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Principal of the Royal School of Naval Architecture and

Marine Engineering ^ and Superintendent of the

Naval Museum at South Kensington,

INTRODUCTION.
This collection illustrates the principal types of the class

of surfaces which can be traced out in space by the motion

of a straight line.

These surfaces, on account of the facility with which they

can be constructed and represented, and of the ease with

which their intersections can be determined, are of more

consequence than any others in the geometry of the Industrial

Arts. It is only in small work, which can be put into the

lathe, that the class of sm-faces of revolution approaches

them in respect of general utility. The most important

surfaces of all, the plane, the right cylinder, the right cone,

and the common screw, belong to both classes.

The representation of the surfaces by means of silk

threads is of course only approximate ; an approximation of

the same character as the representation of a curve by a

dotted or chain line, or by a series of right lines touching the

actual curve.

Fio. 1.



Fig. 1 is an example of the first, and Fig. 2 of the second.

In both cases, the curve, although not actually drawn, is

indicated with sufficient approximation for most practical

purposes. Models Nos. 10 and 30 also afford illustrations

of the principle exhibited in Fig. 2.

The models are constructed with especial reference to the

possibility of changing their shape, by moving some of the

supports of the strings, by altering the lengths or positions

of certain parts, or by converting upright forms into oblique.

This possibility of deformation, as the process is technically

called, greatly enhances the value of the models, by allowing

them to represent a much greater variety of surfaces than if

they were fixed. They are, however, too delicate to be much

pulled about, and, unless they are very cautiously handled, the

strings are apt to become entangled or break. They should

never be used except by a person who understands them, and

they should not be shifted without some good reason.

In order to make this collection as useful as possible to the

student of geometry, it has been thought advisable to give,

in an appendix, a short account of the application of analysis

to the investigation of these surfaces, and of their properties.

The statement of these properties is scattered over a great

number of treatises and tracts, and there exists no single

work which gives a full account of ruled surfaces. The

appendix, of course, requires some knowledge of analytical

geometry of three dimensions. Any of the smaller modern

treatises, such as Aldis or Leroy, contain more than is

necessary as an introduction to the subject. The statements

in the appendix have been chiefly taken from Monge's

Applications de I ''Analyse a la Geometrie.

Geometrical drawings of most of the surfaces represented

by these models are contained in Bradley's Practical

Geometry (2 vols., oblong folio, published by Chapman and

Hall). Many of them will also be found in the French

treatises on practical and descriptive geometry, such as

Leroy, Adhemar, Lefebure de Fourcy, De la

GouRNERiE, and in their treatises on Stereotomy and Stone-

cutting {coupe des pierres). Many of them are also given in

Sonnet's Dictionnaire des Mathematiques Appliquees.



CATALOGUE.

1. Hyperbolic Paraboloid generated by a single system
of right lines.

Two bars each pierced with holes equally spaced. One
bar is fixed, the other swings round an axis, which, moreover,

can be inclined at different angles to the fixed bar.

When the bars are parallel the strings indicate a plane.

When they are inchned to one another, but still in the same
plane, the strings still indicate a plane ; but when the bars

are not in the same plane, the surface is the hyperbolic para-

boloid.

This surface is sometimes called the twisted plane. But it

must not be supposed that it can be made by bending a plane.

On the contrary, when the surface is twisted, no two of the

strings lie in the same plane, and, therefore, no part of the

surface is plane. It can neither be flattened nor made from
a plane, without stretching or contraction. 'w.'

The hyj^erbolic paraboloid is the natural surface proper
for a ploughshare.

2. Hyperbolic Paraboloid.

Two bars pierced with holes at equal distances, the holes

being connected by two different systems of strings. The
surface, as well as the arrangement, is very nearly the same
as in No. 1, only that there are two paraboloids instead of

one. As the movable bar swings round, the paraboloid

opens out while the other closes up. If the bars are swung
so as to be in the same plane, one system of strings describes

a plane by parallel lines, and the other by lines radiating

from a point. If one bar is now turned so as to be end for

end, we still get a plane, the set of parallel lines now passing

through a point, while the set which previously passed

through a point has now become parallel.

The pair of paraboloids intersect in three right lines.

There is also a fourth intersection on the " line at infinity."

3. Hyperbolic Paraboloid.

Two bars, equally spaced ; each turns on an arm perpen*-

dicular to itself, and one arm swings on a pillar. These arms
can be ranged in one plane, and also turned end for end.



4. llYFEa^BOLie. Pi^RABOLOiD generated by two systems of

right liiiGS.

A skew quadrilateral with four equal sides, each pierced

with the same number of holes, equally spaced. The model

exhibits the double generation of the surface. The plane

containing two of the sides turns about hinges connecting it

with the plane of the other two sides. By closing or opening

this hinge the paraboloid opens out or closes. When com-
pletely open, it forms a plane divided into diamonds. When
completely closed it again forms a plane, but the division is

no longer uniform. The strings then become tangents to a

plane parabola.

5. Hyperbolic Paraboloid.

A skew quadrilateral turning upon four hinges with parallel

axes or pins.

The difference between this and tlie last Is not in the kind

of surface or mode of generation, but in the manner of

deforming the surface. In No. 4 the lengths of the strings

alter ; while in this model they remain unaltered. More-
over, although the surface flattens in two ways, yet in both

ways the strings become tangents to a plane parabola instead

of parallel.

This model is well adapted for showing the leading sections

of the solid. All sections parallel to the pins of the hinges

are plane parabolas, which degenerate into right lines when
taken also parallel to the brass bars. Any other sections,

whether perpendicular to the hinges or inclined to them, give

hyperbolas, which degenerate into a pair of right lines when
the plane of section is a tangent to the surface.

It may be worth while to remark that there is nothing

absurd in the tangent plane to a surface cutting that surface,

as a student unaccustomed to those subjects might at first

think. On the contrary, when a sm-face is bent one way in

one direction and the other way in the opposite direction,

the tangent plane must cut it. In this case, the plane

passing through any two intersecting strings is a tangent

plane, and evidently cuts the surface along each string.

If we imagine two planes parallel to the hinge pins,

and each bisecting a pair of opposite bars, we obtain the

asymptotic planes of the paraboloid, each of w^hich is the

assemblage of the asymptotic lines of the hyperbolas parallel

to the principal hyperbolic section. Their being asymptotic

. has reference to these hyperbolas, and not to the parabolic

character of the surface.



6. Hyperbolic Paraboloid.

A skew quadrilateral, with its opposite sides equal in

length, and pierced with holes at equal distances.

Nearly similar to No. 5, but differently mounted, and with

the sides of different lengths, the alternate sides only being

equal. It is virtually a slightly different aspect of the same
sufface as No. 5.

7. Hyperbolic Paraboloid.

A skew quadrilateral, with all its sides equal, and pierced

holes at equal distances.

As far as the curved surface is concerned, the same as

No. 5. But the hinges are altered in direction, and the

model shows plans and elevations of the right line generators

of the surface. The rings also show parabolic sections of the

surface.

In consequence of the alteration in the direction of the

hinges, the spacing of the inclined bars, although equidistant,

is at a different pitch from that of the horizontal bars.

8. Hyperbolic Paraboloid.

A skew quadrilateral with all its sides equal, and pierced

with holes at equal distances. It shows the plans and eleva-

tions of the right line generators. The rings show the

parabolas of the principal sections.

No. 7 represents one quarter of what is shown in No. 8.

The upper corners of Nos. 7 and 8 correspond ; but the lower

comer of No. 7 corresponds with the middle ring of No. 8.

9. Hyperbolic Paraboloid.

A skew quadrilateral with all its sides Unequal. The
surface is the same as Nos. 7 and 8, but the proportions

and the portion of the surface chosen for representation are

different. The quadrilateral base being Irregular, the strings

alter in length as the surface is deformed by closing the

hinges.O"

10. Hyperbolic Paraboloid.

Skew quadrilateral, pivoting on a single hinge. Intended

to show the construction of the parabola connecting two
roads which meet obliquely. This constiiiction is used by
engineers in lading out roads.



11. Hypeeboloid of one Sheet.

Two rings or circles in parallel planes are pierced with

equally spaced holes. In a certain position the threads give,

1st, a cylinder, and 2ndly, a cone.

The upper ring turns round a pin at its centre. In turn-

ing it, the cylinder closes in and the cone opens out, each

altering into a hyperboloid of one sheet. We can go on turn-

ing the ring until these coincide in one hyperboloid, of which

we thus get both systems of generating lines.

If the rings are set on a slope the hyperboloid is elliptic.

If the. rings are horizontal the hyperboloid is one of revolu-

tion.

Sloping one ring so as not to be parallel with the other,

gives rise to some curious iniled surfaces, but these are not

in general hyperboloids.

12. Hyperboloid of one Sheet.

Two rings of different radius in parallel planes are divided

into the same number of equal parts. The smaller and upper

ring turns round a pin at its centre. In a particular position

of the rings, the threads give two cones. Turning the ring

transforms each of the cones into a hyperboloid, and when
the two hyperboloids coincide, we get the two systems of

right line generators.

The same stand also has a model of a hyperboloid with

only one set of strings. By turning the upper ring either

way it deforms into a cone, in the one case with its vertex

between the rings, and in the other with its vertex at a con-

siderable height above the rings.

Both these can have their upper rings moved along the

top bar so as to incline the surfaces. We still get cones and
hyperboloids, but it is only when the rings are horizontal

and centre to centre, that we get surfaces of revolution.

13. Hyperboloid of one Sheet ; with its asymptotic

cone.

14. Hyperboloid of one Sheet ; with its asymptotic

cone.

The tangent plane to the cone is also drawn. It meets

the hyperboloid in two parallel right lincfit.

One of these right lines is the line of contact of a hyper-

bolic paraboloid witli the hyperboloid, and the tangent plane

is one of the director planes of the paraboloid, both systems

of generating lines of which are exhibited.
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15. Hypekboloid of one Sheet.

A slight variation from No. 14. The paraboloid only

shows one system of right line generators, and the tangent

])lane is made by parallel instead of radiating lines.

16. Hyperboloid of one Sheet, and its tangent

paraboloid.

This shows the transformation of a cylinder and its tangent

plane into a hyperboloid and its tangent paraboloid.

17. Conoid with its director plane. The director curve is a

plane curve.

By shifting the position of the brasses, the conoids deform

into different conoids or other allied surfaces.

18. Conoid with a director cone. The director curve is of

double curvature.

By shifting the position of the brasses the conoids deform

into different conoids or other aUied surfaces.

19. Conoid showing both sheets of the surface.

By shifting the position of the brasses the conoids deform

into different conoids or other aUied surfaces.

20. Conoids. Model showing the transformation of a

cylinder into a conoid and back again. Also model
showing the transformation of a cone into a conoid and
back again. It is to be noticed that the head-lines of

the two conoids, that is to say, the right hne in which
the two sheets of each conoid meet, are perpendicular

to one another.

The transformation is effected by making the upper semi-

circle turn through two right angles.

21. Conoids.

Intersection of two equal conoids having a common director

plane. The horizontal intersection is a plane eUipse.

22. Conoid, in contact with a hyperboUc paraboloid.

23. Conoids. Two equal circles in parallel planes, divided

equi-distantly, are connected by threads, so as to form
four surfaces.

A cylinder. A conoid.

A cone. A second conoid.

The director planes, as well as the head Hnes, of these

conoids are at right angles to one another.
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24. Conoids.

Two equal circles in parallel planes are connected by
threads so as to form four surfaces.

A cylinder.

A cone.

A conoid.

A second conoid, with its director plane and line at right

angles to those of the former.

Same arrangement as No. 23, except that the lower ring

is replaced by a plane of section a little higher up. The
section gives,

—

For the cone, a circle smaller than the upper ring.

For the cylinder, a circle of the same size as the upper
I'ing.

For the conoids, two ellipses turned crosswise.

25. Model exhibiting the simultaneous transformation of a

conoid into a cylinder, a cylinder into a conoid, the

paraboloid touching the conoid into the tangent plane

of a cylinder, and the tangent plane of a cylinder into

the tangent paraboloid of a conoid, and reciprocally.

The changes may be arranged as follows :

—

From.

Conoid.

Tangent paraboloid.

Cylinder.

Tangent plane.

Into.

Cylinder.

Tangent plane.

Conoid.

Tangent paraboloid.

These changes are all effected simultaneously by one move-
ment, which can be reversed.

26. Model exhibiting the transformation, first, of a conoid

into a cylinder. Second, of the tangent paraboloid of

the conoid into the tangent plane of the cylinder.

27. French Skew Arch (biais passe).

The inner drum, of yellow thread, represents this surface.

It is a skew sm^face, with a right line du-ector ; and its faces,

the planes of the two semicircles, are usually parallel, although

the model permits them to be placed obliquely to one

another. The horizontal line joining the centres of the

two large semicircles is the right line director.

The construction for any one of the generating lines is as

follows :—Draw a plane tlu'ough the right line director at
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any selected obliquity. It will, of course, give the radii of

the outside circles, and the line joining the points at which
it cuts the inside semicircles will be a generator of the

surface. This line will evidently pass through the du'ector

line, because it is in the same plane with it.

In stone or brickwork, the sides of the voussoirs will

be given by the auxiliary plane in question. When the

openings are parallel the voussoir joints are therefore plane,

and the simplicity thus gained is the chief reason for

adopting this form of skew arch. It is usual to take the

right line director perpendicular to the openings, and sym-
metrical to them ; that is to say, passing through the middle

point of the parallelogram of the springing plane.

When the openings are not parallel, the voussoir joints

shown by the model are deformed into hyperbolic parabo-

loids. This deformation, is, however, very slight, and in

practical work w^ould be avoided altogether by adhering to

the principle of drawing a plane through the director line.

The spacing of the voussou's is usually determined by
dividing the outer semicircle into equal parts.

This form of arch is inconvenient w hen the obliquity, and
the length of the barrel are excessive, for the generators are

not generating lines of the cylinder containing the opening

semicircles, but chords of it, and, therefore, at the middle,

falling considerably inside it. The arch therefore droops in

the middle, and this would be ugly and inconvenient if the

proportions were excessive.

It is interesting to compare this surface with the skew
vault of Marseille {arriere voussure de Marseille), an example
of wliich is shown in the set of plaster models contributed by
the '* Brothers of the Christian Schools," and another, in imi-

tation brickwork, among M. Schroder's models of fm-naces.

In this case the curvihnear directors do not tally with one

another, although they remain parallel, and the right line

director is a Vertical hue behind the smaller arch. The con-

struction for the right line generators is the same for both,

namely, to consider an auxihary plane pivoting about the right

line director.

28. Staircase Vault for a square well {vis St Gilles

carree),

29. Staieoase Vault. Model for exhibiting some pro-^

perties of this ruled surface, by showdng how it is

obtained from the defonnation of a cylinder {douelle de

.la vis St, Gilles carree).
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30. Cylindek with Helix and DEVELorABLE He-
LIXOID.

The helix is simply a screw thread. The developable

helixoid, shown by the purple threads, is the surface swept
out by the right line tangents of the helix. If we consider

that each gore can be turned a very little bit about the thread

which separates it from the next gore, we see that the surface

can be flattened out or developed into a plane, without any
crumpHng. This happens because every two consecutive

generating lines meet one another on the heHx. That is why
its surface is called developable. Its section by a horizontal

plane is the involute of the circle.

The model allows the pitch of the heUx to be shortened

by lowering the upper plate, and the cyUnder can also be
incHned. When oblique, however, the curve which replaces

the helix is not such a screw thread as can be turned in the

lathe.

31. Skew Helixoid.

This surface is described by a right line which always

passes through the axis of a cylinder and makes a constant

angle with that axis. It also passes through a hehxor screw

thread traced on the cylinder. The model only shows the

surface, not the cyHnder. It is the surface of what is known
as the screw with a triangular thread. The section by a

horizontal plane is the spiral of Archimedes.

This is not the commonest form of the skew helixoid ; that

is best seen on the underside of a screw staircase, or on the

driving face of a common screw propeller. In these, two
generating lines are at right angles to the axis.

The surface may also be considered as generated by a line

which makes a constant angle with a given fixed line, and
moves up that line, and at the same time turns round it, at

uniform rates.

32. Skew Surface with its tangent paraboloid, capable of

transformation into another skew surface while the para-

boloid deforms into a plane.

This is (for a certain position of the lower semicircle) a

skew surface with a director plane, the plane being vertical*

The director curves are : one of them a circle divided equi-

distantly, the other a semicircle divided so as to keep the

strings parallel to the director plane.
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Intersections of ruled Surfaces.

33. Intersection of two cones having double contact with one
another, that is to say, having a pair of tangent planes

in common.

The consequence of their having double contact is that

their curve of intersection breaks up into two plane ellipses.

The vertices of the cones slide along a rule which turns on
a universal joint. See also model No. 38.

34. Common groin. Intersection of two cylinders having
a pair of common tangents. The model may be set

square or oblique.

35. Intersection of two cylinders, one piercing the other so

as to give two separate loops of intersection.

36. Intersection of two cylinders, having a common tangent,

80 as to give a curve having a double point at the point

of contact.

3Y. Intersection of two cylinders, neither completely piercing

the other, so as to give only one loop of intersection.

38. Intersection of two cones, having double contact, along a

pair of plane ellipses.

39. Groin. Oblique intersection of two splayed vaults of

the same spring.

40. A pair of intersecting planes, which, by pulling the brass

ball so as to give simultaneous rotation to the two upper

rods, deform into paraboloids first, and then into planes

described by radiating strings.

41. Intersecting cyhnder and plane. By pulling the brass

ball the head brasses rotate together, and the cylinder

deforms into, first, a hyperboloid, and then a cone, while

the plane deforms into, first, a paraboloid, and then again

into a plane with radiating hues.

42. A pair of intersecting cyhnders on circular bases. By
puUing the brass ball the head brasses rotate together,

and the cylinders deform, first, into hyperboloids, and
then into cones.

43. A pair of intersecting cylinders on irregular bases. By
pulling the brass ball the head brasses rotate together,

and the cyhnders deform, becoming at last cones.
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44. Groin.

Model showing the deformation of a common groin, both

obliquely, and by splaying the vaults. The model shows not

only the intersection, but the plans of the intersection and of

the generating lines.

45. Helix or Screw-thread.

Model showing the transformation of the right line gene-
rators of a right cylinder into screw threads of various pitch

or obliquity.

The pitch of p, screw is the distance between two succes-

sive turns, measured in a direction parallel to the axis. When
this distance is small, the screw is said to have a fine pitch,

when great, a coarse pitch or high pitch.
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APPENDIX.

By C. W. Merrifield, F.R.S., Principal of the Royal
School of Naval Architecture and Superintendent of

the Naval Museum at South Kensington.

This Appendix contains an account of the application of

analysis to the investigation and classification of mled eur-

faces.

It is not proposed to follow all the defoimations which
those surfaces can be made to undergo in the arrangements

illustrated by the models. That would take a very large

volume, and, even so, could hardly be given completely. The
analysis has been kept as simple as possible, and has been
written out in the form which appeared best adapted to the

consideration of surfaces, not with a view to their general

properties, but specially to the particular mode of generation

by means of straight hues. For that reason, no mention has

been made of the cones and cylinders of the second degree.

These are treated with sufficient fulness in all the ordinary

books.

The student may extend much of what is stated here by
introducing the principles of elUptic deformation and oblique

deformation. The latter is frequently equivalent to a change

in the direction of coordinates. Both these transformations are

applicable to nearly all that follows, and the student should

bear this application always in mind. He will do well to

work it out to its consequences in some of the simpler cases,

for which the formulae are not unmanageably long, as they

are apt to become if used injudiciously.

Motion of a right Line.

A right line is completely defined by the condition that it

shall meet four fixed curves in space, to the extent that there

is not an infinite number of right fines which will satisfy this

condition. The condition, in fact, gives rise to an equation,

which may have more roots than one, but in which each root

will have a definite and not a variable value. Moreover, the

root of the equation may be imaginary, and it may happen
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that the geometrical Hne may also be imaginary. Admitting
imaginary quantities, however, the line is definite.

If the hne be only conditioned to meet three curves in

space, it is free to move so as to trace out a curved surface,

v^^hich is called a ruled surface. It may, as before, happen
that the director curves are so chosen that no real hne can
meet all' three in real points. If, therefore, there are three

directors, one of them must be taken within certain Hmits of

position or direction in order that the problem may be really

possible instead of imaginary. The point is to see distinctly

that a right line must have three directors, and three only, to

trace out a surface. The surface so traced is called a ruled

surface.

It is possible to replace one of the director curves by some
equivalent condition. But the conditions taken altogether

must be such as are equivalent to the restriction imposed by
three director curves, neither more nor less. The classifica-

tion depends upon the selection of these conditions. Passing

by the common cone and cyhnder, let us proceed to consider

the next in order of simplicity.

The Hyperbolic Paraboloid.

This surface is traced out by a variable right hne, which
always meets three fixed right fines, which are parallel to one

plane.^

Suppose that the plane in question is made to pass through

one of the lines, which is taken as the axis of x, and that this

plane is taken for the plane of (x, z). Suppose, also, that one
position of the variable line is taken for the axis of y. Then
the other two fixed lines may be written as

—

y = *i \ y = ^h \

and the surface must evidently contain these. But thes^.

equations give

1^X1/ -^ n^b^z —
l^ xy + n.;^h^z —

* This only introduces one condition among the director lines, for the plane

is arbitrary, and therefore may be taken parallel to any two given lines. It is,

therefore, only the third director which is restricted.
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and these will satisfy the equation cz — xy, if

"^ = "" IT ~ " IT
conditions which we may always satisfy by a suitable choice

of tiie axis of z. Moreover, it is clear that the equation

cz = xy will also be satisfied by the other system of lines

ar = «

my \- nz = 0.

. , , na
proviuecl c = .
^ m

Hence the equation of the surface may always be written as

cz = xy,

whatever point of the surface be chosen as origin.

There is always one point on the surface for which, when
the equation is so written, z will be perpendicular to {xy)

;

but when that is so, it will not be generally true that x and y
are at rio;ht angles to one another.

<r5 to

If we leave the axis of z unchanged, and take, as new axes

of X and y, the bisectors of the old axes, we shall obtain a

rectangular equation of the form

£ _ ^-' _ t

an<l tlie old nxes will be given by

9 9

which is the equation to the pair of asymptotic planes of the

surface. When these asymptotic planes are at right angles

to one another, l=m, and the hy|:)erbolas, parallel to the

principal section, are rectangular.

In that case the equation cz— xy is referred to rectangular

axes, and we have the following curious properties, the

demonstration of which, whether by analysis or geometry,

will be a useful exercise for the student. Those marked (1)

and (4) hold, with slight modification, for the oblique case.

In the rectangular hyperbolic paraboloid cz=:xy^

1. The areas of any two portions of surface which have
similar and equal projections on the plane of {xy) at

equal distances from the axis of z, are equal to one

another.

29992. B
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The inclination of the tangent plane is constant at any
given distance from the axis of z.

Any cyUndric annulus of the surface, with the axis of

z passing through its centre, may be measured by a

parabolic arc.

If the projection of a portion of surface be any figure

symmetrical to the projections of any two right Une
generators, the corresponding cyhndrical volume shall

be the product of the projected area into the ordinate

at its middle point.

Gauss's measure of curvature is constant at a constant

distance from the axis of z.

The Hyperboloid of One Sheet.

This in its most general form may be defined as the surface

traced out by a Une which meets any three fixed lines in

space. It will be simplest to take the three lines as three

edges (which do not meet) of a parallelepiped, to take axes

parallel to tliem, and to take the centre of the parallelepiped

Yis origin. Calling the lengths of these edges 2«, 2Z», 2c, their

equations may be written as

y = b, z= — c

z = c, X = — a

X = a, 1/ = — b

In order that an arbitrary line

may meet these three lines, we must have

b — ^ C + y

m n

c — 7

n
= — a -\- a

r
a — a = — h + ^

I n

multiplying these together we get

(« _ «) (/, _ ^) (^ _ ^) + (« + a) {h+ ^) (c 4- 7) = 0,

or,

a^y 4- bya + ca/3 4- abc = 0.
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And since (a, /3, y) is an arbitrary point on the line, the equa-
tion of the surface may be obtained by writing x, ?/, z, instead

of a, ^y 7, in this equation, that is

OT/z + izx + CXI/ + abc = 0.

The asymptotic cone is

ai/z + hzx -\- cxy = 0,

which may also be written as

a b c ^
^ + - + - = 0.
X 7/ z

These are the forms of equation which arise most directly

from the rectilinear generation of the surface. Another form
of the equation is

x^ y^ z^ ^
a2

"^ P ""
^2 - 1.

the asymptotic cone then becoming

9 9 9

Let us try to follow analytically the deformation indicated

in model No. 16, starting, for simphcity, from the right

cyhnder.

Take for two of the axes the centre line of the cyhnder
and the line from its middle point to the middle point of its

line of contact with the tangent plane. Instead of supposing

that one ring only turns, it will be easier to suppose that we
turn them both equally, one backwards and the other for-

wards, through an angle = 6, Suppose, also, that for the tan-

gent plane we take a string whose distance from the point of

contact is tan ^

.

Before deformation the equation of the cylinder will be
.1-2 _|. y2 _ y,2^ ^^^ j^g tangent plane y = r.

The ends of the line of contact will be, at the top

a: = r cos ^, y = »' sin ^, 2" = c,

and at the bottom

X =z r cos ^, y = — 7' sin ^, 2: = — c.

The equations of the line of contact will therefore be

y _^
r cos e r= 0, _

rsm G c

B 2
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the square of the distance from the axis of any point at a

height z is therefore

.T^ + 2/- = 7'^ cos^ B -h -^ r^ sin^ 0,

and this is the equation of the surface.

Now with reference to the string in the the tangent phvne
;

before deformation, its distance from the axis will be r sec f ;

after deformation^ the position of its upper end will be

X = r sec (p cos (^ + 0), y = r sec <p sin (^ + B), z = c,

and of its lower end

X = r sec ^ cos {<p
—

Q), y = r sec ^ sin (^ — e), r = — r.

Hence its equations will be

X — r sec (p cos (f + 6)

z — c

2c

or,

1' sec <p {cos (f + ^) — cos (? — e)}

y cos <p
— T sec (p sin (^ + 0)

r sec ^ {sin (0 + ^) — sin {<p —0)}
~

X cos ^ — r cos (p + e)

r sin <^ sin

_ // cos ip - r sm {<p -\- e) __ z — c

r cos ^ sin ^ c '

We easily find from these

II z .

sin = tan ^ cosre ^

X z ~~ 2c
cos 6 = tan q fin 6

r c
^

and we can eliminate tan p by simple division. This gives

us the equation of the surface, since ^ is a parameter which

indicates only the position of the line in the surface, a hyper-

bolic paraboloid.

It will be an easy and useful exercise for the student to

find the other system of generating lines of the paraboloid,

and to show that they are horizontal.

The leading properties connected with rectilinear genera-

tion are as follows :

—

A tangent plane to the liyperboloid cuts the surface in two
right lines, which intersect at the point of contact.
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A tangent plane to the asymptotic cone cuts the hyper-

boloid in a pair of parallel Knes.

A plane parallel to a tangent plane of the asymptotic cone

cuts the hyperboloid in. a parabola.

Conoids.

The simplest form of this surface is when a line moves
parallel to the plane of (x, y) and always passes through the

axis of z, passing also through a circle witli its centre on the

axis of X, and its plane at right angles to that axis. This is

what WalHs named the cono-cuneus. Call the radius of the

circle c, and let a be its distance from the origin. Then for

any particular value of z, say z = h, the equations of the

?/ 's/ c^ —. li^
generatmg line will be 2; = k, and -. =

X c

The equation of the surface therefore will be

y = ^ ^^ - ^'\ or

X c

C2 (^2 _ ^2^ + ^2 ^2 ^ 0,

The sections at risjht ano-les to the axis of x are therefore

elliptic. Those parallel to the plane of x, y are evidently

pairs of right lines. Other plane sections of the surface are

in general curves of the fourth degree.

This particular case sufficiently exhibits the characteristic

form of the conoids. There is more complexity, but no real

difficulty in obtaining the equations of the conoids described

under other conditions. They are chiefly met with in the

case of splay arches.

Models Nos. 25, 39, and 44 are examples of this applica-

tion of the sm-face.

Families of ruled Surfaces.

The general consideration of any class of ruled surfaces in

which one or more of the dii*ector curves are left arbitrary,

requires the use of the arbitrary functional symbol. This

symbol can only be got rid of by partial diffisrentiation.

Cylindrical Surfaces.

A right line moves always parallel to itself. Its equations

will therefore be

a.* — a__y — ^__2r-~7

I m
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where l, 711, n, arc fixed quantities known, if the direction

of the generating line be known ; but a, /3, and 7 are variable

quantities depending upon the director curve. We may write

the equations as

X y a ^

I m~~ I m

m n m ii

, , u B y
Of the three quantities ~j

~
~i one is absohitely arbitrary, as

we only have to do with their differences. We may there-

fore consider

to be a function of 7m n I m

the particulnr form of the function depending u])on the

character of the director. We may therefore write the

equation of cylindrical sui-faces as

L 111 \in n J

in which F is a functional symbol.

Tt might seem at first sight that tlie common equation of

a right cylinder

is not of this form. But any chnnge of variables such as

will introduce the third variable z will nt once reduce it to

this form.

Conical Surfaces.

A right line always passes through a fixed point. Calling

the point a ^ 7, its equations are

a: — a_y — /3_-2; — 7

/ m n

whence
X — a, _ I y — ^ ^m
y — i^~~m'z^y n

I 711

and — must be some function of — . This givesm

y - ^ \z- yJ



23

as the equation of conical sui-faces. Its form expresses

simply that x — a,y — ^^z — y are connected by a homo-
geneous equation.

Conoids,

A right line is conditioned to pass through a fixed right

line and remain parallel to a fixed plane. Take the fixed

line for the axis of r, and the fixed plane for that of (x,i/).

Then the variable line may be written as

X -\- ki/ = z = c,

where c and k are variable, and are evidently connected

together by some equation depending upon a second director.

We shall, therefore, have k = F(c) = F(e), and the equation

of the surface is

x + y Y{z) = 0.

It may also be written as 2: = / ( — )

.

If the director line and plane be taken arbitrarily, a change

of coordinates will be necessary. But the effect of this will

only be to put the equation in the form

fa,x + b.^y + c^z + 4 \a.^^Wy + c,z^.e,=j
[a,x + h,y -, c.,z + d)'

The hyperbolic paraboloid is a particular case of the

conoid. So also is the common form of the skew helixoid,

or screw surface, not the one illustrated in this collection.

Ruled Surface with Director Plane.

This is more general than the conoid, inasmuch as it is

not restricted to pass through a right fine director. The
removal of this restriction introduces another arbitrary

function. Taking the dh*ector plane through the origin and
caUing it

ax -{• by + cz =1 0,

the equations of any line parallel to it may be written as

ax -{- by + cz = k, Ix + my = 1,

where k, I, and m are arbitrary constants. We may regard

I and m as functions of k, and we get

xF {ax + by -\- cz) -f yf{ax -\- by •{ cz) = 1,
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Monge writes it in the form

z = xF (ax \- hy -\- cz) + yf{tcx -\- by -^r cz)

which comes to the same thing, as F and / are arbitrary

functions. Monge's form may be obtained dh*ectly by
taking the equations of the line as

ax -{- by -\- cz = k, Ix -\- my = z.

if the plane of xyhQ taken for the director plane, a and b

A'anish, and we may write the equation as

xYz + yfz = 1 or z.

Ruled Surface with right line Director,

This again requires two arbitrary functions. Taking the

line for the axis of z, the projection of the variable line on the

plane of {x, y) \vill be of the form

X — ky •=. 0,

^vhile its projection on the other plane, say of (x, z), will be
of the form

mx -\- n = z.

Now making m and n arbiti'ary functions of k ov — we have

for the equation of the surface

-"•(1) + /(!)

To this family of surfaces belong the hyperboloid of one

sheet, all conical surfaces, conoids, skew hehxoids, the skew
arch, known by the French name of the " biais passe

^^

(Model No. 27 of this series), and the splay vaulting, known
as the " Arriere voussure de Marseilhr Of the last, there

are two specimens in the education museum at South Ken-
sington, although it is not represented in this series.

The ruled surface with a dnector plane is the particular

case of the mled surface with a right hne director, in which
the right hne has moved off to infinity. It follows that

conoids are a particular case of surfaces with two right line

directors. These du-ectors must not meet in a point, or the

surface will reduce to a plane.

Ruled Surfaces with two right line Directors,

The most symmetrical form in which the two du-ectors can

be referred to rectangular axes is to take the shortest distance
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between them for one axis?, and its middle point for origin, and
to let the other axes bisect the angle between the two dii*ectors,

whose equations are thus

—

X = a, ?/ =:: z tan

X =. — a,y = •— 2; tan 0.

Thus the line joining a point (2 = k) on one to a point

(z = l) on tlie other is

X — a _ y ^ k tan d _ z — k

2a {k + 1)timB k — I

Whence A = -^, .^-+^*
tan B X i- a

a y — z tan B

tan X — a

in which k and I are parameters, one of which may be assumed

to be a function of the other. It follows that is a
a

function of—^
. Hence the functional equation of tiie

sm-face is

?/ -f z tan B __ TjT /i/
"" 2; tan B

X -f a \ X — a )
This is not the general form of the functional equation, but

its simplest form, analogous to that which we obtained for a

conical surface, by assuming the position of the vertex to be

at the origin, or to that of the ruled sm-face with one right

line director when we take that for an axis.

Another form, even more symmetrical, can be obtained by
taking the origin and axis of x as before, and lines parallel to

the dnectors as (oblique) axes. The equations of the directors

are thus

X =^ a, z =
X = — a,y =0

and the Une joining a point y = k on the first with a point

2: = / on the second, is

x^a 'i1 — k z

2a
~

k ~ I'

/ z k y
Whence ,, — ,02a a — x^ 2a a -\- x
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and the functional equation of the sui-face is

= F y V
a — X \a -\- xl

Here, however, the coordinates are oblique.

The ruled surface with two director planes is cylindrical.

Ruled Surfaces generally.

It is not possible to express the general equation of ruled

surfaces in a purely functional form, for the equations of

a right line are only two in number, and they involve four

arbitrary constants. We cannot clear all four by such sup-

positions as we have made in the previous cases without

introducing some similar restriction. If, for instance, we
take

a^ =. y -\- h

z =. ex -\- e

and consider c and e functions of a we get

in which h remains perfectly arbitrary, and as it is not a

function of x and y alone, we cannot get rid of h without

bringing back one of the other arbitrary quantities or intro-

ducing a restriction. We cannot expunge them without

partial diiferential equations.

It is also to be remarked that the functional equations

which we have hitherto obtained are not quite general. In
the case of cones, for instance, we have given the equation

, = F
(
^-

) on the assumption that the vertex is at
y — \z — cJ

the known point, whose coordinates are (a, b, c). If the

vertex is to be left arbitrary, so that the functional equation

shall express all conical surfaces without reference to the

position of the vertex, no such functional equation exists,

nor can the condition in general be expressed by any one

differential equation.

Developable Surfaces,

The characteristic of these surfaces is essentially differen-

tial and it cannot be expressed without partial differentials.
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Surfaces of ivhicli the Directors are given, either explicitly

or hnjilicitly.

In these cases the arbitrary functions must be determined

by the conditions in question. In the case of ruled surfaces

with given director lines, through which the variable right

line must pass, it will in general be sufficient, for the deter-

mination of the arbitrary function, to make the equations of

the director satisfy the functional equation identically, for

then the director wiU be a line traced upon the surface.

Differential Equations of Families of Surfaces.

In the restricted cases in which we have obtained functional

equations, we may obtain the differential equations by the

direct processes of partial differentiation. But they may also

be obtained from the equation to the generating line, expressed

in terms of the coefficients which we wish to retain ; for our

object is simply to obtain the relation between certain partial

differential coefficients, and it is immaterial whether we obtain

these by implicit differentiation from a line in which only one
variable is independent, or by partial differentiation from a

surface in which there are two independent variables.

The character of the restriction imposed on the motion of

the line will determine what are the constants to be eliminated

by the differentiation. For the motion of a point fixed while

the line shifts, and the independent motion of the point along

the line, each infinitesimal in amount, determine the tangent

plane of the surface, and this tnngent plane is one of the

complete solutions of the partial differential equation, of which
the functional equation of the surface is the general solution.

Any family of surfaces of which the actual surface is the

envelope will be a complete solution of the differential

equation of the surface, but the tangent plane is the only

one in which we are certain that the right line generator

must be contained.

Cylindrical Surfaces,

Starting from the right line

X — a. _ y — ^ _^z — y

I VI n

and observing that our object is to retain l^ m, n, we obtain

by implicit differentiation

dz dz dy n dy m
dx dy dx I dx I
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therefore

, dz dz
t - -j- m

-J-
= u

ax dy

which is the differential equation of all cylindrical tjurfaces

whose director ratios arc l, m, n.

If we take the functional equation

n in \rn I I

we obtain by partial differentiation

^ = _ Z? F' ~ = ~ 4. ?i F'
dx I ' dy m m

.'. I J- + m -y- = ?^ as before.
ax dy

Conical Surfaces.

Our object here is to retain a, 1^, 7, and to get rid of

l^ m, n, by differentiation. For this purpose write

z — y _^n y — ^ _m
y — ^ m X — a,~ I

(^- - -) I - (y - ^) = 0.

, ^. ( dz
^ y — ^ dz ) , . y

X — ex.

or

/ dz , .. dz

is the differential equation of the surface.

Co)w'ids,

The generating line is, for the simplest form,

y = kx, z = c.

.
dz _^dz dy^

^^ ^ = /, = ^
'

' dx dy dx ' dx x

eliminating --^, the partial differential equation of the sur-

face is dz
^

dz

dx dy
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Ruled Surface with director Plane.

Let the equations of the line be

Ax + By + C^ = /c ( ^
.)

ax + hi/ = I (2.)

in vv'hich a, b, and ky are r.rbitraiy coiivstants. Differentiating

implicitly

a + l% = 0. (4.)

Proceeding to a second differentiation, in which, by virtue

dy
of the last equation, we may consider ~ as constant, we

obtain

dx'' ^ dxdy \dx) ^ dif \dx)
' ^^

Then, if we take (2) as the director plane, that U to say, if

we make the director plane parallel to the axis of z, we must

substitute in (5) the value of -/ obtained from (4), and we
^ dx

get

j^dh
c^ J

dh
, 9 d^z .

dx^ dxdy dy^

or in the usual notation

Wr - 2ah8 + f/^Jf = 0. (6.)

If, however, we take
^
(I) as the director plnne, we must

determine j ^^^"^ (•^)j which gives

dif _ _ C/? + A
llx
~ Cq + B

and the differential equation becomes

(C^ -f B)2r - 2 (C7 + B) (C> -F A) 5 + (C;7 n Aj^ f

= 0. (7.)

which reduces to the same form as (()) if C r= 0.
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• Ruled Surface with right line Director,

The axis of z being taken as the director, the equations of
the variable line may be written as

whence

and

X =^ ky mx -\- n = z.

dy \ y
j^ = -,- = — = constant,
ax k X

_ dz dz dy

dx dy dx

Diiferentiating again,

= ^+2^^ + ^^^^
dx'^ dxdy dx dy'^ \ dx)

t , y dij
Substituting - for -j- we obtain

'^ X dx

„ d^z ,^ d^z „ d^z ^ , ^

which is the equation of the surface.

If we had taken any other right line than the axis of z for

the director, we should have had the constants of its equa-

tions appearing in the differential equation (as in equation

No. 7 of the previous section). Equation (8) is therefore

not a general one, but a restricted form, in which the con-

stants have received particular values which simplify the

result.

Ruled Surfaces considered generally.

We have seen that we cannot express the equation of a

ruled surface in a functional form, without differentiation.

This happens because the simplest expression of a ruled sur-

face is, that its tangent plane at any point shall meet it in a

right line, or, what is the same thing, that one of its tangent

lines at any point shall be wholly in the surface. Now the

question of tangency is emphatically a question of differen-

tiation.

In what follows it will be convenient to use the ordinary

abridged notation of partial differential coefficients, namely,

_^dz _dz
^ ~~

dx ^ ~~
dy
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dx^ '
~~

dxdy
~~

dy^

~~
dx^^

~ dx^dy

d^z ^-^~ dxdy'^
~ dy^

A ruled surface is expressed with complete generality by
considering it to be traced out by the motion of the gene-

rating line'O

y = c^x+ c^

in which the four quantities c, which are constant so far as

the equation of the line in any one position is concerned, but

variable parameters, when considered with reference to the

position of the line, are to be made to disappear. The
obvious way of effecting this is to obtain, by means of implicit

differentiation, a relation between the partial differential co-

efficients of 2, which, when thus cleared of what is special

to the particular generating line, will be tlie differential equa-

tion, in partial differentials, of the surface.

Operating implicitly upon the above equations we get

dy dy

whence

p -\- qc^ = q (1.)

Differentiating again upon the same suppositions we have

r + 25^2 + tc,;^ = 0. (2.)

Differentiating a thkd time, we get

a -f 3/3^2 + 370.2 + ^c.^ = 0. (3).

If now, by ordinary algebra, we eliminate c^ from equations

(2) and (3), we get the ditferential equation of ruled surfaces.

It is not worth while to write it down, as it is more conve-

niently used in the impHcit form given above, than in its very

cumbrous expHcit form.

We liave already noticed that the general form of a ruled

surface cannot be expressed as a single functional equation.

It follows that the differential equation has no general

primitive.
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Developable Surfaces,

If we consider a stiff card, of the form a X Yf E in the

figure above, to be deeply scored along the right lines B A h,

C B c, D C f/5 E D e, so that we can bend it along each of

them, the broken line ABODE will form a polygon, at

first plane, but a skew polygon when we come to bend the

the surface, which will then form a polyhedron, every edge
of which will run into every successive edge, along the

broken Kne ABODE. It is evident that this condition is

necessary to our being able to deform the surface. For if

one of the scores (say c B) stopped short of the edge ABO,
the card would not bend, and if A B were not an actual

edge, in that case it would not bend either.

Now if we consider a surface which can be formed by the

gradual bending of a plane surface, the only departures from

this type are,

—

(1.) That the polyhedral surface is replaced by a curved

surface.

(2.) That the polygon A B D E is replaced by a cui^e.

(3.) That instead of a finite bending along a few lines

A «, B J, c, &c. we have an infinitesimal bending

along an infinite number of such lines infinitely

close together. -

(4.) That all these lines are tangents to the curve ABO...
which replaces the polygon.

(5.) That the consecutive lines A «, B Z>, meet one another

;

that is to say, the shortest distance between them

is an infinitesimal of a higher order than the dis-

tance between any other two points of them. This

is imphed in their being tangents to the same curve.
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If the curve ABODE degenerates into a single point,

there will occur some singularities which will mask the

general properties of these surfaces. This degeneration gives

conical surfaces. When, further, the single point in question

moves off to infinity, we get the cylindrical surfaces.

This is not all. If we take two cards, counterparts of

one another, and glue them together along the polygon
A B C P E, we can deform the double plane into a double

polyhedron, the two sheets of which will be placed back
to back. There will then be a finite angle between the

corresponding gores in the two sheets. When we replace

this polygon by a curve, this angle will be infinitesimal, and
a section at right angles to A B C D E will be a cusped
curve.

Each sheet will evidently be a ruled surface, the variable

right lines of which will touch the curve which replaces the

polygon ABODE. It is evident that the right line

generators must otherwise stop abruptly, for they could not

get from one sheet to the other on any different conditions.

A good imitation of this can be made by taking two
sheets of paper, fitted over one another, as A B D, cutting

out a curved piece (E F G) from both, and laying a smear
of strong glue along E F G, so as to fasten them together

?'J'J •J2,
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along tliat curved side only. Then take one sheet up by
the comer A or B, and let the other sheet hang freely. If

there be no crumpling or stretching, we shall thus obtain a

developable surface of two sheets. A tangent to the curve

E F G, such as K F L, will be partly on one sheet and
partly on the other.

The curve E F G which connects the two sheets is called

the edge of regression. It is not a very significant name,
being a bad translation of the French arete de rehroussement.

Still it is the usual name.
In the case of cones, this curve degenerates into a point

It then ceases to be a necessity that the angle between the

two sheets should be infinitesimal, and, accordingly, this

angle is then generally finite.

The analytical criterion of a developable smface is derived

from the consideration that its generating lines must be tan-

gents to a curve in space. In analytical language, they must
have an envelope. It must, therefore, be possible to get rid

of the parameter which distinguishes one line from another

by differentiating with regard to that parameter. Going back
to equation (2), namely,

r + 2sc2 + tc^^ = 0,

in which there is only one parameter, Co, and differentiating

with regard to that, we get

s -\- tC.^=zO

Now eliminating Ca by ordinary algebra, we obtain, as the

differential equation of ruled surfaces,

rjf-/-= 0.

The geometrical interpretation of this is that a section

parallel to the tangent plane at any point, and infinitely near

to it, is always a parabola. In other words, the curvature

at every point is parabolic.

To resume then, the differential equation of ruled siu'faces*

is the result of eliminating c between

r + 2sc + ^c^ =
and a + 3/3c + Syc^ + hc^ =

* It seems at first sight rather singular that the elimination of a single

constant should introduce four new partial differentials ; but it must be recol-

lected that the partial differentials are here only accidental. The work we are

doing is implicit differentiation, and the variation of the whole equation

simply amounts to the introduction of one new element. This consideration

seems to dispose (affirmatively) of the question whether the resulting equation

represents ruled surfaces only. The converse question, whether ruled surfaces

are included in it, is evident at first sight.
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while that of developable surfaces is

rt = s\

It will be observed that this is the condition that tha first

equation should give two equal values for c.

Cones and Cylinders,

The differential equations previously obtained are not

those which distinguish these surfaces from other ruled or

developing surfaces. On the contrary, they are restricted by
conditions which settle the position of the vertex of the cone,

or the direction of the generators of the cylinder. They are

consequently expressed by differential equations of the first

degree. If we desire to eliminate the constants of the vertex,

or of direction, we must proceed to third clifferentials.

Writing the equation of the cone as

and regarding x and y as independept variables, it is easy to

verify that

«y - f _ a§ — h __ iSi_^_^^
r

""*
25 " T~ '

but these equations are also derivable from the general

equation of developable surfaces, rt = s-, and do not
distinguish conical surfaces from all others.

Jf again we write the equation of the cylinder as

ny — mz = Y {mx — ly)

we find that the numerators of the above fimctions vanish, or,

as the I'esult may be more simply stated

— = -= -
i3 7 5

and this appears to distinguish the cylindrical from other
developable surfaces.

Tlie theory of this part of the subject is recent, and far

from complete. Meanwhile it is certain that what goes
before is strictly true as stated ; but the student must be
cautious of drawing inferences which go beyond the text.

For instance, Mr. Cayley has shown that the equations

do not represent cylinders only, or even ruled surfaces only.

It is when taken in connexion with the equation of develop-
able surfaces that they represent cylinders.

29992. D
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The complexity of these results was to be expected. The
general equation of cones involves an arbitrary function and

three arbitrary constants, while that of cylinders involves a

function and two constants. Now the ordinary practice in

the formation of differential equations is to consider arbi-

trary functions on the one hand, as yielding what is called a

general solution, or primitive ; and arbitrary constants on the

other hand, as yielding a complete solution or primitive. The
simultaneous elimination of functions and constants would

naturally be more complex, and the result at which we have

arrived, namely, that it leads to the existence of simultaneous

equations in differentials, is only reasonable.

The equations of the cones

ay — /3^ _ aS — ^7 __ /3S — y^

V~ ~ ~^s -
t

in virtue of the relation rt =5^, lead to the equation of the

third degree

4 {ay - f) (^S - y') = (.S - ^yY-

This equation is more general than that of conical surfaces.

Its integration has not yet been effected, but it is known to

be satisfied by surfaces traced by common parabolas inter-

secting consecutively ; moreover, it is easily shown that it is

also satisfied by the equation of the ruled surface with a di-

rector plane, a surface wliich is not generally developable.

This can easily be verified by taking the director plane

parallel to the axis of z^ when it may be wTitten as

z =. x¥ {ax -f hy) + yf {ax + by) + (p (ax + by).

The result, being invariant, will not be affected by a change
of co-ordinates. The question lias not yet, however, been

fully studied.

The Screw, and Surfaces connected with it.

If a cylinder is put into the lathe and turned with a steady

motion while a tool travels along in a direction parallel to the

axis of the cylinder, also with a steady motion, the curve

traced upon the cyhnder is a screuj thread, or helix, as it is

sometimes called.

It is the only curve in which any portion can be super-

posed upon any other portion so as to fit exactly. The only

curve, because the circle and straight line are simply extreme
cases of it. If the tool is still as well as steady we get a
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circle. If the cylinder is still while the tool travels we get a

right line.

The most convenient form of its equations is x = a cos ^,

2/ = aein dy z =cS. Its tangent, of com^se, touches the

cylinder x^ -{- i/^ = c? and makes an angle with the axis

whose trigonometrical tangent is a -* The radius of absolute

curvature is evidently the same as that of the elliptic section

of the cylinder passing through the tangent. The minoi'

semi axis of this ellipse is «, and its major semi axis s/ d^ + c^.

c? + c^.

Hence the radius of absolute curvature is
*

a

If we eliminate a and d we get a surface which is indepen-

dent of the diameter of the cylinder, or of the inclination

of the particular helix got by varying the diameter of the

cylinder at the same time that the pitch remains constant for

all values of a. This is called the shew helixoid. It is the

underside of a common screw staircase, or the driving side of

a common screw propeller. A mooiing screw and the twisted

surfaces of a square-threaded screw are other examples. The
equation is

y . z^ = tan -.

X c

Practical reasons made it inconvenient to include the

common form qf this surface in this series of models. More-
over, the examples of it are too frequently met with in

practice to render its exhibition worth encountering an incon-
venience. There is no difficulty in representing it by strings

or threads; but there is a difficulty in deforming it with
regularity.

The skew helixoid selected for representation (model No. 31)
is one in which the generating line passes through the axis,

and is inclined to it at a constant angle instead of being
at right angles to it. It is the surface of what is called a
screw with a triangular thread. If we call ^ the angle which
its generating line makes with the axis, this generating line

will pass through the point of the helix (a cos ^, a sin ^, c 6),

and also the point of the axis »= c6 — a cos <p. Its equa-
tions are therefore

X y z— c&

cos ~ sin 6
"~

cos 9 '
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or eliminating 6

i;/
cos (p s/ x^ \- if'

=. z — c tan '- + a cos f

.

X

If z is made constant, that is, if we take a section perpen-

dicular to the axis, we get for the polar ecj[uation of the

section,

;• - k - le,

which is the spiral of Archimedes.

llevei'ting to the helix, it may be remarked that its pro-

jections by lines parallel to any tangent are either cycloias or

elliptic modifications of the cycloid, and that all its projec-

tions (by parallel lines) are either trochoids or elliptic modi-

fications of the trochoids.

The tangent to the helix has for its equations

X — a cos d __ y — a sin d __ 2 — cS

— a sin B a Cos B c

The first pair of terms gives :i* cos Q -\- y AnB —a. Squaring
all the terms, and adding the numerators and denominators

of the first two we get

a,'2 4- y2 ^ ^2 _ 2^ (x COS 6 + 3/ sin B) _ /^ — cB \^

whence
2 / \ '

^.^ 4- t/^ — a^ ±: %^( z — cb\

this equation, with x cos ^ + ^ sin ^ = a, represents the

tangent for any given value of B. When z = we get

r^ — a^ z=z «2 e'^, which is the involute of the circle* This is

geometrically evident^ if we consider the helix as traced by
winding a paper triangle on a cylinder.

The surface swept out by the tangent is the developable

helixoid (model S^o. 30). Its equation is formed by ehmi-

n^ting B from the above equations, which may easily be done,

since X cos B ^ y miB z=. a gives

ay -^ X \/ x^ -^ y^ — c?

The heHx itself is the edge of regression of this surface

sm 2 .
•>

x" + y-
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When the surface is actually developed or flattened, the

helix becomes a circle whose radius is that of the absolute

c? + c2
curvature of the helix, that is to say, — .

The French Skew Arch. {Biais passe.)

See model No. 27. Take the line joining the centres of

the large settiicircles as Jc, the middle point of it for origin,

and the axis of z, vertical. Then if we call the radii of the

small circles c and their distance from the axis of x, b, their

eq[uations may be wi'itten as

a:=a, (j/— by -{- z'^ z=z
c-

x=^a, (i/-\-by-}-z^= c^

A plane through the axis of x, inchned to the vertical at an

angle (p, will he i/= z tan ^ : substituting y cot p for z in the

above equations and solving for y, we find for the extremities

of a generating line

X = Of 1/ s= i) sin '^^ + sin <p \^ c'^ — b^ cos ^(p

x = — a, 1/ =z — b sin ^f + sin ^ i/ c'^ — i^^ cos ^

The plan of the generating liiie is therefof-e

X _ 1/ — smp \/ c^ —b'^ sin '^<p

a b sin ^f

Now putting tan ^ = - we obtain for the equation of the

surface

If we make x = and y = we get for the height at the

middle point z = \/c^ — b'^, which shows that the arch droops

in the middle, as already stated. To get the middle section^

make x = 0, and we have

(Z^+ 2/y= C2(^2 +^2) _52 22

or changing to polar co-ordinates

7-2 = c2 - 62 sin '^6
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an equation which shows that the curve bears a close resem

blance to the ellipse.

This curved surface is essentially unsymmetrical ; it is

evidently of the fourth degree.

The Splay Vault of Makseille.

This is a splay vault or pendentive used to connect a

semicircular arch on one face of a wall with a flat or segmen-
tal arch on the other face. It is a ruled surface, of which

the intrados of the two arches are two curvilinear directors,

while the other director is a vertical right line. It is called

the Arriere-voussure de Marseille; but when one of the

arches is flat instead of segmental, it is sometimes called

the Arriere-voussure de Montpellier. TIkS latter form is

selected for illustration here, as the investigation is somewhat
simpler. The student will have no difficulty in extending

the algebra to meet the more general case of the segmental

arch.

Assuming, then, that the front arch is replaced by a

horizontal Hne, whose height above the springing plane is

h, and that the inner arch is a semicircle, radius c, let the

distance between the two arches be h and let the vertical

director be taken at a distance a behind the inner arch. Then
if we take the vertical director for the axis of z, the equations

of the other two directors will be

X = a, y'^ -\- z^ = c^

X = a -\- b, z = h

Take an auxiliary plane passing through the axis of z ; its

horizontal trace may be written as

y =: X tan f

it will therefore meet the horizontal director in the points

x= {a + h)i y =: {a -\- b) tan <p, z = h

and the semicircular director in the point

X = a, y = a tan ^ z = a/ c^ — a^ tan ^<p.

The projection of the generator on the plane of {yz) will

therefore be

y — {a + b) tan ^ ^
z — h

bUnf ^h - a/ c^ ^ a^tan^^
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Eliminating tan f by means of the horizontal trace of the

generator, y — oc tan ^5 we obtain after a few reductions

ab -\- hz — hx\^ _c^ x^ — a^yfab -\- bz — hxy _c^

X

\ a + h — X )

It is easy to verify, by giving x the values 0, «, and a-\-b

successively, that this surface really contains the three

directors.

This surface, like the last, is of the fourth degi'ee, and in

its ordinary construction is unsymmetrical. It may, how-
ever, be rendered symmetrical in a particular case by the

assumption ^ = 0. If we then transfer the origin to the

centre of the semicircle, the equation becomes

\b — x/ \a -\- x)

In this case all sections perpendicular to x are ellipses.

In the more usual case which occurs in actual building

construction, instead of a horizontal right line director there

is in general a very flat segment of a circle. Whatever the

curve may be, it will in general be possible both to construct

the generating line at any point geometrically and to find the

analytical equation of the surface, but the analytical expres-

sions will become mther comphcated. The expedient to be

used in all constructions relating to ruled surfaces with a

director line is to take auxiliary planes passing through that

line.
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