between the different values. The formulas of finite

differences assume that this relationshipcan be expressed in the form

y=^a-\-hx + cx^-\-dc(^+ ... ^kx^'K

This assumes (see Chapter III, § 8) that all orders of differences

higher than the {n — l)th vanish, but, as pointed out in Chapter II,

§ 4, this assumption can be made without introducing important

errors in practically all cases where actuarial functions are involved.

3. The above equation contains n constants, and therefore n

values of the function must be known if the values of the constants

are to be determined. Conversely, if n values only are known and

the methods of finite differences are to be applied, it must be

assumed implicitly that all orders of difierences higher than the

rn — l)th vanish.

4. The most obvious method of procedure is to obtain the n

equations given by the n values of the function and to find the

values ofthe constants therefrom. The assumed form of the function

Sl-2
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is then completely determined and the value corresponding to any

value of X can be obtained.

In the majority of cases, however, this is not the most simple

method of working, for other devices can be adopted which will

materially shorten the arithmetical work. It is important to note,

however, that alternative formulas, in which the same values of the

function are used, lead to identical results.

In some cases there is scope for the exercise of the ingenuity of

the solver, but usually the problems fall into the main categories

which are illustrated in the following examples.

5. Example 1. When n equidistant values ofa function are given

and it is required to find the valueofsome intermediate term or terms.

This can be done readily by the application of formula (1) of

Chapter III, or by the simpler formula (3). From the given values

the successive orders of differences are calculated, and the result is

obtained by direct substitution.

Thus, taking the numbers living by the H^ table at ages 45,

60, 55, 60 and 65, it is required to find the value for age 57.

In conformance with formula (3) the given values can be denoted

by/(0),/(l), ..., so that the required value is/(2-4). Then

/(2-4) =/(0) + 2-4 A/(0) + ?^i|^^Ay(0)

24

The working is as follows:

X /(^) A/(x) AV(^) A3/(x) AV(^)

1

2
3
4

77918
72795
66566
58842
49309

-5123
-6229
-7724
-9533

-1106
-1495
-1809

-389
-314

+ 75

From above:

/(2-4) = 77918 + 2-4 (- 5123) + 1-68 (- 1106)

+ -224 (- 389) - -0336 (+ 75)

= 77918 - 12295-2 - 18581 - 87*1 - 25
= 636751.

The value given by the table is 63677.
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The difiference between the interpolated value and the true value

is due to the fact that the interpolation curve, which is based on

the assumption that all differences of higher order than the fourth

vanish, represents only approximately the true function.

6. Example 2. When the values given and the value sought

constitute a series of equidistant terms.

If there are n terms given of which n — 1 are known, then, as

explained in § 3, it must be assumed that the {n — l)th order of

differences is zero.

Thus, using formula (2) of Chapter III, we have

A—/(0) = 0=/(«-l)-(«-l)/(H-2)+("-')/(n-3)-...

+(-i)"-7(0).

In this equation there is only one unknown quantity and its

value can, therefore, be readily obtained.

For example, if

/(0) = log 3-50 = -54407,

/(I) = log 3-51 = -54531,

/(2) = log 3-52 = -54654,

/(4) = log 3-54 = -54900,

and it is required to find log 3*53, i.e./(3).

From above:

AV(0) = =/(4) - 4/(3) + 6/(2) - 4/(1) +/(0),

whence f^^^Ji^)^m^)-¥il)^m

= -54777,

which agrees with the true value to five decimal places.

7. Example 3. If more than one term is missing from the com-

plete series, a somewhat similar process may be followed. Thus, if

two terms are missing, only {n—2) terms are known and the (w— 2)th

order of differences must be assumed to vanish. It is then possible

to construct two equations:

An-./(0) =/(n _ 2) - (71 - 2)/(n - 3) 4- . . . + (- 1)~-»/(0) = 0,

A--/(l)=/(;i-l)-(7i-2)/(n-2) + ...+(-l)--«/(l) = 0.

From these equations, the values of the two unknowns can be

calculated.

Similarly if a larger number of terms is missing, the method

can be extended.
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8. Example 4. If several equidistant values are given, together

with one isolated term.

For instance, if three values /(O), /(I) and /(2) are given, to-

gether with a further value f{h). Having four values of the function

it must be assumed that the fourth order of differences is zero and

it remains to find the values of the other three leading differences.

The first two leading differences are obtained at once by differencing

the first three terms of the series, and the value of the third dif-

ference is then given by the equation

m =/(0)+ AA/(0)+ (*) A«/(0) + (*) Ay(0).

For example, taking the numbers living by the H^ table at ages

45, 46, 47 and 50, it is required to find values for ages 48 and 49.

A A«

-954 -32

-986

/(0) = 77918

/(I) = 76964

/(2)=: 75978

/(5) = 72795

/(5) =/(0) + 6A/(0) + 10A7(0) + 10A'/(0),

^,y (0)
= /(5)-[/(0) + 5A/(0)^10A7(0)]

_ 72795 - [77918 - 4770 - 320]

10

= -3-3.

The table is then completed by addition. Thus:

Age
X /(^) A A2 A3

45 77918 - 954 -32 -3-3

46 76964 - 986 -35-3 -3-3

47 75978 - 1021-3 -38-6 -3 3

48 74956-7 - 1059-9 -41-9

49 73896-8 -1101-8

50 72795-0

The work is checked by the reproduction of the value for age 50.

The tabular values for ages 48 and 49 are 74957 and 73896

respectively.
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Values precisely the same as those obtained above would have

been given if the two missing terms had been inserted by the

method described in Example 3. It is instructive to confirm this

by actual calculation and to compare the two methods of procedure.

9. Example 5. Subdivision of Intervals.

This problem arises when a series of equidistant terms of a series

is given (usually every fifth term or every tenth term) and it is

desired to find by interpolation the values of all the intermediate

terms.

The simplest method of procedure is to calculate from the given

values the differences corresponding to the individual terms of the

series (the subdivided differences) and thence to construct the table

by summation. The calculation is checked by the reproduction of

the values of the original terms.

Thus assume that the given terms are /(O), /(I), .../(5) and it

is desired to complete the series /(O), /(i), /(f), etc. It is con-

venient to adopt the notation

/(l)-/(0) = A/(0),

and /a)-/(0) = 8/(0).

The problem then becomes to express Bf (0), 8"/ (0), ... in terms

ofA/(0),Ay(0)

Writing y (1), /(2), ... in terms of the subdivided differences,

/(0)= /(0)
/(l)=/(0)+ 58/(0)+ 10S2/(0)+ 1083/(0)+ 584/(0)+ 8^/(0)

/(2)= /(0) + 108/(0)+ 4582/(0)+ 12083/(0)+ 2108^/(0)+ 2528^/(0)

/(3)= /(0) + 158/(0)+ 10582/(0)+ 45583/(0)+ 13658^/(0)+ 30038^/(0)

/(4) = /(0) + 208/(0) + 19082/(0) + 114083/(0)+ 48458V(0) + 1550486/(0)

/(5)= /(0) + 258/(0)+ 30082/(0) + 2300S3/(0) + 1265084/ (0) + 5313086/(0)

Differencing successively both sides of the equation, we have

A/(0)= 58/(0)+ 1082/(0)+ 1083/(0)+ 58^/(0)+ 8^/(0)

A/(l)= 58/(0)+ 3582/(0)+ 11083/(0)+ 2058^/(0)+ 2518^(0)
A/(2)= 58/(0)+ 6082/(0)+ 33583/(0) + 11558^/(0)+ 275186/(0)

A/(3)= 58/(0)+ 8582/(0)+ 68583/(0) + 34808^/(0) + 125018^/(0)
A/(4)= 58/(0)+ 11082/ (0) + 1160S3/(0) + 780584/(0) + 3762686/(0)

a2/(0)= 2582/(0)+ 10083/(0)+ 2008y(0)+ 2508^/(0)

a2/(1)= 2582/(0)+ 22583/(0)+ 95084/"(0)+ 25008^/(0)

a2/(2)= 2582/(0)+ 35083/(0) + 2325SY(0)+ 97508^/(0)

a2/(3)= 2582/(0)+ 47583/(0) + 432584/(0)+ 25125S6/(0)

A3/(0)= 12583/(0)+ 75084/(0)+ 22508^/(0)
A3/(1)= 12583/(0) + 137584/(0)+ 72508^/(0)
a3/(2)= 12583/(0)+ 200084/(0) + 153758^/(0)

a4/(0)= 62584/(0)+ 500085/(0)
A4/(1)= 62584/(0)+812586/(0)

A6/(0)= 312586/(0)
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Whence the values of Bf(0\ 8^(0), ... B'f(0) can readily be

obtained.

10. Alternatively the formulas for S, B\ ... can easily be written

down by using the method of Separation of Symbols.

Thus (1 + Syf (x) = (1 + A)/ (cc).

Therefore (1 + 5)/ (a?) = (1 + A)^ / (x),

and S/(^) = [(l + A)^-l]/(^)

= [-2A - -08 A=^ + '04>8A'...]f(x).

Hence ^Vi^) = ['2A - '08 A^ + -048 A^ ...]^f (x)

= [-04A»- -032 A« + -0256 A* ...]/(«;)

and so on.

For convenience the coefficients of A, A*, . . . occurring in the

values of B, 8^ ... are given, for the intervals 5 and 10, in the fol-

lowing tables.

Subdivision into 5 intervals

Value of

Coefficient of

A A» A3 A* A»

d

8*

86

+ •2 -•08

+ -04
+ •048

-•032

+ •008

- -0336

+ •0256

-•0096
+ ^0016

+ ^025536
-•02112
+ -00960
- -00256

+ -00032

Subdivision into 10 intervals

Value of

Coefficient of

A A2 A3 A* A»

8
82

83

84

8^

+ -1 --045
+ •01

+ -0285

-•009

+ •001

- -0206625

+ -007725
- -00135

+ •0001

+ •01611675
- ^0066975

+ ^0014625
- •ooois

+ •00001
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11. The following example gives an illustration of the method
of working.

Given the present values, at 3 per cent, interest, of an annuity of

1 per annum for 20, 25, . . . 45 years, it is required to find the inter-

vening values.

We have

X f{^) A A2 A3 A* A5

20 14-8775 2-5356 - -3483 •0478 -•0065 •0007

25 17-4131 2-1873 --30O5 •0413 --0058
30 19-6004 1-8868 - -2592 -0355

35 21-4872 1-6276 - -2237

40 23-1148 1-4039

45 24-5187

Applying the factors given in the former of the above tables, we

have

¥(20) = [•2A - •08A=' + •048A3 - 'OSSGA^ 4- •025536A»]/(20)

= -2 X 2-5356 + -08 x -3483 + '048 x 0478 + -0336 x -0065

4- -025536 X -0007

= •5375146752.

g<=- -000012192,

p = -000000224.

Similarly

S2 = _ -015642784,

B' = -000451520,

The table is then constructed by addition from these leading

differences as shown below.

It is necessary to consider how many decimal places should be

retained in the working. This depends, in the first place, on the

degree of accuracy desired in the result. Thus if four decimal

places are required in f{ai), our result must be given to at least

one place more. Further, the range of the formula is 25 terms, and

in the final term the values of S, 3^, ... S** are multiplied respectively

^y(i)' (2)' ---(s)' which are respectively equal to 25, 300,

2300, 12650, 53130. In view of the magnitude of these coefficients,

we shall need to retain at least six decimal places more in the value

of 8° than are required in the final value of /(a;). Since the co-

efficients of the lower orders of differences are smaller than 53130,
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a correspondingly smaller number of decimal places can be retained.

In practice, however, there is little to be gained by cutting down,

unless only a rough result is required.

The working of the first five terms in the example is shown

below. It will be noticed that the accuracy of the work up to this

stage is checked by the exact reproduction of the value of /(25).

The interpolated values agree exactly with the true values to four

places of decimals.

X /(^) d (58 83 5* 5°

20 14-8775 •5375147 - -01564278 •000451520 -•000012192 -000000224
21 15-415015 -5218719 1519126 439328 11968 224
22 15-936887 •5066806 1475193 427360 11744 224
23 16-443568 •4919287 1432457 415616 11520 224
24 16-935497 •4776041 1390895 404096 11296 224
26 17-413101 •4636951 1350485 392800 11072 224

12. Example 6. Lagrange's Theorem.

We have now to consider the construction of an interpolation

formula which will apply when the given terms of the series are

not equidistant.

Let n values of the function be given, namely

/(a),/(6)./(c)..../(n).

Then the function must be assumed to be a parabolic function of

X of degree (n — 1). (See § 3.) Assume therefore that the function

can be represented as

f(x) = A{x'-b)(x-c) ...(x — n)

-\- B {x-^a){x — c) ...{x — n)

+ C (x — a) (x — b) . . . (x — n)

+ etc.,

there being n terms in all, each composed of (n — 1) factors multi-

plied by a constant, the values of the constants having yet to be

determined. It is clear that the right-hand side of the equation

is of degree (n — l).

To find the values of the constants we proceed as follows:

Put x = a.

Then /(a) = ^(a-6)(a-c) ... (a - n-).
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f{o)

(a — b)(a — c) . . .{a — n)*

Similarly ^ =
(b -a){b-c)...(b-ny

and so on.

Substituting these values of ^, jB, ... in the original equation

we have

fr^\ - f(n\
(a?-6)(a?-c)...(^-n) , {x-a){x-c)..,{x-n)

(x-a){x-h)(x-c)..,
^"'^J^''\n-a)in-h){n-c)..."'^^^'

By an obvious transformation, the formula can be put in a some-

what simpler form for calculations, namely

/(^) fi^
{x-a){x-h)...{x-n) {x - a) (a -h){a- c) .., (a- n)

/(6) /(ri)

'^(b-a){x-b),,.{b-n)'^ "''^{n-a)(n-b){n-c)..,(x-n)

(2).

In memorising the formula it should be noted that the denomi-

nators are made up of the product of the algebraic differences of

the values of the variable, the term {a — a) being replaced by (x — a)

and so on.

13. The formula is somewhat laborious to apply, and careful

attention to signs is required, but it is convenient to use where only

one or two unknown values of the function are required. Since the

assumptions underlying it are precisely similar to those previously

explained, its use in any particular case will give identical results

with those which can be obtained by the use of the ordinary

methods of Finite Differences where a sufficiently high order of

differences has been taken into account.

To illustrate this point and to provide an example of the use

of the formula, we will calculate by Lagrange's formula the value

for age 49 in Example 4. In this case we have

/(0) = 77918, /(I) = 76964, /(2) = 75978, /(5) = 72795,

and it is required to find the value of/(4).



28 FINITE DIFFERENCES

We have accordingly

/(4) /(O)

(4_0)(4-l)(4-2)(4-5)"(4-0)(0-l)(0-2)(0-5)

/(I) /(2)
+ (l-0)(4-l)(l-2)(l-5) + (2~0)(2-l)(4-2)(2-5)

,

/(5)
^(5-0)(5-l)(5-2)(4-6)*

or, - ,V/W = - A/(0) + ^f(l) - A/(2) - fV/(5).

Whence we find/(4) = 73896*8, as before.

It should be noted, as a check on the formula, that the sum of

the coefficients of the terms on the right-hand side of the equation

must equal the coefficient of the term on the left-hand side of the

equation.

14. Problems of interpolation between terms at unequal inter-

vals can also be dealt with in a simple way by the formulas of

Divided Differences (see Chapter VIII).



CHAPTER V

FINITE DIFFERENCES. CENTRAL DIFFERENCES

1. It has already been stated that in interpolating between given

values of a function the form of the expression connecting these

values is assumed to be parabolic, and that this assumption is usually-

only an approximation to the truth. It remains therefore to be

considered by what methods the best result can be obtained by the

processes of Finite Differences.

2. In developing the formulas of this chapter, it will be assumed

that a number of equidistant values of the function are given.

Let us assume further that it is desired to interpolate a value /(a?)

intermediate between /(O) and /(I). It is clear that our knowledge

of the shape of the curve on which the points lie is increased if we
are given values of the function lying on both sides of /(O), and

that generally the best value of /(a?) will be obtained, if a limited

number of terms is to be used, when the required value occupies

as nearly as possible a central position in regard to the terms used

in the interpolation.

The formulas of Central Differences are designed to give effect

to these considerations.

3. The more familiar formulas of Central Differences are as

follows

:

Stirling's :

x(^-l) A»/(- 1) + A'/(- 2) ai'ix'-l) . .

+ 3j 2 ^ 4! "' '

x(_a^-l)(a^-4,) A'/(- 2) + A'/(- 3)•"5! 2

^
^(^-l)(^-4)

^.^^_3^^ (1).



30 FINITE DIFFERENCES

Bessel's :

/W=-^^^^> + (-i)A/(0)

.x(x-l) A'f(-l) + ^'f(0) (x-i)x(x-l)
2! 2 3!

•'^

,
(x+ l)x{x-l)(x-2) A'f(-l) + A'f(-2)*

4! 2

_^
(a;-|)(a: + l)a;(a;-l)(a:-2)

^.^^_ ^^

.
(a; + 2)(a; + l)a;(a;-l)(g-2)(a!-3) A'/(-2) + A«/(-3)*

6! 2
^'

(2).

Gauss':

fix) =/(0) + ^A/(0) +?^> A'/(-l) + (^ + iy-l) A»/(-l)

o !

Everett's :

f{x) = »/(i) +^<^ A»/(0)

+

'^(^-iK^-4)Ay(- 1)

+a^(0)+^-^Ay(-i)+ y^y'-y^'-^) Ay(-2)

^y(y^-l)(y»^-4)(y^-9)^y^_3^^
^^^

[where y = 1 - a?].

4. These formulas can be obtained in various ways from the

ordinary formulas of advancing differences. Once, however, the

scheme of differences entering into a formula is settled, the co-

efficients can readily be calculated by the method of Separation

of Symbols. An example may be given of the demonstration of

Gauss' formula by this method.
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Example 1.

To express /(a;) in terms of/(0), A/(0), AV(- 1), A»/(- 1), ....

Let /W = A/(0) + ^,A/(0) + ^Ay(-l) + ....

Then, since

^^/(-i)=TfA^(^)' ^^/(-i) = 1^/(0); etc.,

(l + A)- =A + ^iA +^^ + ^3j^+...

Multiplying up by (1 + A)*^!, and equating coefficients of A*^-*,

^ . _ (r+a?-l) (r + a;~2)...(a;~r + l)
^^-^

(2^^:ri)!
•

And, multiplying up by (1 + A)*", and equating coefficients of A«^,

A ^A _ (^ + ^)(^ + ^-l)»>.(a?-r' + l )

Hence, by subtraction,

""
2r!

Therefore f{x) =/(0) + a;A/(0)

+^(^>a»/(-i)+(^±iM£^)a./(-i)+....

The other formulas should be proved, in a similar way, as exercises

by the student*.

5. The formulas of central differences, although in a different

form, are intimately associated with those of advancing differences.

For example, if an interpolated value is calculated by using the

first three terms of Stirling's formula, it is obvious that the values

* See J.I. A. Vol. 50, pp. 28-33.
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of /(— 1), /(O) and /(I) are brought into the calculation. It is

easy to show that the result is identical with that obtained by
using the first three terms of the advancing difference formula

starting with the term/(— 1).

It may be observed that the first two terms of Stirling's formula

also involve three values of the function ; the third term merely

introduces the correction necessary to make the formula true to

the order of differences (i.e. the second) implied by the use of three

terms of the series. Thus, as the (2r)th and the (2r + l)th terms

of Stirling's formula both involve the use of (2r+l) values of

the function, there is ordinarily little advantage in using the extra

(27* + l)th term in any calculation.

Similarly in Bessel's formula no material increase in precision is

gained by using 2r terms rather than 2r — 1 terms.

Gauss' and Everett's formulas are each true to the order of

differences involved and for general use they would appear to be

the best of those propounded.

6. In view of the remarks at the beginning of the foregoing

article, it may well be asked what are the advantages of central

difference formulas, as compared with advancing difference formulas

80 chosen as to make the interpolated term as nearly as possible

the central term of those employed. It may at once be said that

the theoretical advantages are small but that the practical ad-

vantages may be considerable. Thus if it be desired to introduce

further terms of the original series into the calculation, the

original calculations relating to the central difference formulas

hold good, and the values of fresh terms of the formula can be

calculated until the desired degree of approximation is attained.

If however an advancing difference formula is used, the introduc-

tion of fresh terms of the original series, while retaining the

interpolated term in a central position, necessitates the changing

of the origin and the recalculation of all the terms of the formula.

An example will make this point clear.

7. Example 2. Required to interpolate the value of a unit

accumulated for 17 years with compound interest at 5 per cent,

per annum, having given the values for 0, 5, 10, ... 30 years.

For central difference formulas we must take our origin at 15
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years, and we will take 5 years as the unit. Thus we get the

following scheme

:

No. of

years
X /(^) A A2 A3 A* A5

-3 1- -27628 •07633 •02110 -00580 -00165

5 -2 1-27628 -35261 -09743 -02690 •00745 -00206

10 -1 1-62889 -45004 •12433 -03435 -00951

15 2-07893 -57437 -15868 •04386

20 1 2-65330 •73305 -20254

25 2 3-38635 -93559

30 3 4-32194

As the unit of time is 5 years, the required value is repre-

sented by/(*4).

Central Differences. We will use Gauss' formula, i.e.

/(«)=/(0) + «;A/(0)

The successive terms, with the corresponding values of /(•4), are

/(O) = 2-07893, 1st approx. = 2-07893

•4A/(0)= •22975,2nd „ =2*30868

'^-^^^Ay(-1)=- •01492,3rd „ =2-29376

1-4 X -4 X - -6

^3y>(_i) ^ , .QQj^g2, 4th „ =2-29184

1-4 X -4 X - -6 X - 1-6

24
Ay(-2)= •00017,5th

2-4xl4x4x--6x-l-6
120

A»/(- 2)= -00002, 6th

= 2-29201

= 2-29203

It is clear that no further terms would affect the calculated

value. The true value is 2-29202.

H. T.B.I.



84 FINITE DIFFERENCES

Advancing Differences.

1st approximation /(O) = 2-07893,

2nd approximation /(O) + '4A/(0) = 2*30868,

3rd approximation

/(- 1) + 1-4A/(- 1) + ^^^^ A^/(- 1) = 2-29376,

4th approximation

/(-l) + l-4A/(-l)+l^AV(-l)

+ ^"^'''t''""^ ^'/(-l) = 229184.

5th approximation

/(- 2) + 2-4A/(- 2)+ii^ AV(- 2)

H-?^^^H^A./(-2)

-H ^"^^^'V;''-'
Ay(- 2) = 2-29200.

6th approximation

. 2-4 X 1-4 X
n -A

120
/ci-i. • ^- \ 2-4xl-4x-4 x--6x-l-6 .. -. ^. « «^«^.^(6th approximation) + — A»/(- 2)= 2-29202.

It will be observed that in proceeding to the 3rd and 5th ap-

proximations using advancing differences every term in the formula

has to be recalculated, whereas, in the application of the central

difference formula, terms already calculated hold good whatever

be the degree of approximation.

It should be noted, however, that both formulas give mathe-
matically the same results, the difference of a unit in the final

figure being due to the use of only five places of decimals

throughout.

8. As regards other practical points, it may be observed that

the numerical coefficients in the central difference formulas are

smaller than those in the advancing difference formulas (see

Example 2).

Other advantages arise in special cases. Thus Bessel's formula
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can conveniently be applied for the bisection of an interval, since

the alternate terms vanish, giving

/(i)
,/(0)+/(l) l A'/(-l)^A^/(0)

8

3 AV(~2) + Ay(~l)
^128 2

"^- ^^^•

Everett's formula gives the same value.

9. It should be noted as regards Everett's formula, that in cal-

culating a series of values the work is nearly halved since it will

be found that terms in the formula can be made to do duty twice,

"a?" terms reappearing in the calculation as "y" terms.

This will be seen at once, for,

/W = «;/(!) +
a;(a^-l)

3!
-Ay(0) +

a!(a!'-l)(a^-4)

5!
Ay(-i)+...

+ym +^-^ Ay(_ 1)

+

y^y'-y-^)Ay(-2)
and

/(i+y)=y/(2)+
y(y'-i)

3!
AV(1) +

5!
A'/(0) +

f^/(l) + ^^A^/(0)-.^(^^^f^^)Ay(-l)+....

the last line being identical with the first. Thus, if we are inserting

terms in a series by subdividing the interval into five equal parts,

X = '2, '4, ... and 3/ = '8, '6, Therefore half of the terms used

in the calculation of/(•2) can be made to do duty in the calculation

of /(I '8), and similarly for the other terms.

10. An example will indicate the method of working.

Example 3. Using Everett's formula, interpolate the missing

terms in the following series, between /(40) and/(50).

X /(^) A A2 A^ A*

30 771 91 48 36 5

35 862 139 84 41 37
40 1001 223 125 78 28
45 1224 348 203 106

50 1572 551 309
55 2123 860
60 2983

3—2



36 FINITE DIFFERENCES

The coefficients of the several terms in Everett's formula are

•2 - -032 -006336

•4 - -056 -010752

•6 - -064 -011648

•8 --048 -008064

The work may be arranged in tabular form:

X x/(l) ^<t%V(0)
x{x^.l)(x^.A) Sum of first

three terms

(2) + (3) + (4)

Sum of

second
three

terms

Interpolated

result

(5) + (6)
6! ^^^ ^^

(1) (2) (3) (4) (5) (6) (7)

•2

•4

•6

•8

200-2

400-4

600-6

800-8

- 2-6

- 4-7

- 5-4

- 4-0

0-0
01*

0-1

0-0

197-6

395-8

595-3

796-8

•2

•4

•6

•8

244-8

489-6

734-4

979-2

- 4-0

- 70
- 8-0

- 6-0

0-2

0-4

0-4

0-3

241-0
483-0

726-8

973-5

796-8

595-3

395-8

197-6

1037-8

1078-3

1122-6

1171-1

•2

•4

•6

•8

314-4

628-8

943-2

1257-6

- 6-5

-11-4
-13-0
- 9-7

0-2

0-3

0-3

0-2

308-1

617-7

930-5

1248-1

973-5

726-8

483-0

241-0

1281-6

1344-5

1413-5

1489-1

Columns (2), (3) and (4), which represent the first three terms of

the formula, are obtained by ordinary multiplication. Column (5)

gives the sum of these terms. From what has been said above, it

is clear that column (6), which represents the second set of three

terms of the formula to fourth central differences, is obtained by

writing down, in reverse order, the values of column (5) applicable

to the previous group of terms. The addition of columns (5) and

(6) then gives the desired result.

The given values of f{w) have been taken from the tabulated

values of the probability of dying in a given year of age according

to the H^ mortality table, multiplied by 10^

The tabular values for the interpolated terms are 1038, 1081,

1122, 1172, 1281, 1345, 1415, 1490. The small differences between

these values and the interpolated values are due to the fact that

the H^ table was constructed by means of a mathematical formula

which is only approximately represented by Everett's formula.



CENTRAL DIFFERENCES 37

11. Another method of applying the principles of central

differences is to express the required function in terms of known
values of the function among which it occupies a central position.

This can conveniently be done by Lagrange's formula. The for-

mulas are of two types according as the number of terms involved

is odd or even. Thus we have by Lagrange

:

Number of terms 2n + 1.

3-term formula,

fix) ^ /(-l) /(O) /(I)

xix'-l) 2(a;+l) X '^2(a;-l) ^
^'

5-term formula,

/(-2) /(-I) /(O) /(I) J

'A(x+2) 6(a!+l)'^ 4a; 6(a!-l)"^24

.(7).

f(x) ^ /(-2) /(-I) /(O) /(I) /(2)
a;(a^-l){a^-4,) 24(!c+2) 6(a;+l)^ 4a; 6(a!-l)"^24(a;-2)

7-termformula,

fix) ^ /(-3) /(-2) /(-I)
a?(ic2-"l)(ar^-4)(a^^-9) 720(a; + 3) 120 (a? -}-

2) "*"

48 (a; + 1)

/(O) /(I) /(2) /(3)
36^ 48(a;--l) 120 (a; -2) "^720 (a? -3) ^

^'

Number of terms 2n,

^-term formula,

/{«=) ^ /(-f) , /(-i) fih)
,

/(f)
(^_j)(«,._9) 6(a; + f)"^2(a;+ i) 2(a;-i)'^6(a;-f)

(9).

Q-term formula,

(a^-i)(a:2-|)(a;2_^) 120(a; + f)"^24(a; + f)

/(-t) , /(4) /(f) , /(t) .10^
12ix + \)^12ix-\) 24 (a; -f) "^120 (a;- f)

'"^ ^*

12. These formulas, of course, yield identically the same results

as other central difference formulas embracing the same terms.

To illustrate this we will recalculate the value of /(•4) in the

example given in § 7.
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Example 4. See Example 2. Seven terms are given, the formula

will therefore be

/(I) ^ /(-3) f(-2) /(-I)
•4 (-16 - 1)

(-16 - 4) (16 - 9) 720 x 3-4 120 x 24 "^
48 x 1-4

/(Q)
,

/(I) /(2) /(3) ^

36 X -4 "^ 48 X - -6 120 x - 1*6 "^ 720 x - 26

or /(•4) = - •0046592/(- 3) + •0396032/(- 2) - •169728/(- 1)

+ -792064/(0) + -396032/(1) - -0594048/(2) + -0060928/(3)

= + -05055 - -00466

1-64665 -27647

1-05079 -20117

-02633

+ 2-77432 -48230
= 2-29202 as before.

Note, as a check, that the algebraic sum of the coefficients of the

terms on the right-hand side of the above equation is unity.

13. For the sake of completeness it is necessary to refer to a

system of notation in connection with central dififerences which

was introduced by W. S. B. Woolhouse and is still in use to some

extent. This system of notation is compared with that used in the

previous chapters in the following scheme

:

Ordinary Notation Woolhous^s Notation

/(-2) /(-2)
A/(-2) a_2

/(-I) Ay(-2) /(-I) &-1
A/(-l) a3/(-2) a_i c_i

/(O) A2/(-l) Ay(-2) /(O) (oo) bo (Co) do
A/(0) A3/(-l) «! Ci

/(I) Ay(0) /(I) b,

A/(l) Oj

/(2) /(2)

where A/(- 2), A'*/(- 2), etc. are denoted by a_2, &-i, etc. and

tto = J (a_i + a+i)>

Co = J (c-i + c+i).

Under this notation Stirling's formula to fourth differences is

/W =/(0) + ^ao + 2j^0+3! ^0 +
41

^o

=/(0)+(ao.g).+ (2VJ;)^ + |^,^4-|^ ...(11).
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Similarly Gauss' formula can be written

^(.+ l).fa-l)(.-2)^^
^^2).

t

14. Another system of notation, which is extensively used, is

that due to W. F. Sheppard. Two operators B and fi are used, such

that

S/(- i) =/(0) -/(- 1), /»/(*) = i [/(O) +/(!)],

2/(i) =/(l) - /(O), m8/(0) = i [S/a) + 8/(- i)],

etc. etc.

This notation, although somewjiat complicated, gives the usual

central difference formulas in very convenient forms.



CHAPTER VI

FINITE DIFFERENCES. INVERSE INTERPOLATION

1. In direct interpolation a series of values of the function is

given and the problem is to find the value of the function corre-

sponding to some intermediate value of the argument.

In Inverse Interpolation the problem is reversed and it is required

to find the value of the argument which corresponds to some value

of the function, intermediate between two tabulated values.

2. In certain cases of mathematical functions the desired result

can be obtained by direct calculation. Thus if

log a'

and the value of x can be found equivalent to any given value

ofy.

Where this is not the case various methods can be adopted.

These will be examined in order.

3. Let y =f(x) be the given value. Then

y =/(^) =/(0) + ^A/(0) +?^^ A»/(0) + ....

If it be assumed that the higher orders of differences vanish, and

that the values of A, A^, etc. are obtained from the given terms of

the series, then we have an equation in os which can be solved by

the usual methods.

The disadvantages of this plan are firstly that an equation of

higher degree than the second is troublesome to solve, and secondly

that for certain functions the degree of approximation may not

be very close. Since a quadratic equation employs only three terms

of the series, it often happens that no close approximation can be

obtained. In all cases the intervals between terms should be as

narrow as possible, so that accuracy may be increased and the use

of higher orders of differences obviated as far as possible.
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4. This difficulty of solving an equation in x of higher degree

than the second can be overcome in two ways. Assume, for purposes

of illustration, that four values of the function are given, viz./(0),

/(l),/(2)and/(3).

Then

/W =/(0) + ^A/(0) +?^^> A»/(0) + ^(^-^'^-2) ^a/(o).

No further differences can be calculated and therefore, since f(x)

is known, the corresponding value of x is found by the solution of

a cubic equation in x. The solution of the cubic can however be

avoided by proceeding as follows

:

Taking three terms only at a time

/W =/(0) + xAf(0)
+"^^^ AV(0).

and f(x) =/(!) + («- 1) A/(l) + (^-^K^-^) A'fa).

The third difference error in the first equation is

"("-y"-'>
A'/(o),

and, in the second equation.

If now both sides of these equations be multiplied respectively by

(3 — x') and x (where x is a rough approximation to the required

value, obtained by inspection) and the equations so weighted be

added together, a new quadratic equation in x will be formed from

which the third difference error will be practically eliminated. The

work of solving a cubic equation has been avoided, but all terms

have been used without sensible loss in accuracy.

If the mere arithmetic mean of the equations were taken, with-

out weighting as above, it is possible that, in certain cases, a worse

result would be obtained by taking four terms instead of three.

5. Alternatively the solution of the equation may be obtained

by successive degrees of approximation.

Thus, taking the above equation and neglecting differences of

the second and higher orders, we obtain as a first approximation

the value a?!, where

^ m-m (1).
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A further approximation is obtained by taking second differences

into account and writing x^ in place of x in the equation, thus giving

/W-/(0)
Xn (2).

A/(0) + H^i-l)Ay(0)
When third differences are taken into account x^ is written for x,

giving

/W-/(0)0!,= ...(3).
V(0) + i («^ - 1) AV(0) + K^s - 1) (^ - 2) Ay(0)

These processes can be repeated until the desired degree of

approximation is reached. The method has the disadvantage of

being somewhat laborious. On the other hand it has the advantage

that an error of calculation at an early stage does not vitiate the

result, being rectified by the further approximations.

6. A different method of procedure is to treat a; as a function of

f(x). Thus since

y =/W»
we may write x =

<l> (y).

We therefore treat x as a function of y and, since the given

values of y (i.e. /(O), /(I), etc.) will usually represent unequal

intervals of the variable y, we must resort to interpolation by such

a method as Lagrange's or Divided Differences, in order to obtain

our value of x (i.e. <^ (y)) corresponding to the given value of/(a?).

7. The following example is worked out in each of the above

ways.

Example, Find the number of which the log is 2J, having given

log 200 = 2-30103

210=2-32222

220 = 2-34242

230 = 2-36173.

Method I.

fix) A A2 A3

2-30103
2-32222
2-34242

2-36173

-02119

•02020

•01931

-•00099
- -00089

•00010
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f{x) = 2-33333 = 2-30103 + -02119^ - -00099 ^i^ll^

+-oooio
-(--^>^--^\

b

Or, by reduction,

a^ - 32-7a;« + 1303-la? - 1938 = 0.

Whence, solving the cubic,

^ = 1-5443.

Since the initial value of x is 200 and the unit of measurement

is 10, the result of the calculation is to give 215-443 as the required

value of X.

8. Method II.

f(x) = 2-30103 + -021190; - 00099 ^i^Ili^

,

also, f(x) = 2-32222 + -02020 (x-1)- -00089 (^-^K^"^)
.

The first approximation to the value of x is x' = l'5, so that

3 — a?' = 1-5. Since the values of S—x and x^ are approximately-

equal, we may take for our "weighted" equation the arithmetic

mean of the above equations, giving

/(a?) = 2-33333 = 2-30108 + -02161a;- -00047 o?^

Whence, solving the quadratic, a; = 1-5443 as before.

9. Method III.

1st approximation

2-33333-2-30103 , .^,„^^=
^02119

=^*"^^'^»

2nd approximation

2 33333 - 2-30103

^^"•02119 -i X -5243 x
-00099"^*^'*'^'^'

3rd approximation

^ 2-33333 - 2-30103
^' -02119 - I X -5432 x -00099 + J x -5432 x (-5432 - 1) x -00010

= 1-5442,

which differs only slightly from the value obtained by Methods I

and II.
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10. Method IV. Under this method we may consider the data

to be as follows

:

X fix)

2-30103
2-32222
2-34242

2-36173

200
210
220
230

It is required to find the value of/(2-33333). By Lagrange,

^.g.oqqoqx _ ('OHH) (^ 00909) (- '02840)
/ (2 SSSSS) - ^_ .^2119) (- -04139) (- '06070)

"" ^^^

C03230)(- -00909) (--02840)
"^

(-02119) (- -02020) (- 03951)

(-03230) (-01111) (--02840)

(-04139) (-02020) (- 01931)

(03230) (01111) (-00909)
^

(06070) (-03951) (01931)

= - 10-7748 + 103-5416 + 138-8764 - 16-2006

= 215-443.

This result agrees with the values previously found. The true

value is 215-442 and it will be seen, therefore, that all of these

methods give results in this case which are closely approximate to

the true value.

11. Methods I—III differ from Method IV, in that the first

three methods assume that/(ic) is a parabolic function of x, whereas

Method IV assumes that x can be expressed as a parabolic function

oi f{x). Both these assumptions may be sufficiently accurate in

many cases, but in other cases an inspection of the trend of the

given values of the function may indicate which assumption is to

be preferred.

12. By the use of the formulas of Divided Differences given in

Chapter VIII, Methods I—III can be applied to cases where the

given values of the function are at unequal intervals.

The application of Method IV is, of course, perfectly general.
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FINITE DIFFERENCES. SUMMATION OR INTEGRATION

1. Summation is the process of finding the sum of any number
of terms of a given series. This can be accomplished either if the

law of the series is known or if a sufficient number of terms is given

to enable the law to be ascertained. As will be shown in Chapter XX,
if no mathematical law is apparent, methods can be applied by

which the approximate sum of a series can be obtained.

2. Consider a function F{x) whose 1st difference is f{x). Then
we have

^(1) -^(0) =/(0)

Fit) -F(V, =/(l)

F{a) -F(a-l)=f(a-l)
F(a+ 1)-F(a) =f(a)

F{n-l)~F{n-2)=f(n-2)
F(n) -F(n-l)=fin-l).

Summing both sides, we obtain

J'(n)-^(0)=/(0)+/(l) +...+/(„-!)

or F{a)-F(0)=f(0)+f(l) +...+/(<»- 1)

or F(n)-F(a)=f(a)+/(a + l)+...+f(n-l) ...(1).

It is clear, therefore, that the sum of any number of terms of a

series of values oif{x) can be represented by the difference between

two values of another function F (x) whose 1st difference is /(a;).

By analogy with the system of notation already adopted for ex-

pressing orders of differences, the process of finding the function

whose 1st difference is f{x) may be denoted by A~^ /(a?). It is

n-l
customary to express /(O) +/(1) + ... +/(w — 1) as 2 /(a?), the

terms at which the summation is commenced and terminated

(designated respectively the inferior and superior limits of sum-

mation) being indicated m tb^ manner shown.
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3. The process of finding the value of F{x) is known as Finite

Integration and F (x) is called the Finite Integral of f(x). Where
the limits of summation are known we obtain by summation of

f{x) the Definite Integral of /(a;); if the limits of summation are

not expressed we obtain merely the Indefinite Integral oif(x).

4. As stated above, in obtaining the indefinite integral of f(x)

no point is specified at which the summation is to commence and,

since an unknown number of terms of the series is included, it is

necessary to include in the value of F(x) a constant term which is

of unknown value.

This constant vanishes in the case of definite integrals, since if

Xf{x) = F(x) + c,

then ""X fix) = [F (n) -{-c]-[F (0) + c]

= F(n)-F(0).

5. It is obviously always possible to find the first difference of

any function, but it does not follow that every function can be

integrated. The functions which can be integrated are limited in

number and the process of integration rests largely on the ingenuity

of the solver aided by such analogous forms as may be obtained by

the formulas of finite differences.

Thus we have A a* = (a - 1) a*

whence it is easily seen that

a — 1

and therefore, since the result of differencing is to give a*,

we have

a — I

where c is the constant introduced by integration.

The sum of the series a*" + a^+^ 4- ... + a*"^^^ is at once obtained
r+n-l

by finding the value of the definite integral 2 a*, which by § 2
r

,r+n a'
is equal to r- r- , which agrees with the familiar result for

the sum of a geometrical progression.
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6. Similarly since Aa;<^) = inx^'^^\

by analogy

47

m + 1

7. The following table gives the values of some of the simpler

integrals. They should be verified as an exercise by the student.

Fanotion Indefinite Integral

a;{x—l)

a;(-"»)

2

a"

a-l
^(m + l)

Wl + l

-{m-1)

+c

+c

+c

+ c

{cuc+h){ax-l-\'b)...(aa;-m+l+b)
{ax-\-h) {ax—\ + h) ... {ax-m-\-h)

a (m+ 1)
+ c

(cM7+6)(aa7-fl+6)...(a^+w-l + 6)

1

{(ix-l-^h){ax-\-h) ...{ax+m-\ + h)

a (m+1)

1

+c

(flw;+6)(flM7+l+6)...(a^+m-l-f6)

1

(flW7 4- ^) (cm;- 1 + 6). . .(a^ - m+ 1 + 6)

a{m-\){ax+ h){ax-\-l-\-h)...{oLx-\-m-'2. + b)

1
-+c

+c

a(m-l)(a^-l + 6)...(aa7-m + l4-6)

8. If the form of the function is unknown, a general formula for

the sum of a series of values may be obtained as follows, since

fix) =f(0)+ xAf(0) +"^^^ A«/(0)

Integrating both sides, we have

or, integrating between limits, we have
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or, more generally,

a+n-l

FINITE DIFFERENCES

.,. -71(71-1) .-, . W(^— 1)(^-- 2) ^„ ., ^= nf((^) + -^^2!— ^^("^^ "^
"^

3!
^y("*) + • •

•

(2).

It is instructive to obtain this result by the method of separation

of symbols. For

/(o + l) = (l + A)/(a),

/(a+2) = (l + A)'/(a),

Adding
/(a + n-l) = (l + A)'-/(o>

o+n-l
2 /(a) = {l + (H-A) + (l+A>'+...+(l+A)'->)/(o)

(1 + A)»-1., ,
= (l + A)-l -^(">

*

^A ^/W

=.{.-H--(^A^ "(-3V("-^> A'-H }/(.)

= «/(a) +"^>A/(a) +"-^\(^^ A'/(a)+ ....

9. An example will illustrate the use of the formula.

Example 1. Find the sum of the first n terms of the series whose

initial terms are 1, 8, 27, 64, 125.

We have

/(^) A A2 A3 A«

1 7 12 6
8 19 18 6

27 37 24
64 61
125
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Whence

v^^^z X 1 .w(n~l) ^ n(n-l)(n-2) ^^S f{x) = nxl+ ^
^^

^ x7+— ^p ^xl2
n-l

n(7i-l)(n-2)(n~3)
^^g

4 ~ 4

which agrees with the formula for the sum of the cubes of the

natural numbers.

10. Where it is desired to integrate a function which is the

product of two factors, the following device may often be utilised

with advantage.

Let the function be y = UxVg^

Then Au^v^= u^+iV^+i - u^Va^

= Ux+i (Vx+i - Vx) + Vx {Ux+i - Ux)

Integrating both sides of the equation, we obtain

or '2,VxAUx = UxVx-'^Ux+iAVa: (3).

Thus, if the original function can be put in the form Vx^Ua;, its

integral can be made to depend upon that of Ux+i^Vx, and, if the

latter is in a form which can be readily integrated, the value of an

apparently intractable integral may often be obtained in this way.

Example 2. To find the value of Xxa^.

qX
Since Sa* = r , we may write

2a?a* = I.X
a-1'

Using the above formula (3) we

^ Aa^ xd^
Zx -=

z.a—1 a—

1

get

Ax

xa'^

~a-l a-1 , since Ax =
= 1,

ica* a^+^
+ c.a-1 (a-iy

H. T. B. I.
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11. Sometimes it may be necessary to apply the formula more

than once in order to reduce the integral by stages to a standard

form. The process is illustrated in the following example.

Example 3. To find the value of 22^a:^.

Remembering that A2^ = 2*^, we may write

= a,'32'^-22*+iAa^

= 3^2^^ ^ 22^+1 (3ic2 + 3^ ^ 1)^

It will be observed that in applying formula (3), the degree of

X, in the terms within the integral, has been reduced by unity.

Proceeding as before we obtain

22"'^^ = a;3
2x _ 2: (3^ + 3a; + 1) A2*+i

= a,''2^ - [2=^+1 {^a? + 3^ + 1) - 22=^+2A (3a;« + 3a; +1)]

= 2=^ (a;» - 6a;=^ - 6a; - 2) + 22=^+2 (g^ _,. g)

= 2^^ (a;^ - 6a;2 - 6a; - 2) + 2 (6a; + 6) A2^+2

= 2* (a;» - ear" - 6a; - 2) + [2^^+^ (6a; + 6) - S2=«+»A (6a; + 6)]

= 2* (a? - 6a;« + 18a; + 22) - 22*+* X 6

= 2^(a;»-6ar^4-18a; + 22)-6x2^+' + c

= 2=^(a;3 _ g^^ 18a;- 26) + c

The above process is analogous to that of "Integration by Parts,"

which is dealt with in the Integral Calculus, Chapter XVIII, § 6.



CHAPTER VIII

FINITE DIFFERENCES. DIVIDED DIFFERENCES

1. A simple method of interpolation is available, where the in-

tervals between the given terms are unequal, by the method of

Divided Differences.

2. The application of the method rests upon the assumption,

which, as has been shown, is the basis of all theorems for interpola-

tion by means of Finite Differences, that f(oc) is a rational integral

function of oo of the nth. degree.

On this assumption, it can be shown that f(os) can be expressed

in the form

^0+ ^1 (^ - ^i) + ^2 (^ - ai)(^ — ^a) + . .

.

+ An{oo- aO (a? - ttg) . . . (a? - an),

where Aq, Ay, ... An, Oi, ag, ... «« are constants.

3. In order to apply this formula in practice, it is convenient to

introduce a scheme of notation on the following lines, where the

symbol of operation is denoted by A' in order to distinguish it from

the ordinary A.

Value of X
Value of

Function
A' A'a A'3

02

03

/(O)

/(«2)

/(«4)

/(«,)-/(0)

/(«2)-/(ai)

a2-ai
'

/(«3)-/(«2)

f{a,)-f{a,)

A'/(ai)-A7(0)

^2

A'f{a2)-A'f(a^)

A'f{a,)-A'f{<H)

a^-a2

A'7(ai)-A'V(0)

as

A'7(a2)-A'7(ai)

etc.

Generally, we have

Un+r-ar

4—2
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Hence /(aO=/(0) + a,Ay(0),

and /(oa) =/(ai) + ((h-(h) A'/(ai)

=/(0) + a, A'/(0) + {a, - a,) {A7(0) + a, A'^f (0)}

=/(0) + a,A7(0) + a, (a, - a,) A'V(0).

By proceeding similarly for further terms, we find that we can

write generally

/W =/(0) + «^A7(0) + x(x-aO AV(0)
+ x(x-a,)(x- a,) A'7(0) + . . . (1).

This general form can be readily established by the method of

induction.

By giving appropriate values to ttj, Og, ... the ordinary formulas

applicable to equal intervals can be at once deduced.

4. The genera] method of working will be shown more simply

by an example.

Example. Find the value of log 4-0180, having given the fol-

lowing data:

Number Logarithm

4-0000
4-0127
4-0233
4-0298
4-0369

-6020600
•6034367
•6045824
-6052835
•6060480

Transposing the origin, we have the following scheme:

X /(^) A' A'2

0-0000 •6020600 •T.r=—
- ^000317

•0233
•0136

0-0127 -6034367 "jr— - ^000223

-0171
•0130

0-0233 -6045824 "Ta"----
- -000186

•0136
•0137

0-0298 •6052835 ^-^-—
0-0369 •6060480
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We have to j&nd/('0180), which is, by the above formula,

/(O) + •0180A7(0) + -0180 X -0053AV(0)
[the further terms will not affect the seventh place of decimals],

where /(O) = '6020600, A7(0) = -108402, AV(0) = - '0136.

Thus log 4-0180 = -6020600 + -00195124 - 00000130 = -6040099

to seven decimal places, which agrees exactly with the true result.



CHAPTEE IX

FINITE DIFFERENCES. FUNCTIONS OF TWO VARIABLES

1. Questions involving functions oftwo variables arise frequently

in actuarial practice. Thus the tabulated values of functions (e.g.

annuities) dependent upon two lives may be given only for com-

binations of quinquennial ages in order to economise space. If the

value corresponding to any other combination of ages is required,

resort must be had to methods of interpolation.

2. In considering the problem of the changes induced in the

value of/(a;, y) by finite changes in the values of x and y we must

consider x and y as being independent of each other. Clearly, if

y were a function of x the expression f{x, y) could be made to

assume the form of a function of x alone and it could be dealt

with by the methods already developed in previous chapters.

Thus X may vary while y remains constant, so that, if x changes

to a;+ ^, the value of the function becomes f{x -|- ^, y); or y can

vary while x remains constant, giving a value fixyy-k-k)) or both

X and y can vary independently, giving a value for the function of

/{x^-h.y + k).

3. We shall proceed first to discuss the problem where the

values of the function are given for combinations of successive

equidistant values of x and y.

Thus we may have

f{^> y) /(^ + ^> y) /(^ + 2A,, t/) ... f{x 4- mh, y)

f(x,y + k) f(x + h,y + k) f(x-\-2h,y-^k) ,..f(x+mh,y + k)

f(x,y + nk) f{x+h,y+nk) f{x-\-2h,y + nk) ...f{x-\-mh,y+nk)

As has already been seen in the case of functions of one variable

(Chapter III, § 6), this scheme can be simplified, for the origin can

be placed at the point {x, y), and the unit of measurement can be

taken as h in the case of the variable x and k in the case of the

variable y.
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The scheme then becomes

/(0,0) /(1,0) /(2,0) /(m,0)

/(0,1) /(1,1) /(2,1) /(m,l)

/(0,n) /(1, 71) /(2,ri) /(m,n)

4. Since x and y may vary independently, a fresh scheme of

notation must be introduced to express the variations which may
arise. Thus A^. will be used to denote the operation of differencing

with respect to x, y remaining constant, a corresponding significance

attaching to Aj,, so that

A./(0,0)=/(l,0)-/(0,0),

^/(0.0)=/(0,l)-/(0,0),

or, using the method of separation of symbols,

/(l,0) = (l + A,)/(0,0).

Accordingly, we have

/(m, n) = (1 + A^r (1 + Ay)»/(0, 0)

=/(0,0) + mA,/(0,0)+(2)A», /(O, 0) + (3) A»,/(0,0)+ ...

+n^yf{0,0) + mn^^^yf{0,(i)+{^)n^^\f{Q,(i)+...

+ (2^/(0. 0)+mg)A,AV/(0,0) + ...

+ (3)^^/(0.0)+-

(1)-

Here ^\, A^a,, ... can be written down by differencing the rows of

the table of the function; similarly A^^, A'y, ... are the differences

of the columns of the table.
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To find Aj;A„, A'a,Ay, etc. we have

A,A,/(0, 0)= A, [/(O, l)-/(0, 0)]

=/(l. l)-/(0, 1)-/(1, 0)+/(0. 0).

A««A,/(0, 0) = A»,[/(0, 1) -/(O, 0)]

=/(2, 1) - 2/(1, 1) +/(0, 1) -f(% 0)

+ 2/(l,0)-/(0,0),
and so on.

Example 1. Table XVI of the "Short Collection of Actuarial

Tables." To find -4 31:63, having given

•^3J:6o = -11669, A^,^ = -13190, ^4j,eo = -15494,

^30:66 = -09809, .^35,85
= -11039,

^3J:70 = -07812.

Here m = i, w = J, and

A^= -01521, A*a,= -00783, Aa;Ay = - 00291,

Aj/ = - -01860, A^^y = - -00137.

Whence A^^,^ = -10776, the correct value being -10773.

5. An obvious method ofprocedure involving only first differences

is as follows. Obtain the value of/(O, n) by interpolation between

the values of /(O, 0) and /(O, 1). Similarly, obtain the value of

/(I, n) from the values of/(I, 0) and /(1, 1). Finally find/(m, n)

by interpolation between /(O, n) and /(I, n). Thus

/(O, n) = r=^/(0, 0) + 7?/(0, 1),

/(I, n)=l-rz/(l,0) + 71/(1,1),

/(r?i, w) = l-m/(0, n) + wi/(l, n)

=/(0, 0) + m A^/(0, 0) + n^yf (0, 0) + mnA ^ Aj,/(0, 0)

(2)

= 1 - m 1 - n/(0, 0) + 71 . 1 - m/ (0, 1)

+ m. 1^/(1, 0) + mn/(l, 1) ...(3).

Employing this formula in the example given above we find

^^63 = -10822.

The method is suitable if only a rough approximation is required,

but cannot be depended upon to give an accurate value.
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6. Obviously the method can be extended by taking higher

orders of differences. The disadvantage of this procedure is that

it involves the calculation of further values of the function corre-

sponding to a given value of a; as a preliminary to applying the

interpolation formula to find the value off(x,y). The process

thus becomes laborious and moreover we do not necessarily obtain

identical values for f(x, y) if we interpolate first with regard to x
and then with regard to i/, or vice versa.

7. As in the case of functions of one variable, we shall expect to

obtain the best results when the principles of central differences

are applied, i.e. when the required term occupies as nearly as pos-

sible a central position among the terms employed in the formula.

The difficulty is that, in dealing with functions of two variables,

we cannot adapt our formulas to any system of values which may
be given. Thus an inspection of the advancing difference formula

(1) shows that it involves points whose coordinates form a triangu-

lar plan which may be illustrated thus:

(0, 2)
o

(0, 1) (1, 1)
o o

(0, 0) (1, 0) (2, 0)
o o o

This illustrates the formula where two orders of differences are

taken into account, the black dot representing the interpolated

term. It will be seen that the scheme is hardly satisfactory from

the point of view of central differences. For most practical pur-

poses, however, where ordinary actuarial functions are involved,

formula (1) will give satisfactory results.

8. Formulas embodying the principles of central differences can

conveniently be obtained by an adaptation of Lagrange's for-

mula. This formula applied to functions of two variables has not

the same wide application as the ordinary formula of Lagrange

previously given in Chapter IV, but, as will be seen below, it gives

expressions for /(a;, y) in terms of the neighbouring values.
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9. General formulafor 4i points.

Taking all combinations of two terms except those which give

rise to a^ and y", let

f(w,y) = A(x-^)iy-b) + B(x-^)(y-a) + Cix-a){y-a)

+ D(x-a)(y-b),

then /(a, a) = A(a-fi)(a- b),

f(a,b) = B(a-ff)(b-a),

/(/3,a) = 2)(/3-a)(a-6),

f(0,b) = O(0-a)ib-a),

whence, substituting for A, B, G and D in the original formula,

fix, y) ^f(«, a)(„_^)(„_6)+/(«,
6)(„_^)(6-a)

(x-a)(y-a) . (x-a)(y-b)

10. General formula for 6 points.

Taking all combinations of two terms, let

f(x,y)==A(x-ff)(y^b) + B(x-^){y-a)+G(x-a)(y--a)

+ D(x-a)(y-b)-^E(x-a)(x--^)-\-F(y-a)(y-b).

Taking the points a : a, a :b, a : c, ff : a, ^ :b and 7 : a, and pro-

ceeding as before, we arrive at the result

f/. ,A - f(« «^ {
(^-^)(y-J>)

,

(^-Ci)(x-0) (y-a){y-b))

J ('«'. y) -/(«• a)
1^^ _ „) (J _ „)

+
(^ _ „) ^^ _ „)

+
(6 _ a)(c - a)\

•^ ^"' "^
l(/3

- a)(6 - a) + (6 - a)(c - 6)|

, ^,„ . (y-")(y-<')

/rfl «^ (
('"-"Xy-fc)

,

(x-a)(x-0))

-J ^^'"^
\{0 - «)(6 _ a) + (yS - a) (7 - ^)|

. ^.o i,^
('^-«)(y-a)

.(5).
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11. Generalformula for ^ points.

Taking all combinations of two terms, each involving x, with
two terms each involving y, let

f{x,y)^A{x-P){x^y){y-h){y-c)

\-B(x-^)(x'-y)(y-a)(y-c) + G(x-/3)(x-y)(y-a)(y-b)

+ D(x-OL)(x^y)(y'-b)(y-c)-{-E(x-a)(x-y)(y-a)(y-c)

\-F(x~a)(x-y)(y-a)(y-h) + G(x-a)(x^j3)(y-h)(y-c)

+ ff(a)-a){x-^)(y-a)(y-c)+I(x^a)(x^/3)(y-a)(y--b).

Whence, proceeding as before, we have

f(x v) - f(oL a^
(^-/g)(^-7)(y-^)(y-c)

. f(„ Lx (^ - ^)(^-y)(y - a)(y -c)

'^J^^>^)(^a-^){a-y){c^a){c-h)

, f(o „^
(^-«)(^-7)(y-6)(y-c)

•^^^' ^/S-a)(/3-7)(a-6)(a-c)

. f(o 7,x
(^-«)(.^-7)(y-a)(y-c)

. ^/ j. {x-a){x-^){y-a){y-c)
^f^y'^)(y.a)(y-^)(b-a)(b-c)

+ /('/>
^)(^_«)(7-/3)(c-a)(c-6)

^^^-

12. Formula (4) is the general formula corresponding to the

method of § 5; by altering the notation the identity of the two

formulas (3) and (4) is apparent.

Formula (5) includes six values of the function, the co-ordinates

being related in the manner shown. It will be seen that the formula



60 FINITE DIFFERENCES

can be applied to any of the following groups of values, the black

dot representing the interpolated value

:

(0,2)
o

(0,1)
o

(1.1)
O

(0,1)
o

(0,1)
o

(1,1)
o

(-1,0)
o

(0,0)
o

(1,0)
o

(-1,0) (0,0) (1,0)
o o o

(0,0)
o

(1,0)
o

(i)

(2, 0) 1

o
(0,-1)

o

(ii)

(-1,-1) (0,-1)
o o

(iii)

(0,1) (1,1)
o o

(1,1)
o

(-1:,0)
o

(0,0) (1,0)
o o

(-1,
o

0) (0,0) (1,0)
o o

(1,-1)
o

(-1,
o

-1) ('l, -1)
o

(iv) (v)

Other systems could be written down, but the above are suf-

ficient for purposes of illustration.

System (i) is obviously the same as the advancing difference

formula. It is obtained by writing a = 0, ^ = 1, 7 = 2, a = 0, 6=1,

c= 2 in formula (5).

Example 2. Find A^^.^ from the data of Example 1, using

the Lagrange formula applicable to system (i). It will be found

that the same result is obtained.

System (ii) should be expected to give a foniiula which will be

more accurate than the advancing difference formula, since the

interpolated term will occupy a more central position in relation

to the terms employed. The formula is obtained by putting a = 0,

^ = 1, ry = — 1, a — 0, 6 = 1, C — — 1 in formula (5). Working on

the same example as before and taking the origin at the point

(30, 60), the values of the function entering into the formula are

^2^:60 = -10080, .43J, 66 = -09809, A^,^ = 'llQm,

^aJ, ^ = -14006, ^3^,6, = 11039, .1 3^,60 =-13190.

We obtain as a result il3j.a3
= '10770. The degree of approxi-

mation, though close, has not, in this instance, been improved.
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System (iii) is an inversion of system (ii) and should be useful

for interpolation where x and y have negative values.

The lack of symmetry of systems (iv) and (v) suggests that they

are not likely to yield good results in practice.

13. When nine points are used, as in formula (6), the system is

represented by the following diagram

:

(-1,1) (0,1)
o o

(1.1)

(-1,0) (0,0)
o o

. (1, 0)
O

(-1, -1)(0, -
o o

1)(1, -1)
o

It will be seen that this scheme embodies all the principles of

central differences and should therefore give good results.

Taking the previous example with the origin at the point (30, 60)

the six values entering into the formula for system (ii) are used

together with the following additional values :

Ai,^ = -08435, A,l , ,,
= -12132, A^,^ = -15972.

Making use of formula (6) the interpolated value is found to be

•10771, a slightly better approximation to the true value than

those obtained previously.

On general reasoning we should expect a somewhat better result

by taking the origin at the point (30, 65) so that the interpolated

value would occupy a more central position. The values Aj^,^,

^30:65> -^36:65 ©ntering into the immediately preceding calculation

are excluded, and the following values introduced

:

^2^:70= -06642, ^35,70 = -07812, ^3^,70 = '08756.

On working out the result, however, we arrive at the value -10848,

which is a worse approximation than the value obtained ,by the

rough method of § 5.

14. This apparent inconsistency illustrates one of the chief

difficulties of interpolating between functions of two variables,

namely, that one does not necessarily obtain a better degree of

approximation by proceeding to a higher order of differences or by

employing more terms in a formula. Changes in the value of/(a;, y)

occasioned by alterations in the values of x and y may be so con-
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siderable that distant terms may have such a disturbing effect

upon the formula used as to upset the agreement between the

approximate interpolation surface and the true surface which

represents f{x, y).

It is thus difficult to say what will be the degree of approxima-

tion of a given formula, but an inspection of the course of the

differences will be some guide as to the advisability of introducing

further terms into the calculation.

15. Other devices may sometimes be adopted which enable the

interpolation to be reduced to the work of a single variable inter-

polation.

Thus, if the sum of x and y is a multiple of 5, by suitably

selecting the origin we may write

f{x, - x) =/(0, 0) + x [/(I, - 1) -/(O, 0)]

+ (2) [/(2, - 2) - 2/(1, - 1) +/(0, 0)]

«— 1 a;—

2

/(0,0)- a:, a; -2/(1,-1)

+^^/(2,-2) (7).

By referring to the point diagrams on previous pages it will be

seen that the process is equivalent to interpolating along a diagonal

line running through the various points. The formula is of the

advancing difference type; the corresponding central difference

formula would preferably be employed in practice.

J. Spencer has given {J.I.A. Vol. 40, pp. 296-301) examples of

the use of several ingenious methods of this character.



CHAPTER X

DIFFERENTIAL CALCULUS. ELEMENTARY CON-

CEPTIONS AND DEFINITIONS

1. In the subject of Finite Differences we were concerned with

the changes in the value ofa function consequent upon finite changes

in the value of the independent variable. In the Differential Calculus

we consider the relation of Ay to Ax when the value of Ax is made

indefinitely small.

The application of the Differential Calculus is largely limited to

such values of a function as are finite and continuous, and, unless

otherwise stated, this limitation is to be implied in the following

demonstrations. In practice these conditions are almost universally

fulfilled by functions entering into actuarial calculations.

2. Let y = f(x) and let x receive an increment h. Then the

change in the value of y is measured by f{x-\-h)—f{x) and the

f{x + A) — fix)
rate of change of y i^'^— ^—^^-^^

. The limit of this expression

when A -»- is called the Differential Coefficient or First Derived

Function of / {x) with respect to x.

The operation of obtaining this limit is called differentiating f{x).

Using the notation of Finite Differences the differential co-

efficient becomes

Lt ^
and is variously denoted by -j- , f (^), /(^)> 7 , ^fip)-

The symbol -j- or its equivalent represents an operation of the

character described; the elements dy

and dx must not be regarded as separate

small quantities.

3. The geometrical representation of

the differential coefficient is illustrated

in the accompanying diagram. T M N X
Let the curve shown represent the

Q1/^^ R

7"
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equation y =/(a?). Let OM — x and ON =x-{-hy and let PM and

QN be the corresponding ordinates. Let PR be the perpendicular

from P on QN and let QP be produced to cut OX at T.

Then /(^ +^)-/W _ Q^-PM ^ QR __ PM
inen

^
"

ifiV^
- PR- TM'^^^^^'

When the point Q moves up to, and ultimately coincides with the

point P, the line QPT becomes the tangent to the curve at the

point P. The limiting value of — ^

—

^-^ is therefore the

tangent of the angle which the tangent to the curve at the point

(a?, y) makes with the axis of x.



CHAPTER XI

DIFFERENTIAL CALCULUS. STANDARD FORMS.
PARTIAL DIFFERENTIATION

1. The differential coefficient of any particular function can, of

course, be obtained by direct calculation, but the process can

usually be simplified by the application of the following general

rules. The general similarity to the propositions already demon-

strated for Finite Differences will be apparent.

I. The differential coefficient of any constant term is zero.

This is evident since a constant is a quantity which does not

change in value in any mathematical operation.

II. The differential coefficient of the product of a constant and

a function of x is equal to the product of the constant and of the

differential coefficient of the function.

Thus #- [c ./(^)] = Lt ^/(^+\)-^/(^)

= Lt c

dx ' h^Q

f{x + h)-f{x)

h^O h

-'^ w
III. The differential coefficient of the algebraic sum of a number

of functions of x is the sum of the differential coefficients of the

several functions.

Let y^u-\-v-\-w-\-...y where u,v,w, ... are functions of x,

then Ay •= Au + Av + Aw + ...

^
Ay _ Au Av Aw
Ax ~ Ax Ax Ax '"*

which, by proceeding to the limit, becomes

dy^du^d^^dw_^
dx dx dx dx

^

IV. The differential coefficient of the product of two functions is

the sum of the products of eachfunction and the differential coefficient

of the other,

H. T.B.I. 5
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Let y = uVy

where u and v are both functions of a;.

Then Ay = (u + Am) (v + Av) — uv

= uAv \-vAu + AuAv

= uAv + (v \- Av) Au

^"<^
A^ = '*A^ + <'' + ^''>Ai'

whence, taking the limit, when v-^ Av-^v,

dy _ dv du

dx dx dx

which may be written

dy dv du .„^

--^ir^'r^:r^ (3)>

y dx u dx V dx
^

This result may be extended to include the product of any number

of functions.

For if y = uvw ; let vw — z, then y — uz.

Whence 1.^ = 1^ + 1^.
y dx u dx z dx

P 1 dz _1 dv 1 dw
z dx V dx w dx'

Therefore 1^ =1^+1^ ^l^JH
(5).

y dx u dx V dx w dx

Multiplying by uvWy we obtain

dy du , dv dw ._.
-^ = vw -^ + wu -f- + uv -J- (6).
dx dx dx dx

Similarly for the product of any number of functions.

V. The differential coefficient of the quotient of two functions is

(Diff. Goeff. of Numr.){Denr.)-{Diff. Goeff. of Denr.) (Numr.)

Square of Denominator

Let y = --
^ v

^ u + Au u vAu — uAv
Then . Ay = r =—7

—

. . ,^ V + Av V v{v { Av)

Au Av
. V-r U-r—

, Av Ax Ax
fl-nd A =—7

ITT"}Ax v{v + Av)
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whence, taking the limit,

du dv

dy _ dx dx ,^.

di 7' ^ ^'

which may be written

1 dy __1 du 1 dv .^.

y dx u dx V dx "'\ r

VI. The differential coefficient of y with respect to x, where y is

a function of u and u is a function of x, is the product of the dif-

ferential coefficients of y with respect to u and u with respect to x.

For 4^^^ ^
whence, taking the limit,

dy^d^dM
dx du' dx

^

Similarly ^ = ^.*f.*^ (10).
*' dx du dv dx ^

and so for any number of functions.

2. Various standard forms can now be developed, mainly from

first principles. It is instructive to note the points of analogy with

the corresponding forms for Finite Differences.

(i) y = (c^,

dy_^^{x+hY-x^
dx h^o h

Lt ^ "^
-1

h~^o h

Expanding by the Binomial we have

2=.^J.['^G)^G)^•]

= naf^\
^

5—2
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(ii) 2/ = a^

/ = Lt 7
ax \^Q n

= a*Lt

—

J
—

= a^'Lt ^ fl + A^ log, a +|'(loge a)» + ... - ll

= a* Lt Tloge a +
I

(loge ay + . . .1

= w^ loge a.

If
2/ = ^> £ = ^l^g*^ = ^-

(iii) 2/ = logad?.

Then ay = x.

But
d(ay) ^djqy) dy

^

dx dy ' dx'

Hence, using the result established in (ii) and remembering that

o^= a;, we have
d^

or

i-''««-l
l=^log«a.g.

Whence
dy _ 1

3» " a; loge
«

'

If
rfy 1 1

2' = '°^'^'
l'a>\.s,e'-a>-

(iv) 2/ = [/(«')]"; y = e-«»'; y = log. /(«;).

If y=[/w]".

dy

^

dU(x)-r dfjx)

dx df{x) ' dx

Similarly if y = e /W, ^ = e^W . /' (x),

and if y = log./(«). 1=^).
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(v) y = sm X,

dy _j sin (a? + A) — sin x

dx ft^o ^

2 sin ^ . cosHi)

sin

= Lt

2

2 / M

(vi)

Then

whence

Therefore

= cos X,

y = sin~^ X

sin y — x,

dx

dy
= cos y = \/l— sin^ y==sll—x^.

c?a? ^ Vl - flj®

*

3. The values of differential coefficients for the other trigono-

metrical functions can be found by methods similar to those employed

in (v) and (vi). The results are given in the table below and should

be verified as an exercise by the student.

Function
Differential

Coefficient
Function

Differential

Coefficient

a"

loga^?

loge^

sin^

cos 07

tan^

coto?

sec 07

cosec 07

710?"-

1

a* logg a

1

07 log< a

1

07

COS 0?

-sin 07

sec2 x

- cosec^ 07

sec or . tan a;

-cosec 07. cot 07

sin -1 07

COS" ^07

tan-^07

COt~l07

sec~^07

cosec~i 07

1

v/l-072

1

1

1+072

1

l+:t2

1

07V07^-1

1
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4. Logarithmic Differentiation. This method is of special value

in two cases. Thus if y = uvw , .
.

, where Uj v,w, ... are functions

of X, then
logy = \ogu + log v + log w-\- ...,

J 1 dy _1 du 1 dv 1 dw
y dx u dx V dx w dx

dy _ VI du \ dv \ dw ~]

dx~ \ji dx V dx w dx
"

"

J
'

a result which agrees with that already obtained in § 1.

Secondly if y = w^ u and v both being functions of x,

logy = v log u,

, 1 dy V du , dv

ydx u dx ° dx

dy „ .du „ , dv
or -f=^ vu''-^ -J- i-u'lo^u-^.dx dx ^ dx

5. We will now give some miscellaneous examples of differen-

tiation.

,.. a-\-a^

By the ordinary rule for a quotient

dx (^ + xf

(6 + a;) 2a; -(g 4- a;'') _x''-^2hx-a

\

'^
{b + xy (6 + xy '

This can best be treated by resolving the expression into partial

fractions. Then

4 5
y 1-Sx 1 - 2aj

'

c^y (^ (1 - 3a;)-^ cZ (1 - 3a?) .djl - 2x)--' d(l-2x)
dx~ d(l-Sx) ' dx d(l-2x) ' dx

12 10

(l-3a;)\ (1-2^)'^'
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(iii) y^^la-\-x. . .

1

dy d(a-\- xY d(a-\-x) 1 , ,--i

ax d{a + X) dx n^

(iv) y = \og{\ogx).

dy __ d log (log x) d (log x) _ 1

dx d (log x) ' dx ~ X log X

'

d {iQic^^ —=======] d
,% _ V V^^ - 1/ ^x'-X d {x" - 1)

dx
~

1 ' d{p(?-X)' dx

= L_._i(^.2_i)-f.2a;

(v)

1 +

1

a; V ic2 - 1

1

log2/ = -loga?-2--log^-3,

ldy_l d{\ogx-^) d(x-2) ^^^-^ 1

2/ da; a? (i (a; - 2) * rfa?
° "

a?"

l cZ(log^-3) (Z(^-3) ^ 1

1 1 1 . x-~2

~x(x-2) ' x(x-S) x" ^^x-S'

Whence ^ - - f^^^T f ^
|
iw ^H^l^^^°°^ d^- U-3y U(^-2)(a;-3)^a^^''^a;-3j
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(vii) y-a^, h"^,

log y = x log a-\- c^ log b,

^ = a^.h'^ (log a + c* log c log h).

1

(viii) y^af^ + af.

In this case logarithmic differentiation must be used, but for this

purpose the two terras must be taken separately.

Let
1

oF = u and o^ — v.

Then
dy _du dv

dx'~ dx dx*

\ogu = x log Xf

Idu 1 .

1

g = ^(l + log^).

Also logw = -loga?,

Idv 1 I , 1
- J- = - . - + log a? . - -

,

V dx X X ^ a?

^ = ^-.-(l-log..).

Therefore -^^ = ar* (1 + log a;) + af~^ (1 - log x).

(ix) Differentiate log^ x with regard to a^.

Let y = loge X and z ^ a^.

Then ^ = ^.^=^.J-.
rf^: dx' dz dx' dz'

dx

Therefore ^=- —=—

.

inereiore
^^ ^.^^ 2ar»-
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6. In dealing with cases where a function of two variables is

involved it is convenient to adopt methods similar to those used

in Finite Differences (see Chapter IX, § 4). Thus we define Partial

Differentiation as the process of differentiating a function of several

variables with reference to any one of them, treating the other

variables as constants.

This process is denoted by the symbols o~ » o~ > ^^c. We will also

use the symbol Bx to denote a small change in the value of x.

Let u=f(w,y).

Then u-{-Bu=f(x-\-h,y + k)

and

5w =/(a? +Ky + k)- f{x, y)

_ f{a:-\-h,y-\-k)-f(x,y -\- k) ^ , f {x, y-\rk)-f {x,y)-
h

'^^
Ic

'"'

Proceeding to the limit when h and k successively -*- 0,

f(x-\-h,y + k)-f{x,y + k) ^d
h dx'' ^ ' ^ ^

=^ f(x, y), since A? -* 0.

Therefore hu^:^ .hx \- — . By,
dx dy ^

J 8u du du By
and ^ = ^ + ^.-£»

or, when Bx-^0,

Bx dx dy' Bx

du _du du dy ,,^s

dx dx dy' dx

7. If/(a;, 2/) = 0, ^ = Oand

_ du du dy

j

dx dy' dx'

du

Whence ^=-p (12).
dx du

dy

Example. If x"^ -^ xy + y^ = 0,

then
9^ = 2^ + ^' dy

= '' + ^y'

dx x+2y



CHAPTER XII

DIFFERENTIAL CALCULUS. SUCCESSIVE
DIFFERENTIATION

1. When -^ is differentiated with respect to a;, we obtain a

further function of x which is known as the second differential

coefficient or second derivedfunction of y. This operation represented

d /dv\ d^v
by -fi-f-j is generally written -r^ or f"{x). If the function is

differentiated n times with respect to x, the result is called the nth

d^v
differential coefficient or nth derived function and is written -j^

.

Other symbols for the nth differential coefficient are/"*> {x), D^y, y^

2. In many cases the value of the nth differential coefficient can

be found readily by inductive reasoning.

Example 1.

2^ = log (a; + a).

_ i_ - 1 _ (-!)(- 2) Y
y''~x-\-a'y'^''{x^ay'y'~ {x + af '

and by analogy

^"^ ^> {x +ay
Example 2.

y = a-\-hx->f ca?-\- c?ar» + ...+ kx^,

2/i= h + lcx^- Ma^ -{... -\-n,kx'^-^,

2/2= 2c + 2.3c?a; + ... -h n (n- l)A;a;"-^

2/n
=

Example 3.

niA;.

7a?-

1
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Making use of the method of partial fractions,

_ 4 5

4.3 5.2
yi =

(1-3^)2 (l-2a?)

4.3^.r?! 5.2^.yi !

^"^ " (1 - 3icf+1 (l-2^)«+i
*

3. Leibnitz's Theorem.

This theorem gives an expression for -^-^ , where y is the product

of two functions of oo, say u and v.

It should be noted first that, as shown in Chapter XI, § 1, the

operator -y- or D obeys the distributive and index laws and is

commutative in regard to constants. In these respects it is similar

to A (see Chapter II, § 6).

*

XT d , . du dv

and we may therefore write

D (uv) =A (uv) +A (uv)

= (A + A) uv,

where A operates only on u and differential coefficients of u and

A operates only on v and differential coefficients of v.

Therefore

= [A" + n D,^-'D, + (2) A'*-'^A^ + . . . + A"] uv.

Now
d^'uA»M = «^^.,

I),^-'D,(uv) = D,^--'(u^
dv\ dv d^'^u

dx'^dx''-^'

etc.

Hence

d^ (uv) _ d^u dv d^'^u /n\d^v d^-^u d^
dx'' "'"dx^^'^'^dx' dx^-"-

"^W d^* dx""-^^
'
" '^

'^ dx""

(1).
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This formula can also be established by induction, but the proof

by this method is left as an exercise to the student.

4. Examples of the application of the formula are given below.

Example 1. y^a^ef^.

Since -t-;^- can be written at once as a**e***, it is convenient to

take a? as the factor v, and e** as the factor u.

Then -j- = Sa?*, etc.
dx

Therefore

Example 2. If y — x^ (log xfy

prove that

ar'2/n+2 + ^n+i = 2 x w!.

We have yi = a;**

.

^ + (log xf n . x"^^

or a?yi = 25?** log x + wa?** (log x)^

= 2a::" log a? + r?2/ (i).

Differentiating both sides of the equation

xyz + yi = h 2 log x . twc**"^ + n^i
X

or ic»2/2 + a?yi = 2ic" + 2na?" log x + 7ia:ryi

.

Substituting for x^ log a; from equation (i) we obtain

^y<i. + ^y\ = 2a;** -f nxy-^ — n^y + na;yi

or a^i/a— (2n — l) 373/1 + n'^y = 2a?*» (ii).

By differentiating each term of this equation n times, making

use of Leibnitz's Theorem, we arrive at the result

a^yn+2 4- ?iy„+i.2a;+ w(n-l)y„

-(2w-l)y„+i.a;-n(2w-l)2/„

^yn+2 + a;yn+i =2xnl.
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DIFFERENTIAL CALCULUS. EXPANSIONS.
TAYLOR'S AND MACLAURIN'S THEOREMS

1. It is often necessary to expand f{x) in a series of ascending

powers of x. This has been done by ordinary algebraic or trigono-

metrical methods in such cases as {x 4- a)**, eF, loge(l +x\ sin a?, etc.

The various methods which can be employed may be summarised

as follows:

I. By algebraic or trigonometrical methods.

II. By the use of Taylor s or Maclaurin's Theorem.

III. By the use of a differential equation.

IV. By differentiating or integrating a known series. [For

integration, see Chapters XVI-XX.]

2. I. An example will make this method sufficiently clear.

Examj^le 1. ^^ =
^^ / p

t 2^12 720^"*
by actual division.

3. II. Taylor's and MaclauHns Theorems,

Assume that f{x + h) can be expanded in a series of positive

integral powers of h.

Let f{x -\- h) = a -\- bh {- ck" + dh^ + ...

,

Differentiating with regard to h,

f{x + h) = b + 2ch + Sdh^ +...,

f'(x + h)= 2c +S.2dh + ...,

and so on.

Put ^ = 0, then we have

a=/(^), b=f{x\ c=-^\etc.

Hence

/(^ + /i)=/(aj)+A/(^)+|/"(:.)+^/"(^) + ...+^/")(a;)+....

This result is known as Taylor's Theorem.
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4. If in the above result we put a; = we obtain

/W=/(0) + V(0) + |'/"(0)+...+5/(»)(0) + ....

which, by altering the notation, may be written

/W=/(0) + ^/(0)+J/"(0) + ...+5/»)(0)+ ....

This result is known as Stirling's or Maclaurin's Theorem.

The student should verify the common algebraic and trigono-

metrical expansions by means of the above theorems.

Example 2.

/(«) = log(l +n /(0) = log2,

•
•^"<^> =(T^' /"(0) = i,

/"'«=(rTS' /"'(0)=o,

/"W= (1+7;. '
/"(0) = -i,

etc.

Whence, by using Maclaurin's Theorem,

log(l + e')=/W = log2 + |+^-^....

5. The above results are not universal in their application. Thus

it can be shown that the method fails if/(a?) or one of its derivatives

becomes infinite or discontinuous between the specified range of

values of a?. Further, the series obtained must be a convergent series.

Lagrange has shown that the remainder after the first n terms have

been taken from Taylor's series can be expressed as —j/^**^ {x + 6h)y

where ^ is a positive proper fraction. The corresponding value of

x^
the remainder in the case of Maclaurin's Theorem is —rf^^U6x).

Unless therefore those expressions tend to vanish when n becomes

infinite, the series is divergent and the method fails.
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6. III. The use of a differential equation.

The following are examples of the use of this method.

Example 3.

2/ = (1 + a;)** = tto + a^x + a^a? + a^a? + ...

.

Then y^ — n{\+ xY~^ or (1 + x)y^ = ny.

Differentiating the first equation,

2/1 = ttj + ^a^x + Za^cc^ + . . .

.

Therefore

(1 +«;)(«!+ ^a^x -^ ^a^x^ -\' ...) = 71(^0 + a^x-^ a2X^+ ...).

, Whence, by comparing coefficients,

«! = nao,

2a2 + ai = na^f

Sag + 2a2 = nag,

etc.

Putting a? = in the original equation we have

ao = l,

and successively

ai = na^ = w,

_(n — 1) _w(7i — 1)a2-—2" «!
2! '

_ (n-2) _n(w-l)(/i-2)
«3- —3— as-

3j
,

etc.

Hence (1 + a;)*^ = 1 + /la; + (g) ^ + (3) ^ + ...

.

Example 4. y == sin"^ ic = ao + aja; + a2x" + . .
.

,

1

and (l-x^)yi^=l.

Differentiating (1 - x^) 2y^y^ - 2xy^^ =

or (l-a:»)ya = a^i.

Now sin~^ ic = — sin~* (— x).

Therefore

ao + a^x + a^oc^ ^^ ajo;* + ... = — (a© — Oiic + Oga^ - OsO^^ + ...).

Whence do =^ a, = a4 = . . . = 0.



80 DIFFERENTIAL CALCULUS

Thus we may write

yi = ai + M^x'^-\-..,-{-2n-{'l(i^^^aP^ -{-,.,,

2/2
= 3 . 2a^{)o + ... + 2m + 1 . 2w . Oan+iaJ^"^ + ...

.

Therefore

(l-d?2)(3.2.a8a;+... + 2w + 1.2n.a2n+iaJ*^'+...)=a?(ai + 3a,ar»+...

+ 2rn-la2;»+iar»»4-...)-

Whence ai = 3 . 2a3,

3a3 = 5.4a5 — 3.203,

(2/1 + 1) O^n+i = (2W + 3) (271 + 2) a^n+s - (27i + 1) 2w . O^n+i

or (2m + ly o^n+i = (2n + 3) (2n + 2) 0^+^.

V
But in the limit when a? -^ 0, - = 1.

Therefore

and accordingly

ai == 1,

03 =
1

2.3'

05 =
1.3

'2.4.5'

etc.

sin~ ^ X = a; +i^ + L2*3^2
.3

.4 "5 +and

7. IV. Differentiation or integration of a known series.

The method is sufficiently indicated by the following examples.

Example 5. sin a; = a? — .- + ^j
— . .

.

,

c^sina; ^ x^ x^

J = cosa? = l-^ + -7-:- ....
dx 2! 4!

We have therefore obtained the expansion of cos x in terms of x

from that of sin a?.
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Example 6. Let

y = loge (1 - a;) = tto + ttia? 4- a.^x'^ + . .
.

,

But =l+a; + d^'2 + a^+.... (^<1)

Therefore, comparing coefficients,

ai = — 1, a2 = — J> a3 = — J, etc.

Also putting a; = in the original equation, we find a^ = 0.

Hence log,(l -a?) = -a;- ^ - 3 - ... . («<1)

Thus our knowledge of the expansion of
:j

in terms ofa? enables

us to find the expansion of logg (1 — x).

H. T. B. I.



CHAPTER XIV

DIFFERENTIAL CALCULUS. MISCELLANEOUS
APPLICATIONS

Limiting Values or Undetermined Forms

1. In certain cases the value of a function cannot be at once
a;" — 1

ascertained. A common form is illustrated by Lt——^ , the value

of which is not apparent since it takes the form ^ . The function

in this case is said to take an Undetermined or Indeterminate Form,

and since, in the limit, its value is represented by the ratio of two

indefinitely small quantities, it may be expected that the methods

of the Differential Calculus will enable the Limiting Value of the

function to be found.

2. The process to be employed can best be illustratedbyexamples.

Example 1. To find Lt _, .

Let x = l -i-h, then

»-o L f>,

= Lt[n+g)fc + («)/t^+...]

= 71.

Example 2. To find Lt P^^f^"^^^]

x - a;2

"2

a?-f"2! + 3! + -.

Lt 1 — a; 4- 5 ic2 - . . . (by actual division)
t-^^o L ^ J

1,

since the series obtained by division is obviously convergent.

X-

= 1,



MISCELLANEOUS APPLICATIONS 83

Example 3. To find Lt ^ ,

= Lt_ ^[/iog^+2i^^"g^)'+--l]

a; log c +
|j

(log c)* + . .

.

I log^r

+ {.logo4(Iogc)»+...pi^V
=1^* — ^

T ^ qr a;log (QTlogc+ terms involving a!°and higher powers ofa?

--*»
^log5- + J(logsry+...

_ T i.
5^ lo^ j7 1<^R ^+ terms involving x and higher powers of a;

log5r + |j(log^)^+...

= 5rlogc.

3. The formulas of the Differential Calculus can be used for the

solution of problems of this class, in the following way.

Let
, , { take the form ^ when x~*-a.
<p{x)

Then if a; = a + A, by Taylor's Theorem,

f(x) ^ f(a)+hf(a)^..,
<f)(x) (j>{a) + h(t> (a)+,./

Therefore, when aj-^-a, and consequently A, /(a) and <\){a) all

-^0, we have

If this is still an undetermined form, the process can be repeated.

Taking Example 3 above, we have

f{x) =g^-g, 4>(x)==g^-h

f(x)=:g^(f\ogg\ogc, <i>\x)^^\ogg.

6—2
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Therefore Lt-f-^^Lt^^^^^^^^^^^

= g log c, as before.

4. Other Undetermined Forms are found when a function in

the limit assumes one of the following forms

:

0x00, — , x-oo, 0", 00°, or 1".
00

These can all be made to depend upon the form ^

.

Thus if/(a?) and <^ {x) be the two functions involved, in the first

fix)
case by writing /(a?) x 6 {x) aS p/

V

we have the form ^r and can
L0(a?)J

proceed as before.

Similarly for the second form.

The third form can be written as x j
1 [; the second term

within the bracket can then be evaluated, and the quantity within

the bracket will then be found to be zero or otherwise. In the

former event the product is of the form x x and can be evaluated

;

in the latter event the value of the product is clearly infinite.

The last three cases are solved by taking logs, when the logarithm

of the function will be found to fall within one of the cases already

discussed.

5. In connection with the form 1", it is useful to remember

that, from the development of the Exponential Theorem in algebra,

it follows that

A x/
Lt

and Lt (l + -) =
X

Maxima and Minima

6. lif{x) continuously increases with x until it attains a certain

value a and subsequently decreases, the value a is said to be a

maximum value of the function. Conversely if the value of the

function continuously decreases, while x increases, until it attains

a value h and subsequently increases, the value h is said to be a

minimum value.
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By this definition there may be several "maximum" values and

several "minimum" values; further, a "minimum" value may con-

ceivably be greater than one of the "maximum" values.

These conceptions are illustrated in the following diagram.

Thus the points A and B are maxima, whilst the points B and

E are minima. At the point G
the value of the function ceases

momentarily to increase but is in-

creasing both before and after the

point is reached. Such points,

where the rate of increase or de-

crease in the value of the function tends to become constant as the

point is reached, are called points of infleodon.

7. In obtaining criteria for ascertaining the maximum or

minimum values the following considerations are of importance.

If f{x) increases in value with x, it is clear from the definition

that -^ is positive. Conversely if f{x) decreases with Xy -^ is

negative.

Further, if f(x) is continuous and assumes two values /(a) and

/(6), one of which is positive and the other negative, it follows that

for some value of x between the values a and hyf{x) must be either

zero or infinite.

8. Now for a maximum value the function increases up to that

value and then begins to decrease. Therefore at a maximum value

dxi
-p must change from positive to negative ; similarly at a minimum

value
-J-

is changing from negative to positive. It follows from the

preceding article that at a maximum or minimum point the

value of -J-
is zero or infinite.

9. Further, at a maximum point -^ is decreasing from positive

to negative, and therefore j^ must be negative or zero. At a

minimum point the converse is the case and -r^ is positive or zero.
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Hence in order to find the maximum and minimum values of

f{x) it is necessary

(i) to find the values of x which satisfy the equation /' {x) =
or/'(a?) = oo,

(ii) to ascertain for each of these values whether/" {x) is negative

or positive.

If f" {x) = 0, a further test is necessary. For the investigation

of these cases, which include values which give rise to points of

inflexion, the student is referred to more advanced treatises on the

subject.

Example 1. What fraction exceeds its ^th power by the greatest

number possible ?

Let X be the fraction ; we have to find the maximum value of

y = x — xPy

dy

dx
j=i-p.^-^

For a maximum or minimum value -i^ = 0, therefore
dx

l-pxP-^ = 0,

and ajP"^ = -

i_

or x=p p-^.

Now ^=_^(^_l)^P-2

and is therefore negative.

Hence the above value of a? is a maximum value.

Example 2. What are the dimensions of the largest rectangular

box on a square base the area of whose surface does not exceed

12 square feet?

Let X be the volume of the box, a the length of the base and h

the height.

Then the surface is 2a^ + 4a6 = 12, whence
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X = a'b

= a' (6 - a')

2a ~
= 3a- 2'

dx_^ 3a»

da

87

dx
For a maximum or minimum value j- = 0, therefore

da

s-¥-o

or a = ^2, whence 6 = ^l%

d^x /- . .

and since -j—^ is negative when a = v 2, this value gives a maximum

value for a?.



CHAPTEE XV

RELATION OF DIFFERENTIAL CALCULUS TO
FINITE DIFFERENCES

1. By Taylor's Theorem we have

But /(a? 4- 1) = Ef{x\ therefore if the operation -7- be denoted by

D we may write symbolically

Ef{x) = {l+D + D'-V. ..)/W
= e^f{x)

or E = e^,

whence A = e^-1

and i) = log,(l + A).

Therefore
d . A'' A»

5^ = ^-¥ + -3- •1
(1).

If the interval of differencing be h, we have

2!
f{x + h)^f(x)-^hf(x) + %r(x) +

and therefore A = e^^ — 1.

Further, i)» = [log, (1 + A)]»,

, d^y [^ A' A' 1^
whence

_J
= ^A-^ + ^ -

...J
2^

= A»y-A»2/ + |iA^2/-fA»y+ (2).

Similarly ^= A'y - ^A'y + iA'y - (3).

2. The above formula (1) gives a convenient expression for the

differential coefficient in terms of advancing differences. But from

the nature of the differential coefficient, it may be expected that a

better result will be obtained by applying the formulas of central

differences.
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Thus, taking Stirling's formula, we have

"^3! 2
^"'

Differentiating with regard to x,

A/(0) + A/(-l) Ay(-l) + A'/(-2)
/ W- 2 12

"^••

+ terms involving x and its powers.

Putting a; = we obtain

y (0)
_ A/(0) + A/(- 1) Ay(- 1) + A'/(- 2)

^ ^4^
Z Iz

Taking the first term only, we have

^-(0)- V(0) + V(-l) _/(l)-/(-l) (5),

a very useful approximation, which, by altering the origin and the

unit of measurement, may be expressed more generally as

/'(^)^/(^ + ^)-/(^-^> (6).

If A = J we arrive at the approximate result

- f'(x) = Af(x-i) (7)

= A(1 +A)-VW

Comparing this with the value given by formula (1) we see

that the error involved in takingf {x) — A/ (a; — J) is

[- ii^' + iVA^ - /A^^ + • • -l/C^X

which is approximately equal to — ^^^/(a; — f).

Hence we may write

r{x)^^f{x-\)-i^ll^f{x--i) (8).

3. The introduction of the second term in equation (4) gives

the useful approximation

^, (0)
8 (/(I) -/(- 1)1 - (/(2) -/(- 2)1

^g^_

The other formulas of central differences, when treated as above,

give these and other expressions for f (x). The above, however,

are the most accurate and useful for general use.
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4. Using the central difference formula, we shall obtain for the

dififerential coefficients of higher orders,

/"(0) = A^/(-l)-^AV(-2) (10)

and r'(o)=
A3/(~l) + Ay(-2)

= Ay(-f)approx (11).

5. An example of the working of the above formulas is now given.

Example. Find the first three differential coefficients of log a;,

when x=2. having given the values of logg 1'80, loge 1*90, ....

Number
Natural

log
A A2 A3 A* A5

1-80 •587787 •054067 - -002774 •000271 -•000038 •000007
1-90 •641854 •051293 - ^002503 •000233 -•000031 •000005
2-00 •693147 •048790 - 002270 •000202 -•000026 •0000(34

210 •741937 •046520 - ^002068 •000176 -•000022 •000004
2-20 •788457 •044452 - ^001892 •000154 - ^000018
2-30 •832909 •042560 - -001738 •000136
2-40 •875469 •040822 - -001602
2-50 •916291 •039220
2-60 •955511

Using the advancing difference formula (1), starting at the term

2*00, and remembering that the interval of differencing is not unity

but '1, we get

/'(.) = 10 (.048790 +:^+:^^:^^
= -50000.

Similarly

/" {x) = 100 (- -002270 - -000202 - {^ x -000026 - f x -000004)

= - -2499,

f" {x) = 1000 (-000202 + f X -000026 4- J x -000004)

= -248.

The true values are, of course, given by the differential coefficients.112
of log X, which are respectively - , — -i^, -^ . When a? = 2 these

X Sj Xi

become ^, —J, J; the closeness of the above approximations is

apparent.

Formulas (6) and (9) give respectively for/' (x) values of -50042

and -50000.



CHAPTER XVI

INTEGRAL CALCULUS. DEFINITIONS
AND ILLUSTRATIONS

1. In Finite Differences we discussed under the heading of Finite

Integration the problem of finding the value of /(O) +/(!) + ...

+f{n - 1), or, changing the origin and the unit of measurement,

the more general series

^ [/(«) +/(« + ^) +/(» + 2/i) + . . . +/(a + rT^rr/^)].

The Integral Calculus deals with the value which this summa-
tion assumes when h becomes indefinitely small.

2. Now let F{x) be a function such that f{x) is its differential

coefficient. Then by definition

or

where Wi is a quantity that vanishes when ^^-0.

Then we have

hf(a) =F(a-{-h) -¥{0) \-ha^,

hf(a + h) =^F(a + 2h)-F(a-{-h) -hha^,

hf(a-\-2h) = F(a + Sh)-F(a + 2h) +has,

hf(a + n-lh):=F(a-^nh)-F(a-^n-lh)-^ hon.

By addition,

h [/(a) +/(o^ + A) 4-/(a + 2A) 4- . . . +/(a + n - \h)]

= -F (a + n/i) - i^ (a) + ^ [«! + 02 + . . . + «„].

Now if a denote the greatest of the quantities ai, ctj, ... ««, the

last term is clearly less than nha, or (h - a) a, if a + nh be put equal

to h. This term therefore vanishes in the limit and we are left with

the relation
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This result is usually expressed in the form

'f{w)dx^F(h)-F{a),
I

where F{x) is a quantity such that /(a?) is its differential coefficient

and dec represents, in the limit, the indefinitely small interval

between the terms which are summed.

The expression I f(x) dx is called the definite integral of f{x)
J a

with regard to x, and h and a are called respectively the superior

and inferior limits of integration.

Where no limits to the summation are expressed and we are

concerned merely with the form of the function, we obtain the in-

definite integral.

3. A geometrical illustration of the process of integration may
be obtained as follows.

Let the equation y=f(x) be represented by the curve in the

diagram. Let OA = a and OB = 6, so that
^

MA^fia) and NB = /{b).

Further, let AB he divided into n parts

each equal to h. Then the sum of the rect-

«=6
M

B

angles shown is clearly equal to S hf(x), and,
x=a+h

in the limit, when h^-0 the value of the

integral becomes equal to the area between the curve and the axis

of X bounded by the ordinates MA and NB.



CHAPTER XVII

INTEGRAL CALCULUS. STANDARD FORMS

1. In the preceding chapter we found that the process of integra-

tion is the converse of that of differentiation. In other words, that

given /'(a?) we have to find a function f{x) such that f (x) is its

first differential coefficient. The analogy with the process of finite

integration is apparent and the remarks made in Chapter VII,

§ 5, apply equally to the present case.

It may, therefore, be said again that the process of integration

cannot be carried out for every function, that definite rules cannot

be laid down to apply in every case, and that the student must look

to applying the results of the differential calculus as a guide in

solving any problem presented by the function under consideration.

2. In the first place it is necessary to point out that the ordinary

algebraic laws apply to the integrating symbol jdx in the same way

as they have been shown to apply to the symbolic operations A and

I-. Thus:
ax

(1) The operation is distributive for, ii u,v, w,...he any func-

tions of Xy

-^\\udx-{- \vdx-\- jwdx + ...h = w + t; + w...

and therefore

\udx-\- jvdx+ \wdx-^..,= l(u + v-\-w-\- ...)dx ...(1).

(2) The operation is commutative with regard to constants, for,

.„ dv d(cv) ^cdv_
dx~ * dx dx *

therefore Icudx^cv^c ludx (2).

3. It should be added that the process of integration introduces

dv
a constant into every indefinite integral, for, i£ u = -t- ,

div-^-c) _dv __

dx ~ dx" *
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and therefore ludx = v + c,

which result is, indeed, obvious from the consideration that a con-

stant term disappears on differentiation.

4. In accordance with the symbolic notation which has been

previously developed (Chapter XV, § 1), we may write

lf<-^^-{iTf(-) (3)

=
[WTA)]^(^> ^'^-

6. Standard Forms.

(a) x^. Smce = = -^^ ^— = x^,

therefore lx'^dx = + c.

J w+1

d([ogx) 1
(6) x-\ Since

dx x

dx
therefore / — = log a; + c.

(c) e^. Since

therefore

d{f)
dx

\^dx = €!^-\-C,

d(-^]
(d) a*. Since -js = -j—^— = a*,

therefore I a'^dx= ^
1- c.

j logea

Other integrals may be obtained from a consideration of the table

of standard forms of differential coefficients given in Chapter XI,
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§ 3. The results are embodied in the following table. Their verifi-

cation is left as an exercise to the student.

Function Integral

Ix^'dx
^+1

J 3C

log,:P

\a^dx
a'

log, a

\^dx eP"

1 cosxdx sin^

j ainxdx -cos^

1 aec^xdx tamx

1 cosec^ X dx -cot a?

In each case the constant c has been omitted for the sake of

simplicity, but its importance in the result must not be forgotten.

6. Sums of the above functions can be integrated by the use of

the distributive property of the operation of integration. Thus

[{w + 2^^) da; = jx^ dx + 1
2^ dx

X 2^

l0ge2
+ C.

Similarly (ax^ + bx~*) dx=a jx*dx + b lx~*dx

oaf
5"

hx'
+ c.

7. The problem of integration may be presented in another way.

Thus to find the sum of

1

X x +m x + 2m
when X is indefinitely increased.

+ ...+
1

x + xm
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The series may be written as

+ ...+
1 rl 1 1

1 . m ^ 2mm
1 + - 1 +

X X
\+x m

m
X

The terms in the denominator consist of values of a quantity, which

m
can be represented by y, increasing by equal increments of— . Also

X

the sum of the series is multiplied by — , which is the increment
X

in the value of the denominator.

Since the initial value of the denominator y is unity and the

final value is 1 + m, from our definition of an integral we may write,

when a7-»"oo and therefore—^0.
X

Lt - Y + + T-+--- +
1 + - 1 +— l-\-x.-

\ X X X

dy

yX mJi

m log 1 + m.



CHAPTER XVIII

INTEGRAL CALCULUS. METHODS OF INTEGRATION

I. The Method of Substitution

1. Various methods are available for treating the integration of

functionswhich are not among the standard forms. Ofthese methods,

one of the most important and most easily applied is the method of

substitution. By this method the independent variable x is changed

to y where y is a function of x. Thus an integral in terms of y can be

obtained which can frequently be made to assume a standard form.

For suppose y — F(x).

Then dy=F'{x)dx.

So that if the original integral is of the form \f[F {x)'\F' {x)dxy

it can be expressed as if(y)dy, which may be a standard form.

No general rules can be given, but the following examples will

indicate methods which can frequently be employed with advantage.

2. (1) [(a + bxydx.

Put a-\-hx = y.

Then hdx = dy.

Therefore |(a + 6.)«^ = /f .^y =(-^ + c =(^±^Vc.
r s? djX

(^^ ]{a + hxY'

Put a + bx — y.

Therefore

C x'dx _ f (y- of dy

iia + bxf^] b^y"^

= ^3/(2/'^ - 2«2/'""'* + a'r'^) dy

___ir__J 2a a»
"I

6» [{n - 3) 2/**-« (n - 2)
y^-* "^ (n - 1) y«-»J

"^ ^

where y^a-\-bx,

H. T. B. I. 7
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(3) [(h + 2cx) (a + hx + ca^f dx.

Put a-\-bx + cx^ — y.

Then (6 + 2cx) dx = dy.

Therefore

[(h + 2cx) (a + 6a; + car*)** dx=\y''dy = ^—- + k

=
n+l

+*•

(4)
(log x)^ dx

J X

Put logx^y.

Then ~dx= dy.
X

Therefore

•(log

• X

dx
=jrdy l^^+o

_(log.^)''«

n + \

(5)

Put /W=y-
Then f'(x)dx=dy.
Therefore

(6) /^.
Put a^ = y.

Then 2xdx = dy.

-4/*-/i?-J

= Hy-logl+3/] + c

= J[ar»-logrT^] + c.



0)

Put

Then

Therefore

METHODS OF INTEGRATION

sin xdx

99

r siE

J a + bcoax'

a + 6 cos x = y.

— h sin xdx = dy.

C sm xdx 1 fciy 1 , . loe^ (a + 6 cos x)

J a-{-bcoax bj y b ^^ b

(8)

y

r dx _
sin a?

[
dx

c.
' X X

2 Sin 2 COS
2

sec'^ ^ dx

. 2tan|

Put tan2 = y.

Then J sec'^ 2<^^ = dy-

Therefore
f dx _

J sin a?

~

= logtan| + c.

Corollary. Since

cosaj = sm(|+a;j,

h
dx

,osa7
= lo^?tang + |) + c

II. Rationalisation by Trigonometrical Transformation

3. The above methods can be extended by the use of trigono-

metrical functions and the relations which exist between them.

The following are examples

:

(1)

Let

Then

and

r dx

a; = a sin y.

dx = a cos ydy,

Va^ — a^=acosy.

7-2
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Therefore
,

= \dy=iy-\-c

— sin~i - 4- c.
a

(2) \-J^^^

Let a;= a sec y.

Then dx=a8ecy tan ydy,

and sia? — a? — a tan y.

Therefore

[_^ = [^ = log tan (j + D+c

l+tan|
= log -4-c

l-tan|

, 1 + sin 3/ ,

° cos 2/

7' -I
./2

= log 1- c

=
'°gi ^— ) +

''•

Let a? = a tan y.

Then dx = a sec'' 2/d!2/,

and Var^ ^a^ = a sec y.

Therefore

r_^ = f^ = logtan(j + |)+c
Jv^Ta' J cos 2/ ^ \4 2/

= log (sec 3/ + tan 2/) + c [See Ex. (2)]

=log(^±^')+c.
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From the above integral, two ©thef . fenpc^'stifb". jjb^eC. phn be

obtained.

(4) (
^^

J ^/a-\-2bx-hcaf'

This can be written as

da: f d {cx + 6)

/{cx^hf-\- r/ac-¥ J Vc {(ca; + hf -\-ac- t^j

Disregarding for the moment the constant multiplier, this can

clearly be transformed into one of the forms given in Examples

(1)_(3) above.

Corollary. Since

I
= 2 log ("Jx-a + Va? - 6) + c,

f dx ^ . ^ Ix — a=r = 2 sm-^ A / f- + c.

J ^/{x-a){b-x) Vb-a

l^B + cx) + ^P^^^^

J Na->f

(p + qx) dx _
2bx + cx^ s/a + 2bx + cs?

dx

_ q C d(a-h2bx + cx"") (pc- qb)
f

dx
~ 2cJ Va + 2bx + c^2 c JVaT26^Tc^*

The value of the first integral is 2 (a + 2bx + cx^)^ and the second

integral can be dealt with as in Example (4).

4. General remarks in regard to the method of substitution.

When the precise substitution which will enable the integral to

be solved is not apparent the device illustrated in the following

examples is often of assistance.

(x + a) dx
(1) 1,4J(x +

The appropriate substitution is not apparent, so assume

where r may have any value, to be determined subsequently.
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Th^wf :/; :;f /''/:;; \xi^b^y^

and dx^2ry'^^dy.

The integral thus becomes

r {y'^ + a-c)2ry'^-'dy

J (y2r^l,_c)y^
'

Clearly this integral can be evaluated if y^ = y^''-\ i.e. if r = 1,

when we get

^ ^
a — h , y-^Jc — h ,= 2y + -7==. log ^^ 7= + A;,

Vc-6 "="

y + ^c-b
where y=i^x + c. •

(2) f ^

^

Let us take the linear function as likely to lead to simpler results

and, as before, put
x — p = y^

so that dx = ry^~^dy.

Then the transformed integral is

r rif~^dy C rdy

J y"" Va + 26 (y*" +i)) + c (y' + pf Jy \/a + 26 (y''+p) + c (y^'+pY
*

Obviously if r = — 1, the denominator reduces to the form

and the expression can be immediately integrated.

(8) f-^.
This example is a little more difficult than the two previous

ones. As before, let x = y^, so that dx = ry^^ dy. Then we have

dx f ry'^^dyC dx r ry'^^dy
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The expression within the brackets in the denominator is of an

even degree in y, so we will express the integral in the form

rfd{y^)f ryr-'d(f) _f
2y^^ {ay-^ ^^ cf

This can clearly be integrated if r — 2 = 3r, when r = — 1. The

integral then becomes

_1 { df ^ 1 r d{af + c) __ 1
^

^j^

a (a + cx^f
+ k

5. Definite Integrals. The above examples of the application of

the method of substitution all relate to indefinite integrals and the

final form of the indefinite integral is expressed, in each case, in

terms of oo.

In the case of a definite integral, a step may be saved in the

operation by avoiding the final substitution of x in terms of y,

provided appropriate changes are made in the values of the limits

of integration. An example will make the point clear.

r> 7 r^ ^dx
Example,

\ ,
• .^ h'Jl+x'

Put a;2 = y.

Then 2xdx=dy.

Also when x =0, y=0 and when a; = 2, ^ = 4.

Thus we get

III. Integration by Parts

6. From the Differential Calculus we have

d (uv) __ dv du

dx dx dx'

Whence, by integration,

uv = \u
-J-

dx + \v-T- dx,



104 INTEGRAL CALCULUS

f dv ^ f du ,

or lu-^ ax = uv — Iv-rr- dx.
J dx J dx

Consequently an integral of a function of the form u -i- can

always be made to depend upon that of a function of the form v -3-.

The latter may prove to be a standard form and the use of the

formula given above may enable an apparently intractable ex-

pression to be integrated at once.

The advantage of the method is best exhibited by applying it to

a few elementary cases.

(1) jx\ogxdx==^j\ogx-^dx

= ^x^\ogx — ^ Ixdx

= ^xHogx--^-\-c,

(2) 1^^''^=^/^^^^

a I a
\

(3) /sin-^xdx=l sin"^ x-^- dx

. , r d(sm~^x) ,= a;sm~^a;— jx , -d^

.
, f xdx

= X sin~^ X —
I ,

= X sin~^ a; + Vl — a?" + c.
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dx
, dx
ax(4) Ua? + x" dx = j*Ja^T^

,— r d^/a^ + x" ,

==x^a^ + x^-jx—2
"'^

, f a^dx
^x^a^' + x'- I

, ,

j\_ Na?-\r a?}

r r Q/^cix

J J^/a' + a^

Therefore 2 /VoM^dx = x Va^ + x^ + a^ log [x + Va^ + x"^] + c,

and j\/aFT^dx = | VoM^ + ^ log [a;+VaM^] + 1 •

(5) / log (x + ^x" + o?) dx = flog (x + V^M^^) ^^

=:.iog(.+vSM:^)-/^^

= ic log (x + Vic^ + a") - V^T^+ c.

7. The above process can be expressed in a general form as

follows:

= ut jvtdt - I -Jilj'^tdtj dt.

To apply this formula to the definite integral I UtVtdt, we can
J a

write \vtdt as I Vkdk^ the upper limit being taken as t since the

integral must itself be a function of t
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Thus we get

/ UtVtdt = wj Vkdk —{-Tfi] Vkdkj dt

= Ub
I
Vkdk — Ua I Vkdk — I -— i Vkdkj dt

= Ub
I
Vkdk— -^ { I Vkdk\ dt,

since / Vkdk = 0.
J a

Alternatively, if we express Ivtdt as the definite integral

— I Vkdk, we obtain

UtVtdt = Ub I Vkdk-\-j -T^ij Vkdkjdt*.

8. Reduction Formulas. Where integration by parts is not im-

mediately successful, continuation of the operation may ultimately

lead to the evaluation of the integral.

Thus (x'e'dx =ja^^dx=:a^e'-je''^dx

(xe^ - I e^dxj

= x^e^-2 ler^xdx

d^ ,

x-^- ax
ax

^x^e'-l

= a;2e*-2a;e^ + 2e=^ + c.

9. The above case is an example of a Reduction Formula, this

designation being used since the application of the method of

Integration by Parts efifects the reduction by successive steps of

one term in the integral.

Thus

[x^a- xY dx =
'^'^'^'

^^ ";
^^'^

+ \^^ nil- x)^'' dx.
i ^ ^ m+1 jm+1 ^ ^

* See J.I.A. Vol. 44, pp. 402-409.
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Thus the degree of the term (1 — x)^ has been reduced by unity.

Successive applications of the formula will reduce the degree

further, until, if n is an integer, the term ultimately equals (1 — xf
or unity.

In the special case where the value of this integral is taken

between the limits and 1, we have

x'^(l-x)''dx=
\

-(l-xY\ + :rn(l-x)''-^dx
Jo |_m + l^ ^Jo Jom-\-l

=-^ r a;^+i (1 - xY-^ dx,

whence by successive applications of the formula we find ulti-

mately if n be an integer that

I x'^Ci-xYdx^ r x^'^'^dx^ -,.
Jo 7i-f-m!.'o n + m+1!

Many other important integrals can be dealt with in a similar

way.

IV. Integration by the use of Partial Fractions

F (x)
10. Any expression of the form ^ . , where F{x) and /(a?) are

both rational integral algebraic functions of x, can be expressed as

the sum of a number of terms of which the general forms are arX^

and '—^^-. For if the degree of F{x) is equal to or greater than
\X — Cr)

that oi f{x), by division we can obtain a quotient, together with a

new fraction in which the numerator is of lower degree than the

denominator. The quotient provides the terms of the first form and

the new fraction can be split up by partial fractions into terms of

the second form. The integrals of these general forms are known

and consequently the whole expression can be integrated.

The following are examples

:

J {x — a){x — o) a — hj\_x — a x — b]

=
^;3^

[{aq +i>) log {x-a)- (bq -\-p) log (x - 6)] + c.

^^^
Jaa^-h2b.2bx + c a

dx

(-n)
ac
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The form of the integral depends upon whether ac - IP is positive

or negative.

In the former case the integral clearly is equal to

1 , , ax-{-h
,

tan~^ . .

Nac - ¥ vac - b^

In the latter case the integral becomes

1 , ax + h- V62 - ac

^sly-ac ax + b + y/b^-ac

= \'^-'Sx^\og{x + l) + S\og(x + 2)Y

= 81og3-91og2-|.



CHAPTER XIX

INTEGRAL CALCULUS. DEFINITE INTEGRALS.
MISCELLANEOUS APPLICATIONS

General Propositions

1. It is desirable to place on record several general propositions,

in regard to change of limits, which are in the nature of being

self-evident.

In Chapter XVI it has been shown that

J a

where /(ic) is the differential coefficient of F(x).

It follows that

I. i''f(x)dx^rf(z)dz (1).

since neither x nor z occurs in the result.

IL l'f(x)dx==-(y(x)dx (2).
J a J b

Thus the interchange of the limits results in a change of sign of

the definite integral.

On the left-hand side we have regarded the increment of c^ as

positive, so that, while x increases from a to b, the value of the

integral is F(b) - F{a).

On the right-hand side the increment dx is negative and x

decreases from h to a, giving a value for the integral of

F(a)-F(h).

IIL rf{x)dx=rf(x)dx+( f{x)dx (3).
J a J h J a

For the left-hand side is F{c) — F{a) and the right-hand side is

Fie)- F {h) + F {}))- F {a).

IV. \y{x)dx=\y{a^^(p)dx (4).
Jo Jo
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For if we substitute a — z for x, then when x = a, z = 0, and when

x=0, z = a.

Also —dz = dx.

Therefore

{"fix) dx = ["-/(« -z)dz= \'f(a - z) dz (by II)
.' J a JO

=
I f(<^ - ^) d^ (by I)-

Jo

2. Differentiation of Definite Integrals.

Let w =
I
/(a;, c) cZa?

be a definite integral where the quantity c is independent of x,

and the limits a and 6 are independent of c.

To find -T- let Aw be the change in u corresponding to a change

Ac in c. Then, since the limits are unaltered,

rb

Au = I {/{x, c + Ac) —f(x, c)} dx.

Therefore
^y ^ rM/(^, c + Ac)-/(.. o)}^^

Ac Ja Ac

Proceeding to the limit, we have

du

dc =/:«s^'- <«

Thus the differential of the definite integral is reached by a

process of differentiating under the sign of integration.

3. An important use of this theorem is that of finding the values

of other integrals from those of known form.

For example, if the equation

Jo
e-"'^ dx — -

a

* The student is referred to more advanced treatises for exceptions to this

general result,
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be differentiated n times with respect to a, we get

Jo

n\^n Q-aoi
fjl^ ^ _^ ^n+i

/,

4. Areas of Curves.

It has been shown that geometrically the definite integral

f{x)dx represents the area enclosed between the curve y=f(oo)

and the axis of x bounded by the ordinates x = a and x = b.

Example 1. Prove that the area of the parabola

2/2 = Asax bounded by the curve, the axis of x and

any ordinate is two-thirds of the rectangle con-

tained by the ordinate and the intercept on the

axis of X.

LetO]Sr=b.

Then area OFN= j
ydx = f '^'^axdx = 2a2 U a;t

= f(2aH^)6

= f rectangle.

5. Mean Value and Probability.

Definite Integrals can be used to find the mean value of a

function whose value is changing continuously by indefinitely

small increments.

Thus to find the mean value of f(x) for all values of x from a to b.

If we divide b — a into n portions each equal to h, the mean value

of the functions /(a), f(a \-h),...f(a-^n— Ih) is

/(a)+/(c^ + ^)+ ... +f(a + n-lh)

^ h [/W +/(« -f^) + ...+/(a + n- Ih)]

b — a
since nh = b — a.

If now we make h indefinitely small, we shall have the mean
value of all values of /(x) from f(a) to f(b). Consequently the

mean value is
1 r»

dx.
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Example 2. A number n is divided at random into two parts; find

the mean value of their product.

Let X be one part, then the product is a; (w — x). We have to

find the mean value of this product for all values of x from to n.

Thus we get for the mean value

- x{n-x)dx = -[ — - — ]=-
6

6. The class of problem in Probability that admits of being

treated by the methods of the Integral Calculus can best be

illustrated by an example.

Example 3. Three events A, By G are known to have happened

in the same century. What is the chance that the events happened

in the order A, B, G\ B happening within n years of the middle of

the century?

The chance that the events happened in the order A, B, C '\%

clearly ^, if there is no limitation as to when B can happen, since

there are six possible orders in which the events A, B, C can

happen.

To ascertain the further chance that, with the events occurring

in that order, J5 happened within n years of the middle of the century,

let X be the number of years from the beginning of the century

to the event B, so that B occurs during the interval of time between

X and X + dx. Then the A cases may have occurred in any of these

X years, and the G cases may have occurred in any of the following

100 — a; years. The total number of possible cases is therefore

X (100 — x) in respect of the above interval of time dx.

But B must have occurred within n years of the middle of the

century, therefore x can have any value between 50 — n and 50 + n.

Hence the required chance, being equal to the number of favour-

able cases divided by the whole number, is

r&O+n
x(100-x)dx

^ , ^,

I x{100 — x)dx
Jo

and the answer to the question is

eKi^)"Km) ~ 2 [lOOj 3 VlOoJ
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7. An example of a somewhat dififerent type is given in the

following problem.

Example 4. An event has always happened on an average once

a year. Find the chance that it did not happen in a given year and

prove it equals e~\

The event has happened on an average once a year. The chance

that it occurred in any given ?ith part of a year is, therefore, - , and
n

the chance that it did not occur in that period is 1—

.

By the ordinary rules of probability, the chance that it failed to

occur in n consecutive periods each of -th part of a year is

1—
J

. To obtain the solution to the problem, we proceed to the

(1\**
1— 1 , which by algebra equals e \

nj

H. T.B.I.



CHAPTER XX
APPROXIMATE INTEGRATION

1. In many cases integration, or continuous summation of the

values of a function, cannot be accomplished, either because the

quantity to be integrated cannot be expressed as a mathematical

function, or because the function itself is not capable of being

integrated directly.

In these cases formulas of approximation can be used, which may
conveniently be divided into two classes, viz. formulas expressing

the value of the definite integral in terms of

(i) the sum of the successive values of the function and of its

derivatives,

or (ii) the values of isolated values of the function, not necessarily

successive.

We shall now proceed to consider formulas of the first of these

2. The Euler-Maclaurin Expansion.

Let tf(x) = F(w),

so that f(x) = AF(x).

Then
"I'

f(x) =/(0) +/(!) + ... -^f(n - 1)

^F{n)-F (0). [See Chapter VII, § 4]

Now J^(a;) = A-i/(a?)

= (e^-l)-»/(a;), since A = e-»-l,

which, by actual division,

=|/(a;) dx - yicc) + ^f {x) -^f" {_x) + ....

Therefore

F{n)-F (0)=//W dx - J [fin) -/(O)) + ^V (/' («) -/' (0))

-Ti^l/"'(«)-/"'(0)} + -
But F{n) -F(,0) =/(0) + /(I) +...+f(n- 1).
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Hence

J{x)dco=y(0) +/(!)+...+/(„ - 1)+ J/(n)-fj {/' (n)-/'(0)}

+ tItt
{/'"«-/'" (0)1 -... (1).

This result is not limited to the case where the ordinates are at

unit distance apart, for, as has been remarked in connection with

Finite Differences, by changing the origin and unit of measurement

the formula can be given a more general form. Thus

A f{!c)dx = if(a) +f{a + r)+... +f(a + » - Ir) + }/(a + nr)

- i^r {/' {a + nr) -/' (a)) +^ f/'" (a + nr) -/'" (a))

-i6f-^'''(" + ''''>"-^''' ('*)' + (2).

r25 ^/p
Example. Calculate —

.

^
J20 ^

Taking values at unit intervals we have, remembering that

dx i ^^^
6

/:
dx

X

1

2'

1 1 1

20
"^

21
"^
22

= ^025000

•047619

•045455

•043478

•041667

•020000

+A+
1 1

24
"^2-

25 12 V

"^ 120 i

1

25*

1

25* 20V

•223219 - iV (-0009) + -^\^ (00000369)

= -223144.

The value of the integral is clearly equal to loge |§, which to

five places of decimals is '22314.

3. Woolhouse's Formula.

This formula gives a relationship between the sum of consecutive

ordinates and the sum of equidistant ordinates at greater intervals.

It can be derived from the Euler-Maclaurin formula as follows.

8—2
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Formula (1) gives

jy(x)dx = y(0)+f(l) + ... + f(n-l) + if(n)-^{f(n)-/XO)}

+ Tkf/"'(»)-/"'(0))-....

If the interval is — the formula becomesm

«/V(.)cte=i/(0)+/(i)+/g) + ...

whence from the first of the above equations

m r/ix) dx = m {/(O) +/(1) + . . . -\-f(n)}
Jo

- f {/(O) +/(«)) -^ l/'W -/'(O)} +^ {/'"(«) -/'"(O)) - ...

and from the second equation

mjy(,x)dw= {/(O) +/(i) + ... +/(«)| - J {/(0) + /(n)}

-i 1/« -/'(«>i + 72L.
!/'"« -/'"wi- •

'

whence, by subtraction,

-^ {/(O) +/(«)} -'^ {/« -/'(O))

+f£J(/"'w-r(o))-... (3).

4. By putting a = and r=l in formula (2) and proceeding as

above, we obtain the following result:

/(O) +/(1) +/(2) + . . . +/(m») = n (/(O) +/(w) +/(2») + . .

.

+/(™»)1 -^ {/(O) +/("»«)) -'^ {/' («*») -/' (0)1

+ "^{/"'(™»)-/"'(0)}- (4).

This formula enables the sum of consecutive terms of a series

to be expressed in terms of those at greater intervals. Thus the
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work may often be shortened, particularly where the values of in-

dividual terms of the series require to be obtained by calculation

in the first instance.

5. Lubbock's Formula,

Lubbock's formula is similar to that of Woolhouse, but it sub-

stitutes finite differences for the differential coefficients.

Now i) = A-iA'^ + JA«-JA^-|-...

and i)3 = A»-fA4+....

Therefore, substituting in the above formula (3), we get

=m {/(O) +/(1) +/(2) + . . . +f{n)\ -^ (/(O) +/(«))

-W '^-^W - A/(b)) + ^^^- Wf{n) - Ay(0)l

6. By an alteration in the unit of measurement the formula may
be expressed as

/(0)+/(l)+/(2)+ . . . +/(m»)=n{/(0)+/(«)+/(2n)+ . . . +f{mn)]

-^ !/(0) +/(m«)) -"^ \^f{mn) - A/(0)}

where A, A^ ... express the values of the differences taken over the

interval n, and not those taken over unit intervals.

In this form the formula corresponds to formula (4) given above.
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7. In cases where the terms of a series decrease steadily and the

term corresponding to the upper limit tends to the value zero, the

above formulas can be simplified somewhat, since the final term of

the series, its differences and derived functions all vanish. Also it

is frequently the case that the end terms of the series are unim-

portant and thus m and n may be taken at any suitable figures so

as to correspond with tabulated values of the function.

To illustrate this we will calculate, first by Woolhouse's formula
x=oo

and then by Lubbock's, the value of 2 (1'1)~*.
a?=10

Example 1. By Woolhouse's formula.

Let us use formula (4) and take n = 15. The values of (1*1)~^

tend to become unimportant when d? = 100, therefore we -vy^ill take

m = 6 and ignore the values of the differential coefficients at the

upper limit.

Then

f(x)^{Viy^ /(^) = - (1-1)^ log. 1-1, /"(^) = -(l-l)niogeM)'.

Also loge 1-1 =-09531.

Thus we get

X (l-l)-»

10 •38554

25 •09230

40

55

•02209

•00529

152-1

12

70

85

•00127

•00030

15*-

1

720 ""

100 •00007

_ -T.cnoQ

15-1
(l-l)-io=2-6988

x(M)-iOx ^09531= •6859

x(l^l)-iOx (-09531)3= -0234

And the final result is

7-6029 - 2-6988 - -6859 + -0234 = 4-2416.

The true value is, of course,

illi^ = 4-2410,

which shows that the error involved by disregarding the final terms

of the series is small.
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Example 2. By Lubbock's formula.

In this example we will take ti = 10, using formula (6).

119

X

10

(M)-x A A2 A3 A4

+ •05500•38554 -•23690 + •14557 - -08946

20 •14864 •09133 •05611 •03446

30 •05731 •03522 •02165
-?/(10)= -1-7349

40 •02209 •01357

50 •00852 QQ

60 •00328 120^— -^^^

9970 •00127

80 •00049 -^A2=- -0600

90 •00019 240

100 •00007 'lf^'A3- -0233

•62740 X 10=6^2740 720,000

99x899 .^^^^

480,000

- 2^0238

The result is 6-2740 - 2-0238 =^4-2502 as compared with the true

value of 4-2410.

8. The above examples illustrate points of disadvantage which

may arise in connection with the formulas.

Woolhouse's formula can only be applied to a mathematical

function where the differential coefficients can be obtained. In

other cases, Lubbock's formula must be used, and then it may often

happen that the terms in the formula do not converge sufficiently

rapidly to give a good result, unless a large number of terms is

used. This accounts for the relatively poor result shown in the

example above. If intervals of 15 had been used instead of 10, a

worse result would have been shown.

Some of these disadvantages can be met by the use of the

formulas given in the following Articles.

Other formulas of Approximate Integration

9. The definite integral of any function can be expressed in terms

of the individual values of any number of ordinates by assuming

that the function can be represented, to a sufficient degree of

approximation, by a parabolic function of the requisite degree in a?.

10. Thus to express the value of f{x) dx in terms of/(0),/(l)
Jo

and /(2), let f(x) = a + bx + cx'.
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[N.B. Since we are to express the result in terms of three values

of the function, we introduce three terms involving three unknown

constants a, 6 and c in the expression representing /(a;).]

/•2 r2

Then f{x) da)=\ (a + bx + ca^) dx
Jo Jo

r bx^ caH»12

Also /(0) = a,

/(l) = a + 6 + c,

/(2) = a4-26 + 4c.

These equations could be solved for a, h and c, and the resulting

values substituted in the value of the integral found above.

Alternatively, we may proceed as follows

:

Let ff{a>)dx=pf(0) + qf(l) + r/(2).
Jo

Then 2a + 26 + -« = ;)a + g (a + 6 + c) + r (a + 26 + 4c),

so that p-^q-\-r == 2,

q + 2r == 2,

g'H-4r == f.

Whence r=h ^=i P = h

and r/(.)<i-^<"^-^
4/(1) +/(2)
3

By analogy we may write

(7).

/•an M
j^/(<r)d^ = g [/(0) + 4/(»)+/(2n)) (8).

This result is known as Simpson's Rule.

'By dividing the whole area from to 2n into n consecutive

equal spaces and applying Simpson's rule to each, we obtain

jjix) dx=l {/(O) + 4/(1) + 2/(2) + 4/(3) + 2/(4) + ...

+/(2n))...(9).



APPROXIMATE INTEGRATION 121

This formula should normally yield better results than a single

application of the formula (8) over the whole range of integration.

It can, of course, only be applied where a sufficient number of

values of the function to be integrated is available.

11. Where the number of terms is four, by proceeding in a

similar manner to the above, we arrive at the result

jj{x) dx^^ {/(O) + 3/(1) + 3/(2) + /(3)) ...(10).

12. The process of obtaining the desired formula may be sim-

plified somewhat, when the given terms are arranged symmetrically

about the central point, by adopting the central point as origin.

This may be illustrated by proving the well-known Weddle's

Rule.

re

In this case I f(x) dx is to be expressed in terms of

/(0),/(l),.../(6).

Let fix) = a-\-hx-\- ex"" -hdo^-hex" -\-foi? + gs^.

Then
j

/(^)(i^=6a + 18c+^e + ^^.
Also /(0) = a,

/(I) +/(- 1) = 2a + 2c + 2e + 1g,

/(2) +/(- 2) = 2a 4- 8c + 32e + 128^,

/(3) +/(- 3) = 2a + 18c + 162e + 1458^.

Solving these equations for a, c, e and g, and substituting the

resulting values of these constants in the expression for the in-

tegral, we obtain

J^J{x)
Ax^^^ {272/(0) + 27/(1) +/(- 1)

+ 216/(2) +/(- 2) + 41/(3) +/(- 3)}.

This is not in a very convenient form for numerical work, so

we add

1

j^g A«/(- 3) =^ {- 20/(0) + 15/(1) +/(- 1)

-6/(2).H/(-2)+/(3)+/(-3)l,
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thus giving

jjix) do= +^ A«/(- 3) = ji^ (252/(0) + 42/(1) +/(-!)

+ 210/(2) + /(- 2) + 42/(3) +/(- 3)).

Neglecting the term z—n ^^f(~ ^) which will usually be very

small, we arrive at the final result

f^i^) (is=A j/(3) + 5/(2) +/(i) + 6/(0) +/(- 1)
'"

.

+5/(-2)+/(-3)}...(ll).
or, changmg the origin,

j"*/(^) dx =^ (/(O) + 5/(1) +/(2) + 6/(3) +/(4)

+ 5/(5)+/(6))...(12).

13. Another powerful formula can be obtained by expressing

ff(x) dx in terms of /(O), /(I), /(3), /(5) and /(6).
JO

Having five values of the function, let

f{x) = a + bx -{- ca^ -h da^ -\- eon*.

f(x)dx=6a-^lSc + ^e.
-3 ^

Also /(O) = a,

/(2) + / (- 2) = 2a + 8c + 32e,

/(3) +/(- 3) = 2a + 18c + 162e.

Solving for a, c and e, and substituting in the equation for the

integral, we find

r'/ix) dx = 2-2/(0) + 1-62 (/(2) +/(- 2)1 + -28 {/(3) +/(- 3)),
J —3

or, altering the origin and limits,

/(») d!C = n (-28/(0) +/(6») + 1-62/ (re) +/(5») + 2-2/(3«)}

(13).

Similarly

rl2n

f(x)dx=:n{'2Sf{6n)+f{l2n)-hl'62f{7n) + fiUn)

+ 2-2/(9n)).
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foo ren ri2n

Then f(x)dx= f(x) dx+ f(x)dx+.,.
Jo Jo J 6n

= »[-28{/(0) + 2/(6n) + 2/(12n) + ...|

+ l-62|/(n)+/(5n)+/(7n) + ...l

+ 2-2 (/(3n)+/(9») + •••)]

Now in a series of values decreasing to zero, if 7n be so chosen

as to fall just within or just without the limits of the table of the

function to be integrated, we obtain the convenient formula

rf{x) dx = n {-28/(0) + l'62f(n) + 2-2/(3??) + l-62/(5w)

+ -56 / (67^) + r62/(7n)}...(14).

The formulas in this Article are due to G. F. Hardy and the

last is usually known among actuaries as 39 (a), since that is the

number assigned to it in the original Text Book, Part II.

14. A useful formula, involving only a simple summation of

certain terms of the given series, is as follows

:

/,

""/(^) cir =^ [/(n) +/(4«) +f{6n) +/(9»i)]. . .(15).
^

By expanding f(x) in a series of ascending powers of x by

Maclaurin's Theorem, it is easy to show that the formula involves

a small second difference error. It can, however, be used con-

veniently where only a rough result is required.

15. An alternative method of obtaining formulas of this char-

acter is to express f{x) in terms of the given values of the function.

This can be done by Lagrange's formula and the resulting ex-

pression is then integrated between the desired limits.

As an example, we will develop formula (13) in this way.

The given values of the function are/(3),/(2),/(0),/(-2) and

/(-3). Then

(x+2)x(x-2)(x-S) ^,
(x-\-S)x{x-2)(x-S)

/W = -lx-3x-5x-6-^^" ^^ "^ 1X-2X-4X-5 ^^'^^

(x-\-^)(x + 2)(x-2)(x-S) (x-^S)(x-\-2)x(x-S)
^ 3x2x-2x-3 /W+ 5x4x2x-l -^^^

(x + S)(x+2)x(x-2)
"^ 6x5x3x1 -^ ^

^'
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Therefore

J -Z J -3 oi)

= •28/(-3) + l-62/(- 2)+ 2-2/(0) + 1-62/(2) + -28/(3)

as before.

16. The above methods are perfectly general and afford means

of expressing the value of an integral in terms of any given values

of the function.

It will be of value to indicate the method of application and to

show the degree of accuracy in each case by applying them to an

example.

Thus ^ = 2 log, 2 = 1-38630.

(i) Simpson's rule applied once gives

f(i + * + i)= 1-42500.

(ii) Simpson's rule applied three times over the values 2-4, 4-6,

6-8 gives

i(i + t + J + * + f + f + J)= 1-38770.

(iii) The "three-eighths" rule gives

l(i + f + t + J) = 1-40625.

(iv) Weddle's rule gives

^(H« + i +U* + f + 4) = 1-38679.

(v) Formula (13) gives

{•28 (i + J) + 1-62 (i + 1) + ^~~\ = 1-38643.

(vi) If formula (15) is used, n = '6 and we get

i [2-6 + 4^ + 5-6 + A] =l-3««39-

As the values of the function are changing rapidly over the

period used, the above is a somewhat severe test of the formulas.

It will be noticed, however, that Weddle's rule and formula (13)

differ from the true value only in the fourth place of decimals.



CHAPTER XXI

PROBABILITY

1. In considering the subject of Probability a clear appreciation

must be obtained of the distinction between its mathematical or

theoretical treatment and its arithmetical or practical development

which is the basis of actuarial science. The difference between

these two points of view will become clear by examining a few

simple illustrations.

Probability or chance is merely an expression of relative degrees

of uncertainty in relation to an event in respect of which our

knowledge is incomplete. In the ordinary phenomena of life prob-

abilities may not have a numerical value although distinctions

are drawn. Thus we should say, in the absence of more precise

knowledge, that a man of 30 was as likely as not to die before

another man of 30, would most probably outlive a man of 60 and

would almost certainly outlive a man of 80. The mind has clearly

formed definite opinions on these points but the respective prob-

abilities cannot be expressed in numerical form without further

analysis.

2. To obtain a measure of probability some unit must be taken,

and for reasons of convenience it has been the universal custom to

take absolute certainty as having unit probability. Starting from

this standard, certain probabilities can be found from general

reasoning, whereas others, such as the chance of dying in a year,

or of becoming the father of twins, must be deduced from the ob-

servation of suitable statistics.

3. As an example of the former class, one may say that, on

tossing a coin, it is certain that either "heads" or "tails" will appear,

and as these possibilities are equally likely, the chance that heads

will appear is clearly ^.

We cannot however assume from this that, if we toss a coin four
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times, two heads and two tails will necessarily appear. Indeed, as

will be shown later, the respective probabilities are

heads 4 tails y^

1 head 3 tails J

2 heads 2 tails f

3 heads 1 tail J

4 heads tails j^

1^

What we understand is that, if the number of trials were

sufficiently extended, the proportion of cases in which heads

appeared would approximate more and more closely to J. It is in

this sense that the mathematical definition of probability is to be

understood in connection with actuarial work.

The following Articles deal with the treatment of the subject

from its mathematical aspect.

4. From the foregoing considerations it will be evident that ifan

event can happen in 'a' ways and fail in'h' ways, and each of these

ways is equally likely, the probability of its happening is 7 , and

that of its failing is , . For the sum of these two probabilities

gives the chance of its either happening or failing, which is neces-

sarily unity.

Alternatively, we may say that the probability of an event is equal

to the ratio of the number of cases favourable to the event, to the total

number of cases.

It follows that if p is the probability that an event will happen,

the probability of its not happening is 1 — ^.

5. Another method of statement is to say that the odds are 'a'

to *b' in favour of the event or 'b' to 'a' against the event.

Example. The chance of throwing a four at a single throw of a

die is J, for there is one favourable result (a 4) and five unfavourable

results (1, 2, 3, 5 or 6), all of w^hich are equally likely.

The chance of not throwing a four is f , or, in other words, the

odds are 5 to 1 against the event.
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6. The following proposition is also self-evident

:

If an event can happen in more than one way (all ways being^

however, mutually exclusive), the probability of its happening at all

is the sum of the several probabilities of its happening in the several

ways.

Thus if the chance of scoring a " bull " he r^, that of scoring an

"inner" be J, that of scoring a "magpie" be ^, and that of

scoring an "outer" be J, the total chance of hitting the target at

all (all events being mutually exclusive) must be j^^ + J + 1 + J = fj.

7. The solution of elementary questions in probability depends

therefore upon general reasoning, but calculation is aided in some

cases by the theorems of permutations and combinations.

Some elementary examples will now be given

:

(1) The odds in a given race against three horses are 11 to 4,

13 to 3, and 7 to 2 respectively. Find the chance that one of them

will win the race, a dead-heat being assumed to be impossible.

The chance that the first horse should win is ^,
„ „ second „ „ jg-,

third „ „ |.

Thus the chance that one of them should win is

A + 1% + I ~ JTU'

(2) A has three shares in a lottery where there are three prizes

and six blanks. B has one share in another, where there is one

prize and two blanks. Show that A has a better chance of winning

a prize than B in the ratio of 16 to 7.

To be successful A may draw either 3, 2 or 1 prizes.

He may draw 3 prizes in 1 way.

He may draw 2 prizes and 1 blank in(jxLj = 18 ways.

He may draw 1 prize and 2 blanks in (A x (A = 4i5 ways.

The total number of ways in which he can win at least one prize

is therefore 1 + 18 -f 45 = 64.

Now three tickets can be selected in L) = 84 ways.

Therefore A*8 chance of success is || = 4f-

B'a chance is clearly J.

Therefore A'a chance is to B'a chance in the ratio 16 : 7.

Alternatively A may draw all blanks in L ) = 20 ways. His
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chance of non-success is therefore |f and his chance of success

1 —U =
-Jf as before.

(3) If four cards be drawn from a pack, what is the chance that

there will be one from each suit ?

Four cards can be selected from the pack in [) = 270725 ways.

Four cards can be selected so as to be one from each suit in

13^ = 28561 ways.

Therefore the required chance is ^%%V = iftyW-

(4) Out of a bag containing 12 balls, 5 are drawn and replaced,

and afterwards 6 are drawn. Find the chance that exactly 3 balls

were common to the two drawings.

The total number of ways of making the second drawing is

924.

To comply with the conditions, it must contain 3 balls out of

the first 5 chosen, and 3 balls out of the 7 left on the first choice.

The respective ways of making these selections are u j and (o)

.

The total number of selections favourable to the event is therefore

I A x(3J = 350, and the required chance is ffj = §f

.

(5) Twelve persons take their places at a round table. What is

the chance of two particular persons sitting together ?

Let the two persons be A and B. Then, since we are only con-

cerned with the relative positions of the persons, we may regard

^'s place as fixed. There are then 11 other seats in all, 2 of which

are adjacent to A. B's chance of occupying one of these is there-

fore ^.

(6) What is the chance of throwing more than 10 in a single

throw with two dice ?

A score of more than 10 can be made by the following throws

:

5 and 6, 6 and 5, 6 and 6.

The total possible number of combinations is 6 x 6 = 36 and,

as 3 of these are favourable to the event, the required chance is

-is = T^-

It should be noted that exactly 11 can be thrown in two ways,

since (regarding the throws as consecutive) either a 6 or a 5 may
appear first, but 12 can only be thrown in one way.
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8. If the chance of an event is p and the measure of the

quantity dependent on the event be x, the product px is called the

expectation.

Thus we may have the expectation of a person in a lottery, or the

expected value of a prize, or the expected number of deaths among
a given number of persons, and so on.

JExamples.

(1) What is the expectation of a person who is to draw one

envelope from a bag which contains one £1 note, two 10s. notes and
three blank pieces of paper, each placed in an envelope of uniform

size?

The chance of drawing the £1 note is J.

The chance of drawing a 10s. note is J.

The value of the expectation is therefore

i X 205. + J X 105. = 6s. Sd.

(2) If the chance of dying in a year is ^, the expected number
of deaths among 100 people is -^^ x 100 = 5.

9. In the foregoing articles we have considered what are, in

principle, single events. We have now to determine the appropriate

formulas for combinations of two or more events.

In considering problems of this kind, a close watch must be made

to see if the events are dependent or independent.

Thus, a bag contains 6 white and 4 black balls, and it is desired

to estimate the combined chance of drawing at the first draw

3 white balls and at the second draw 3 black balls. If the balls are

replaced after the first draw, the second event is clearly independent

of the first. But, if they are not replaced, the drawing of 3 white

balls at the first draw will obviously affect the chance of drawing

3 black balls at the second draw, and the two events will be

dependent.

Dependent events are also called contingent

10. We are thus led to the following proposition:

The chance of two independent events happening is the product of

the chances of their happening severally.

For if the first event can happen in a ways and fail in b ways,

and the corresponding figures for the second event are a' and b', the

total possible combinations of events are (a -f b) (a + b'). Of these

H. T. B. I. 9
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Both events may happen in aa' ways.

The first event may happen and the second event
fail in ah' ways.

The first event may fail and the second event
happen in ha ways.

Both events may fail in hh' ways.

aa

M.

pil--<?).

(1-

-(1

(1-

-p){\
-p)(l

p + q-

-9).

-9)

-PI'

The chance of their both happening: is therefore , , . . ,^^ ^ (a + 6) (a' + 6')

or —-7 . -7--T7 , i.e. the product of the respective chances of their

happening.

If the respective chances are p and q,

the chance that both happen is

the chance that the first happens and the
second fails is

the chance that the first fails and the
second happens is

the chance that both fail is

the chance that at least one happens is

the chance that one and only one happens
is p(i^q)^(i-p)q

=p-^q-2pq.

11. The above results can be applied by a slight modification

of reasoning to events which are not independent.

Thus if p be the chance of the event happening, and q be the

chance of a second event happening when the first has happened,

then the chance that both should happen is pq.

12. By successive applications of the above reasoning we can

arrive at a formula for any number of events.

Thus if p he the prohahility of an event A ; and, when A has

happened, q he the prohahility of another event B; and when A and
B have happened, r he the prohahility of another event G; and so on

for any number of events; the chance that all the events will happen

is the product pqr

It follows that if p be the chance that an event will happen in

one trial, the chance that it will happen in each of a series of r

trials is p^, and the chance that it will happen at least once in a
series of r trials is 1 — (1 —pY.
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13. This result can be developed more generally in the following

way:

If phe the probability of an event happening in one trial, what is

the probability of its happening once, twice, three times, . . . exactly

in n trials?

Let q be the probability that the event does not happen, so that

p + q = l. Then if the event is to happen exactly r times, it must
happen in each of a given combination of r of the trials and fail in

each of the remaining (n — r) trials. The chance of this occurring

is, as seen above, p^cf^. But the particular set of r trials can be

chosen in (^) ways, each of which is equally likely. Therefore the

total chance of its happening exactly r times is y\ p^q^"^, or the

term containing p"^ in the expansion of {p + qY.

Thus the successive terms of this expansion represent the

probabilities of the event occurring respectively n, w — 1, w — 2, . .

.

times in n trials.

14. The foregoing propositions can best be grasped by applying

them to certain examples.

(i) If four cards be drawn from a pack, what is the chance that

there will be one from each suit?

Let one card be drawn, which may be of any suit. The chance

that a second card is of a different suit is ff , for there are 51 cards

remaining, 39 of which will be of different suits from the first.

Similarly the chance of drawing a third card of a different suit fi*om

the first two is ff , and that of a fourth different card is ^,
The combined chance is therefore ff ^ 11 ^ if = AW^-
This result should be compared with that obtained in Example 3

of § 7, where the problem was treated as that of a simple prob-

ability. It is clear that the same result must be obtained whether

the cards are treated as being drawn simultaneously or successively.

(ii) A man throws a six-faced die until he gets an ace; he is to

receive £1 if he succeeds at the first throw, £J if he succeeds at

the second throw, £J if he succeeds at the third throw, and so on;

given that log^ 6 = 1*79176, find the value of his expectation.

The chance of succeeding at the first throw is J. The chance of

succeeding at the second throw is compounded of the chance of

failing at the first throw and succeeding at the second throw, etc.

9—2
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J+...1

The value of the expectation is therefore

=i!t+(f)^i+a)^
= i{-log.(l-f)l

= il0ge6

= -3583 = 75. 2d.

(iii) Let it be assumed that the probabilities of dying within

ten years after the ages specified are, on the average, as follows:

Age

30

40

50

Probability of dying
within next 10 years

What is the chance

(a) that a person A now aged 30 should die between the

ages of 50 and 60

;

(6) that two persons A and B, aged respectively 30 and

40, should be alive 10 years hence

;

(c) that of two persons A and B, aged respectively 30 and

40, A should die between the ages of 40 and 50 and B should

survive to the age of 60 ?

(a) The required chance is compounded of the chances that

A should survive successively to ages 40 and 50 and should then

die within the next ten years.

The several chances are (1 — yV)» (1 ""i) ^°^ i5 ^^^ ^^^ required

chance is the product of these three factors, namely

(b) The respective chances of surviving ten years are (1 — 3^)

and (1 — J). The chance that both A and B should survive that

period is therefore

(c) The chance that A should die between the ages of 40 and 50

is -H X f
The chance that B should survive to the age of 60 is f x f

.

The required chance that these two events should both happen

is, therefore,

(iix-i)x(fx|) = rff^.
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(iv) The faces of a die are marked with the consecutive numbers

1, 2, ... 6. What is the chance that, after seven throws, the sum of

the numbers exhibited equals 30 exactly ?

This example is important, as it illustrates a method which can

frequently be employed.

The number of ways in which the seven numbers exhibited can

total 30 is given by the coefficient of a?^ in the expansion of

for this coefficient arises from the combination of the indices of a?,

taken together in such a way as to produce a total of 30.

Writing {x^-oc'+...+ af^J as x' (1 - a^y (1 - a;)-^ it is seen that

we require the coefficient of ar® in the expansion of

(1 -^y (1 -a?)-^ = (l - 7a;« + 21a^2_ 35^18+ ^^) (1 -x)-\

The expression within the first bracket need not be expanded

further, since no term higher than x"^ is required. It remains to

combine the given terms with appropriate terms taken from the

expansion of the second bracket in^ such a way that the power of

X given by the product of the two terms is 23.

Thus we get

/24X...X29 \^ 475,020 ar«^^\lx...x6 /

(« 7a;0 X f^f^'-^'f xA = - 706,629 aP
^ ^ \ 1 X ... x6 /

12X...X17 „,
259,896a;««/oi 12X

/12X...X17 \

^'^"^^>K ix...x6 n
(-^bx'^)x(%^"'^^} A =- 16,170 a;«
^ ^ \1 X ... X 6 /

12,117 a;»

The number of ways in which a total of exactly 30 can be made

is thus 12,117.

Now, on any of the seven throws, any of the six numbers may
be exhibited. The total number of possible combinations of num-

bers is, therefore, 6^ The number of combinations giving a total

12 117
of 30 being 12,117, the required chance is —^^—

.
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15. The following miscellaneous examples are taken from the

examination papers of the Institute ; they illustrate various devices

which may be employed with advantage in the solution of questions

of this character.

(i) If n whole numbers be multiplied together, find the chance

that the last digit of the product is a five. [1910, Paper I, Q. 7.]

The chance is compounded of the separate chances that none of

the final digits of the n numbers is even and that one at least is a five.

The required chance is therefore

Kn _ 4,71

(j)"!i-a)"}=-^.

(ii) Four coins are tossed together and A is to receive £2 if

exactly 2 heads turn up, and to pay £1 in any other event. Find

the probability that after four trials A is £1 out of pocket.

[1913, Paper I, Q. 8.]

To satisfy the conditions A must win once and lose thrice.

The chance that exactly 2 heads turn up equals the middle term

in the expansion of (^ + J)* = (^l ^ (i)* = i
Therefore the chance that he should win once and lose thrice

equals the second term in the expansion of (J + f)*, which is

4.|-(f)' =Tm-
(iii) If a coin be tossed 15 times, what is the probability of

getting heads exactly as many times in the first 10 throws as in

the last 5? [1915, Paper I, Q. 9.]

If n coins be tossed the chance that exactly r heads turn up

equals the (r + l)th term in the expansion of (^ -f J)".

Now in the last 5 throws we may get 0, 1, ... 5 heads and we have

to combine the chance of any of these with the chance of getting

the same number of heads in the first 10 throws. Thus we have

for the several chances of getting

heads in both sets of throws = {\f . {\Y

Ihead „ „ „ = 5(i)». 10(1^

2 heads

3 „

4 „

5 „

= io(iy. 45(iy°

=:10a)M20(iy<'

= 5(iy.210(i)-
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Therefore the total chance that the same number will turn up in

both sets of throws is the sum of each of these distinct probabilities,

. 3003

(iv) A and B throw for a certain stake, each throwing with one

die; ^'s die is marked 2, 3, 4, 5, 6, 7, and 5's 1, 2, 3, 4, 5, 6, and

equal throws divide the stake; prove that ^'s expectation is f|of
the stake.

What will J.'s expectation be if equal throws go for nothing?

[1911, Paper I, Q. 8.]

Let e equal ^'s expectation.

The chance of J.'s throwing any of the numbers marked on the

die is the same for each number.

If A throws Si. 2, B must throw a 1 if J. is to win the stake, or

a 2 if ^ is to divide the stake. The chance that A throws a 2 is J;

the chance that he then wins the stake is ^ and that he divides the

stake is also J.
His expectation if he throws a 2 is therefore J + J . i

.

If equal throws go for nothing, ^'s expectation after an equal

throw clearly remains at e. In that case his expectation if he throws

a 2 is J + Je.

We therefore have the following scheme:

A'8 throw
Chance ^'s expectation if equal ^'s expectation if equal
thereof throws divide the stake throws go for nothing

2 i+i-i i+i«
3 i+i4 i+i^
4 H*-4 i+*«
5 §+*•* l+i«
6 HJ-4 i+ie
7 1 1

The total expectation being the sum of the separate expectations,

we have in the first case e = j^, being the sum of the figures in the

third column of the above table, and in the second case e =^ + ^e.

Whence e = ||.

(v) A man tosses 20 pennies and removes all that fall head up;

he then tosses the remainder and then removes all that fall head

up, and so on. How many times ought he to be allowed to repeat

this operation if he is to have an even chance of removing all the

pennies before he has finished? [1906, Paper I, Q. 11.]
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The problem is clearly the same if all the pennies are tossed

each time; we then have to find the chance that all the pennies

have turned up heads once at least

If n be the required number of throws, the chance that any

particular penny has turned up heads once at least is {1 — (J)**).

The chance that all the pennies have turned up heads once at

least is therefore {1 — (|)")^ and by the terms of the question this

must equal J.

Solving this equation we find (1)** = 1 — (J)^,

n = 4-87.
-n

(vi) 2** players of equal skill enter for a tournament; they are

drawn in pairs, and the winners of each round are drawn again for

the next. Find the probability that two given competitors will play

against each other in the course of the tournament. If w = 5, show

that the probability that a given player will either win or be

beaten by the actual winner is ^. [1912, Paper I, Q. 6.]

As regards the first part of the question, the total number of

games that will be played is

2n-i^_2»-2+ ...+1=2'»-1.

2** (2^ — 1)
Also two players can be selected in ^ ways. The chance

that two will meet is therefore the quotient of these two values,

1
^•^•2^1-

The second part of the question can be proved by an inductive

process.

Let Un be the required chance.

Then in the first round he may either win or lose. If he wins,

he passes into the next round and his chance of winning or being

beaten by the ultimate winner then becomes Wn-i- If he loses, his

opponent passes into the next round where the latter's chance of

becoming the ultimate winner is increased to ^^^ .

We thus have

2 **-' ^ 2 2''^^n — n ^n—1 + o • Qn-l
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1

2

1
»l~2 + ^ •

1

2n-2 '

1

4

1 . 1 1

2n-3'

etc. etc.

1

2n-
1

t^ + 2^:

1
-^•2*
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As t^ obviously equals 1, we have by addition

1 n-1 n+1
'^ <2n-\ "^ 2^Wn =

2»

^5 = A.

It is instructive also to prove the first part of the question

inductively.

Let Un be the required chance. This chance is compounded of

the two chances that they meet in the first round, or that, not

having met in the first round, they both pass into the second

round where the corresponding chance becomes Wn-i-

The chance that they meet in the first round is -^—=- ; the chance

2'* — 2
that they do not meet is^—r- . Therefore we have

1 1 2" -2
^«-2"-l'^^'^'*4*2»~l'

or (2'* - 1) i*^ = 1 + ~ Un-i.

C2"~i
— 1

\

1
2 )^n-i = 2 +

2»-2 _ 1

4
^n-2

.2n-2^\ _1 2^-^ - 1

\~ir~) ^'^^
- 4

"^
8 ^'*-

etc. etc,

/2» -

1

\ _ _1_ 2^-1

\ 2"~^ y
'^3 — 2n-3 '^" ~2n=r^2'

/22-l\ __ 1 2-1

\
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By addition

(2---l)«n =a-fhi^-
(since u^ obviously equals 1)

•

=
1-

1-

1

1

2

2»-l
2n-i

Whence un =
1

2n-l»

as before.

16. The application of the Integral Calculus to problems of

mean value and probability is shown in Chapter XIX, §§ 5-7.
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CHAPTER III
1. Given

/(l)= (^-2)(^-3), f{^)= {x-l){x-b), /(3)= (^-10)(:r+ l), /(4)= 63,

obtain a value for x^ assuming second diflFerences are constant.

2. Find the nth term of the series 2, 12, 36, 98, 270, 768, etc. and the sum
of n terms of it.

3. Given that

/(0)= 66566, /(1)= 65152, /(2)= 63677, /(3)= 62136,
find/(9).

4 Find A-' ^^+ 2^

(3^ + l)(3a;+4)(3^^+ 7)(3^+10)"

5. Find the value of

A" (3^+ 1) (3^+4) (3;r+ 7) ... (3^+ 3?i-2).

6. Prove that

2i !

+ ...+/ (:r+ m)= 7^'»/ (^)+ wTi*"-! A/ {x)

+^'^ffi^w™-2Ay(^)+ ... + A"»/(^).

Hence find the sum of the series

l2+m.22+^?^i|pD32+ ... + (7/i+ l)2.

CHAPTER IV
1. Given

/(0)= 70795, /(1)= 72444, /(2)= 74131, and /(6)= 81283,

find /(3),/(4), and /(5).

2. Find/ (35) given

/(20) = '01313, /(30) = -01727, /(40)= -02392, / (50)= -03493.

3. Supply the missing term in the following table

:

/(0)= 72795,

/(1)= 71651,

/ (2)= 70458,

/ (4)=67919,

/ (5)= 66566,

/(6)= 65152.

4. Given

/(0)= 11, /(3)= 18, /(6) = 74, and/(9)= 522,

find the intermediate terms.
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.5. Given

/(0)=98203, /(1)= 97843, /(2)= 97459, /(3)=97034,

find/ (2-25).

6. Given

/(0)= 98023, /(10)= 97651, /(20)= 97246, /(30)= 96802,

find/(15).

7. Given

/(0)= 58'842, /(2)= 55-267, /(4)=51-368, /(10)= 37-977,

complete the series /(O), /(I), .../(lO).

8. If you were asked at very short notice to obtain approximate values for

the complete series /(O), /(I), /(2), .../(20), being given that /(0)= -0I3,

/(10)=-248, /(15)= -578, and /(20)= -983, what methods would you adopt,

and what value would you obtain for/(9)?

9. /(1)=1; /(2)+/(3)= 5-41; /(4)+/(5) 4-/(6) = 18-47;

/(7)+/(8)4-/(9)+/(10)+/(ll)+/(12)=90-36.

Find the value of/(^) for all values of x from 1 to 12 inclusive.

10. Apply Lagrange's formula to find/ (5) and/(6), given that

/(1)= 2, /(2)= 4, /(3)= 8, /(4)= 16and/(7)= 128;

and explain why the results differ from those obtained by completing the series

of powers of 2.

11. Find the simplest algebraic expression in x which has the values 5, 3,

9, 47 and 165 when x has the values 0, 1, 2, 3 and 4 respectively.

12. Prove the following formulas for approximate interpolation

:

/(l)=/(3)-3[/(5)-/(-3)]+-2[/(-3)-/(-5)] (1),

/(O) =i [/(I) +/(-l)]-|[H/(3) -/(I)} -i {/(-!)-/(- 3)}] ...(2),

and apply them to find the logs of 45, 46, 47, 48, 49, being given

log 42= 1 -62325, log 50= 1 -69897,

log 44=1-64345, log 52= 1-71600.

13. Given

10 10 10

2/(^)= 500426, 2/(^)= 329240, 2/(^)= 175212 and /(10)= 40365,14 7

find/(l).

CHAPTER V

1. Use Gauss' interpolation formula to obtain the value of/ (41) given

/(30)= 3678-2, /(35)= 2995-l, /(40)= 2400-l,

/(45)= 1876-2, /(50)= 1416-3.

Verify your result by using Lagrange's formula over the same figures.
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2. Given the following table find/(28) using Stirling's formula:

/(20) = 98450, /(25)= 96632, /(30) = 94472,

/(35)= 91852, /(40)= 88613.

3. Prove that

/(x)=4[/(-i)4./(4)]+x./(-4)+-±^i.4y(^?)+AyU)+....

and apply the formula to find/ (32) given

/(25)=-2707, /(30)= -3027, /(35)= -3386, /(40)= -3794

4. From the table of annual net premiums given below find the annual net

premium at age 25 by means of Bessel's formula

:

Ago Annual Net Premiums

20 -01427

24 -01581

28 -01772

32 -01996

5. Use Everett's interpolation formula to complete the series /(25) to /(35),

given that

/(15)= 305, /(20)=457, /(25)= 568, /(30)= 671,

/(35) = 897, /(40)= 1190, /(45)= 1481.

CHAPTER VI

1. Given the following table oif{pc) :

/(0)=217, /(1) = 140, /(2)= 23, /(3)=-6, .

show how to find approximately the value of cs for which the function is zero.

2. Given that, when

^=0, /(:r)=0,

^=1, /(^)= 100,

x= 2, /(a?)= 2000,

find X when /(^)=1900 by Lagrange's formula of interpolation (applied

inversely) and explain why the result does not agree with that found by using

the formula/(:j7)= (l + A)*/(0) and solving the quadratic

3. The following values of/(a?) are given

:

/(10)= 1754, /(15)=2648, /(20)=3564.

Find, correct to one decimal place, the value of x for which /(a:)= 3000.

4. /(30)=-30, /(34)=-13, /(38) = 3, /(42)= 18.

Apply Lagrange's formula of interpolation inversely to find x^ where /(a;) =0.
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CHAPTER VII

1. Find the value of

A- L
7i (?i+ l) (rH-2) ... (7i+r- 1)

'

and use the result to find the value of

2^(^ + 1) (^+ 2)'

2. Prove that

1

3. Show that

where ^ (a?) is any rational integral algebraic function of x.

4. Prove that if a„ diminishes as n increases and converges to the limit zero,

the sum to infinity of the series ai — ag+as ... is the same as the sum to infinity

of the series iai — lAa^+^A^a^ - etc.

Find the sum to infinity of the series ^-^+^ .- true to four decimal

places.

5. Prove that if the fourth and higher differences are ignored the sum of n
successive terms of a function of which /(O) is the central term is

"/w+^^'/^-i)'

where n is an odd number.

CHAPTER VIII

1. Given the following values oif{x):

/(I •41)= -7092, /(l-49)= -6711,

/(I -62)= -6579, /(l-53)= -6536,

find/(l-45).

2. Use Divided Difierences to find/ (80) to the nearest integer, given

/(70)= 235, /(71)= 256, /(79)=436, /(81)= 484.

3. Given

/(20)= -342, /(23)= -391, /(31)= -516, /(34)= -559,

find/(30) by means of Divided Difierences, and check the result by applying

Lagrange's interpolation formula.
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CHAPTER IX

1. The following values of/(^, y) are given

:

/ (35, 55)= 10-020, /(35, 50) = iri96, /(35, 45) = 12-019,

/(40, 55)= 9-796, / (40, 50)= 10-894, / (40, 45) = 11-641,

/(45, 55)= 9-583, /(45, 50)= 10-591, / (45, 45)= 11-243.

(i) Using only six of the above values, find/ (42, 52).

(ii) Making use of all the data calculate/(44, 51).

2. Prove that if/(O, 1)=/(1, 0) and/(0, 2)=/(2, 0), then

/(^, 3')=/(0,0)+ (^+y)[A,+^±|::^A2,J/(0, OHxy[f{l, l)-/(2, 0)].

Find/ (39, 33), given

/(35, 35)= 3-151, /(35, 45)=3-912,

/(35, 40) =3-471, / (40, 40)= 3-766.

CHAPTER XI

1

1. Find the differential coefficients with regard to x of log^« and

\/^2_3

(^-l)\/^2_7

2. Differentiate with respect to x

^^V a^+ ax+x'^
•

3. Find the differential coefficient with regard to x"^ of

4. Differentiate

(1) «;« f -
J

log -, with respect[to log -

,

x^
(2) log ——r , with respect to a?,

(3)
^Ooga;)2, ^j^j^ respect to x.

5. If(l-a?)v+(l-y)^=0, find^,

6. Obtain the differential coefficients of

X
a*

(1) ^^§5' (2) e^» with respect to x.
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CHAPTER XII

1. Find (1) the nth. differential coeflQcient of -—jrj~2—Tn ^*^ respect to

a:, and (2) the second differential coefficient of log^ (1 -\-x) with respect to log^ x.

2. Find the nth differential coefficient ofe^{x- 2)2.

3. Having given that

provethat a:^^,M2n+l) a:, ^^^n'^1)^^= 0.

4. Obtain the second differential coefficient of log {a-\-bx+ cx^) with respect

to -Jx.

5. Find the Tith differential coefficient with respect to ^ of

x+\
2^2_5^^.3-

CHAPTER XIII

1. Provethat ^=i_^ + ^_^...
e*-l 2 12 720

and show that no odd power of x beyond the first can occur.

o 15 ^v, ^.
log(^+\/l+ ar2) 2.4 ,

2. Provethat ^^
, —x-la^+ ^i—,x^-,„.

s/\+x^ ^ 3.5

3. Prove that the first three terms of the expansion of {\-\-xY in powers of

X are e - — + ^J ex"^.

4. Expand log {x+ Va^ ^ ^2) \ji ascending powers of x.

6. Expand —^—-—' in ascending powers of x as far as the term in-

volving a^.

CHAPTER XIV

2. Find the maximum value oi x{x-\){x-'i) between the limits and 1.

3. Find the values of x at the points where the graph of the function

(1 + a?2) e^-** has its greatest slope.
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4. A man in a boat at sea, 5 miles distant from the nearest point of a

straight shore, wishes to reach a place 12 miles distant along the shore,

measuring from this nearest point. At what point should he land to reach this

place in the minimum time, if he can row at 3 miles an hour and walk at

4 miles an hour?

5. Given/(0) = 1876,/(1)= 777,/(3)= 19, and/(6)= -218, interpolate the

values of /(2), /(4), and /(5) and i&nd the values of x for which f{x) is a

maximum or minimum.

6. Find the minimum and maximum values of

x^-^- %x^+ 48^ - 48.

7. A window is in shape a rectangle with a semicircle covering the top. If

the perimeter of the window be a fixed length l^ find what is its maximum area.

8. Fmd (1) Lt .
,

(2) Lt(l+a,'3)^.
a;-*-o

CHAPTER XV

d^ fix)
1. Show that -^-—

^=Ay(:r-f) approximately.

By considering the function f{x) — a+ hx-{-cF and using the above relation

prove that logeC=c*-c~* approximately, where c is a small quantity.

A2 a3
2. Show that aO"*- — 0*"+ — 0"» ...=0, when m > 1.

2i S

3. Prove that, if f{x) be a function the fourth differences of which are

constant,

'^£-^=l^[/(^-2)-8/(^-l)-f8/(^+l)-/(^+2)]

and hence find an approximate value for -r- flog /(a?)] where

/(^- 2)= 42-699, /(^-1) = 40-365, /(a?)=37-977,

/(^ + 1) =35-543, /(a;+ 2)= 33-075.

CHAPTER XVIII

1. Find the integrals

(^)/Jh<'- ^^)/^"^- («)f-^^^-

jx*a*dx.2. Evaluate

H. T. B. I. 10
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3. Evaluate

„. , .. . . r27a?2- 171^+256 ,

Find the value of I -z-. ^^^-t——rr- dx.

Liate

4.

5. Evaluate

CHAPTER XIX

1. If /(^)=a+J^+ca;2, find expressions for /(J), -=^^ and / f{x)dx in

terms of/(0),/(l) and/(2).

2. Evaluate ^.^^dx.

3. Find the value of P-^^^t^J^^rf^P.
;j j7(2-a:)(a7+l) ^

4. Find the average value of x {x—l){x-2) between the limits and 1.

5. Find the value of / x^^'-^e^dx.

CHAPTER XX
1. From the table

/(0)= 217, /(1)= 140, /(2)«=23, /(3)=~6,

find an approximate value for / f(x) dx, and explain why the result difiers

from/(0)+/(l)+/(2)+/(3).

2. Prove that approximately

J;^^/(^)rf^=2V{/(-l)+22/(0)+/(l)},

and find thereby an approximate value for

r* 10,000 X 4-* x23'ffx

3. Discuss the error in assuming that

JV(^)^^=/(4)=M/(0)+/(i)]

if (1) f{x)=a+bx+cx^, (2) /(^)=100x4*

4. Given /( - 2), /(O), /(2), find an approximate value for

j[j(x):dx.
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5. Prove that

1

/;
f{x)dx=^ [5/(1) + 8/(0) -/(-I)] approximately.

If the speed of a train on a non-stop run is as shown in the table below, find

the approximate mileage travelled between 12.0 and 12.30, using the above

formula.

Time
Speed in

miles per hour

11.50

12.0

12.10

12.20

12.30

24-2

35
41-3

42-8

39-2

6. If/(1)= 4157, /(2) = 4527, /(4)= 6435, find approximately the value of

/:
f{x) dx.

CHAPTER XXI

1. n persons are sitting at a round table, and from them three are selected

at random ; show that the chance that no two of those selected are sitting next

one another is , r^r -J: .

(7l-l)(?l-2)

2. A heap of playing cards contains 6 hearts, 5 spades and 4 clubs. A card is

chosen at random 9 times in succession and is not replaced. Find the chance

(1) that there are no hearts left, and (2) only hearts are left.

3. A man has two sovereigns and four shillings in his pocket ; from these

he selects at random 3 coins, and again chooses from these 3 coins at random,

the first coin for A^ the second for i5, and the third for C.

Find the values of the expectations of J[, 5, and G.

4. Find the probability that out of 5 persons aged 45 exactly 3 will die in

a year.

Probability that a person aged 45 will die in a year= '01224.

5. A die with six faces is thrown three times and the sum of the throws is

twelve : find the chance (1) that the first throw was a four : (2) that four was
thrown each time.

6. Two men, A and B^ each draw a card from a well-shuffled pack of

playing cards, find that they are of the same value, and replace the cards

;

they do this four times in succession. Find the chance that this would happen

and show that it is approximately ^^ .

\f
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7. The probability that a man aged 50 will survive one year is •98428.

Show that the probability that, out of 5 men aged 50, 3 at least will die within

a year is -0000385.

8. The 26 letters of the alphabet are placed in a bag. A and B alternately

draw a letter from the bag, the letters drawn not being replaced. The winner

is the one who draws most vowels. A starts and draws a vowel with his first

draw. What is his chance of winning ?

9. If a number of five figures containing any five of the ten digits once only

is written down at random, what is the probability that it is divisible by 9 ?

10. Given the following table find the probability that one at least of three

persons aged respectively 20, 30, 40 will die between the 10th and 20th year

from now

:

Age
Probability

of surviving

10 years

Probability

of surviving

20 years

20
30
40

•93363

•91740

•88476

•85651

•81167

•71517

X

11. Two persons, A and 5, play for a stake, each throwing alternately two

dice, A commencing. A wins if he throws six, B if he throws seven, the game

ceasing as soon as either event happens. What ratio will ^'s chance of winning

bear to i?'s?

12. The sum of two positive integers (excluding zero) is 100 j find the chance

that their product exceeds 1200.

13. The following table shows the probability that a woman of the age

specified will marry in a year

:

Age Probability of marriage

20 -0665

25 1033

30 ^0649

40 -0183

Find the probability that, out of 4 women aged 20, 25, 30, 40 respectively, only

one marries within a year.

14. A bag contains 8 counters, numbered 1 to 8. Four are drawn at

random. Find the chances that

(1) The sum of the numbers on the foiu* counters amounts to at least 17.

(2) The counters numbered 2 and 3 are among the four.

(3) The four counters contain at least two of the three counters numbered

3, 5 and 7.

15. A penny is tossed six times. Find the chance that neither heads nor

tails have occurred three times in succession.
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16. An urn contains counters marked with the digits 6, 7, 8 and 9 ; and the

number of times each digit occurs is equal to the value of the digit. If counters

are drawn one at a time, each counter being replaced when drawn, what is the

probability

(1) that the digit 6 is drawn before the digit 9;

(2) that the sum of the first three digits drawn is exactly 20?

17. A and B play a set of games, to be won by the player who first wins four

games, with the condition that if they each win three they are to play the best

of three to decide the set. ^'s chance of winning a single game is to 5's as

2 to 1. Find their respective chances of winning the set.

18. The probability of any one of 10 men each aged 30 surviving a year is

•99229.

Show that the probability that exactly 5 men out of the 10 survive a year

is 6-6x10-9.

Find also the probability that of the 10 men one particular man will die

first and another particular man last.

19. A point is taken at random within the area bounded by the curve

y=x\ogx^ the x axis, and the ordinates at the points ;r=l, and ^=4.

Find the probability that the distance of the point from the y axis is less

than 2.

20. In a game of whist the dealer found that on turning up the last card he

had the Ace, King, Queen, Knave, Ten, and 3 other trumps in his hand. Find

the chance that this would occur.

21. A and B cut a pack of cards, the player who wins the cut six times to

be the winner. A, having won four times to J5's once, cuts a five. Find the

chance that A will be the winner.

22. In a line AB oi length 3a, a point P is taken at random and then in

AP a point Q is taken at random. What is the probability that P§ exceeds a ?

\



ANSWEES TO EXAMPLES

CHAPTER III

1. x=l2 or -16.

2. 7«th term=7i2+n- 3+ 3". Sum of n terms= ^ '^~9~

3. 51224. 4. ?.22!.
^^^^^^

2 (3a:+ l)(3:c + 4)...(3a?+ 70)

5. 3".7i!. 6. 2^-2(m+ l)(w + 4).

CHAPTER IV

1. /(3)= 75857-2 ;/(4)= 77623-8 ;/(5)= 79432-0. 2. -02017.

3. 69215. 4. 12, 14 ; 26, 42 ; 138, 266. 5. 97357. 6. 97453.

7. A/(0)= -1-753875, Ay(0)=- "07725 and a3/(0)= -00125 from which

the series may be completed.

8. -1954.

9. A/(l)= l-1006, a2/(1)= -1083 and A3/(l)r=-0137 from which the values

off{x) required may be found.

10. /(5) = 32H;/(6) = 66§.

11. a;4-2a:3+ 3x2-4a: + 5 or 24. 2*-8^2_i8a;_i9.

12. log 45= 1-65321, log 46= 1-66276, log 47= 1-67210,

log 48= 1-68125, log 49= 1-69020.

13. 58843|f.

CHAPTER V
1. 2290-0. 2. 95384. 3. -3165. 4. -01625.

5. The series is / (25) 568, /(26) 585, /(27) 602, /(28) 621,

/(29) 644, /(30) 671, /(31) 707, /(32) 747,

/(33)793, /(34)843, / (35) 897.

CHAPTER VI

1. 2-751. 2. 2jf. 3. 16-9. 4. 372.

CHAPTER VII

1. JL . I . IL. 4. 0525.
l-r n{n+ l){n+ 2)...{n+r'-2)' 144'

CHAPTER VIII

1. -6895. 2. 460. 3. '500.
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CHAPTER IX

1. (i) 10-389; (ii) 10-475. 2. 3-297.

CHAPTER XI

1- xr2(l-log^)
^ (a;-l)2(^2_3)i(^2_7)f

2
x^C^a^+^ax+x^)

^
1

• 3{a+ x){a^+ x^){a^'{-ax+x-^)' '

a^ ^^^Z^'

4. (1) a=«(^)"[:rloga.log^+a^log^(log^ + l) + lJ,

, . 1 __ 1 3^(108^)' (log ^)2

«•
-
^!;:5::::g:gSg:S - «• ^'-^ ^-(--^)-

CHAPTER XII

1 m (-1)"-^^ 1 1 2(7^+1) 1 .g. ^logg^
•^^

4 L(^-l)« + i (^+ l)'» + i (^+ l)" + 2j> ^^^
(l + a;)2-

2. e«=«.a"-2[a2(^_2)2+ 2m(a?-2) + 9i(7i-l)].

. [a6 + ^ (6ca- 52) - hcx'^ - 20^^^]

5 (-i)n ^jf
5-2^ 2 n

^'
^ ^^ •''•L(2^-3)« + i (a?-l)« + ij-

CHAPTER XIII

A 1 4.^_^4.^_ ,
/ ,,, 1.3...(2r-l)a;2r-n ^

4. ioga+ ^ 6a3'*"40a6 "•"^^ ^ r! (2r+ l)2»-a2'-+i
"^••••

_ a?2 5^ a;^ 209^
^' ^"2~12"^4+'720~-

CHAPTER XIV

2 /^ 15
1. 1. 2. Tz . 3. + A. /-. 4. —7= miles from the nearest point

3 73 - V 2 77
5. /(2)= 218, /(4)=0, /(5)= -19. _

120+\/llO
Maximum value when x

Minimum value when x=

30

120-\/riO

30

6. Minimum values- 3, - 128. Maximum value 0.

El
2(7r + 4)

7. TTT^ ..> 8. (1) x/f^'^5 (^^ ^-
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CHAPTER XV
3. -06353.

CHAPTER XVIII

1. (1)
2_^^l(5^

+6.2+8.+16) + c; (2) ^^3 log(^^ + c

;

(3) log^[log(log^)-l]+c.

""
Lloge« (log.a)2'*"(logea)3 (log,a)4"^(log,a)0+''-

3. (1) ^ [{x+ ct) \/ar2+ 2ax - a^ log {(^ -\-a) + fjx'^ + 2aa;}+ c]

;

(2) H«'-^)'-«V^=^+c; (3) ''^^^\o^{\^x)^c.

- x-%
,
-. a?-3.

5. log(f^) +^ + ^; (l+a;)log(l+^)-(l-^)log(l-^)-2a?+c;

j^-|-j^[{(7i+ l)log2r)3-3{(w+l)log^}2+ 6(n+l)log:r-6]+ c.

CHAPTER XIX

1. i[3/(0) + 6/(l)-/(2)];i[-3/(0)+4/(l)-/(2)];
^[6/(0) + 8/(l)-/(2)].

2. ^. 3. log,6. 4. i. 5. ^.

CHAPTER XX
1. 262^. 2. 32500. 3. (1) -Jjc; Jc. (2) -16*5; 33*5.

4. I [3/(- 2) + 2/(0) + 3/(2)]. 5. 20 '4 miles. 6. 14262.

CHAPTER XXI

2. (1)7^; (2) F?^. 3. 75. 4rf., 75. 4c;., 7«. 4fl?. 4. -0000179.

5. (1) \\ (2) ^. 6. ^h^. 8. i^,
9. i. 10. -31466. 11. 30:31. 12. 1%.

13. -2109. 14. (l)|f; (2)^; (3) i. 15. M-
16. (1) f; (2) tI&5. 17. ^'s chance Iff|§; 5's chance ^0^.

21. e|. 22. §-ilog3.
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