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PREFACE.

The value of a Collection of Solutions depends in great

measure on the fact that every Problem is solved by the

framer of the question, thus showing the student the manner

in which he was expected to proceed in the Senate-House.

The Moderators desire therefore to thank the Examiners for

the many valuable Solutions of the Problems set by them,

by which the book has been made more complete than it

would othei'wise have been.

The Senior Moderator also acknowledges his obligation to

Mr Droop, Fellow of Trinity College, for much valuable

assistance, and particularly for the suggestion and the solu-

tion of the three following Problems, viz. No. \'i. of Tuesday

Morning, Jan. 17, and Nos. 3 and 5 of Wednesday Moniing,

Jan. 18.





SOLUTIONS OF SENATE-HOUSE

PROBLEMS AND RIDERS

FOR THE YEAR EIGHTEEN HUNDRED AND SIXTY.

Tuesday, Jan. 3. 9 to 12.

JUNIOB MODEBATOB. Arabic numbers.

Seniob ExAiiiNEB. Roman numbers.

1. If a straight line DME be drawn through the middle i^

point M of the base of a triangle ABC, so as to cut off equal

parts AD, AE from the sides AB, A C, produced if necessary,

respectively, then shall BD be equal to CE.

Through C draw CJ?' parallel to AB, and cutting BE in F.
Then the two triangles DMB, FMG are clearly equal, and
therefore CF= BD. Again, CF being parallel to AB, the

angle CFE = the angle ADE, and because AD = AE, the

angle ADE = angle AED ; whence it easily follows that

CF= CE.

2. Shew how to construct a rectangle which shall be equal *^

to a given square
;

(I) when the sum and (2) when the differ-

ence of two adjacent sides is given.

The first case is too obvious to require any solution. In the

second case, refer to the figure in Euclid, Book ii. Prop. 14.

A little consideration will shewthat GE is twice the differ-

ence between the two sides BE, ED. Whence the following

construction. Take QE=\ia\i the given difference, describe
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a circle BIIF with radius equal to the side of the given
square, and cutting GE produced in B and F. Tlien BE,
EF are the sides of the rectangle required.

3. If two chords AB, AC ha drawn from any point A of

a circle, and be produced to D and E, so that the rectangle

A C, AE is equal to the rectangle AB, AD, tlien if be the

centre of the circle, AO is perpendicular to DE.

Since AB .AD = AC . AE, a circle may be described about
BCED. Therefore the angle BDE= BCA. Hence if A and
B be fixed while C moves round the circle, the angle ADE
will be constant and tlie locus of E will be a straight line.

Take AC to pass through and cut the circle in C and DE
in P. Then as before the angle APD = ABC = a right

angle.

iv. Describe an isosceles triangle having each of the

angles at the base double of the third angle.

If tI be the vertex, and BD the base of the constructed

triangle, D being one of the points of intersection of the two
circles employed in the construction, and E the other, and AE
be drawn meeting BD produced in F, prove that FAB is

another isosceles triano-le of the same kind.*o*

For ADE is an isosceles triangle, and the angle AED at

the base is the supplement of the angle A CD in the opposite

segment of the circle. Hence AED = BCD and therefore bv
Euclid = ABD, and also the angles ADE, ADB are equal,

therefore the third angle DAE= the third angle BAD. Hence
the whole angle BAE is double the angle BAD, and therefore

equal to ABD. Hence the triangle FAB is isosceles, and
each of the angles at the base is equal to the angles at the

base of ABD. Therefore, &c.

V. Prove that the straight lines bisecting one angle of

a triangle internally and the other two externally pass

through the same point.

Let the exterior angles A and C of the triangle ABC be

bisected by AD, CO, meeting each other in 0; tben BO will

bisect the angle ABC. Because AD bisects the exterior
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angle A, BA : BD :: AC \ CD. And because CO bisects

tlie angle ACD, therefore AC -. CD :: AO : OD, therefore

BA : BD :: AO : ODy and therefore BO bisects the angle
ABD. See fig. 1.

vi. If three straight lines, which do not all lie in one
plane, be cut in the same ratio bj three planes, two of which
are parallel, shew that the third will be parallel to the other

two, if its intersections with the three straight lines are not
all in one straight line.

This may be easily proved by a " reductio ad absurdum."

vii. Define a parabola: and prove from the definition

that it cannot be cut by a straight line in more than two
points.

For if possible let a straight line cut the parabola in three

points P, Q, R, and let it cut the directrix in T. Draw Pp,

Qq, Br perpendiculars to the directrix, and let ;S^ be the focus.

Then since SP=Pp, SQ= Qq, it follows that SP: SQ :: PT
: QT, and therefore ST bisects the exterior angle to PSQ.
Similarly ST also bisects the exterior angle to PSE. Which
is absurd.

viii. P, Q are points in two confocal ellipses, at which the

line joining the common foci subtends equal angles
;
prove

that the tangents at P, Q are inclined at an angle which is

equal to the angle subtended by PQ at either focus.

Let the normals at P and Q meet in G, join QP and pro-

duce it to any point R. Then the angle between the tangents

is equal to the angle PGQ which is

= RPG -RQG = {RPS- RQS) + {SPG - SQG).

Now SPG = SQG, being the halves of equal angles, and the

difference RPS -RQS = PSQ. Similarly the angle PGQ
may be proved = PUQ.

ix. If a circle, passing through Y and Z, touch the major
axis in Q, and that diameter of the circle, which passes through

Q, meet the tangent in P, then PQ = BC.
b2
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Let the tangent YZ cut the major axis in T. Then by
similar triangles

PQ _SY .PQ_nZ P(^ SY.HZ
QT" YT QT~ ZT''

•*•
QT""" TY.TZ'

But TY. TZ= Tqt by Euclid, iii. 36, and 8Y , HZ=BG*;

.'. PQ = BC.

11. In an hyperbola, supposing the two asymptotes and

one point of the curve to be given in position, shew how to

construct the curve ; and find the position of the foci.

Let OX, F be the two asymptotes, and P the given point.

Draw PN parallel to OY cutting OX in N. Measure OB
= OJE along the asymptotes, such that OB' = 4 . ON. NP.
Bisect the angle BOE by OA cutting BE in A. Then OA,
AB are equal to the axes; and the remainder of the con-

struction is obvious.

12. Given a right cone and a point within it, there are

but two sections which have this point for focus; and the

f)lanes of these sections make equal angles with the straight

ine joining the given point and the vertex of the cone.

Let V be the vertex, VCO the axis of the given cone,

and P the given point. Then, if two spheres be inscribed in

the cone and passing through P, the tangent planes to these

spheres will evidently be the only two sections whose foci are

at P. Let G and be the centres of the two spheres, then

VCi VO :: CL : OM :: CP: PO; therefore VP bisects the

angle exterior to CPO in the triangle CPO. But the raSii

CP, PO are perpendicular to the sections AB, BE, therefore

VP bisects the angle between these sections. See fig. 2.
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Tuesday, Jan. 3. 1^ to 4.

Sbkiob Modebatob. Arabic numbers.

JONIOB ExAMiNEB. Eoman numbers.

4. (3) Solve the equations,

Multiplying the second and third of these equations

together, and subtracting the square of the first, we get

X {3xyz — o^—y^— a') = 5V — a*

;

therefore by symmetry

Hence, substituting in the first equation,

therefore x—±

y = ±

2 = +

(o'+ J'+ c'-Sa'JV)*'

(a'+ ^^'+ c'-Sa'iV)**
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m xi 1 • • p sin (tt COS ^) " ^
viii. Trace the cnansres in sign oi 7

—

.—^i , as vanes° ° cos (tt sin 0}

from to TT.

The numerator is positive when 6 lies between and -
,

TT
and negative when ^ lies between - and tt.

TT
The denominator is positive when 6 lies between and -

,

negative when 6 lies between — and — , and positive when B

lies between -— and tt.
6

If
Hence the expression is positive from to -

,

negative
11

TT

6
to

TT

2'

positive »
TT

2
to

6 '

negative
>j

h-ir

6
to TT.

Prove that,

sin 3 (^ - 15) = 4 cos [A - 45) cos {A + 15) sin (^ - 15),

and find sin A and sinB from the equations,

a sin' -4 + 6 sin"B=G,
a sin 2-4—6 sin 2B= 0,

(1) sin 3-4 = 3 sin -4- 4 sinM, ^
cos 3-4 = 4 cos' -4 — 3 cos vl

;

.'. sin 3-4 — cos 3-4

= (sin A + cos -4) [3 — 4 (sin' A + cos' -4 — sin -4 cos -4)},

= 2 sin 45 cos {A - 45) {2 sin 2^-1],

= 4 sin 45 cos (-4 — 45) {sin 2-4 — sin 30},

= 8 sin 45 cos [A — 45) sin (-4 — 15) cos (-4 + 15).

But sin ZA - cos 3.4 = sin 3-4 - sin (90 - ZA)

= 2 cos 45 sin (3-4 - 45)

;
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.-. sin 3(^ - 15) = 4 cos {A - 45) sin {A - 15) cos (^ + 15).

(2) a sin'A + b sin'J?= c,

a^ sin' A cos' J. = J' sin'B cos' -B,

a' sin' A-b^ sin'5= a' sin* ^ - i' sin* B
= c{a sin'A — b sin' 5)

;

.*. a (a — c) sin'A = b{b — c) sin' -B

;

T /7 \ 7 / \ 6c (J — c) ac(a — c)

^ '^ ^ ' sm'^ sin^j^ '

• « J 5c (5 — c) _ e{b — c)

.-. sin^
-ab{a + b-2c)~a{a + b-2c)'

sin'5 _ ac (a — c) c (a — c)

~ ab{a + b-2c) ^b{a+b-2c)

whence, &c.

xii. A railway passenger seated in one corner of the car-

riage looks out of the windows at the further end and observes

that a star near the horizon is traversing these windows in the

direction of the train's motion and that it is obscured by the

partition between the corner window on his own side of the

carriage and the middle window while the train is moving
through the seventh part of a mile. Shew that the train is

on a curve the concavity of which is directed towards the

star, and which, if it be circular, has a radius of nearly three

miles; the length of the carriage being seven feet and the

breadth of the partition four inches.

Owing to the great distance of the star, the motion of the

carriage parallel to itself has no effect upon the point in which
the line joining the star and the passenger's eye meets the

window. Hence since this line meets the window in points

which move in the direction of the carriage's motion, the

direction of the carriage must be continually varying, and
the carriage must be on a curve concave to the star. The
rest of the question is too obvious for explanation.

xiii. If a, &, and B be given, shew under what circum*
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Stances there will be two triangles satisfying the conditions

of the problem.

Prove that the circles circumscribing both triangles are

equal in magnitude, and that the distance between their

centres is »J{b^cosec^B—a').

The radius of the circumscribing circle = - -:—f^, and this

is the same for both triangles. See fig. 3.

The centres of the circles 0' and are situated in the line

ODO', which bisects BG at right angles, and since the per-

pendiculars from 0' and upon BA'A meet this line at

distances -—— and —^ from B, it follows that

00' = \{BA- BA') cosec B.

Now BA and BA are the values of p determined from the

equation

(? — 2ac cos B-^a'= ¥;

.'. BA-BA'=r2^{h*-a'8iR'B);

.'. I {BA - BA') cosec B= >^{V cosec' B-a").
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Wednesday, Jan. 4. 9 to 12.

Seniob Moderatob. Arabic niimbers.

Jdniob Exakineb. Boman numbers.

1. Enunciate the proposition of the parallelogram of

forces; and, assuming its truth for the magnitude, prove it

also for the direction, of the resultant.

Let AB and AC represent two forces acting on the point A.
Complete the parallelogram AD, then by hypothesis AD re-

presents the resultant in magnitude ; it is required to prove

that AD represents the resultant in direction also. Fig. 4.

Draw AD' in the direction of the resultant and equal to it

and therefore also equal to AD. Complete the parallelogram

AD'EC and draw the diagonal AE.

AD', AB and AC represent three forces in equilihrium,

each of them is therefore equal and opposite to the resultant

of the other two. But by hypothesis AE is equal to the

resultant of AD' and A C.

Therefore AE is equal to AB and therefore to CD,

Also EC is equal to AD' and therefore to AD.
Hence the quadrilateral AECD has its opposite sides equal,

it is therefore a parallelogram; therefore EC is parallel to

AD.
But EC is also parallel to AD' ; therefore AD' and AD

are in the same straight line.

2. Two equal particles, each attracting with a force varying
directly as the distance, are situated at the opposite extremrties
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of a diameter of a liorizontal circle, on whose circumference a
small smooth ring is capable of sliding

;
prove that the ring

will be kept at rest in any position under the attraction of

the particles.

Let A and B be the particles at opposite extremities of the

diameter AB, and let P be the attracted ring. Join AP, BP.
These lines represent the forces on P, and the resultant force is

therefore in the direction of that diagonal of the parallelogram

on AP, PB which passes through P. Hence the resultant

passes through the centre of the circle since the diagonals

of parallelogi-ams bisect each other, and therefore the reaction

of the smooth curve is capable of counteracting the resultant

force wherever P may be situated.

3. Two equal heavy particles are situated at the extremi-

ties of the latus rectum of a parabolic arc without weight,

which is placed with its vertex in contact with that of an
equal parabola, whose axis is vertical and concavity down-
wards

;
prove that the parabolic arc may be turned through

any angle without disturbing its equilibrium, provided no
sliding be possible between the curves.

In the figure, fig. 5, it follows from the equality of the

parabolas that the arcs AP and A'P, and the angles ASP
and A'S'P are equal, and that the tangent at P bisects the

angle SPS'. But the tangent at P bisects the angle between
SP and the line through P parallel to the axis AS. Hence
PS' is parallel to AS and therefore vertical.

Hence the perpendiculars from P upon the verticals through
L and L' the extremities of the latus rectum are always equal,

and therefore equal weights at these points always balance
about P.

4. Find the position of equilibrium when a common
balance is loaded with given unequal weights.

If the tongue of the balance be very slightly out of adjust-

ment, prove that the true weight of a body is the arithmetic

mean of its apparent weights, when weighed in the opposite

scales.

^ „ /, (P-Q)a
Generally tan S =ppL^^^-^

.
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In this case the beam appears horizontal when it is really

inclined at a very small angle a to the horizon. If then P
be the true weight, W^and W' the apparent weights,

P- W= {{P+ W)h + Wh] tana,

W'-P= {(P+ W')h + WJc] tan a,

and we may consider W and W as equal in the coefficients of

the very small quantity tan a

;

.*. P^ W= W — P approximately,

2

5. In the figure of Euclid, Book i. Prop. 47, if the perime-

ters of the squares be regarded as physical lines uniform

throughout, prove that the figure will balsuice about the mid-

dle point of the hypothenuse with that line horisontal the lines

of construction having no weight.

Let D be the middle point of AB, and DNE, DMF per-

pendiculars from D bisecting the sides AG and CB in N
and M. See fig. 6.

Then DE=EN+NI)
=^AC+^CB
= DF.

Therefore the perpendiculars from D upon the verticals

through E and F are proportional to the cosines of the angles

EBA and FBB respectively, and are therefore proportional

to BG and A C respectively, i. e. to the weights of the peri-

meters of the squares acting at F and E respectively.

Hence these weights balance about B when ^P is hori-

zontal, and it is clear that the weight of the perimeter on AB
passes through B; therefore the whole balances about this

point.

6. A uniform heavy rod, having one extremity attached

to a fixed point, about which it is free to move in all direc-

tions, passes over the circumference of a rough ring whose
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centre is at the fixed point and whose plane is inclined at a
given angle to the horizon ; find the limiting position of equi-

librium.

Let be the centre of the ring, fig. 7. OH the line of

greatest slope through in the plane of the ring and inclined

to the horizon at the angle a, OB the rod, acting on the circle

at a
Let 2a he the length of the rod,

b radius of the ring,

angle HOB,

fi the coefficient of friction, W the weight of the rod, and B
the normal action at C.

XI' (ft* _ yjr
J fv

We may replace TF acting at G by —^^ at and W~

at C, and this latter by TF-cosa, perpendicular to the plane

of ring, and W- sin a along this plane

;

.*. B = W- cos a and aB = W- sin a sin 0,
T T

resolving perpendicular to rod ; therefore by division

sin ^ = /i cot a.

vii. A point, moving with a uniform acceleration, describes

20 feet in the half-second which elapses after the first second

of its motion ; compare its acceleration with that of a falliug

heavy particle; and give its numerical measure, taking a

minute as the unit of time, and a mile as that of space.

Let a be the numerical measure of the acceleration of the

point, taking a foot as the unit of space, and half-a-second as

that of time.

Then it will describe - feet in the first half-second.

At the end of this time it will have a velocity, which, if

it continued uniform during the next half-second, would carry

it over a feet.
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At the end of the first second, its velocity will be twice as

great as at the end of the first half-second ; that is, a velocity

which if it continued uniform during the next half-second,

would carry the point over 2a feet. In consequence of the

acceleration, it will move over - feet more, or— feet Hence

1 = 20,

or a = 8.

Hence, taking a second as the unit of time, and a foot as

the unit of space, the numerical measure of the acceleration

will be 32 ; that is,

acceleration of this point : acceleration of falling particle

:: 32 : 32*2

:: 160 : 161.

If a minute be the unit of time, and a mile that of space,

the acceleration will be measured by

32 X 60' 32 X 15

5280 22

_240
~ 11

•

ix. A heavy particle slides down a smooth inclined plane

of given height
;
prove that the time of its descent varies as

the secant of the inclination of tlie plane to the vertical.

Let h be the height of the plane, a its inclination to the

vertical, then its length will be h sec a, and the acceleration

down the plane g cos a

;

.'. if T be the time of descent

gcosa. T* ,

= h sec a,

or T* = 2gh.Bec*a;

.-. T={2gh)^8eca,

or Tex: sec a,
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X. A heavy particle is projected from a given point with a
given velocity, so as to pass through another given point;

prove tliat, in general, there will be two parabolic paths which
the particle may describe ; and give a geometrical construction

to determine their foci. Also find the locus of the second

point in order that there may be only one parabolic path.

Since the velocity of projection is given, the directrix of the

parabolic path is given.

Let MN be the directrix, P the point of projection, Q the

point through which the particle is to pass. Fig. 8.

Draw PM, QN, perpendicular to MN. With P, Q as

centres and PM, QNas radii, describe two circles ; these will

in general intersect in two points S, S', which will be the foci

of the two parabolic paths.

If, however, the two circles toueh one another, there will be
but one parabolic path. In order that this may be the case,

we must have
QN+PM=PQ.

Hence if QN be produced to K, so that NK may be equal

to PMf and KK' be drawn parallel to MN, we shall have

distance of Q from KK'^PQ,

or, the locus of <? is a parabola, of which P is the focus, and
KK ' the directrix.

xi. A series of perfectly elastic balls are arranged in tlie

same straight line, one of them impinges directly on the next,

and so on
;
prove that, if their masses form a geometrical pr^

gression of which the common ratio is 2, their velocities after

impact will form a geometrical progression of which the com-
mon ratio is f

.

Let M, 2il/, be the masses of two adjacent balls, v the velo-

city of M before impact, u^, ii^, the respective velocities of

2
M, 23/, after impact, then we have to prove that %=nV.

o

Now the momentum is the same before and after impact

;

.'. Mu^-VlMu^= Mv (1),
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and since tlie balls are perfectly elastic, the vis viva is un-

altered:
, ,

.-. Mu* + 2Mu^ = Mv^ (2).

Squaring (1) and multiplying (2) by if, we get

Hence eliminating u^ by (1),

2v
•••««= 3"-
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Wednesday, Jan. 4. 1^ to 4.

JuHlOB MODEBATOB. Arabic numbers.

Senior Examines. Boman numbers.

1. A UNIFORM tube is bent into the form of a parabola, and
placed with its vertex downwards and axis vertical : supposing

any quantities of two fluids of densities p, p to be poured into

it, and r, r to be the distances of the two free surfaces respec-

tively from the focus, then the distance of the common surface

TO "-• T O
from the focus will be —— ,

- .

P-P
This follows at once from the two principles

:

(1) If two fluids be placed in a bent tube, the altitudes of

the free surfaces above the common surface are inversely as

their densities.

(2) The distance of any point of a parabola from the fd^s
is equal to its distance fi'om the directrix.

2. A parallelogram is immersed in a fluid with one side in

the surface ; shew how to draw a line from one extremity of

this side dividing the parallelogram into two parts on which

the pressures are equal.

Let ABCD be the parallelogram, AE the line drawn from

one angle to the base. Then the pressure on the triangle

is = - the pressure on the whole parallelogram. Fig. 9.
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Now the pressure cc area . depth of centre of gravity ; the
CE

areas of the two figures are as —- : CD ; the depths of the

centres of gravity are aa - : -

;

O it

. 2 CE_l 1

•• 3- 2
-2*2^^'

.-. CE=^-CD.
4

3. A heavy hollow right cone, closed by a base without

weight, is immersed in a fluid, find the force that will sustain

it with its axis horizontal.

Let AB= A be the axis of the cone, A the vertex. The forces

acting on the cone are, its weight TFacting downwards at G the

2
centre of gravity of the surface, AG= -h; andW the weight

of the water displaced acting upwards at H the centre of

3
gravity of the volume, An=-h.

The resultant of theseisW—W acting at a point C, where

(W-W")AG=W.lh-W','^h.
^ o 4

4. A given weight of heavy elastic fluid of uniform

temperature is confined in a smooth vertical cylinder by a

piston of given weight; shew how to find the volume of

the fluid.

It is proved in Goodwin's Course^ lipp be the pressures of

the atmosphere at two points whose vertical distance is x, that

X = -^ r . log ^

,

,o,(,-f)
P

where t is the thickness of the very small layers into which
the atmosphere was supposed divided.

c
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If W= weight of the piston, A its area, and W = weight

of air contained in the cylinder, then pA = W, p'A = W+ W',
and Ax becomes the volume of the nuid. Hence we have

T , W
X = . log

In this equation t is any very small quantity. If t = it

is proved in the Course cited above, that the expression for x
becomes

5. If A be the area of the section of each pump of the fire

engine, I the length of the down stroke, n the number of

strokes per minute, B the area of the hose, then it is obvious

that the average velocity from the hose, when both pumps
, 2Aln

work, =—j5—

.

JD

6. Supposing some light material, whose density is p, to

be weighed by means of weights of density p , the density

of the atmosphere when the barometer stands at 30 inches

being unity ; shew that, if the mercury in the barometer

fall one inch, the material will appear to be altered by

P'-P
(p-l)(30p'-29)

of its former weight. Will it appear to weigh more or less ?

Let V = volume of the material, Fthe volume of the weightj'

then V measures the apparent weight of the material, and
we have

V{p'-l) = v{p-l).

AVlien the barometer has fallen one inch, the density of the air

29
lias become — , and in this state let V be the volume of the

weight required to balance the same material. Then
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V (30/)'-29) (p-l)*

ix. A bright point is at the bottom of still water, and an
eye is vertically above it, at the same distance from the sur-

face ; if a small isosceles prism, of which the refractive angle

i is nearly two right angles, be interposed so as to have its

base in contact with the water, prove that the angular distance

between the images of the point in the two faces is

fi, fi being the refractive indices for water and for the prism
respectively.

Let a ray diverge from the bright point Q, and after pass-

ing through the prism enter the centre of the eye E. Then
this ray makes equal angles

{<f))
with the vertical before and

after refraction, because the eye and Q are at equal distances

from the surface of the water. Imagine a very thin layer of

air to be placed between the prism and the surface, the de-

viation of a ray on entering this layer will be — (/i'— 1)
<f).

The deviation on passing through the prism will be

Hence the total deviation will be

0^-i)^'-(/-i)<^.

But the total deviation of a ray is the sura of the acute angles
it makes with the vertical before and after refraction, which is

2<f>.
Hence equating these, we get

X. Prove that, as the focus of an incident convergent pencil

moves from a concave lens, the distance between the conju-

gate foci always increases, except when the focus of incident

rays passes between the distances /and 2/ from the lens.

C2
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In a convergent pencil converging to a distance u,

1_1_1
v~f u'

As u increases from to/,

V ... 00
,

(— V)— W 0...CX3.

As u increases from / to 2/j

V is positive and decreases from co to 2/,

and v + u co ...4/.

As u increases from 2f to qo
,

V decreases 2/'...0,

v + u increases 4/*... qo .

xi. If the focal length of a convex lens be 3 inches, and
the shortest distance of distinct vision be 6 inches, prove that,

when the eye is always placed so as to see distinctly under the

greatest possible angle, the lens magnifies when within 6 inches

of the object, and diminishes at greater distances.

If PQ be the object on the axis, CQ of the lens. Fig. 10.

PQ—^ = greatest angle with the naked eye.

I. When the image is on the same side as PQ, \eXpq be

the image

;

J_^J 1 ^
•*• Gq~ CQ 3'

(1) Let C^<6; ... J^> 1 + 1 or 1;

.'. ratio of apparent angles = ^k = 7777 > 1.

(2) Let Cq > 6, or CQ > 2,

then the greatest angle, with lens, = ^

,
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ratio of apparent angles — pk- yr = /yT^ ^ ^'

II. When the image is on the opposite side, SLSjy'q'j

ratio of apparent angles = ^-r. = -jSi >

3
.*. the ratio =

-j^rri
—- > 1 if (7^ < 6,

< 1 if 0<3 > 6.

xii. If the object-glass be divided, so as to form two semi-

circular lenses, and these be displaced along the line of di-

vision, what must be the displacement of the centres in order

that a double star may appear as three stars ?

This is the combination devised to cause a duplication of

an image, and called the Heliometer.

Each half forms an image of each star, 8, S', and 8, 8",

and if one of each pair coincide at 8, the double star ap-

pears as three stars. See Figs. 11 and 12.

If a be the number of seconds in the angular distance of the

stars, F the focal length of each semi-lens, the distance of

the centres (7, C will subtend at the middle of the three

images of the stars an angle 08C ' = a"

;

,'. the distance of the centres = Fa sin 1".
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Seniob Modebatob. Koman numbers.

JUKIOB MODBBATOB. Arabic numbers.

i. Three concentric circles are drawn in the same plane.

Draw a straight line, such that one of its segments between
the inner and outer circumference may be bisected at one of

the points in which the line meets the middle circumference.

Let be the common centre. Take any point P on the

circumference of the middle circle; join OF and produce to

Q making FQ = OF. With centre Q and radius equal to

that of the smallest circle describe a circle, and let one of

the points in which it meets the outermost circle be B.
Again, with centre Q and radius equal to that of the largest

circle describe a circle, and let one of the points in which it

meets the innermost circle be S. Then if E and ;S^ be taken

properly HP and FS shall be in one straight line which
line will also satisfy the required condition. Fig. 13.

Join OB, QS, OS, QR,

Then ORQSia a parallelogram, because its opposite sides

are equal, and from this, together with the property that

diagonals of a parallelogram bisect each other, the truth of

the proposition is obvious.

ii. If a quadrilateral circumscribes an ellipse, prove that

cither pair of opposite sides subtends supplementary angles

at either focus.

Let ABCD be the quadrilateral ; P, Q, B, T the points of

contact of the respective sides, and S one of one foci. Fig. 14.
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Join S with the angles of the quadrilateral and the points

of contact.

By a property of the ellipse ASP= TSA, applying this to

the eight angles at S taken in pairs, we get

A8B+DSG=ASD + B8G;

and since all the angles at 8 are together equal to four right

angles the truth of the proposition is evident.

iii. If a polygon of a given number of sides circumscribes

an ellipse, prove that, when its area is a minimum, any
side is parallel to the line joining the points of contact of the

two adjacent sides.

The polygon of minimum area and given number of sides

circumscribing a circle is the regular polygon, and any side is

therefore parallel to the line joining the points of contact of

the two adjacent sides.

Hence by projecting this circle into an ellipse the truth of

the proposition is obvious.

Or we may prove it thus : Fig. 15.

Let EA, AB, BFhe three consecutive sides of the polygon.

Then if the area is a minimum a small displacement given

to AB while KA and DF remain fixed cannot alter the area

of the polygon. Let AB be displaced to A'B". The point

of intersection of these lines will ultimately coincide with tlie

point of contact P, and we have

AAPA' = ABPB ultimately
;

.-. AP. A'P sin APA' = BP. BP sin BPB,

AP.A'P=BP.B'P;

.'. AP=BP,
since A'P and B'P are ultimately equal to AP and BP respec-

tively.

Hence the diameter which bisects chords parallel to EF
meets the ellipse in P, and therefore the tangent at P is

parallel to EF.
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4. If the tangent at any point P of an hyperbola cut an
asymptote in T, and if SP cut the same asymptote in Q,
then SQ ^QT. See Fig. 16.

If from any point T, two tangents are drawn to a conic,

they subtend equal angles at either focus. One of these tan-

gents in this problem becomes an asymptote, the other is TP.
Therefore if SR be drawn parallel to QT, the angles TSQ,
TSR are equal, and therefore the angles QST, QTS are equal,

or SQ^QT.

5. Prove that the sum of the products of the first n natural

numbers taken two and two together is

{n-l)n{n + l){3n+2)

24

Since

{a + h + c + ...y = a' + h''-\-c''+... + 2{ab + hc+...),

let a = 1, i = 2, c = 3, &c. ... , then we have the sum of the
products

= H("-"-^)'- "-""e'"'1 '

which reduces to — —' ^ —— .

24

6. The centres of the escribed circles of a triangle must
lie without the circumscribing circle, and cannot be equidistant

from it unless the triangle be equilateral.

It may be proved, as in Todhunter's Trigonometry (Art^.^

253), if Q be the centre of the circumscribing circle, P of
any one of the escribed circles, and R, r, their radii, that

PQ^ = I^+2Rr^; whence it follows that PQ must be greater

than R, and the tliree distances cannot be equal, unless the

radii of the escribed circles are equal. The formulte for these

radii are respectively -^— , -^—-.
, -^— , where a, b, c are the

)j — a o — O a — C

sides and A the area of the triangle. Whence it follows that
a, i, c are all equal.

This may also be proved independently of the proposition

quoted from Todhunter.
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vii. If perpendiculars be drawn from the angles of an equi-

lateral triangle upon any tangent to the inscribed circle,

prove that the sura of the reciprocals of those perpendiculars

which f.dl upon the same side of the tangent is equal to the

reciprocal of that perpendicular which falls upon the opposite

side.

Let ABC be the triangle, the centre of the inscribed

circle, and P be the point of contact of the tangent in ques-

tion so that OP makes the angle 6 with AO, {0 being the

centre of the circle). Fig. 17.

Then the inclinations of OB and OC to OP produced are

|-^, and| + ^.

Hence remembering that in this case the radius of the cir-

cumscribing circle = 2 the radius of the inscribed = 2r, suppose

perpendicular from A = '2r cos 6 — r = r {2 cos ^ — 1),

and

for

B =2rco3(^-0\+r=r i2QoaC^-e)+l

= 2rcos('|+^)+r= r|2cos^| + ^]+ll

+ '

o f"^ , a\ , t o f"^ n\ , 1 2 cos ^ — 1
'

2cosf-+^j+l 2cos(-— ^j+I

+
(2co8^+l)-V38in^ (cos^+1) + V3 sin^

2 (cos + 1)

~l + co3'^-3 8in''^+ 2 co8^

2(C08^ + 1) cos^+1
4cos''^ + 2cos^-2 2cos' ^+008^-1

cos ^ + 1 1

~(2co8^-l) (cos^+l)~2co8^-l

viii. Four equal particles are mutually repulsive, the law
of force being that of the inverse distance. If they be joined
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together by four strings of given length so as to form a
quadrilateral, prove that, when there is equilibrium, the four

particles lie in a circle. Fig. 18.

When there is equilibrium, the action of C on -4 : action

of 5 on -4

:: ein DAB : aia DAC,

also action ofD on JB : action of -4 on 5
:: Bin ABC : ain BBC;

.'. action of on ^ : action of i> on B

:: sin BAB . sin BBC : sin BAC. sin ABC;
.-. BB : AC :: sin BAB sin BBC : sin BA C sin ABC.

(It is to be observed that the action between A and B is

the difference between the repulsive force and the tension, it

therefore follows no law)

;

AB sin BAB ,
AB sin ABC

•**
sin^Z?^ • sin ACB

:: sin BAB . sin BBC : sin BA C sin ABC,

sin A CB : sin ABB :: sin BBC : sin BA C

;

BO.ainBBC AG sin BAC . ^^^ . „,^
.'.

Y)7i
* nn '• ^^^ BBC : sinBA C

;

.'. BO.OB = AO.OC, whence, &c.

9. A heavy rod is placed in any manner resting on two
points A and B oi & rough horizontal curve, and a string

attached to the middle point C of the chord is pulled in any
direction so that the rod is on the point of motion. Prove
that the locus of the intersection of the string with the

directions of the frictions at the points of support is an arc

of a circle and a part of a straight line.

Find also how the force must be applied that its inter-

sections with the frictions may trace out the remainder of the

circle. See Fig. 19.
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First, let the rod be on point of slipping at both A and
B, and let F, F' be the frictions at the two points. Then
F, F' are both known, and depend only on the weight and the

position of the centre of gravity of the rod. Since there la

equilibrium the two frictions and the tension must meet in

one point, let this be P. Then since AC= CB, it is evident

that CP is half the diagonal of the parallelogram whose sides

are AP, PB ; hence by the triangle of forces, AP, PB, and
2 . PC will respectively represent the forces in those directions.

Hence AP : PB :: F : F' and are therefore in a constant

ratio. Therefore the locus of P is a circle.

The string CP cuts the circle in two points, but the forces

can meet in only one of these. It is evident that the rod must
be on the point of turning about some one point as a centre,

which point is the intersection of the perpendiculars drawn
to PA, PB at A and B. Now the frictions, in order to balance

the tension must act towards P and therefore the directions of

motion of ^ and B must hejrom P. This clearly cannot be
the case unless the point is on the same side of the line AB
as P. Therefore the angle PAB is greater than a right angle.

Thus the point P cannot lie on the dotted part of the circle.

Secondly. Let the rod be on the point of slipping at one
point of support only. Then since the centre of gravity is

nearer B than A, the rod will slip at A, and turn round B as

a fixed point. Thus the friction acts along QA, and the locus

ofP is the fixed straight line QA.

But P cannot lie on the dotted part of the straight line, for

if possible let it be at R. Then if AR represents F, RB must
be less than F' because there is no slipping at B. But because

R lies within the circle, the ratio ^775 is < ^rrr, i.e. <r=; and
' RB PB F

thereforeRB > F' and therefore the rod has moved at B which
is contrary to supposition. Thus the string being produced
will always cut the arc of the circle and the part of tlie

straight line in one point and one point only, and the frictions

always tend towards that point when the rod is on the point

of motion.

In order that the locus ofP may be the dotted part of the

circle, it is necessary that the frictions should tena one from
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Pand the other to P, and the tension must therefore act in

the angle between PA and FB produced. By the triangle of

forces APB we see that the tension must act parallel to AB
and be proportional to it.

X. A rigid wire without appreciable mass is formed into

an arc of an equiangular spiral and carries a small heavy
particle fixed in its pole. If the convexity of the wire be
placed in contact with a perfectly rough horizontal plane, prove
that the point of contact with the plane will move with uniform
acceleration, and find this acceleration.

Let P be the point of contact at any instant and S the

corresponding position of the pole.

Since the curve rolls on the line the instantaneous direction

of the motion of S is perpendicular to SP, i. e. SP is the
normal to the path described by S at S.

But SP is always parallel to itself by the property of the

spiral, and therefore the path of /S' is a straight line inclined

at the angle „ — a to the horizon, where a is the constant

angle between the tangent and radius vector.

Hence the heavy particle is constrained to move along this

line, and the acceleration of gravity resolved in the direction

of the particle's motion is
ff

cos a.

If S' and P' be consecutive positions of S and P respectively,

it is clear that PP' : >S'^' :: 1 : sin a ;

.*. acceleration of P is —. = g cot a. ^sm a ^

11. If two parabolas be placed with their axes vertical,

vertices downwards, and foci coincident, prove that there are

three chords down which the time of descent of a particle

under the action of gravity from one curve to the other is

a minimum, and that one of these is the principal diameter

and the other two make an angle of 60° with it on either

side. See Figs. 20 and 21.

The chord PQ do^vn which a particle will slide in tlie

least time from a given point P to a given curve CD,
makes equal angles with the vertical and the normal to the
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given curve at the point Q where the chord cuts the curve.

For the chord PQ will clearly be found by describing a circle

to touch the curve in Q and the centre of which shall be

vertical]y under P. Then it is evident that PQ makes equal

angles with the normal QO and with the vertical PO.

Similarly it may be proved, that the chord of shortest

descent PQ from any curve AB io & fixed point Q, makes
equal angles with the normal at P and with the vertical.

Again, if PQ be the chord of quickest descent from any
curve AB to any other curve CD, by considering P fixed

and Q variable, it is evident that PQ makes equal angles

with the normal at Q and with the vertical. Also by con-

sidering P variable and Q fixed, it is evident that PQ makes
equal angles with the normal at P and with the vertical.

Hence the normals at P and Q must be parallel.

Now the parabolas in the problem are similar, and have
their foci coincident, therefore the normals to the two para-

bolas at the extremities of any radius vector through the

focus are parallel, and no others are parallel. Hence the

chord of quickest descent passes through the focus.

First. To find the chord of quickest descent from the

outer to the inner. We must have the angle SQO = the

angle GSQ, and therefore GQ=GS. But SG = 8Q;
therefore the triangle GSQ is equilateral, and the angle

GSQ = eO\ Fig. 22.

Secondly. To find the chord of quickest descent from the

inner to the outer. We must have the angle GQS= the ex-

terior angle QSA, which is impossible imless SQ coincides

with the axis.

12. If a particle slide along a chord of a circle under
the action of a centre of force varying as the distance, the

time will be the same for all chords provided they terminate

at either extremity of the diameter through the centre of

force. See Figs. 23 and 24.

If a particle describe an ellipse about a centre of force in

the centre C, the time of describing any arc AP from the

vertex A is known to be measured by the angle ACQ, where
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QPN is a common ordinate of the ellipse and the auxiliary

circle. This proposition is still true when the ellipse de-

generates into its major axis and the particle describes the

straight line AC. Thus the time of describing AN is

measured by cob'^yta •

Let AB be any chord, S the centre of force, then, drawing

SC perpendicular to AB, the resolved part of the attraction of

S on any point P is proportional to CF, and therefore the

time of describing AB is measured by cos"^ y^ . But by
. I 1 . CB SB 1 • 1

similar triangles the ratio 77-4= "on which is constant.

Therefore the time down all chords through B is the same.

13. A hollow cone floats with its vertex downwards in a

cylindrical vessel containing water. Determine the equal

quantities of water that may be poured into the cone and
into the cylinder that the position of the cone in space may
be unaltered.

Let AB, CD be the old and new planes of floatation,

cutting the cone in EF, HC. The condition that the posi-

tion of the cone may be unaltered is the volume HF= ^ vol.

CB. Fig. 25.

Let h = OL the part originally immersed, x = LMa= radius

of cylinder, 2a = angle of cone. Then

o

.'. x=-lh± V(ia' cof a - fA").

The lower sign makes x negative and is inadmissible ; this

determines the required quantity of water.

xiv. A hemispherical bowl is filled to the brim with fluid,

and a rod specifically heavier than the fluid, rests with one
end in contact with the concave surface of the bowl, and
passes over the rim of the bowl, find an equation for de-

termining the position of equilibrium.
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In this case let 2a be the length of the rod A C, 2h the

radius of the bowl whose centre is 0, 6 the inclination of

the rod to the horizon, p the relative specific gravity of the

rod and the fluid, A and B the points where the rod rests

against the concave surface and the rim of the bowl respec-

tively.

The forces acting on the rod are,

(1) A force proportional to AB{p— 1) vertically down-
wards through G the middle point of AB.

(2) A force proportional to BC.p vertically downwards
through H the middle point of BC.

(3) A force B along A 0.

(4) A force B' perpendicular to AB at B.

These two last forces obviously intersect in I) the other

extremity of the diameter through A. Let the vertical through

I) meet the rod in E. Then for equilibrium taking moments
about £,

{p-l)AB:GE=p.BC.EH.

AB = 2bcosd, BC=2 {a -b cos 6),

BD" _h s{n^e

AB~cosd '

Substituting, we get

cos'6'-|p|cos'^ + i(/>^! + l)cos<9 +g = 0,

a cubic equation, with its last term positive, whence the

positions of equilibrium may be found, and from which it

appears that the equilibrium can only be possible when all

the roots of the equations are real.

XV. A ray of light passes through a medium of which
the refractive index at any point is inversely proportional

to the distance of that point from a certain plane. Prove
that the path of the ray is a circular arc of which the centre

is in the above-mentioned plane.

The medium is obviously arranged in planes of equal re-

fracting power and parallel to the plane mentioned in the

question.
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And it is clear that the path of a ray is in one plane

perpendicular to the above-mentioned plane.

Let the plane in which the ray's path lies be the plane

of the paper, and let a small portion of the path be RPQ,
AB being the intersection of the plane of reference by the

plane of the paper and HP, and FQ elementary portions of

the path before and after passing through the plane at P,

parallel to AB, and which may tlierefore be considered as

small straight lines. PJfand ^iV perpendiculars on AB^ QN
being produced to L, draw PO perpendicular to PR to meet

the line AB in 0, and join Q0\ See Fig. 26.

1

sin P03f_QiV PM
^

'*• smPQL _1_ QN'
PM

" smPQL BinPOM

But if the perpendicular to PQ met AB in 0' then

am PQL ^^ '

.'. QO'=POy

which is impossible unless and O coincide.

Therefore the normal to the ray at every point of its path

meets the line AB in the same point. Whence, &c.

IG. A small bead is projected with any velocity along a

circular wire under the action of a force varying inversely as

the fifth power of the distance from a centre of force situated

in the circumference. Prove that the pressure on the wire is

constant.

This is a particular case of a more general proposition.

Let a wire be of such a form that a particle, if projected with

velocity F', would freely describe it without causing any

pressure on the wire ; then if the particle be projected with
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velocity V, the pressure at any point where the radius of

curvature is p will be m . The pressure will there-
P

fore vary as the curvature.

For divide the arc into small elements s^ Sg • • • *«» ^^^ ^^^

t\ v^ ...v^he the velocities acquired at the end of those arcs

;

let F^F^... Fn be the resolved parts of the impressed forces

along the respective tangents. Then when the arcs are very
small, we have

v,'-r=2F,s,-]

v^— v* = 2Fs
I

&c. = &c.
J

Let r/ v^...vj be the corresponding velocities of the particle

when freely describing the wire, then by similar reasoning

v:'-V'' = 2F,s,+ ... + 2F„s^;

... v:-v^''=T-V'\

Now the pressure on the wire = Statical Pressure + the

centrifugal force = P+m -^
. But when the particle describes

the curve freely, the pressure = 0, therefore P= — m-^.

.*. Pressure = m ~ ^
P

= m .

P

In the case of a circle described under the action of a

central force varying as the inverse fifth power, we know by
Newton, that the particle if properly projected would not exert

any pressure on the wire. Therefore, when otherwise pro-

jected, the pressure varies inversely as the radius of curvature,

that is, it is constant.

17. A bright spot of white light is viewed through a

right cone of glass, the vertex of which is pointed directly

D
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towards the spot. Describe the appearances seen ; and prove

that, if a section of the locus of the images corresponding

to different values of the refractive index be made by a

plane through the axis of the cone, it will be a rectangular

hyperbola.

Let AB be the axis of the cone, fig. 27, A the vertex, 2a the

angle of the cone, h the height, Q the bright spot, AQ = u.

By the ordinary optical formulae it can be easily proved

that the image of Q, formed by light of refractive inaex fi,

will be a ring whose radius and position is given by the

formulse

qn = (jj,— 1) u sin a cos a
]

„ _ u+h+ {fi—l)u sin'

a

> •

^~
^i J

Hence

{qn + w sin a cos a) {Bn — u sin' a) = (w cos' a + h)u sin a cos a.

Therefore, by Goodwin's Conies, Prop, ix., q lies on a
rectangular hyperbola whose asymptotes are parallel and per-

pendicular to BA. And since the position and magnitude of

this hyperbola is independent of //., all the coloured rings will

lie on the surface formed by the revolution of this hyperbola.

xviii. An elastic string passes through a smooth straight

tube whose length is the natural length of the string. It is

then pulled out equally at both ends until its length is

increased by \/2 times its original length. Two equal per-

fectly elastic balls are attached to the extremities and pro^
jected with equal velocities at right angles to the string, and
so as to impinge upon each other. Prove that the time of

impact is independent of the velocity of projection, and that

after impact each ball will move in a straight line, assuming
that the tension of the string is proj)Oi1;ional to the extension

throughout the motion.

Let AB be the tube, C and D the positions to which the

ends of the string are extended.

Each particle describes an ellipse round the coiTcsponding

extremity of the tube as centre, the absolute force depending

on the material of which the string is composed.
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The line CD will coincide with the major or minor axes
of the ellipses according to the magnitude of the initially

impressed velocity, and the particles will impinge at a point P
in the line PE bisecting AB at right angles. See fig. 28.

(1) If CD be the direction of the major axes the arc

of the auxiliary circle described by either particle is

, -xa EP

_,a h >^{2.AE'-AE') ^ _. Stt
or IT — tan r • - •

—

^

Trf ='jr— tan 1 =— .

a AE 4

(2) If CD be the direction of the minor axes, then the

corresponding arc of the auxiliary circle is

or

or

or

therefore in both cases the time of impact is independent of the

velocity of projection. Let the tangents to the two curves

before impact at P be PT and PT' meeting AB in T
and T';

then AT.AE=2AE^;
.'. AT=2AE,

= AB;

therefore T and T' coincide with B and A respectively, and
therefore since the velocities parallel to AB are reversed at

impact, those perpendicular to AB remaining imaltered, it is

d2

2+**° i

AE
EP'

TT , _, a AE

~,^{b'-AE')

l + tan-l; (V 5 = V2.

Stt

4
'
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clear tliat the direction of each particle's motion after impact

passes through A and B respectively.

xix. A particle is projected along a chord of an ellipse

from any point in the curve, and wlien it again meets the

ellipse has a certain impulse towards the centre of the ellipse

impressed upon it, causing it again to describe a chord, and
so on for any number of times. Prove that, if after a given

number of such impulses the particle pass through another

given point on the circumference of the curve, the polygonal

area so described about the centre is a maximum, when the

successive chords are described in equal times.

Since the particle leaves one given point on the curve, and
Yjasses through another given point after touching a given

number of points on the curve, (see fig. 29); then in order

that the polygonal area described about the centre should be

a maximum every such triangle as FQB must also be a

maximum, P and M being fixed and Q variable. Hence, if

we take a point Q' near to Q, the triangle RQ'P must be
equal to RQP, and therefore the tangent to the ellipse at

Q must be parallel to PR. Hence by the property of the

ellipse if QT' be the direction of central impulse at Q, QT
bisects RP.

Produce PQ to S, making QS equal to PQ. Then RS is

parallel to QT.

Now QS represents the original velocity at Q in direction

and magnitude, RS represents the direction of the impressed

velocity, and QR of the resultant velocity after the central,

impulse; therefore QR is proportional to the magnitude or

the resultant velocity, and therefore time through QR equals

time through PQ, and so on.
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2. Enunciate and prove Newton's tenth Lemma.

If the curve employed in the proof of this Lemma be an
arc of a parabola, the axis of which is perpendicular to the

straight line on which time is measured, prove that the ac-

celerating effect of the force will vary as the distance from
the axis of the parabola.

Let time be measured along the line AN from the point

N, and let V be the vertex of the parabola. Then, at the

instant corresponding to F, the time is represented by AN^
and the velocity by FN. See fig. 30.

Now, if Z be the latus rectum of the parabola,

FM' = L.VM,
AK' = L.VK;

.: FM'-AK' = L.FN,

or AN{AK+AN) = L.FN;

.'. when F approaches indefinitely near to A

,. . FN 2AK
^'"^''AN-^-ir^

or varies as the distance of A from the axis of the parabola.
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Again, if P be not indefinitely near to A, and P' a point
contiguous to P, it may be shewn that the force at P

^^''^''
NN'

= tan FXN, if FX be the tangent at P,

_2.VK
~ MF

2.MP
~ L '

or varies as the distance of P from the axis.

3. One circle rolls uniformly within another of twice its

radius; prove that the resultant acceleration of a particle

situated on the circumference of the rolling circle tends to the

centre of the fixed circle, and varies as the distance from that

centre.

Let be the centre of the fixed, C of the moving circle, P
the point, the acceleration of which is required. See fig. 31.

Now P describes a circle uniformly round C while C de-

scribes a circle of equal radius, and in the same time, uniform-

ly round 0.

Hence the acceleration ofP is made up of a constant accele-

ration in the direction (7P, and of an equal constant acceleration

in the direction CO. Therefore its whole acceleration will be
represented in magnitude and direction by 0F\ or tends to 0^
and varies as the distance from 0.

Note. If the point P be fixed relatively to, though not on
the circumference of the moving circle, it may be proved in a

similar manner that its acceleration will still tend to 0, and be
proportional to OF. In this case, it may be geometrically

proved that the path of P will be an ellipse of which is the

centre ; hence we learn that if the acceleration of a moving
point tend to a fixed point, and vary as the distance from it,

its path will be an ellipse of which the fixed point is the

centre; the converse of Newton, Sect. ii. Prop. 9.
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iv. Prove that, when a body moves along a smooth tube

under the action of any force tending to a point and varying

as the distance from the point, the difference of the squares

of the velocities at the beginning and end of an arc varies

as the difference of the squares of the distances of the ex-

tremities of the arc from the fixed point.

The acceleration in PQ = fi . SP. -pr-. , ultimately, fig. 32

;

An
.-. (vel.)' at ^ - (vel.)' at P= 2fi8P. —^ . PQ

= 2fj,SP . Pm, ultimately,

= ^l{SP-\-SQ){SP-SQ)

= fi {SP^- SQ'), ultimately;

.'. by Lemma IV.

(vel.)* at SA - (vel.)» at 5= /i {SA' - SB').

V. A body is revolving in an ellipse under the action

of such a force, and when it arrives at the extremity of the

major axis the force ceases to act until the body has moved
through a distance equal to the semi-minor axis, it then

acts for a quarter of the periodic time in the ellipse
;
prove

that, if it again ceases to act for the same time as before,

the body will have arrived at the other extremity of the

major axis.

The velocity a.t A = <^fiCB = velocity at D. Fig. 33.

The body on arriving at I) proceeds to describe an ellipse of

which CD and CSsire semi-conjugate diameters, and in a quar-

ter of the periodic time it arrives at B and moves with velo-

city tJfiCB in direction parallel to DC and therefore towards

o, and arrives at a in time -;

—

7^7^= -,—ttp^, the time from
*/fi CJJ */fiBu

Ato D.

vi. When a body revolves in an ellipse under the action

of a force tending to the focus, find the velocity at any point

of its orbit, and the periodic time.
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If on arriving at the extremity of the minor axis, the

force has its law clianged, so that it varies as the distance,

the magnitude at that point remaining the same, the periodic

time will be unaltered, and the sum of the new axes is to

their difference as the sum of the old axes to the distance

between the foci.

-^ = fi'SB, SB= a;

27r _ 27rrt*

{\e\.YsitB=-=fjL'a^, where a = semi-diameter parallel to the

major axis of the old orbit ; if a, /S be the semi-axes of the

new orbit. Since SB and the semi-conjugate diameter each

equals a

a/3 = ab,

{a±^y = 2a{a±b);

.'. a 4-/8 : a-/3 :: ^/{a + b) : s/{a-b)

:: a + b : V(a*-&*)

:: 2{AC+ BC) : SH.
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1. A UNIFORM heavy ellipsoid has a given point in contact

with a smooth horizontal plane. Find the plane of the

couple necessary to keep it at rest in this position ; and
investigate its equation referred to the principal axes of the

ellipsoid.

The ellipsoid is acted on by its weight vertically down-
wards, through the centre, and the normal action of the

horizontal plane vertically upwards, through the point of

contact.

The plane of the required couple must therefore be the

vertical plane which passes through the centre and the point

of contact or be parallel to this plane. If ar, y, z be the co-ordi-

nates of the point of contact referred to the principal axes

of the ellipsoid, the equations of the normal at tnat point are

^-a? ^ v-y ^ .y-g

X y z '

a* h* ?

Hence the plane sought must contain this line, and pass

through the centre, or be parallel to the plane thus deter-

mined.
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Its equation is therefore easily found to be

where d is any arbitrary constant.

2. An oblong taible has the legs at the four comers alike

in all respects, and slightly compressible. Supposing the

floor and top of the table to be perfectly rigid, find the

pressures on the legs, when the table is loaded in any given

manner, supposing the compression to be proportional to the

pressure ; and prove that, when the resultant weight lies in

one of four straight lines on the surface of the table, the

table is supported by three legs only.

Let ABGD be the top of the table, the sides AB and AD
being 2a and 26 respectively. See fig. 31.

Let the natural length of each leg be c, and let P be the

position of the resultant weight; the co-ordinates of P, referred

to AB and AD as axes, being x and y.

Let Pj Pj, P, P^ be the pressures at the angular points,

and let z^ z^ z^ z^ be the altered lengths of the legs.

Then

^^^ = XP, or «=c-XcP,

and so forth, also neglecting quantities of the second order

we shall consider the pressures at the points ABGD to re-

main vertical

;

.-. P^4-P, + P3 + P,= TF (1),

(P, + PJa;-(P,+ P,)(2a-a:)=0 (2),

(P, + PJy-(P3 + P,)(26-y)=0 (3),

and since the base and top of the table remain rigid, the

height of the intersection of its diagonals is

H^a + ^J, or i (a, 4- 2,);

.-. 2!,+ 2, = 21 + ^8;

.-. P.+ P, = P. + P3 (4).



9—12.] AND RIDERS. 43

By elimination between these four equations, we get

» 4 Wb J'

with similar values for the other pressures.

If P,= 0, the weight must lie in the line

being a line parallel to BI), and bisecting AB and AD.

Hence, when the weight lies in one of four straight lines

parallel to the diagonals of the table, the table is supported

bj three legs only.

3. Find the equations of equilibrium of a perfectly flexi-

ble uniform inextensible string when acted on by any given

forces.

If a small rough heavy bead be strung upon such a string,

and the string be suspended from two points and acted on
by gravity only, write down the equations for determining

within what portion of the string it is possible for the bead
to rest.

Let AP and BP be the two catenaries into which the

string is divided when the weight rests in one of its limiting

positions of equilibrium as at P. See fig. 32.

Let fi be the coefficient of friction, w the weight of the

ring, T and T' the tensions in the two portions of the string,

and 6+ <!> the inclinations of the tangents at the point

P to the horizontal.

The weight cannot affect the horizontal tension, and there-

fore the parameter c must be the same in both catenaries.

Our equations are therefore

T' = Tel'*,

or sec (^ + <^) = sec ^e*^ (1),

c{tan^ + tan(^ + <^)| = w (2),

c sec a— c sec {0+<f>)
- csecy3 + c8ec^= h (3),

ctana — ctan(^ + ^)4-ctan)S — ctan^= I (4),
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h and I being the difference in height of A and B, and the

length of the string respectively, and a and /Q the inclinations

to the horizon at the points B and A respectively ; we have
also a fifth geometrical equation indicating that the horizontal

distance between A and B is given, and involving no ad-

ditional unknown quantity. These five equations determine

0y <p, a, ^, and c, and then BP and AP are known.

iv. A particle is attached by a rod without »mass, to the

extremity of another rod, n times as long, which revolves in a

given manner about the other extremity, the whole motion
taking place in a horizontal plane. If 6 be the inclination of

the rods, o) the angular velocity of the second rod at the time

t, prove that

<Pd da) fdo) y. 2 • /i\ ^

dt" at \dt J

If a be the length of the rod without weight, na that of the

rod whose angular velocity is w at the time <,

The angular velocity of the particle about the point of

junction

d9
= T^ +

^-

The acceleration of the point of junction is

dco

'"''-di

perpendicular to the rod na and naa>^ towards the fixed point.

The relative acceleration of the particle perpendicular to

the rod a

(d^ d(D

'"'[de'^dt

therefore since the whole acceleration in that direction is zero

d^O dto (da a , 2 ' /i\ n.

V. A bead is capable of free motion on a fine smooth

wire in the form of any plane curve, and is acted on by
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given forces ; compare the pressure on tlie wire with the

weight of the bead.

If the wire be a horizontal circle, radius a, and the bead
be acted on only by the tension of an elastic string the

natural length of which is a, fixed to a point in the plane

of the circle at distance 2a from its centre, find the con-
dition that the bead may just revolve ; and prove that in

this case the pressures at the extremities of the diameter
through the fixed point will be twice and four times the

weight of the bead if that weight be such as to stretch the

string to double its natural length.

Let S be the point to which the string is fixed, C the cen-

tre of the circle, SA CB a straight line meeting the circle in

A, B. See fig. 33.

If W be the weight of the particle, r the length of the

string, a the radius of the circle,

the tension = W. ,

a

and its accelerating efiect = g . .

If V be the velocity of the particle when the length of the

string is r, w, v the velocities at B and A^

v^ — u^ = — 2g I dr
;

.-. vT-v'^g- '-
;

.". u^=4:ag.

u*
Pressure at A is that due to the acceleration —

a
= 4Tr.

Pressure on J? is the tension of the string at B
= 2W.

9. A distant circular window is viewed by a short-

sighted man through his eye-glass, the axis of which passes
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through the centre of the window and is perpendicular to its

plane. Prove that the image of the window formed by-

primary focal lines will be spherical, provided the window be
filled with concentric rings of stained glass, and the refractive

index of the colour throughout any ring be

(/z-l)(2/t+l) r^

fi being the index of the central colour, r the radius of the

ring in question, and d the distance of the window from

the lens.

When a small pencil of parallel rays passes centrically and
with small obliquity {j>) through a lens, the distance of the

primary focal line from the centre of the lens is

where j= {fi-l) (^-- -^ .

In the case supposed, let f^ be the focal length for the

direct ray and x the refractive index for rays which are in-

cident at the angle <^ ; therefore to satisfy the required con-

dition we must have the following relation between <j> and x,

••i-ii + 2ij'''-7-;rrT'

.
.•.x-i=/x-i-(M-i)f-^).«',

putting /Lt for x in the coefficient of the small quantity ^*, and
/"*

. .

substituting -^ as the obvious equivalent of that quantity.
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11. Find the parallax in right ascension of a heavenly
boclj, in terras of the latitude of the place of observation, and
the hour angle and declination of the body, assuming the

distance of the body from the Earth to be so great that the

sine and circular measure of the parallax may be considered

equal.

Shew that the locus of all the bodies, which on this

assumption have their parallaxes in right ascension for a
given place and time equal to a given quantity, is a right

circular cylinder touching the plane of the meridian of the

place along the axis of the heavens.

The parallax in R. A. for bodies satisfying the condition

mentioned in the question is

a cos Z sin A

r ' cos h
'

a being the Earth's radius, r the distance of the body, I the

latitude of the place, h the hour angle, and h the declination

of the body.

If this be equal to a given quantity m,

a cos I sin h

cos 8
= m

J 2^ a cos I . , 5,

or r cos o = . r sm A cos o.m

Refer to the plane of the equator as that of xy, the axis

of y being perpendicular to the meridian
;

, , a cos /

proving the proposition.
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1. Shew how to expand a' in a series of ascending powers
of x.

Prove that the series

^ "^ 172 "^ T7273 "^
1 . 2 . 3 . 4

"^
• • • " ^^•

It may be easily proved by direct multiplication that the

series

X-

whence, putting a; = 1, we have

2' 3'

An expression may also be found for the general series

2" 3"

'^1.2"*"l.2.3'^

Since

,.=i+,.+j£l+_i'L+
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expanding each term, the required series is easily seen to be

the coeflScient of f in the expansion of e*'. By Herschel's

Theorem this is equal to e^^^.O". Hence the required expres-

sion is

vi. Find the value oi p, in order that the straight line

represented by the equation a; cos^+y sin^=p may touch
the ellipse

8 2

a b

Prove that the locus of the vertices of an equilateral

triangle described about the ellipse -^ +^ = 1 is given by

the equation

4 (JV+oy-a'J*) =3 (a;«+/-a»-57.

Let X, y be the co-ordinates of one of the vertices of an
equilateral triangle described about the ellipse, 6 the incli-

nation to the axis of y, of a tangent drawn through it. We
have then, for the determination of 6, the equation

a; cos ^ + y sin ^ = {a^cos^d + S^sin'^)*,

which, rationalized, gives

(y*- b') tan'^+ 2xy tan $ + {a?- a") = 0.

If 6^, 6^ be the two values of given by this equation, we
must have, in order that the two tangents represented by it

TT
may be inclined at an angle —

,

TT

that is,

Now

tan(^,-^J=tanJ = V3,

tan 6,— tan 6^ _
1 +tan^,.tan^.

tan^,+ tan^,= -^^,,
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2xyV j^-a'
^'•^-^^3;

. 4a;y-4(a;'-a')(y-y) _

or 3(a^+y-a'^-&y = 4(6V+ay-a''J*),

a relation between x and y, which gives the required locus*.

8. Prove that, if a straight line be drawn from the origin

to cut the straight line —j— = '^- = at right angles,"
I m n

its equations will be

X
, y_

a — It h — mt c — nt^

, rt? + hm + en
where t = ^u—

—

2~,—2 •

Let the given line be

X — a _y — h _z — c _
I m n '

and the required line

X _y _z
\ fi v' -^

Then, since these must intersect and also be at right angles,

we have
a—lt_b — 'mt_c — 'nt \

Vk + myi. + nv = 0, J

* It will be observed that this curve consists of two closed i>ortion8, one
wholly within the other. The outer one alone satisfies the condition of the
question. The ianer is the locus of the intersection of tangents, inclined to

one another at an angle -^ .
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, ^ al+ bm + en
whence t = -« »

§ ,

and the ratios \ : fi : v are found.

9. If a, /S, 7 "be the distances of a point from the three

faces of a tetrahedron which meet in the vertex, prove that

the equation of the plane passing through the vertex, and
through the centres of the circles inscribed in and circum-

scribed about the base, is

(cosB — cos C) PjCl + (cos G — cos A) p^^

+ (cosA — cos B) 'p^ = 0,

where A, B, C are the angles of the base, and p^,^^-,^^ the

perpendiculars from the vertex on the sides of the base.

Let the equation to the required plane be

ia + if^ + iVV = 0.

Let r = radius of inscribed circles and let (a8), (/8S), (7S) be
the angles made by the three faces 0/87 with the third face 3,

tlien a = r sin (aS)
, /8 = r sin (j88) , 7 = r sin (7S) must satisfy

this equation

;

/. L sin (aS) + ifsin (/38) + iVsin (78) = 0.

But the volume of the pyramid = Jj? sin (78), area of base 8,

with two similar expressions. Therefore substituting for

sin (78), 8in(/38), 8in(aS), we get

L M N ^

p p p

Again, if ^ = radius of circumscribing circle, then

a = B cos A sin (aS),

and two similar expressions for /S and 7 must satisfy tlie

equation

;

Leon A McosB NcoaC_
P P P

E2
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Hence by cross multiplication we find

L ^ M N
(cosB — cos C)p (cos G— cos A)p (cos A — cos B)p"

'

10. Find the equation of the sphere, passing through a

given point and through the circle in which the polar plane

of that point with respect to a given sphere cuts that sphere.

Let the equation to the given sphere be

os' +f + z' = a!',

and the co-ordinates of the given point g, h, k; then the

equation to the plane of contact is

and the equation to every sphere passing through the inter-

section of these two is included in

a^ + y" + z'' - a" -\ {ffx + hi/ + kz -a") = 0.

But by the question, this goes through x=g, y = h, z= k.

Hence by substitution \= 1, and the required sphere is

a? + y'+ z^ = gx + hi/ + kz.

11. If a sphere touch an ellipsoid and also cut it, the

common section cannot be a plane curve unless the point of

contact be one of four fixed points on the ellipsoid.

When two surfaces of the second degree intersect, if one
intersection be a plane curve, the other is plane also. Hence;
as all the plane sections of a sphere are circles if a sphere cut

an ellipsoid in a plane curve, both that curve and the other

intersection must be circular sections. Hence in the limit

when the sphere touches the ellipsoid, it must touch it at the

four umbilici or the points which are the evanescent circular

sections.
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i. Find a point the distances of which from three given

points, not in the same straight line, are proportional to p^
q, and r respectively, the four points being in the same plane.

Let A, B and G be the three points.

Divide AB in D so that AD : DB :'. p : q, and in AB pro-

duced take a point E such that

AE ', BE '.:

p
'. q)

upon BE, as diameter, describe a circle.

Every point upon this circle has its distances from A andB
proportional to^ and q respectively.

Describe a similar circle relative to A and C.

The points of intersection of these circles, when intersection

is possible, satisfy the required condition.

2. If rP, TQ be two tangents drawn from any point

T to touch a conic in P and Q^ and if S and H be the

foci, then

SF.SQ~HF.BQ'
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The construction of the figure being indicated by the ques-

tion, we have, see fig. 34,

SP_ sin STP SQ_ sin STQ
ST sin SPT' ST~ sin SQT'
SP.SQ sin STP. sin STQ

Similarly

• ST' ~ sin SPT. sin SQT'

HP. HQ _ sin HTP. sin HTQ
HT' ~ sin HPT. sin HQT'

Now these angles STP, HTQ are known to be equal ; and

the angles SPT, HPT axe supplements, and also the angles

SQT, HQT. Hence the above two expressions are equal,

and hence
SP.SQHP.HQ
ST* - Jljr2

.

If the conic become a parabola, these expressions become
each equal to unity.

iii. A polygon is inscribed in an ellipse so that each side

subtends the same angle at one of the foci. Prove that, if

the alternate sides be produced to meet, their points of in-

tersection will lie on a conic section having the same focus

and directrix as the original ellipse, and that the chords

joining the consecutive points of intersection all subtend the

same constant angle at the focus as the sides of the original

polygon.

The polar equation of a chord of an ellipse, the focus being

the pole and the line to the nearer vertex the prime radius, is
'

- = e cos ^ + sec /3 cos (a — 6),
r

2^ being the angle subtended by the chord at the focus, and
a — fi, a + fi the angles corresponding to its extremities.

If this be taken as the equation of one of the produced

sides of the polygon in question, then the side which mtersects

it has for its equation

- = c cos ^ + sec ^ cos {a + 4^ — 0);
T
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therefore at the point of intersection

cos (a - ^) = cos (a + 4/3 - ^),

^ = a + 2/3,

a=^-2A
- = e cos ^ + sec i8 cos 2/9,
r

I I e cos

sec /3 cos 20 ' r sec /3 cos 2y8

the equation to a conic section having the same focus as the

ellipse, but latus rectum and eccentricity each altered in the

ratio of 1 : sec /8 cos 2/3.

Hence the directrix is the same as before.

Also since

^ = a + 2/9,

it follows that the line joining the focus with the point of in-

tersection of any two alternate sides bisects the angle subtended

by the intermediate side, and therefore the sides of the new
polygon each subtend the angle 2/3 at the focus.

This proposition may be also solved in an obvious manner
by the method of reciprocal polars.

4. Prove that the equiangular spiral is the only curve

such that its radius of curvature is proportional to the re-

ciprocal of the radius of curvature at the corresponding point

of the reciprocal polar.

Let PY be the tangent to one curve, QZ the tangent to the
corresponding point of the reciprocal polar. See fig. 35.

Let OP=r, OY=p, and OQ = r'OZ=p'. Then/r = /c»,

pr = /c*, where k is some constant. Also if pp be the two
radii of curvature at P, Q,

p =r jS)
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Hence by the question —3- = constant, but - = sin OPY ;

therefore the angle OFY= constant, or the curve is the equi-

angular spiral.

5. If two plane sections of a right cone be taken, having
the same directrix, the foci corresponding to that directrix lie

on a straight line which passes through the vertex.

Let ABC be the given cone ; and a perpendicular through

L to the plane of the paper the given latus rectum. Fig. 36.

Draw LCB perpendicular to the axis of the cone, and de-

scribe a sphere touching the cone in B and C; draw LP, LQ
tangents to the sphere in the plane of the paper, we know
that P and Q are the foci of the two sections.

Now PQ is the polar line of L, and BCL the polar line of

A. Because the pole of PQ lies on BCL theretore the pole

of PQ, therefore PQ, passes through A.

vi. Find the equation of the envelope of the perpendiculars

to the successive focal radii of a parabola drawn through the

extremities of these radii.

Refer to polar co-ordinates, the focus S being the pole and
AS the prime radius.

If ^ Q be a radius vector to the parabola perpendicular to

which any line is drawn, and if J^ ^ be inclined at the angle..'

<f>
to AS, its length being p, we have

p = osec*|,

if and r be the polar co-ordinates of the point where the

line perpendicular to ^^ is intersected by its consecutive,

we have

r =pBec{0 — ^) =a sec" ^ sec {$ — <f)),

or - = cos" ^ cos [B — 6),
r 2
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and = — cos ^ sin ^ cos (^ — </>) + cos' ^ sin {6 — <f>)

^ sin {0 — <f))= sin ^ cos {0 — (f>);

(«-3f)
= 0; .-.^^l.e;

= cos -^ sm

sin

^-<^ = 1^;

the equation required.

a .6

r = a sec -

,

o

vii. If two concentric rectangular hyperbolas have a com-
mon tangent, the lines joining their points of intersection to

their respective points of contact with the common tangent

will subtend equal angles at their common centre.

Let be the common centre.

Let OX and F be the asymptotes of one hyperbola,

OX' ... OY' the other.

Let XOX' = 2a, and let the line OC which bisects this

angle be taken as the prime radius.

Let r cos {d — ^) = b be the equation of the common tan-

gent, b being the perpendicular upon it from the centre, and
/S the angle between this perpendicular and the prime radius.

Then if P and P' be the respective points of contact of this

tangent with the hyperbolas, it follows from the geometry of

the hyperbola that

C0P = -{2a + fi),

and COP'= (2a -yS).

Now the equations of the hyperbolas are

r* cos 2 (^ + a) = a\

r* cos 2 (^ - a) = a*y
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and combining tliese with r cos [d — ^) = b, or the equation of
the common tangent, we obtain

OP=^cos2(a+^)=a',

OP'cos'2{a + ^) = b';

therefore cos 2 (a + /S) = -?

,

a

and similarly cos 2 (a — /9) = —,

.

a

Also if 0^ be the value of corresponding to Q^ the point

of intersection of the two hyperbolas, we obtain

cos 2 {0^ + g) _ cos 2 (^, - a)
,

a a^

therefore ^^^Ij^ = ^, =52ii(^

,

cos 2 (^, - a) a/ cos 2 (a+ /9)

'

whence we obtain tan 20^ = — tan 2/3),

and hence P0Q = 2ri = P' OQ.

viii. If P be a point on a geodesic line AP, drawn on a

conoidal surface, s the length of AP, or, N, and the projec-

tions of s, P, and the axis on any plane perpendicular to the

axis, and p the projection of ON on the tangent to AP at P,

then

dp _d<T

da ds

'

Since the geodesic line on any surface satisfies the condition

that its oscillating plane at any point contains the normal to

the surface at that point, we have for its differential equations

d'x dz d*z _
ds^ dx ds*

'

d^y dz d^z _
'd^'^djd?~'

d'x dSf d^z ( dz dz\ ^
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In a conoidal surface if the axis coincide with the axis

of «,

dz dz

d^x d^y ^

""^ ds'\^ds^y ds)-\ds) ^\ds)'

doc duU
But 2; -7- +^ ->- = the quantity denoted by j^ in the question,

and
(dc^\(dy\_(d^\\
\ds]

"^
\ds) ~ \dsl

'

dp _ fdaV

dp da-

da ds
'

9. A string is placed on a smooth plane curve under the

action of a central force F, tending to a point in the same
plane

;
prove that, if the curve be such that a particle could

freely describe it under the action of that force, the pressure

of the string on the curve referred to a unit of length will be

jPsin <^ c

where ^ is the angle which the radius vector from the centre

of force makes with the tangent, p is the radius of curvature,

and c is an arbitrary constant.

If the curve be an equiangular spiral with the centre of

force in the pole, and if one end of the string rest freely on
the spiral at a distance a from the pole, then the pressure is

equal to

/A sin <^ /I 1\
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Let T be the tension at any point, R the pressure referred
to a unit of area, then by the ordinary equations for the equi-
librium of a string

+ F sin
<f>
= M;

.'. B = F8hi(f} +
fF cos <f)ds

(1).

Let V = velocity of the particle freely describing the curve,
then

;^=-2i?C0S«^,

— = F8m6:
P

' - -^^^^ ^ JFcos <^ — c

2 p
(2).

Subtracting (2) from (1),

2 p

— ^ normal force + -

.

The quantity c depends on the tightness with which the

string is tied. If one end be free it is to be determined from'

the condition that jr=0 at that end.

If the curve be an equiangular spiral, ^ is constant and

jP=^. Also from (2)

^ F»m<t> T-c

therefore when r — a, and p sin <^ = r, we have

_fi sin
<f>

c sin
<f>
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2r \r orJ

10. If a string, the particles of which repel each other

with a force varying as tne distance, be in equilibrium when
fastened to two fixed points, prove that the tension at any
point varies as the square root of the radius of curvature.

The law of attraction being as the distance, the attraction

of the whole arc on any particle is the same as if the whole
mass was collected at its centre of gravity. Take this point

for origin, and let T be the tension at any point whose radius

vector is r, let p be the perpendicular on the tangent and p
the radius vector. Then the equations of equilibrium will be

dT=-tirdr,\

" p'"" 2 '

1 dr

'''-f^-^'dp^
1

'^ p

.'. roc - oc vp.
p

11. If any uniform arc of an equiangular spiral attract a

particle, placed at the pole with a force varying inversely as

the square of the distance, prove that the resultant attraction

acts along the line joining the pole with the intersection of

the tangents at the extremities of the arc.

Prove also that, if any other given curve possess this same

property, the law of attraction must be F= ^ ->-
> where^ is

the perpendicular drawn from the attracted particle on the

tangent at the point of which the radius vector is r.

It may be easily proved, if a string be in equilibrium in

the form of an equiangular spiral under the action of a force
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in the pole, that the force must vary as -jt--—r«. And the^ '' (dist.)

resultant repulsion of the centre of force on the string, being
in equilibrium with the tensions at the extremities, must pass

through the intersection of the tangents at the extremities of

the arc. Now let the arc become a rigid wire attracting the

pole, then all the forces are unaltered, and therefore their

resultant, just as before, acts along the line joining the pole

with the intersection of the tangents at the extremities of

the arc.

In the same way, if any other curve possesses this pro-

perty, the law of attraction must be such that a string may
rest in equilibrium under a centre of force whose law of

repulsion is the same. By writing down the equations of

equilibrium it is easily seen that this must be the law

p' dr
'

xii. A material particle is acted on by a force the direc-

tion of which always meets an infinite straight line AB at

right angles, and the intensity of which is inversely propor-

tional to the cube of the distance of the particle from the

line. The particle is projected with the velocity from infinity

from a point P at a distance a from the nearest point of

the line in a direction perpendicular to OF^ and inclined at

the angle a to the plane AOP. Prove that the particle is

always on the sphere of which is the centre, that it meets

every meridian line through AB at the angle a, and that it

reaches the line AB in the time

V/* cos a

'

fi being the absolute force.

Suppose first that the particle is constrained to move in

contact with the smooth surface of the sphere mentioned in

the question. Then if r be the distance of the particle from

the attracting line at any instant, and </> the azimuth of the

plane containing r, we have, by taking moments round the

axis,

4^=a
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Also if V be the corresponding velocity of the particle, we
have

J r T T

Since the velocity is that from infinity and therefore C"=0,

dt s/fi

'

But r-^ is the resolved part of the whole velocity per-

pendicular to the meridian. Hence it follows that the path

on the sphere is always inclined to the meridian at an angle

C
whose sine is -r- ; therefore if 6 be the angular distance of

the particle from the pole of the attracting line,

dd Ju
a ,- = — v cos a = — cos a

dt r

dt ar a^ sin 6

dd \Jfjb . cos a Va*" • ^^^ ^

'

.-. <= ,

"'
[\xx,ede= ,

^'
.

V/A cos a j Q V /* cos <*

Also the normal pressure = difierence betweeu the force

veh}'
resolved along the radius and —'—

° a

= ^8in^--^ = 0,
r ar

whence it follows that the particle describes the path men-
tioned in the question.

13. If a particle slide along a smooth curve which tunis

with uniform angular velocity g> about a fixed point 0, then

the velocity of the particle relatively to the moving curve

is given by the equation
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v' = c' + a>V',

where r is the distance of the particle from the point ; and
the pressure on the curve will be given by the formula

— =—h (op + 2g)v,m p

where m is the mass of the particle, and p the perpendicular

from on the tangent.

Take ox oy axes moving with the curve, and let R be
the reaction at any point. Then we have the equations

d^x „ 1 d . o. R di/ 1

df ydt^ ^
' mds '

I

d'y , If?, Rdx
I-j^— eery H 7- (war) = .

If CO be constant, as given in the question, these equations
become

d'x 2 ^ (R
, ^ \dy

where v= velocity of the particle relative to the curve.

From these equations we infer that the motion relative t^
the curve is the same as if the curve was fixed, and a re-
pulsive force ©V acted from 0. Hence, resolving along the
tangent,

dv_ , dr
^

ds~ ds*

.'. v*= c + COv.

R
Also the pressure will be — + 2(»t;. Resolving along the

normal, we get
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— = — tor sin © — —I- 2(ov :

p
^ \m /

'

H V*
.'. =—h ta'o + 2a>v.

in p

If o) be not constant, the equation for v cannot be inte-

grated, but the expression for E is

=-+(o'p + 2(ov + -j- . V(»^-»*).m p ^ at ^ ^ '

14. A string is laid on a smooth table in the form of a
catenary, and an impulse is communicated to one extremity

in the direction of the tangent, prove (1) that the initial

velocity of any point, resolved parallel to the directrix, is

proportional to the inverse square of the distance of that

point from the directrix, and (2) that the velocity of the

centre of gravity of any arc, resolved in the same direction,

is proportionally to the angle between the tangents at ex-

tremities of the arc directly, and to the length of the arc

inversely.

The equation to determine the tension at any point is

da* p'~^'

c' + s'
or since in the catenary p = , this becomes

*LL ? T=0
ds' (c»+ «")"

One integral of this equation we know must be

Hence, according to rule, assume

substituting, we get

d'u 2s du

d^^~^W~d8'
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S
u = A tan"* - + B,

where A and B arc arbitrary constants. Substituting and
reducing, we get

T=i/{A^ + B),

where
<f)

is the angle the tangent makes with the directrix,

so that tan 6 = -

.

^ c

The velocity resolved in any direction is given by

1h

d .,

~ds^-rcos<f))

d I,

~ ds\
r'-]=Ac d(f>

ds

Ac

P

Ac'

Again, the motion of the centre of gravity of any arc is

the same as if all the forces acted directly at that point

parallel to their original directions. Hence, if S be the length

of any arc, TT' the tensions at the extremities, (jx}}' the

angles those tangents make with the directrix, then the

required velocity of the centre of gravity will be given by

S.v= T ' cos <f>'-T COS <f>,

^CA{cf>' -<!>), ^
whence the proposition follows at once.

XV. A right circular cone floats with its axis horizontal

in a fluid, the specific gravity of which is double that of

the cone, the vertex of the cone being attached to a fixed

point in the surface of the fluid. Prove that for stability

of equilibrium the semi-vertical angle of the cone must be
less than 60".

If A be the area of the plane of floatation, h the length

of the axis, and a the radius of the base, then if BO be the

angle through which the cone is displaced about an axis
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through the vertex, perpendicular to the vertical plane through

the centre of gravity and the vertex ; it follows from Gul-
dinus's properties that the moment tending to turn the body
in the opposite direction to the displacement is increased by

A^hBe.\h, or— Be,

and diminished by

TT O

(
V being the volume of fluid displaced).

Hence the test of stability becomes

a* A*

6 ^2 '

or y < v3,

tan a < V3,

a<60%-

a being the semi-vertical angle of the cone.

xvi. A ribbon of very small uniform thickness h is

coiled up tightly into a cylindrical form, and placed with its

curved surface in contact with a perfectly rough plane in-

clined to the horizon at an angle a, the axis of the cylinder

being parallel to the intersection of the plane with the

horizon. Prove that the time in which the whole will be

unrolled is very approximately — ./(—r-^:— j , where d is

the diameter of the original coil.

We shall consider the section of the coiled up portion of

ribbon made by the plane of motion as circular, and neglect

the motion of the centre of gravity perpendicular to the in-

clined plane. The velocity given by these assumptions at

any instant is less than the true velocity, and the time thus

arrived at for the uncoiling of the whole is greater than the

true time, but the error is evanescent except when a finite

number of revolutions remain to be made, and the time of

F2
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unrolling will therefore be very nearly that arrived at on

these assumptions, and cannot be greater than such time.

Let r be the radius of the coil at the time <, 6 being the

angle remaining to be gone through
;

3 ^d'B

Now . ^ B-

d^B 47r^sina 1

" de~ 3A 'B'

fdB\^ Sttq sin a , /o

being the initial value of B.

Let log Qj = a^;

d0\ .92 -2s2 fdx\

e-^.
* ' dx V \27r^ sin a/

V V27r^ sm a/ j o

= «V7r // 3A \

2 V V27r<7 sin a/
*

But f = ^a;2 27r '

4 V \5'^ s"^ ^
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17. If three beads, the masses of which are tw, m, w",

slide along the sides of a smooth triangle ABC, and attract

each other with forces which vary as the distance, find the

position of equilibrium. Prove also that, if they be slightly

disturbed, the displacement of each will be given by a series

of three terms of the form

isin (w^ + X),

where L and \ are arbitrary constants, and the values of n
are the three positive roots of the equation

(n»-a) (n'-/8) (w''-7)-cosMwW(n'-a) -cos«5w"w(n'-/3)

— cos' Cmm (w* — 7) — 2 cos A cosB cos CvmCm — 0,

where a, /9, 7 represent

m" + m', m + w", in + ?n,

respectively.

Let ABC be the triangle, BEF the positions of the three

particles. It is obvious that when they are in equilibrium,

the perpendiculars to the three sides of the triangle at DEF,
must meet in the centre of gravity G of the three masses.

Let a, /3, 7 be the perpendicular distances of G from the

three sides. Then taking moments about the perpendicular

a, we have

7n'/3 sin C= w"7 sin B\

w'/8 _ w"7 _ ma
'

' h c a
'

Thus the ratios of a, /S, 7 are found. Draw BG bo that

sin^^G^ , X- 7 1 1 ^^ xT. ^sin^C^ 13
-.—7TW^= known ratio - and draw CG so that -:

—

ttttt^ = -
,sm CBG a sm BOG a

their intersection G is the required centre of gravity. By
drawing the three perpendiculars GD^ GE, GFy the positions

of m, ni, m" are determined.

To find the time of a small oscillation.
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Let 05, y, 2 be the displacements of m, m, m" from their

positions of rest. The attraction of m on a unit of mass of

m, is equivalent to m ED which is equivalent to m'E'C along

E' C, and m CD' along CD' , where E' and D' are supposed to be

the positions of mm at the moment under consideration.

Thus the whole attraction of m' on a unit of mass of m when
resolved along BG is

m'{CD-x)+m' {EC- y) cos (7.

By treating m" in the same way we get the equation

d X
-7-; + (w' + m") X+ m'y cos C+m"z cos B= terms independent

o(x,y,z.

d*x
But when a;, y, z all vanish, -p = 0, therefore the right-

hand side of this equation is zero.

We have also the similar equations

-A + (m" + m)y-\- m"z cos A + mxcoa C=Of

d'z
-j-a + {ni + m') z + mx cos B + m'y cos ^ = 0.

To solve these, put x = Levant, y = Ms,\rint, z = Nsm.nty
and we get

-''

{m' + m" -n^)L+ m' cos C .M+ m" cos B.N=0,

and two other similar equations. Whence by cross-multi-

plication the ratios of L, M, N are found to be as the three

quantities

mm" cos A cos C— m" cos B (m" + w — w*),

m"m cos B cos C— m" gosA {m + m" — n*),

{m + m" — n') (m" + »i — n*) — »i'»i cos* C.
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Substituting in the last equation we get

(„« _ a) {n' - /8) (7i' - 7) - cosM mm" {n*

-

o)

— cos' Bm'm (n' — yS)

— cos* (7w w' (n* — 7) — 2 cos A cos B cos Gm m'm' = 0,

where a, yS, 7 stand for m' + m", m" + m, m + m' respectively.

xviii. The bore of a gun-barrel is formed by the motion
of an ellipse of which the centre is in the axis of the barrel,

and the plane is perpendicular to that axis, the centre moving
along the axis, and the ellipse revolving in its own plane

with an angular velocity always bearing the same ratio to

the linear velocity of its centre. A spheroidal ball fitting

the barrel is fired from the gun. If V be the velocity with

which the ball would have emerged from the barrel had there

been no twist
;
prove that the velocity of rotation with which

it actually emerges in the case supposed is -j-p— , g.^. ,

the number of revolutions of the ellipse corresponding to the

whole length I of the barrel being n, and k being the radius of

gyration of the ball about the axis coinciding with the axis

of the barrel, and the gun being supposed to be immovable.

The ball passes along the barrel under the action of a force

which is a function of the distance from the breech. If then

we assume that there is no friction between the ball and the

barrel, the vis viva must be the same whether or not there

be a twist. If therefore to and v be the velocities of rotation

and translation at emergence in the case supposed, and V the

velocity with no twist, we have

_, CO 27m I

But ~ = -i—> •*•*'= 7;

—

^l

••"'(*'+iJ^) =
'">

2TrnV

^{I' + ^Tt'ii'k*)'
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xix. An elastic ring of length I, mass m, and elasticity E
is placed over the vertex of a smooth cone, the semi-vertical

angle of which is a, and stretched upon it to any size. Sup-
posing it then set free, prove that the time before it leaves

the cone is

1 //ml\

the action of gravity being neglected.

Let A be the vertex of the cone, the centre of the ring

at any instant ; let AO = x, and a be the value of x when
the string is unstretched. Fig. 37.

Then an element of the ring whose unstretched length is

T
ds and stretched length da. is acted on by a force -—

. da
*' "^

a: tan a

along OP, and a force Rda along the normal to the cone.

cc ^" a
Now T=E. , therefore if a be the mass of a unit of

a
length of the unstretched string, we have, resolving along

and perpendicular to AP,

H^^j^i
—~) = 1 .d<T.Bma (1),'^ dr Vcos a/ x tan a ^

Bd<r=— .cosa (2):
X tan a

d'x E x—a d<T . >
/. -j^ = . .-7-. cos' a.

dr fi ax as

But by similar figures -j- = -t

d^x
. Ecoa*af v ^

therefore time before the ring regains its natural length is

_ !!" /[
^'

^

~2VUcos»a;
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_1 /ffiA'n^a*\

"2VV ^ )

cosec a

cosec a

=V(^0 cosec a ;

and it appears from equation (2) that B = when T= 0, that

is, when x= a or the string has regained its natural length.

Therefore the ring leaves the cone in the time

wc „ , cosec a.
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Tuesday, Jan. 17. \\ to 4.

Seniob Examutbb. Arabic numbers.

Junior Exauinbb. Eoman numbers.

2. If jpg- be the image of PQ^ placed perpendicular to the

axis QCq^ of a lens or mirror CB,, QBq the course of a ray
from Q to q, shew that PQ -. pqv. RqC : RQC.

Hence prove that, with all combinations of lenses for eye-

pieces, the magnifying power of a telescope, arranged for

parallel or diverging emergent pencils, is the ratio of the

diameter of the object-glass or mirror to that of its image
formed on emergence from the eye-piece.

If a be the breadth of the object-glass or mirror,

a^ that of its first image,

flj, ttg ... a^j those of the 2nd ... n—i\ images,

h those of the last,

e the angle made with the axis by the axis of a pencil

incident centrically on the object-glass or mirror,

Vii Vi"-Vn t^iG angles made by the axis after refraction

or reflection at the successive lenses or mirrors, we have, by
the proposition,

^ = 1«
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g«-t_ Vn_. *

.*.
Y^
= — = magnifying power.

5. Prove that the locus of a point, through which one of

the principal axes is in a given direction, is a rectangular

hyperbola in the plane of which the centre of gravity lies, and
of which one of the asymptotes is in the given direction

;

tmless the given direction be that of one of the principal axes

through the centre of gravity.

Let the origin be the centre of gravity and the axis of x
the given direction.

(f, 7], ^) any position of the point P,

{x, y, z) that of any particle.

Since the line parallel to Ox through P is a principal axis,

tm {x - ^) (i/ - rj) = 0,

and Xm {x — ^){z—^=0;

and since 2 {mx) = 0, % {my) = 0, and S [mz) = 0,

^_t {'nucy)

yy_%{'mXZ)

If the given direction be that of one of the principal axes

through the centre of gravity, the point P lies in the plane

of yz or in Ox.

In other cases the locus is a rectangular hyperbola, one of

whose asymptotes is in the given direction, and the plane of

which has for its equation

V ^ K ^

X[mxy) % {mxz)

'
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Wednesday, Jan. 18. 9 to 12.

Skniob Modebatob.

1. A PARABOLA touches one side of a triangle in its

middle point and the other two sides produced. Prove that

the perpendiculars drawn from the angles of the triangle upon
any tangent to the parabola are in harmonical progression.

Let ABC (see fig. 38) be the triangle, and DFE the para-

bola touching the side BC in its middle point F, and the

other two sides produced in B and E respectively.

Then it follows from the geometry of the parabola thatAD
and AE are bisected in B and C.

Hence if the sides of the triangle opposite B and C be 5

and c respectively, the equation to the parabola referred to

AE and AB as axes is

^/(^^^/(l) = .

and the equation to the tangent at any point x y is

The perpendiculars upon this tangent from the points A^
B, C, the co-ordinates of which are 0,0, 0,c and 6,0 respec-

tively, are therefore proportional to

'iV(^)' ^V(^)'
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and
2 2 2W jhif') -^ (ex')]

/cxY nhy\ - ^{by')->sj{cx')
^'

i-v^y; vUv
whence the proposition is proved.

There is another method of proving this proposition.

By tangential co-ordinates if a^y be the perpendicular from

ABC upon the tangent to an inscribed conic section, then

I m n ^

Z, m, and n being any constants, and the condition that this

conic be a parabola is l-\-in + n = 0. (Salmon, Higher Plane

Curves, p. 8, Art. 7.)

If then ?=m = l, and n = — 2 we shall have an inscribed

parabola, and since in this case

1 12

the perpendiculars from the angles upon any tangent are in

harmonical progression. Also the form of the tangential

equation shews that the parabola bisects one side internally

and the other two sides externally in its points of contact witn

these sides.

2. Find the length of the longest straight line which can
be drawn in the interval between two similar, similarly

situated and concentric ellipsoids ; and, if a line shorter than
the line so determined be moved about in the interval, prove
that its point of contact with the interior ellipsoid can never
lie within the cone represented by the equation

*' y*
1

*' _ A
a'[a*(\-m^-7^]

'*'

h'[V{l-m^-r'] ^ c'[c\l-",n*)-i*] " "'
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a, b, c being the semi-axes of the outer ellipsoid, m the ratio

of the linear magnitudes of the inner and outer ellipsoid, and
2r the length of the line in question, which is assumed greater

than 26 V(l -»»*).

What is the meaning of the boundary so determined when
2r is less than 2b \/(l — fn^) aud greater than 20^(1 — "0 ^

The longest line must be a tangent to the inner ellipsoid.

Let any tangent be drawn to this ellipsoid, and let r be the

parallel central radius of the outer ellipsoid, and let a diameter

of length 2a' be drawn to the outer ellipsoid passing through

the point of contact of the line in question. The segments of

this diameter made by the point of contact are a (1 — m) and
a (1 + w), and therefore if x be the semi-length of the touch-

ing line

a;' = -^ a' (1 - w) a' (1 + w) = r' ( 1 - wi»)

;

therefore any tangent to the inner ellipsoid = 2r ^f {I — m')

^

where r is the parallel central radius to the outer ellipsoid,

and therefore the longest tangent or the line sought

= 2aV(l-m').

Again, if a central section be made of the outer ellipsoid

by a plane the direction-cosines of the normal to which are

/, m, n, the equation for determining the semi-axes of this sec-

tion is

_ra' m'b' nV _^ ,.

a«_p«+^,«_p« + ?3^«-^ ^^^ -

p being one of these semi-axes, if then we take p such that

r = />V(l-w'),

with the restriction p > b, we shall determine the limiting re-

lation between the direction-cosines of the normal to a plane
touching the inner ellipsoid consistent with the major axes of

the section of the outer ellipsoid made by this plane not being
less than 2r, and therefore the cone formed by lines drawn to

the points of contact of such planes will form a boundaiy
within which no point of contact can be situated.
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If X, y, z be a point on such a cone

X y _
..(2),

eliminating between (2) and

9

(1), and remembering that

''"l-m"'
we obtain

a» [a* (1 - m') -r^\^ b^ [V (1 - m^) - r«}

If 2r be < 2b V(l — w') and > 2c \/(l — wi*)> the cone de-

termines a boundary within which if the point of contact be
situated the line cannot reach the outer ellipsoid in both

extremities, for within this cone the minor axes of the sections

made by planes of contact will be less than 2r.

3. If, in a rigid body moving in any manner about a
fixed point, a series of points be taken along any straight

line in the body, and through these points straight lines be
drawn in the direction of the instantaneous motion of the

points, prove that the locus of these straight lines is an hy-
perbolic paraboloid.

Let AB\)& the line along which the points are taken at any
instant, and let A'B' be consecutive positions of the line AB
after a very small interval of time dt.

Since the lines the locus of which is required are drawn
through the several points of AB in the direction of the

respective instantaneous motions of these points, each line

must in the limit pass through A'B' as A'B' is brought indefi-

nitely near to AB. Each line also must be parallel to the

plane to which the instantaneous axis is perpendicular.

The locus in question is therefore that traced out by a line

moving so as to be always parallel to a fixed plane and
always to pass through two straight lines.

This locus is the hyperbolic paraboloid.
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4. If/(x, y, z) =0 be the equation to a surface, and r be

a straight line drawn through the point x, y, z of which the

magnitude and direction are any given functions of oj, y, z,

state what is the relation between the original surface and

that whose equation is n '^''/{x, y, z) = 0, supposing that in

the latter equation x, y, and z have been expressed in terms

of r and any two other variables independent of r, and that

n is a given numerical quantity, and prove that if the two
surfaces coincide for all values of w, the line r must lie

altogether in either of them.

Apply this to find the partial differential equations of

conical and conoidal surfaces respectively when referred to

any system of rectangular axes.

£
Generally the operation a ^f{x) is equivalent to writing

ax for X in f{x). See Carmichael's Calc. Op. ch. in. sec. 1.

If then mf{x, y, z) we replace the variables x, y, z by three

others, r, s and <, and then perform the operation

n'-fir, s, t),

this is equivalent to writing nr for r in the expression

f{r, 8, t).

Hence the surface determined by the equation

is such that any line drawn according to the same law
as (r) is drawn in the surface

f{r, s, t) = 0,

is n times as large as in this latter surface.

If these two surfaces be identical for all values of n, it

would clearly follow that the line drawn according to this

law must lie in either of them, since by keeping s and t

constant, but varying r in any manner, we still remain on
either surface.
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If a, P, 7 be the co-ordinates of the vertex of a conical

surface, and r the length of the generating line to any point

X, y, z on the cone, we have

and since by what has just been proved, if /(a;, y, a) =0 be
the equation to a conical surface, this is identical with the

surface

«''V(^,y,2)=0
for all values of (n), it follows that

Bat r|=(.-„)|^ + (y-y3)^ + (.-7)|.

Hence by substitution we get the partial differential equa-

tions of conical surfaces, or

(«-<.)|+(y-«f+(-7)f
= 0.

Again, in conoidal surfaces. If a, /9, 7 be any point on the

axis, /, 7n, n the direction-cosines of the axis, and r the length

of the portion of a generating line drawn from the point

x,y,z to the axis ; then

-{l{x-a.) + m{i/-^)+n{z-y) }';

and since by reasoning similar to the above

'•^(«>y»2!)=0,

and

'•;^= [(^-a) -l[l{x-a) + m {y -^) +n{z-y)]]j^

+ [(!/- ^-m{l{x-a) + m{y-fi) + n{z-y)}]-^

+ [{^-y)-n[l{x-a)+m{y-fi)+n{z-y)]]-^,



82 SENATE-HOUSE PROBLEMS [Jan. 18,

we get, putting p for I {x —a) + m {1/ — ^) + n (z — 7),

5. From a flexible envelope in the form of an oblate

spheroid, of which the eccentricity of the generating ellipse

is e, the part between two meridians, the planes of which are

inclined to each other at the angle 27r (1 — e), is cut away
and the edges are then sewed together; prove that the

meridian curve of the new envelope will be the curve of

sines.

Let B0 be the angle between two consecutive meridians

in the original envelope. Let 1/ be the distance of any
point P in one of these meridians from the axis of revolution,

and 8 the arc measured up to P from some fixed j)oint on
this meridian.

In the new envelope it is clear that if B6' be the new

value of Bd, then BO' =— . Hence if y' be the new value

of y, 1/' = ey and s is unaltered. When these conditions are

satisfied the element at P has the same value in both en-

velopes, since

et/ . — ds-=y dO ds,

and the old envelope may be developed into the new en-
velope.

Now in the meridian curve of the oblate spheroid

\dy)<dyJ b'-f
ds^ _ y-cV

Hence, putting ey for ?/, we have in the new meridian

curve

U)
~

^y) -t'b*-f
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and therefore ^_j =_,^_-, ;

.'. x = b V(l — e^) sin"* -^ ,

which proves the proposition.

6. If an uniform inextensihle and fle^cible string be
stretched over a smooth surface of revolution, prove that

the following equations hold

:

l(^4:)+'^'-=<'' (').

where ds is the element of the string at any point, dx
and di/ are coiTesponding elements of the arc of the circle

tln-Qugh that point perpendicular to the meridian, and of the

meridian respectively, X and Y are the resolved parts of the

impressed forces along these directions, and r is the distance

from the axis, the mass of an unit of length of the string

being taken as unity. Hence prove that, if such a string

be acted upon by a force at all points perpendicular to the

axis of revolution, and inversely proportional to the square

of the distance from that axis, the string will, if properly

sus^jended, cut every meridian in the same angle.

In the figure (fig. 39), let PQ be an element ds of tlie

string, PN and MQ being the elements dx and dy.

Draw tangents PT and QT to the meridians AP and AQ,
meeting the axis produced in 0, and let a be the elementary
angle between them.

Resolve the forces acting upon the element PQ of the
string in the directions PN and PO, by whicli means the
reaction of the smooth surface does not enter into the equa-
tions of equilibrium.

02
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The resolved part of the tension at P in direction NP is

T^ and in direction OP is T^.
as as

The resolved part of the tension at Q in direction PN is

as \ asJ as

and in direction PO it is

also the resolved part of the impressed force on the element

PQ in direction PN= Xds, in direction PO it is Yds.

II»- l(^l)-.T^I + ^ = « (•)

i(T^) + ^-_T'^.+ Y=0 (2).ds \ dsj ds ds

, dx dx
also „=_ =

-••i

Substituting, we obtain

ds \ ds) r \dsj dy

whence, since

\ds)~^ \ds

we obtain

T

T
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IKf)-^S+^^=« (^).

with the law of force assumed in the latter part of the ques-

tion

d^c dti
multiplying (1) by ^ j (2) l>7 ^ , and adding, we get

as r as r

If the string be so suspended that (7=0,

r=^, or Tr=:fjL;

dec
and therefore from equation (1) ~r- = constant, proving the

proposition in the question. N.B. Equation (1) might be
lound at once by taking moments about the axis.

7. A string is wound round a vertical cylinder of radius

a in the form of a given helix, the inclination to the horizon

being i. The upper end is attached to a fixed point in the

cylinder, and the lower, a portion of the string of length

I sec « having been unwound, has a material particle attached

to it which is also in contact with a rough horizontal plane,

the coefficient of friction being fi. Supposing a liorizontal

velocity V perpendicular to the free portion of the string

to be applied to the particle so as to tend to wind the

string on the cylinder, determine the motion ; and prove that

the particle will leave the plane after the projection of the

unwound portion of string upon the plane haa described the

angle of which the circular measure is

log
ga

2fi tan t ° 2fjiV* tan* t — 2fiffl tan t+ga'
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In this case, fig. 40, the string coiled round the cylinder

remains the same helix throughout the motion, and the

particle in contact with the horizontal plane describes the

involute of the circular base.

Let PQ be the projection of the unwrapped string at any-

time t, P being the particle of mass unity, suppose. Let
6 be the angle through which PQ has removed from the

commencement of motion, and let v be the velocity of P,

the tension of the string being T and pressure on the plane E.

Resolving vertically,

E=g— T sin i;

horizontally and tangentially,

horizontally and normally,

- = Tcoat\ PQ = p;

dv tiv' ,
.*. V -7-= — aq + -— tan i,

as "^ p

dv v^ ^ .

• or v-j— ft — tan i = — fj^.

But p = l-a0, and ds= {I — aO) dO

;

ti dv "v^ ^ '

•• l-ad'dd ^l-ad

.'. -j^ — 2/jb tan i.v^ = — 2fiff il—ad) ;

ad

tan t 2fi tsur i

7« = (7+-^ "^

tan I 2/i.tau't*
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when the particle leaves the plane

g{l-ae)
V =

g^tan i-9 _- _

tani

1 ^9 _ ^ L
(7-2^tan^- 2/.tanS--

y^-gUoU+'^S. ^oi^i

e = —^—..\oi
ag

2/i tan i ' °
2fj,

tan'' * F'"* — 2figl tan i + ag
*

8. A particle is acted on by two centres of force residing

in the same point, one attractive, the other repulsive, and
varying inversely as the square and cube of the distance

respectively. Two consecutive equal apsidal distances are

drawn and the portion of the plane of motion included be-

tween them is rolled into a right circular cone. Prove that

the trajectory described under the circumstances mentioned
above becomes a plane curve on the surface of the cone, and
that it will be an ellipse, parabola, or hyperbola, according

as the velocity in the trajectory was less than, equal to, or

greater than that from infinity.

The diflferential equation of the trajectory on the plane is

^ + u(l+-%] = ^, (1),hV h'

fi and /x' being the absolute intensities of the attractive and
repulsive forces respectively.

Its polar equation is therefore

u = ;^, + Aco3{ne + B) (2).

Ifn'=l + ^;,

The angle between two consecutive equal apsidal distances

27J-
is — , and therefore the equation to the projection of the

trajectory on the cone made on the plane perpendicular to the

cone's axis is

n nh
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or w = -^ + nA cos
{(f>
+ B);

since «=co8ec a where a is the semi-vertical angle of the

cone, and therefore the cosine of the angle between each gene-

rating line and the base of the cone is - .° n

This being the equation to a conic section it follows that the

trajectory on the cone must be a plane curve, since none but

a plane curve on the surface of tlie cone can be projected into

a conic section on the plane perpendicular to the axis. Also

the projection, and therefore the original curve, is an ellipse,

parabola, or hyperbola, according as

Now by (1)

and by (2)

nh

v'=h'\ (^^y+ u'\ = 2fiu - fi'u' + C,

= AV + w*AM»sin«(«^ + j5)

= n'h'A^ - (n' - 1) h'u' -h 2fiu - 4r,^ n n

= wViM' - fi'u' + 2fiu - ^, .

Equating these values of v', we obtain

It, h'A Tr% = ^»
n h

Hence A* < = >-^ , according as
n n

(7< = >0,
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or according as the velocity in the original trajectory was less

than, equal to, or greater than that from infinity.

9. A particle is describing an orbit round a centre of

force which is any function of the distance, and is acted upon
by a disturbing force which is always perpendicular to the

plane of the instantaneous orbit and inversely proportional

to the distance of the body from the original centre of force.

Prove that the plane of the instantaneous orbit revolves uni-

formly round its instantaneous axis.

Refer the motion of the particle to the following three

moveable axes, viz

:

The radius vector to the particle.

The tangent to the particle's path,

and The perpendicular to the plane of the instantaneous

orbit.

Let dd be the elementary angle described by the radius

vector in the plane of the orbit in the time dt, and let d<^ be
the elementary angle through which the normal to the instan-

taneous plane has revolved in the same time.

The velocities in the above three directions are respectively

du dd

di' ''It'
'

dr .

also in the time dt, the direction in which — is measured haa

dO
moved towards the direction in which r -y- is measured through

the angle ~r- dt , and the direction in which r -7- is measured
° at at

dr .

has moved from the direction in which -. is measured through

the same angle and towards the normal to the instantaneous

plane through the angle ~^dt

,
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If then F be the central force and N the disturbing force,

^_ fde

de ^m-- «.

i4(4^'' (^).

'f-f=^ (^)-

But iVr= ^
, and from (2) r»^ = A

;

r
'

^ ' dt '
.

.'. -^ = T- is constant.

10. A die in the form of a parallelopiped the edges of

which are 2a, 2J, and 2c, is loaded in such a manner that the

centre of gravity remains coincident with the centre of figure,

but the principal moments of inertia about the centre of gra-

vity become equal ; if it then fall from any height and with-

out rotation upon a horizontal plane composed of adhesive

material so that no point which has once come in contact with
the plane can separate from it, prove that the chance of one

of the faces bounded by the edges 2&, 2c coming uppermost is

2- . _. be— sm
^ V{(«''+6'0(a'+c*)r

Since the principal moments of inertia about the centre of

gravity of the die are equal and there is no initial rotation,

the die will by the impact of one of its corners upon the

horizontal plane acquire a velocity of rotation about an axis

perpendicular to the vertical plane through the comer and
the centre of gravity. This will continue until an edge
through the comer meets the plane. When this takes place,

since by the adhesiveness of the plane no point can separate

from it, the die must begin to rotate round this edge until a

face meets the plane, and on this face the die will rest. Now
it follows from the foregoing that the face on which the die

will rest is that which was met by the vertical through the
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centre of gravity when the die first began to descend. To
find therefore tlie chance of the face 2b, 2c, lying uppermost
we must construct the pyramid, having for vertex the centre

of the die and for base the face 2b, 2c; and producing its

inclined faces to the surface of the sphere of radius unity

described about the centre of the die, we must find the area

of the spherical quadrilateral whose comers are A, B, C, D,
the points in whicli the lines of intersection of the inclined

fiices meet the spherical surface. Now the angles of this

spherical quadrilateral are equal, and therefore by dividing

it into two spherical triangles we obtain for its area

AA - 27r,

(-
TT

or ::_ 2

where A is the mutual inclination of the inclined faces of the

pyramid.

Now taking the line through the centre of the die perpen-

dicular to the face 2b, 2c, for axis of x, we see that the equa-

tions to the inclined faces are

hx — az = 0,

cx — ay = 0,

respectively ; and therefore the cosine of the angle between

them is

- V(a' + h') (a* + c')
'

and taking the negative sign, since the angle sought is obtuse,

we have

-4 = 7r — cos
,
- - :

^{a* + b') (a» + c*)

and therefore the area sought is

. (tt _! be )

4-^— — cos
' - - h ,

or 4 sin , =r

,

V(a* + 6») (a' + c')/

the whole surface of the sphere = 47r.
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Hence the chance of either of the required faces lying

uppermost is

2 . _, be— sin

11. A uniform sphere is placed in contact with the exterior

surface of a perfectly rough cone. Its centre is acted on by
a force, the direction of which always meets the axis of the

cone at right angles, and the intensity of which varies in-

versely as the cube of the distance from that axis. Prove
that, if the sphere be properly started, the path described by
its centre will meet every generating line of the cone on which
it lies in the same angle.

The centre of the sphere is always situated on a cone co-

axial with and similar to the original cone, the vertex of

which is situated in the produced axis of the original cone

and at a distance below the vertex of this cone equal to

a cosec a [a being the radius of the sphere). Take this point

as origin and refer the position of the sphere's centre to the

polar co-ordinates r,
<f>,

where ^ is the angle at which the

plane containing the line r and the axis is inclined to a cer-

tain fixed plane. Let F be the impressed force on the sphere's

centre resolved along this line. It is clear that this is the

only part of the impressed force which is not counteracted

by the reaction of the cone, and that it = —g

.

Let X and Y be the forces of friction along and perperL-

dicular to a generating line, we at once obtain these equations

for the motion of the centre of the sphere, assuming its mass

to be unity,

§-,sin.«(f)'=^-^ W.

s(''™4t)=^' (^)-

Also for the motion of the sphere about its centre let m^, co^, «,

be the instantaneous angular velocities about the three prin-

cipal axes normal to the cone, parallel to the direction of r,
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and perpendicular to this direction on the surface of the cone
respectively.

Now a)j approaches o>j with the angular velocity -^ cos a,

d6 .

*"« '"»
"i-^^^"'

«), recedes from Wj with angular velocity ~- cos a, and

from Wj with the angular velocity -^ sin a.

Hence if A be the moment of inertia of the sphere round
a diameter,

^w-^^'f '"'"=•' t^)'

^t-^'''f^'-=-^'' w-

A ~Y^ + Aa).-— sin a + ^cd, -^ cos a = Xa ... (5).
dt dt ^ dt ^ '

Also ^+"®« = ^ (^)'

ram a-£ — aw2 = (7).

From (4) and (7)

A d
I

. d<f>\ A dr d<f> . _ „
a ' dt\ dt ) a' dt' dt

'

which combined with (2) gives F= 0, and

r^8ina§=a;

<?<^_ C
dt "'r'sina'
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therefore from (3)

d(o^ C dr ^ ^ C
-jr + -J- -77 cot a = 0, or w, = — cot a + (7 .

at r a at ^ ra

C
Let C = 0, then <», = — cot a

:

^ ra

, , rs'mad^ C ^ ,.and also ©, = 7- = — irom (7).
' a at ra ^ '

But the equation of vis viva gives us

(1)'+ '^ ^'''
" (f) +^ (<

+

< + -/) = - 2 / ^.
.

* + C".

Substituting for co^ and Wjj and remembering that

and that r' sm' a
(^ j

= -y

,

we obtain

If now the circumstances of projection be such that C" =-0

as well as C, we obtain

dr 1 . dd)

But -y and r sin a -^ are proportional to the velocities of

the sphere's centre, parallel and perpendicular respectively to

the generating line, drawn to its centre on the cone in which

its centre is always situated ; hence the proposition is proved.

12. A small rigid vertical cylinder, containing air, is

rigidly closed at tlie bottom, and covered at the top by a disk

of very small weight which fits it air-tight. Supposing the
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air in the cylinder to be set in vibration, prove that the period

27J-

of a vibration is — , «i being a root of the equation

ml kBYI
m tan — =

;

a fia

where I is the length of the tube, a the velocity of sound in

air, /x the mass, k the area of the disk, p cc p (1 + ^s) the re-

lation between the pressure and density when the latter is

suddenly changed from p to p (1 + s), and 11 the pressure of

the air on the cylinder before motion commences.

When the disk is first of all placed in the cylinder it sinks

through a space which is very small in consequence of the

small weight of the disk, and comes to rest when the pressure

n of the air in the cylinder satisfies the condition

K

P being the pressure of the external air.

The diiFerential equation of the disturbance is

^_ ,d^
df'"" da?'

For which we may assume the integral

^ = ^ sin m {at + x) + A' sin m {at — x).

Now measuring x from the bottom of the cylinder we must
have the following relations

:

(1) When a: = -,^ = for all values of t, whence we

readily obtain A + A' = 0.

[2] When x = l,

because the condensation s at any point is — -,^
;
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.'. — fi ^IwV {sin m {at+l) — sin m {at — I)}

= — U^KAm (cos m{at + I)+ cos m {at -T)],

2 cos mat sin W6 = 2 2 cos mat cos w6,

7
W/e.

or wi tan »it = —« :

therefore the time of a vibration is

— , where m satisfies the equation
ma

m tan wt = j-

,

or writins: m for ma, and therefore — for m, this time be-° a
27r

comes — , where m satisfies the equation
m

ml k/311
mtan —=

.

a fia

13. A circular drumhead of uniform thickness is stretched

with a tension of uniform magnitude at all points in its cir-

cumference, and is then set in vibration by a small disturbance

commencing at the centre. Prove (1) that if ^ be the trans-

versal disturbance at the time < of a point the initial distance

of which from the centre was r, then

and (2) that the general primitive of this differential equa-

tion is

z=\ (^ (a< + r cos B) de + j'yfr {at + r cos 0) log (r sin*^) dO,
Jo J a
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(j> and yfr being arbitrary functions, and a a constant depend-
ing upon the tension and constitution of the drumhead.

The disturbance will be arranged symmetrically about the

centre, and we may consider the motion of an elementary

annulus, the undisturbed radius of which was r, and its

breadth dr.

Let T be the tension of the drumhead, and fi the mass of an
unit of area.

The mass of the annulus just referred to is therefore

/i27rr dr.

The tension along the inner circumference resolved ver-

tically is

(neglecting the longitudinal displacements) and that along

the outer circumference is

dr dr \ drj

Hence our equation of disturbance becomes

f.2'^dr.^ = ^^{2'^T^^dr;

d^_T d
f

dz\
•*• '' de~ fi'dr V dr) '

T being constant throughout the drumhead

;

.
dy_Tndz d^

' ' df fM \r dr dr*

To solve the equation

d^z _ ,ndz d^\
df'"" \rd?'^ drV'

Assume z= \ ^ (ai + r cos 6) dd ;

dz f'
.'.

-J-
=

\
^' {at + r cos 6) cos dd

;
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and ^ = «•/ '<#>" («< + »• cos 6) de
;

... ^ _ a«^ = a'
fV' («< + r cos ^ (1 - cos'^) rf^

Civ Cv* J Q

= o* ['<^" (a< + r cos 6) 8m^0dd
Jo

= ^^ r(sin e<f>' {at + r cos ^)}

+ - [V (a< +r cos ^ cos ^(7^

=0+--

because sin ^ = at both limits.

Again assume

z=l -^ {at + r cos 6) log (r sin' &) dO,
/

^ = fV (a< + »• cos 6) log (r sin' &) cos ^t/^

+ - {'-^ {at + r cos &) d0,

^^ =/V" («< + »• cos ^) log (r sin' ^) cos' ^rf^

+ - i '^' (a< + r cos 6) cos ^(7^

- -a I V^ (a< + r cos ^) <f^,
**

•'o

also

T^ = a' I -(/r (a« + r cos 0) log (r sin' 0) d0

;
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.-. ^ ~ a' -^ = aM ^" {at + r cos 0) log (r sin' 0) sin'

-2- r^' {at + r cos ^) cos 0d0

+ -J ->^ (a< + r cos ff) d0
'"'

•'o

a' f'=
I

i/r' (a< 4- r cos ^) log (r sin*^) sin

a* C
+ - I '«^' (a<+ r cos ^) log (r sin'^) cos ^<?^

a' f
+ 2- -i/r' (a< + r cos ^) cos ^J^

' J

a' r'- 2 - / ^fr' {at + r cos ^) cos <7^
**

•'o

and since the first term vanishes this expression reduces

itself to

- 1 -i/r' (a< + r cos 6fy log (r sin'^) cos 0d0
*" •'0

+

and therefore to

dz
' Jr'

Hence both these values of z satisfy the differential equation,
which is therefore also satisfied bj their sum, i. e. by the
expression given in the question, and since this expression
involves two arbitrary functions it is tlie general primitive of
the differential equation.

h2
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Wednesday, Jan. 18. 1^ to 4.

Sbniob Exauiker. Roman numbers.

JOKIOB ExAMiMEB. Arabic numbers.

4. Find the position of the point, the sum of the squares

on the distances ot which from the three sides of a triangle is

the least possible ; and prove that the angles, which the sides

respectively subtend at this point, exceed the supplements of

those which they subtend at the centre of gravity of the

triangle by the respective angles of the triangle.

Let a, ^8, 7 be the distances of the point required from the

three sides of the triangle, a, J, c the lengths of those sides,

K the area of the triangle. Then we have to make

r'= a*^ + /S"^ 4- 7*, a maximum,

a, /3, 7 being subject to the relation

aa + J/3 + 07 = 2Z".

Hence, by the method of indeterminate multipliers,

a b c'

The position of the point is thus determined. Now, fig. 41,

let AJWhe the triangle, F the required point, G the centre

of gi-avity of the triangle. Then

sin FAF_y _c
^7AC~^~b'
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and

sin QAB_ 2ire2L of triangle GAB GA.AG AG_h
sin GAG~ area of triangle GA G ' GA.AB ~ ~AB ~ c

'

whence,

sin PAB : sin P^O :: sin GAG : sin GAB,

and PAB+PAG= GAG+ GAB;

.-. PAB= GAG, PAG= GAB;
similarly,

PBG= GBA, PBA = GBG, PGA = GGB, PGB= GCA.

Hence PGB=G-GGB,

similarly, PBG=B-GBG;
.'. PCB+PBG=B+G-{GGB-i-GBG)

^B+G-TT +BGG
= BGG-A;

.-. ir-BPG=BGG-A,
or BPG= 'ir-BGG+A,

similarly, GPA = tt - GGA + B,

APB= 7r-AGB+G.

Hence the angles which the sides respectively subtend at P
exceed the supplements of those which they respectively sub-

tend at G, by A, B, G, respectively.

vi. Trace the curves represented by the equations

{a^-Aa')y*-12a'x{a-i/)=0 (1),

sin y —m sin a; = (2)

.

In (1) explain the circumstance that the asymptotes parallel

to the axis of y appear to contradict the statement of (v). In

(2) distinguish between the cases in which w> = or < 1.



102 SENATE-HOUSE PROBLEMS [Jan. 18,

First. The equation

(jc»- 4a*) y» - 12a* a; (a - ^) =s

may be written in the form

{a? + 3aa; - Aa')i/'-Zax (y - 2a)' = 0,

or {x + 4a) {x—a)i^— Sax {y — 2a)*= 0,

when X is positive, it cannot be < a,

and when a; is negative, >4a.

When a; = 0, y = 0,

x = a, y = 2a, two values,

a; = 2a, y=«>> or <»>

x = — 2a, y =Qo , or a,

a; = — 4a, y= 2a, two values,

near the origin y'+ 3aa; = 0.

The curve touches a; = a, and — 4a.

The axis of x and a;' — 4a* = are asymptotes.

The curve lies both above and below the axis of a; at an
infinite distance.

The form of the curve is as in fig. (42).

The asymptote x = 2a is met in two points at an infinite

distance by the branches to which it is itself an asymptote^

and one more point where it meets the other parallel

asymptote. Similarly for the asymptote x = — 2a.

Secondli/,

ami/ = mBmx. Let m < 1 and = sin 7.

For every value of a;, if y = ^, the equation will be satis-

fied by

2n7r+ y8, and (2n+ 1) 7r-/8,

x = 0, y = 0,

X increases, y increases,
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IT

X increases, y diminishes,

a; = TT, y = 0,

and the shape is the same on the opposite side from a; = tt

to a; = 27r, when it recurs, and similarly for x negative.

The shape is the same, see fig. 43, on the lines

^ = 0, y = ±27r, y= + 47r,...

and inverted on

y = + 7r, y = + 37r....

If w > 1, the equation is the same interchanging x and y,
and therefore the figure is the same, as if the above were
turned through 90'.

K m = 1, y = 2mr + x, or (2n + 1) tt — a;. See fig. 44.

10. One circle rolls within another ; apply the above for-

mula to find the area of the curve traced out by a given point

within the rolling circle.

Let C be the centre of the fixed, of the moving circle,

P their point of contact at any time, fig. 45, V the point

which traces out the required curve ; let F" produced meet

the circumference of the moving circle in Q, and let A be

the point of the fixed circle with which Q originally coin-

cided. Let GP=a, OP=b, PCA^d, so that FOQ = ^0,

let V= c, and let x, y be the co-ordinates of V. Then

a; = (a - J) cos ^ + c cos , ^,

y = [a — h) 9>\xi 6 — c sin —7— 6
;

.-. xdy - ydx = {a- hydd - c' (^)' dd

. ,. a- 2b - ,^ (a -b)* a- 2b - ,^
+ {a-b)c cos—T— dad - -—r—^ c cos—,— add,
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and, integrating this between the limits and 27r, we get for

tlie area of the curve,

(a _ J)' ^1 _ _j 2^ ___ i, sm -J- 2,.

13. Define a developable surface ; and, from your definition,

deduce the partial differential equation of such surfaces.

Find the equation of the developable surface generated by
the plane which moves in such a manner as to be always in

contact with the surfaces

^s + ja + ^2-1,

x' / z'

a—r — r c — r

Let Ix + niJ/ + nz = l (1)

be the equation of a plane touching the ellipsoid

^.+2^. +1=1.

We then have to find the locus of the ultimate intersections

of (1), subject to the conditions

?a'+»nV + nV=l (2),

P +m' +n' =0 (3). .

[The equation (3) is impossible, but the form of the equation

of the required surface may nevertheless be found. A similar

method, moreover, may be applied to find the developable

surface circumscribed about any two concentric and similarly

situated surfaces of the second degree.]

Multiply (2) by X, (3) by //., and add to (1) and differentiate,

and we get

x+ Xla' + fil = (4),

1/ +\mb'+fji.m=0 (5),

z +\nc' + fin=-0 (6),
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(4)Z+(5)?»+ (6) n gives

1 + X = 0.

Hence x—la* + fil= Of

X
.'. l= -

a — fi

z
Similarly m = f^— , n =

Hence (1) becomes
^ -li* ^x" y" s'

a* — fi b* — fi c^— fi

And (3) gives

(a>^/x)'+(J'-M)'^(c--M)"

The latter of these equations is the differential of the former,

hence the required result will be the same as that of elimi-

nating fi between the equation

{fM-a:'){fi-b^{f,-c')+x'{fi-b'){jM-c')

+ y' (ji -c') (ji-a") + z' i^L-a') (jM-b^) =0 (7),

and that obtained by differentiating it.

Now, writing (7) under the form

its differential is

3/jJ'-2Pfi+ Q = 0.

The result of the elimination of fi between these is

4 (F'-SQ) iO'-SPM) = {OR-PQ)\

^ The equation of the required surface is therefore given, by
putting in the foregoing,

R = a'6V - J'cV - (fay - a*b'z\

The required surface is, therefore, of the eighth degree.
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14. Explain what is meant hy A'.O"'; and prove that,

if/(e') be expanded in a series proceeding by ascending

powers of t. the coeflScient of f h"^ — .
* 1.2 m

Prove that, if m be less than r,

{l + log(l+A)}\0'"= r (r-1) (r-2) ... {r-m+ 1).

By the theorem enunciated in the former pert of the question,

{l + log(l + A)|^o"'

1.2 ... w
will be the coefficient of T in (1 + loge')', that is, in (1 + 1)'.

Hence

{l4-log(l-4-A)}''0'" ^ r(r-l)...(r-m + l)
^

1.2...m
~

1.2... 7»
'

.-. {l+log(l + A)|'0'" = r(r-l)...(r-.m4-l).
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Thursday, Jan, 19. 9 to 12.

JCHIOB MODSBATOB.

1. If at the extremities P, Q of any \:7f(i diameters CP,

(7^ of an ellipse, two tangents i^, Qq^ be drawn cutting each

other in T and the diameters produced inp and g-, then the

areas of the triangles TQp^ TPq are equal.

Project the ellipse, orthogonally, into its auxiliary circle

;

then the areas of any two triangles TQp, TPq, fig. 46, in

the primitive are in the ratio of their projections. But in the

auxiliary circle these areas are equal by symmetry. Hence
also they are equal in the primitive ellipse.

2. If a straight line CN be drawn from the centre to

bisect that chord of the circle of curvature at any point P of

an ellipse which is common to the ellipse and circle, and if it

be produced to cut the ellipse in Q and the tangent in T,

prove that CP= CQ, and that each is a mean proportional

between CN and CT,

If two diameters be drawn in any ellipse, making equal

angles with the major axis, then their conjugates will also

make equal angles with the same axis. This is obvious from
the consideration that the conjugate of any diameter is parallel

to the tangents at the extremities of that diameter.

Now CP, fig. 47, by construction is the conjugate of the

diameter parallel to PT, and CQ the conjugate of that parallel

to Pr, Also, by a known proposition in Conies, PjT and PV
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make equal angles with the major axis. Therefore CP, CQ
make equal angles with the axis and are consequently

equal.

Also by Goodwin's Conies, CN. CT= CCt-

3. If a, J, c be the sides of a triangle, and r the radius

of the inscribed circle, then the distances of the radical

centre of the three escribed circles from the sides of the

triangle will be respectively

5+c c+a a+i
''"2^' ''^T' '*~2r'

Let ABC be the triangle, fig. 48, and let the side AB
touch the two escribed circles in B and E, Now, by defi-

nition, the radical axis of the two circles bisects the common
tangent BE, and is perpendicular to the straight line joining

the centres of the circles. Also it is evident that the straight

line joining the centres passes through C and bisects the

angle exterior to A CB. Again, it is proved in most treatises

on Trigonometry, that BA = BE, so that the middle points

of BE and of the side AB are the same. Therefore the

radical axis bisects the side AB and is parallel to the bisector

of the angle A CB.

If a = 0, y9 = 0, 7=0 be the equations to the sides of the

triangle, the equation to any straight line parallel to the
bisector of the angle C is

a — ^ = constant,

but since this passes through the middle point of AB, it

c c
must be satisfied by a = -sxnB, fi=- sin a.

Hence the equation to the radical axis is

a — ^ = - (sin -B— sin -4).

Similarly, another radical axis will be

/9 — 7= - (sin (7— sin B),
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But aa + J|9 + C7 = 2A,

where A is the area of the triangle. Solving these equations

to determine /9, remembering that

. ac sinB

we get

and the values of 7 and a may be written down from sym-
metry.

Cor. If the radical centre coincides with the centre of

the inscribed circle, the triangle must be equilateral.

4. Two equal heavy particles are connected by a string

which passes thi-ough a small smooth ring. Prove that the

equation to the plane vertical curve on which the particles

will rest in all positions is

rc08^ = a + -\/r (r) — i/r (?— r),

where 9 is the angle the radius vector makes with the vertical,

I is the length of the string, -v/r an arbitrary function, and a an
arbitrary constant.

Take the smooth fixed ring as origin, and the axis of a?

vertical. Let x, r, x', r be the co-ordinates of the two
particles. Then by virtual velocities we have

dx + dx = ;

also

.*. x + x' = c,\

r + r =1.)

Let x=<f){r) be the equation to the curve, then x =^ (r^,

and we have the functional equation

<f>{r)+<l>(l-r)=c.

Solving this in the manner exhibited in Ilerschel's ex-

amples, we get

<t>
{r) = a + ^lr {r) + yjr [l - r).
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5. If four equal particles, attracting each other with forces

which vary as the distance, slide along the arc of a smooth
ellipse, they cannot generally be in equilibrium unless placed at

the extremities of the axes ; but if a fifth equal particle be fixed

at any point and attract the other four according to the same
law, there will be equilibrium if the distances of the four

particles from the semi-axis major be the roots of the

equation

where p and q are the distances of the fifth particle from the

axis minor and axis major respectively.

If the four particles be placed on an arc of an ellipse in

equilibrium, the resultant attraction on any particle must
be normal to the curve. Hence, by Todhunter's Statics,

Art. 220, the four normals at the four particles must meet in

their centre of gravity.

Let X, y be the co-ordinates of any particle, then the

equation to the normal is

y-y=-^ (»''-«) (!)•

Let Ilk be the co-ordinates of the point in which the four

normals meet, then

h-y = ^{h-x) (2),

also i]Vil'=l (3).
a I b

Eliminating x we get

(a« - hjy' + 2h'k (a* -1')^+ (JV + a'A' - (a* - hj] by
-26*^(a'-t')3^-5•^' = (4),

Since k is the ordinate of the centre of gravity, k is one-

fourth of the sum of the roots of this equation

;

•• **
(a'-b')

^^'-



9—12.] AND RIDERS. Ill

This equation can only be satisfied by

a'-J» = 0, or a' + 7&*=0,

or by ^ = 0. Taking the latter supposition, the equation (4)

reduces to

hence two of the particles must be situated at the extremities

of the major axis. To find the positions of the other two,

write for y^, its value obtained from (3), and we get

but since h is the abscissa of the centre of gravity, we have

A = - : hence this equation can only be satisfied, first by

a; = 0, and then the four particles are at the extremities of

the two axes: secondly by e=— , and in this particular

ellipse there will be equilibrium if two of the particles are at

the extremities of the major axis, and the other two are at

the extremities of any ordinate.

The case a' + 7J' = is impossible. In the case a*= 6', the

ellipse becomes a circle, and equation (4) reduces to

3^ =
*" + <''(lj'

But since h and h in this case must both vanish because
all the normals pass through the centre, this expression may
have any value. Hence there will be equilibrium in a circle

if the four particles are at the extremities of any two
diameters.

If we have five particles, it is necessary that the point

{hk) should coincide with the centre of gravity of the five

masses. Hence equation (4) becomes
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bk =
Wk
a*- 6"^ + ^'

and similarly

bh =
2a'A

substituting these in equations (2) and (3) we get

the required result.

6. A heavy string is placed in equilibrium on a smootli

sphere
;
prove that, if 6 be the length of the spherical arc

drawn from the highest point of the sphere perpendicular to

tlie great circle touching the string at any point P, then

sin^ =

where z is the perpendicular from P on any horizontal plane,

and a, b are constants.

Shew that the form of the string can be a circle only when
its plane is vertical or horizontal.

Let z be the highest point of the sphere, fig. 49, AB the

string, and PQN the great circle toucning it along the ele-

ment PQ.

Let T be the tension at P, then resolving the forces on tlie

element PQ along its arc, we get

dT=gdz',

.-. T=gz + c.

Again, take moments about the vertical through z. Re-
solving T perpendicular to the axis, we get Tsin zPN, and
the moment is therefore

hence

T sin zPN . sin zP^T sin 6,
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sin a =
z + b'

where a and b are arbitrary.

The curve of the string could not be a circle, for the alti-

tude of the centre of gravity must be a maximum or minimum.
Now unless the plane of the circle be vertical or horizontal,

a slight motion, without change of form, will clearly elevate

or depress the centre.

7. If three particles of masses m, m, m" attracting each

other start from rest, shew that if at any instant parallels to

their directions of motion be drawn so as to form a triangle

the momenta of the several particles are as the sides of that

triangle.

Let V, V, vi" be the velocities of the particles. Since the

three particles start from rest, the area conserved round any
point is zero. Now the area conserved by any particle of

mass w moving with velocity v is mvj), where p is the length

of the perpendicular from the origin on the direction of motion.

Hence
mv .p-\-mv.p-\-mv.p =0.

Therefore if three forces represented by mv, m'v\ m"v"
were to act along the directions of motion, the sum of their

moments about every point would be zero. Therefore these

forces are in equilibrium, and if a triangle be constructed by
drawing lines parallel to their directions, the forces will be
proportional to the sides of that triangle.

Hence also the three directions of motion being produced
meet always in one point 0.

Let Fy Fy F" be the resultant forces on the three particles

each due to the attraction of the other two. Then, these

being the resultants, two and two, of all the internal forces

of the system, must balance each other. Therefore the three

forces F, F', F' meet in a point 0', and are proportional to

the sides of a triangle formed by drawing parallels to the

straight lines joining 0' to the particles.

I
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The points 0, 0' are not in general the same, nor are they

fixed in space. If the law of attraction be directly as the

distance, they both coincide with the centre of gravity of

the system.

8. If from any point on a surface a number of geodesic

lines be drawn in all directions, shew (1) that those which
have the greatest and least curvature of torsion bisect the

angles between the principal sections, and (2) that the radius

of torsion of any line, making an angle 6 with a principal sec-

tion, is given by the equation

R \p, pj
sin 6 cos 0.

where p^ , p^ are the radii of curvature of the principal sec-

tions.

Take the given point as origin 0, and the normal as the

axis of z, and let the equation to the surface be

22 = <^ {x, y)

Let OP be any geodesic line and ON the projection of OP
on the plane of xy.

The osculating plane of any geodesic line contains the nor-

mal to the surface on which it is drawn. Hence NOZ is the

osculating plane at 0, and also the osculating plane at P con-

tains the normal to the surface at P.

Let de be the angle between two consecutive normal planch

to the curve, du the angle between two consecutive oscillating

planes. Then clearly tlie normal OZ is turned into the con-

secutive normal to the surface at P, by turning it, first through

the angle dc, then through du ; and the planes of these angles

are at right angles.

The equation to the normal at P is

^-x ^-n-y ^ };-z

ax by — 1 '

.•• cos du . cos de = -77—-

—

, , , . ^ „. j
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-•• 4 + -» = «' cos' e + h' sin' 0.

But by Euler*'s tlieorem since a = — , b = — ,

Pi p.

- = a cos' + b sin* 6 ;

P

therefore substituting, we get

~ = {a — h) sin cos ^

= (— — — ] sin ^ cos 0.

\Pi pJ

This is a maximum or minimum when = t, hence the
4

tangents, the geodesic lines of greatest and least torsion, bisect

the angles between the principal sections.

If B^ be the least radius of torsion, and B the radius of a

geodesic line making an angle <j> with it, then the above ex-

pression becomes

cos 2^
*

The expression for B may also be put into the form

B~ 2d0[pJ'

9. If du and de be the angles of torsion and contingence

of any curve of double curvature, and if sin
(f>

be the ratio of

the radius of circular curvature to the radius of spherical

curvature, prove that the square of the angle of contingence

of the locus of the centres of circular curvature is

d<f> + duY + cos' ^eT.

Let CC\ fig. 50, be an element of the locus of the centres

of circular curvature corresponding to a point A on the original

curve. This element ultimately lies in the normal plane at^,
I 2
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let it make an angle
<f}

with the principal normal A C pro-
duced. Now any element CC is brought into the position of
the next by turning it, first, through an angle du round the
tangent AA' to the curve, secondly, through an angle de
round a perpendicular CO at C to the osculating plane CAA';
the element has thus been brought into the consecutive nor-
mal plane to the original curve, and we have therefore,

thirdly, only to increase
(f>
by 2^.

The change may therefore be effected by turning CC in
two planes at right angles to each other through the two
angles CCP=du + d(\>, and PCQ = de cos ^.

Therefore if d-^ be the angle between the old and new
positions of CC,

cos c?i/r = cos {du + d^) . cos {de cos ^),

or d^\ = {du + d<^y + ^T^ cos'' <^*.

10. A particle is projected with velocity V along an in-

finitely thin ellipsoidal shell attracting according to the law of

nature; prove that when it leaves the ellipsoid the perpen-

dicular from the centre on the tangent plane is

7C-^)'
where R is the radius-vector parallel to the initial direction of

motion, and P the perpendicular on the tangent, /x the attra^*

tion of a mass equivalent to a unit of area of the ellipsoid at a
unit of distance.

First we must find the attraction of the ellipsoidal shell on
the particle. Let P be the position of the particle at any
instant, take a point Q just inside the shell, and situated on
the normal at P. Round P take any very small area A which
may be ultimately considered as plane. Since the point Pis
on the ellipsoid, its distance is infinitely small compared with

the linear dimensions of the area A. Hence the attraction of

A on P or ^ is ultimately the same as that of an infinite

plane on a point at a finite distance from it, and is therefore

normal and equal to 27r/x. The attraction of the whole ellip-
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soidal shell on Q is zero, hence the attraction on Q of the

whole shell except the area A is 277/1.. But it is evident that

the whole shell less the area A exerts equal attractions on P
and Q, because the distance PQ diminishes without limit

compared with the distance of P from the nearest point of the

attractive mass. Therefore the attraction of the whole shell

on P is normal and equal to 47r/Lt.

Now since this attraction is normal to the path of the parti-

cle, its velocity will be always the same and equal to V; and
it will describe a geodesic line on the ellipsoid.

The pressure on the ellipsoid will be 47r/x , where p is

the radius of curvature. Hence when the particle leaves the

ellipsoid, we have

47rit=—

.

P

Now, because the path is a geodesic line, p = -5 , where r

is the radius vector of the ellipsoid parallel to the direction of

motion, and c^ is a constant = P^. (See Hymers' Solid

Geometry^ Problems on Sect. x). Hence we have

V(
V\PR\

If p be the perpendicular from the centre on the tangent

plane at the point where the particle leaves the ellipsoid, we
also have

^Vi

—

v^~)'

Now the shell has been supposed bounded by similar ellip-

soids, hence /x is really variable and proportional to the tiiick-

ness h of the shell. Let fi = fi^h. Also by similar figures this

thickness is proportional to^; let n be the infinitely small

ratio of the thickness of the shell at the extremity of any
axis to that semi-axis. Then h = np; therefore fi = ii^n.p,

and let m = fi^n. Tlien substituting in the above expression,

we get



118 SENATE-HOUSE PROBLEMS [Jan. 19,

11. An infinitely thin ellipsoidal shell attracting accord-

ing to the law of nature is bounded by two similar and simi-

larly situated ellipsoids. A very small piece is cut out of

the shell and replaced in its original position. Shew that

the force necessary to hold the piece in equilibrium is propor-

tional to the square of the thickness of the shell.

Let dB be any element of the small piece of area B cut

out of the ellipsoid. Round dB describe a small area A
which may be ultimately considered plane and with respect

to which dB is infinitely small. Then the attraction oi A
on this element dB of itself is clearly zero. Let / be the

attraction of the remainder of the shell on a unit of mass
supposed collected at dB. Then, since the shell is infinitely

thin, we may consider y to be the same throughout the thick-

ness h of dB, and therefore the force necessary to hold dB in

equilibrium is /. dB. h. But we have proved that/= lirfi.h,

hence the force = 27rfMdB . h^. Hence the force on the whole
very small area B is 'iiriiB . h'.

12. A sphere of radius a is suspended from a fixed point

by a string of length I and is made to rotate about a vertical

axis with an angular velocity w. Prove that, if the string

make small oscillations about its mean position, the motion
of the centre of gravity will be represented by a scries of

terms of the form
Zcos {Kt + M),

where the several values of k are the roots of the equation

Let G be the centre of gravity of the sphere, BGC the

diameter to the extremity of which the string is tied. Take
the fixed extremity of the string as the origin, and fixed axes

in space, so that g acts parallel to the positive direction of

the axis of z. Let Wj, a^, o), be the angular velocities of the
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sphere about diameters parallel to the axes. Let P, Q be

the direction-cosines oi GC and F Q' of the string referred to

the axes x and y.

The squares of small quantities being neglected according

to the usual rule, it is also obvious that the tension of the

string will be the weight of the sphere.

The equations of motion are therefore

d(o, moment of forces

rfr+'""'= A
"

^®2 ^,, -^9 (P< p\
I

where A is the square of the radius of gyration of the sphere
2

about a diameter = - a^.
5

Also cDj = rate at which GO approaches

Similarly

' d . _i p. dP
.. = -^^(cosP) = ^.

dQ
* dt

If XT/ be the co-ordinates of the centre of gravity, we
have

d*x „ ^

df=-^^' I

d'y

Also x = lF-\-aP, y = lQ' + aQ.

Substituting for x, y, u)^, ©^ their values in terms of P, Q,P\ Q\ we get
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de ^ dt A^^ ^ ^'

, d'P' ^P ^

[Jan, ly,

de de

To solve these put P= Z cos {kI+M) ,
Q=M sin {kI + 3/ )

,

P' = L' cos {Kt + M), Q = M' sin (/c« + J/), we get

L'{g-l^)=aieL,

M'{g-l^) = a^M,

M{"-i-K^-jM' = -nLK.

Eliminating the ratios of L, M, L', M\ we get

2
when we put ^ =- a', this reduces to the result given in the

o

question.

13. A string is in equilibrium in the form of a circle about

a centre of force in the centre. If the string be now cut at

any point A, prove that the tension at any point P is instan-

taneously changed in the ratio of 1 —
cT —

•

4. £-(»-•)

: 1, where
e' + 6-'

is the angle subtended at tlie centre by the arc AP.

This is a particular case of a more general proposition.

Suppose a string to be in equilibrium in any curve in one

plane under the action of any forces. Let Pds, Qda be the

resolved parts of these along the tangent and normal to any
element ds. In order to refer the motion to moving axes,
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let v, F be the relodties of the element along the tangent and
nonnaL Then the equations are

(1),
dm

dt

d^

dt^
0*;^ (2),

where T is the tension, p the radius of carratme, and ^ die

angle the tangent makes with any fixed straight line.

In the beginning of the motion just after the string is cot,

wem.y «j«ct the 8q»«« of muU qnantitk., hence rf and

H^ may be neglected.

The geometrical equations are to be found from the con-

dition that any element PQ = ds of the string is inextensible.

The tangmtaai and normal velocities ofP and Q are respec-

tively «, o and u+dm, v+dc. Hence the velocity ciaepanr
tioa ofP and Q aloB|^ the tangent is dm — wd^, which must
be werOj and the veloaty of lotatioa of Q round Pis dc-\- ud^

which most be d* .^ . Henoe we hare the two equations

s-r« •• <')•

s-rf '*'

Differentiating (3) we get

d*u 1 dv

dsdt ~pdi^

since the anuJl tenn r jT may be neglected in the begin-

nii^of the
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Substituting from equations (1) and (2)

dP oTT^Q r,

ds ds^ p p^
'

d^T_T^_dP Q
ds* p^ ds p'

This is the general equation to determine the tension of

the string at the instant after the string is cut.

If the string be in the form of a circle, as in the question,

^ = — i*^ is independent of s and 5=0, and p = a the radius

;

d^T T ^-F
ds* a* a"

Now s = ad, hence we get

T= Fa + A^ + Be-''.

To determine the arbitrary constants we observe that r=
when ^ = 0, and = 2Tr;

But just before the string was cut we have

T=Fa\

Hence the result given in the question follows at once.

If the string be a catenary under the action of gravity;

we have

P=-g ,, i g> and Q = -
9<^

V(s' + c')
«^^ ^-

Vl^' + C)

The equation becomes

which has been integrated in a previous question.

,
dP Q

whence -7-5 = —
as p

d'T T_
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If the string be in the form of an equiangular spiral under
the action of a central repulsive force in the pole varying
inversely as the cube of tne distance, the resulting equation

can be easily integrated.

14. An inelastic string is suspended from two fixed points

so that it hangs in the form of a catenary of which the para-

meter is c. Suppose it to make small oscillations in a ver-

tical plane, prove the equation

where a is the angle the tangent at any point makes with the

horizon when the string is at rest, and a + ^ is the value of

the same angle at the time t.

Shew that there are sufficient data to determine all the

arbitrary functions.

Let M, V be the velocities of any element ds of the string

resolved along the tangent and normal. Then the general

equations of motion of the string are

du d(f> . , ^, dT

dv d<b / ,N T'dd>

where T' is the tension. Now the tension when the string

is at rest is gy= —— . Let T'—-^- yT. Substitute and^^ cos a cos a

remember that in small oscillations we may neglect the squares

of the small quantities m, v, ^, we get

du , .
co»* a dT ,.- = -gcosa.4,+-^-^ (1).

dv . , , d(t> cos" a ^ ,_.
-^=gBma.<f>+gcoBa.^ + -j-T (2).
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We have also the two general geometrical equations

du V _
ds p

'

dv u _ d<f>

ds dt'

where - = -j- + -^ is the reciprocal of the radius of curvature.
p as as '^

Changing the independent variable and neglecting the squares

of small quantities these reduce to

d^u c d(b

du' COS'* a dt
.(3).

Ti 1 1 rt , . , , ,„ p du dv dj^4>
!• or the sake oi orevitj put uvfp ^^^ '1} ^ ~Ji ^ ~7^ ^^'

spectively.

In order to eliminate T from equations (1) and (2) differen-

tiate the second, we get

cPu
,

d'd) cos* a dT 2 cos a sin a rwi

d'u ,

f
d^4>

^ 2(6^ _ 2 cos g sin g ^

Eliminating Tfrom this by means of (2), we get

fd^u \ ^ , . du' , . , d^6i
cos g f -j-i + w

j
+ 2 (sm g -^ u cos a) = y cos g -r\

+ 2^ sm g cos g -— + 2^<p (4).

But by (3)

j% + M =——
(f> ;

aoL cos g ^

du , /"sing,,,
.*. sm g -J u cos a = c /—r— ©

,og j cos* g ^ '



*J—12.j AND RIDEKS. 125

substitute these in (4), we get

^ _»" . ft
Tsina ,„ , _ d^<f> ^ . d(h ^ ,,A + 2c /—5- 9 =<7 (cos a-T-^ + 2sina cos a -7^ + 26).

cos a ^ j cos'* a ^ "^
^

d(i da ^'

Differentiate again, we have

c d6" 3c sin a .„ » /cPrf) , dd>\
-f-+ 2— <^ =^cos'a -T-5+4-/ ;cos a aa cos a V^^i da)

, «<f> „ « • ,ti

cos a ^— + 3 cos a sm ad) ,
,

, ,^
da ^

ff {^<f> .d^\

integrating both sides, we have

_£_ 2^0 )

cos^a cl^a^^^^"^ J'

which is the same as the result given in the question.

An expression for the tension may be found as follows.

Differentiating (2) and adding the result to (1), we obviously

get

c d'd} d'cb ^cos'a dT Tdco&'a

cos a dtr ^ da c da c da

or cos a -1 sma . 2 = - ' - -
'

da ' 2 Vcos'a clt'' c d(^

)

.-. cosa.r= |/[4<^+/w}rfa;

cV<'> a

2 cos a •'^
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Thursday, Jan. 19. 1^ to 4.

Skniob Modebatoe. Koman numbers.

Junior Modebatob. Arabic numbers.

1. Find a superior limit to the numerical values of x
consistent with the convergency of the series

2V 3V w" . ic"

3+ -+1:1

(n + 1)"^'. a;"

1.2 1.2.d 1.2...n

Here w«^, =
[_«+_

11'
. iC"

tt_ w" w + 1 V w
a;=(-D-

?<„=» -r^ = ?«„=» f 1 + ^1 a; = ex,
?t« \ n

and the superior limit to the values of x is therefore -

.

2. If the sides of a spherical triangle be small compared
with the radius of the sphere, then each angle of tlie spherical

triangle exceeds by one-third of the spherical excess the cor-

responding angle of the plane triangle, the sides of which are

of tiic same lengtli as the sides of the spherical triangle.

If the sides of a right-angled plane triangle of given area be
bent so as to form a spherical triangle on a given sphere of

great radius, the alteration of area in the triangle is very

nearly proportional to the square of the hypothenuse.
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It is proved in Todhunter's Spherical Trigonometry, Art.

109, that the area of any spherical triangle whose sides

are a,'97 exceeds that of the plane triangle by the fraction

„ of the latter, where r is the radius of the sphere.

If the plane triangle be right-angled Oi^+ 0'=Y, and it maybe
proved in exactly the same way, that the alteration in area is

= r^ of the plane triangle. This expression varies as y*, be-

cause by the question the area of the plane triangle is

constant.

3. Two tangents OA, OB are drawn to a conic, and are

cut in P and <^ by a variable tangent
;
prove that the locus

of the centres of all circles described about the triangle OFQ
is an hyperbola.

Taking OA, OB as axes, let the equation to the tangent
PQ be

-+|-1=0..
a p

and the equation to the conic

(1),

^-«(s+f-0* (2).

Then the equation to the circle is

x' + 1/^ + 2xy cos CO = ax + ^y
Then since (1) touches (2) the roots of the equation

.(3).

must be equal

;

" \a a)\fi b) 4/c

To determine the centre of (3), we have

.(4).

a+y cosQ) = -
,

a
y + a; cos 0) = - .
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Substituting in (4) the equation to the required locus ia

{x + 1/ cos fo) {y + X cos (o)

_ 2h (x + y cos &)) + 2a (;/
4- x C03 w) — ah

\ Tb '

4

which is evidently an hyperbola.

If the given conic be a parabola, we must have 4/c = ah^

hence we get for the locus

x-\-y cos G) y -\-x cos « _ 1

'~a
^

h
*'

which is a straight line. This is evident, a priori, for it is a
known property that all these circles pass through the focus.

iv. If w be a function of three independent variables

x, y, z, which are connected by three equations with three

new independent variables ^, ?/, ^, shew how to express the

partial differential coefficients of w, to the first and second

orders respectively, with respect to x. y, z, in terms of the

con'esponding partial differential coefficients with respect to

Apply this method to prove that, if at a certain point in a

surface r = t and s = when the axes of x and y are taken

parallel to a particular pair of lines, at right angles to each

other, in the tangent plane at that point, the axis of z being

normal, then the following relations will hold at that point

whatever be the direction of the co-ordinate axes provided

they be rectangular, viz.

r s t

TT/?^M ~ l+<?'

'

where p, q, r, s, t, denote

dz dz d*z d'z d'z

di' dj/' dx'' d^' dy"
respectively.

Let tlie equation to the surface referred to the original

axes, whereof tliat of z is normal and those of x and y are

at right angles to each and tangential, be

u = z-f{x,y) = 0,
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let ^, T], ^ be the new axes, and let the relations between the
old and new variables be

du du du du dz dz

' dx dy

d. ., , - du , du
bimilarly for -7- and —rr,

;

again,

d^u ,d^z ^ d'^z ^d^z ,, ^

d^z _ <^*z _ , d^z _
oar ay^ <mry

-,..,, f,
d'^u , J'm

Similarly tor ^ and ^

,

also

d'xi , d*z yd'z . , T N
<^« r

Similarly for
^^f^^^^^^'

Hence differentiating the equation

du da d^ _
d^'^d^d^^'^'

with regard to f and substituting we obtain, remembering

that

K
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Similarly, we should find

whence the proposition is proved.

V. If the differential equations of the first order

give rise to the same differential equation of the second order,

shew how the general solution of an equation of the fonn

.^{,(.,„|),t(.,..|)l = o,

may be found without integration.

Apply this or any other method to the discovery of the

general solution of the equation

Here 2a;y—— - x^yp = a*

;

l^ut x\x- -^j
= c, and y (y -px) = Ik

V
give rise to the same differential equation of the 2nd order.

Now p = - (y --] = -^ ;
ic V yJ X - c
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ha? + cy' = he,

hx^ + T 2^' = «*•

6. Enunciate and explain D'Alembert's principle. Apply
it to determine the small oscillations in space of a uniform

heavy rod of length 2a, suspended from a fixed point by an
inextensible string of length I fastened to one extremity.

Prove that, if x be one of the horizontal co-ordinates of that

extremity of the rod to which the string is fastened,

fc = u4 sin (Wj<+ a) + i5 sin (n/ + /9),

where n^, n^ are the two positive roots of the equation,

aln* - (4a + 3?) gn^ + 3/ = 0,

and A, B, a, /8, are arbitrary constants.

Take the point of suspension of the string for origin, and
the axis of z vertically downwards. Let p, q, p', q' be the

cosines of the angles made by the string and rod respectively

with the axes of x and y, and let u be the distance of any ele-

ment du of the rod from that extremity to which the string is

attached. Then the co-ordinates of this element will be

x = lp + up',^

y = lq + uq',\ (1).

z= I + u, \

Then the equations of motion will be

,^^«^ = .Zi, (2),
dr dr m

\

K '1
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where T is the tension of the string and m the mass of the

rod. By D'Alembert's principle, the equation of moments
round x will be

which becomes by (1)

^ jfjd'q ,
d'q'\ ^j ,d^q Sa' dV „ ,, . ,,

or -2al{lJ + u^)-2la^-^—^--^ = 2aff{k + aq),

which by equation (2) reduces to

92z^f+^^'=_
de'^l''~d(

Therefore the four equations of motion are

and two similar equations for g', g'.

To solve these put

p= A sin {nt + a), q = Bsm [nt + a),

we get

In^A-if an^B=gAA

MA-\--an^B= gB'A

n —

3

4a^+3Z

al

and the values of n are found.

vii. A rigid bodv is rotating about an axis through its

centre of gravity when a certain point of the body becomes
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suddenly'fixed, the axis being simultaneously set free ; find the

equations of the new instantaneous axis ; and prove that, if it

be parallel to the originally fixed axis, the point must lie in

the line represented by the equations

d^hc + l^my + <^nz = 0,

(j._e')|+(c'-a»)|4-(a'-5')^ = 0;

the principal axes through the centre of gravity being taken as

axes of co-ordinates, a, b, c the radii of gyration about these

lines, and I, m, n the direction-cosines of the originally fixed

axis referred to them.

In order that the new instantaneous axis may be parallel to

the originally fixed axis the plane passing through the im-
pulse at the fixed point and the centre of gravity must be
diametral to the originally fixed axis. Hence the point

must lie in the plane

o*ic 4- J'wy + c'w2; = (1).

Again, in order that rotation round the original axis

through the centre of gravity combined with a velocity of

translation parallel to the blow may reduce the point to rest,

the line joining the point with the centre of gravity must co-

incide with the projection of the axis upon the diametral

plane; let X, /*, v be the direction-cosines of the normal to the

plane passing through the axis and the normal to the diametral

plane, then

TK + mfi + wv= 0,

c^Vk -f- h^miJk -H <?nv = 0,

Ik (c' — a*) -I- mfi (c*— &*) = 0, and so on

;

therefore the equation to the plane is

(t« _ c») ^ + (c» - a») ^ + (a' - J») - = (2);

(1) and (2) determine the line in which the point must be
situated.
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ix. Prove tlie following relation between the perturbations

of a planet in longitude and radius vector

:

h being twice the sectorial area described in a unit of time by
the undisturbed planet round the Sun ; and find the corre-

sponding relation whatever be the law of force, provided it be
central and a function of the distance only, and provided
such a function as R can be found.

Let F be the central force.

Our equations of motion give us

whence, proceeding as in Airy's Tracts, we get

put r 4- Sr, 6 + Zd, for r and 6 respectively, r and 6 being the

functions of t given in the undisturbed motion, and we obtain

dr dhr ,r,d'r ^ d\Br „ . fdOV ^ ,d0 dhO

'dt'-dt+'^'de^^'-^r-^'^'^dJ-^'df-dT

= eFBr + AFBr + Ar^-^Br-6[^dt-^r'^^,
dr J dt dr

which, as in Airy's Tracts, is easily reduced to

dr

dR
dr'

d
dt\\ dt dt J dt dt

„ -_ , dF ^ „ rd(R) , , dR= 8FBr+Ar -r-Br-6 —j-! dt-ir-j^,
dr J dt dr
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Put h for r' -j- , and we get

+ 3 -\-^dt + 2r -J AF8r - 2r ^- SrV .

j at dr dr )

This is reduced to the equation in the question when F is

such a function of r that

10. If the ohject-glass of a telescope be covered over by
a diaphragm, pierced in the centre by a small hole, the form
of which is a rectangle, state generally the nature of the

spectra formed about the image of a star on a screen placed at

the focus.

If the hole be circular and the screen be pushed towards
the lens, prove that, when the light is homogeneous, the centre

is alternately bright and dark. Trace also the order of the
colours seen if the light be not homogeneous.

This rider is obviously the same as the problem solved by
Airy in Art. 79 of his Iract on Light. For the introduction

of the lens is merely making the incident pencil convergent
instead of divergent, that is, the a in Airy's investigation is

to be made negative. The intensity of the illumination

will be
4\Vi» . ,/27ra-&

rsm
{a-hf

J^ira-b ^

The interpretation of this result is nearly the same as that

given by Airy, except that we now begin at the central

spot.
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When b=a, the intensity becomes ttV; when b—a = ± — g-,
c

the sine is unity, and intensity is measured by Ac*; when

h — a = ± —— , the intensity is zero, and as J — a continues to

increase, we have alternately brightness and darkness.

If the light be not homogeneous, we have, when h = a, a.

white spot, and as J ~ a increases ; the violet disappears first,

leaving a red spot, which gives place to the other colours in

order.
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Friday, Jan. 20. 9 to 12.

SxinOB MoDKBATOB. Romaa numbers.

Sbniob Exahineb. Arabic numbers.

1. OA, OB are common tangents to two conies having a
common focus S, CA, CB are tangents at one of their points

of intersection, BD, AE tangents intersecting CA, CB in

D, E. Prove that SDE is a straight line.

Let the conies be reciprocated into two circles within both

of wliich S lies. Fig. 51.

oa, o5, their points of intersection, correspond to OA, OB;
ca, cb, the points of contact of a common tangent, to CA, CB.

The straight line b joining cb and ob meets one circle in hd,

a ca ... oa the other in ae,

bd, ae correspond to BD, AE,

and d, e which join Id, ca and ae, cb to D and E.

It is required to shew that d, e are parallel.

The angle between d and a = that between b and o = that

between a and e.

ii. Define the terra potential of a mass, the particles of

which attract according to tlie law of nature ; and prove that,

if a body moveable about a fixed axis be subject to the ac-

tion of an attracting mass of which the potential is V, then
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///

dV
-jrz dm is the moment which must be impressed upon the

body about that axis in order to produce equilibrium, where
6 is the inclination of the plane through the fixed axis and
the particle of which the mass is din to a fixed plane.

A uniform straight line, the particles of which attract ac-

cording to the law of the inverse square, acts upon a rigid

uniform circular arc in the same plane with the line, of which
the radius is equal to the line, and which is moveable about

an axis through its centre perpendicular to its plane, the axis

being coincident with one extremity of the line. Prove that

the moment necessary to produce equilibrium when the bound-
ing radii are inclined at the angles a and yS to the line pro-

duced is proportional to

sec - 4- 1

log—;g—

.

sec 1+1

Let AB be the straight line, P a point at a distance r

from AB, Fig. 52,

Q a point in the line at dist. x from B,

P(^= cc* + r' + Ixr cos 6
;

ioVI(a; +
dx

^[{x + r cos^plVihi^

_. V2 V(l 4- cos g) + (1 + cos &)
~ ^^ 1+cos^

a a 6
2 cos- + 2 cos*- 1+cos-

Q
= log ^ ^ ^ = log -^ = log (sec- + 1 )

.

2 cos* - cos -
2 *t

Hence since in this case dm = rdO, the moment on

crrdv
sec 1+1

sec — + 1
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4. If an elastic string, whose natural length is that of a
uniform rod, be attached to the rod at both ends and sus-

pended by the middle point, prove hy means of Vis Viva
that the rod will sink until the strings are inclined to the

horizon at an angle $, which satisfies the equation

a Q
cot' - - cot - - 2w = 0,

where the tension of the string, when stretched to double its

length, is n times the weight.

If the string be suspended by a point, not in the middle,

write down the equation of Vis Viva.

C is the point of suspension. Fig. 53.

ABC= 6 at time t.

Let AB = 2a, BC= r = a sin 0,

m the mass of the rod.

The moving effect of the tension of CB
r — a= rvrng . .

By Vis Viva, at the time t,

f T ~~ d
«M?*= 2mga tan ^ — 4 \nmg dr

= ^Tfiga tan v — Inmg .
-^

,

since v= when ^ = 0, and r=a\

therefore the rod comes to rest when

tan^-w(sec^-l)*=0,

. /, /, .4^
or gm B cos ^ — 4w sm— = 0,

6 6
or cot' - — cot - — 2n = 0.

If the fixed point divide tlie string into the portions a — c^

a + c, and these be inclined at angles 6, & to the horizon, and
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he of length r, r at the time «, ^ the inclination of the rod,

the equation of Vis Viva gives

/dfrV 72/#V c {{^r-a-^cf {r'-a-c)\

where a = ^ (r sin ^ + r' sin 6')
,

and 2a cos <^ = r cos 6 -\- r cos ^',

2a sin ^ = — r sin d+r cos ^',

which with two more dynamical equations are sufficient to

determine the problem of the motion.

5. If an oblate spheroid be moveable about its centre,

and B be the inclination of its equator to a fixed plane, i/r the

inclination of the line of intersection of its equator with this

plane to a fixed line in the plane, A and C the respective

moments of inertia about the axis of figure and a line in the

equator respectively, L and M the moments of impressed
couples about the line of intersection of the equator with the

fixed plane, and a line in the equator perpendicular to this

latter line respectively, to the angular velocity about the axis

of figure, prove that

0^-0 f-^
j

sin ^ cos ^ 4- A(o smd-^ = i,

ci ('^4:,ine] + c^i^. cos e-Aa,^ = M,
dt\dt J dt dt dt

hence deduce the precessional and nutational velocity of the

Earth's axis, assuming the effect of the Sun's action to be a

couple of winch the moment is m sin A cos A about an axis

in the equator 90° distant from the Sun, m being a very small

quantity, A and C very nearly equal, and the Sun's motion
in declination and right ascension being neglected.

The angular velocities about the axis of figure, the line of

nodes, and the axis in the equator 90° distant from the line of

nodes respectively, are

d0 , dyft . ^
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and the line of nodes recedes from the axis of figure with the

angular velocity -j- sin 6, and approaches the perpendicular

to the line of nodes in the equator with the angular velocity

-T- cos 6. Similarly the perpendicular to the line of nodes in

the equator approaches the axis with the angular velocity -j-
,

and recedes from the line of nodes with the velocity -— cos 6.

Hence by the formulae for accelerations of angular momenta
referred to moving axes,

= acceleration of momentum round the line of nodes,

^dt\-i''''^)^I'''^'^dt-Tt'^''

= acceleration of momentum round the axis perpendicular

to the line of nodes,

whence the equations in the question.

In the case of the Sun's action upon the Earth

X = m sin A cos A sin a,

M= — m sinA cos A cos a,

and the squares of the very small quantities -— and -j- are

to be neglected as well as the differencee between A and C.

Hence the equations become

d^d . ^ d-^ m . . . .

-rf-^ + (o.9m0— =-77 sm A cos A sm a,
d(^ dt C *

d ( . ^d-^lA dd m . . .

^, . sni ^ -p- — Q) -J- = — -T7 sm A cos A cos a,
dt \ dt) dt C
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differentiate the first and subtract the second multiplied by o),

remembering that A and a are to be considered constant, and
we have

d'O .dd m
-To +o> -jT = Ty ® sm A cos A cos a,
dr at C '

d' fde\ ^dd m

Similarly,

dO m . .

. -r =—7y sm A cos A cos a.
dt 0)6

. ^d-dr m . . . .

ama -~-= —^ sin A cos A sm a,
dt a>C

neglecting the arbitrary parts of the respective integrals.

6. If a solid of revolution be immersed in a heavy homoge-
neous fluid with its axis vertical, prove that, when the total

normal pressure on the surface is a minimum, its form must
be such that the numerical value of the diameter of curvature

of the meridian at any point is a harmonic mean between the

segments of the normal to the surface at that point intercepted

between the point and the surface of the fluid and between

the point and the axis, respectively.

In this case Jxi/ds is to be a minimum.

Hence we must substitute icy for fi in the formula,

1 1 fdu, dii
- = /-cosa + -7-

p fM \dx dy
giving us

1 cos a cos ^

(l^^^«+f ^°^^)'

+
p X y
2 1 1

2/3 a; sec a y sec fi
'

proving the proposition.

viii. Explain the phenomenon of external conical refrac-

tion where a small pencil of light passes through a biaxal

crystal ; and describe an experiment by Aviiich this pheno-

menon may be manifested.
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If the crystal be bounded by planes perpendicular to the

line bisecting the acute angles between the optic axes, write

down equations Avhence the equation of the cone of emerging

rays may be obtained.

Let Z, m, n be the direction-cosines of the perpendicular

to any wave-front incident upon the second surface of the

crystal ; the axes of reference being the axes of elasticity

;

let X, fi, V be the direction-cosines of the perpendicular to the

corresponding wave-front after emergence. Then \, fi, v are

tlie direction-cosines to the corresponding emergent ray, and
if the point of the second surface at which the light emerges

be taken as origin, the equation of the cone will be deter-

mined by eliminating \ /*, v between the equations

X-fi-p ^^^'

and an equation between X, fi, v which remains to be found.

(1) The emergent ray, the normal at the point of emer-
gence and the perpendicular to the front of the incident wave,
lie in the same plane, whence

^ = ^ (B).
V n

(2) The sines of the angles of emergence and incidence

are to each other as w : v, u being taken for the velocity of

light in air, and v for the velocity with which the wave-front

under consideration was propagated through the crystal,

whence

'-^='-^ (C).

(3) Also the value of v in terras of I, m, n is to be found by
substituting the values corresponding to the multiple point in

the equations a (page 18 of Griffin's tract on Double Refrac-

tion), whence we obtain the following relations,

v^ — a' _ - ^^

S 8
V —c _ vn

(D).
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Between the four equations of B, G, and D, and the addi-

tional equation

we may eliminate I, m, n, and v, and obtain the relation

sought between X, /x, and v.

The final relation between x, y, and z gives a cone of the

fourth degree.
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Friday, Jan. 20. 1^ to 4.

JcmoB MoDEBATOB. Boman numbers.

JUNIOB EXAHINKB. Arabic numbers.

1. If a, /3, 7 be the respective distances of a straight line

from the three angular points of a triangle ABC, these dis-

tances being reckoned positive or negative according as their

directions fall within the angles of the triangle itself or their

supplements, investigate the following relation,

(a sinAf+ (/3 sin J5)*+ (7 sin C)'- 2 cos^ sin B sin Cfiy

— 2 cos -B sin (7 sin A<ya — 2 cos Osin -4 sin Bafi

= 4i?'sinM sin'^^siu'C,

where R is the radius of the circumscribed circle.

Referring to fig. 54, we have

AP=a, BQ^-fi, CR = -'i.

Hence, if 50= a, CA==h, AB = c, &ndBAP=~-0,

-47 = a + iS = c cos fY - ^j

»

similarly a + 7 = i cos f—+^) ;
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.'. & (a + /8) + c (a + 7) = 2bc cos — cos 0,

J (a + /3) + c (a + 7) = 2lc sin —sin Q.

A A
^Multiply these by sin — , cos — , respectively, and add

squares, then, since he sin A = —^

,

i'^(a4-ySr+cMa + 7r-2Jccos^(a + /3)(a+7)=:^,

or, since 2bc cos A — }?-\-(? — <^,

aV + 1'/3*+ cV - 25c cos A.^'y-2ca cos B. ya

a'bV— 2ah cos C. a^ =

Now,

4i^
•

sin A sin ^ sin C 1

a b c 2B'

.: (a sin Ay+ (yS sin By+ (7 sin Cy - 2 cos^ sin i?sin C. ^y

— 2 cos jB sin Csin -4 . 7a — 2 cos Csin ^ sin 5 . o^

= 4i2sin''^sin'^sin'C,

the required result.

2. State the positive and negative characteristics of d
singular solution of a differential equation ; and shew how it

is deduced from the complete primitive. Shew also how the

singular solution of a differential equation of the first order

is obtained from the equation itself.

Obtain the singular solution of the equation of which

y cos*m = 2 cos (a; — 2m)

is the complete primitive ; and find the singular solution of

the equation
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(a) y coa^m = 2 cos {x — 2m).

This may be put into the form

{y — cos x) cos 2m — sin x sin 2ni = ^

.

Differentiating with respect to m, we get

(y — cos x) sin 2m + sin x cos 2m = 0,

whence, adding squares and reducing,

-y— 2v COS a; + 1 = 0,
4

the required singular solution.

(/8) This may be written under the form

The condition for a singular solution is

dp

which, in this case, gives

Z{x + yyp'-2{x'-f)p = Q,

2 x — y

Substituting this value for p in the original equation,

we get

^iKx+y) 9 VaJ + y/

or 4(ic-^)'' = 27 (a; + 3/)^

the required singular solution.

iii. Prove that, in any curve of double curvature, the

locus of the centres of spherical curvature is the edge of n

-

gression of the envelope of the normal planes. Prove also

that this locus cannot be an evolute.

The normal plane to the locus of the centres of circular

curvature bisects the radius of spherical curvature.
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If two consecutive normal planes be drawn to a curve, their

intersection is a generator of th? envelope of the planes, or, as

it is usually called, of the polar surface. The envelope of

these generators is known to be the edge of regression, tliat

is, any two consecutive generators intersect on the edge of
regression.

The intersection of two consecutive normal planes is a
straight line through the centre of circular curvature, and it

is clearly such that if any point be taken on it, that point is

equally distant from three consecutive points on the curve.

Therefore the intersection of two consecutive generators is

equally distant from four consecutive points on the curve,

i. e. it is the centre of spherical curvature.

Hence the proposition follows.

It is also clear that the edge of regression cannot be an
evolute, because its tangents, which are the generators of the

above polar surface, do not pass through the original curve.

Let A, A', A" be three consecutive points on a curve, and
let the plane of the paper be the normal plane at A', Let CO
be the intersection of the normal planes at A, A'; CO the

intersection of those at A', A". Let the plane that passes

through the three points A, A\ A" cut CO, C in C and C.
Then C, C are ultimately two consecutive centres of circular

curvature, and is the corresponding centre of spherical

curvature. Fig. 55.

Now A' CO, A' CO, are two right angles in one plane, and
therefore a circle described on A' as diameter will pass
through and C. And CC is ultimately a tangent to the

circle, hence a normal to CC bisects A'O the diameter. But
CC is also ultimately a tangent to the locus of C, whence
the normal plane to the locus of C bisects A'O the radius of

spherical curvature.

4. Determine the class of cui^ves which possess the pro-

perty that the locus of the extremity of the polar subtangent
of any one is similar to the curve itself.

Shew that r^e"* = a is the equation of such a curve.
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It may be shewn that, if - =f{6) be the equation of a

given curve, that of the locus of the extremity of its polar

subtangent is - =/'
( ^ — 9

) •

Now, if /OT=^

/Kf) =
» '"-!)+'

.(.-f)
6

a

=hH^-iy
,./(o

Hence, the equation of the locus of the extremities of the

polar subtangents of the curve r^e"^ = a, is

\ 2 m/
l^.-('-^i) = la,

representing a curve of similar form to the given one, but

with its dimensions varied in the ratio e : m, and turned

through an angle g
~ ~ •

V. If a homogeneous sphere roll on a perfectly rough

plane under the action of any forces whatever, of which the

resultant passes through the centre of the sphere, the motion

of the centre of gravity will be the same as if the plane were
smooth and all the forces were reduced in a certam constant

ratio ; and the plane is the only surface which possesses this

property.

. Take the plane as the plane of xi/, and take axes fixed in

space. Let w,, o),, 0)3 be the angular velocities about diameters

parallel to the axes. Let v^, v^, v, be the velocities of the

centre, X, Y, Z the impressed forces, and F^ G the frictions

resolved parallel to the axes. Let a — radius of the sphere.

Then the equations of motion will be
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idea „

^ dt ^'

(1)

dt

= x+i?;

= r+G^,

(2)

and since the point of contact is at rest we have the geo-

metrical equations

V, — awj = 0,
"1

r„ + awj :i= 0. J

(3)

By differentiating (3) and substituting from (2) we have

~
d' dt

'

r, 1^ dvy

a at

Hence the equations of motion of the centre are

dv, _ a*
X,

dt a' + A^

These are the very equations we should have had if the

plane had been smooth and forces had been reduced in the

a'
ratio -=—5,

a +/C

A rough plane is tlie only surface which possesses the

property enunciated in the question.
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Let I, m, n be the direction-cosines of the normal at any
point of a surface, X', Y', Z' the resolved parts of the friction,

and v^, i\, V, of the velocities of the centre of gravity parallel

to the axes. Then by the question

Also the equations of motion are

^ -j-^= {mZ'—n F')a,

K^^={nX' -lZ')a,

and the geometrical equations are

v^ = {a>,m - o>„n) a,
j

V,= {(oj, - (ojn) a

;

K^ dm. dv. 7 dv.
• — —; = nm. —= — at —^

X at at dt

dn ,, »- ^ a {Ua^ + mWy-^-rm^
;

dn
,j ^ , \ ^'"«

" dt

where /i is a constant, also

dl n ,
, V dm^

-^ {Ita^ + mtOy + na),) = fi -^ ,

dm ,, . da>y

dt ^ '
* ^^"^ + »»«.)= /^ ^ >
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Multiply these hy q)„ cd^, &>„ and add, we get, since

where D, is the resultant of the angular velocities tw^, tw,,, <»,.

Now Iv^+ mVy + wu, = ;

dl dm dn

^ J dl dm dn

by cross-multiplication, we get

..
j^
= F{v„n-v,m)

= Pa'{(i)^-l {1(0^ + mwy+ nwi)]

.'. = Ql say

;

dl ^, dm ^ dn ^
•••jr^^' ^=^'"' Tr^^

whence it easily follows that Z, m, n are constants.

vii. If the Earth be completely covered by a sea of small

depth, prove that the depth in latitude I is very nearly equal

to i/(l— esin^Z) wliere // is the depth at the equator, and
e the ellipticity of the Earth.

The surface of the Earth and the surface of the water rest-

ing on the Earth will both be surfaces of equilibrium, and
therefore will be similar spheroids. Draw two parallel tan-

gent planes to thfe Earth and to the surface of the sea, the
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distance li between these planes is the depth of the sea at the

point at which the tangent planes were drawn. Let p be the

perpendicular from the centre on either of these planes, then

by similar figures, the ratio - is constant. Let I be the lati-

tude of the place, a, h the semi-axes of the spheroid, then

/ = a''cos7+J'8in7

= a'(l-2e8in»Z);

.'. p = a{l — e sin'^)

;

where H is some constant. But putting ?= 0, we get h = H;
therefore H is the depth of the sea at the equator.

ix. The base of an infinite cylinder is the space contained

between an equilateral hyperbola and its asymptotes. A
plane is drawn perpendicular to the base, and cutting it in

a straight line parallel to an asymptote, and the portion of

the cylinder between this plane and its parallel asymptote is

filled with homogeneous fluid, under the action of no im-
pressed forces. The plane being suddenly removed, deter-

mine the motion ; and prove that the free surface of the fluid

will remain plane, and advance with a uniform velocity

proportional to »Jisr, where ct is the pressure at an infinite

distance, which is supposed to remain constant tliroughout

the motion.

Since the fluid starts from rest, the function <^ exists, and
we have

d'<f> d'6 ^—— + = 0.
dx^ dy^

Transforming to polar co-ordinates

dr\ dr]^ rdS"'

To solve this, assume

= ylr"€"^;
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or generally (j) can he expressed in a series whose general

term is

<^= (^r" + -sj cosn^ (1).

The number of terms to be taken and the values of n
clearly depend on the geometrical conditions of the bounding
surfaces.

Now we know that the curve ^ = constant cuts all the

lines of motion at right angles, hence this curve must also

cut at right angles the sides of the containing vessel. Let
r'$' be the co-ordinates of any point of the hyperbola or

of its asymptotes, then we must have

The hyperbola and Its asymptotes may be included in the

single equation r'* sin 1& = 2a*, where a has the two values

a = a and a = 0.

Hence -r^, = —rcot20.

Again, from the value of
<f>
we have

Hence equation (2) becomes

X (^r"-^ cosn^ . tan 2^ = S (^r-+^ sinw^ ... (3).

This equation will evidently be satisfied if we take n = 2

and B = 0, hence we have

</) = ^r*cos2^ (4).
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This value of <^ determines the motion, and we shall know-

that it is the true value if the other conditions of the pro-

blem are satisfied. These conditions are that the fluid starts

from rest, and that along the free surface to be determined

from equation (4) the pressure should equal zero.

First, to determine the motion from (4) ; we have

hence the velocity of any particle distant r from the centre

is 2Ar ; and all the particles move along hyperbolas having
the axes for asymptotes. Take any particle whose co-

ordinates are x^, y^ at time ^ = 0, its co-ordinates at any
other time are

AOt

X— XJ£ y=y^^

hence, if two particles have the same abscissae at the time
f=0, they always have the same abscissae, and therefore the

free boundary of the fluid being originally a straight line,

it will be always a straight line.

Secondly, to determine the pressure at any point ; we have

^-=^-1'-! (^)-

Let ^, 7} be the co-ordinates of any point in the free surface

of the fluid ; then

tlA

or H'^-^'^M'^'-wh'-
This by hypothesis is a straight line parallel to the axis of rj

;
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where A^ is an arbitrary constant

;

The pressure at infinity ia p = xr, and throughout tlie fluid

we have

p= G-4.A^j? (6);

.-. tzr = (7,

hence along the free surface, equating the two values of C,

= fo + V<»«>

where f^ is the abscissa of the free surface at the time < = 0.

Hence the boundary moves uniformly with a velocity V®.
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In the amsioers to tlie first six questions the symbol — muM not be

used. The only ahhreviation admitted for tlie square described

on AB is sq. on AB, and for the rectangle contained by AB and
CD, the rect. AB, CD.

1. Define parallel straight lines.

Parallelograms upon the same base, and between the same
parallels, are equal to one another.

If a straight line DME be drawn through the middle point M
of the base BC of a triangle ABC, so as to cut ofi" equal parts AD,
AE from the sides AB, AC, produced if necessary respectively,

then shall BD be equal to CE.

2. Describe a square that shall be equal to a given rectilineal

figura

Shew how to construct a rectangle which shall be equal to a
given square; (1) when the sxun, and (2) when the difference of
two adjacent sides is given.

3. If, from any point without a circle, two straight lines be
drawn, one of which cuts the circle, and the other touches it, the

rectangle contaiued by the whole line which cuts the circle, and
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the part of it without the circle, shall be equal to the square on
the line which touches it.

If two chords AB, AC be drawn from any point ^ of a circle,

and be produced to J) and U, so that the rectangle AC, AE is

equal to the rectangle AB, AD, then, if C? be the centre of the

circle, AO i& perpendicular to DE.

iv. Describe an isosceles triangle, having each of the angles at

the base double of the third angle.

If -4 be the vertex, and BD the base of the constructed triangle,

D being one of the points of intersection of the two circles em-
ployed in the construction, and E the other, and AE be drawn
meeting BD produced in F, prove that FAB is another isosceles

triangle of the same kind.

V. If the outward angle of a triangle, made by producing one
of its sides, be divided into two equal angles by a straight line

which also cuts the base produced ; the segments between the

dividing line and the extremities of the base have the same ratio

which the other sides of the triangle have to one another.

If the two sides, containing the angle through which the bisect-

ing line is drawn, be equal, interpret the result of the proposition.

Prove, from this proposition and the preceding, that the straight

lines, bisecting one angle of a triangle internally and the other two
externally pass through the same point.

vi. If two straight lines be cut by parallel planes, they shall

be cut in the same ratio.

If three straight lines, which do not all lie in one plane, be cut

in the same ratio by three planes, two of which are parallel, shew /

that the third will be parallel to the other two, if its intersections

with the three straight lines are not all in one straight line.

vii. Define a parabola ; and prove, from the definition, that it

cannot be cut by a straight line in more than two points.

Prove that, if the tangent at P meet the directrix in D, DSP
is a right angle.

viii. If /* be a point in an ellipse of which the foci are «S^and H,
the straight line, which bisects the angle between SP produced and
IIP, meets the ellipse in no point but P.

P, Q are points in two confocal ellipses, at which the line join-

ing the common foci subtends equal angles
;
prove that the tangents
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at P, Q are inclined at an angle which is equal to the angle sub-

tended by PQ at either focus.

ix. Assundng the property of the tangent to an ellipse enun-

ciated in 8, prove that *ST. UZ=BC.
If a circle, passing through Y and Z, touch the major axis in

Q, and that diameter of the circle, which passes through Q^ meet
the tangent in P, then PQ = BG.

10. Prove that, if in any ellipse any diameter CD be drawn
parallel to the tangent at the extremity of any other diameter CP,
then CP will also be parallel to the tangent at the extremity of CD.

If PG, the normal at -P, cut the major axis in G, and if DR^
PN be the ordinates of D and P, prove that the triangles PGN,
DEC are similar; and thence deduce that PG bears a constant

ratio to CD.

11. Define an asymptote to an hyperbola; and prove that, if

from any point in the curve straight lines be drawn parallel to and
terminated by the asymptotes, their rectangle is invariable.

In an hyperbola, supposing the two asymptotes and one point

of the curve to be given in position, shew how to construct the

curve ; and find the position of the foci.

12. If a right cone be cut by a plane which is not parallel to

a line in the surface, and which meets only one sheet of the cone,

the section will be an ellipse.

Given a right cone and a point within it, there are but two
sections which have this point for focus ; and the planes of these

sections make equal angles with the straight line joining the given

point and the vertex of the cone.

Tuesday, January 3. 1^ to 4.

1. The sum of£177 is to be divided among 15 men, 20 women,
and 30 children, in such a manner that a man and a child may
together receive tis much as two women, and all the women may
together receive £60; what will they respectively receive 1

2. A wine merchant buys 12 dozen of port at 84». |)er dozen,

and 60 dozen more at 48«. per dozen ; he mixes them, and sells the

mixture at 72». per dozen; what profit per'cent. does he realize on
his original outlay I
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3. Assuming that a" is defined by the equation a", a" = a"*"
for all values of m and n, and that a' = a, interpret the expression

o", when m is any commensurable quantity, positive or negative.

Extend your mode of interpretation, so as to assign a meaning to

such a symbol as a^'.

4. Solve the equations,

x+2 x+3
-3-^-2-='' <^^

2x + {x*-ay 2x-(x*-ay _ 3

2x-{x'-ay^2x + (x*-ay~2 ^ ''

x' — yz = a', i/'-zx = b'', s?-xy = <^ (3).

5. Explain the terms permutation and combination; and
find the number of permutations of n things taken r together.

If ^P represent the number of permutations of n things taken

r together, and a^, a^, a^--- be the successive terms of a descending

arithmetical progression, of which the common difierence is d,

prove that

P P P= P
6. Prove the Binomial Theorem for a positive integral value

of the index.

Prove that 2"-^2"-' + '^^—̂ ^ 2"-»-
... + (- 1)"= 1.

vii. Define a logarithm ; and prove that log„iV^= ^ogJb . log^iV;

and, given that log,^2 = -30103, find log„50.

viii. Define the principal trigonometrical i-atios ; and trace the

, . . ,. sin (tt cos 6) /, . -.

changes m sign 01 ; - . .' , as ^ vanes from to tt.^ ^ cos (tt sin d)
*

ix. Prove the formula sin {A + B) = sin A cos B + cos A sin j5,

A and B being each less than a right angle ; and assuming its

truth when the values of A and B are unlimited, deduce the ex-

pression for cos {A — B).

X. Prove that

. . .
J, ^ . A+B A-B

sin .4 + sm jd = 2 sin —_— cos—^—

,

^ 2

and sinS (ii - 16") = 4 cos (.4 - 46")co8 (.4 + 15*) sin (.4 - 15"),
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and find sin A and sin B from the equations

a sin^A + b s,\n°B = c,

a sin 2A —b sin 2B = 0.

xL Prove, a priori, that sin A, when expressed in terms of

A
sin — , has two equal values of opposite signs ; and that cos A,

A
when expressed in terms of cos -^ , has only one value ; and give a

geometrical illustration-

xiL Prove that, when Q is less than ^ , sin B, 6, and tan 6 are

in order of magnitude, and that they vanish in a ratio of equality.

A railway passenger seated in one comer of the carriage looks

out of the windows at the further end and observes that a star

near the horizon is tx-aversing these windows in the direction of

the train's motion and that it is obscured by the partition between
the comer window on his own side of the carriage and the middle
window while the ti'ain is moving through the seventh part of a
mile. Shew that the train is on a curve the concavity of which is

directed towards the star, and which, if it be circular, has a I'adius

of nearly three miles ; the length of the carriage being seven feet

and the breadth of the partition four inches.

xiii If a, 6, and B be given, shew under what circumstances

there will be two triangles satisiying the conditions of the problem.

Prove that the circles circumscribing both triangles are equal

in magnitude, and that the distance between their centres is

^(i'cosec'^-a*).

"Wednesday, January 4. 9 to 12.

1. Enunciate the proposition of the parallelogram of forces;

and, assuming its truth for the magnitude, prove it also for the

direction, of the resultant.

2. When three forces acting at a point are in equilibrium, each

force is proportional to the sine of the angle between the other two.

Two equal particles, eawih attracting with a force varying di-

rectly as the distance, are situated at the opposite extremities of a
diameter of a horizontal circle, on whose cii-cumference a small

M
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smooth ring is capable of sliding; pi'ove that the ring will be kept

at rest in any position under the attraction of the particles.

3. "When three forces, acting in one plane on a i-igid body
produce equilibrium, the algebraical sum of the moments of either

pair about any point in the line of action of the third is zero.

Two equal heavy j)articles are situated at the extremities of the

latus rectum of a parabolic arc without weight, which is placed

with its vertex in contact with that of an equal parabola, whose

axis is vertical and concavity downwards
;
prove that the parabolic

arc may be turned through any angle without disturbing its equi-

librium, provided no sliding be possible between the curves.

4. Find the position of equilibrium when a common balance

is loaded with given unequal weights.

If the tongue of the balance be very slightly out of adjustment,

prove that the true weight of a body is the arithmetic mean of its

apparent weights, when weighed in the opposite scales.

5. Prove that every rigid body has one and only one centre

of gi'avity.

In the figure of Euclid, Book i. Prop. 47, if the perimeters of

the squares be regarded as physical lines uniform throughout, prove

that the figure will balance about the middle point of the hypo-

thenuse with that line horizontal, the lines of construction having

no weight.

6. Enunciate the principal laws of statical friction.

A uniform heavy rod, having one extremity attached to a fixed

point, about which it is free to move in all directions, passes over

the circumference of a rough ring whose centre is at the fixed point

and whose plane is inclined at a given angle to the horizon ; find

the limiting position of equilibrium.

vii. Explain how uniform velocity and uniform acceleration are

measured.

A point, moving with a unifonn acceleration, describes 20 feet

in the half-second which elapses after the first second of its motion

;

compare its acceleration witli that of a falling heavy particle; and
give its numerical measure, taking a minute as the unit of time,

and a mile as that of space.

viiL Describe any experiment by which it is shewn, that a force

acting on a given i)article, produces an acceleration, proportional
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to the statical measure of the force. Hence deduce a definition of

mass.

ix. A heavy particle slides down a smooth inclined plane of

given height; prove that the time of its descent varies as the

secant of the inclination of the plane to the vertical.

X. Prove that the path of a projectile in a vacuum is a para-

bola.

A heavy particle is projected from a given point with a given

velocity so as to pass through another given point
;
prove that, in

general, there will be two parabolic paths which the particle may
describe; and give a geometrical construction to determine their

foci. Also find the locus of the second point in order that there

may be only one parabolic path.

xi. Two imperfectly elastic balls of given masses, moving in

the same directions with given velocities, impinge directly on one
another ; determine their velocities after impact.

A series of perfectly elastic balls are arranged in the same
straight line, one of them impinges directly on the next, and so

on
;
prove that, if their masses form a geometrical progression of

which the common ratio is 2, their velocities after impact will form
a geometrical progi'ession of which the common ratio is |.

xii. Define the cycloid ; and prove that, if a particle oscillate

in a cycloid, the time of an oscillation will be independent of the
arc of vibration.

Wednesday, January 4. 1| to 4.

1 . Explain what is meant by " the pressure of a fluid referred

to a unit of area." Prove that the pressure at any depth z below
the surface of a homogeneous fluid of density p, contained in a
vessel of any form, may be found from the formula p - gpz + U,
where 11 is the pressure of the atmosphere.

A uniform tube is bent into the form of a parabola, and placed
with its vertex downwards and axis vertical : supposing any
quantities of two fluids of densities p, p to be poured into it, and
r, r to be the distances of the two free surfaces respectively, from
the focus, then the distance of the common surface from the focus

wiiibe^^^::^:^.
p-p

m2
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2. The whole fluid pressure on a surface immersed in a fluid

is equal to the weight of a column of fluid, having for base the

area of the surface immersed and for height the depth of the centre

of gravity of the surface below the surface of the fluid. In what
case will this give the resultant pressure 1

A parallelogram is immersed in a fluid with one side in the

surface ; shew how to draw a line from one extremity of this side

dividing the parallelogram into two parts on which the pressui-es

are equal.

3. A heavy homogeneous body being wholly immersed in a
fluid; shew how to find the magnitude and line of action of the

force required to keep it in any given position.

A heavy hollow right cone, closed by a base without weight, is

immersed in a fluid, find the force that will sustain it with its axis

horizontal.

4. State the law that connects the temperature, density, and
elastic force of any gas.

If a quantity of heavy elastic fluid of uniform temperature be

placed in a vessel, prove that, if it be divided into indefinitely thin

horizontal strata of equal thickness, the densities of the strata will

be in geometrical progression.

A given weight of heavy elastic fluid of uniform temperature is

confined in a smooth vertical cylinder by a piston of given weight;

shew how to find the volume of the fluid.

5. Describe the action of the Fire-engine; and explain the

Tise of the air vessel.

If yi be the area of the section of each pump, I the length of tlie

stroke, n the number of strokes per minute, £ the area of the hose,

find the mean velocity with which the water rushes out.

6. Explain the terms specific gravity and density ; and shew
how to compare the specific gravities of two fluids by weighing the

same body in each.

Supposing some light material, whose density is p, to be
weighed by means of weights of density p, the density of the

atmosphere when the barometer stands at 30 inches being unity

;

shew that, if the mercury in the barometer fall one inch, the ma-

terial will appear to be altered by ; ^,„n,—sttt of its former
(p-l)(30p-29)

weight. Will it appear to weigh more or less 1



1^—4.] AND RIDERS. 166

vii. A small convergent pencil of light is incident directly on

a concave spherical mirror; investigate the relation between the

distances of the conjugate foci from the surface.

If the convergence be measured by the angle of the cone of

rays, prove that the convergence of the reflected is greater than

that of the incident pencil by a constant quantity.

viiL Find the number of images of a bright point, which can

be formed by reflections at two plane miiTors inclined at an angle

which is contained an exact number of times in two right angles.

ix. Find the deviation of a ray refracted tkrough a prism in

a plane perpendicular to its edge.

A bright point is at the bottom of still water, and an eye is

vertically above it, at the same distance from the surface ; if a
small isosceles prism, of which the refi-active angle i is nearly two
right angles, be interposed so as to have its base in contact with

the water, prove that the angular distance between the images of

the point in the two faces is , - (tt — t), /x', fi being the refractive

indices for water and for the prism, respectively.

X. Investigate the position of the geometrical focus of a pencil

of i-ays directly refracted through a concave lens of focal length/!

Prove that, as the focus of an incident convergent pencil moves
from the lens, the distance between the conjugate foci always in-

creases, except when the focus of incident rays passes between the

distancesy and 2/" from the lens.

xi Describe the eye, regarded as an optical instrument ; illus-

trating the description by di-awing pencils from any point of an
object not in the axis, when seen (1) distinctly and (2) indistinctly.

If the focal length of a convex lens be 3 inches, and the shortest

distance of distinct vision be 6 inches, prove that, when the eye is

always placed so as to see distinctly under the greatest possible

angle, the lens magnifies when within 6 inches of the object, and
diminishes at greater distances.

xii. Trace the course of an oblique pencil of rays from a star

to the eye through the common Astronomical Telescope; and cal-

culate the magnifying power, when the telescope is adjusted for

vision by rays diverging from a given distance from the eye-glass.

If the object-glass be divided, so as to form two semicircular

lenses, and these be displaced along the line of division, what must
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be the displacement of the centres in order that a double star may
appear as three stars t

Thursday, January 5. 9 to 12.

L Thrke concentric circles are drawn in the same plane.

Draw a straight line, such that one of its segments between the

inner and outer circumference may be bisected at one of the points

in which the line meets the middle circumference.

ii. A quadrilateral circximscribes an ellipse. Prove that either

pair of opposite sides subtends supplementary angles at either focus.

iii. A polygon of a given number of sides circumscribes an
ellipse. Prove that, when its area is a minimum, any side is par-

allel to the line joining the points of contact of the two adjacent

sides.

4. If the tangent at any point P of an hyperbola cut an asymp-
tote in Tf and if SF cut the same asymptote in Q, then aS'^ = QT.

5. Prove that the sum of the products of the first n natural

numbers taken two and two together is

{n-l)n{n + l){Sn + 2)

24
•

6. The centres of the escribed circles of a triangle must lie

without the circumscribing circle, and cannot be equidistant from

it unless the triangle be equilateral.

vii. If perpendiculars be drawn from the angles of an equila-

teral triangle upon any tangent to the inscribed circle, prove that

the sum of the reciprocals of those perpendiculars which fall upon
the same side of the tangent is equal to the reciprocal of that per-

pendicular which falls upon the opposite side.

viii. Four equal particles are mutually repulsive, the law of

force being that of the inverse distance. If they be joined together

by four inextensible strings of given length so as to form a quadri-

lateral, prove that, when there is equilibrium, the four particles

lie in a circle.

9. A heavy rod is placed in any manner resting on two points

of a rough horizontal curve, and a string attached to the middle

point C of the chord is pulled in any direction so that the rod is

on the point of motion. Prove that the locus of the intersection
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of the string with the directions of the frictions at the points of

support is an arc of a circle and a part of a sti-aight line.

Find also how the force must be applied that its intersections

with the frictions may trace out the remainder of the circle.

X. A. rigid wire without appreciable mass is formed into an
arc of an equiangular spiral and carries a small heavy particle fixed

in its pole. If the convexity of the wire be placed in contact with
a perfectly rough horizontal plane, prove that the point of contact

with the plane will move with uniform acceleration, and find tliis

acceleration.

11. If two parabolas be placed with their axes vertical, vertices

downwards, and foci coincident, prove that there are three chords

down wliich the time of descent of a particle under the action of

gravity from one curve to the other is a minimum, and that one of

these is the principal diameter and the other two make an angle of
60° with it on either side.

12. If a particle slide along a chord of a circle under the
action of a centre of force varying as the distance, the time will

be the same for all chords provided they terminate at either ex-

tremity of the diameter through the centre of force.

13. A hollow cone floats with its vertex downwards in a
cylindrical vessel containing watei\ Determine the equal quan-

tities of water that may be poured into the cone and into the
cylinder that the position of the cone in space may be unaltered.

xiv. A hemispherical bowl is filled to the brim with fluid, and
a rod specifically heavier than the fluid rests with one end in con-

tact with the concave surface of the bowl and passes over the rim
of the bowl, find an equation for determining the position of equi-

librium.

XV. A ray of light passes through a medium of which the

refractive index at any point is inversely proportional to the dis-

tance of that point from a cei*tain plane. Prove that the path of

the ray is a circular arc of which the centre is in the above-

mentioned plane.

16. A small bead is projected with any velocity along a cir-

cular wire under the action of a force varying inversely as the

fifth power of the distance from a centre of force situated in the

circumference. Prove that the pressure on the wire is constant.

17. A bi-ight spot of white light is viewed through a right
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cone of glass the vertex of which is pointed directly towards the

spot. Describe the appearances seen ; and prove that, if a section

of the locus of the images corresponding to different values of the

refractive index be made by a plane through the axis of the cone,

it will be a rectangular hyperbola.

xviii. An elastic string passes through a smooth straight tube

whose length is the natural length of the string. It is then pulled

out equally at both ends until its length is increased by v2 times

its original length. Two equal perfectly elastic balls are attached

to the extremities and projected with equal velocities at right

angles to the string and so as to impinge upon each other. Prove
that the time of impact is independent of the velocity of projection,

and that after impact each ball will move in a straight line, as-

suming that the tension of the string is proportional to the exten-

sion throughout the motion.

xix. A particle is projected along a chord of an ellipse from
any point in the curve, and when it again meets the ellipse has a
certain impulse towards the centre of the ellipse impressed upon
it, causing it again to describe a chord, and so on for any number
of times. Prove that, if after a given number of such impulses,

the pai-ticle pass through another given point on the circumference

of the curve, the polygonal area so described about the centre is

a maximum, when the successive chords are described in equal

times.

Thursday, January 5. 1 to 4.

1. Enukciate and prove Newton's second Lemma. /."

Hence prove that two quantities may vanish in an infinite

ratio to one another; and explain accurately what is meant by
this phrase.

2. Enunciate and prove Newton's tenth Lemma.

If the curve employed in the proof of this lemma be an arc of

a parabola, the axis of which is perpendicular to the straight line

on which time is measured, prove that the accelerating effect of

the force will vary as the distance from the axis of the parabola,

3. If particles describe different circles with uniform velocity,

their accelerations tend to the centres of the circles ; and are to

each other as the squares of arcs described in the same time,

divided by the radii of the circles.
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One circle rolls uniformly within another of twice its radius
;

prove that the resultant acceleration of a particle situated on the

circumference of the rolling circle tends to the centre of the fixed

circle, and varies as the distance from that centre.

iv. Prove that the accelerating effect of a force, under the

action of which a body moves in a central orbit, is measured by
OR

the ultimate value of 2 -
^ ,
QR being the subtense, parallel to

the direction of the force at P, of the aitj PQ described in the

timer.

Deduce the equation F* = ^F . PV.

Prove that, when a body moves along a smooth tube under
the action of any force tending to a point and varying as the dis-

tance from the point, the difference of the squares of the velocities

at the beginning and end of an arc varies as the difference of the

squares of the distances of the extremities of the arc from the

fixed point.

V. Find the law of force tending to the centre of an ellipse,

under the action of which a body can describe the ellipse.

A body is revolving in an ellipse under the action of such a
force, and when it ari'ives at the extremity of the major axis, the

force ceases to act until the body has moved through a distance

equal to the semi-minor axis, it then acts for a quainter of the

periodic time in the ellipse
;
prove that, if it again ceases to act

for the same time as before, the body will have arrived at the other

extremity of the major axis.

vi. When a body revolves in an ellipse under the action of a
force tending to the focus, find the velocity at any point of its

orbit, and the [leriodic time.

If on arriving at the extremity of the minor axis, the force

has its law changed, so that it varies as the distance, the magni-
tude at that point remaining the same, the periodic time will be
unaltered, and the sum of the new axes is to their difference as

the sum of the old axes to the distance between the foci.

vii. Explain the changes in the length of days in the north
temperate zone, during the passage of the Earth from Libra to

Aries.

Describe the position of the Earth in its orbit to-day, and our
position on it at three o'clock this afternoon with reference to the
ecliptic and the position of the Sun.
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viii. Describe the apparent path of the Moon with reference to

the Earth and the Sun, shewing by a figure the direction of the

curvature of its absolute path; and shew how many Lunar Eclipses

can occur in a year.

What distance of the Moon would, with the same inclination

of the orbit, have ensured an eclipse at every opposition 1

ix. Explain the use of the reading microscope in the mural
circle ; and prove that, when a pair of microscopes is used, the

error arising from want of perfect coincidence in the centres of

rotation and gi-aduation, will be eliminated if the axes of the mi-

croscopes be coincident.

Shew how a double observation is made with the mural circle.

10. Explain the origin of the tides; and prove that, suppos-

ing the Earth to be accurately a sphere covered with water, when
it is high water at a given point on the surface of the glf>be, it is

also high water at the antipodes of that point. Prove that the

highest spring tides will take place at the time of an eclipse.

1 1 . Define a tropical, a sidereal, and an anomalistic year

;

stating to which of the three the average length of a civil year

is adjusted, and why.

Explain the statement, that the perihelion of the Earth's orbit

completes a tropical revolution in about 20,000 years, and a side-

real revolution in about 100,000.

12. Define Parallax ; stating how the position of a heavenly

body is afiected by it. In what positions of a star are its right

ascension and declination respectively unafiected by it? State

also which of the heavenly bodies is most affected by it, and in

what position it is so.

Monday, January 16. 9 to 12.

1. Investigate the conditions necessary and sufficient for the

equilibrium of a rigid body, acted on by any number of forces in

any directions in space.

A uniform heavy ellipsoid has a given point in contact with a
smooth horizontal plane. Find the plane of the couple necessaiy

to keep it at rest in this j)osition ; and investigate its equation

referred to the principal axes of the ellipsoid.

2. If a heavy rigid body rest upon more than three immove-
able points of support, prove that the pressure at each jioint is

indeterminate.
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An oblong table has the legs at the four comers alike in all

respects and slightly compressible. Supposing the floor and top

of the table to be perfectly rigid, find the pressures on the legs,

when the table is loaded in any given manner, supposing the com-
pression to be proportional to the pressure ; and prove that, when
the resultant weight lies in one of ftmr straight lines on the sur-

face of the table, the table is supported by three legs only.

3. Find the equations of eqiulibrium of a perfectly flexible

uniform inextensible string when acted on by any given forces.

If a small rough heavy bead be strung upon such a string, and
the string be suspended from two points and acted on by gravity

only, write down the equations for determining within what por-

tion of the string it is possible for the bead to rest.

iv. Prove that, when any number of particles Pj, P^,...P^ are

moving in any manner, the acceleration of P^ is the resultant of

the accelerations of P^ relative to -?*„_,, of P_^_, relative to P,_^,...

of /*j relative to /*„ and of P^.

A particle is attached by a rod without mass, to the extremity

of another rod, n times as long, which revolves in a given manner
about the other extremity, the whole motion taking place in a
horizontal plane. If 6 be the inclination of the rods, w the an-

gular velocity of the second rod at the time t, prove that

d 6 d<3i (dm - 9 . \ ~.

-r-i + -y-+W(-y-C0S^ + O) Sm 5 ) = 0.
dt dt \dt )

V. A bead is capable of free motion on a fine smooth wire in

the form of any plane curve, and is acted on by given forces ; com-
pare the pressure on the wire with the weight of the bead.

If the wire be a horizontal circle, radius o, and the bead be
acted on only by the tension of an elastic string, the natural length

of which is a, fixed to a point in the plane of the circle at distance

2a from its centre, find the condition that the bead may just

revolve ; and prove that in this case the pressures at the extremi-
ties of the diameter through the fixed point will be twice and
four times the weight of the bead if that weight be such as to

stretch the string to double its natural length.

vi. Find the nature of the orbit, when a particle moves under
the action of a centitd force which varies inversely as the cube of
the distance.

If a particle, acted on by a central force, and moving in a
resisting medium in which the retardation = k (vel.)* describe an
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equiangular spiral, the pole of which is the centre of force
;
prove

that the central force

1 ?5L
oc -je~<^*,

where a is the angle of the spiral.

vii. If an incompressible fluid be in equilibrium under the

action of any forces, prove that the direction of the resultant force

at any point is perpendicular to the surface of equal pressure at

that point.

If the particles of a mass of fluid rotating uniformly about a
fixed axis, attract one another according to such a law that the

surfaces of equal pressure are similar coaxial oblate spheroids,

pi'ove that the resultant attraction of a spheroid, the particles of

which atti-act according to the 8:ime law, is the resultant of two
forces perpendicular to the equator and the axis of revolution

respectively, and varying as the distance of the attracted point

from them.

viii. Prove that, when the density of a mass ofair is suddenly

changed from p to p', the pressure is altered in the ratio ( — )

»

where X is the ratio of the specific heats of air, on the supposi-

tions of the pressure and volume remaining constant respec-

tively.

9. A small pencil of light, diverging from a given point,

passes centrically and with small obliquity through a lens ; deter-

mine the position of the primary focal line.

A distant circular window is viewed by a short-sighted man
through his eye-glass, the axis of which passes through the centre

of the window and is perpendicular to its plane. Prove that the

image of the window formed by primary focal lines will be spher-

ical, provided the window be filled with concentric rings of

stained gla.ss, and the refractive index of the colour throughout

any ring be

(;.-l)(2^-fl) r'

fj.
being the index of the central colour, r the radius of the ring in

question, and d the distance of the window from the lens.

x- Prove that, in order to determine the time at a given

place by a single altitude of a star, the most favourable stars to

observe are those near the prime vertical
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1 1 . Find the parallax in right ascension of a heavenly body,

in terms of the latitude of the place of observation, and the hour
anglt; and declination of the body, assuming the distance of the

body from the Earth to be so great that the sine and circular mea-
sure of the parallax may be considered equal.

Shew that the locus of all the bodies, which on this assumption
have their parallaxes in right ascension for a given place and time
equal to a given quantity, is a right circular cylinder touching the

plane of the meridian of the place along the axis of the heavens.

Monday, January 16. 1^ to 4.

1. Shew how to expand a* in a series of ascending powers
of X.

Prove that the series

2' 3' 4^

1 ^ 172 " ITTTS -^ 07374 ^• = ^^-

IL Prove de Moivre's theorem ; and thence prove that, what-
ever be the unit of angular measure, if cos 1 + ^(— 1) sin \=k,

COS 5 =—g— , 8m&=—
V(-i)"

Prove also that the limit of —^ , as ^ is indefinitely dimi-

nished, is

iii. Give Cardan's solution of a cubic equation : and prove
that, when the roots are all real, they will be exhibited under an
imaginaiy form.

Solve the equation, a;'— 6a; — 9 = 0.

iv. Enunciate Sturm's Theorem; and apply it to find the
number and position of the real roots of the equation,

a'+6x* + 4 = 0.

V. Find the area of the triangle, the co-ordinates of the an-
gular points of which are (Aj, k^, (A,, A;J, (A» k^.
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Hence deduce the equation of a straight line passing through
two given points.

vi. Find the value of p, in order that the straight line repre-

sented by the equation, x cos 6 + i/sind =p, may touch the ellipse

1- — = 1.
a

Prove that the locus of the vertices of an equilateral triangle

a;* ?/" . .

described about the ellipse, -^ + 't; = 1, is given by the equation
Ct

4 (6V+ ay- a'b') = 3{x'+ f- a'- bj.

vii. Investigate the criterion by which it is determined whe-
ther the equation, ax'+ 2hxy + cy'+ 2dx+ 2ey +1 = 0, represents an
ellipse, parabola, or hyperbola.

Prove that, however rectangular co-ordinate axes be shifted,

the ratio of the quantities 6*— ac, (a + c)', will remain unaltered.

What is the geometrical meaning of this ratio 1

8. Investigate the condition that the straight lines

x — a _y—h _ z—c
I m w '

x — a_y — h'_z — c'

V m n *

may be at right angles to one another.

Prove that, if a straight line be drawn from the origin to

cut the first of the above straight lines at right angles, its equa-

tions will be
x _ y _ z

a— It b — mt c -nt'

. al + bm + en
where t = «i,,,^» •

t +171 +n

9. Find the equation of a plane in the form

Ix + my + nz —p = 0,

where I, m, n, are its direction-cosines.

If a, )3, y be the distances of a point from the three faces of

a tetrahedron which meet in the vertex, prove that the equation
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of the plane passing through the vertex, and through the centres

of the circles inscribed in and circumscribed about the base, is

(cos5-cos(7);)ia + (cosC- cosA)p^ + (cos A - cos B)p^y= 0,

where A, B, C are the angles of the base, and p^J p^ p^ the per-

pendiculars from the vertex on the sides of the base.

10. Define the polar plane of a given point with respect to

a given sphere ; and find its equation, referred to the centre of

the sphere as origin.

Find the equation of the sphere, passing through a given

point and through the circle in which the polar plane of that

point with respect to a given sphere cuts that sphere.

11. Shew how to find the real circular sections of the s\ir£aM»

of which the equation is

Ax'+By'+Cz'^l;

and describe their positions relative to the difi*erent classes of sur-

faces represented by the above equation.

If a sphere touch an ellipsoid and also cut it, the common sec-

tion cannot be a plane curve unless the point of contact be one of

four fixed points on the ellipsoid.

Tuesday, Jantmry 17. 9 to 12.

L FiNT> a point the distances of which from three given points,

not in the same straight line, are proportional to p, q and r respec-

tively, the four points being in the same plane.

2. If TP, TQ be two tangents drawn from any point T to

touch a conic in P and Q, and il" S and U be the foci, then

iii. A polygon is inscribed in an ellipse so that each side sub-
tends the same angle at one of the foci. Prove that, if the alter-

nate sides be produced to meet, their points of intersection will lie

on a conic section having the same focus and directrix as the ori-

ginal ellipse, and that the chords joining the consecutive points of
intci-section all subtend the same constant angle at the focus as

the sides of the original polygon.
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4. Prove that the equiangular spiral is the only curve such
that its radius of curvature is proportional to the reciprocal of the

radius of curvature at the corresponding point of the reciprocal

polar.

5. If two plane sections of a right cone be taken, having the

same directrix, the foci corresponding to that directrix lie on a

straight line which passes through the vertex.

vi. Find the equation of the envelope of the perpendiculars to

the successive focal radii of a parabola drawn through the extremi-

ties of these radii.

vii. If two concentric rectangular hyperbolas have a common
tangent, the lines joining their points of intersection to their re-

spective points of contact with the common tangent will subtend
equal angles at their common centre.

viii. If P be a point on a geodesic line AP, drawn on a con-

oidal surface, s the length ofAF, a; iV, and the projections of «,

P, and the axis on any plane perpendicular to the axis, and p the

projection of OiV on the tangent io AP a.t P, then

dp d(r

da- ds'

9. A string is placed on a smooth plane curve under the

action of a central force F, tending to a point in the same plane

;

prove that, if the curve be such that a particle could freely de-

scribe it under the action of that force, the pressure of the string

on the curve referred to a unit of length will be =—^— + -,

where <}> is the angle which the radius vector from the centre of

force makes with the tangent, p is the radius of curvature, and c

is an arbitrajy constant.

If the curve be an equiangular spiral with the centre of force

in the pole, and if one end of the string rest freely on the spiral at

a distance a from the pole, then the pressure is equal to

2r\r^ a')

'

10. If a string, the particles of which repel each other with

a force varying as the distance, be in equilibrium when fastened to

two fixed points, ])rove that the tension at any point varies as the

square root of the radius of curvature.
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11. If any uniform arc of an equiangular spiral attract a

particle, placed at the pole with a force varying inversely as the

square of the distance, prove that the resultant attraction acts along

the line joining the jiole %vith the intersection of the tangents at

the extremities of the ara

Prove also that, if any other given curve possess this same

property, the law of attraction must be F=—g
-J-,

where p is the

perpendicvdar drawn from the attracted particle on the tangent at

the point of which the radius vector is r.

xii. A material particle is acted on by a force the direction of

which always meets an infinite straight line AB at right angles,

and the intensity of which is invei-sely proportional to the cube of

the distance of the particle from the line. The particle is pro-

jected with the velocity from infinity from a point /* at a distance

a from the nearest point of the line in a dii-ection perpendicular

to OP, and inclined at the angle a to the plane AOP. Prove that

the particle is always on the sphere of which is the centre, that

it meets every meridian line through AB at the angle a, and that

it reaches the line ^^ in the time

^(/i.) cos a

'

/x being the absolute force.

13. If a particle slide along a smooth curve which turns
with uniform angular velocity to about a fixed point 0, then the

velocity of the pai-ticle relatively to the moving curve is given by
the equation

t>* = c* + to)V,

where r is the distance of the jjarticle from the point ; and the

pressure on the curve will be given by the formula

— = — + to» n + 2(i>r,m p *^

where m is the mass of the particle, and p the perpendicular from
on the tangent.

14. A string is laid on a smooth table in the form of a cate-

nary, and an impulse is communicated to_ one extremity in the di-

rection of the tangent, prove (1) that the initial velocity of any
point, resolved parallel to the directrix, is proportional to the in-

verse square of the distance of that pouit from the directrix, and

N
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(2) that the velocity of the centre of gmvity of any arc, resolved in

the same direction, is proportional to the angle between tlie tan-

gents at extremities of the arc directly, and to the length of the

arc inversely.

XV. A right circular cone floats with its axis horizontal in

a fluid, the specific gravity of which is double that of the cone, the

vertex of the cone being attached to a fixed point in the surface of

the fluid. Prove that for stability of equilibrium the semi-vertical

angle of the cone must be less than 60°.

xvi. A ribbon of very small uniform thickness h is coiled up
tightly into a cylindrical form, and placed with its curved s ivfnce

in contact with a perfectly rough plane inclined to the horizon at

an angle a, the axis of the cylinder being parallel to the inter-

section of the plane with the horizon. Prove that the time in

which the whole will be unrolled is very approximately

4 V \(/h sin a)
'

where d is the diameter of the original coil.

17. If three beads, the masses of which are m, ni, m", slide

along the sides of a smooth triangle ABC, and attract each other

with forces which vary as the distance, find the position of equi-

librium. Prove also that, if they be slightly disturbed, the dis-

placement of each will be given by a series of three terms of the

form
L sin {nt + A),

where L and X are arbitrary constants, and the values of n are t^e

three positive roots of the equation

(n* - a) {n' - /3) {n' -y)- cos'A m'm" (n' - a) - cos'^m"w (n' - /3)

— cos'Cmm (n' — y) — 2 cos A cos B cos Cmm'm" = 0,

where a, /8, y represent m" + m\ m + m", m+m respectively.

xviiL The boi-e of a gun barrel is formed by the motion of an
ellipse of which the centre is in the axis of the barrel, and the

plane is perpendicular to that axis, the centre moving along the

axis, and the ellipse revolving in its own plane with an angular

velocity always bearing the same ratio to the linear velocity of its

centre. A spheroidal ball fitting the barrel is fii-ed from the gun.
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If V be the velocity with which the ball would have emerged from

the barrel had there been no twist; prove that the velocity of

rotatioa with which it actually emerges in the case supposed is

2Trrjv

J{1' + A-r'n'k')
'

the number of revolutions of the ellipse corresponding to the whole
length I of the barrel being n, and k being the radius of gyration

of the ball about the axis coinciding with the axis of the barrel,

and the gun being supposed to be immovable.

xix. An elastic ring of length I, mass m, and elasticity U is

placed over the vertex of a smooth cone, the semi-vertical angle

of which is a, and stretched upon it to any size. Supposing it

then set free, prove that the time before it leaves the cone is

V(x) cosec a,

the action of gravity being neglected.

Tuesday, Jan. 17. 1| to 4.

1. Investigate the condition of achromatism which is required
in Huyghens' eye-piece ; and find the magnifying power of Gregory's
Telescope with this eye-piece. Draw a figure representing the
course of the pencil.

2. If pq be the image of PQ, placed perpendicular to the axis

QCq of a lens or mirror C2i, Qliq the course of a ray from Q to q,
shew that PQ : pq :: RqC : BQC.

Hence prove that, with all combinations of lenses for eye-

pieces, the magnifying power of a telescope, airanged for parallel

or diverging emergent pencils, is the ratio of tlie diameter of the

object-glass or mirror to that of its image formed on emergence
from the eye-piece.

iiL Define the equation of time; state the causes to which it is

due, and prove that it vanishes four times a year. Find also roughly
when it attains its maxima and minima values^ assuming the longi-

tude of perihelion to be 100".

N2
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iv. Two particles move under the influence of gravity, and of

their mutual attractions; prove that their centre of gravity will

describe a parabola, and that each particle will describe, relatively

to that point, areas proportional to the times.

5. Define a principal axis through any point of a rigid body
;

and, having given one principal axis through a point, find the posi-

tions of the other two.

Prove that the locus of a point, thi'ough which one of the

principal axes is in a given direction, is a rectangular hyperbola

in the plane of which the centre of gravity lies, and of which
one of the asymptotes is in the given direction; unless the given

direction be that of one of the principal axes through the centoe of

gravity.

vi. Investigate the efiect of the central disturbing force on the

position of the apsides of the Moon's orbit, supposing the line of

apsides near syzygy.

By what two causes is the excess of progression over regres-

sion, during a synodic revolution of the Sun and line of apsides

increased 1

vii. Ifp be the pressure, and p the density, at any point, x, y, z

of a mass of fluid in motion, w, v, w the component velocities of the

fluid at that point, X, F, Z the component accelerations due to the

forces acting on the fluid parallel to the co-ordinate axes, investi-

gate the equations.

\ dp _ y. du du du du

p dx dt dx dy dz* y
1 dp „ dv dv dv dv

p dy dt dx dy dz

1 dp _ „ dio din dw dw

p dz dt dx dy dz'

State the hypothesis of steady motion ; and point out the modi-

fication which will be introduced into the above equation.s, if the

motion be steady.

8. Give a full account of the methods of ap]>roximation adopted

in the Lunar Theoiy; and state of what circumstances advantage

is taken in order to conduct the approximation to the solution of

the equations in the Planetary Theory.
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9. Assuming the equations

d^u „ ((Pu \ cTdB T du P .

3/ /3

r= 2^ sin 2 (^-^,

investigate that term in u the argument of which is

(2 - 2m - 2c) ^ - 2^ + 2a.

Webnesday, Jan. 18. 9 to 12,

1. A PARABOLA touches one side of a triangle in its middle
point and the other two sides produced. Prove that the perpendi-

culai-s drawn from the angles of the ti'iangle upon any tangent to

the parabola are in harmonical progression.

2. Find the length of the longest straight line which can be
drawn in the interval between two similar similarly situated and
concentric ellipsoids ; and, if a line shorter than the line so deter-

mined be moved about in the interval, prove that its point of
contact with the interior ellipsoid can never lie within the cone
represented by the equation

a* {a* (1 - 7J»*) - r'}
"^

h' [b' (1 - m^) - r'}
"^

c* {c» (1 - m«) - r*}
~ '

a, b, c being the semi-axes of the outer ellipsoid, m the ratio of

the linear magnitudes of the inner and outer ellipsoid, and 2r the

length of the line in question, which is assumed greater than

2bJ(l-m').

What is the meaning of the boundary so determined when 2r

is less than 26 ^^(1 — m*) and greater than 2c ^(1 — w»*)1

3. If, in a rigid body moving in any manner about a fixed

point, a series of points be taken along any straight line in the

body, and through these points straight lines be drawn in the

direction of the instantaneous motion of the points, prove that the

locus of these stiuight lines is an hyperbolic paraboloid.
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4. If/ («, y, 2) = be the equation to a surface, and r be a
straight line drawn through the point x, y, z of which the mag-
nitude and direction are any given functions of x, y, z, state

what is the relation between the original surface and that whose

equation is n '"'/ {x, y, z) = 0, supposing that in the latter equa-

tion X, y, and z have been expressed in terms of r and any two
other variables independent of r, and that n is a given numerical

quantity, and prove that if the two surfaces coincide for all values

of w, the line r must lie altogether in either of them.

Apply this to find the partial differential equations of conical

and conoidal surfaces respectively when referred to any system of

rectangular axes.

5. From a flexible envelope in the form of an oblate sphe-

roid, of which the eccentricity of the generating ellipse is e, the

part between two meridians, the planes of which ai'e inclined to

each other at the angle 27r (1 — e), is cut away and the edges are

then sewed together
;
prove that the meridian curve of the new

envelope will be the curve of sines.

6. If an uniform inextensible and flexible string be stretched

over a smooth surface of revolution, prove that the following

equations hold :

s(^4^)-^|^^'=«-
where ds is the element of the string at any point, dx and dy are

corresponding elements of the arc of the circle through that poii^t

j)eq>endicular to the meridian, and of the meridian respectively,

X and Y are the resolved parts of the impressed forces along these

directions, and r is the distance from the axis, the mass of an unit

of length of the string being taken as unity. Hence prove that, if

such a string be acted upon by a force at all points perpendicular

to the axis of revolution, and inversely proportional to the square

of the distance from that axis, the string will, if properly suspended,

cut every meridian in the same angle.

7. A string is wound round a vertical cylinder of radius a
in the form of a given helix, the inclination to the horizon being

i. The upper end is attached to a fixed point in the cylinder,

and the lower, a portion of the string of length I sec i having

been unwound, has a material particle attached to it which is also
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in contact with a rough horizontal plane, the coefficient of friction

being fji. Supposing a horizontal velocity V perpendicular to tlie

free jjortion of the string to be applied to the particle so as to

tend to wind the string on the cylinder, determine the motion

;

and prove that the particle will leave the plane after the projec-

tion of the unwound portion of string upon the plane has described

the angle of which the circular measure is

2fi tan {
' " 2fxtSLn'i.V' —2figl tani + ag

*

8. A particle is acted on by two centres of force residing in
the same point, one attractive, the other repulsive, and varying

inversely as the square and cube of the distance respectively. Two
consecutive equal apsidal distances are drawn and the portion of

the plane of motion included between them is rolled into a right

circular cone. Prove that the trajectory described under the cir-

cumstances mentioned above becomes a plane curve on the surface

of the cone, and that it will be an ellipse, parabola, or hyperbola,

according as the velocity in the trajectory was less than, equal to,

or greater than that from infinity.

9. A particle is describing an orbit round a centre of force

which is any function of the distance, and is acted upon by a dis-

turbing force which is always perpendicular to the plane of the

instantaneous orbit and inversely proportional to the distance of

the body from the original centre of force. Prove that the plane

of the instantaneous orbit revolves uniformly round its instanta-

neous axis.

10. A die in the form of a pai-allelopiped the edges of which

are 2a, 2b, and 2c, is loaded in such a manner that the centre of

gravity remains coincident with the centre of figure, but the prin-

cipal moments of inertia about the centre of gravity become equal

;

if it then fall from any height and without rotation upon a hori-

zontal plane composed of adhesive material so that no point which
has once come in contact with the plane can separate from it, prove

that the chance of one of the faces bounded by the edges 26, 2c

coming uppermost is

2 . _, be
-sm
T Jiia' + b*) {a* + €')}'

11. A uniform sphere is placed in contact with the exterior

Biu-face of a perfectly rough cone. Its centre is acted on by a force,
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the direction of which always meets the axis of the cone at right

angles, and the intensity of which varies inversely as the cube of

the distance from that axis. Prove that, if the sphere be properly

started, the path described by its centre will meet every generating

line of the cone on which it lies in the same angle.

12. A small rigid vertical cylinder, containing air, is rigidly

closed at the bottom, and covered at the top by a disk of very

small weight which fits it air-tight. Supposing the air in the

cylinder to be set in vibration, prove that the period of a vibra-

27r
tion is — , m being a root of the equationm

, ml kBUm tan — = —— :

a fia

where I is the length of the tube, a the velocity of sound in air,

fjL the mass, k the area of the disk, pec p (I + ^s) the relation be-

tween the pressure and density when the latter is suddenly

changed from p to p (1 + «), and 11 the pressure of the air in the

cylinder before motion commences.

13. A circular drumhead of uniform thickness is stretched

with a tension of uniform magnitude at all points in its circum-

ference, and is then set in vibration by a small disturbance com-

mencing at the centre. Prove (1) that if z be the transversal

disturbance at the time t of a. point the initial distance of which
from the centre was r, then

<fg _ , /Idz d'z\
^~" [rdr'^d?)'

and (2) that the general primitive of this differential equation is

z=
j <l>

{at + r cos 6) d6 + I \p{at + r cos &) log (r sin*^) dO,

<f>
and i/r being arbitrary functions, and a a constant depending

upon the tension and constitution of the drumhead.
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Wedkesday, Jan. 18. 1^ to 4.

1. Define the terms Limit, Independent and Dependent
Variable, and Differential Coefficient.

If X represent the time which has elapsed since a given epoch,

and y the space which a moving point has described in that time,

what will
-J-

represent 1

ii. Prove thaf^-4-T = .,,,, [ , where 6 lies between and 1,
<l){x) <f>

(Bx)

with certain limitations : and deduce Stirling's Theorem.

3. Change the independent variables in

<rV d'r j/c/F dV\
"^ dx'^'^dy'^'^\di^'d^r

from X and y to m and v, having given x-k- y = u, y = uv.

4. Explain the use of the method of indeterminate multipliers

in determining the values of a function of several variables con-

nected by given equations, which are maxima or minima.

Find the position of the point, the sum of the squares on the

distances of which from the three sides of a triangle is the least

possible; and prove that the angles, which the sides respectively

subtend at this point, exceed the supplements of those which they

subtend at the centre of gravity of the triangle by the respective

angles of the triangle.

V. Prove that, if a curve represented by an algebraical equa-

tion have an asymptote, and the curve lies on the same side at both

ends, there will be an odd number of points at an infinite distance

in which the asymptote meets the curve.

vi Trace the curves represented by the equations

(a:'-4a*)y'-12a'a;(a-y) = (1),

sin y — m, sin a; = (2).

In (1) explain the circumstance that the asymptotes parallel to

the axis of y appear to contradic^ the statement of (v.). In (2)
distinguish between the cases in ^hich m > = or < 1.
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vii. If / (x, y) = be the equation of a ciirve in a rational

integi-al form, in which (Xg, y^ is a multiple point through which
n branches pass ; shew that the directions of the branches are

determined by the equation

<t>^{0) = 0, where
<f>

(r) =/ (x^ + Ir, y„ + mr).

Find the form of the curve represented by the equation

{y-by-{x'-2axy-a' = 0,

at the multiple point.

viii. Find the co-ordinates of the centre of curvature at any
point of a plane curve.

The equation of a cii'cle is x' + y' = c', prove that the equation

of the directrix of a parabola of which the axis is parallel to the

axis of x and which has the closest possible contact at the point

{x^ yj is 2x = 3x^.

9. Integrate the following diffei-entials

:

dx dO dx

£c»(A + a;)»' (m + wcos^)'' (x* - 2aa; + a" + c«) (a; - 6)"

and evaluate I
* log sin Odd.

10. Prove that the area of a curve, represented by the equa-

tiony (a;, y) = 0, will be given by the formula ^j{xdy — ydx), the

integrals being taken within proper limits.

One circle rolls within another; apply the above formula to

find the area of the curve traced out by a given point within the

rolling circle.

xi. Prove that, if a plane intersect a surface, it will generally

be a tangent plane to the surface at every multiple point of the

curve of intersection. What exceptions are there ?

Prove that a tangent plane to a developable surface meets the

surface in a straight liue and a curve touching that straight line.

xii. Explain generally the principle of Variation of Parame-

ters, as applied to the solution of a diiferential equation ; and illus-
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trate this method of solution by assuming the result in the form of

that obtained fi-om the fii^st three terms f

g-2m|H-m'3,4(|-'»3')=0.

13. Define a developable surface ; and, from your definition,

deduce the pai'tial differential equation of such surfaces.

Find the equation of the developable surface generated by the
plane which moves in such a manner as to be always in contact
with the surfaces

<v* »•* ^'X y z ^

—T+— 1 =1
a' b' c

X' y' z'— -I

—

1

-» ^ JvH ^ ^ „a

14. Explain what is meant by A". O" ; and prove that, if

/{e') be expanded in a series proceeding by ascending powers of

t, the coefficient of r isV^—t-^i—

.

1. 2 m
Prove that, if m be less than r,

{l+log(l + A)}'.0'" = r(r-l)(r-2)...(r-m + l).

Thursday, Jan. 19. 9 to 12.

1. If at the extremities P, Q of any two diameters CF, CQ of

an ellipse, two tangents Pp, Qq be drawn cutting each other in

T and the diameters produced in p and q, then the areas of the

triangles TQp, TPq are equal

2. If a straight line CN be drawn from the centre to bisect

that chord of the circle of curvature at any point P of an ellipse

which is common to the ellipse and circle, and if it be prodticed to

cut the ellipse in Q and the tangent in T^ prove that CP = CQ, and
that each is a mean proportional between CN and CT,

3. If a, 5, c be the sides of a triangle, and r the radius of

the inscribed circle, then the distances of the radical centre of
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the three escribed circles from the sides of the triangle will be
respectively

b + c c + a a + b

^~2^' ^~2b~' '^~W
4. Two equal hea\'y particles are connected by a string

which passes through a small smooth fixed ring. Prove that the

equation to the plane vertical curve on which the particles will

rest in all positions is,

r cos = a+ \j/{r) — \p{l — r),

where 6 is the angle the radius vector makes with the vertical, I is

the length of the string, ij/ an arbitrary function and a an arbitrary

constant.

5. If four equal particles, attracting each other with forces

which vary as the distance, slide along the arc of a smooth ellipse,

they cannot generally be in equilibrium unless placed at the extremi-

ties of the axes; but if a fifth eqiial particle be fixed at any pf»int

and attract the other four according to the same law, there will be

equilibrium if the distances of the four particles from the semi-axis

major be the roots of the equation

where p and q are the distances of the fifth particle from the axis

minor and axis major respectively.

6. A heavy string is placed in eqxiilibrium on a smooth
sphere

;
prove that, if be the length of the spherical arc drawn

from the highest point of the sphere perpc ndicular to the great

circle touching the string at any point P, then

sm =
J-

,

z+ b

where z is the perpendicular from F on any horizontal plane, and
a, b are constants.

Shew that the form of the string can be a circle only when its

plane is vertical or horizontal

7. If three particles of masses m, rn, m", attracting each other

start from rest, shew that if at any instant parallels to their direc-

tions of motion be drawn so as to form a triangle the momenta of

the several particles are proportional to the sides of that triangle.
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8. If from any point on a surface a number of geodesic lines

be drawn in all directions, shew, (1) that those which have the

greatest and least cui^vature of toi-sion bisect the angles between
the principal sections, and (2) that the radius of torsion of any
line, making an angle 9 with a principal section, is given by the

equation

ji U p)
sin 6 cos 6,

where pj, p^ axe the radii of curvature of the principal sections.

9. If t/it and de be the angles of torsion and contingence of

any curve of double curvature, and if sin <^ be the ratio of the

radius of circular curvature to the radius of spherical curvature,

prove that the square of the angle of contingence of the locus of

the centres of circular curvature is

d(f> + du [' + cos*^>^*.

10. A particle is projected with 'velocity V along an infi-

nitely thin ellipsoidal shell attracting according to the law of

nature
;
prove that, when it leaves the ellipsoid the perpendicular

from the centre on the tangent plane is y [
—^-^—

J
where

R is the radius-vector parallel to the initial direction of motion,
and P the perpendicular on the tangent, /x the attraction of a
mass equivalent to a unit of area of the ellipsoid at a unit of dis-

tance.

11. An infinitely thin ellipsoidal shell attracting according to

the law of nature is bounded by two similar and similarly situated

ellipsoids. A very small pie«e is cut out of the shell and replaced

in its original position. Shew that the force necessary to hold the
piece in equilibrium is proportional to the square of the thickness

of the shell.

12. A sphere of radius a is suspended from a fixed point by a
string of length I and is made to rotate about a vertical axis with
an angular velocity <d. Prove that, if the string make small

oscillations about its mean jwsition, the motion of the centre of
gravity will be represented by a series of terms of the form

L cos {kI + M),
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where the several values of k are the roots of the equation

13. A string is in equilibrium in the form of a circle about
a centre of force in the centre. If the string be now cut at any
point A, prove that the tension at any point P is instantaneously

changed in the i-atio of 1 : 1, where 6 is the angle

subtended at the centre by the arc AP.

14. An inelastic string is siispended from two fixed points

so that it hangs in the form of a catenary of which the parameter
is c. Suppose it to make small oscillations in a vertical plane,

prove the equation

§=f-HS-**-/(')}.
where a is the angle the tangent at any point makes with the

horizon when the string is at rest, and a + <^ is the value of the

same angle at the time t.

Shew that there are sufficient data to determine all the arbi-

trary functions.

Thursday, Jan. 19. 1| to 4.

L Shew that the series w, + w, + ... + w„+ . .. will be convot-

gent> if the fraction —=-^ converge to a limit less than unity as n

is indefinitely increased, and divergent, if, supposing all the terms

to be of the same sign, this limit be equal to or greatt-r than

unity.

Find a superior limit to the numerical values of x consistent

with the convergency of the series

2V 3V m". x"
'''

iT2 "-TTira "" ••'"1.2...^^ •••

2. If the sides of a sj)herical triangle be small compared with

the radius of the sphere, then each angle of the spherical triangle
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exceeds by one-third of the spherical excess the corresponding

angle of the plane triangle, the sides of which ai-e of the same
length as the sides of the spherical triangle.

If the sides of a right-angled plane triangle of given area be

bent so as to form a spherical triangle on a given sphere of great

radius, the altemtion of area in the triangle is very nearly propor-

tional to the square of the hypothenuse.

3. If a, j8, y, be the distances of a point from three given

straight lines, determine the position of the conic, ayS = ky' ; and
prove that the equation of the tangent at any point may be put

into the form,

Two tangents OA, OB ai'e drawn to a conic, and are cut in

P and ^ by a variable tangent; prove that the locus of the

centres of all circles described about the triangle OFQ is an
hyperbola.

iv. If ?* be a function of three independent variables x, y, z,

which are connected by three equations with three new inde-

pendent variables ^, -q, ^ shew how to express the partial differen-

tial coefficients of w, to- the firet and second ordera respectively,

with respect to x, y, z, in terms of the corresponding partial

differential coefficients with respect to ^, t;, ^.

Apply this method to prove that, if at a certain point in a

surface r = t and « = when the axes of a; and y are taken parallel

to a particular pair of lines, at right angles to each other, in the

tangent plane at that jwint, then the following relations will hold

at that point whatever be the direction of the co-ordinate axes

provided they be rectangular, viz.

1 +;>* pq \-\-<f*

, , , dz dz d*z d'z d*z . ,where p,(?,r,,,<, denote^, ^, ^, ^^, ^, respectively.

V. If the differential equations of the first order
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^ve rise to the same differential equation of the second order,

shew how the general solution of an equation of the form

may be found without integration.

Apply this or any other method to the discovery of the general

solution of the equation

6. Enunciate and explain d'Alembert's principle. Apply it

to determine the small oscillations in space of a uniform heavy rod

of length 2a, suspended from a fixed point by an inextensible

string of length I fastened to one extremity. Prove that, if x be

one of the horizontal co-ordinates of that extremity of the rod to

which the string is fastened,

£c = j1 sin (n^t + a) + £ sin {njt + fi),

where n^, n^ are the two positive roots of the equation,

ahi*- {ia + dl) (jn'+ 3g'= 0,

and A, B, o, /3, are arbitrary constants.

vii. A rigid body is rotating about an axis through its centre

of gravity, when a certain point of the body becomes suddeyJy

fixed, the axis being simultsmeously set free ; find the equations of

the new instantaneous axis ; and prove that, if it be parallel to the

originally fixed axis, the point must lie in the line represented by
the equations,

a'lx + b'rny + c'nz= 0,

(6« - c») y + (c' -a')^+ (a'- 6') - = ;^ ' I ^ ^ m ^ ' n

the principal axes through the centre of gravity being taken as

axes of co-ordinates, a, h, c the radii of gyration about these lines,

and I, m, n the direction-cosines of the originally fixed axis referred

to them.



1|—4.] AND RIDERS. 193

8. Explain the physical meaning of the term

15
-^ inea cos {(2 - 2m - c) 6 - 2/3 + a}

in the expression for the reciprocal of the Moon's radius vector.

Calculate roughly the proportionate alteration in the Moon's
mean distance produced by this term, and its period. Why is this

term usually taken in combination with the elliptic inequality]

ix. Prove the following relation between the perturbations of

a planet in longitude and radius vector

h\ dt r dt JJ dt J dr j'

h being twice the sectorial area described in a iinit of time by the

undisturbed planet round the Sun: and find the corresponding
relation whatever be the law of force, provided it be centi*al and
a function of the distance only, and provided such a function as li

can be found,

10. If the object-glass of a telescope be covered over by a
diaphragm, pierced iu the centre by a small hole, the form of

which is a rectangle, state generally the nature of the spectra

formed about the image of a star on a screen placed at the

focus.

If the hole be circular and the screen be pushed towards the

lens, prove that, when the light is homogeneous, the centre is

alternately bright and dark. Trace also the order of the coloui'S

seen if the light be not homogeneous.

Friday, Jan. 20. 9 to 12.

1. When the reciprocal of a circle ia taken with respect to

another circle, investigate the nature of the reciprocal conic, and
the polars of its centre and further focus.

OA, OB are common tangents to two conies having a common
focxis S, CAy CB are tangents at one of their points of intersection,

BD, AE tangents intersecting CA, CB iu D, E. Prove that SDE
is a straight line.
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ii. Define the term potential of a mass, the particles of which
attract according to the law of nature ; and prove that, if a body
moveable about a fixed axis be subject to the action of an at-

tracting mass of which the potential is V, then /// —- dm is the

moment which must be impressed upon the botly about that axis

in order to produce equilibrium, where 6 is the inclination of the

plane through the fixed axis and the particle of which the mass
is dm to a fixed plane,

A uniform straight line, the particles of which attract accord-

ing to this law, acts upon a rigid uniform circular arc ia the same
plane with the line, of which the radius is equal to the line, and
which is moveable about an axis through its centre perpendicular

to its plane, the axis being coincident with one extremity of the

line. Prove that the moment necessary to produce equilibrium

when the bounding radii are inclined at the angles a and /3 to the

line produced is proportional to

sec n + 1

log

sec ^ + 1

3. Define lines of curvature on a surface; and find their dif-

ferential equation. Prove that one line of curvature at any point

very near an umbilicus passes through that umbilicus.

4. State and prove the principle of Vis Viva. If an elastic

string, whose natural length is that of a uniform rod, be attached

to the rod at both ends and suspended by the middle point, prove

by means of Vis Viva that the rod will sink until the strings

are inclined to the horizon at an angle ^, which satisfies the

equation

6 6
cot»2-cot^-2n=0,

where the tension of the string, when stretched to double its length

ia n times the weight.

If the string be suspended by a point, not in the middle, write

down the equation of Vis Viva.

V. If a spheroid of revolution be moveable about its centre

which is fixed, and 6 be the inclination of its equator to a fixed plane,
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^ the inclination of the line of intersection of its eqnator with this

plane to a fixed line in the plane, A and C the respective moments
of ineitia about the axis of figure and a line in the equator respec-

tively, L and J/ the moments of impressed couples about the line

of intersection of the equator with the fixed plane, and a line in

the eq\iator perpendicular to this latter line respectively, w the

angular velocity about the axis of figure, prove that

C -nr-0 1 -r) sm 6 cos 9 + Aw sm 6 ~- = L,
df \dtj dt '

„ d /dib . A ^d^ dO a A ^^ nrC -ri-f- sin 6 + C-^ -^ cos B - Aw -^ = M,
dt \dt ) dt dt dt '

hence deduce the processional and nutational velocity of the

Eiirth's axis, assuming the effect of the Sun's action to be a couple

of which the moment is m, sin A cos A about an axis in the equator
90' distant from the Sun, m being a very small quantity, A and C
very nearly equal, and the Sun's motion in declination and right-

ascension being neglected.

vi. If /t be a given function of the co-ordinates x and y of

any point in a plane curve, prove that if the curve be so deter-

mined as to render the integraJ jiids between given limits a maxi-
mum or minimum, then

1 1 /dui da
— =— \-j- cos a +— cos
p II \dx ay .).

p being the radius of curvature at any point, and a, ^ the acute

angles which the normal at that point makes with the axes of x
and y respectively.

If a solid of revolution be immersed in a heavy homogeneous
fluid with its axis vertical, prove that, when the total normal
pressure on the surface is a minimum, its form must be such

that the numerical value of the diameter of curvature of the

meridian at any point is a harmonic mean between the segments
of the normal to the surface at that point intercepted between the

point and the surface of the fluid and between the point and the

axis, respectively.

7. Supposing the orbits of a disturbing and disturbed planet

to be in the same plane, prove that the rate of change of the
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longitude of perihelion of the instantaneous ellipse of the disturbed

planet is

In what respects do the theories of the motion of the apsides in

lunar and planetary disturbances present themselves respectively

in simpler aspects?

viii. Explain the phenomenon of external conical refraction

where a small ])encil of light passes through a biaxal ciystal

;

and describe an experiment by which this phenomenon may be
manifested.

If the ciystal be bounded by planes peqiendicular to the line

bisecting the acute angles between the optic axes, write down
equations whence the equation of the cone of emei-ging i-ays may
be obtained.

Friday, Jan. 20. 1| <o 4.

1. If a, /?, y be the respective distances of a straight line

from the three angular points of a triangle ABC, these distances

]>eing reckoned positive or negative according as their directions

fall within the angles of the triangle itself or their supplements,

investigate the following relation,

(asin ^)»4- OSsin 5)* + (y sin (7)' - 2 cos ^ sin 5 sin C^y - 2 cos 5
sin G sin Aya — 2 cos C sin A sin Ba^ = 4^* sinM sin*^ sin'C,

where R is the radius of the circunMcribed circle.

2. State the positive and negative characteristics of a singular

solution of a differential equation; and shew how it is deduced

from the complete primitive. Shew also how the singular solution

of a differential equation of the fir.st order is obtained from the

equation itself.

Obtain the singular solution of the equation of which

y cos*m = 2 cos {x — 2m)

is the complete primitive ; and find the singular solution of the

equation
\
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iii. Prove that, in any curve of double curvature, the locus of

the centres of spherical curvature is the edge of regression of the

envelope of the normal planes. Prove also that this locus cannot

be an evolute.

The normal plane to the locus of the centres of circular curva-

ture bisects the i-adius of spherical curvature.

4. Determine the class of curves which possess the property

that the locus of the extremity of the polar subtangent of any one

is similar to the curve itself

Shew that r^c" = a is the equation of such a curve.

v. Investigate the general equations of motion of a sphere

under the action of any forces.

If a homogeneous sphere roll on a perfectly rough plane under
the action of any forces whatever, of which the resultant passes

through the centre of the sphere, the motion of the centre of gi"avity

will be the same as if the plane were smooth and all the forces

were reduced in a certain constant ratio; and the plane is the only

surface which possesses this property.

6. Assuming the following equations for the rate of variation

of the inclination and of the longitude of the line of nodes of a
planet m disturbed by a planet m\

do, na dR
dt /A (1 — e*)^ sin i di

'

di _ na C 1 dR i /dR

di^~ /x(l-e^)» (^i^ dQ'^ 2\d^
dR dR\^

investigate general expressions for i and il, so far as they are

affected by the effect of the following terms in the expansion
of R,

- m' [2D^ee cos (ct' -zt) + \aa'D^ {tan' i-2 tan i tani'coa (Q - W)\\

vii. Prove that, if the Earth be considered as a homogeneous
mass of fluid in the form of a spheroid, revolving *s^ith a uniform
angiilar velocity about its axis, gi-avity at any point acts along
the normal, and is proportional to the part of the normal inter-

cepted between the point of contact and the plane of the equator.
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If the Earth be completely covered by a sea of small depth,

prove that the depth in latitude I is very nearly equal to

H{l—esin'l) where // is the depth at the equator, and c the

ellipticity of the Earth.

8. A thin plate of Iceland spar, cut perpendicTilarly to its

axis, is interposed between two tourmalines, used as a polarizing

and analyzing plate, and a pencil of parallel rays is transmitted

through the crj'stals. Assuming that the difference of retardation

of the ordinary and extraordinary rays, when a ray is transmitted

through a plate of Iceland spar in a direction inclined to its axis

at a small angle i varies as Tsin'i, investigate an expression for

the illumination at any point of the field of view, the axes of the

tourmalines being parallel ; and hence deduce a description of the
phenomena observed, supposing the light (1) to be homogeneous,

(2) to be white.

ix. State under what circumstances in the motion of a fluid

we may assume udx + vdy + wdz to be a perfect differential of some
function.

Assuming this function to be <^, and the fluid to be homoge-
neous, investigate the equation

fi +^ + ^^o.
dx' dxf di?

The base of an infinite cylinder is the space contained between

an equilateral hyperbola and its asymptotes. A plane is drawn
perpendicular to the base, and cutting it in a straight line parallel

tx) an asymptote, and the portion of the cylinder between this plague

and its parallel asymptote is filled with homogeneous fluid, vrnder

the action of no impressed forces. The plane being suddenly

removed, determine the motion; and prove that the free surface

of the fluid will remain plane, and advance with a uniform

velocity proportional to Jts, where -jn" is the pressure at an infi-

nite distance, which is supposed to remain constant throughout

the motion.

CAMBRIDGE: PRINTED BY C. J. CLAY. M-A. AT THb UNIVERSITY PRESS.
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