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ABSTRACT 

This study investigates the multi-stage capacity expansion of a 

municipal water treatment system in order to determine the sizes of 

new treatment plants and the times at which they are added to the 

system. The capital and operating costs of these plants are given 

by concave functions reflecting economies of scale available with 

an increase in capacity. To determine optimum sizes and installation 

times of the new plants, this expansion problem is formulated to a 

dynamic programming model. 
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INTRODUCTION 

In recent years, a growing number of studies has shown possibilities 

of apivtng mathematical optimization techniques to various water problems. 

In particular; the dynamic eropremmitne method has been proved to be very 

useful. Examples of the past water studies using this method include 

time-capacity expansion of urban water systems-comments [Gysi], the 

determination of aqueduct capacity [Hall, 1963], the design of a multiple: 

‘purpose reservoire [Hall, 1964], water resource development [Hall and Buras], 

the optimal sequencing of water supply projects [Butcher, Haimes, and Hall] , and 

multistage water resource systems [Meier and Beighter]. 

This study. is concerned with an economic plan for the multi-stage 

capacity expansion of Peicigal water treatment in order to determine 

the sizes of water treatment plants and the times at which they are added 

to the existing system. This system takes care of a particular locality 

whose demand for water increases with time. The treatment plants of the 

system are interlocked to one another and assumed to function as an integral 

unit. Although the system must be designed to satisfy maximum daily demands , 

considerable part of its capacity is idle much of the time because of 

seasonal or hourly variations in water use pattern. 

The treatment plant and its associated facilities could have a suffi- 

ciently large pumping rate to satisfy directly the maximum demand rate of 

a day, adjusting the pumping rate to a changing demand rate. Such an 

operation requires a plant capacity that is not fully utilized most of 

‘the time. On the other hand, economies in plant operation are usually 

achieved by running the plant at a constant pumping rate and producing 

a constant flow of water throughout the operating hours. In this case, 

excess supply of water during slack periods is stored in distribution 
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reservoirs and later is used to compensate for the insufficient supply 

during peak periods or at times of extraordinary demand such as fire 

fighting. 

Economies of scale available with large facilities represent one of 

the most important aspects in capital investment decision. Normally, 

the cost of capital investment or operation per unit volume of water 

treated at capacity decreases with an increase in capacity of a plant. 

This relationship is usually given by a concave function of capacity. 

Under increasing demands, a tested and feasible approach that takes 

advantage of the above eioncnbes is to build a sufficiently large plant 

satisfying demands for some years to come instead of a plant accommodating 

only the immediate needs. . 

The investment and operating costs are: significantly. affected by the 

* source: of i water.. Shathertiiater is“obtained from inderground sourtes? or surface 

sources such as reservoirs, rivers, or lakes is determined by cha Hegionat 

condition, quality of available water, or total municipal demand. 

Although residential demands for water will exist permanently, the 

accurate forecasting of these demands in a given community becomes 

increasingly difficult as the forecast time goes farther into the future 

mainly because of uncertainties about the population and patterns of living. 

This study assumes that demands for water in the community under consideration 

increase each year and can be forecasted over a finite period, and 

thereafter they will stay constant at the maximum level reached at the 

end of the period. Therefore, only a finite number of possible capacity 

increases needs to be considered for each year of the expansion period. 

The use of the finite planning period creates analytical difficulties 

when in reality the system must exist for an indefinite period. To resolve 
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these difficulties, this study adopts the concept of a permanent chain of 

identical facilities, a method first proposed by Preigreich [1940]. Thus, 

a plant added to the system during the expansion period will be succeeded 

by a permanent chain of plants identical with it. 

The objective of the expansion plan is to satisfy given increasing 

demands wover the finite period and to minimize the:discounted present 

value of the capital and operating costs associated with new plants added 

to the system and the permanent chains of their successors. To determine 

optimum sizes of the new plants and optimum times at which they are added 

to the system, the expansion plan is formulated to a dynamic programming 

model in recursive form suggested by Bellman [1957]. 
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DISCUSSION 

‘Maximum Daily Demands 

A long range plan for expanding the capacity of a water treatment- 

distribution system is preceded by the forecasting of future demand that 

takes into account past records of the type and pattern of community water 

use, phySical and climatic conditions, expected housing, commercial and 

industrial developments, and trends of population increase. Significant 

factors determining water demand in a small residential community include 

number of residents, number of households, and density of dwelling units. 

Normally the design capacity of water treatment is determined by 

the average annual demand, the maximum daily demand, and the peak hourly 

demand in a maximum day. The existing FHA standards recommend desinging 

for an average annual demand of 400 gallons per day (gpd) per dwelling 

unit, and a peak hourly Beneed of 2,000 gpd per dwelling unit, thaade 

2,800 gpd per dwelling unit with extensive sprinkling. According to 

Linaweaver, et.al. (p. 55), however, these standards tend to lead to 

underdesign of systems in high-valued metered areas and overdesign in 

lower-valued metered areas and in apartment areas. In place of those 

standards, they suggest the following formula for determining the 

expected average demand (p. 58-60): 

G, ={(157 + 3.4eV)a + 1.63 x 10h, (Eop-Pege)} 107° in mga (1) pot 

where a = expected average demand for the tth hace expressed as a rate in 
million gallons per day 

V = average market value in $1,000 per dwelling unit in 1964 prices, 

a = number of dwelling units, x 
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Ly = average irrigable area in acres per dwelling unit, specifically 

L, = 0.803aW-1.26 

W = gross housing density in dwelling units per acre. 

a = estimated average potential evapotranspiration for the period 
pot : Z sae. 

of demand in question in inches of water per day. In the 

absence of an exact value, Eee = 0.28 is recommended. 

P fe = amount of natural precipitation effective in satisfying 
evapotranspiration for the period and thereby reducing the 

requirements for lawn sprinkling in inches of water per day. 

The expected maximum daily demand Ocmay it in the ¢th year is obtained from 

(1) by setting P-_ = 0: 

={(157 + 3.46V)a + 1.63 x 10‘aD,E_} 107° in mga (2) 
QCaxdy )t pot 

In addition to demands created by residential, commercial and industri-" 

uses, a municipal water system must satisfy requirements for fire-fighting. 

The American Insurance Association (AIA), which has taken over the former 

National Board of Fire Underwriters (NBFU), recommends the following flow for 

the high-value district in an average municipality of 200,000 or less: 

We = 1.020 vp (1 - 0.01 vp)10~3 

where We is demand in million gallons per minute and p is population in 

thousands. 

Further, AIA recommends the above fire flow to continue for the 

number of hours, H;, specified in Table 1 during a period of 5 days with 

consumption at the maximum daily rate during any 24-hour period in the 

past 3 years. When no figure for maximum daily consumption is available, 

its estimate should be at least 50 percent greater than the average daily 
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Table 1. Required Duration for Fire Flow* 

Required Fire Fiow Required Duration 

We gpm Hi hours 

Less than 1,250 4 

1,250 and greater, but less than 1,500 5 

2,500, "' My he! en h30 6 

E750! * id ae ees W 2,000 7 

2,000" # ate we eo0 8 

Ze250~( " es 2,500 9 

2,500 and greater : 10 

*From NBFU Grade Schedule (p. 20, [National Board of Fire Under- 
writers) ]. ‘ 
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consumption during the preceding year (p. 14-32, [NBFU]}. Assuming the 

average daily demand increases annually, the AIA recommendations are 

satisfied by 

Q. = DC age? 5 QQ in mgd (3) 

USE = Q. + oF in mgd (4) 

Qe = 60 We He in mgd (5) 

where Q and Qmxdy )t are the maximum daily demand and the design daily 

requirement, respectively; and Qe is the fire fighting requirement per day. 

If the finite expansion period covers T years, various demands defined 

by (1), (2), and (3) for the years beyond this period stay constant and are 

given by 

Q = 

Th aceciy jee lO Cmaay Cer Tel eee 

QQ = We 

Required Treatment Capacities 

Design formulas for plant capacity suggested by AIA or various other — 

authors directly satisfy the maximum-day demand and fire-fighting requirements 

so as to assure a high quality of the treated water at all times. Since 

such maximum requirements normally last short period of time, in practice 

the capacity is often determined on a more conservative basis such as the 

average demand in a peak season. In this case, whenever demands exceed 

the capacity, the plant output is augmented by booster pumping. We will 

use this approach in determining the capacity of a new plant. 
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The system treats water at a constant rate throughout the day. 

Excess water supplied during the slack period is stored in reservoirs 

and will be used for equalization during the subsequent peak period. 

At the beginning the system is assumed to have treatment capacity Ky mgd. 

The capacity of a plant possibly installed at the beginning of the tth 

year is represented by K,, t = 1, ..., 7; K is 0 if no plant is added 

in year t, and, otherwise, it takes a positive value. Each of the 

installed plants, including the plant existing at the outset, will be 

replaced by an infinite chain of identical plants at the end of its 

known economic life. 

We now determine constraints imposed on the total capacity of the 

treatment system as the cumulative sum of the individual plants added 

to the system. The treatment capacity available in the ¢th year should 

satisfy at least the average daily demand Q& by a constant rate operation 

without booster pumping: 

ea K, > @, Cie eee (6) 

The plants in the system must satisfy the maximum demand Q> operated 

at constant overload rates throughout the day: 

t Eau Ky 2 Q/e ole, Petey (7) 

where ¢(> 1) is the coefficient of booster pumping allowable for a prolonged 

period. 

Further, as recommended by AIA, the system should satisfy the fire 

requirement ed on a maximum demand day. Assuming that the output rate of 
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the system can be further boosted from the overload rate satisfying the 

maximum demand, we write this requirement as follows: 

H H f, ,t t ‘ (1 - 5) 25g 4K; + oe Mya VKH LG * OY Eres! Gece, G8) 

where n is the coefficient of maximum booster pumping used only in periods 

of extraordinary requirements. On the lefthand of (8), the first term 

is the volume of water pumped out at a constant rate of overload during 

the entire day except for the period of fire fighting, and the second 

term is the volume of water pumped out at the maximum overload rate during 

the fire. On the righthand, the two terms collectively represent the 

volume of water required on a maximum demand day with a major fire. 

This constraint is rewritten to 

gt K. > (Q + Q#)/{o + ee (n-¢)} je Sy GR (9) 
aSOungucs ot it pis mi oie 

Constraints (6)-(9) cover all possible situations assumed for the 

operation of the system. Since the annual cumulative capacity aA <= 

should be at least equal to the righthand of each of Eqs. (6), (7), and 

(9), the maximum of the values given by these formulas determines the 

required design capacity of the system in each year and is represented 

by the following U,. mgd: 

oe 
U, = max Q./¢ ESBS terse T (10) 

H 
= 

* Seine (Q, + QE)/{> + ay (n-o)} 

A new plant is used to take care of any excess demand over the total 

capacity of the system existing before its installation. In other words,~ 
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the plant installed in year t will satisfy the incremental demand in each 

year starting with year t over the demand in year t-1 until its capacity 

is saturated by the incremental demand in some later year, say year s. 

Previously we used K, to represent the capacity of a plant possibly installed 

at the beginning of year t. To replace K,, we now introduce a more specific 

symbol, Kes (s = t, ttl, ..., T), representing the capacity that exactly 

satisfies the incremental capacity requirement for year s over the 

requirement for year t-1; this K, , is given by 
5° 

Ce Oe a i ee ee (11) 

Total Cost of Capacity Expansion 

The total cost of a plant in this problem is composed of its capital 

cost and annual operating costs. By assumption, each plant installed 

during the expansion period initiate an infinite chain of plants, identical 

in size and life, extending beyond the period. Therefore, their capital 

costs amortized over their lives form a permanent series of identical 

costs. If e(K, 5) represents the capital cost of a plant with capacity 

Kes? then the sum of the capital costs of all plants in the permanent 

chain, discounted to the beginning of year t, is given by the following 

E f (Ks) 

EUK.-).= UItR) Ro ae(K,7 ) trae: el (12) 
css SAS: 

See eet Gp ae 

where R is the discount rate, and a is the amortization factor determined 

jointly by the life of the plant and the discount rate. 
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10 

The annual operating cost of a plant is composed of the fixed 

and variable parts. For approximation these costs are determined by 

the expected average demand Q& and charged at the middle of the year. 

The variable operating cost is affected by the plant utilization rate. 

This rate for a plant with capacity Ke vs increases annually from year 

t through year s and thereafter stays constant indefinitely at the 

maximum value reached in year s. The total operating cost of a 

permanent chain of plants initiated in year t, discounted to the 

beginning of that year, is given by the following F(K, aon 
> 

1/2 E(KeedrzaGltR psa Re fly a deneley CURITTT TL? elke eacuge 

=—Se t= Lye R+ g(x 2 us) CHSWEE EGe aie T (13) + (1+R) gone Uz 

SUS SEK odo de 

where £(K, =) is the annual fixed operating cost of a plant with capacity 
Le 

Ky jg> and BECK, 5> u,) is the annual variable operating cost of this plant 

operated at the following utilization rate u, in year r: 

Gn (0,,— G2 ,07(0, =U, ) Oe Sethe cals (6 (14) 
} 

In Eq. (3), the three terms on the righthand represent from left to 

right the sum of the annual fixed costs over an infinite period, the sum se 

the annual variable costs from year t through year s, and the.sum of the 

annual variable costs over the infinite period beyond year-s,.each 

discounted to the beginning of year t. 

The total cost related to a permanent chain of plants is the sum of 
~ 

E(K, 5) and F(K, s) and is denoted by G(K, .): 
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LAL 

GK, Je) = EC, g) + PUK, ) (15) 
> 

Dynamic Programming Formulation 

Following Bellman's dynamic programming approach [1957], we write 

the following recursive relationship between the results of two sequences” 

ef decisions-starting in year t and year tl: 

A(t) = GOK.) + (2+R)7? a(t+1) Te ais (16) 

SP= cig clears lt 

where A(t) is the discounted sum of the capital and operating costs for 

plants installed in year t and thereafter, A(ttl) is the same sum for plants 

installed in year ttl and thereafter. 

Since there is no expansion made beyond year T, we write 

A(t) = 0 BS WP, po 

Our objective is to determine an optimum capacity Kos for the 

plant installed in year t so as to minimize the discounted cost A(t). When 

an optimum decision is made at each decision point, Eq. (16) is replaced 

by the following equation with A*(t), A*(t+1), and s¥ representing optimum 

A(t), A(tt+1), and s: 

ut A*(t) = GOK, 5x) + (1+R) ~ A¥®(t+1) TAP as es gt (17) 

Using Eq. (17), we start in year T and determine optimum Ko at where 
> 

tt 
ae is an optimum s for t = T, then determine Ke tevak for year T-1, 

Th 3 
T-1 

and so on, working backward and determining an optimum capacity for each 
- 

year. When we compute A*(1) and determine Ky st? wethave finally obtained 
5 
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L2 

a complete optimum solution to the problem. This. backward process is 

explained step by step by the following equations: 

A*(T) = G(K, 4) n 9st 

T 
A®(T-1) = G(K, . 4) + (1R)7+ at(T) 

oer “4 

AX(1) = G(Ky oa) + (i+¢R)71 a*(2) 
ooh 

There are two possible cases regarding the existing treatment capacity 

at each evaluation point; (1) the capacity satisfies the requirement and 

a new plant is not needed until year r, and-(2) the capacity is °« 

insufficient for the requirement and a new plant is to be installed at 

this point. In the first case, Eq. (17) can be simplified to 

cee at SPI 
AR(t) = (14R) PTF Ak(r) ee (18) 

ae AWA EB owe 

In the second case, the capacity ek of the new plant makes it 

unnecessary to install another plant before year s*+1, thus making years 

ttl,..., s®-1, s* belong to the first case given by Eq. (18). Therefore, in 

this case Eq. (17) may be replaced by 

a. eee 
Be(E) = CCK.) we tien “St 4 *) 

t,s 
A*(s*+1) 

fei nhas eee (19) 

Since s* in (19) is selected from the alternative values of s 

(s = t, ttl, ..., or T) so as to minimize A(t), Eq. (19) may be rewritten to 

St GOK) + (24R)? aA(es2) 

s = ttl: G(K 
Ak(t) = min er (20) 

s CR 

Ete -T+t as s = THt: G(K, 7-1) + (1+R) A*(T) 

s = T: G(K, 9) 
SO $h.,0ns Tr 
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Thus, with Eqs. (15), (18) and (20), we have completed the dynamic 

programming formulation of the capacity expansion problem. 

Cost Functions of Water Treatment 

Specific cost functions for E({K) and F(K) used in (15) are required 

forthe subsequent numerical example showing an application of the dynamic 

programming model that we have developed. However, ae discussion on 

the cost functions must be based on only a few studies available on the 

subject. 

The most extensive study on the costs of surface-water treatment was 

conducted by Koenig [1963]. In his study, the capital cost of a plant. 

covers the low lift pumping station, the treatment plant itself andithe high 

lift pumping station, but it does not include conveyance lines for raw 

water or finished water, nor booster stations on finished water fiestos 

distribution lines (p. 295, [Koenig]). The Illinois State Water Survey’ 

(ISWS) [1968] adjusted data from 42 plants (including Koenig's 30 plants 

Cee en en ne eed 

Association) to 1964 prices and obtained the following regression relation 

between capacity and capital cost for surface water treatment: 

.65 . 
E(,)(K) = 267.9K in $1000 

where E(s)(®) is the capital cost in $1000 and K is the capacity in mgd. 

For ground water treatment, ISWS obtained the following formula for 

capital cost from data on 58 plants located in the State of Illinois: 

Ls .63 : E = (2) 6) 115 K in $1000 



i tt 

yy 

i stadia ie 8 wolvso} aah ‘(oe pat vets gna pe 

_me_optnouol Dol ~ sxenoit Signy cov aw Sa tien 

‘09 went wets Sedaiaat 9 “gapkteon srarapod aot xe sein 

vere wore hase abon’ Ler eit “At gbnaain) ie at npc nobts 

eat oe a maton ne, eta ow marek i Salle’ 00 

{rogues weta sty ‘sonttae mh teen taste on sea 

| | ‘oud. he | 7 i — | ig, rae = sae 

yt at. etiosane: ‘ott a : ‘Arta o00k8 co rail tasigne, ads ad anm 

| 98% whch hae att as ev vane haa bee, ll 



14 

Using Koenig's data in 1964 prices, we obtained unit and total daily 

costs of surface water treatment (p. 5, [Hinomoto]). From these costs, the 

annual fixed and variable operating costs for capacity K at utilization 

rate u are obtained and given by the following £¢.) C9 and B(5)(Ks AL )is 

respectively: 

£/4)(K) =.2-121 K°t81 4 9.96u K°F87 4 1379 «799° an Si1000/¥n. 

By (Ks wu) = u (4.380 «754. ao.an7 Ke 728) 4 ue5 (14.782 K°579) 

in $1000/Yr. 

A study reported by ISWS (p. 2, LISWS]) indicates ground water 

treatment costs are in general approximately 43% of the same costs for 

surface water treatment. Therefore, we write the fixed and variable 

operating costs for a ground water treatment plant, denoted by f(g) 6) 

and Bg) (Ks u), as follows: 

bet G2) mT £5) 
(g) 

Big) (Ks u) = .43 85) (K> u) 

Numerical Example - 

This example approximates the conditions existing in the Champaign- 

Urbana twin-city area, Illinois. The expansion plan covers the period 

from 1970 through 1985, regarding 1970 as year 1. 

As of the beginning of year 1 the existing water treatment system 

serving the community is composed of two treatment plants, each with a capacity 

of 9 mgd; thus Ky = 18 mgd. This system needs a long-range plan for its 

capacity expansion to cope with continuously growing demand over a period 

of 16 years beyond which demand is expected to stay constant at the level 
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attained in the last year of the period. Water is obtained from under- 

ground sources which can accommodate the requirements of the area for an 

indefinite future. The demands have been forecast through Eqs. (1)-(4) 

using estimated values of factors such as population, average market value 

of a dwelling unit, number of people in dwelling unit, number of dwelling 

units, and residential area in the region. The forecast demands over 

the 16-year period are listed in Table 2 where the maximum daily 

requirement Q. is the larger of 1.5 times the expected demand on obtained 

from (1) or the expected maximum demand Oem VE obtained from (2). Then 

the capacity requirement for each year is determined by Eq. (10) and 

listed in the right-most column of Table 2. 

The duration and total demand of the peak period on a maximum demand 

day, expressed as fractions of the duration and demand of the entire day, 

are assumed to be o = .6 and $8 = .91, respectively. The life of a plant: 

is assumed to be 30 years, and the annual rate of interest on bonds issued 

for plant construction is 8%; the amortization factor of the plant determined 

by these values is a = .0888. Further the sina discount rate, or the yield 

rate expected of the system by the agency, in cost. formulas (12) and (13) is 

R-= 10%. Two types of booster pumping have been considered; one, that is 

used over a prolonged period on maximum demand days, is represented by 

@ = 1.20, and the other, that is used in short periods of extraordinary 

demands such as fire-fighting on a maximum demand day, is represented by 

if aletoy: 

Before determining an optimum expansion of the treatment capacity using 

Eq. (20), it is necessary to obtain the capital and operating costs of a 

pliant possibly installed in each year. The plant to be installed in year t 
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could have one of alternative capacities, denoted by Kes? which equal the 

incremental capacity requirements for year s (s = t, ..., T) over the total 

requirement for year t-l. The values of Ke ys for t = 1, ..., T ame listed 

in Table 3, computed through Eq. (11) using capacity requirement U, listed 

in Table 2. Then, with Kes thus obtained, the total costs alee are 

determined through Eq. (15) and listed in Table 4. 

We now determine an optimum policy for expansion in each year of the 

expansion period, starting in year 1985 and working backward year by 

year to year 1. For year 16, there is only one capacity to be considered, 

mess K or 1.21 mgd as listed in Table 3. In Table 4,. the total 
16, 16 

cost of a permanent chain of plants with capacity Kig. 167 1.21 mgd is found 
> 

to be $297,260. Thus, the cost of the optimum expansion plan initiated 

in year 16 is given by 

A*(16) = G(K = $297..260 16, 16 

For year 15, two alternative capacities are to be evaluated; one 

capacity is K that satisfies the requirement for year 15 only, and 15, 15. 

the other is Kis 16 that satisfies the requirements for year 15 and year 16. 
> 

The values of Kis, 5 and K 15, 16 are listed in Table 3 as 1.14 mgd and 

2.34 mgd, respectively. Further from Table 4, we find the total costs 

G(Ky 5 | is) and G(K ) to be $286,120 and $467,420. The expansion plan 15, 16 

for installing a plant with capacity Kis a5 OF Kis a6 in year 15 gives the 
on > 

following discounted total cost: 

S=15: G(K ) + (1+R)71 aA* (16) 15, 15 

= 286,120 + 270,240 = $556,360 

S = 16: GOK) 5 | 16) = $467,420 
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Therefore, the optimum expansion plan for year 15 and forward is 

* = = 0 A*(15) CCK) 5 ie? S467 ,42 

For year 14, three alternative capacities need to be evaluated: 

Ky 4 satisfying the requirement for year 14 only, satisfying 
> Cs, 15 

the requirements for year 14 and year 15, and K satisfying the 
14, 16 

requirements for years 14, 15, and 16. These capacities give the 

following total costs: 

S = 14: GC ) + (1+R)72 ak(15) Qu, 14 

= 277,190 + 424,930 = $702,120 

= 15: + (1+R)72 A® St] 25 GK 12) (1+R)~4 A*(16) 

= 451,340 + 245,670 = $697,010 

S = 16%: ) = $589,430 6CKiy 16 

Among the three capacities, capacity Ky 16 gives the minimum total cost. 
b) 

Therefore, the optimum expansion plan initiating in year 14 is 

A*(14) = G(K ) = $589,430 rhe ails 

Similarly, we obtain the optimum expansion plan initiating each of 

years 13, 12, ..., and 1. As in the case of year 16, 15, or 14, all of the 

optimum plans for years 13, ..., 3 install one plant that will take 

care of the incremental requirements for all remaining years of the expansion 

period. 

However, each of the optimum plans for year 2 and year 1 involves two 

plants and gives the following total cost: 
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& = re ao ts A¥(2) = G(Ky 49) + (1+R)™ AR(11) 

= 877,280 + 358,520 = $1,235,800 

A*(1) = GC ) + (1#R)79 Ax(10) ed 
1,142,580 + 385,410 = $1,527,990 

The optimum plan for year 1 is the final solution to the present 

dynamic programming model, requiring a total cost of $1,527,990. It states: 

(1) To install in year 1 a plant with the capacity Ky, g that, 

in combination with the existing plants, satisfies the 

requirements for years 1, ..., 9. This capacity is 

Ky g = Ug-Uy (= K, = 18 mgd) 

9.87 mgd 

(2) To install in year 10 a plant with the capacity Kio. 16 
> 

that in combination with the existing plants satisfies the 

requirements through year 16. This capacity is 

Sion 16 ~ “Vaig=Us 
= 7.25 mgd 

Table 5 lists the optimum expansion plan obtained for each of 

years 16, ..., 1 and the total cost discounted to the beginning of 

that year. 
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Table 5. Dynamic Programming Solutions to Optimum Capacity Expansion Plan 

Initiated in Each Year of the Expansion Period. 

Year Optimum Expansion Plan Discounted 
ic Starting in year t Expressed Total Cost of 

in Cost Formula Optimum Expansion Plan! 
Ree dey A*(t) 

16 GK, 6 te $ 297,260 

15 on, te $ 467,420 

14 ee 8 : = $ 589,430 

13 GOK) 5 | 16? $ 687,370 

12 GO 16? $ 772,830 

a} ae ve $ 845,380 

10 SS 16? $ 908,770 

9 on $ 965,410 

8 - oh 16? $ 1,019,240 

7p CCK, nai $ 1,062,900 

6 oe wee $ 1,105,210 

5 co is? $ 1,142,520 

ig B(K, 46) | $ 1,177,140 

3 G(K, 16? $ 1,209,940 

2 G(Ky 45) + (24R)"? aa(12) $ 1,235,800 

1 GOK | 9) + (1+R)79 a*(10) $ 1,527,990 

a LSE A, 

1 ° “ orem 
The value is discounted to the beginning of year t. 
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SUMMARY 

This study has formulated a model popresent ine the capacity expansion 

of an existing water-treatment system serving a residential community. 

It assumes demands increase with time and can be forecast for certain 

over a finite period beyond which they stay constant indefinitely at 

the maximum levels attained at the end of the period. To satisfy those 

demands with a minimum cost, new treatment plants of optimum sizes are 

added to the system at proper points in time during the period. Each 

of the new plants. is replaced by a permanent chain of plants identical 

with it in capacity and economic life so as to satisfy the constant 

demands beyond the expansion period. 

Two important factors determining the capacity of a municipal water- 

treatment system are the expected maximum daily demand mainly influenced 

by lawn sprinkling on hot summer days and the fire fighting requirements 

recommended by the American Insurance Association. The design capacities 

determined by the formulas suggested by various authors tend to be much 

greater than the capacity used in practice. To resolve the discrepancies 

between these formulas and the actual practice, we have introduced two 

coefficients of booster pumping; one coefficient represents a rate of 

overload on the design capacity used throughout a maximum demand day, and 

the other represents the maximum rate of overload applicable to fire 

fighting during the peak-period of that day. 

The objective of the capacity expansion problem is to minimize the 

total cost of investment and operation associated with new plants and 

their permanent chains of successors. The capital and annual operating 

costs of a plant are given by exponential functions of capacity in concave 

form reflecting economies of scale associated with a larger capacity. 
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Empirical cost functions in this form are used in the subsequent numerical 

example. The system is to satisfy the annual capacity requirement determined 

by the maximum of the following three peaenent requirements: the first 

requirement is for an average dentine day at a constant rate without 

booster pumping, the second is for a maximum demand day at a constant 

rate with booster pumping throughout the day, and the third is for fire 

fighting lasting a duration specified by AIA during the peak-period on 

a Maximum demand day at a maximum rate of booster pumping. 

A new plant is added to the system whenever the existing capacity 

becomes short of the annual capacity requirement determined above. To 

determine optimum capacities and installation times of the new plants, 

the expansion plan is formulated to a dynamic programming model. This 

model is applied to a case approximating the conditions in the 

Champaign-Urbana area over the period 1970-1985. 

Most capital investment decisions are based on trade-offs between 

the cost of over-capacity and the penalty of under-capacity for given 

requirements. In the present problem, over-capacity is essnetially an 

economic matter involving the supplier of water alone and its cost could be 

determined with some accuracy. On the other hand, the effects of under- 

capacity would fall on the consumer of water, rather than the supplier, 

in the forms of higher fire insurance rates, shortage of water in the home 

and community, or poorly treated water. The involvement of non-economic 

factors makes it difficult to ascertain the penalty of under-capacity. 

The absence of the effects of under-capacity in the present model, however, 

is not intended to minimize their significance. 
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